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Early-time dynamics of Bose gases quenched into the strongly interacting regime
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We study the early-time dynamics of a degenerate Bose gas after a sudden quench of the interaction strength,
starting from a weakly interacting gas. By making use of a time-dependent generalization of the Nozières-
Saint-James variational formalism, we describe the crossover of the early-time dynamics from shallow to deep
interaction quenches. We analyze the coherent oscillations that characterize both the density of excited states and
the Tan’s contact as a function of the final scattering length. For shallow quenches, the oscillatory behavior is
negligible and the dynamics is universally governed by the healing length and the mean-field interaction energy.
By increasing the final scattering length to intermediate values, we reveal a universal regime where the period of
the coherent atom-molecule oscillations is set by the molecule binding energy. For the largest scattering lengths
we can numerically simulate in the unitary regime, we find a universal scaling behavior of the typical growth
time of the momentum distribution in agreement with recent experimental observations [C. Eigen et al., Nature
563, 221 (2018)].
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I. INTRODUCTION

The possibility of tuning the effective interatomic interac-
tion in ultracold atomic gases via a magnetic-field Feshbach
resonance [1] opens up novel perspectives in the exploration
of quantum many-body phenomena and strongly correlated
behavior. In particular, it is now possible to experimentally
investigate strongly interacting Bose gases near the unitary
limit, where the s-wave scattering length diverges, a → ∞
[2–10]. Such a system is inherently unstable due to strong
three-body losses to lower lying states, and thus experiments
must access the strongly interacting regime by starting with
a weakly interacting Bose gas and then rapidly ramping the
external magnetic field to the desired scattering length. How-
ever, rather than being a complication, this provides a unique
opportunity to study the dynamics of a quantum many-body
system driven out of equilibrium in a controlled manner. For
instance, for shallow quenches within the weakly interacting
regime, it has been possible to reconstruct the spectrum of
collective excitations of the degenerate gas from the charac-
teristic oscillations of the density-density correlation function
[11], which is the analog of cosmological Sakharov oscilla-
tions.

For the case of deep quenches into the unitary regime,
there are fundamental questions regarding the role and na-
ture of three-body losses in the evolution of the Bose gas
[2,3,5,6,9]. A pioneering experiment [4] has shown that the
momentum distribution of a degenerate gas can saturate to a
prethermal steady-state distribution, thus suggesting that the
early-time dynamics after a deep quench is unaffected by
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three-body recombination. Most recently, C. Eigen et al. [10]
have observed a universal prethermal post-quench dynamics
of the degenerate gas at unitarity. Here, the authors have
found scaling laws of the momentum-distribution growth time
versus momentum, which are universal when expressed in
terms of density scales. These results indicate that, in the
post-quench dynamics at very short times, the quasiparticle
excitations of the unitary gas are qualitatively similar to the
Bogoliubov modes. As we show in this paper, this behavior
can be described without including three-body scattering or
losses.

The observed universal dynamics of the unitary Bose gas
is consistent with the scale invariance one expects when the
scattering length diverges and there is no interaction scale
in the problem. This would appear to contradict the exis-
tence of Efimov trimers [12], which introduces another length
scale in the problem and thus breaks the scale invariance of
the degenerate Bose gas [13]. However, experiments on the
thermal gas [8] have shown that the three-body contact C3

[14] (which provides a measure of the three-body correlations
connected with Efimov trimers) is negligible in an early time
window after a quench into the unitary regime. Such behavior
is also supported by recent three-body calculations [15,16].
Therefore, this suggests that Efimov physics is only important
at later times in the dynamics, which is reasonable given
that we expect short times to be dominated by short-distance,
two-body scattering. Furthermore, the typical density range in
many experiments may be insensitive to the Efimov scale [9].

In general, the quench dynamics of Bose gases near unitar-
ity is a challenge to describe theoretically [17–25] since there
is no small interaction parameter that allows a perturbative
expansion. However, in the early stages of the dynamics
after a quench from weak interactions, we expect three-body
correlations and losses to be negligible, as discussed above.
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Therefore, a theory involving only pairwise excitations out of
the condensate should be reasonable at short times. To this
end, we employ here a time-dependent generalization of the
Nozières-Saint James variational formalism [26], similarly to
the approach in Refs. [18,21]. This also allows us to capture
the effect of the molecular two-body bound state, which is
present on the repulsive side of the resonance, a > 0.

We go beyond previous work and analyze the crossover
from shallow to deep quenches using the variational formal-
ism. For shallow quenches the early-time dynamics is inte-
grable [11,27,28] and one can make use of a time-dependent
and number-conserving Bogoliubov approximation [29,30].
However, in order to describe the crossover to deep quenches,
we have to resort to a numerical analysis of the coupled
dynamical equations for the condensate density and the ex-
cited state distribution, which, in our modeling, includes the
condensate depletion as well as the correlations between
noncondensed atoms.

We describe the coherent oscillations developed by the
number of excited particles as well as by the Tan’s contact
and, up to intermediate values of the final scattering length
a f , we disclose a universal regime where the oscillation
period is constant and determined by the inverse molecule
binding energy only. We discuss the optimal values of a f at
which these atom-molecule coherent oscillations should be
detectable in current experiments.

For the largest scattering lengths we can numerically sim-
ulate in the unitary regime, we find that the coherent oscilla-
tions persist and are now due to the condensate interaction
with the medium. While these oscillations appear strongly
damped in current experiments [10], our model can correctly
reproduce the universal scaling behavior of the typical growth
time of the momentum distribution found by Ref. [10], sug-
gesting that higher-order damping mechanisms do not affect
the post-quench behavior at very-early times, when a steady-
state regime is not yet reached.

