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Correspondence between classical and quantum resonances
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Bifurcations take place in molecular Hamiltonian nonlinear systems as the excitation energy increases, leading
to the appearance of different classical resonances. In this paper, we study the quantum manifestations of these
classical resonances in the isomerizing system CN-Li � Li-CN. By using a correlation diagram of eigenenergies
versus Planck constant, we show the existence of different series of avoided crossings, leading to the corre-
sponding series of quantum resonances, which represent the quantum manifestations of the classical resonances.
Moreover, the extrapolation of these series to h̄ = 0 unveils the correspondence between the bifurcation energy
of classical resonances and the energy of the series of quantum resonances in the semiclassical limit h̄ → 0.
Additionally, in order to obtain analytical expressions for our results, a semiclassical theory is developed.
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I. INTRODUCTION

Since Bohr’s correspondence principle was first introduced
[1], the issue of the correspondence between classical and
quantum mechanics has led to countless publications, and still
remains as a current research topic of interest. In the case
of integrable systems, the correspondence between the two
mechanics was established by Einstein [2], Brillouin [3], and
Keller [4] in the EBK quantization [5], which is based on the
action quantization of phase space tori.

Accordingly, this topic continues to generate publications
in different fields of physics, particularly in the case of
nonintegrable chaotic systems where the tori structure of
phase space is total or partially destroyed [5–7]. Abundant
literature regarding quantum-classical correspondence has re-
cently been published in connection with terahertz generation
in a gas-phase medium [8], Rydberg-atom spectroscopy in
amplitude-modulated optical lattices [9], cavity optomechan-
ical systems involving an optical parametric amplifier [10],
out-of-time order correlators in quantum chaos [11], transport
properties in Heisenberg spin chains [12], thermodynamic
entropy [13], the Gross-Pitaevski model of Bose-Einstein con-
densate [14], quantum chromodynamics [15], and quantum
fields [16], among other topics.

Classical resonances, in the sense of the Poincaré-Birkhoff
theorem [5–7] for Hamiltonian nonlinear systems, are associ-
ated with periodic orbits. Moreover, periodic orbits have been
shown to play a very important role in the quantum-classical
correspondence. In the case that the system is not ergodic, this
role is mediated by the remnants of invariant tori, that can be
quantized using the EBK prescription [17]. However, for fully
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chaotic systems, Gutzwiller [18] obtained, by means of his
trace formula [5,6], a relationship where quantum eigenener-
gies are expressed in terms of a summation over all periodic
orbits in the system. Currently, Gutzwiller’s trace formula
remains as the only general tool available to establish a quan-
titative connection between classical and quantum mechanics
for chaotic systems. This trace formula also indicates the
significance of periodic orbits in the quantum-classical cor-
respondence phenomenon known as scarring, which was first
studied by Heller [19]. He coined the term scar to refer to the
accumulation of probability density along isolated unstable
periodic orbits. That is, periodic orbits are not only significant
for eigenenergies (trace formula), but also for eigenfunctions
(scarring). The idea that periodic orbits are the underlying
hidden skeleton supporting quantum eigenstates is strongly
endorsed by the results obtained using basis sets of scar func-
tions [20], or, more generally, basis sets of functions localized
over (stable and unstable) periodic orbits [21], where it has
been shown that each eigenfunction is mostly expressed in
terms of a few periodic orbits (i.e., a few basis functions
localized over the corresponding periodic orbits).

On the other hand, the concept of quantum resonances, first
proposed by Fermi in order to give a theoretical explanation
for, at the time called, the anomalous effect in the CO2 Raman
spectrum [22], went beyond the explanation of this effect,
and the theory developed by this author has been shown to
be of general application in quantum mechanics; in particu-
lar, it is intimately related to the notion of avoided crossing
between eigenstates, when a parameter in the corresponding
Hamiltonian is tuned. If this happens, the involved states are
mixed by means of an orthogonal, or more generally unitary,
transformation. When two eigenstates belong to the same
irreducible representation of the symmetry group of the sys-
tem, the noncrossing rule of von Neumann and Wigner [23]
is applicable, leading to the corresponding avoided crossing.
Conversely, if the eigenstates have different symmetry, then
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crossing is allowed. In a typical avoided crossing of a Hamil-
tonian nonlinear system, an exchange of character between
both involved eigenstates, usually defined in terms of approx-
imate quantum numbers when those can be assigned, takes
place. This change of character can also be quantitatively
described by calculating the corresponding coupling matrix
element, or alternatively the associated mixing angle which
results from the integration of that coupling [24].

Moreover, Roberts and Jaffé [25] developed an interesting
theory in this field by studying the correspondence between
classical resonances and Fermi resonances, obtaining that the
classical dynamics corresponding to a quantum state involved
in a Fermi resonance needs not exhibit resonant behavior, and,
furthermore, the fact that the classical dynamics correspond-
ing to a quantum state is resonant does not necessarily imply
that the quantum state is involved in a Fermi resonance. How-
ever, these authors found a relationship between classical and
quantum resonances, namely, if two quantum states exhibit an
n:m Fermi resonance, then the classical dynamics associated
with the matrix elements connecting these two states will
exhibit an n:m classical resonance.

