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Analysis of quantum correlations within the ground state of a three-level Lipkin model
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The performance of beyond mean-field methods in solving the quantum many-body problem for fermions is
usually characterized by the correlation energy measured with respect to the underlying mean-field value. In this
paper we address the issue of characterizing the amount of correlations associated to different approximations
from a quantum information perspective. With this goal in mind, we analyze the traditional Hartree-Fock (HF)
method with spontaneous symmetry breaking, the HF with symmetry restoration and the generator coordinate
method in an exactly solvable fermion model known as the three-level Lipkin model. To characterize correlations
including entanglement and beyond we use the quantum discord between different partition orbitals. We find that
for physically motivated partitions, the quantum discord of the exact ground state is reasonably well reproduced
by the different approximations. However, other partitions create “fake quantum correlations” in order to capture
quantum correlations corresponding to partitions for which the Hartree-Fock solution fails. Those are removed
and redistributed through a symmetry restoration process.
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I. INTRODUCTION

In 1814, Laplace stated in his work A Philosophical Essay
on Probabilities that if an intelligence (which he called de-
mon) had the ability to know the position and momentum of
each particle in the universe at a given time, then he will be
able to predict the trajectory of every body in the universe and
nothing would be uncertain for him [1]. In quantum mechan-
ics Laplace’s demon would have to deal with the absence of
the concept of “trajectory,” and the quantum-mechanical for-
mulation of Laplace’s thought experiment would be a demon
who knew the wave function of the entire universe at a given
time. However, apart from the probabilistic interpretation of
quantum mechanics, the knowledge of the whole does not
imply the knowledge of its parts in a quantum system. This
is the essence of entanglement between different partitions of
the system. To measure entanglement quantities, such as the
entanglement entropy are introduced. It measures the entan-
glement between two partitions of the system by looking at
the amount of information lost in one partition when all the
information about the other partition is forgotten. In this way,
for a general state, Laplace’s demon would be uncertain about
the partitions despite knowing the wave function of the whole
system. Hence, computing this kind of purely quantum corre-
lations (or “uncertainties”) between the system’s constituents
is useful in order to analyze the separability, correlations and,
therefore, the quantum structure of a system.

Entanglement is an important ingredient in the understand-
ing of the performance of different approximations to the
quantum many-body problem. The size of the Hilbert space of
a many-body system scales exponentially with the number of
particles in the system, preventing, for instance the complete
understanding of even very simple molecules. Fortunately,

the ground state and low-lying states of such systems are
supposed to “live” in a corner of the Hilbert space accessible
to variational techniques. In fermion systems, the use of Slater
determinants as variational space leads to the Hartree-Fock
(HF) approximation [2], that turns out to be a very good
starting point for subsequent refinements.1 One of the defin-
ing properties of HF is the spontaneous symmetry-breaking
mechanism where the single-particle orbitals characterizing
the HF Slater determinants break the symmetries of the
Hamiltonian [2,3]. This is a simple mechanism used to
consider additional correlations whereas maintaining the sim-
plicity of the mean-field wave functions. However, proper
quantum numbers of the symmetries of the Hamiltonian have
to be restored, and the adequate framework is that of us-
ing projection operators leading to a linear combination of
the wave functions obtained by applying the symmetry op-
erator to the symmetry-breaking mean-field wave functions.
The method, denoted by the name of projected Hartree-Fock
(PHF), works because the action of the symmetry operator
on the symmetry-breaking mean field is again a symmetry-
breaking mean-field wave function.

On the other hand, we can extend the idea of using as an
ansatz linear combinations of not necessarily orthogonal trial
states (such as Slater determinants), by postulating a general

1We can improve the Slater determinant ansatz using quasiparticle
vacuum Hartree-Fock-Bogoliubov or (HFB) states instead. Those
are the more general noninteracting particle states. However, for
the three-level Lipkin model, the results obtained from HFB states
are equivalent to the HF ones, so we will not consider them.
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wave function,

|ψ〉 =
∫

da f (a)|φ(a)〉,

with the f (a) amplitudes determined by the variational prin-
ciple. This method is called the generator coordinate method
(GCM) and is being used in many branches of quantum many-
body physics under different names. The success of the GCM
ansatz is intimately associated with the adequateness of the the
trial states |φ(a)〉 for the physics one wants to describe. With
a proper choice, the GCM ground-state and/or excited-states
spectrum can be very close or identical to the exact solution.

Each of the above-mentioned approximation methods HF,
PHF, and GCM incorporate different kinds of correlations into
the description of the system. As the three of them are varia-
tional, a possibility to measure correlation is the use of the
correlation energy, which is defined as the difference between
the reference state energy (which can be, for example, the
exact ground state) and the mean-field one. In this way, the
correlation energy for the mean-field state will be always zero
by definition and maximum for the exact ground state. If we
recover the symmetries of the Hamiltonian through a symme-
try restoration process or performing a GCM, the correlation
energy of the resulting approximate state will acquire a value
between zero and the correlation energy of the exact ground
state. In this way, a symmetry projection or the GCM will
recover a fraction of the total correlations within a system.
Another possibility is to use the quantum information per-
spective where correlations are understood in a very different
way: They are related with the separability of a system and
the information or uncertainty gained when acting on a part of
it. Given a A|B bipartition of a system, quantities, such as the
entanglement entropy, measure the uncertainty (i.e., nonpu-
rity) of the A(B) subsystem through the partial trace operation
over the B(A) part [4–7]. On the other hand, quantities, such
as the quantum discord [8,9] measure the correlations through
a projective quantum measurement within the part A(B). With
this, a question arises: Is it possible to find a link between
the correlations related to the spontaneous symmetry-breaking
mechanism within the mean-field or symmetry restoration
context (the ones that are related to the interaction of the
constituents) and the correlations described by quantum in-
formation theory (the ones that are related to the uncertainty
of a subsystem)?

