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We consider constraints on D-dimensional theories in MD , dS D and AdS D backgrounds in the light of 
AdS swampland conjectures as applied to their compactification in a circle. In particular we consider the 
non-SUSY AdS instability conjecture and the AdS distance conjecture. For MD and dS D vacua the results 
may be summarized by a light fermion conjecture which states that in theories with �D ≥ 0 and a positive 
first non-vanishing supertrace (−1)k+1StrM2k > 0, a surplus of light fermions with mass m f � �

1/D
D must 

be present. For dS D this is supported by both AdS swampland conjectures. On the contrary, the cases of 
MD and AdS D can be made consistent with the mild but not the strong version of the AdS Distance 
conjecture, since the KK tower in the lower d-dim theory will scale as m � �α

d with α = 1/d. The above 
constraints also suggest that the Standard Model of particle physics would be inconsistent in Minkowski 
space but consistent in dS if the lightest neutrino is Dirac and lighter than the cosmological constant 
scale.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Not every Effective Field Theory (EFT) can be UV completed in a 
consistent theory of quantum gravity. Recently, a great deal of ac-
tivity has gone into determining the consistency criteria that allow 
for this to happen. These conditions are known as swampland con-
straints and distinguish the landscape of low energy EFTs that can 
arise from a quantum gravity theory from those that are inconsis-
tent and are said to belong to the Swampland [1] (for reviews see 
[2–4]).

It is expected that if we start with a D-dimensional theory and 
compactify it on a circle, if the obtained theory in D − 1 dimen-
sions is inconsistent, it must be that the original D-dimensional 
theory was itself inconsistent. Thus a way to test whether a given 
D-dimensional theory is inconsistent is looking for an inconsis-
tency in the dimensionally reduced (D − 1)-dimensional theory. In 
particular, if the D-dimensional theory satisfies some swampland 
constraint and, it is therefore consistent with quantum gravity, 
then the lower dimensional theory should do as well. This line 
of reasoning has been very useful in the past to promote some 
string theory feature to a general quantum gravity principle, rather 
than simply being an artefact of the lamppost we look under. In 
particular, it has been used to argue for the ubiquitous presence 
of Chern-Simons terms in order to avoid the presence of global 
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symmetries in lower dimensions [5], and certain properties of the 
gauge kinetic function in order to avoid the presence of 2d deSitter 
vacua [6]. It has also been used to refine certain swampland con-
jectures to make them robust under dimensionally reduction, like 
the Weak Gravity Conjecture [7] in [8] as well other more recent 
swampland conjectures in [9].

In this paper, we will impose the following swampland con-
straints:

• Non-SUSY AdS conjecture [10,11]: Any non-supersymmetric 
vacuum must be at best metastable.

• AdS Distance conjecture [12]: There must exist an infinite 
tower of states with mass

m(D)
n ∼ n|�D |αD M1−2αD

D (1)

as �D → 0 when scanning a family of vacua with cosmologi-
cal constant �D . The mild version implies αD to be a positive 
constant, while the strong version requires αD ≥ 1/2 for AdS 
vacua.

Consider some Einstein gravity theory in D dimensions coupled 
to matter satisfying the above swampland constraints. Our goal is 
to determine the constraints on the spectra such that circle com-
pactifications of this theory preserve the above swampland criteria 
as well. To answer this question, we will study the potential for the 
radion arising in lower dimensions from the Casimir Energy con-
tribution of the different states. If we find that the dimensionally 
reduced theory leads to a vacuum violating the above swampland 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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constraints, the D-dimensional theory should be inconsistent. This 
will allow us to rule out certain universal classes of Minkowski, dS 
and AdS vacua.

Our results hold under the following assumptions. First, when 
applying the Non-SUSY AdS conjecture, we will assume that poten-
tial non-perturbative instabilities in D dimensions are not inher-
ited by the AdS (D − 1)-dimensional vacua. This implies that the 
bubble radius of these instabilities (if it exists) is larger than the 
AdS length, so they cannot describe bubble instabilities in lower 
dimensions. This is better justified the smaller the AdS length is.

Secondly, when applying the AdS Distance conjecture, we will 
assume that there is a family of D-dimensional vacua exhibiting 
different values for the masses of the states in such a way that by 
scanning on the masses we are effectively probing different EFTs. 
We will assume that the point where all states are massless is part 
of the landscape and start increasing the masses until we reach (if 
so) some inconsistency.

A common feature found in our analysis is the need for light 
fermions in the theory. In particular that is the case for Minkowski 
and dS vacua and is supported by the results of both the Non-
SUSY AdS conjecture and the AdS distance conjecture. The fact that 
two independent swampland constraints require the presence of 
light fermions is intriguing and suggests that they are signals of a 
more general quantum gravity constraint involving light fermions. 
In particular we propose a light fermion conjecture which states 
that in theories with �D ≥ 0 and positive first non-vanishing su-
pertrace (−1)k+1StrM2k > 0, there must be a surplus of fermions 
with masses m � �D . The Standard Model (SM) itself may be an 
example if one interprets dark energy in terms of a dS phase, with 
the predicted light fermions being the lightest neutrino generation. 
In fact, this leads to the prediction that the lightest neutrino must 
be Dirac and have a mass mν1 � �

1/4
4 , which nicely connects two 

fundamental scales of physics and is consistent with present neu-
trino data. This has been studied in detail in [10,13,15–17] and in 
a companion paper which also studies the case in which the dS 
phase is due to a quintessence scalar [18].

2. Setup

Consider a (D > 3)-dimensional Einstein gravity theory coupled 
to matter. Throughout this note, we will assume the following D-
dimensional spectra:

• Massless graviton + massless U (1)a gauge bosons. This yields 
n0 = 2(a + 1) massless bosonic degrees of freedom.

• Massive scalar bosonic degrees of freedom.
• Massive fermionic degrees of freedom.

We will always denote as nb (n f ) the total number (massless + 
massive) of bosonic (fermionic) degrees of freedom. We can triv-
ially extend the results to more massless fields by simply interpret-
ing n0 as the net number of massless bosonic degrees of freedom 
(i.e. massless bosons minus massless fermions).

