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Abstract 

The role of glacial refugia in shaping contemporary species distribution is a long-standing 
question in phylogeography and evolutionary ecology. Recent studies are questioning 
previous paradigms on glacial refugia and postglacial recolonization pathways in Europe, and 
more flexible phylogeographic scenarios have been proposed. We used the widespread 
common vole Microtus arvalis as a model to investigate about the origin, locations of glacial 
refugia and dispersal pathways, in the group of “Continental” species in Europe. We used a 
Bayesian spatio-temporal diffusion analysis (relaxed random walk model) of cytochrome b 
sequences across the species range, including newly collected individuals from 10 Iberian 
localities and published sequences from 68 localities across 22 European countries. Our data 
suggest that the species originated in Central Europe, and we revealed the location of multiple 
refugia (in both southern peninsulas and continental regions) for this continental model 
species. Our results confirm the monophyly of Iberian voles and the pre-LGM divergence 
between Iberian and European voles. We found evidence of restricted post-glacial dispersal 
from refugia in Mediterranean peninsulas. We inferred a complex evolutionary and 
demographic history of M. arvalis in Europe over the last 50,000 years that does not 
adequately fit previous glacial refugia scenarios. The phylogeography of M. arvalis provides 
a paradigm of ice-age survival of a temperate continental species in western and eastern 
Mediterranean peninsulas (sources of endemism) and multiple continental regions (sources of 
postglacial spread). Our findings also provide support for a major role of large European river 
systems in shaping geographical boundaries of M. arvalis in Europe. 
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INTRODUCTION 

It is widely understood that Pleistocene glacial refugia are a key factor shaping species 
evolutionary history and distribution worldwide. However, the number, size, geographical 
locations, duration of isolation, and role of glacial refugia as a source for postglacial 
recolonization remain subjects of intense scientific discussions (Fraser, Nikula, Ruzzante, & 
Waters, 2012; Hewitt, 2000; Schmitt, 2007). Recent studies have challenged traditional views 
such as temperate species sharing common glacial refugia in the European Mediterranean 
peninsulas (i.e. Iberia, Italy and the Balkans), or that these southern refugia are the only 
sources of postglacial colonization (Stewart, 2003). New and more complex phylogeographic 
hypotheses/scenarios have been proposed for different biogeographical groups (i.e. 
Mediterranean, continental and Artic/Alpine species, sensu (De Lattin, 1967), such as the 
existence of extra-Mediterranean glacial refugia for Mediterranean species (reviewed in 
Schmitt & Varga, 2012) or steppe-adapted species (Garcia, Alda, et al., 2011; Garcia, 
Mañosa, et al., 2011), the evidence of cryptic refugia for cold-adapted species (Cruzan & 
Templeton, 2000; Stewart & Lister, 2001), the occurrence of both ‘macrorefugia’ and 
‘microrefugia’ for some taxa (Joger et al., 2007; Rull, 2009, 2010), the existence of ‘refugia-
within-refugia’ (Abellán & Svenning, 2014; Gómez & Lunt, 2007), or the consideration of 
the Oceanic-Continental gradient as a further biogeographic dimension, in addition to the 
traditional north-south axis, in defining the location of refugia for some biogeographical 
groups (Stewart, Lister, Barnes, & Dalén, 2010). 

Recent advances in the refugial concept (Provan & Bennett, 2008), and the ample evidence 
for the individualistic (species- or group-specific) response to extreme climate events (see 
(Palmer et al., 2017), has also direct implications for the inferred scenarios of recolonization 
of many widespread species in the Palaearctic. Accordingly, new paradigms and conceptual 
frameworks about the extent and pathways of postglacial expansions from these refugia have 
arisen. Despite the classic scenario in Europe proposes northwards routes of colonization 
from accepted refugia in the three Mediterranean peninsulas (Hewitt, 1996), other studies 
have suggested a far more complex evolutionary history in which, for some species, 
Mediterranean peninsulas played a minor role in postglacial colonization (Bilton et al., 1998; 
Tougard, Renvoisé, Petitjean, & Quéré, 2008; Tougard, 2016). Overall, these investigations 
stress the need for additional continent-wide specific studies to contrast these models and 
really understand the complex biogeographical patterns of the European fauna (Schmitt, 2007; 
Stewart & Lister, 2001), especially in the group of continental species (Schmitt, 2007). 