In this paper we will analyze the structure of the quantum
correlations of an analytically solvable many-body system
given by the three-level Lipkin model by analyzing the ex-
act, HF, PHF, and GCM ground states. We will compute the
quantum discord for multiple physically motivated partitions,
and we will link the results with the spontaneous symmetry-
breaking mechanism. The use of the three-level Lipkin model
is motivated by the fact that it is an exactly solvable but
nontrivial model with two phase transitions due to the parity
symmetry breaking [10–12]. In Sec. II we will introduce the
theoretical concepts that will be discussed. In Sec. III we will
explain the three-level Lipkin model and the results obtained.
Finally, Sec. IV is a summary of the conclusions obtained in
this paper.

II. THEORETICAL BACKGROUND

There are several ways to describe correlations under a
quantum information context in a fermion many-body sys-
tem [6,7,13–16]. Due to the antisymmetrization principle,
the Fock space is not defined as a tensor product of Hilbert
spaces and, therefore, we cannot use the von Neumann en-
tropy of the particle-reduced density matrix as a measure
of entanglement: the components (particles) of a fermion
system are indistinguishable, so it would not make physical
sense to perform partial trace operations over them. If we
were performing partial traces, all Slater determinants would
be maximally entangled due to the antisymmetry of the wave
function. Fortunately, there are several ways to characterize
and measure correlations in an indistinguishable system, such
as the fermion partial trace between modes [15,16] or the von
Neumann entropy of the one-body density matrix [6,7,14].
Following the former, we will define the subsystems as the
orbitals (or modes) instead of particles. In this way, we can
treat the system as a tensor product of orbitals if we take
into account some subtleties which arise from the fermion
anticommutation rules [15,16].

With this scheme in mind, correlations between modes
can be purely classical, purely quantum, or a mixture of
both [17–19]. The total correlation, which is the sum of the
quantum and classical ones, is measured through the quantum
version of the mutual information. If we divide our system
into two parts (A and B), the mutual information is defined as

I (A, B) = S(ρ (A) ) + S(ρ (B) ) − S(ρ (A,B) ), (1)

where S(ρ (A) ) = −Tr(ρ (A) ln ρ (A) ) is the von Neumann en-
tropy, ρ (A) = TrB(|ψ〉〈ψ |) is the reduced density matrix of
the subsystem A obtained through the fermion partial trace
operation [15,16] (the same applies for the subsystem B) and
ρ (A,B) is the total density matrix. There are an equivalent
alternative expression for the classical mutual information
[I (A, B) = S(A) + S(B) − S(A, B)], given by

Ialt (A, B) = S(A) − S(A|B), (2)

where S(A) is the entropy of the subsystem A and S(A|B)
is the entropy of the subsystem A conditioned to the infor-
mation obtained by the subsystem B. In quantum physics,
the information of a subsystem is obtained through projective
measurements, so the quantum version of Eq. (2) is [8,9]

J (A, B) = max
{�(B)

k }
S(ρ (A) ) − S

(
ρ (A,B)|{�(B)

k

})
. (3)

Whereas I (A, B) is a measure of all kind of correlations,
J (A, B) quantifies only the classical part. The measurement-
based conditional entropy in Eq. (3) is defined as

S
(
ρ (A,B)|{�(B)

k

}) =
∑

k

pkS
(
ρ

(A,B)
k

)
, (4)

where ρ
(A,B)
k = 1

pk
�

(B)
k ρ (A,B)�

(B)
k is the measured-projected

total state and pk = tr(�(B)
k ρ (A,B)�

(B)
k ) is the associated prob-

ability. The measurement and the associated projector �
(B)
k

are defined only in sector B of the bipartition. With these
definitions, one introduces the quantum discord [8,9,20] as
the difference between the total correlations and the classical
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ones,

δ(A, B) = I (A, B) − J (A, B).

For pure states, the quantum discord reduces to entanglement
[21]. However, this is no longer true for mixed states. This
quantity is very useful in order to study quantum phase tran-
sitions in many-body systems [22–24]. Unfortunately, Eq. (3)
requires a variational procedure involving all the possible B-
subsystem projectors so that computing quantum discord is,
in general, intractable [25]. Nevertheless, if we are dealing
with fermion systems, no optimization process is required for
the two orbital case because of the parity super-selection rule
(PSSR) [26].

In order to compute the quantum discord between more
than two orbitals, the optimization process can be performed
using a method similar to the one used by Luo in Ref. [21] but
taking into account some subtleties arising from the fermion
nature of our system. If subsystem B is formed by LB orbitals,
then we can parametrize the B-projectors �

(B)
k as

�
(B)
k → R†�

(B)
k R (5)

for k = 0, . . . , 2LB − 1 with R as a unitary operator. However,
not all the projectors parametrized in this way are allowed.
Since we are dealing with fermion systems, the PSSR must be
fulfilled [2,15,27] so that the projected state has no coherence
between different parity sectors. A way to achieve this is by
using Thouless rotations, i.e., R = eiH with

H =
∑

i j∈HB

hi jc
†
i c j + 1

2
�i j (c

†
i c†

j + c jci ), (6)

a Hermitian (H = H†) one-body operator [2]. When the
fermion operator c†

i is transformed according to a rotation
R = eiH with H given by Eq. (6), we obtain

Rc†
i R† =

∑
j

Ujic
†
j + Vjic j = β

†
i ,

where the parameters Ui j and Vi j (which define the new orbital
basis) are related with the ones in Eq. (6) by(

U V ∗
V U ∗

)
= exp

[
i

(
h �

−�∗ −h∗

)]
,

and β
†
i is a fermion creation operator. In this way, the

parametrized projectors are projectors onto a state with
well-defined occupation in the orbital basis given by β

†
i .