Upon dimensional reduction on a circle, we obtain a d = D − 1
dimensional theory including at least one extra scalar, the radion 
R , which parametrizes the size of the circle,

2π R =
2πr∫
0

√
G D DdxD . (2)

To set notation, we choose the following parametrization for the 
metric

G MN =
[

(R/r)
−2

(D−2) gμν 0
0 (R/r)2

]
, (3)
2

where r is introduced to make the metric dimensionless.
The potential for the radion includes a tree-level contribution 

from a possible D-dimensional cosmological constant �D as well 
as a one-loop piece originated from the Casimir energy contribu-
tion of all the states of the higher dimensional theory. This reads:

V = V tree + V 1L (4)

where

V tree = 2πr
( r

R

) 2
d−2

�D (5)

V 1L = ±2πr
(D−1)
(D−3)

∑
i=b, f

nb, f 2mD
i

(2π)
D
2 R

2
(D−3)

×
∞∑

n=1

K D/2(2πnmi R)

(2πnmi R)D/2
, (6)

where K is a modified Bessel function of the second kind. The plus 
sign is for fermions (with periodic boundary conditions) while the 
minus sign is for bosons. This one-loop effective potential can be 
computed by a Gaussian integral in the path integral formalism us-
ing the background field method. The computation of the Casimir 
energy in Md × S1 can also be found in [19].

In the region R � (2πnmi )
−1 the potential of a single degree 

of freedom is given by:

V 1L ≈ (−1)F r
(D−1)
(D−3)

R
(D−1)(D−2)

(D−3)

∑
k< D

2

(−1)k+1 βk(mR)2k (7)

where βk = �( D
2 −k)ζ(D−2k)

2D−1π D−1�(k+1)π
D
2 −2k

. This expansion is obtained by in-

troducing an asymptotic formula for the modified Bessel function 
before making the infinite summation. It is only valid up to 2k < D , 
when different terms would have to be included.

Summing over all degrees of freedom, we get that the potential 
as R → 0 behaves to leading order as

V (R → 0) ≈ r
(D−1)
(D−3)

R
(D−1)(D−2)

(D−3)

∑
k< D

2

βk(−1)k+1Str(M2k)R2k + . . . (8)

where we have defined the supertrace of M2k as

Str(M2k) =
∑

b

nbm2k
b −

∑
f

n f m2k
f . (9)

Hence, the potential in the UV (as R → 0) goes to ±∞ where 
the sign is determined by the first non-zero supertrace V ∝
(−1)k+1Str(M2k) with k = 0, 1, 2, . . . Notice that the first super-
trace with k = 0 is simply equal to the difference between the 
total number of fermionic and bosonic degrees of freedom, so 
that the sign is determined by (−1)Str(M0) = ∑

f n f − ∑
b nb . 

If this term cancels out due to an equal number of bosons and 
fermions, then the sign of the potential is rather determined by 
Str(M2) = ∑

b nbm2
b − ∑

f n f m2
f , and so on.

In the region R 
 (2πnmi )
−1 the modified Bessel functions of 

the second kind decay exponentially, so only the massless particles 
in the D dimensional spectra contribute. Therefore, unless there is 
a surplus of massless fermions in the spectra, the graviton (and 
other massless bosonic mediators) dominate the one-loop poten-
tial in the deep IR. This means that the Casimir potential goes to 
zero from negative values when R → ∞. On top of this, one must 
consider the tree level contribution, which for �D �= 0 dominates 
over the Casimir contribution and controls the behaviour of the 
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Fig. 1. Schematic representation of the radion (D − 1)-dimensional potential from 
D-dimensional Minkowski vacua. Case A is in the swampland on the grounds 
of the non-SUSY AdS conjecture. Here Str > 0 stands for a theory satisfying 
(−1)k+1Str (M2k) > 0, k = 0, 1, 2... for the first non-vanishing supertrace. In Case 
B a surplus of massless fermions may render the theory consistent.

potential for large radius, so that the complete potential goes to 
zero from (negative) positive values for (A)dS. More concretely, we 
can write the leading order expansion of the potential for R → ∞
as

V (R → ∞) ≈ 2πr
( r

R

) 2
d−2

�D − n0
(−1)F r

(D−1)
(D−3) β0

R
(D−1)(D−2)

(D−3)

(10)

where recall that n0 is the net number of massless bosonic degrees 
of freedom.

In the following, we will study in detail under which conditions 
of the D-dim spectra, the above radion potential generates a d-dim 
AdS vacuum that may violate the AdS swampland conjectures. No-
tice that, in the presence of massless U (1)’s additional massless 
scalar Wilson-line degrees of freedom may appear in the spectrum. 
Their presence may give rise to non-perturbative instabilities of the 
d-dimensional radion AdS vacua we are studying [15]. When dis-
cussing the Non-SUSY AdS conjecture we will assume that such 
non-perturbative instabilities are not present. This may be due to 
the nucleation dynamics. In particular the AdS vacua will be stable 
if the bubble radii are larger than the AdS length so that the decay 
does not proceed [15]. The possibility of the existence of any vacua 
of these characteristics will make the AdS stability conjecture to 
apply. Alternatively one can consider closely related compactifica-
tions on the segment S1/Z2 with the Z2 projecting out the Wilson 
line scalars [16]. If that is done, all the computations and the dis-
cussion below remain essentially identical except for overall 1/2 
factors. For simplicity we will only discuss the case of circle com-
pactification and ignore this potential instability in what follows. It 
is also important to remark that such potential instabilities would 
not affect the constraints coming from the AdS distance conjecture, 
which do not depend on the obtained AdS minima in the compact-
ified theory being local or global.