The paper is organized as follows: In Sec. II we introduce
the variational Ansatz for describing the quench dynamics,
and in Sec. II A we derive the coupled equations of motion
for the condensate density and excited state distribution. We
summarize in Sec. II B the characteristic system parameters
as well as the relevant length and time scales in the crossover
from shallow to deep quenches. In Sec. III, we present the
numerical results for the noncondensed fraction (Sec. III A)
and the Tan’s contact (Sec. III B), while in Sec. III C we
explore the universal scaling laws associated with the very-
early-time dynamics of the gas momentum distribution in the
unitary regime. Conclusions and perspectives of our work are
summarized in Sec. IV.

II. MODEL

We start by considering the Hamiltonian describing a ho-
mogeneous gas of N interacting bosons in a three-dimensional
(3D) volume V (henceforth we fix h̄ = 1),

Ĥ =
∑

k

εkâ†
kâk + U�

2V

∑
k1,k2,q

â†
k1+qâ†

k2−qâk2
âk1

, (1)

where â†
k (âk) creates (annihilates) a boson with momentum

k and mass m (εk = |k|2/2m ≡ k2/2m). Close to a Fesh-
bach resonance, atom-atom interactions can be modeled via
a short-range pseudopotential, which, in momentum space, is
constant with strength U� up to a momentum cutoff �. The
coupling constant and cutoff are related to the s-wave scat-
tering length a through the T -matrix renormalization process
[1,31]:

m

4πa
= 1

U�

+ 1

V

k<�∑
k

1

2εk
= 1

U�

+ m�

2π2
. (2)

The (inverse) cutoff �−1 represents the range of the interac-
tion potential, which is assumed to be much smaller than all
other length scales in the problem. In the limit � → ∞, the
contact potential admits, on the repulsive side of the resonance
a > 0, a single molecular bound state with energy [31]:

EB = − 1

ma2
. (3)

We have checked that our results are converged with respect
to the cutoff �.

In order to separate the contribution of the condensed state
k = 0 from that of the excited states k �= 0, it is useful to
rewrite the Hamiltonian (1) by substituting âk → â0δk ,0 +
âk �=0. One thus obtains the following contributions to the
Hamiltonian (we henceforth use the notation âk for âk �=0):

Ĥ =
∑

k

εkâ†
kâk + U�

2V
â†

0â†
0â0â0 + Ĥ2 + Ĥ3 + Ĥ4, (4)

Ĥ2 = U�

2V

∑
k

(â†
kâ†

−kâ0â0 + 2â†
kâkâ†

0â0 + H.c.), (5)

Ĥ3 = U�

V

∑
k,q

(â†
k−qâ†

qâkâ0 + H.c.), (6)

Ĥ4 = U�

2V

∑
k1,k2,q

â†
k1+qâ†

k2−qâk2
âk1

. (7)

In the following, we focus on zero temperature and con-
sider the early-time dynamics of the gas after a quench from
an initial scattering length ai to the final value a f . We will not
carry out any approximation at the level of the Hamiltonian
(4), unlike what is done in the time-dependent self-consistent
Bogoliubov approximation [24]. Instead, we will use the
time-dependent generalization of the Nozières-Saint-James
variational Ansatz [26,32]:

|ψ (t ) 〉 = 1

N (t )
e
√

V c0(t )â†
0+ 1

2

∑̄
k gk (t )â†

k â†
−k |0 〉. (8)

Here, the normalization constant N (t ) ensures that
〈ψ (t )||ψ (t )〉 = 1. The complex variational parameters c0(t )
and gk(t ) are related to the momentum occupation numbers,

N0(t ) = |〈â0〉|2 = V |c0(t )|2, (9)

Nk(t ) = 〈â†
kâk〉 = |gk(t )|2

1 − |gk(t )|2 , (10)
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as well as to the pairing term:

xk(t ) = 〈âkâ−k〉 = gk(t )

1 − |gk(t )|2 , (11)

where 〈. . . 〉 = 〈ψ (t )| . . . |ψ (t )〉. Note that Nk(t ) and xk(t ) are
not independent functions, since they are related by the con-
straint |xk(t )|2 = Nk(t )[Nk(t ) + 1]. Also note that g−k(t ) =
gk(t ), while the factor 1/2 in the momentum sum in Eq. (8)
avoids double-counting. We use the notation

∑̄
k = ∑k<�

k �=0 .
The Ansatz |ψ (t )〉 describes the k = 0 condensed state as

a coherent state, while particles at finite momentum k �= 0
are excited out of the condensate in pairs only. For shallow
quenches (na3

i, f 	 1), the condensate depletion is small, such
that one can assume that the condensate density is time
independent, |c0(t )|2 
 n. In this case, the Ansatz (8) is a
controlled approximation at an early stage of the dynamics,
where Beliaev-Landau scattering processes involving three
particles can be safely neglected [28]. Here, one can neglect
the contributions of Ĥ3 and Ĥ4 to the Hamiltonian (4) and
show that the dynamics becomes integrable (see Appendix A),
which recovers the results obtained by Refs. [11,27] within a
time-dependent Bogoliubov approximation.

The same Ansatz (8) has previously been employed by
Refs. [18,21] to describe the quench dynamics of a Bose gas
into the strongly interacting regime. Assuming a weakly in-
teracting initial state (na3

i 	 1), we will use the Ansatz (8) to
study the crossover of the early-time dynamics from shallow
to deep quenches, where na3

f 	 1 and na3
f � 1, respectively.