The variational parameters.2 in Eq. (3) are hi j and �i j

with hi j = h∗
ji and �i j = −� ji. In order to find analyti-

cally the orbital basis that minimizes Eq. (4), we can solve
the equation δS(ρ (A,B)|{�(B)

k }) = 0 where the variation of
the measurement-based conditional entropy is given by the
infinitesimal rotation R ≈ I + iH (where I is the identity ma-
trix). Then we obtain∑

k

ln(〈�k〉)〈[�k, H]〉 − 〈[ln(�kρ�k ), H]〉 = 0,

2If we perform a Thouless rotation between M orbitals, the number
of variational parameters is M(2M − 1)

∀ hi j,�i j , see Eq. (6). The null eigenvalues of �kρ�k do
not contribute to the sum. This equation is, in general,
hard to solve analytically. However, the minimization process
parametrized by Thouless rotations can be implemented in a
computer in order to solve it numerically. This is applied in
the next section under the context of the three-level Lipkin
model.

Since we will compute quantum discord between two or-
bitals or two orbital pairs (as we will explain in Sec. III), a
Thouless rotation is enough in order to reach all the possi-
ble B-projectors �

(B)
k . If we count the number of variational

parameters in the case of LB = 2 for a general unitary respect-
ing PSSR and a Thouless rotation, we obtain six degrees of
freedom for both.3 However, for a general case in which the
subsystem B is formed by LB > 2 orbitals, one may need more
terms in Eq. (6), such as two-body fermionic operators and so
on. This is an interesting topic for future work, but it is out of
the scope of this article.

III. THREE-LEVEL LIPKIN MODEL

The three-level Lipkin model is a generalization of the two-
level Lipkin model [28]. It contains three energy levels, each
of them having a N-fold degeneracy [10–12] and the dynamic
evolution is governed by the Hamiltonian,

H = ε(K22 − K00) − V

2

(
K2

10 + K2
20 + K2

21 + H.c.
)
, (7)

with

Kσσ ′ =
N∑

p=1

c†
σ pcσ ′ p,

and σ ∈ {0–2} labeling the three different energy levels.
Fermion creation and annihilation operators, satisfying canon-
ical anticommutation relations, are denoted by c†

σ p and cσ p.
The operators Kσσ ′ are the generators of the algebra of SU(3)
[10], and one can use this property to compute numerically
the exact ground state of the model,

|ψ〉 =
∑

pq

Cpq|pq〉, (8)

by using the basis |pq〉, where p (q) is the number of particles
in the first (second) energy level. The states |pq〉 are pro-
portional to an equally weighted superposition of all possible
states in the occupational basis that are eigenstates of K00, K11,
and K22 with eigenvalues N − p − q, p, and q, respectively
(see Appendix A for more details). Thus, it is possible to
easily obtain the reduced density matrix for a four-orbital sub-
system in order to compute the quantum discord between two
pairs of orbitals. Using the methods explained in Sec. II and

3A general N × N unitary matrix has N2 degrees of freedom. If
we take into account the PSSR, we obtain N2

2 . However, since we
are dealing with the transformation given in Eq. (5), the degrees of
freedom corresponding to an overall phase and the decomposition
H = H ′ + aI leave the transformation invariant, so we obtain N2

2 −
2. For N = 2LB = 4, the number of variational parameters is 6, which
coincide with a Thouless rotation of M = LB = 2 orbitals.
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FIG. 1. Orbital numeration for the four-orbital reduced density
matrix in the three different subsystems (highlighted in blue) studied
in this paper. The numbers n0, n1, and n2 refers to the population
of the zeroth, first, and second energy level, respectively, whereas
{n0, n1}, {n0, n2}, and {n1, n2} refer to the orbital subsystems in blue.
The orbitals within a subsystem are labeled according to the numbers
in the blue region.

Ref. [26] we will compute the two-orbital and two-orbital pair
quantum discord for the exact, HF, PHF, and GCM ground
states in different subsystems (illustrated in Fig. 1) and differ-
ent values of the interaction parameter of the Hamiltonian [V
in Eq. (7)]. More details about the derivation of the HF, PHF,
and GCM solutions can be found in Appendices A and B.

The three different subsystems, highlighted in Fig. 1, are
the four-orbital reduced density matrices corresponding to two
orbitals of the ith energy level and two orbitals of the jth
energy level. The two orbitals of the upper energy levels have
the same degeneracy quantum numbers as the two orbitals
of the lower energy level. The three four-orbital subsystems
are denoted by {ni, n j} with i, j = 0–2 and i 
= j. For each
{ni, n j} subsystem, we label the four corresponding orbitals
following the notation in Fig. 1: from left to right (i.e., from
p = 1 to p = N), the orbitals within the lowest-energy level
with the numbers 0,2 and the ones within the highest-energy
level with 1,3. For example, if we study correlations between
two orbitals within the second energy level and two orbitals
within the zeroth energy level, we will study the partition with
A = {1, 3} and B = {0, 2} of the {n0, n2} subsystem.

It is well known that the three-level Lipkin model shows
two quantum phase transitions (QPTs) [10] as a function
of the interaction parameter χ = V (N−1)

ε
. These QPTs are

observed when the HF ground state develops spontaneous
symmetry breaking of the parity quantum number correspond-
ing to the second and third orbitals at χ = 1 and χ = 3,
respectively. Within this context, we define the level’s parity
as the parity of the number of fermions that occupy that energy
level.