In our case, the consideration of variations of the value of
the Planck constant leads to a correlation diagram of eigenen-
ergies versus that parameter, and this will be the basis of this
paper. Variation of the Planck constant can be considered as an
awkward mathematical artifact, but notice that, regarding the
calculation of Hamiltonian eigenvalues, this variation is math-
ematically equivalent to an (inverse) variation of the system
masses. In the case of a molecular system, a similar effect can
be attained by considering different isotopic compositions.
Indeed, the procedure introduced in our correlation diagram
can tune EBK quantized actions to the action of the classical
resonance, allowing one to observe avoided crossings which
could otherwise be hidden at h̄ = 1 a.u. due to the charac-
teristics of the system. This method has been proven in the
past very useful for the analysis of the eigenstates of different
molecular systems [24,26–28]. The crucial point is that our
correlation diagram has been able to identify, for a number of
floppy molecular systems including HCN, LiCN, KCN, and
HO2, a frontier separating two very different regions in it. The
region above the frontier consists of a myriad of overlapping
and broad avoided crossing, originating a large mix of indi-
vidual states that give rise to ergodic eigenstates, according to
the nodal pattern criterion of Stratt, Handy, and Miller [29].
This was taken as an indication of quantum stochasticity by
Marcus [30], thus constituting this region as the proper niche
or ecosystem for Heller’s scars. In contrast, in the region
below the frontier, the avoided crossings are isolated and
sharp, such that every curve in the correlation diagram can be
more easily understood in terms of EBK quantization of tori
remnants. In terms of Marcus’ classification this is a region of
order or regularity in the quantum sense. More interestingly,
it was found in Ref. [26] that the frontier separating the two
regions is located in the area of the correlation diagram where
localized wave functions due to scarring first start to appear.

In this paper, we present a detailed study of the regular
region, i.e., below the frontier of scars, of the eigenenergies
correlation diagram using the Plank constant as parameter
for the LiCN molecular system. Different series of sharp and
isolated avoided crossings, corresponding to the main quan-

tum resonances, will be obtained. Also, the correspondence
with the classical resonances, i.e., periodic orbits, is analyzed.
Finally, semiclassical expressions for the series of quantum
resonances are given, which permit an analytical extrapolation
to the h̄ → 0 limit. In this way, we are in the position to
establish a quantitative correspondence between the classical
bifurcation energies and the energy of the quantum resonances
series in the semiclassical limit, which constitutes the main
result of this work.

The organization of the paper is as follows. Section II is
devoted to the description of the Hamiltonian model used
to represent the LiCN molecular system (Sec. II A), as well
as the exposition of the classical (Sec. II B) and quantum
(Sec. II C) calculations performed on this model. Section III
is devoted to the joint presentation and discussion of the
results obtained. In Sec. III A the main classical resonances
that arise as energy increase are shown and the corresponding
bifurcation energies are listed. In Sec. III B the correlation
diagram of eigenenergies versus Planck constant is depicted
and explained, including the main quantum resonances cor-
responding to different series of avoided crossings. Also, the
energies of the resonances in the semiclassical limit, which
are estimated by linear extrapolation of the series, are listed
and put in correspondence with the classical bifurcation en-
ergies. In Sec. III C a semiclassical theory is developed by
considering different power series expansions in h̄, leading
to analytical expressions for the resonance energies in the
semiclassical limit. Lastly, the paper is summarized and the
conclusions reached are presented in Sec. IV.

II. SYSTEM DESCRIPTION AND CALCULATIONS

A. Hamiltonian model

The system studied in this work corresponds to the purely
vibrational dynamics of the lithium isocyanide molecule
CNLi, taking the most abundant isotopic composition 12C,
14N, and 7Li. For simplicity, the rotational motion will be
not considered. Since the C-N bond is much stronger than
the interactions with Li atom, an adiabatic decoupling of the
corresponding degree of freedom is adequate, such that the
C-N bond length can be fixed at its equilibrium value, i.e., we
study the relative motion of Li atom and CN group.

This system can be modeled in Jacobi coordinates by
means of the Hamiltonian function

H = P2
R

2μ1
+ P2

θ

2

(
1

μ1R2
+ 1

μ2r2
eq

)
+ V (R, θ ), (1)

where μ1 = mLi(mC + mN)/(mLi + mC + mN) and μ2 =
mCmN/(mC + mN) are reduced masses (mLi, mC, and mN

being the corresponding atomic masses), req = 2.19 a.u. is
the fixed N-C equilibrium length, R is the length between
the CN group center of mass and the Li atom, and θ is the
angle formed by the corresponding req and R directions (i.e.,
N → C and C

N → Li, respectively). Thus, θ = 0 corresponds
to the linear configuration Li-CN, and θ = π rad to the linear
configuration CN-Li. Last, PR and Pθ are the correspond-
ing conjugate momenta, and V (R, θ ) is the potential energy
function describing the vibrational interactions. The potential
energy function V (R, θ ) is taken from the literature, using
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FIG. 1. (a) Energy profile along the minimum energy path
connecting minima and saddles of the potential energy surface.
(b) Potential energy surface represented as contour plots spaced 1000
cm−1. The minimum energy path has also been plotted superimposed
in thick line.

the ab initio quantum calculations fitted to an expansion in
Legendre polynomials of Essers et al. [31]. As can be seen in
Fig. 1, the potential energy function has two minima: a relative
minimum at θ = 0, corresponding to the Li-CN isomer, and
an absolute minimum at θ = π rad, corresponding to the most
stable CN-Li isomer. Both minima are connected by the min-
imum energy path (MEP), also represented in Fig. 1. In order
to have a suitable analytical expression for some calculations,
we have fitted the MEP to an even Fourier series expansion

Req(θ ) =
9∑

k=0

Ck cos(kθ ), (2)

where the coefficients Ck are given in Table I. Observe that,
as shown in the potential energy profile along the MEP [i.e.,

TABLE I. Numerical values of the fitting coefficients for the
minimum energy path series expansion in Eq. (2).

k Ck (a.u.) k Ck (a.u.)