In general, the dynamics of the condensate depletion cannot
be neglected and we include the time dependence of the vari-
ational parameter c0(t ) in a similar way to the self-consistent
Bogoliubov approximation considered by Ref. [24]. Further,
as explained later, we include all contributions arising from
〈Ĥ4〉 which describes the correlations between noncondensed
atoms. This, together with the renormalization of the in-
teraction coupling constant (2), allows one to describe the
atom-molecule coherent dynamics, as already discussed in
Ref. [21]. However, as 〈Ĥ3〉 = 0, the Ansatz for |ψ (t )〉 does
not admit either Beliaev decay or Landau damping terms
that may be responsible for the loss of the atom-molecule
coherence.

For weak interactions, Ref. [28] has shown that there
is a separation of time scales between short-time dynamics
dominated by pair-wise excitations and longer-time dynamics
requiring the inclusion of higher-order excitation terms such
as Ĥ3. However, it remains an open question how this separa-
tion of time scales evolves as we approach unitarity. For the
case of an impurity atom immersed in a quantum medium, it
can be formally shown that the dynamics following a quench
of the impurity-medium interactions to the unitary regime is
dominated by two-body correlations at times less than the time
scale ε−1

n set by the density [33]. Moreover, recent experi-
ments on the very-early-time dynamics of quantum quenches
in the Bose gas [10] suggest that a similar situation holds
for the unitary Bose gas. To investigate this further, one must
generalize Eq. (8) to include three-particle processes, but this
is beyond the scope of this work and will be the subject of
future studies.

A. Equations of motion

As in Refs. [18,21], the equations of motion for the vari-
ational parameters c0(t ) and gk(t ) can be derived from the
Euler-Lagrange equations [21,34],

d

dt

∂L
∂ ċ∗

0

= ∂L
∂c∗

0

,
d

dt

δL
δġ∗

k

= δL
δg∗

k

,

associated with the Lagrangian,

L = i

2
[〈ψ (t )|ψ̇ (t )〉 − 〈ψ̇ (t )|ψ (t )〉] − 〈Ĥ〉.

When evaluating the contributions to 〈Ĥ〉, we have that 〈Ĥ3〉= 0 while

〈Ĥ4〉 = U�

2V

∑̄
k,q

[2Nk(t )Nq(t ) + xk(t )x∗
q(t )]. (12)

Differently from [20,24], we retain the anomalous expectation
values xk in 〈Ĥ4〉. One arrives at the following equations of
motion:

iċ0 = U�c0n + U�

V

∑̄
k

c0|gk|2 + c∗
0gk

1 − |gk|2
, (13)

iġk = 2[εk + U�n]gk + U�

(
2|c0|2gk + g2

kc∗2
0

+ c2
0

) + U�

V

∑̄
q

2gk|gq|2 + g2
kg∗

q + gq

1 − |gq|2 , (14)

that have to be solved for a set of initial conditions c0(0) and
gk(0). Note that the total density,

n = n0(t ) + nex(t ) = |c0(t )|2 + 1

V

∑̄
k

Nk(t ), (15)

is conserved during the dynamics governed by Eqs. (13) and
(14).

For instantaneous quenches ai �→ a f , the system is initially
(t = 0) characterized by the scattering length ai, while at
later times t > 0 it evolves with the interaction set by the
final scattering length a f . Therefore, the equations of motion
(13) and (14) have to be solved by using U� = U�, f = (1 −
2a f �/π )−14πa f /m. The initial state is assumed to be in equi-
librium and thus can be found by minimizing 〈ψ |Ĥ − μN̂ |ψ〉
with respect to time-independent variational parameters c0(0)
and gk(0), where U� = U�,i and the Lagrange multiplier μ

(i.e., the chemical potential) fixes the number of particles. For
example, for an initial weakly interacting gas na3

i 	 1, one
has

|c0(0)|2 = n

(
1 − 8

3
√

π

√
na3

i

)

 n, (16)

gk(0) =
√

εk(εk + 2Uin) − (εk + nUi )

nUi
, (17)

where Ui = 4πai/m.
The last two terms in the equation for the condensate

dynamics (13) self-consistently describe the condensate de-
pletion due to the scattering to finite momentum excited
states. The last three terms in the equation for the excited
state dynamics (14) instead represent the correlations between
noncondensed atoms. As shown in Appendix A, for shallow
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TABLE I. Dimensionless interaction strength akn in units of
kn = (6π 2n)1/3 and characteristic length and time scales for different
values of scattering length a (in units of the Bohr radius a0) for a
39K gas with density n = 1012 cm−3. We indicate in gray all those
scales that we expect to be irrelevant in a specific regime. The value
a = 60 000a0 is the largest final scattering length we can numerically
simulate.

a akn ξ τ |EB|−1 k−1
n ε−1

n

100a0 2.1 × 10−2 3 μm 9 ms 20 ns 0.3 μm 80 μs
1000a0 2.1 × 10−1 0.9 μm 0.9 ms 2 μs 0.3 μm 80 μs
60 000a0 12 0.1 μm 15 μs 6 ms 0.3 μm 80 μs

quenches na3
i, f 	 1, the dynamics is integrable, the terms just

described can be neglected, and the now simplified Eqs. (A1)
and (A2) can be solved exactly. However, for a generic quench
from a weakly interacting gas na3

i 	 1 to an arbitrary value of
the final scattering length a f , the dynamics is not integrable
and one has to carry out a numerical analysis.