Some entanglement and correlation properties of the
ground state have been studied for the two-level version
[29,30] and in the thermodynamical limit [30–32].

A. Quantum discord for the {n0, n1} subsystem

One can apply the method explained in Sec. II to compute
the quantum discord for a given partition as a function of
the interaction parameter χ (more details about the reduced
density matrix can be found in Appendix A) and using the

FIG. 2. Quantum discord (QD) for the partition given by A =
{1, 3}, B = {0, 2} for the exact (up), GCM (middle up), PHF (middle
down), and HF (down) solutions.

exact, HF, PHF, and GCM solutions. In Fig. 2 we represent
the quantum discord between the partition given by A = {1, 3}
and B = {0, 2} within the {n0, n1} subsystem.4

In the HF case, we observe both QPTs through the change
in behavior of the QD when χ = 1 and χ = 3. At χ = 1, the
QD suddenly increases as the HF state is not anymore in the
noninteracting ground state, and the orbitals of the zeroth and
first level start mixing. When χ = 3, the mixing in the HF
solution also includes the second orbital, and the correlation
is redistributed, so the QD stops increasing. The PHF solution
is very similar to the HF one. Here, the QD slightly depends
on the particle number and the projection to the good parity
quantum numbers does not modify significantly the shape of
the curve and, therefore, the discussion for the HF case still
holds. On the other hand, the QD for the GCM solution is
very accurate when χ � 1 but identical to the HF and PHF
solutions if χ � 1. This makes sense since the coordinate
corresponding to the occupation of the first level is fixed to
the corresponding HF value and the coordinate correspond-
ing to the second level is treated by using the Hill-Wheeler
equation (see Appendix B for more details). Overall, all the
approximate solutions within this particular partition have
good behavior in terms of QD, specially when the particle
number is high.

However, whereas these approximations succeed in order
to catch the behavior of quantum correlations between the
{0, 2} and the {1, 3} orbitals, this is not the case for other
partitions. For example, if we set A = {2, 3} and B = {0, 1},
we obtain Fig. 3.

We observe a clearly different behavior among the HF
ground state and all the other ones. Since the HF orbitals
do not mix states with different degeneration numbers, the
QD is zero for all values of χ . However, the PHF and GCM
solutions are successful capturing the quantum correlations

4The quantum discord is, in general, nonsymmetric. However, for
this partition and all subsystems considered in this paper, it has
been found numerically that the exchange A ↔ B leaves the quantum
discord invariant.
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FIG. 3. Quantum discord for A = {2, 3} and B = {0, 1} in the
exact (up), GCM (middle up), PHF (middle down), and HF (down)
solutions.

from the exact state. As in Fig. 2, the PHF solution slightly
depends on the particle number, and the GCM solution is
closer to the exact one specially if the particle number is large.
However, since the coordinate for the first level is fixed to the
HF solution, the GCM ground state is not able to reproduce
accurately the QD behavior when χ � 1. The HF solution
fails to capture the quantum correlations of the exact state.
The opposite behavior takes place when we analyze the two
orbital QD for the A = {1}, B = {0} partition (Fig. 4).

Due to conservation of parity symmetry, the exact ground
state does not have any quantum correlations as well as the
GCM and PHF solutions. The two orbital quantum discord for
fermion systems with a definite number of particles depends
only on the off-diagonal elements of the one-body density
[26], and in this case they are zero because of the parity sym-
metry. However, the HF solution breaks the parity symmetry,
and fake quantum correlations appear since the off-diagonal
elements of the corresponding one-body density matrix are,
in general, nonzero. Exactly the same behavior is observed

FIG. 4. Quantum discord for A = {1} and B = {0} in the ex-
act (up), GCM (middle up), PHF (middle down), and HF (down)
solutions.

FIG. 5. Quantum discord for A = {1, 3} and B = {0, 2} in the
exact (up), GCM (middle up), PHF (middle down), and HF (down)
solutions.

for the two orbital quantum discord within the {n0, n2} and
{n1, n2} subsystems (Fig. 7), and partitions A = {0, 2}, B =
{1} or A = {1, 3}, B = {0}.

B. Quantum discord for the {n0, n2} subsystem

The results obtained for this subsystem, which is schemati-
cally represented in Fig. 1, are, in general, similar to the results
obtained for the subsystem {n0, n1}. In Fig. 5 we represent the
quantum discord for the partition A = {1, 3}, B = {0, 2}.

Since the HF orbitals do not have components from the
second energy-level orbitals until χ � 3, the zeroth level
orbitals remain uncorrelated with the second ones until the
second QPT for the HF and PHF solutions takes place. This
is not the case for the GCM ground state because only the
first coordinate (which corresponds to the first energy level)
is fixed to the value of the HF solution. This is reflected in
the behavior of the QD when 1 � χ � 3: whereas the exact
and GCM solutions have a nonzero QD, the HF and PHF
ground states are not correlated. The reason why the GCM
approximation is practically identical to the exact solution in
this case, is that the QD for the exact state is very small until
χ ≈ 1. This is in total agreement with the GCM solution,
which shows zero QD until χ = 1. Again, the accuracy of the
approximate methods is better if the particle number is large.

Let us now consider the A = {2, 3} and B = {0, 1} parti-
tion in the {n0, n2} subsystem. In this case we obtain Fig. 6
where we observe that, again the HF state does not catch any
quantum correlations because of the same reasons as in Fig. 3:
the HF orbitals do not mix states with different degeneration
number. The PHF state, which is no longer a Slater deter-
minant, reproduces approximately the behavior of the exact
QD for χ � 3. However, since it is constructed through the
projection of the HF state, the QD for χ � 3 is zero (the
second level orbitals are not populated until χ = 3). As in the
previous situations, the QD depends on the particle number,
weakly for the PHF solution and dramatically for the GCM
state. For the later, the same discussion as in the A = {1, 3}
and B = {0, 2} partition applies: The region χ � 1 is not well
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FIG. 6. Quantum discord for A = {2, 3} and B = {0, 1} in the
exact (up), GCM (middle up), PHF (middle down), and HF (down)
solutions.

approximated when the particle number is small because of
the HF coordinate of the first energy level.