3. Constraints on Minkowski vacua

3.1. From non-SUSY AdS conjecture

The form of the radion potential in d dimensions is sensitive to 
the number of bosons and fermions, nb, n f as well as their masses. 
Let us consider first the case in which the only massless parti-
cles are the graviton and possibly massless U (1)a gauge bosons. 
In this case, for large R , the Casimir potential goes to zero from 
negative values. On the other hand, if there are more fermions 
than bosons n f > nb , for small R the potential is dominated by 

the first term (k = 0) in (8) which will diverge like R− (D−1)(D−2)
(D−3) , 

so the potential becomes positive at small radius. Thus, we con-
clude that an AdS vacuum will develop somewhere in between, 
see Fig. 1. Since it has more fermions than bosons, the D-dim 
theory was not SUSY, so neither is the d-dim theory. Therefore, 
3

if these lower dimensional AdS vacua are stable, they would vio-
late the Non-SUSY AdS swampland conjecture. Notice that we are 
choosing periodic fermionic boundary conditions, so that the Wit-
ten bubble of nothing [20] is not topologically allowed. There could 
be, though, some UV spin defect that allow a bubble of nothing to 
form, as required by the swampland conjecture in [21] regarding 
triviality of the cobordism group.1 However, in that case, the bub-
ble instability is expected to be highly suppressed, implying that 
the bubble radius is very large. If this bubble radius is larger than 
the AdS length, it will not describe a bubble instability in lower 
dimensions and the AdS vacua will be stable. We will take this as 
an assumption, which bring us to the conclusion that the origi-
nal D-dimensional Minkowski vacua with n f > nb are inconsistent 
with quantum gravity. The same result applies if we have mass-
less fermions, unless the number of massless fermionic degrees of 
freedom exceeds the bosonic ones, which would change the sign 
of the potential at large radius (see Fig. 1).

Let us consider now the case of D Minkowski vacua with equal 
number of fermions and bosons, n f = nb . This is necessary, for 
instance, if the Minkowski vacua restore supersymmetry at some 
energy scale. Due to the presence of the massless graviton plus 
possibly some gauge fields, the potential still goes to zero from 
negative values for large R. As R → 0, the leading term of the ex-
pansion of the potential in (8) identically vanishes since n f = nb , 
so the potential is dominated by the term proportional to the su-
pertrace of M2. If the latter is positive, a global AdS minimum 
must develop at some intermediate value of R, which would be in-
consistent with the Non-SUSY AdS conjecture. If not only n f = nb

but also the supertrace of M2 is zero, then the potential is dom-
inated by the first non-vanishing supertrace Str(M2k). Notice that 
the sign alternates between the different terms, so for example an 
AdS runaway will appear if Str(M4) is positive.

As we said, one way out to avoid the d-dim AdS vacuum is to 
add massless fermions (at least as many as massless bosons) to 
change the trend of the potential at large radius. If the fermions 
dominate, the potential will be positive at large R , and no AdS 
vacua will be necessarily generated. Massless fermions may ap-
pear in different instances. In particular they may appear if there 
is an anomaly-free set of chiral fermions charged under massless 
(Abelian or non-Abelian) vector bosons. One may also consider 
massless fermions with masses protected by e.g. discrete gauge 
symmetries. This brings us to the following statement:

Claim 1: A D-dim Minkowski theory satisfying (−1)k+1Str (M2k) > 0
for the first non-vanishing supertrace is inconsistent with quantum grav-
ity unless there is a surplus of massless fermions.

In particular, this rules out Minkowski vacua in non-supersym-
metric theories with n f > nb and theories with supersymmetry 
broken spontaneously (so n f = nb) with Str (M2) > 0, as long as 
the massless degrees of freedom are mainly bosonic.

Interestingly, there are well known explicit formulae for the 
supertrace in N = 1 D = 4 supergravity theories with SUSY spon-
taneously broken at tree level. The supertrace at the minimum of 
a general supergravity potential is given by (see e.g. [23] and ref-
erences therein)

Str (M2) = 2(N − 1)
(

V 0 + |m3/2|2
)

+
+ 2eK Rαβ̄(D

α
W D β̄ W ) .

(11)

1 The presence of bubbles of nothing also provides a motivation for the Non-SUSY 
AdS conjecture regardless of whether the vacuum is supported by fluxes [22]. If the 
cobordism group is trivial to avoid global symmetries in quantum gravity, there is 
no topological obstruction to construct these bubbles.
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Here K is the Kahler potential, W the superpotential an Rαβ̄ the 
curvature tensor associated to the scalar metric. Also, N is the 
number of chiral multiplets and V 0 the value of the potential 
at the minimum, which vanishes in Minkowski. There are some 
prominent examples in which the supertrace is positive, which 
could therefore risk to be inconsistent with quantum gravity in M4. 
In particular, if the scalar metric is canonical (sometimes called 
minimal N = 1 sugra in phenomenological applications) the cur-
vature piece vanishes and Str(M2) > 0 for more than one chi-
ral multiplet N > 1. Such class of theories would then be in the 
swampland unless some massless fermions exist. On the contrary, 
in no-scale supergravity theories with N chiral multiplets one has 
Rαβ̄ = − gαβ̄ (N +1)/3 where gαβ̄ is the field metric. By plugging 
this back into Eq. (11) and using the N = 1 supergravity formula 
for the potential we get that Str(M2) = −4|m3/2|2 < 0. Hence, no 
AdS vacuum develops in general and such models cannot be ex-
cluded on these grounds.

Clearly, the case with n f = nb is not restricted to supersym-
metric setups but can also occur in the absence of supersymmetry. 
However, if the theory is non-SUSY we cannot guarantee that the 
first more divergent O(R− (D−1)(D−2)

(D−3) ) term vanishes to all orders in 
perturbation theory in the computation of the Casimir potential, as 
happens in the SUSY case. We would need to go beyond the 1-loop 
vacuum energy in (6) to determine the behaviour of the potential 
as R → 0. Hence, we cannot ascertain without further calculation 
whether an AdS vacuum develops or not for a non-SUSY theory 
with n f = nb .