B. System parameters

Before describing the results obtained from the numerical
simulations, we summarize here the system characteristic
length and time scales that we expect to be relevant for
different values of the final scattering length a f . For shallow
quenches na3

i, f 	 1, the early-time quasiparticle dynamics
can be derived by using the time-dependent Bogoliubov ap-
proximation [11,27] and can thus be described is terms of the
healing length and mean-field time scales only [35]:

ξ = 1√
8πan

, τ = m

4πan
. (18)

In fact, it can be shown that, in this regime, the dynamics
is universal in terms of these two parameters, where a is
taken to be the final scattering length a f . Here, the Bose gas
occupies the metastable upper branch at positive energies, and
the molecular bound state is far below the continuum when
na3

f 	 1. As shown later on, while atom-molecule coherent
oscillations occur on a time scale |EB|−1 	 τ (see Table I),
their amplitude is negligible in this limit since they rescale as
na3

f 	 1.
Increasing the value of the final scattering length a f beyond

the weakly interacting regime, we anticipate that all scales
play a role in the description of the dynamics—typical val-
ues for a 39K gas with density n = 1012 cm−3 are listed in
Table I. However, in the unitary regime a f → ∞, we expect
the dynamics to recover a universal behavior in terms of the
density scales only, i.e., in terms of the typical momentum and
energy scales:

kn = (6π2n)1/3, εn = k2
n

2m
. (19)

In particular, we will see that, in the unitary regime, the
typical growth time τgr of the number of excited particles in
a given momentum state k follows a universal scaling law
when rescaled by ε−1

n and kn, respectively. Here, all other
system scales become irrelevant in the very-early-time quench
dynamics of the gas.

Of course, the arguments above ignore the existence of Efi-
mov trimers, which introduce an additional length scale in the
problem. Therefore, one might wonder about the typical time
scales at which three-body correlations and losses become
relevant in the quench dynamics. It was found in Ref. [8] that
for a thermal Bose gas of 39K atoms trapped in a harmonic
potential and quenched to large values of the scattering length
(na3

f  1), the three-body contact C3 was negligible in the
early stages of the dynamics where t � 5ε−1

n —note that the
density in this experiment was n 
 2.8 × 1013 cm−3, so that
ε−1

n ≈ 9 μs. More recently, it was shown in Ref. [10] that,
for a box potential trap, interaction quenches to the unitary
regime for a degenerate 39K gas have a universal dynamics
and are lossless up to t 
 ε−1

n —in that experiment a density of
n = 5.1 × 1012 cm−3 was considered, and thus ε−1

n 
 27 μs,
while in the Table I we have fixed n = 1012 cm−3 and thus
ε−1

n 
 80 μs.

III. RESULTS

We describe here how the early-time quench dynamics of a
Bose condensate at zero temperature evolves as a function of
the final scattering length a f all the way towards unitarity. To
this end, we numerically solve the equations of motion (13)
and (14) for the specific case of instantaneous quenches from
a noninteracting gas [ai = 0, c0(0) = √

n and gk(0) = 0] to
a generic value a f . Since we are considering s-wave inter-
actions, we can assume spherical symmetry for the function
gk(t ) = gk (t ). We use a Gauss-Legendre quadrature routine
on a grid of M points in k space and integrate the equations
of motion using a fifth-order Runge-Kutta routine. We have
checked our results are converged with respect to the chosen
time step. The dynamics has therefore two regularization
parameters, namely the number of points M on the Gauss-
Legendre momentum grid and the momentum cutoff �. As
explained in Appendix B, we have checked the convergence
of our results with respect to both parameters and extrapolated
the results from the numerics to both M → ∞ and � → ∞
limits. Note that, in the limit � → ∞, our results do not
depend on the density n and the final scattering length a f sep-
arately; rather they depend on the dimensionless interaction
strength a f kn.

A. Noncondensed fraction

We plot in Fig. 1 the density of particles in the excited
states nex(t ) (15) as a function of time after an instantaneous
quench from the noninteracting case ai = 0, and for different
values of the final scattering length a f . It is convenient to
rescale both the noncondensed density nex(t ) and the time t
by different scales depending on the different range of final
scattering lengths a f considered. In the weakly interacting
regime [Fig. 1(a)], we rescale density and time using the
healing length ξ and mean-field time τ (18), respectively. In
this regime, the dynamics obtained within the time-dependent
Bogoliubov approximation (dashed line) is universal in these
units (see Appendix A), i.e., it does not depend on any other
scale of the problem. One can easily solve Eq. (A7) for the
early-time dynamics, obtaining a square-root behavior for the
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n
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(t
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n
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afkn = 12

(a)

(b)

(c)

FIG. 1. Noncondensed density nex(t ) as a function of time after
an instantaneous quench from a noninteracting gas ai = 0 to different
values of the final scattering length af . In all panels, solid lines are
the results of the numerical integration of the equations of motion
(13) and (14). (a) For shallow quenches, density and time are rescaled
by the healing length ξ and mean-field time τ (18), respectively. At
intermediate values of af (b), it is convenient to rescale the time
by the molecular bound state energy |EB|, while, towards unitarity
(c), by the energy scale fixed by the gas density εn. In (a) and (b),
the dashed lines are obtained via the time-dependent Bogoliubov
approximation [27] [see Eq. (A7)].

initial increase of nBog
ex (t ):

nBog
ex (t )ξ 3 


t	τ

1

4π3/2

√
t

τ
. (20)

As Fig. 1(a) shows, the universal behavior of nBog
ex (t ) in

units of ξ and τ for shallow quenches is only weakly modified
by the inclusion of the condensate depletion as well as the
correlations between noncondensed atoms, which are both
contained in the equations of motion (13) and (14). These
terms, together with the renormalization of the interaction
strength (2), include a description of the molecular bound
state. As a consequence, coherent atom-molecule oscillations
appear in the density of excited particles, as already predicted
by Ref. [21]. The oscillations are due to the reversible transfer
of pairs of atoms to the molecular bound state [36,37]. The
oscillation period T is set by the molecular binding energy
|EB| and, as explained later, we find that T 
 2π/|EB| for a
wide interval of a f values (see Fig. 4). For shallow quenches
one has |EB|−1 	 τ (see Table I)—note that, in Fig. 1(a), the
oscillation period increases with a f because the time t is in
units of the mean-field time τ which decreases like ∝ a f while