Palearctic mammals (e.g. brown bear Ursus arctos, European hedgehog Erinaceus europaeus, 
bank vole Myodes glareolus, European brown hare Lepus europaeus) have proven excellent 
models for such phylogeographic studies (Hewitt, 1999; Randi, 2007), mostly due to their 
well-known biology, high population abundance or wide distributions, or relatively low 
dispersal rate (Beheregaray, 2008). Likewise, the common vole Microtus arvalis is becoming 
an increasingly popular model species to test evolutionary questions, including 
phylogeography (Martínková et al., 2013; Tougard et al., 2008; Triant & DeWoody, 2006). It 
is one of the most studied species within the Microtus genus, which is by far the most diverse 
genus recognized in rodents today (Mahmoudi, Darvish, Aliabadian, Moghaddam, & 
Kryštufek, 2017; Wilson et al., 2017), indicative of recent radiation and ongoing speciation 
process (Barbosa, Paupério, Pavlova, Alves, & Searle, 2018; Jaarola et al., 2004). The species 
meets the criteria to be a useful model system for testing biogeographical patterns (see 
Schmitt, 2007): it has the ability to spread rapidly into new habitats and their populations are 
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sedentary and large enough to reflect phylogeographic signals. M. arvalis is also locally 
abundant and widely distributed across continental regions and Mediterranean peninsulas 
(Iberia, the Balkans, and the continental part of Italy) of the Western Palaearctic (Figure 1), 
and ranging in altitude from sea level up to 3000 m in the Alps (IUCN, 2016). Consequently, 
many and diverse regions through the range, including southern peninsulas and continental 
areas, are suitable for the species, making M. arvalis a valuable representative of the 
continental fauna for evaluating alternative refugial scenarios. 

Previous investigations of the phylogeography of the western arvalis form (M. arvalis arvalis) 
based on its mitochondrial DNA (mtDNA) variation have found several highly divergent 
lineages in Europe (Fink, Excoffier, & Heckel, 2004; Haynes, Jaarola, & Searle, 2003; 
Heckel, Burri, Fink, Desmet, & Excoffier, 2005; Martínková et al., 2013; Stojak, McDevitt, 
Herman, Searle, & Wójcik, 2015; Stojak, McDevitt, et al., 2016; Tougard et al., 2008). 
Overall, five main evolutionary mitochondrial lineages have been identified: Western, 
Central, Eastern, Italian and Balkan (Figure 1). Some authors further distinguished between 
Western-North (France, Belgium and British Isles) and Western-South (Spain and Western 
France) lineages (Fink et al., 2004; Haynes et al., 2003; Tougard et al., 2008; Bužan, Förster, 
Searle, & Kryštufek, 2010; Haynes et al., 2003; Martínková et al., 2013; Stojak et al., 2015). 
As the available M. arvalis population sequence data have increased and the analytical tools 
for phylogeographic inference have improved, different scenarios of isolation in refugia and 
postglacial colonization routes have been proposed. Some studies found support for the 
classical view, under which the species exclusively survived the ice ages in the southern 
peninsulas and expanded northward during the postglacial period (e.g. Haynes et al., 2003). 
While others provided evidence for the existence of extra-Mediterranean refugia located in 
Central and/or Eastern Europe (from Germany to the Carpathian Basin) (Fink et al., 2004; 
Heckel et al., 2005; Stojak et al., 2015; Tougard et al., 2008). Some of these studies, 
therefore, contrast with the classical view in considering southern refugia as areas driving 
high endemism, where mountain ranges may have precluded north-south postglacial dispersal 
and gene flow. Instead, recolonization would have originated from cryptic —continental— 
glacial refugia, and rapidly expanded along a rough east-west axis (Stojak et al., 2015, 2016). 
However, whether one or more extra-Mediterranean refugia existed, their location, or if they 
coincided with classical Mediterranean refugia, are topics that remain largely unknown. 