Finally, note that the Claim 1 above implies that the SM as such 
would be in the swampland, if we were in Minkowski space. In-
deed the number of Weyl fermions in the SM is 48 (including 
right-handed neutrinos) whereas there are 12 gauge bosons and 
4 Higgs scalars, so n f > nb . Furthermore, we only have massless 
bosonic degrees of freedom. We will see momentarily that this 
conclusion may be evaded if there is a non-vanishing positive vac-
uum energy. So using these ideas one could have predicted before 
the actual discovery that a non-vanishing cosmological constant 
(or some form of quintessence) must exist in the present universe. 
This could be avoided if there is one generation of strictly massless 
Dirac neutrinos, e.g. charged under some discrete gauge symmetry 
protecting them from becoming massive. In this case the 4 neu-
trino degrees of freedom would exactly cancel the graviton+photon 
contributions.

3.2. From AdS distance conjecture

Unlike what happens with the previous conjecture, here non-
susy AdS vacua are not problematic per se, but only if they are 
part of a family of vacua of different vacuum energy such that 
�d can be taken to be parametrically small without an infinite 
tower of massless becoming light. As we have seen, upon com-
pactification on a circle, the d-dimensional cosmological constant 
�d depends on the masses of the D-dimensional fields. Hence, in 
order to determine whether the original vacuum is inconsistent 
with the AdS Distance conjecture, we need to check whether by 
varying these masses we can send �d → 0 without forcing an infi-
nite tower of states to become light in the limit. We will therefore 
assume that such scanning of the masses is possible in the sense 
that the original vacuum is not isolated but rather forms part of 
a family of D-dim Minkowski vacua exhibiting different values of 
the masses. The advantage is that the results are independent of 
whether the vacuum is unstable or supersymmetric, and therefore 
no further assumption about the UV instability of the D-dim vac-
uum is required. In particular it is independent of the existence of 
other minima or runaway directions in the UV.

Let us assume that an AdS vacuum is generated in d-dimensions. 
One can check that minimization of the potential implies:
4

Fig. 2. Schematic representation of the radion (D −1)-dimensional potential from D-
dimensional Minkowski vacua. We find that, as the fermions become lighter, R0 →
∞, �d → 0 and that the KK tower becomes light as MK K ∝ �

1
d

d . Therefore, we find 
agreement with the mild AdS Distance conjecture.

∑
i=b, f

(−1)F nim
D+ 2

D−3
i

(mi R0)
2

D−3

{
2

D − 3
×

∞∑
p=1

K D
2
(2π pmi R0)

(2π pmi R0)
D
2

+
∞∑

p=1

pK D
2 +1(2π pmi R0)

(2π pmi R0)
D
2 −1

}
= 0, (12)

where R0 is the value of the radius at the minimum. If all the 
massive particles have the same mass m and if such a minimum 
exists, then it should scale as R0 ∝ 1

m , since the above expression 
is a function f (mR0) of the product of the mass and the radius. 
By plugging this back into (6), we can see that the potential at the 
minimum will scale as

�d � V 0 ∝ r
D−1
D−3 R

−(D+ 2
D−3 )

0 = (r
1

d−2 R
−( d−1

d−2 )

0 )d (13)

where D = d + 1 and we have set M P = 1. Hence, in the limit 
m → 0, R0 → ∞ and V 0 → 0 (see Fig. 2).

According to the AdS Distance conjecture, an infinite tower 
should become light as V 0 → 0. Indeed, the Kaluza Klein mass is 
given by M2

K K = √
G n2

r2 G D D , where G D D is the D-th component 
of the space-time metric. In our chosen parametrization in Eq. (3), 
one gets MK K = n r

1
d−2 R−( d−1

d−2 ) which implies that

MK K ∼ nV
1
d

0 . (14)

Therefore, there is indeed a tower (KK modes) becoming light as 
V 0 → 0 and scaling as required by the AdS Distance Conjecture, 
namely mtower ∼ �α

d with α = 1
d . Since the limit �d → 0 implies 

the limit R → ∞, the AdS distance conjecture coincides with the 
standard Distance conjecture in the moduli space, and it is there-
fore “trivially” satisfied thanks to the KK tower.

We could also consider the more general case where we have 
several particles in D dimensions whose masses mi are not neces-
sarily the same. In order to apply the AdS distance conjecture we 
first need to specify a particular scanning trajectory in the masses 
that allows us to take the limit �d → 0. Of particular interest 
is the case in which all of the masses change at the same rate. 
This is what happens for example in the Standard Model, where 
the masses of the particles all depend on the vev of the same 
field, the Higgs. It is also natural if all masses are generated upon 
breaking supersymmetry and we vary the supersymmetry break-
ing scale. Then, in the limit mi → 0 the position of the minima 
goes to R → ∞ while � → 0 and the KK towers come down again 
as MK K ∝ n�

1
d .

To conclude, whereas the Non-SUSY AdS conjecture is very pre-
dictive constraining Minkowski vacua, the AdS distance conjecture 
is automatically consistent for Minkowski vacua as one cannot take 
the limit �d → 0 without increasing the radius and making the 
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Fig. 3. Schematic representation of the radion (D − 1)-dimensional potential from 
D-dimensional dS vacua. The case A is in the swampland, on the grounds of the 
non-SUSY AdS conjecture. In the presence of a surplus of fermions with mψ � �1/D

it may become consistent (case B).

KK tower light. It is worth noting, though, that the conjecture is 
satisfied with an exponent α = 1

d . This is in disagreement with 
the strong version of the conjecture requiring α ≥ 1

2 with satura-
tion for the supersymmetric case [12]. The same exponent α = 1/d
was recently proposed in [9] by different means. Hence, either only 
the mild version of the conjecture is correct, or these Minkowski 
vacua are inconsistent with quantum gravity. If we take the lat-
ter perspective and impose the strong version of the conjecture, 
then the Minkowski vacua that are inconsistent are those gener-
ating any local AdS minimum in the compactified theory, which 
includes those that are also inconsistent with the Non-SUSY AdS 
conjecture highlighted in Claim 1. Again, only a surplus of mass-
less fermions would avoid the formation of AdS vacua.