10−2 10−1 100 101
10−8

10−6

10−4

10−2

100

Δ
n

ex
/
n

af kn

af/a0

101 102 103 104 105

Δnex

n
∼ 1.6(afkn)3

Δnex

n
∼ 64

6π2 (afkn)3

FIG. 2. Amplitude of coherent oscillations for the noncondensed
fraction 
nex as a function of af kn (af in units of the Bohr radius a0

is given for a density n = 1012 cm−3). The solid line is a cubic fit to
our data (circles), while the dashed line is the analytical estimation
deduced in Ref. [21].

|EB|−1 increases like ∝ a2
f . However, in this regime the am-

plitude of oscillations is negligible, 
nex/n 	 1, (see Fig. 2)
and thus would be difficult to detect. In addition, far from the
resonanace, the single-channel model employed in (1) may
not provide an accurate description of the interactions.

By increasing the value of the final scattering length
a f , the time-dependent Bogoliubov approximation eventually
loses its validity, primarily because it does not include self-
consistently the depletion of the condensate. In Fig. 1(b)
we plot the density of particles in the excited states nex(t )
by rescaling the time by the molecular binding energy. In
contrast to the case of shallow quenches, we can see that
our numerical results, at long enough times, start deviating
from the ones obtained within the time-dependent Bogoliubov
approximation. This deviation occurs on longer time scales
(absolute units) for larger values of a f —in Fig. 1(b) the
deviation occurs on shorter time scales for larger values of
a f because time is measured in units of |EB|−1. In addition,
we find that the amplitude of the coherent atom-molecule
oscillations increases as a3

f for small values of a f kn (see
Fig. 2). This is compatible with the analytical expression

nex/n ∼ 64(a f kn)3/(6π2) estimated in Ref. [21] by using
an exactly solvable two-body model. However, we find a
deviation from the cubic growth at a f kn 
 0.52, where the
amplitude reaches a maximum value 
nex/n ∼ 0.19, beyond
which it slowly decreases for a f kn � 2. We thus expect the
oscillations to become relevant by increasing the value of a f .

We extract the amplitude of the oscillations by averaging
over several oscillations after the initial transitory behavior,
and using the standard deviation as the uncertainty—the error
bar is too small to be observed in Fig. 2. In addition, we
find that the oscillation period is universal T 
 2π/|EB| up to
a f kn � 0.21, while the medium starts to influence the dynam-
ics by decreasing the period value only for larger interaction
strengths (Fig. 4, top). Note that, for a f kn � 0.21, |EB|−1 �
2 μs (see Table I). As mentioned at the end of Sec. II B, recent
experiments [8,10] have shown that three-body processes and
losses are negligible for t � ε−1

n ∼ 80 μs and thus there is
an interval in the early-time dynamics when we expect that
it should be possible to measure coherent atom-molecule
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oscillations before three-body processes and losses start to
affect the dynamics.

Finally, we plot in Fig. 1(c) the excited state density
for the largest values of a f we can simulate. As explained
in Appendix B, where we discuss the convergence of our
results with respect to the number of points M on the Gauss-
Legendre momentum grid and the momentum cutoff �, our
numerics suffers a critical slowing down of the convergence
with respect to both parameters. For this reason, a f kn = 12.4
(a f = 6 × 104a0 and n = 1012 cm−3) is the largest value we
can simulate to extract converged information in a reasonable
running time. In this regime, we find that the excitation density
very quickly converges into a steady-state regime with a large
average condensate depletion of ∼96%. In addition, we find
that the increase of the period of oscillations T with a f slows
down for a f kn � 0.21. In particular, in Fig. 4 we plot the
period of the coherent oscillations, either in units of |EB| (top
panel) or εn (bottom panel). While the slope of T εn reduces
sensibly, indicating the approach to a universal regime, we
cannot enter a universal regime for the period where T εn 

const. At the same time, the period in this regime is T > ε−1

n
and on this time scale three-body events, heating, and losses
have been shown to start playing a relevant role in the exper-
iments [8,10], making it difficult to measure the oscillations
in nex(t ). However, even though in the unitary regime we
neither can disclose a universal behavior of the oscillation
period nor expect this to be accessible experimentally, as we
will see later in Sec. III C, in the unitary regime we find a
universal scaling behavior of the typical growth time τgr of
the momentum distribution which is a typical time of the
very-early gas dynamics (τgrεn � 1).

B. Tan’s contact

The momentum distribution of a quantum gas governed
by an s-wave contact interaction a always decays for large
momenta as k−4 [38]. The Tan’s contact is thus defined as

C = lim
k→∞

k4Nk. (21)

C measures the strength of two-body short-range correlations.
For a weakly interacting Bose gas, the Tan’s contact can be
easily derived employing the Bogoliubov approximation and
is given by C0 = 16π2a2n2 [35]. It is possible to show that
the momentum distribution retains a k−4 large momentum
tail also for quantum quenches, and thus one can define an
instantaneous Tan’s contact C(t ) [21,24].