Finally, the quantum discord between two orbitals (Fig. 7)
acquires nonzero values only for the Hartree-Fock state and
the same discussion as in Sec. III A applies here. We obtain the
same results for A = {1, 3}, B = {0} and A = {2, 0}, B = {1}.

The results obtained for the {n1, n2} subsystem are very
similar, and the discussion is essentially the same, so they are
presented in Appendix C for completeness.

The behavior of the variational parameters of the Thouless
rotation in Eq. (6) depends on the partition and subsystem.
Since the rotations performed in this paper are always between
two orbitals, the matrices given by the elements hi j and �i j

will only have one off-diagonal element. In this way, it is
interesting to remark the behavior of the quantities |hi j |2 and
|�i j |2 for i 
= j. For all partitions and subsystems, the value of
the quantum discord does not depend on the quantity |�i j |2.
For |hi j |2 we observe the same behavior for the partition
A = {1, 3} B = {0, 2}, but not for A = {2, 3} B = {0, 1}. In
the latter, we see that |hi j |2 acquires different approximately

FIG. 7. Quantum discord for A = {1} and B = {0} in the ex-
act (up), GCM (middle up), PHF (middle down), and HF (down)
solutions.

constant values (for the nonexact solutions) whose numerical
values depend on whether the interaction parameter χ has
reached the critical value where the quantum phase transition
happens (χc = 1, 3) or no, and dividing the parameter space
into three different regions: χ < 1, 1 < χ < 3, and χ > 3.

IV. DISCUSSION AND CONCLUSIONS

We have carried out an analysis of quantum correlations for
the three-level Lipkin model, which is a solvable but nontrivial
model that manifests two quantum phase transitions due to
two spontaneous symmetry-breaking processes, correspond-
ing to the parity symmetry for the first and second energy
levels. We have computed the quantum discord, which is
a well known measure of a system’s quantum correlations,
including entanglement and beyond. Since we are dealing
with fermion systems composed by orbitals, we have carried
out the minimization process of the measurement-based con-
ditional entropy through Thouless rotations. In this way we
make sure that the projectors do not break the parity supers-
election rule and that they have a clear physical sense. More
precisely, they correspond to projections to the occupation of
some (quasi)particle orbitals. We have analyzed the quantum
discord as a function of the interaction parameter of the model
χ , within different subsystems (illustrated in Fig. 1).

The partition corresponding to A = {1, 3}, B = {0, 2} is, in
some way, the natural partition given the interaction of the
Hamiltonian [Eq. (7)]. The operators K2

i j with i 
= j, when
applied to a Slater determinant,5 annihilate a pair of particles
within the ith level and create another pair within the jth level
in a symmetric superposition, such as the resulting state is
invariant with respect to permutations of the degeneration or-
bitals (within the same energy level). Thus, one would expect
quantum correlations between A = {1, 3}, B = {0, 2} to be a
good measure of the interaction. In practice, we observe that
for this “interaction partition,” all approximated solutions re-
flect (with different accuracy) the behavior of the exact result.
However, for other partitions, such as A = {2, 3}, B = {0, 1}
or A = {1}, B = {0}, the HF solution does not catch the QD
corresponding to the exact state. This is related to the QPTs
and the symmetry-breaking mechanism.

The QPTs play a significant role in all results presented.
When the system undergoes a QPT, there is a change in
behavior in the QD depending on the partition. If the QPT is
related to symmetry breaking of the ith energy level, the QD
of a partition within the corresponding subsystem suddenly
grows. This behavior is sharper when the particle number is
large. However, for the HF solution, this behavior is only
present when the partition is the interaction partition. For
the A = {2, 3}, B = {0, 1} partition, the HF does not catch
quantum correlations because of the way the HF orbitals are
defined. Since they only mix orbitals with the same degen-
eration numbers, it is expected that a partition whose QD
measures the quantum correlations between pairs of orbitals

5That Slater determinant must be invariant with respect to permuta-
tions of orbitals with different degeneration numbers within the same
energy level.
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with different degeneration number has zero QD for all χ .
On the other hand, the absence of parity symmetry of the
HF solution causes a nonzero QD of the two orbital partition
A = {1}, B = {0} since transitions between single orbitals are
allowed. Those “fake quantum correlations”6 are possible be-
cause the HF orbitals are defined as linear combinations of
orbitals from different energy levels with same degeneration,
which is the same reason by which the QD in the A = {2, 3},
B = {0, 1} vanishes. With this in mind, it is reasonable to think
about the symmetry-breaking process as a “redistribution” of
the quantum correlations within a system from higher level to
lower level ones.7

The symmetry restoration process recovers (or redis-
tributes) the correct correlations between the different par-
titions, and it succeeds specially when the particle number
is large and far from the QPT (i.e., when the interaction is
high enough). This behavior is clearly observed in the GCM
solution where one coordinate (the one corresponding to the
first energy level) is kept fixed to the HF value, and the second
one is used as coordinate in the GCM method.