4. Constraints on de Sitter vacua

4.1. From non-SUSY AdS conjecture

Let us consider now the case in which the starting theory in D-
dimensions is in dS space. It has been conjectured that dS vacua 
are in the swampland [24], or at least that their lifetime must 
be smaller than a Hubble time [25]. In what follows we will as-
sume that metastable dS vacua exist, but that the possible AdS 
d-dimensional vacua obtained upon compactification are neverthe-
less stable. As discussed previously, this is possible if the bubble 
instability mediating the decay in dS is too large to fit in the 
lower dimensional AdS vacuum. Although admittedly this is not a 
mild assumption, it is interesting to discuss the consequences that 
emerge from this assumption as it can explain some of the natu-
ralness issues observed in our universe, as pointed out in [14,17]. 
Moreover, we expect some of our results (in particular, the re-
quirement of light enough fermions) to remain true even in a 
quintessence scenario replacing the dS vacuum, as we show for 
the case of the Standard Model in [18]. Interestingly, the same re-
sults will also be obtained when studying the constraints from the 
AdS Distance conjecture in the next subsection.

In the case of a pre-existent constant positive vacuum energy 
in D dimensions the situation changes significantly compared to 
the Minkowski case above. The crucial difference is that, at large 
R , it is the tree level dimensional reduction of the D-dimensional 
c.c. Eq. (5) which dominates and provides a positive contribution 
to the potential behaving like O(R− 2

D−3 ) at large radius. Then if 
there are more massless bosonic than fermionic degrees of free-
dom, as naturally expected due to the existence of the graviton 
(with possibly additional massless U (1)’s), the potential will even-
tually decrease as R decreases and become negative at some point 
R ∼ (�D)−1/D . Then, in total analogy with the Minkowski case, 
AdS vacua will form if the first non-vanishing supertrace is posi-
tive, (−1)k+1Str (M2k) > 0. This includes the non-supersymmetric 
case with n f > nb or the case of supersymmetry spontaneously 
broken with n f = nb and positive supertrace (see Fig. 3). However 
5

this may be avoided if there are at least (1 + n) Weyl sufficiently 
light fermions. Unlike in Minkowski, these fermions do not need 
to be strictly massless, but one can check that it is sufficient to 
have mi � �

1/D
D to avoid the potential to become negative. In such 

a case, the potential might still develop some dS minimum, but it 
will always be metastable due to the runaway behaviour to large 
radius and, therefore, consistent with the Non-SUSY conjecture. 
Thus one can make the following general statement:

Claim 2: A D-dimensional de Sitter vacua satisfying (−1)k+1Str (M2k) >
0 for the first non-vanishing supertrace is inconsistent with quantum 
gravity unless there are enough light fermions with mass m � �

1/D
D .

Let us remark that enough light fermions means that the num-
ber of fermionic minus bosonic degrees of freedom with masses 
below the cosmological constant has to be positive.

The reader may note that the SM of particle physics along 
with the observed non-vanishing c.c. may fit with the Claim 2 
above if we identify the required light Weyl fermions with some 
neutrino degree of freedom. In fact, one needs 2 Weyl fermions, 
due to the existence of the massless photon to cancel the nega-
tive Casimir contribution from the graviton and the photon and 
avoid the AdS minimum. Thus, as we said, a Dirac neutrino with 
mass mν1 � �

1/D
D would be sufficient to guarantee consistency 

with the swampland conjecture. This has been discussed at length 
in [10,13,15,16]. Amazingly, it could explain the numerical coin-
cidence between neutrino masses and the cosmological constant 
observed in our universe and provide a new insight into the EW 
hierarchy problem as first pointed out in [14,17].

It is also interesting to note what happens in the case of a 
N = 1 version of the SM. In this case, an AdS vacuum can be 
avoided either if the lightest neutrino is sufficiently light or if 
the supertrace is non-positive StrM2 ≤ 0 implying a runaway be-
haviour towards Vd → −∞ for small radius. This latter condition 
on the supertrace is a strong constraint on SUSY versions of the 
SM. For example, in Split SUSY [26,27] the gauginos and Higgsi-
nos are much lighter than the sfermions. Thus, the supertrace will 
be positive and a light neutrino is needed to avoid the presence 
of AdSd vacua. Of course, this assumes that the SUSY-breaking and 
invisible sectors of the theory do not contribute substantially to 
the supertrace.

4.2. From AdS distance conjecture

As explained above, the D-dimensional scalar potential goes to 
zero as R− 2

D−3 for large radius due to the positive D-dim cosmo-
logical constant. As R decreases, it generates a maximum and starts 
decreasing due to the contribution from the massless bosonic fields 
(graviton plus possibly gauge fields). Hence, a minimum will be 
generated if we have n f > nb (or n f = nb with positive supertrace), 
which allows to change the trend of the potential and start in-
creasing again as R → 0. By varying the fermionic masses, we can 
generate this vacuum in dS, Minkowski or AdS (see Fig. 4). The 
heavier the fermions are, the deeper the AdS vacuum is; cross-
ing Minkowski when m f ∼ �

1/D
D . Let us assume now that our 

EFT is part of a D-dimensional landscape of theories that can be 
scanned by varying m f and that an EFT with vanishing or very 
small fermionic masses is part of this landscape. We can then start 
with m f � 0 and increase the masses so that the minimum is gen-
erated at smaller and smaller vacuum energy. In such a case, the 
theory would be inconsistent with the AdS Distance Conjecture, as 
we can go smoothly from positive to negative minima without hav-
ing an infinite tower of states coming down. Notice that we cross 
V 0 → 0 at a finite value of the radius R ∼ (�D)−1/D , so the KK 
tower remains massive. There are only two possible ways out:
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Fig. 4. Schematic representation of the radion (D − 1)-dimensional potential from 
D-dimensional dS vacua. We find that, as the fermions become heavier, �d → 0
(and then it becomes negative) at a finite value R0. We don’t expect a tower to 
become light at that particular value of R0 so we find a disagreement with the 
mild AdS Distance conjecture unless the fermionic mass is bounded by the scale set 
by the D-dimensional cosmological constant.