As shown in Fig. 3, we extract the time dependence of
the Tan’s contact C(t ) after instantaneous quenches by fitting
the tail of the momentum distribution Nk(t ) at fixed t (see
inset) and plot it for several values of the scattering length
a f . As for nex(t ), the Tan’s contact also shows coherent
oscillations. The oscillation period coincides with that of
nex(t )—see Fig. 4. In addition, we show that there is a a large
interval of values of a f kn � 0.21 for which the oscillations
are universal both in amplitude (in units of C0 = 16π2a2

f n2)
as well as for the period (in units of |EB|−1) and represent
coherent atom-molecule oscillations. As commented in the
case of nex(t ), because in this regime T 
 2π/|EB| < ε−1

n ,
we expect that the coherent atom-molecule oscillations should

0 10 20 30 40 50
0
1

5

10

15

20

t|EB |

C
(t

)/
C

0

afkn = 0.083
afkn = 0.14
afkn = 0.21

10−4 10−2 100 102
10−12
10−8
10−4
100

t|EB| = 25

k/kn

N
k

1/k3.89 fit

FIG. 3. Rescaled Tan’s contact C(t )/C0 (C0 = 16π 2a2
f n2) for

instantaneous quenches from a noninteracting gas ai = 0 to different
values of the final scattering length af . (Inset) Momentum distribu-
tion Nk (t ) at a fixed time t and scattering length af kn = 0.14.

be measurable by considering the time dependence of the
Tan’s contact. While this regime has already been studied
in Ref. [21], we extend the analysis to larger values of a f ,
finding that eventually the period increases, reaching time
scales T > ε−1

n at which the system is affected by three-body
effects and losses.

Nevertheless, as discussed in the next section, our Ansatz
(8) is still able to describe the very early-time dynamics, and
it exposes a universal scaling behavior of the typical growth
time of the momentum distribution, in agreement with recent
experiments [10].

10−2 10−1 100 101
10−6
10−4
10−2
100

T
n

af kn

0

2

4

6

T
|E

B
|

T from nex(t)
T from C(t)
< T > |EB | = 6.27

af/a0101 102 103 104 105

af/a0

afkn

FIG. 4. Period T of coherent oscillations extracted from the
excited particle density nex(t ) (dots) and from the Tan’s contact C(t )
(triangles) as a function of af kn (af in units of the Bohr radius a0 is
given for a density n = 1012 cm−3). (Top) The period T is plotted in
units of the molecular binding energy |EB|. (Bottom) T is plotted in
units of the energy scale associated with the gas density εn.
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10−2 10−1 100 101
0

0.5

t n

k/kn = 0.53

1 × 102

10−2 10−1 100 101
0

0.5

1

1.5

t n

Ñ
k
(t

)k
3 n

k/kn = 0.19
2 × 103

10−2 10−1 100 101
0

1

2

3

4

t n

k/kn = 1.64(a) (b) (c)

FIG. 5. Normalized momentum distribution Ñk(t ) as a function of time t after a diabatic quench to af kn = 4.1 (corresponding to af =
20 000a0 when n = 1012 cm−3) for different value of the momentum k. The dashed horizontal line represents the value of the mean steady-state
Ñss(k) reached after an initial quench transient. The dashed vertical line marks the value of the growth time τgr (k), defined as the time at which
Ñk(t ) reaches 1/4 of its maximum value (dots) at a given value of k.

C. Universal prethermal dynamics in the unitary regime

Let us consider the time dependence of the momentum
distribution Nk(t ) after a diabatic quench to a f in the unitary
regime. Similarly to Ref. [10], we define the normalized
momentum distribution as

Ñk(t ) = Nk(t )

nex(t )
,

1

V

∑̄
k

Ñk(t ) = 1. (22)

In Fig. 5 we plot Ñk(t ) as a function of time for different
values of the momentum k. Immediately after the quench, the
momentum distribution grows rapidly as ∝ t3/2. We want to
determine the typical growth time τgr (k) of the momentum
distribution at a fixed momentum. To this end, we identify,
at each fixed momentum k, the maximum value of Ñk(t ) and
define τgr (k) (dashed vertical line) as the time at which Ñk(τgr )
reaches a fixed percentage of the maximum value. We choose
this to be 1/4, but our results are independent of this value, as
long as τgr lies in the tail of the growing region of Ñk(t ) that
is not affected by the oscillatory behavior yet. In fact, after
the transient, the momentum distribution enters a steady-state
regime dominated by large coherent oscillations around a
steady-state value Ñss(k) (dashed horizontal line). Note that
these are not atom-molecule oscillations only because now
they involve the entire medium, as suggested by the fact that
their period T moves away from 2π/|EB| and starts to saturate
towards ∝ ε−1

n .
The presence of large oscillations represents a substan-

tial difference from the experimental results of Ref. [10]
where highly damped oscillations are barely visible in the
prethermal dynamics and where the normalized momentum
distribution quickly approaches a steady-state value after an
almost monotonic initial growth. For this reason, the authors
of Ref. [10] can apply a sigmoid fit to extract the growth
time τgr (k) there defined as the time at which the momentum
distribution reaches 1/2 of the steady-state value Ñss(k). Even
by averaging out the coherent oscillations in our results for
Ñk(t ), we cannot apply a sigmoid fit to our data because, at
large momenta, the growth towards the steady-state prether-
mal regime is not monotonic [see Fig. 5(c)]. For this reason
we have applied the criterion previously described to extract
the growth time τgr (k).