Our results could help to investigate the correlation struc-
ture of more complex models, such as the Agassi model [33],
which is a two-level Lipkin model with a pairing interaction
and a superconducting phase. Other type of mathematically
motivated approximations, such as the “nearest” Slater deter-
minant, defined in Ref. [34], could also be of interest.
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APPENDIX A: FOUR ORBITAL-REDUCED DENSITY
MATRIX FOR EXACT, HF, AND PHF GROUND STATE

In this Appendix we derive the analytical expression for the
four orbital-reduced exact and HF ground state of the three-
level Lipkin model. The exact ground state of the three-level
Lipkin model can be expanded as [10]

|ψ〉 =
∑

0�p+q�N

Cpq|pq〉,

with

|pq〉 =
√

(N − p − q)!p!q!

N!
|n1 = p, n2 = q〉,

and

|n1n2〉 =
N∑

n1<···<np 
=
m1<···<mq

|1n1 · · · 1np2m1 · · · 2mq〉.

6We call it “fake” because they are not present in the exact solution.
7Here, we refer to “high level correlations” to the ones which

involve bigger partitions and “low level correlations” to the ones
which involve smaller partitions.
The state |1n1 · · · 1np2m1 · · · 2mq〉 introduced above corre-
sponds to a Slater determinant with p (q) particles occupying
the first (second) energy level of the Lipkin model following
the same-level distribution given by the indices ni (mj). The
coefficients Cpq are determined by the diagonalization of the
Hamiltonian matrix in the {|pq〉} basis,

〈p′q′|H |pq〉 = ε(2q + p − N )δp′,pδq′,q − V

2
[
√

(N − p − q + 1)(N − p − q + 2)p(p − 1)δp′,p−2δq′,q

+
√

(N − p − q + 1)(N − p − q + 2)q(q − 1)δp′,pδq′,q−2 +
√

(p + 1)(p + 2)q(q − 1)δp′,p+2δq′,q−2

+
√

(N − p − q − 1)(N − p − q)(p + 1)(p + 2)δp′,p+2δq′,q

+
√

(N − p − q − 1)(N − p − q)(q + 1)(q + 2)δp′,pδq′,q+2

+
√

(q + 1)(q + 2)p(p − 1)δp′,p−2δq′,q+2].

In the same manner, the HF ground state for this model can be written as

|ψHF 〉 =
N∏

i=1

a†
0,i|φ〉 =

∑
n1+n2�N

C(HF)
n1n2

|n1n2〉,

where the coefficients C(HF)
n1n2

are given by the relationship between the HF (a†
σ,i) and basis (c†

σ,i) orbitals [see Eq. (A4) defined
later] [10],

C(HF)
n1n2

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if n1 = n2 = 0 and χ � 1,(
1√
2

)N(
1 + 1

χ

)(N−n1/2)(
1 − 1

χ

)n1/2
, if n2 = 0 and 1 � χ � 3,(

1√
3

)n1
(

χ+3
3χ

)(N−n1−n2 )/2(
χ−3
3χ

)n2/2
, if χ � 3,

0, otherwise.
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In order to obtain the PHF ground state, we must project the
HF state to obtain a wave function with the proper quantum
numbers. For the three-level Lipkin model, the wave function
with the proper quantum numbers is the one with positive
(even) parity of both the first and second energy levels and
a definite total particle number. This symmetry-restored wave
function can be obtained from the HF one through the projec-
tion operators,

P(σ )
+ = 1

2 (I + eiπKσσ ),

with σ = 1, 2. Since the resulting state will simply be the the
original HF ground state with C(HF)

n1n2
= 0 if n1 or n2 are odd

(and the nonzero coefficients properly normalized), we will

not give the explicit expression of the reduced state. For the
exact and HF cases, the reduced four-orbital density matrix
for a given partition {ni, n j} (see Fig. 1) is

ρ
(4)
{ni,n j } =Tr¬{ni,n j }(|ψ〉〈ψ |),

ρ
(4,HF)
{ni,n j } =Tr¬{ni,n j }(|ψHF〉〈ψHF|).

The operation Tr¬X (O) represents the fermion partial trace
[16] of the operator O, and ¬X is the subsystem that is traced
out (since the symbol ¬ represents negation, Tr¬X (O) is the
fermion partial trace operation over the orthogonal comple-
ment of X ). With these results, it is straightforward to get
analytical expressions for the four-orbital reduced density-
matrix ρ

(4)
i j ,

ρ
(4)
{n0,n1} = 1

N (N − 1)

∑
p+q�N

|Cp,q|2{q(q − 1)|−,−〉〈−,−| + q(N − p − q)(|−, 0〉〈−, 0| + |0,−〉〈0,−|)

+ pq(|−, 1〉〈−, 1| + |1,−〉〈1,−|) + (N − p − q)(N − p − q − 1)|0, 0〉〈0, 0|
+ p(N − p − q)(|0, 1〉〈0, 1| + |1, 0〉〈1, 0|) + p(p − 1)|1, 1〉〈1, 1|}
+ {Cp,qC∗

p+2,q

√
(N − p − q)(N − p − q − 1)(p + 1)(p + 2)|0, 0〉〈1, 1|

+ |Cp,q|2 p(N − p − q)|0, 1〉〈1, 0| + H.c.}, (A1)

ρ
(4)
{n0,n2} = 1

N (N − 1)

∑
p+q�N

|Cp,q|2{p(p − 1)|−,−〉〈−,−| + p(N − p − q)(|−, 0〉〈−, 0| + |0,−〉〈0,−|)

+ pq(|−, 1〉〈−, 1| + |1,−〉〈1,−|) + (N − p − q)(N − p − q − 1)|0, 0〉〈0, 0|
+ q(N − p − q)(|0, 1〉〈0, 1| + |1, 0〉〈1, 0|) + q(q − 1)|1, 1〉〈1, 1|}
+ {Cp,qC∗

p,q+2

√
(N − p − q)(N − p − q − 1)(q + 1)(q + 2)|0, 0〉〈1, 1|

+ |Cp,q|2q(N − p − q)|0, 1〉〈1, 0| + H.c.}, (A2)

and

ρ
(4)
{n1,n2} = 1

N (N − 1)