• For some reason we cannot vary the fermionic mass arbitrar-
ily but there is an upper bound of the form m f � �

1/D
D . This 

way, the scanning of D-dimensional vacua stops before cross-
ing V 0 → 0 towards negative vacuum energy.

• There is a correlation between the fermionic masses and �D
such that V 0 → 0 only at R → ∞. This occurs if in the original 
D-dimensional theory the cosmological constant and m f are 
related as m f ∼ �

αD
D . In general, this would imply a huge fine 

tuning hard to justify, unless indeed these fermions are part of 
the infinite tower satisfying the AdS Distance conjecture in D
dimensions. In such a case, we would get two towers becom-
ing light when V 0 → 0; the original tower and the KK tower. 
It can be shown that at the minimun the KK tower which will 
go as mK K ∼ V

1
d

0 . This singles out the particular value αd = 1
d . 

The original tower will also become light. In fact it will do so 
with a power αd which, unlike the KK tower, depends on αD . 
They can be shown to be related by αD = αd − 2α2

d +αd−1
2αd−d2+3

[9].

We thus arrive at the following statement:

Claim 3: A D-dim de Sitter vacuum satisfying (−1)k+1Str (M2k) > 0 for 
the first non-vanishing supertrace is inconsistent with quantum gravity 
unless there is a surplus of light fermions 1) with mass m � �

1/D
D or 2) 

that are part of an infinite tower in higher dimensions scaling as m f ∼
�α

D .

This applies, in particular, both to non-susy theories with n f >

nb or theories with n f = nb and spontaneously broken supersym-
metry. It is interesting to check this in the Standard Model. In this 
case the vev of the Higgs field allows us to scan along the neu-
trino masses at least until we reach their experimental value. In a 
companion paper [18], we study this in detail and find that the SM 
must have Dirac neutrinos and that the lightest neutrino must be 
lighter than the scale of the observed cosmological constant, real-
ising option 1) above. Notice that the option 2) is less natural from 
the perspective of the SM, as it would imply that there is an in-
finite tower of states starting with a mass of order the neutrino 
scale (or that the neutrinos are part of the tower).

So far we have conducted the discussion in terms of the to-
tal number of degrees of freedom, but the same results apply if 
nb and n f refer to the number of degrees of freedom below some 
finite energy scale. Any local (even metastable) AdS minimum gen-
erated because of a surplus of fermions will be equally inconsis-
tent with this swampland conjecture, unless these fermions are 
light enough so that the minimum takes place at positive vacuum 
energy. However, the minimum only appears if the fermions are 
not closely followed by some additional bosons with a mass only 
6

Fig. 5. Schematic representation of the radion (D −1)-dimensional potential from D-
dimensional AdS vacua. The theory is in the swampland and light fermions cannot 
make it consistent.

slightly bigger (they can prevent the formation of a minimum if 
they do not leave room enough for the potential to change its be-
haviour). Hence, the determination of local AdS minima becomes 
more model-dependent.

As a final comment, we would like to remark that we are as-
suming that the theory with massless (or very light) fermions is 
part of the landscape, so we start scanning down from positive 
values of the vacuum energy towards negative values. This is es-
pecially justified if supersymmetry is restored at some high energy 
scale or if the fermionic masses are mainly induced via a Higgs 
mechanism such that the symmetry restoration point is part of the 
landscape of consistent theories. However, if instead of scanning 
on the masses, one takes the perspective of scanning on different 
values of �D starting from �D < 0 towards positive values, one 
would conclude that the upper bound on the fermionic masses is 
actually a lower bound, implying in turn an upper bound on the 
value of the cosmological constant.2

5. Constraints on Anti de Sitter vacua

5.1. From non-SUSY AdS conjecture

The results are very similar to the case of Minkowski vacua. 
The only difference is that the potential will always approach zero 
from negative values as R → ∞, regardless of whether the mass-
less fields are predominantly bosons or fermions. This is due to the 
tree-level negative contribution from the higher dimensional cos-
mological constant. Hence, if the potential tends to positive values 
at R → 0 due to having (−1)kStr (M2k) > 0, a global AdS minimum 
will be necessarily generated, and this cannot be avoided by having 
additional massless fermions as in the Minkowski case (see Fig. 5). 
The results are then as follows:

Claim 4: A D-dim AdS vacuum satisfying (−1)k+1Str (M2k) > 0 for the 
first non-vanishing k is inconsistent with quantum gravity.

If Str (M0) = n f − nb > 0, then we get a non-susy theory incon-
sistent with the conjecture. If susy is broken spontaneously so this 
zero-th supertrace vanishes (n f = nb) but the first non-vanishing 
supertrace satisfies (−1)kStr (M2k) > 0, then the theory is also in-
consistent.

Recall that these claims hold under the assumption that a pos-
sibly higher dimensional bubble instability is not inherited by the 
lower d-dim dimensional vacuum, so that the fate of the d-dim 
vacuum can be simply determined from the potential for the ra-
dion. This implies non-trivial constraints on the radius ρ of the 
bubble, since it must satisfy ρ > V −1/4

0 to avoid describing a bub-
ble instability in lower dimensions. This is better justified the 
deeper the AdS vacuum is.

2 We thank Eran Palti for useful comments on this regard.



E. Gonzalo, L.E. Ibáñez and I. Valenzuela Physics Letters B 822 (2021) 136691
Fig. 6. Schematic representation of the radion (D −1)-dimensional potential from D-
dimensional AdS vacua. We find that, as the fermions become lighter, �d never goes 
to 0, since at some point the potential is dominated by the negative D-dimensional 
cosmological constant, which, in this plot, does not change.

Hence, we should interpret the above claims as follows. Even if 
the non-susy D-dimensional AdS vacua are unstable, they are still 
inconsistent with quantum gravity unless the above condition on 
the spectrum is satisfied or the higher dimensional instability can 
be inherited by the lower dimensional vacuum.