To gain a complete understanding of the phylogeographic history of this continental species 
model, and to contribute to our knowledge of European biogeographic patterns in general, it 
is necessary to explore the genetic structure of the species across its complete distribution 
range. In past studies, common vole populations at the extremes of the range, such as in the 
Iberian Peninsula, have been significantly underrepresented, limiting our capacity to make 
accurate inferences about its importance as a Mediterranean refugium and source of 
recolonization (Hewitt, 1999, 2001), as harbour of other refugia (i.e., ‘refugia-within-refugia’ 
Abellán & Svenning, 2014; Gómez & Lunt, 2007), or potentially as driver of diversity and 
endemism. For instance, the Iberian peninsula is of particular biogeographical interest since 
some authors consider that the Iberian vole (M. a. asturianus Miller, 1908) shows a number 
of unique characters that warrant subspecies recognition (Delibes & Brunett-Lecomte, 1980; 
González-Esteban, Villate, & Gosálbez, 1995; Niethammer & Winking, 1971; Nesterova, 
Mazurok, Rubtsova, Isaenko, & Zakian, 1998; Rey, 1973). Iberian voles have larger teeth and 
body size, longer pregnancy, larger litters, slower development of the young, distinctive 
threatening calls, and lower degree of intraspecific aggressiveness than the European common 
vole (M. a. arvalis) (Frank, 1968). To date, however, there has been no attempt to evaluate the 
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Iberian common vole populations for subspecific status using molecular data and genetic 
methods. 

In this study, we carried out the widest geographically reconstruction of the demographic 
history and dispersal dynamics of the common vole in Europe, using a continuous Bayesian 
phylogeographic diffusion approach (Lemey, Rambaut, Welch, & Suchard, 2010), across the 
entire European distribution of the species. We aimed to assess the generality of existing 
models about the origin, putative refugia and dispersal of this continental model species in 
Europe by inferring the historical demography dynamic and spread of the species using 
spatially-explicit analyses. Specifically, we asked (1) where is the most probable geographic 
location of the root of the European lineages of M. arvalis; (2) whether the spatial distribution 
of genetic variation observed in this species reflect colonization from a single glacial 
refugium or from multiple refugia; (3) whether the pattern of genetic variation is consistent 
with the existence of one or more Mediterranean refugia, one or more continental refugia, or a 
combination of Mediterranean and extra-Mediterranean refugia; (4) whether the current 
geographic pattern observed in this continental mammal species is congruent with one of the 
common four paradigm patterns (Habel et al., 2005; Hewitt, 2000; Hewitt, 1999) of post-
glacial range expansion from Mediterranean refugia (or, alternatively, if refugial populations 
have remained within Mediterranean refugia as geographical isolates). 

MATERIALS AND METHODS 

Population sampling and laboratory procedures 

We sampled 261 common vole specimens from 10 localities throughout its range in the 
Iberian peninsula (see details in Appendix 1 and Figure 1), using Sherman traps between 2012 
and 2014. From each individual, we took 2 mm tissue biopsies from the ear, and preserved 
them in 96% ethanol. Afterwards, all individuals were released at their respective collection 
site, and tissue and DNA samples were stored at the IREC (Instituto de Investigación en 
Recursos Cinegéticos) DNA data bank. All handling procedures were approved by the UCLM 
Ethics Committee (reference number CEEA: PR20170201) and in accordance with the 
Spanish and European policy for animal protection and experimentation. We completed our 
sampling with a compilation of 151 published cytochrome b sequences, collected in 68 
localities across 22 countries covering the entire European range of M. arvalis (references and 
GenBank accession numbers are indicated in Appendix 1). 