0 4.132892896462 ×100 5 6.220709233536 ×10−3

1 2.343663054880 ×10−1 6 1.514561578552 ×10−2

2 4.852236115677 ×10−1 7 −1.780658985867 ×10−3

3 −1.603718738637 ×10−2 8 −4.312497534258 ×10−3

4 −5.879701202854 ×10−2 9 2.551825016959 ×10−4

Veq(θ ) = V (Req(θ ), θ )] depicted in Fig. 1(a), the well around
the absolute minimum (CN-Li isomer) is very anharmonic.
Consequently, the transition to (classical) chaos in this sys-
tem [32,33] takes place for energies around 1700 cm−1, well
below the isomerization barrier energy of 3455 cm−1.

B. Classical calculations

The canonical equations of motion corresponding to the
Hamiltonian function in Eq. (1) were built, and standard
numerical integration used to calculate trajectories for the
molecular system. In order to get an illustrative graphical
representation of the trajectories in phase space, and espe-
cially the resonance structures, we have computed composite
Poincaré surfaces of section (PSS) across the MEP for dif-
ferent energies. In this representation, classical resonances
appear as chains of islands, such that the number of islands in-
dicates the corresponding order of resonance, i.e., the number
of oscillations in the associated coordinate along the corre-
sponding periodic orbit.

For this purpose, we have applied the canonical transfor-
mation

ρ = R − Req(θ ), ϑ = θ,

Pρ = PR, Pϑ = Pθ + PR
dReq(θ )

dθ
, (3)

where Req(θ ) is the series expansion that fits the MEP given
in Eq. (2). In this way, for a given energy E , the PSS along the
MEP is defined in (ϑ, Pϑ ) coordinates by taking ρ = 0 and
choosing an arbitrary branch (the negative one in our calcula-
tions) in the second degree equation for Pρ that arises from the
Hamiltonian conservation condition H (ρ, ϑ, Pρ, Pϑ ) = E .

Additionally, in order to enhance the graphical representa-
tion, the center of symmetry existing at (ϑ, Pϑ ) = (π, 0) has
been applied to all calculated points, thus doubling the number
of points depicted in the corresponding figure.

On the other hand, the calculation of initial conditions,
for the main periodic orbits represented in the PSS, was per-
formed following the systematic numerical method described
in Ref. [33].

C. Quantum calculations

Quantum eigenenergies and eigenstates of the Hamilto-
nian operator, corresponding to the Hamiltonian function
in Eq. (1), were calculated by means of the discrete vari-
able representation–distributed Gaussian basis (DVR-DGB)
method of Bačić and Light [34]. Using a relatively small basis
set, this method provides good accuracy for highly excited
vibrational states and, as was shown by Bačić and Light, it
works very well for our system.

Considering a single value of the Planck constant, normally
h̄ = 1 a.u., only a few quantum resonances are observed.
However, it has been shown in the literature [24,26–28] that by
expanding the range of h̄ values in the calculations, obtaining
the correlation diagram of eigenenergies versus Planck con-
stant, other quantum resonances are unveiled. In particular,
a singular series of quantum resonances formed by broad
avoided crossings is observed, which constitutes the so-called
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frontier of scars that separates the regions of order and chaos
in quantum systems.

In this way, the DVR-DGB method was applied at val-
ues h̄ = {0.01, 0.02, . . . , 3.00} a.u., obtaining the 130 low
lying eigenstates for each value of h̄ with its eigenenergies
converged to within 1 cm−1. Let us indicate that, in order
to maintain accuracy, the number of rays (the fixed values
of θ coordinate taken in the DVR-DGB method) must be
increased as h̄ decreases. Thus, a final basis set of 414–418
ray eigenvectors (depending on the value of h̄) lying in 45
rays was used in the range h̄ ∈ [1.01, 3.00] a.u., a basis set
of 820–841 ray eigenvectors lying in 90 rays was used in
the range h̄ ∈ [0.31, 1.00] a.u., and a basis set of 1480–1710
ray eigenvectors lying in 180 rays was used in the range
h̄ ∈ [0.01, 0.30] a.u.

III. RESULTS AND DISCUSSION

A. Classical resonances

According to the theorems of Kolmogorov-Arnold-Moser
and Poincaré-Birkhoff [5–7], as energy increases, our system
shows a regular behavior up to the order-chaos threshold
energy (around 1700 cm−1), while different bifurcations take
place, giving rise to the corresponding resonances.

The main resonances that arise as energy increases corre-
spond to 1:6, 1:7, 1:8, 1:9, 1:10, and another 1:10 resonances.
Figure 2(a) shows the chains of islands associated to each
of them in the composite PSS representation. For even res-
onances (a:b = 1:6, 1:8, 1:10), the corresponding separatrix
has been represented in the figure, such that the chain of b
islands is clearly visible in each case. However, for odd reso-
nances (a:b = 1:7, 1:9), since the chain of islands is extremely
narrow, a set of invariant tori has been represented instead.
That is to say, the sets of apparent segments in the figure
correspond to sets of extremely narrow invariant tori. Observe
that the number of these invariant tori (apparent segments)
in each case is 2b instead of b. This is because there are
two stable periodic orbits associated to the odd resonances,
such that the corresponding chains of islands appear interca-
lated. Additional details about the bifurcations arising in this
system, including the graphical representation of associated
periodic orbits, were reported in Ref. [33].