5.2. From AdS distance conjecture

Finally, consider an AdS vacuum satisfying (−1)kStr (M2k) > 0
so that a lower dimensional AdS vacuum is indeed generated upon 
compactification. The question now is whether this vacuum is in-
consistent with the AdS Distance Conjecture. For it to be inconsis-
tent, we would need to be able to vary the masses in such a way 
that we can go from negative to positive minima without having a 
tower of states coming down. However, there is no way to do this 
while keeping fixed the higher dimensional �D . If we decrease 
the masses, the minimum will take place at larger and larger val-
ues (see Fig. 6) of the radius until we reach the value R0 ∼ �

−1/D
D

when the fermions are massless. At this point, the vacuum energy 
is given by

V 0 ∼ r
(D−1)
(D−3) �

(D−1)(D−2)
D(D−3)

D , (15)

so it is non-vanishing even if the fermions are massless. Therefore, 
a family of AdS vacua scanned by varying the masses for fixed �D

is consistent with the AdS distance conjecture, as we never cross 
Minkowski space this way. The only way in which V 0 can vanish 
is if we consider scannings which affect �D such that we can send 
�D → 0. However, in that case there will be two candidate towers 
getting light so that the AdS Distance Conjecture is also satisfied, 
as we explain in the following.

First, notice that if varying �D is a valid trajectory probing dif-
ferent D-dim EFTs, there should already be an infinite tower of 
states in D-dimensions with masses mD coming down as in Eq. 
(1), since otherwise the D-dim vacuum itself would be inconsis-
tent with the AdS Distance conjecture. Clearly, if αD ≥ 1/2 there is 
no scale separation, so we can no longer use an EFT as �D → 0. 
However if αD < 1/2 there is scale separation and the lighter 
fields of the tower will contribute to the Casimir energy in the 
d-dimensional theory in a calculable manner. The rest of the par-
ticles in the theory which are not part of the tower will not play 
any role if their masses do not change in the scanning. This is be-
cause at some point the lightest particles in the tower will be less 
massive and more numerous, so they will dominate the Casimir 
energy. In the case in which the tower is made of fermions, AdS 
vacua will be generated. As it was recently shown in [9], from the 
perspective of the lower d-dim AdS vacuum, the tower will scale 
as
7

md ∼ |�d|αd M1−2αd
d , (16)

with αD and αd related by αD = αd − 2α2
d +αd−1

2αd−d2+3
. In fact, one can 

check that the above relation implies αd < αD , so the tower be-
comes light at a slower rate from the lower dimensional perspec-
tive. This can make hard to satisfy the strong version of the AdS 
Distance conjecture, i.e. α ≥ 1

2 , upon compactification. The value 
αD = 1/D was also highlighted in [9] as a special value which 
is robust under dimensional reduction, since it implies in turn 
αd = 1/d.

Secondly, we would like to remark that the value of the radius 
at the minimum diverges R0 → ∞ as V 0 ∼ �d → 0. Hence, regard-
less of the previous D-dimensional tower, we will also have the KK 
tower becoming light as

MK K ∼ �
1
d
d (17)

in Planck units. This is the same result for the exponent that we 
found for the cases of dS D and MD . Again, this is consistent with 
the mild version of the AdS Distance Conjecture, but not with its 
stronger version requiring α ≥ 1

2 .
To conclude, AdS vacua seem to be consistent with the mild 

(but not the strong) version of the AdS Distance conjecture upon 
circle compactification. In principle, it may also be possible to en-
gineer more cumbersome situations which could be inconsistent 
with the conjecture by generating several local maxima and min-
ima at intermediate values of the radius. In such a case, there 
might be some scanning trajectory varying the masses in a non-
homogeneous way that forces V 0 to vanish at finite radius. How-
ever, this becomes highly model-dependent and it is hard to ex-
tract any general statement.

6. A light fermion swampland conjecture

The necessity of light-fermions in the theory has appeared of-
ten in the previous sections, in particular in the case of Minkowski 
and dS vacua. One is tempted to conjecture that the presence 
of these light fermions may be a general feature of these vacua, 
beyond the motivation we have found from AdS swampland con-
jectures. In particular the constraints from the non-SUSY AdS con-
jecture on MD and dS D vacua may be summarized in the following

Light fermion Swampland conjecture:
In a SUSY-broken theory with �D ≥ 0 and positive first non-

vanishing supertrace (−1)k+1StrM2k, which is consistent with quan-
tum gravity, there must exist a surplus of light fermions with masses 
m � �

1/D
D .

Interestingly, the need for light fermions with m � �
1/D
D in dS 

is also independently supported by the AdS distance conjecture, as 
we saw in section 4. This may point to a more general principle 
underlying this light fermion conjecture. Note also that this con-
jecture directly relates UV data (from the supertraces) with IR data 
(massless/light fermions). It would be interesting to investigate 
whether something like this light fermion swampland conjecture 
might also hold in AdS,3 even if it is not supported by the AdS 
Swampland conjectures.

It would be interesting to look for string theory tests of this 
light fermion conjecture. In order to do that we would need to 
study examples of non-SUSY dS D and MD string vacua, which 
are not very abundant. An example which comes close to be 

3 It seems that light fermions are also a common feature in AdS string theory 
vacua. We thank Juan Maldacena and Tom Rudelius for comments on this regard.
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Table 1
Summary of the constraints for different types of D-dimensional vacua. The 
constraints apply whenever the first non-vanishing supertrace is positive, 
(−1)k+1Str M2k > 0. The asterisk indicates that there is no violation if the light 
fermions are part of a distance conjecture tower.