The phylogeographic architecture of common vole has traditionally been studied mainly using 
the mtDNA cytochrome b gene (Fink et al., 2004; Haynes et al., 2003; Heckel et al., 2005; 
Martínková et al., 2013; Stojak et al., 2015, 2016; Tougard et al., 2008) or in combination 
with microsatellite and Y chromosome data (e.g. Beysard & Heckel, 2014; Stojak, Borowik, 
Górny, McDevitt, & Wójcik, 2019; Stojak, McDevitt, et al., 2016). Although some 
discordances are expected among gene tree topologies at different markers and the species 
tree (Kubatko, Carstens, & Knowles, 2009), previous studies on the phylogeography of this 
and related species suggest that mtDNA is an excellent marker for identification of glacial 
refugia and study of range expansion (Herman et al., 2014; Martínková et al., 2013; Stojak et 
al., 2016). We are fully aware of the benefits of multi-locus versus approaches single-marker 
approaches, but multi-locus analyses would have constrained us to use a reduced number of 
populations. Moreover, former studies that have used autosomal and sex-chromosome 
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markers in M. arvalis have provided congruent phylogeographical topologies and very similar 
patterns of genetic structure and dating events to those found with mtDNA (Beysard & 
Heckel, 2014; Braaker & Heckel, 2009; Heckel et al., 2005; Martínková et al., 2013; Stojak et 
al., 2016), albeit much finer phylogenetic resolution was obtained with cytochrome b than 
with nuclear markers at the continental and regional scale (e.g. Heckel et al., 2005). 
Consequently, we used here this mitochondrial gene, given the need for sufficient resolution 
and direct comparison of our findings with earlier range-wide research on this species. 

We digested samples overnight in 250 µL lysis buffer (0.1 M Tris-HCl, 0.005M EDTA, 2% 
SDS, 0.2 M NaCl, pH 8.5) and Proteinase K (10ng/µL) and extracted total genomic DNA 
from live specimens using a standard AcNH4 protocol. We adjusted DNA extractions to a 
working dilution of 25 ng/µL and PCR-amplified the entire cytochrome b mitochondrial gene 
(1,143 bp) using primers L7 (5′–ACCAATGACATGAAAAATCATCGTT–3′) and H6 (5′– 
TCTCCATTTCTGGTTTACAAGAC–3′) (Tougard et al., 2008). We cleaned up the PCR 
products using Exonuclease I and Shrimp Alkaline Phosphatase (Fermentas) and direct 
sequencing was performed with the same PCR primers and the BigDye Terminator v3.1 
Cycle Sequencing Kit (Applied Biosystems) on an ABI PRISM 3130xl Genetic Analyzer 
(Applied Biosystems). We manually checked chromatograms for stop codons and obvious 
sequencing errors, and aligned them using the software BioEdit 7.0.5.3 (Hall, 1999). All the 
sequences obtained are deposited in GenBank (MG874847-MG874883). 

Bayesian phylogeographic inference 

We reconstructed the phylogeographic history of M. arvalis through continuous space and 
time, by modelling the spatial dispersion of its lineages using Bayesian phylogeographic 
inference in BEAST2 (Bouckaert et al., 2014; Lemey, Rambaut, Drummond, & Suchard, 
2009; Lemey et al., 2010). This model combines geographic and genetic data, using the 
geographical location of each specimen and accommodating branch-specific variation in 
dispersal rates. For this analysis we selected one sample per each haplotype found at each 
locality, totalling 197 sequences and 141 haplotypes, from 78 localities across 23 countries 
(Appendix 1). Our final alignment was restricted to a common length of 953 bp (Dataset S1, 
Supporting Information). We created a xml input file in BEAUTI v.2 (Bouckaert et al., 2014), 
and used a jitter option of 0.50 to create unique coordinates for individuals collected at 
identical sites. 

We used a Marginal Likelihood Estimates (MLE) model selection procedure to evaluate the 
relative fit of our data to (1) models that assume no branch-specific rate variation in dispersal 
rates (i.e. homogeneous Brownian diffusion), and (2) relaxed random walk (RRW) models 
that assume different distributions for rate variation among branches (i.e. Cauchy RRW, 
lognormal RRW and Gamma RRW). We generated posterior distributions of each model by 
running 7 x 107 Markov Chain Monte Carlo (MCMC) generations that were sampled every 
7000 generations, after discarding the first 10% samples as burn-in. We assessed convergence 
by visualizing the outputs of posterior distributions and effective sampling sizes (ESS) in 
TRACER v.1.4.8. (Rambaut & Drummond, 2007). 