In order to quantitatively put in correspondence classical
and quantum resonances, we have calculated the energy value
of the bifurcation point corresponding to each classical reso-
nance, i.e., the value where, as energy increases, the resonance
first take place. These bifurcation energies are listed in Ta-
ble II, where the two 1:10 resonances have been distinguished
as 1:10 (i) and 1:10 (ii).

Moreover, as energy increases above the order-chaos
threshold energy, the onset of chaos takes place, resulting
in the breakup of the chains of islands, and leading to the
mixed chaos regime in the phase space. In this regime, regular
structures can emerge in the chaotic region. Figure 2(b) shows,
in the chaotic sea and close to the energetically forbidden
region, a chain of 8 islands corresponding to a 1:8 classical
resonance, which is directly related to the frontier of scars
in the quantum transition from order to chaos, as has been
described in the literature [24,26,27]. Notice that the scars
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FIG. 2. Composite Poincaré surfaces of section, defined along
the minimum energy path, for energies of 1500 cm−1 (a) and 2300
cm−1 (b), below and above, respectively, the order-chaos threshold
energy. The chains of islands corresponding to the main resonances
have been specifically represented, namely, 1:6, 1:7, 1:8, 1:9, 1:10,
again 1:10, and 1:8 (in the chaotic sea) classical resonances. Gray
region represents the energetically forbidden region.

are localized over isolated unstable periodic points existing
in between the islands. The states localized over the chain of
islands, also present in the frontier of scars, are not scars. The
generation of the periodic orbits involved in this 1:8 resonance
is different and more complex than in the cases described
above. In the regular regime, below the order-chaos threshold
energy, for each resonance, two periodic orbits (stable and
unstable) are generated at a single bifurcation point. However,

TABLE II. Energy values (in cm−1) for each resonance, corre-
sponding to the classical bifurcation point and the limit h̄ → 0 of
the series of avoided crossings obtained by different methods: linear
extrapolation of the series, semiclassical theory with quadratic fitting
(QF), semiclassical theory with coupled quadratic fitting (CQF),
semiclassical theory with cubic fitting (CF), and semiclassical theory
with coupled cubic fitting (CCF).

Resonance Bifurc. Extrapol. QF CQF CF CCF

1:6 205 201 169 165 186 191
1:7/2:14 588 590 527 599 476 475

1:8 872 860 760 861 704 710
1:9/2:18 1035 1028 919 1030 898 926
1:10 (i) 1178 1141 1033 1146 1083 1181
1:10 (ii) 1327 1321 1872 1544
1:8 (s) 1958–2209 1840 2251 1950
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FIG. 3. Correlation diagram of eigenenergies versus Planck con-
stant. On grounds of graphical clarity, energy is divided by Planck
constant. Different series of avoided crossings, corresponding to 1:6
(�), 2:14 (�), 1:8 (♦), 2:18 (�), 1:10 (�), and 1:8 (©) quantum
resonances, have been marked.

in the present 1:8 resonance, the involved periodic orbits
are generated at two bifurcation points. Consequently, two
bifurcation energies are associated with this 1:8 resonance.
Additional details about this resonance, including graphical
representation of the corresponding periodic orbits, can be
obtained from Ref. [33].

As in the case of the resonances in the regular regime,
we have calculated the two energy values of both bifurcation
points related to this particular 1:8 resonance. These bifurca-
tion energies are shown in Table II, where the notation 1:8 (s)
has been used in reference to the quantum scarring phenomena
associated to this resonance.

B. Quantum resonances

The correlation diagram of eigenenergies versus Planck
constant calculated for this molecular system, which has been
shown to be a very useful tool for the study of quantum
transition from order to chaos [24,26–28], is depicted in
Fig. 3. Notice that, in order to obtain a suitable graphical
representation for the eigenenergy lines, energy is divided by
Planck constant, such that the harmonic behavior is repre-
sented by a horizontal line. The frontier of scars defined in
Refs. [24,26], which separates the regions of order and chaos,
has been marked with open circles. Observe that, according to
the results of the random matrix theory [5,6], the correlation
diagram shows a large level repulsion above the frontier of
scars (resulting in large and broad avoided crossings), while
the repulsion below is extremely small (resulting in narrow
and sharp avoided crossings). However, since this system ex-
hibits mixed chaos, level repulsion is not complete, such that
regular states exist above the frontier of scars. In particular,
we can observe in the mixed chaos region different hyperbolic
curves, which correspond to the regular eigenstates located on

TABLE III. Quantum numbers (n1, n2) and (n′
1, n′

2) correspond-
ing to the states involved in the series of |n1 − n′

1|:|n2 − n′
2| quantum

resonances marked in the correlation diagram represented in Fig. 3.
The resonances belonging to the same series are identified with the
index k.

Resonance Symbol (n1, n2) (n′
1, n′

2) k

1:6 � (0, 6 + 2k) (1, 2k) 0, 1, . . . , 9
2:14 � (0, 14 + 2k) (2, 2k) 0, 1, . . . , 7
1:8 ♦ (0, 8 + 2k) (1, 2k) 0, 1, . . . , 9
2:18 � (0, 18 + 2k) (2, 2k) 1, 2, . . . , 8
1:10 � (0, 10 + 2k) (1, 2k) 2, 3, . . . , 12
1:8 © (0, 8 + 2k) (1, 2k) 2, 3, . . . , 12