∑
p+q�N

|Cp,q|2{(N − p − 1)(N − p − q − 1)|−,−〉

×〈−,−| + p(N − p − q)(|−, 0〉〈−, 0| + |0,−〉〈0,−|)
+ q(N − p − q)(|−, 1〉〈−, 1| + |1,−〉〈1,−|) + p(p − 1)|0, 0〉〈0, 0|
+ pq(|0, 1〉〈0, 1| + |1, 0〉〈1, 0|) + q(q − 1)|1, 1〉〈1, 1|}
+ {Cp+2,qC∗

p,q+2

√
(p + 1)(p + 2)(q + 1)(q + 2)|0, 0〉〈1, 1| + |Cp,q|2 pq|0, 1〉〈1, 0| + H.c.} (A3)

where the reduced states {|σ1, σ2〉} with σi = −, 0, 1 refer to:
(a) no occupation (σi = −), (b) only the first level occupied
(σi = 0), and (c) only the second level occupied (σi = 1). The
notation is used for both the {0, 1} orbitals (σ1), the {2, 3}

orbitals (σ2), and the orbital numeration in Fig. 1 is followed
for each subsystem. Similarly, we can compute analytical
expressions for the four-orbital Hartree-Fock-reduced ground-
state ρ

(4,HF)
i j ,

ρ
(4,HF)
{n0,n1} = U 4

02|−,−〉〈−,−| + U 2
01U

2
02(|1,−〉〈1,−| + |−, 1〉〈−, 1|) + U 4

01|1, 1〉〈1, 1|
+U 2

00U
2
01(|1, 0〉〈1, 0| + |0, 1〉〈0, 1| + |0, 1〉〈1, 0| + |1, 0〉〈0, 1| + |0, 0〉〈1, 1| + |1, 1〉〈0, 0|)

+U 4
00|0, 0〉〈0, 0| + U 2

00U
2
02(|0,−〉〈0,−| + |−, 0〉〈−, 0|) + U00U01U

2
02(|1,−〉〈0,−| + |−, 0〉〈−, 1| + H.c.)

+U00U
3
01(|1, 1〉〈0, 1| + |1, 0〉〈1, 1| + H.c.) + U 3

00U01(|0, 0〉〈0, 1| + |0, 0〉〈1, 0| + H.c.),
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ρ
(4,HF)
{n0,n2} = U 4

01|−,−〉〈−,−| + U 2
01U

2
02(|1,−〉〈1,−| + |−, 1〉〈−, 1|) + U 4

02|1, 1〉〈1, 1|
+U 2

00U
2
02(|1, 0〉〈1, 0| + |0, 1〉〈0, 1| + |0, 1〉〈1, 0| + |1, 0〉〈0, 1| + |0, 0〉〈1, 1| + |1, 1〉〈0, 0|)

+U 4
00|0, 0〉〈0, 0| + U 2

00U
2
01(|0,−〉〈0,−| + |−, 0〉〈−, 0|) + U00U02U

2
01(|1,−〉〈0,−| + |−, 0〉〈−, 1| + H.c.)

+U00U
3
02(|1, 1〉〈0, 1| + |1, 0〉〈1, 1| + H.c.) + U 3

00U02(|0, 0〉〈0, 1| + |0, 0〉〈1, 0| + H.c.),

and

ρ
(4,HF)
{n1,n2} = U 4

00|−,−〉〈−,−| + U 2
00U

2
02(|1,−〉〈1,−| + |−, 1〉〈−, 1|) + U 4

02|1, 1〉〈1, 1|
+U 2

02U
2
01(|1, 0〉〈1, 0| + |0, 1〉〈0, 1| + |0, 1〉〈1, 0| + |1, 0〉〈0, 1| + |0, 0〉〈1, 1| + |1, 1〉〈0, 0|)

+U 4
01|0, 0〉〈0, 0| + U 2

00U
2
01(|0,−〉〈0,−| + |−, 0〉〈−, 0|) + U02U01U

2
00(|1,−〉〈0,−| + |−, 0〉〈−, 1| + H.c.)

+U01U
3
02(|1, 1〉〈0, 1| + |1, 0〉〈1, 1| + H.c.) + U 3

01U02(|0, 0〉〈0, 1| + |0, 0〉〈1, 0| + H.c.)

where the coefficients Ui j are the matrix elements of the
change of basis matrix between the basis orbitals and the
Hartree-Fock ones, i.e.,

a†
α,i =

∑
β

Uαβc†
β,i, (A4)

with

U 2
00 =

⎧⎪⎨
⎪⎩

1, if χ � 1,
1
2 (1 + 1

χ
), if 1 � χ � 3,

χ+3
3χ

, if χ � 3,

U 2
01 =

⎧⎪⎨
⎪⎩

0, if χ � 1,
1
2 (1 − 1

χ
), if 1 � χ � 3,

1
3 , if χ � 3,

U 2
02 =

{
0, if χ � 3,
χ−3
3χ

, if χ � 3.

With all this, we can compute easily the quantum discord
with the method explained in Sec. II for an arbitrary partition
within the four-orbital reduced state, exact, mean field, or
mean-field projected.