We then calculated Bayes Factors for each model, and used them to select the spatial 
diffusion model that is best supported by the data. Bayes Factors were derived from their 
MLE and based on path sampling (PS) method (Baele et al., 2012); MCMC chain of 1 x 106 
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generations and 50 path steps. Our data fitted best the Cauchy-distributed RRW diffusion 
rates model (MLE = -5749.378), therefore, we applied this model to all subsequent analyses 
(Gamma-distributed RRW: MLE= -6468.140; lognormal-distributed RRW: MLE = -
5897.870, and Homogeneous Brownian diffusion: MLE = -5962.448). 

To visualize the spatial diffusion of M. arvalis lineages, we inferred a maximum clade 
credibility (MCC) tree and projected it on a spatial map. We ran four independent MCMC 
chains for 2.5 x 107 generations—using the BEAGLE library (Ayres et al., 2012) to improve 
computational performance—and sampled their posterior distributions every 2500 
generations. Following burn-in of the first 10% trees, we combined the four independent 
analyses using LogCombiner 2.4.1 (whereby all parameters reached ESS>200) and randomly 
subsampled 10,000 trees, that were used to construct a MCC tree in TreeAnnotator 2.4.1. We 
used the resulting MCC tree as input for the program Spread 1.0.4 (Bielejec, Rambaut, 
Suchard, & Lemey, 2011) to generate a keyhole mark-up language (KML) file for visualizing 
spatial diffusion in Google Earth over the complete posterior distribution of trees. We used 
the Time Slicer function in Spread 1.0.4 to estimate the 80% Highest Posterior Density (HPD) 
region of the unobserved ancestral locations for each branch that intersects ten specific time 
points, which roughly coincide with major internal nodes within the MCC tree: 50,700 years 
before present, ybp; 43,500 ybp; 36,300 ybp; 33,400 ybp; 23,700 ybp; 21,100 ybp 
(coincident with the last glacial maximum, LGM); 16,300 ybp; 12,600 ybp; 7500 ybp, and the 
present. 

We also explored temporal changes in the effective population size using a Bayesian skyride 
tree prior implemented in BEAST v. 1.8.1 (Drummond, Suchard, Xie, & Rambaut, 2012). We 
used the HKY model of sequence evolution and a strict molecular clock with an average 
substitution rate across the tree of µ = 3.27 x 10-7 substitutions/site/year (assuming a 
generation time of 1 year) (Martínková et al., 2013). We obtained this value from the most 
recently published—and likely most accurate—rate for cytochrome b of M. arvalis 
(Martínková et al., 2013; Stojak et al., 2015, 2016), estimated using ancient DNA sequences 
from radiocarbon-dated specimens. We ran four independent MCMC chains for 3 x 107 

generations sampling every 3000 generations. Convergence was assessed in TRACER 
v.1.4.8. by confirming that the effective sampling size for all parameters was higher than 200, 
and that independent runs yielded similar posterior distributions. We combined the four runs 
using LogCombiner v1.8.1 (http://beast.bio.ed.ac.uk/logcombiner) after discarding the first 
10% of sampled generations as burn-in, and obtained estimates and credible intervals for each 
parameter and demographic reconstruction using TRACER v.1.4.8. 

With the aim to infer within- and between-lineage evolutionary relationships among 
haplotypes analysed, we constructed a median-joining network (Bandelt, Forster, & Röhl, 
1999) using the software NETWORK 5.0 (available at http://www.fluxus-
engineering.com/sharenet.htm). Genetic distances were calculated through a pairwise distance 
matrix in MEGA v. 7.0.16 (Kumar, Stecher & Tamura, 2016). 

RESULTS 

The MCC tree obtained using a Bayesian phylogeographic analysis with the Cauchy RRW 
model recovered with high support (all posterior probabilities = 1.0) all previously described 
mtDNA lineages of M. arvalis (Figure 2), and the network analysis provide congruent results 
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(Figure 3). The Western group (including North- and South-western lineages) was sister to 
the group that includes the Balkan, Italian, Central and Eastern lineages. However, the low 
support received for the node of the Balkan lineage bifurcation at the root of this group means 
that the existence of a polytomy at the root of M. arvalis diversification cannot be ruled out. 
Within the Western-South lineage, we found further phylogenetic structure, where all the 
Iberian specimens formed a monophyletic group that was sister to M. arvalis from the rest of 
the lineage (including populations from Pyrenees and SW France) (Figures 2 and 3). 
Sequence divergence between the Iberian and the rest of the Western-South clade (including 
French and Pyrenean populations) is comparable to the divergence levels found among other 
European lineages (Table 1). 