the relative minimum of the potential energy function at θ = 0
(Li-CN isomer). Moreover, observe that, in the regular region
(below the frontier of scars), the curves of the eigenenergies
follow a pattern, such that we can assign quantum numbers to
each eigenstate without having to resort to the nodal structure
of the wave functions. The excitation in the ϑ coordinate
requires low energy and is very anharmonic. Consequently, as
energy increases, the first lines correspond to excitations in the
ϑ coordinate, which are curved and quickly take an increasing
negative slope. On the other hand, the excitation in the ρ co-
ordinate requires more energy and is little anharmonic. Thus,
the lines corresponding to excitations in the ρ coordinate are
widely spaced, not curved (quasistraight), and slowly take an
increasing negative slope (quasihorizontal). For example, at
h̄ = 1 a.u., the first 14 states correspond to the following quan-
tum numbers: (n1, n2) = (0, 0), (0,2), (0,4), (0,6), (1,0), (0,8),
(0,10), (1,2), (0,12), (1,4), (0,14), (0,16), (1,6), (2,0), where
n1 represents excitation in the ρ coordinate and n2 represents
excitation in the ϑ coordinate. Additional details about this
correlation diagram and the quantum transition order-chaos
can be obtained in Refs. [24,26].

As has been previously shown [24,26], the frontier of scars
is formed by a series of broad avoided crossings correspond-
ing to a 1:8 quantum resonance, such that it is the quantum
counterpart of the 1:8 classical resonance shown in Fig. 2
(b), as well as other related 1:8 resonances corresponding to
unstable periodic orbits not shown in the figure. Moreover,
below the frontier, in the region of order, we have identified
different series of sharp avoided crossings corresponding to
1:10, 2:18, 1:8, 2:14, and 1:6 quantum resonances. All of them
are marked with different symbols in Fig. 3. The quantum
numbers of the pair of eigenstates involved in each resonance
are given in Table III, where resonances belonging to the
same series are identified with the index k. Note that, as
index k increases, the series goes to h̄ = 0. As a clarifying
example, the detail of the k = 4 case in the double series of
1:10 resonances has been depicted in Fig. 4. Observe that, in
the case highlighted in the figure, the eigenstate with 0 and
18 nodal lines, with respect to the MEP [quantum numbers
(n1, n2) = (0, 18)], interacts twice with the eigenstate with 1
and 8 nodal lines [quantum numbers (n′

1, n′
2) = (1, 8)], result-

ing in both |n1 − n′
1|:|n2 − n′

2| = 1:10 resonances with k = 4.
In view of these results, we can conjecture that the quantum

counterpart of each one of the 1:6, 1:7, 1:8, 1:9, 1:10 (i), and
1:10 (ii) classical resonances is the corresponding series of

062207-5



F. J. ARRANZ, R. M. BENITO, AND F. BORONDO PHYSICAL REVIEW E 103, 062207 (2021)

h (a.u.)−

E
/h

  (
cm

−
1 /a

.u
.)

−

(a)

0.5 0.7 0.9 1.1
2000

2100

2200

2300

2400

R
 (

a.
u.

)

(b)

2.5

4.5

6.5

θ (π rad)

R
 (

a.
u.

)

(c)

0 1 2
2.5

4.5

6.5

FIG. 4. (a) Magnification of the region of the correlation diagram
depicted in Fig. 3 where the avoided crossings take place corre-
sponding to the pair of 1:10 resonances with k = 4 (see Table III).
The involved states have been represented by thick lines. The corre-
sponding wave functions at h̄ = 0.9 a.u. (value between both avoided
crossings) are depicted in panel (b) for the upper state, with quantum
numbers (n1, n2) = (1, 8), and in panel (c) for the lower state, with
quantum numbers (n1, n2) = (0, 18). In both cases, the minimum
energy path and the corresponding eigenenergy contour have been
plotted superimposed using a thick line and a thin line, respectively.

1:6, 2:14, 1:8, 2:18, and 1:10 (double) quantum resonances
identified in the correlation diagram of eigenenergies versus
Planck constant. It is worth noting the usefulness of this
diagram, since only considering the value h̄ = 1 a.u. these
quantum resonances cannot be observed. Notice that, in this
system, some series of resonances begin for h̄ < 1 a.u.

Moreover, although the representation E/h̄ versus h̄ for the
correlation diagram is suitable in order to obtain the clear-
est representation of the eigenenergy lines, some features of
the series of resonances could be masked. Thus, in order to
reveal these features, the series of avoided crossing points
corresponding to all resonances have been depicted in Fig. 5
using the E versus h̄ representation. First, we can observe
that two series lines may cross, as is the case of 2:18 and
1:10 resonances series. Consequently, the quantum-classical
correspondence in the order of appearance of the resonances
as energy increases will only be held in a range of decreasing
h̄ values, or more generally in the limit h̄ → 0. Also, we
can observe in Fig. 5 that the behavior of the series lines is
mostly linear, i.e., the avoided crossing points lie approxi-
mately along straight lines, albeit some curvature is visible in
certain cases. This mostly linear behavior allow us to calculate
numerically the semiclassical limit h̄ → 0 of the resonances
series by means of linear extrapolation. The corresponding en-
ergy values obtained are given in Table II and also represented,
along with the bifurcation energies of the classical resonances,
in Fig. 5. Notice that a clear correspondence between clas-
sical bifurcation energies and quantum series energies in the
semiclassical limit can be established for resonances 1:6, 2:14,
1:8, 2:18, and 1:10 (double). This is one of the main results
of this paper. The small differences between classical and
quantum (semiclassical) energies are due to the deviation from
the linear behavior of the resonance lines, singularly in the
1:10 (i) resonance, leading to small errors in the numerical
calculations through linear extrapolation.