APPENDIX B: GCM APPLIED TO THE THREE-LEVEL
LIPKIN MODEL

As the two-level Lipkin model case [35], the exact solution
for the three-level Lipkin model can be obtained by means
of the GCM method. More precisely, if we use as generating
functions the Slater determinants given by

|φ1φ2〉 = N exp[tan φ1(cos φ2K10 + sin φ2K20)]|0〉, (B1)

where |0〉 is the noninteracting ground state and N is a
normalization constant, the solution of the Hill-Wheeler equa-
tion for f amplitudes in the GCM ansatz will provide the exact
wave functions. On the other hand, if one chooses to use as a
GCM coordinate the angle φ2 alone and fix φ1 to its HF value,8

8From now, φ1 = φ
(HF)
1 , which is a constant given by the interaction

parameter χ .

the GCM solution is not the exact one. This is representative
of real situations where one does not know either the right
GCM coordinates or their appropriate number. In the present
case, one has to solve the Hill-Wheeler equation for φ2,∫

dφ′
2H (φ2, φ

′
2) f (φ′

2) = E
∫

dφ′
2N (φ2, φ

′
2) f (φ′

2),

where9

H (φ′
2, φ2) = 〈φ′

2|H |φ2〉,
and

N (φ′
2, φ2) = 〈φ′

2||φ2〉.
Using Eq. (B1), the overlap matrix will be given by

N (φ′
2, φ2) = [
u(φ′

2) · 
u(φ2)]N ,

where 
u(φ2) = (cos φ2 sin φ1, sin φ2 sin φ1, cos φ1) ∈ R3 is
an unitary vector given in spherical coordinates. It can be
shown that the overlap matrix depends only on the difference
φ2 − φ′

2, so their eigenfunctions will be plane waves [2],

up(φ2) = 1√
2π

e−ipφ2 ,

and their eigenvalues will be given by

np = 2π

N,N−1∑
k=|p|,k+=2

1

2k
(sin2 φ1)k (cos2 φ1)N−k

×
(

N

k

)(
k

1
2 (p + k)

)
.

Using the fermion operators corresponding to the orbital basis
which define the Slater determinants of Eq. (B1), we can
compute the Hamiltonian matrix elements,

H (φ′
2, φ2) = εN f (φ, φ′)N−2

[
f (φ, φ′)g(φ, φ′) − χ

2
h(φ, φ′)

]
,

9|φ2〉 is a shorthand notation for the state |φ1φ2〉 defined in Eq. (B1).
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where

f (φ, φ′) = 
u(φ′
2) · 
u(φ2),

g(φ, φ′) = sin2 φ1 sin φ′
2 sin φ2 − cos2 φ′

1,

h(φ, φ′) = 2 sin2 φ1 cos2 φ1

+ sin4 φ1(cos2 φ′
2 sin2 φ2 + sin2 φ′

2 cos2 φ2),

Following Ref. [2], if we compute the Hamiltonian ele-
ments in the basis given by the eigenfunctions up(φ2) we
obtain

〈p′|H |p〉 = εN√
np′np

{ ∑
0�k1+k2�N−1

(
N − 1

k1, k2

)
ak1+k2 cN−k1−k2−1

(
aI (k1,k2+1)∗

p′ I (k1,k2+1)
p − cI (k1,k2 )∗

p′ I (k1,k2 )
p

)

−χ

2

∑
0�k1+k2�N−2

(
N − 2

k1, k2

)
ak1+k2 cN−k1−k2−2

[
r2I (k1,k2 )∗

p′ I (k1,k2 )
p + a2[I (k1+2,k2 )∗

p′ I (k1,k2+2)
p + I (k1,k2+2)∗

p′ I (k1+2,k2 )
p ]

]}

with

I (k1,k2 )
p =

√
2π

1

2k1

( i

2

)k2
k1/2∑

q1=−(k1/2)

k2/2∑
q2=−(k2/2)

(−1)(k2/2)−q2

(
k2

q2 + k2
2

)(
k1

q1 + k1
2

)
δ2q1+2q2+p,0,

and (
N

k1, k2

)
≡ N!

k1!k2!(N − k1 − k2)!
.

Once all the above quantities have been evaluated, one ca
solve the discrete diagonalization problem

∑
p〈p′|H |p〉gp =

Egp′ to obtain the weight function,

f (φ2) =
∑

p,np 
=0

gp
1√
np

up(φ2),

and the final GCM state |ψGCM〉 = ∫
dφ2 f (φ2)|φ2〉 =∑

pq C(GCM)
pq |pq〉 where

C(GCM)
pq =

√(
N

p, q

)
(sin φ1)p+q(cos φ1)N−p−q

×
∑

k,nk 
=0

gk√
nk

I (p,q)
k .

FIG. 8. Quantum discord for A = {1, 3} and B = {0, 2} in the
exact (up), GCM (middle up), PHF (middle down), and HF (down)
solutions.

The reduced four-orbital state can be computed using
Eqs. (A1), (A2), and (A3) where Cpq → C(GCM)

pq .

APPENDIX C: RESULTS FOR THE {n1, n2} SUBSYSTEM

In this Appendix we discuss the results obtained for the
{n1, n2} partition (illustrated in Fig. 1).

In Fig. 8, the HF and PHF solutions do not present quan-
tum correlations for χ < 3 since the second energy level is
not populated in that case. The GCM solution is practically
identical to the exact one because the QPT corresponding to
the second energy level occurs at χ = 3, and (specially if the
particle number is large) the coordinate kept fixed to the HF
value is related to the first energy level, whose QPT occurs at
χ = 1.

One observes in Fig. 9 that the HF solution does not catch
correlations because the HF orbitals do not mix orbitals with
different degenerations. Since the projection breaks the Slater

FIG. 9. Quantum discord for A = {2, 3} and B = {0, 1} in the
exact (up), GCM (middle up), PHF (middle down), and HF (down)
solutions.
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determinant structure, the PHF is able to incorporate more
quantum correlations. As in the previous case, and for the

same reasons, the GCM solution is very accurate especially
if χ > 1.
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