Based on the MCC tree, we inferred the most probable geographical location of the common 
ancestor of M. arvalis lineages in the alpine region of Switzerland-Liechtenstein, around 
51,000 ybp (Figure 4A). From this region of origin, the Central-European ancestor split into 
the two major ancestral lineages between 51,000-43,000 ybp. One ancestral lineage expanded 
to the southeast, resulting in the origin of the Balkan, Italian, Central and Eastern lineages, 
and the other one expanded to the north-west, resulting in the ancestor of the current Western 
lineages (Figures 4A and 4B). Diversification in extant lineages and expansion of the eastern 
ancestral lineage occurred between 43,000-21,000 ybp along the Dalmatian (Adriatic) coast, 
from the western Austria Alps to the north-western part of the Balkan Peninsula (Figures 4C– 
F). Over the same time period, the western ancestral lineage progressed towards the south-
west of the continent, through central France to the Pyrenees. Colonization of the Iberian 
Peninsula was estimated to have occurred ~23,000-21,000 ybp (Figures 4E and 4F), following 
divergence of the Western-North and Western-South clades around 33,400 ybp (Figure 2). 
Finally, the Iberian clade split and further extended its geographic range during the last 9000 
years (Figures 2, 4I and 4J), coinciding with the main period of diversification in all other 
extant lineages. 

Our phylogeographic reconstruction also suggested that dispersal from central Europe (Alps) 
to the east was geographically restricted (Figures 4A-H) until 12,600-7,900 years ago, when 
expansion proceeded within the range of the extant Central lineage along two axes: to the 
north-east, reaching the easternmost limit of the current distribution of M. arvalis in Russia-
Mongolia, and to the southeast, reaching the southern part of the Carpathians region (Figure 
4I). From then until present time, major northward range expansions occurred in populations 
of the Western, Central and Eastern regions (Figures 4I and 4J). These recent expansion 
events resulted in the current distribution of the species across the Atlantic, boreal and 
continental regions of Europe. 

The skyride plot showed a long period of demographic stasis from the time of the most recent 
common ancestor of M. arvalis lineages (~50,000 ybp) until 35,000 ybp (Figure 2). Then, 
effective population size slowly increased until 18,500 ybp, likely associated with the major 
cladogenetic events in the history of M. arvalis. Finally, we detected a sudden increase in 
effective population size during the last 12,000 years, coinciding with the diversification and 
expansion of the current lineages of M. arvalis after the Younger Dryas (12.9-11.7 kya) cold 
reversal (Figure 2). 

DISCUSSION 
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The present study aimed to understand how a continental small mammal species have 
responded to global climate changes in the past, especially through the late Pleistocene to 
Holocene transition. Accordingly, we used an extensive range-wide sampling of mtDNA 
variation and a Bayesian phylogeographic inference framework to reconstruct the 
evolutionary history of M. arvalis in continuous space and time. 

In general, previous phylogeographic studies on M. arvalis consistently distinguish six 
mitochondrial lineages, and evidence for multiple glacial refugia during the last glaciation 
together with existence of refugia further north than traditional Mediterranean ones is now 
substantial (Bužan et al., 2010; Fink et al., 2004; Haynes et al., 2003; Martínková et al., 2013; 
Stojak et al., 2015; Stojak et al. 2019; Tougard et al., 2008). However, attempts to reconstruct 
the evolutionary history of each lineage (i.e. locate and circumscribe their origin, historical 
refugia and post-glacial colonization routes) have proved contentious (see below), with some 
discrepancy between inferences from studies made at different spatial resolutions and 
analytical methods. 