0 1 2 3
0

1

2

3

4

h (a.u.)−

E
  (

10
3  c

m
−

1 )

FIG. 5. Series of avoided crossing points, corresponding to 1:6
(�), 2:14 (�), 1:8 (♦), 2:18 (�), 1:10 (�), and 1:8 (©) quantum
resonances. The points belonging to the same series have been con-
nected with straight lines. The open symbols plotted at h̄ = 0 are the
result of a linear extrapolation. The filled symbols plotted at h̄ = 0
represent the bifurcation energies of the corresponding 1:6 (�), 1:7
(�), 1:8 (	), 1:9 (
), 1:10 (�), again 1:10 (�), 1:8 (•), and again
1:8 (•) classical resonances.

On the other hand, the 1:8 (s) resonance case is somewhat
different. As was described above, two bifurcation energies
are associated with this resonance, consequently we have an
energy interval, rather than an energy point, to put in cor-
respondence with the quantum energy. That is, we would
expect that the semiclassical limit of the 1:8 (s) resonances
series belongs to this energy interval. However, the energy
value obtained through linear extrapolation is outside (below)
the energy interval. As in the 1:10 (i) resonance case, this
disagreement may be caused by the deviation from the linear
behavior of the resonance line. Indeed, as can be observed in
Fig. 5, the k = 12 last resonance represented in the 1:8 (s)
resonances series clearly deviates from the linear behavior of
the other resonances in the series. Therefore, we could assume
that this deviation continues as k increases, such that, in the
semiclassical limit, the energy value belongs to the interval.
In any case, due to its singular characteristics, the 1:8 (s)
resonances series requires further research.

C. Semiclassical theory

In order to develop a semiclassical theory for the energy
corresponding to the quantum resonances series in the limit
h̄ → 0, we will consider the h̄ series expansion

E (h̄) = c1h̄ − c2h̄2 + c3h̄3 + · · · , (4)

with c1, c2, c3 > 0, as an approximation to the energy levels
in the regular region of the correlation diagram. Observe that,
as is clear from Fig. 3, where E/h̄ vs h̄ rather than E vs
h̄ is represented, first- and third-order coefficients should be
positive, while second-order coefficient should be negative.
Accordingly, we have explicitly written the corresponding
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TABLE IV. Values of the coefficients corresponding to the series expansion used in the semiclassical theory for different fitting levels,
namely, quadratic fitting (QF), coupled quadratic fitting (CQF), cubic fitting (CF), and coupled cubic fitting (CCF).

Fitting α1 α2 β11
a β12 β22

a γ111
a γ112 γ122 γ222

a

level (cm−1/a.u.) (cm−1/a.u.) (cm−1/a.u.2) (cm−1/a.u.2) (cm−1/a.u.2) (cm−1/a.u.3) (cm−1/a.u.3) (cm−1/a.u.3) (cm−1/a.u.3)

QF 786.226 139.005 15.039 3.180
CQF 796.124 138.848 4.871 6.257 3.048
CF 780.137 142.085 6.617 4.608 −5.601 0.097
CCF 774.431 142.068 −2.310 −3.144 4.621 3.634 −3.677 −0.311 0.104

aNote that, for noncoupled series expansions (i.e., QF and CF), coefficient index notation has been simplified in the equations in the text, such
that β11 ≡ β1, β22 ≡ β2, γ111 ≡ γ1, and γ222 ≡ γ2.

signs in Eq. (4). Moreover, quantum numbers (n1, n2) will be
included in the coefficients cm with the form (ni + 1/2)m, as-
suming the topological index of 2 for both degrees of freedom,
following the customary expansion of Fues [35,36]. Also,
coupled factors (n1 + 1/2)m1 (n2 + 1/2)m2 , with m1 + m2 =
m, will be considered. Notice that coupled expansions are the
strictly correct expressions for the h̄ series expansions, and
the corresponding decoupled expansions should only be taken
as a conjectured approximation in order to obtain simpler
expressions.

Thus, applying Eq. (4), the crossing between two states
with quantum numbers (n1, n2) and (n′

1, n′
2) will be given

by the condition E (h̄0) = E ′(h̄0). According to the quantum
resonance data in Table III, the quantum numbers involved in
the a:b resonances series are determined by the index k, such
that (n1, n2) = (0, b + 2k) and (n′

1, n′
2) = (a, 2k). Hence, the

crossing condition will be also determined by the index k, that
is, E (h̄k ) = E ′(h̄k ), leading to the series of crossing points
(h̄k, Ek ) for the a:b resonance. We will use the weighted least
squares method, applied on these series of crossing points
and the series of avoided crossing points obtained from the
correlation diagram, to procure the corresponding fitting co-
efficients that determine the series expansion. In order to
enhance the relevant region for the semiclassical limit h̄ → 0,
the fitting weight 1/h̄3 is used.

Eventually, the energy of the a:b resonances series in the
limit h̄ → 0 is obtained by calculating the limit limk→∞ Ek =
E∞ for the corresponding crossing points in the series ex-
pansion. In all cases, the corresponding h̄ limit is zero, i.e.,
limk→∞ h̄k = 0, hence, for the resonances series, the limit
k → ∞ implies the limit h̄ → 0.

Next, the results obtained for different (coupled and decou-
pled) expansion orders are shown.