Nevertheless, by plotting in Fig. 6 (top) the rescaled growth
time τgr (k)εn as a function of the rescaled momentum k/kn

we disclose, in agreement with the experiments [10], a uni-
versal scaling behavior which is independent of both the final
scattering length a f and the gas density n. In particular, the
value extracted for τgr (k) at different values of a f kn > 2.5
and at two different gas densities, fall onto the same universal
curve. As in [10], the fitting of our data reveals the following

k/kn

τ g
r
(k

)
n

1/k1.96 fit
1/k0.99 fit

k/kn

Ñ
ss

(k
)k

3 n

af kn2 = 7.1
afkn1 = 4.1
afkn1 = 3.3
afkn1 = 2.5
1/k3.91 fit

10−0.58 10−0.53
100.4

100.45

10

2
1

0.2
0.1

104

103

102

101

100

210.2

FIG. 6. (Top) Growth time τgr (k) of the normalized momentum
distribution Ñk(t ) (see Fig. 5) as a function of momentum for
different values of af in the unitary regime and for two densities,
n1 = 1012 cm−3 and n2 = 5 × 1012 cm−3 (see legend in the bottom
panel). (Bottom) Mean steady-state value Ñss(k) reached by the
momentum distribution after an initial transient of the quench (see
Fig. 5) as a function of momentum for the same values of af and
densities as the top panel.
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universal scaling laws for small and large momenta:

τgr (k)εn 

k<kn

kn

k
,

τgr (k)εn 

k>kn

(
kn

k

)2

.

(23)

We have checked that this result is independent of the specific
percentage of the maximum value of Ñk(t ) chosen to define
τgr (k)—a different percentage just scales rigidly all those
curves up or down, leaving unchanged the universal scaling
behavior.

Note that for shallow quenches one can also define a typical
growth time τ

Bog
gr (k) of the momentum distribution and a

steady-state value ÑBog
ss (k) that characterizes the long-time

dynamics of the momentum distribution. Starting from the
analytic expression (A5) for gk(t ) obtained within the time-
dependent Bogoliubov approximation, one can deduce the
following expressions:

τ
Bog
gr (k)

τ
= π

6Ekτ
,

ÑBog
ss (k)

ξ 3
=

√
25π

(Ekτ )2
. (24)

The dependence on the momentum k of both quantities re-
veals information about the Bogoliubov spectrum of quasi-
particle excitations of a weakly interacting Bose gas, Ekτ =√

(kξ )2[(kξ )2 + 2]. As in Eq. (23), the result for the growing
time τ

Bog
gr (k) give the same rescaling with momentum, i.e., at

low momenta kξ 	 1, τ
Bog
gr (k)/τ 
 (kξ )−1, while in the op-

posite regime kξ  1, τ
Bog
gr (k)/τ 
 (kξ )−2. This corresponds

to the phonon and free particle regimes of the Bogoliubov
spectrum, respectively. In the strongly interacting regime, we
thus find the very same universal regime but with the mean-
field energy τ−1 replaced by “Fermi” energy εn and the heal-
ing length ξ by k−1

n . This thus indicates that the excitations
spectrum is still phononlike for small momenta and freelike
at higher momenta, but with energy and momentum scales
only determined by the gas density. The agreement with the
experiments on the universal scaling law of the growth time
τ

Bog
gr (k) indicates that the very-early-time quench dynamics

into the unitary regime, when a stationary prethermal regime
has not been reached yet, is dominated by excitations of atoms
out of the condensate in pairs only.

We plot in the bottom panel of Fig. 6 the mean steady-
state value Ñss(k) reached by the momentum distribution after
the initial transient after the initial growth as a function of
momentum. As in the experiments, we also find a universal
behavior of this quantity in units of kn. However, in contrast
with experiments for which this quantity follows a single
exponential law, our calculations reveal a crossover to a
power-law k−4 decay for large values of momenta. This is
expected for a dissipationless quantum gas governed by an
s-wave contact interaction, and leads to the extraction of the
Tan’s contact. This indicates that, for quenches into the unitary
regime, once the very early-time growth and transient dynam-
ics of the momentum distribution has passed and the system
enters the prethermal region, our dissipationless description
which leads to strong coherent oscillations around a steady-
state value is incomplete.

IV. CONCLUSIONS

We have analyzed the crossover from shallow to deep
instantaneous interaction quenches in the early-time dynam-
ics of a degenerate Bose gas at zero temperature. We have
employed a time-dependent Nozières–Saint James variational
formalism, which self-consistently describes the excitation of
particles out of the condensate in pairs only. We have modeled
short-range atom interactions close to a Feshbach resonance
using a single-channel model, which admits a molecular
bound state on the repulsive side of the resonance. The cou-
pled dynamics between the condensate and the excited states
includes the condensate depletion and correlations between
noncondensed atoms.

In agreement with previous studies [18,21], we have found
coherent atom-molecule oscillations in both the density of
excited particles and the Tan’s contact, and we have char-
acterized them as a function of the final scattering length
a f . For shallow quenches, the oscillations have a negligible
amplitude and the dynamics is well captured by a time-
dependent Bogoliubov theory [11,27], involving the mean-
field time and the healing length. However, at intermediate
values of the final scattering length a f kn � 0.21, we find a
universal regime for atom-molecule oscillations, where the
period is only determined by the molecular binding energy,
T 
 2π/|EB|, and the amplitude of oscillations is not negligi-
ble. We expect such oscillations to be visible in experiments,
since recent experiments on 39K have shown that three-body
processes and losses are negligible for t � ε−1

n ∼ 80 μs [10],
while |EB|−1 � 2 μs.

We have pushed our analysis into the unitary regime and
we can simulate the dynamics up to a f kn = 12.4. Here we
find that the growth time of the momentum distribution τgr (k),
which characterizes the very-early-time quench dynamics,
depends on the momentum k with a universal scaling law
that is governed by density only. In particular, we can deduce
that, at very short times after the quench, the excitations are
Bogoliubov modes with the mean-field energy τ−1 replaced
by εn and the healing length ξ by k−1

n . During these very-early
times after the quench, where the momentum distribution has
not yet entered a prethermal regime, the agreement between
our results and the experiments indicates that higher-order
incoherent processes do not affect the post-quench behavior
at short times and thus, the employment of a time-dependent
Nozières–Saint James variational formalism is adequate in
this case. However, the very strong damping of the coherent
oscillations observed in experiments when the quench dy-
namics enters the prethermal regime, indicates that damping
and dissipation mechanisms should eventually be taken into
account. This is further confirmed by the observation of an
exponential behavior of the mean steady-state value Ñss(k)
reached by the momentum distribution in the prethermal
regime [10], while instead our model predicts a typical power-
law k−4 decay for large values of momenta.