Our data suggest that the species originated in Central Europe, and that the most likely 
location of major glacial refugia were the peri-Alpine, peri-Pyrenean, and peri-Dinaric 
regions, confirming the existence of multiple glacial refugia for this continental species. 
Additionally, we found support for glacial survival in at least two classical Mediterranean 
refugia—in the Iberian and Balkan peninsulas— confirming a scenario of Pleistocene survival 
in multiple southern and northern refugia. But most interestingly, peninsular lineages are not 
found outside these areas and, consequently, southern peninsulas did not serve as sources of 
northward postglacial expansions, becoming centres of endemism for M. arvalis. Our results 
confirm the monophyly of Iberian common voles and the pre-LGM divergence between the 
Iberian and European phylogroups, which supports the status of the Iberian voles (M. a. 
asturianus) as a distinct subspecies in line with previous research (Delibes & Brunet-
Lecomte, 1980; González-Esteban et al., 1994, 1995; Nesterova et al., 1998; Niethammer & 
Winking, 1971; Rey, 1973). However, this observation should be treated with caution while it 
is confirmed by a synthetic approach that combines an additional sampling of different genes 
and morphological and ecological data. Our results, therefore, are generally consistent with 
recent research on M. arvalis based on DNA sequences and nuclear loci, but provide 
additional insights, particularly in the spatial location of the cradle, glacial refugia and 
colonization routes. 

Altogether, we propose that the classical model of southern glacial refugia in Mediterranean 
peninsulas, and posterior colonization of northern deglaciated areas (Hewitt, 2000), does not 
fit the evolutionary and demographic history of this continental species, as recent findings 
seem to corroborate (e.g. Schmitt & Varga, 2012; Tougard et al., 2008). Nor does this 
mammal species fit very well to the scenarios described so far for any of the biogeographical 
types of temperate continental species (Schmitt, 2007), which compared to our model tend to 
have greater geographical restrictions to the west in the location of refugia and lineage 
distributions. The species provide a paradigm of ice-age survival of temperate — 
continental— species in western and eastern Mediterranean peninsulas (sources of endemism) 
and multiple continental regions (sources of postglacial spread). 

European glacial refugia and postglacial expansion 
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Our phylogenetic reconstruction was congruent with previous studies and recovered with high 
support six lineages of M. arvalis (Bužan et al., 2010; Fink et al., 2004; Haynes et al., 2003; 
Martínková et al., 2013; Stojak et al., 2015; Tougard et al., 2008). The well-delimited 
geographic distribution of these lineages exposes the importance of allopatric factors in 
shaping the genetic structure of this species at a continental scale, probably through multiple 
isolation events during the mid- and late Würm ice age (60,000-11,500 ybp). Our model-
based phylogeographic analysis inferred the location of the most recent common ancestor of 
all haplotypes in a region between the Alps and southern Germany around 51,000 ybp (95% 
HPD: 62,400 -39,500 ybp). This location is consistent with the oldest fossil remains of M. 
arvalis found in SW Germany (Kowalski, 2001) and relates closely to what (Tougard et al., 
2013) proposed as the common cradle of M. arvalis in ‘western Central Europe’. Moreover, 
our date estimates for the root of the tree and of major lineages coincided with recent research 
(Stojak et al., 2016). This scenario is clearly not consistent with the fossil evidence (oldest 
fossil remains of M. arvalis in Central Europe from the Late Cromerian, 465,000 ybp; 
(Kowalski, 2001) although accurate species identification in fossil remains appear to be 
problematic and should always be considered cautiously for this and related species (Navarro 
et al., 2018, Tougard et al, 2016). The extreme similarity between sibling vole species 
(Markova et al., 2010) and the morphological changes probably suffered by the species 
between the mid Holocene and the present day are known to be unfavourable for diagnosing 
M. arvalis in the fossil record (Markova, Beeren, van Kolfschoten, Strukova, & Vrieling, 
2012). Here, we focus on extant lineages and, therefore, we lack direct information about 
extinct lineages, which are often those found in the fossil record but that probably did not 
survive past periods (e.g. Tougard 2016). This probably explains the large discrepancy in 
estimated origin and divergence times of major M. arvalis lineages between our study and the 
fossil evidence. In the future, research involving ancient DNA can contribute to shed light on 
these complex scenarios. 