Vacua Non-SUSY AdS AdS distance

MD violated (unless surplus of 
massless fermions)

α = 1/d

dS violated (unless surplus of 
fermions m f � �1/D )

violated∗ (unless surplus 
fermions m f � �1/D )

AdS violated

a test is the non-SUSY 10D heterotic string with gauge group 
S O (16) × S O (16), which has no tachyons [28,29]. This seems to 
be a consequence of the property of “missaligned supersymmetry” 
which has been shown to be present in a number of non-SUSY 
string vacua [30]. The supertraces over all the string spectrum 
of this 10D model have been computed [31–34] and have been 
shown to vanish up to order M8, with M the string mass. The con-
tribution at order M8 to (−1)1+kStrM2k turns out to be positive 
for k = 4. Thus, according to the above conjecture, there should be 
a surplus of massless fermions in the theory. Indeed, the mass-
less spectrum of S O (16) × S O (16) contains the 10D Gravitino, 
Kalb-Ramond and dilaton bosonic fields, without SUSY partners, 
the gauge bosons of the group and spinors in the representations 
(128, 1) + (1, 128) and (16, 16). Altogether the reader may check 
that at the massless level there is a surplus of 2112 fermions. Al-
though the traces computed over the full string spectrum require 
careful regularization [35] and hence are not just given by our sim-
ple expression for the supertraces above, the physical principle is 
essentially the same. Notice that this example has a runaway po-
tential at one-loop and hence it is not a dS vacuum. Yet, it is very 
tantalising that it shows a connection between a positive super-
trace and the existence of a surpluss of massless fermions. This 
may indicate that the conjecture still applies to runaway dS poten-
tials, requiring in this case a surplus of (strictly massless) fermions.

From the phenomenological point of view this conjecture may 
have profound implications. The universe seems to be in a dS era 
and in the SM the first non-vanishing supertace (k = 0) is posi-
tive, since it contains more fermions than bosons. As we said, this 
would imply the necessity of fermions lighter than the observed 
c.c. scale �

1/4
4 � 10−2 eV. Interestingly, the SM can provide for 

such fermions if the lightest neutrino has a Dirac mass term and 
is sufficiently light. As we said this has been analyzed in detail in 
[13,15,16]. This would also apply to SUSY versions of the SM if the 
M2 supertrace is positive as happens in many models like e.g. Split 
SUSY [26,27]. It has also been pointed out in [14,17] that this can 
provide for an understanding of the hierarchy problem of the SM.

7. Final comments and conclusions

In this paper we have explored the constraints on D-dimensional 
vacua arising from requiring that circle compactifications of such 
a theory are consistent with the AdS swampland conjectures. This 
puts constraints on the physical spectra of the D-dimensional the-
ory that guarantee that the Casimir energy potential does not 
generate (D − 1)-dimensional AdS vacua that would violate the 
swampland conjectures and, therefore, be inconsistent with quan-
tum gravity. The constraints obtained for the different cases are 
summarized in Table 1.

In the case of starting with Minkowski or de Sitter vacua, it 
seems that theories with the first non-vanishing supertrace Eq. 
(9) satisfying (−1)k+1StrM2k are inconsistent with the Non-SUSY 
AdS conjecture unless the number of light fermionic degrees of 
freedom with masses m � �1/D exceeds the bosonic one. This 
8

rules out, for example, non-susy theories with more fermions than 
bosons, or theories with susy spontaneously broken such that the 
bosons are more massive than the fermions (like e.g. in Split 
SUSY); unless there is the aforementioned surplus of light fermions 
(i.e. neutrinos in the SM). These results hold under the assumption 
that there are no hidden non-perturbative instabilities that would 
render the 3D vacua unstable. Interestingly, though, the same re-
sults are obtained from applying the AdS Distance conjecture to dS 
vacua, which provides additional support that it is independent of 
the stability of the vacua and only requires that different values 
of the masses correspond to different EFTs within the landscape 
of quantum gravity vacua. More concretely, consistency with this 
conjecture in dS implies either the presence of a surplus of light 
fermions or that the lightest fermions of the theory are part of an 
emerging tower of particles.

This motivates us to formulate a light fermion swampland con-
jecture, which requires the existence of fermions with masses m �
�1/D in a vacuum with � ≥ 0 and the above condition on the su-
pertrace. Interestingly, light fermions seem to be a common feature 
in string theory but also in our world, where neutrino masses are 
of order the cosmological constant scale. According to our work, 
this numerical coincidence could have a quantum gravity origin, 
which could bring a new perspective into the EW hierarchy prob-
lem, as we first pointed out in [13,14] (see also [9,16–18]).

In the case of Minkowski vacua, the AdS distance conjecture is 
automatically satisfied by the KK tower in the absence of mass-
less fermions, so no additional support for massless fermions is 
obtained. An interesting fact, though, is that the KK tower scales 
as MK K = c�αd

d with αd = 1/d in the lower d-dimensional the-
ory. This is in conflict with the strong version of the AdS distance 
conjecture which states that α ≥ 1/2 for non-SUSY vacua. The 
same scaling of the KK tower occurs in circle compactifications of 
dS and AdS vacua when taking the limit �D → 0. Hence, again 
the mild but not the strong version of the AdS distance conjec-
ture is satisfied. This universal scaling of the KK tower both in 
compactifications of Minkowski, dS and AdS vacua suggests that 
the value αd = 1

d should be consistent with quantum gravity. This 
could suggest a modification of the Strong AdS Distance conjec-
ture to αd ≥ 1

d , thus allowing a certain level of scale separation. 
In particular, it would imply that scale-separated 4D AdS vacuum 
in [36,37] with α = 7/18 would be consistent with this modifica-
tion of the conjecture. Interestingly, the same scaling αd = 1

d was 
recently highlighted in [9] from a different perspective. Another 
possible interpretation of our results is that the Strong AdS Dis-
tance conjecture with αd ≥ 1

2 indeed holds and therefore all the 
above circle compactifications of AdS and Minkowski satisfying the 
above condition on the supertrace are somehow inconsistent with 
quantum gravity. In fact, the Non-SUSY AdS conjecture also sug-
gests that such AdS vacua are inconsistent, but this comes with 
additional assumption regarding the stability of the vacuum. No-
tice that, unlike what happens in MD and dS D , light fermions are 
not enough to cure the AdS D vacuum.

For future investigation, it would be interesting to search for 
additional string theory evidence for our light fermionic conjec-
ture. Moreover, it would be interesting to look for some bottom-up 
physics rationale for such a correlation between the mass of the 
lightest fermions and the cosmological constant. Currently, under-
standing the naturalness issues and hierarchy problems observed 
in our universe is one of the most challenging questions in High 
Energy Physics, and quantum gravity consistency may be the miss-
ing piece in this puzzle.
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