One way to include damping and dissipation would be to
consider a phenomenological model, as in Ref. [19], where
the system is coupled to an external bath, thus allowing
energy to dissipate. Alternatively, one could consider the
next order term in the time-dependent variational Ansatz (8)
which allows the excitations of particles out of the condensate
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in triplets. The inclusion of this term would allow one to
incorporate the effects of Beliaev decay, Landau scattering
[28], and potentially even Efimov physics. This will be the
subject of future studies.
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APPENDIX A: SHALLOW QUENCHES

For shallow interaction quenches, na3
i, f 	 1, the dynamics

is integrable and one can solve exactly (13) and (14), recover-
ing the results of Refs. [11,27]. In this limit, the contribution
from 〈Ĥ4〉 (12) can be neglected and one can replace the
bare interactions with the inverse zero-energy T matrix, giving
the interaction strength Ui, f = 4πai, f /m. Moreover one can
assume the condensate depletion is negligible, |c0(t )|2 
 n,
and thus the equation of motions can be simplified to

iċ0 
 Uf c0n, (A1)

iġk = 2[εk + 2Uf n]gk + Uf
(
g2

kc∗2
0 + c2

0

)
. (A2)

It is easy to show that these equations are solved exactly by

c0(t ) = √
ne−iUf nt , (A3)

gk(t ) = ḡk(t )e−2iUf nt , (A4)

ḡk(t ) = Ek f gk(0) − i tan(Ek f t )[Uf n + ξk f gk(0)]

Ek f + i tan(Ek f t )[ξk f + Uf ngk(0)]
, (A5)

where Ek f = √
εk(εk + 2Uf n) is the quasiparticle excitation

spectrum and ξk f = εk + Uf n.
This coincides with the result obtained in Refs. [11,27]

by using a time-dependent Bogoliubov approximation, where
one considers the Heisenberg equations of motion for the
particle operator âk(t ),

i
dâk

dt
=

[
âk,

∑
k

εkâ†
kâk + Ĥ2

]
.

This equation is solved in terms of the Bogoliubov parame-
ters, âk = uk(t )b̂k + v∗

k(t )b̂†
−k, where |uk(t )|2 − |vk(t )|2 = 1,

giving

i
d

dt

(
uk(t )
vk(t )

)
=

(
ξk f Uf n

−Uf n −ξk f

)(
uk(t )
vk(t )

)
.

It is easy to show that these coupled equations are solved by

ḡk(t ) = v∗
k(t )

u∗
k(t )

, |uk(t )| = 1√
1 − |ḡk(t )|2 , (A6)

and one recovers, e.g., for the fraction of particles in the
excited states, the result of [27]

nBog
ex (t )ξ 3 = 1

2π2

∫ �̃

0
k̃2dk̃

[ |gk (0)|2
1 − |gk (0)|2

−
(

ai

a
− 1

)
sin2(

√
k̃2(k̃2 + 2)τ )

(k̃2 + 2)
√

k̃2(k̃2 + 2ai/a)

]
. (A7)

APPENDIX B: CONVERGENCE OF THE DYNAMICS

We show here the convergence of our results with respect
to the number of points M on the Gauss-Legendre momentum
grid and the momentum cutoff �. Note that, as the dynamics
requires in principle one regularization parameter only, we
could send � → ∞ and use only the number of points M
to regularize Eq. (2). However, we could not obtain results
converged in time applying this procedure. For this reason,
we have fixed both M and � in our numerics and checked the
convergence with respect to both parameters.

We show here the extrapolation procedure followed to
extract the M → ∞ and � → ∞ results for the oscillation
period T of the noncondensed density nex(t ). Convergence
with respect to both parameters has been checked for all data
reported in the main text. We have found that the dynamics
converges exponentially fast with respect to the number of
Gauss-Legendre points M used for the quadrature, while it
only has a linear dependence on the cutoff � (for the range
of � values computationally accessible). Figure 7 shows the
dependence of the period of oscillations with respect to both
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1 0 3 M −1

T
|E

B
|

Λ/kn = 513

0 1 2 3 4
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6.1

6.15

6.2

1 0 3 (Λ/ k n)

T
M

→
∞
|E

B
|

−1
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(b)

FIG. 7. Two-step extrapolation process of the period of oscilla-
tions T of the noncondensed density nex(t ) (Fig. 1) with respect to the
two system regularization parameters, M and �. The period T (dots)
is evaluated, at fixed values of M and �, by averaging over several
oscillations of nex(t ), with an error given by the standard deviation
(not observed in these plots). (a) T is plotted as a function of M−1 for
a fixed value of �/kn = 513. The M → ∞ value TM→∞ is extracted
via an exponential fit (solid line). (b) Plot of the extracted period
TM→∞ with respect to �−1 (dots). The extrapolated value TM→∞,�→∞
is obtained via a linear fit (solid line). We have fixed n = 1012 cm−3

and af = 1000a0 (af kn = 0.21).
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M [Fig. 7(a)] and � [Fig. 7(b)]. Once we have extracted
TM→∞ for different values of �, we can extract the final value
TM→∞,�→∞ reported in Fig. 4. The numerical calculations are

limited by a critical slowing down of the convergence with
respect to the regularization parameters for both very small
and very large values of a f .
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