1. Quadratic series expansion

For the quadratic series expansion

EQF(h̄) = [
α1

(
n1 + 1

2

) + α2
(
n2 + 1

2

)]
h̄

− [
β1

(
n1 + 1

2

)2 + β2
(
n2 + 1

2

)2]
h̄2, (5)

where αi and βi (i = 1, 2) are the coefficients obtained from
the corresponding quadratic fitting (QF), which are given in
Table IV, the energy of the a:b resonances series in the limit
h̄ → 0 is

EQF
∞ = (bα2)2 − (aα1)2

(2b)2β2
. (6)

The energies given by Eq. (6) for the different resonances
series studied in this paper are listed in Table II. Assuming
the classical bifurcation energy as the correct value, the mean
absolute relative difference for all resonances is 0.127, with a
standard deviation of 0.027.

Observe that no results appear in Table II for resonances
1:10 (ii) and 1:8 (s). Indeed, the QF approximation can only
account for resonances corresponding to first-order crossings,
i.e., the first crossing between two states as h̄ increases. Note
that, in E/h̄ vs h̄ representation of the correlation diagram,
QF approximation results in straight lines, and consequently
they cross only once. As we can observe in the correlation
diagram depicted in Fig. 3, the 1:6, 2:14, 1:8, 2:18, and 1:10
(i) resonances series correspond approximately to avoided
crossings of straight lines. However, this is not the case for
1:10 (ii) and 1:8 (s) resonances, which correspond to second-
order crossings, i.e., the second crossing between two states
as h̄ increases. As is clear from Fig. 4(a), where the crossings
corresponding to 1:10 (i) and 1:10 (ii) resonances (with k = 4)
are depicted in detail, the existence of a second crossing
requires a curved line. This will be allowed by the cubic series
expansion.

Finally, it is worth noting that the quadratic series expan-
sion is equivalent to the well-known Morse oscillator [36] for
two degrees of freedom, namely

EMo(h̄) = h̄	1(h̄)
(
n1 + 1

2

) + h̄	2(h̄)
(
n2 + 1

2

)
, (7)

where

	i(h̄) = ωi

[
1 − 1

4Di
h̄ωi

(
ni + 1

2

)]
(8)

(with i = 1, 2) are the state dependent Morse frequencies, and
ωi, Di > 0 are the harmonic frequency and energy well depth
for the ith degree of freedom, respectively. Using the Morse
notation, the energy of the a:b resonances series in the limit
h̄ → 0 given in Eq. (6) becomes

EMo
∞ = D2

[
1 −

(
a

b

ω1

ω2

)2]
. (9)

This expression is interesting since it makes physical sense.
First, it depends only on the energy well depth D2. This
feature reflects the fact that the series of avoided crossings
are mostly due to the anharmonic behavior of the excitations
in the coordinate perpendicular to MEP (approximately, the
θ coordinate). Moreover, the expression depends on the ra-
tio (a:b)/(ω2:ω1). Since the relation a:b ≡ |n1 − n′

1|:|n2 − n′
2|
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corresponds exactly with the frequency relation ωHO
2 :ωHO

1 for
the harmonic oscillator,1 the ratio (a:b)/(ω2:ω1) reflects the
deviation from harmonic behavior. Note that, in the harmonic
limit, where ω2:ω1 tends to ωHO

2 :ωHO
1 , the energy EMo

∞ goes to
zero. Indeed, for the harmonic oscillator, all states cross at a
single point: the origin (h̄, E ) = (0, 0).

2. Coupled quadratic series expansion

The results obtained with the QF level can be enhanced by
allowing coupling between the two degrees of freedom. In this
way, we will consider the coupled quadratic series expansion

ECQF(h̄) = [
α1

(
n1 + 1

2

) + α2
(
n2 + 1

2

)]
h̄ − [

β11
(
n1 + 1

2

)2

+β12
(
n1 + 1

2

)(
n2 + 1

2

) + β22
(
n2 + 1

2

)2]
h̄2,

(10)

where αi and βi j (i, j = 1, 2) are the coefficients obtained
from the corresponding coupled quadratic fitting (CQF) given
in Table IV. By using the series expansion in Eq. (10), the
energy for the a:b resonances series in the limit h̄ → 0 will be

ECQF
∞ = (bα2 − aα1)(bα2β22 + aα1β22 − aα2β12)

(2bβ22 − aβ12)2
. (11)

Note that this CQF expression reduces to the QF expression
in Eq. (6) by taking β12 = 0 (and assuming β22 ≡ β2). The
energies given by Eq. (11) for resonances series corresponding
to first-order crossings are given in Table II. Observe that, as a
whole, CQF energies approach the bifurcation values better
than QF energies. Thus, the corresponding mean absolute
relative difference for all resonances is 0.051, with a standard
deviation of 0.079.

3. Cubic series expansion

In order to obtain an analytical expression available for the
resonances corresponding to second order crossings, we may
consider the cubic series expansion

ECF(h̄) = [
α1

(
n1 + 1

2

) + α2
(
n2 + 1

2

)]
h̄

− [
β1

(
n1 + 1

2

)2 + β2
(
n2 + 1

2

)2]
h̄2,

+ [
γ1

(
n1 + 1

2

)3 + γ2
(
n2 + 1

2

)3]
h̄3, (12)

where αi, βi, and γi (i = 1, 2) are the coefficients given by
the corresponding cubic fitting (CF), which are listed in Ta-
ble IV. The series expansion in Eq. (12) leads to the following
expression for the energy of the a:b resonances series in the
limit h̄ → 0

ECF
∞ = β2(bα2 − aα1)

9bγ2
+ ρ

(
α2 − (bα2 − aα1)

3b
− 2β2

2

9γ2

)
,

(13)
where

ρ = bβ2 ± [
b2β2

2 − 3bγ2(bα2 − aα1)
]1/2

3bγ2
. (14)

1Given the energy expression for the harmonic oscillator E (h̄) =
[ωHO

1 (n1 + 1/2) + ωHO
2 (n2 + 1/2)]h̄, at the crossing E = E ′, it holds

that (n1 − n′
1)/(n′

2 − n2) = ωHO
2 /ωHO

1 .

Notice that, in this case, two energy values are yielded for the
a:b resonance, corresponding to taking minus sign or plus sign
for the root in Eq. (14). For resonances without second-order
crossings (i.e., 1:6, 2:14, and 2:18), only minus sign makes
physical sense. However, for resonances with second-order
crossings (i.e., 1:8 and 1:10), minus sign gives the energy
corresponding to the first crossing, while plus sign gives the
energy corresponding to the second crossing. The energies
given by Eq. (13) for all resonances series are given in Ta-
ble II. By considering resonances corresponding to first-order
crossings, hence comparable with QF and CQF results, the
mean absolute relative difference is 0.136, with a standard
deviation of 0.053. Moreover, by considering all resonances,
the mean absolute relative difference is 0.158, with a standard
deviation of 0.118.

4. Coupled cubic series expansion

As in the case of the QF level results, the results obtained
with the CF level can be enhanced by allowing the coupling
between both degrees of freedom. Thus, we will consider the
coupled cubic series expansion

ECCF(h̄) = [
α1

(
n1 + 1

2

) + α2
(
n2 + 1

2

)]
h̄ − [

β11
(
n1 + 1

2

)2

+ β12
(
n1 + 1

2

)(
n2 + 1

2

) + β22
(
n2 + 1

2

)2]
h̄2

+ [
γ111

(
n1 + 1

2

)3 + γ112
(
n1 + 1

2

)2(
n2 + 1

2

)
+ γ122

(
n1 + 1

2

)(
n2 + 1

2

)2 + γ222
(
n2 + 1

2

)3]
h̄3,

(15)

where αi, βi j , and γi jk (i, j, k = 1, 2) are the coefficients ob-
tained from the corresponding coupled cubic fitting (CCF)
given in Table IV. By using the series expansion in Eq. (15),
the energy for the a:b resonances series in the limit h̄ → 0
will be

ECCF
∞ =

(
p1

p3
β22 − p1 p2

p2
3

γ222

)

− ρ

[
α2 − p2

p3
β22 +

(
p2

2

p2
3

− p1

p3

)
γ222

]
, (16)

where

p1 = (aα1 − bα2), (17a)

p2 = (aβ12 − 2bβ22), (17b)

p3 = (aγ122 − 3bγ222), (17c)

and

ρ = −p2 ± (
p2

2 − 4p1 p3
)1/2

2p3
. (18)

Note that the CCF expression reduces to the CF expression
in Eq. (13) by taking β12 = γ122 = 0 (and assuming β22 ≡ β2

and γ222 ≡ γ2). Also, two energy values are yielded for the
a:b resonance, depending on the sign choice for the root in
Eq. (18). For resonances without second-order crossings, only
minus sign makes physical sense, while for resonances with
second-order crossings, minus sign gives the energy corre-
sponding to the first crossing and plus sign gives the energy
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corresponding to the second crossing. The energies given by
Eq. (16) for all resonances series are given in Table II. Observe
that indeed CCF energies approach the bifurcation values
better than CF energies. By considering resonances corre-
sponding to first-order crossings (comparable with QF and
CQF results), the mean absolute relative difference is 0.109,
with a standard deviation of 0.080. Besides, by considering
all resonances, the mean absolute relative difference is 0.104,
with a standard deviation of 0.075.

IV. SUMMARY AND CONCLUSIONS

We have studied the correspondence between classical and
quantum resonances in the two degrees of freedom isomer-
izing system CN-Li � Li-CN. For this purpose, the main
classical resonances (periodic orbits) have been obtained, be-
ing represented as chains of islands in a suitable composite
Poincaré surface of section, and the corresponding bifurca-
tion energies have been calculated. Moreover, the correlation
diagram of eigenenergies versus Planck constant has been
obtained, where the main quantum resonances (avoided cross-
ings) have been identified. It is worth noting the usefulness
of this diagram, since only considering the value h̄ = 1 a.u.
these quantum resonances would not be observed. Indeed, the
physicochemical relevance of results like those presented here
has been discussed in Refs. [37,38].

We have established a qualitative correspondence between
the classical resonances (as energy increases, 1:6, 1:7, 1:8,
1:9, 1:10, and again 1:10) and the series of quantum res-
onances existent in the correlation diagram [1:6, 2:14, 1:8,
2:18, and 1:10 (double)]. These series can cross, such that the

quantum-classical correspondence in the order of appearance
of the resonances as energy increases is held in a range of
decreasing h̄ values, or more generally, in the semiclassical
limit h̄ → 0. Additionally, for each series, the energy value in
the limit h̄ → 0 has been numerically calculated, such that we
have established a quantitative correspondence between the
classical bifurcation energies and the energy of the quantum
resonances series in the semiclassical limit.

On the other hand, the resonances series corresponding
to the so-called frontier of scars (quantum frontier between
order and chaos, previously established in the literature) has
been also included in our study, leading to partial results.
While, due to its singular characteristics (e.g., not one but
two bifurcation energies are involved), this resonances series
requires further research.

Last, in order to obtain analytical expressions for the en-
ergy value of the resonances series in the limit h̄ → 0, we have
developed a semiclassical theory, considering an h̄ series ex-
pansion with different expansion orders (quadratic and cubic),
and with coupling and decoupling between the two degrees of
freedom.
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