Even though the Bayesian posterior mean estimate should provide a reasonable basis for 
inferences, it is unwise to use our data to make strong statements about a single origin and 
subsequent lineage diversification or that different lineages originated more or less at the 
same time, given that 95% HPD estimate for the root of the tree overlap with the origin of the 
Western, Italian, Balkan and Central+Eastern lineages. In any case, M. arvalis could have 
survived in the Alps during the LGM and Younger Dryas periods (YD; 12,900-11,700 ybp, 
(Rasmussen et al., 2006), maybe in regions of lower elevation between the northern slope of 
the Alps and the Danube river in southern Germany. Most importantly, this area could 
represent not only the origin of dispersal for the species in Europe, but also an extra-
Mediterranean glacial refugium. 

The timing and pattern of cladogenetic events also point to geographical isolation during the 
last glaciation as the major driver of lineage divergence, as well as to the existence of multiple 
refugia for M. arvalis. Most of the major splits between lineages occur around the time of the 
LGM, such as the split between Western-North and Western-South lineages (mean: 34,028 
ybp. 95% HPD: 45,447 – 23,882 ybp), the split between Eastern and Central lineages (mean: 
24,072 ybp. 95% HPD: 15,823 – 32,275 ybp), or the split between the Iberian and Western-
South lineages (mean: 21,069 ybp. 95% HPD: 29,743 – 14,087 ybp). For instance, the most 
recent common ancestor of the Eastern lineage was located west of the Danube river around 
13,639 ybp (95% HPD: 18,809 – 8,820 ybp), which could imply that a glacial refugium in the 
eastern Alps was the origin of this lineage. However, based on the molecular data alone, we 
cannot rule out the existence of a Carpathian refugium, as it has been proposed for numerous 
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species (Pazonyi, 2004; Kotlik et al., 2006; Sommer & Nadachowski, 2006) including M. 
arvalis (Stojak et al., 2015, 2019). 

Similarly, the high differentiation of the Balkan lineage relative to the other Central-Eastern 
lineages could be the result of allopatric divergence, following isolation in a Ponto-
Mediterranean refugium in the north-western Dalmatian coast (Dinaric Alps). Furthermore, 
and despite the co-ocurrence of both Eastern and Balkan haplotypes in that region at the 
present time (Bužan et al., 2010; Stojak et al., 2015), it appears that the Balkan lineage has 
historically maintained a very restricted distribution, and has not expanded nor contributed to 
the gene pool of northern or eastern European populations. The large and recent expansion 
detected (Figure 4) in populations of the Eastern lineage to the centre and north-western 
Balkan Peninsula and south of the Danube river would explain their presence there. Based on 
these, we could first consider the Balkan Peninsula as a region of endemism of M. arvalis, 
and second, refute previous hypotheses suggesting that the Eastern lineage originated from a 
refugium in the Balkans (Haynes et al., 2003; Heckel et al., 2005). 

Within the Western-South lineage, the split between the Iberian and the French clades around 
the LGM suggests divergence in two separate refugia. One refugium might have existed near 
the region of Aquitaine, in southwestern France (i.e. Pyrénées-Atlantiques), from where the 
species likely expanded to northern Europe, and another one south of Pyrenees—or south of 
the Ebro river Valley—that further extended to the centre and north-west of the Iberian 
peninsula. According with the temporal-spatial diffusion pattern, the Iberian peninsula served 
as a glacial (Mediterranean) refugium for extant populations of common vole during the last 
cold stage of the Pleistocene, including the LGM. This Iberian clade, however, did not back-
colonize the Pyrenees or France during the present interglacial period, as could be deduced by 
the absence of Iberian haplotypes in populations of these two regions. The Holocene 
expansion of Iberian voles could have been limited ecologically—maybe by predators or 
competition with closely related species—or geographically, by physical barriers such as the 
Ebro river following deglaciation (see below). Consequently, Iberian voles can be considered 
as a long-term isolated endemism of the Iberian Peninsula (see also Tougard et al., 2008) 
without admixture with other mitochondrial lineages, and concordant with previous 
subspecific designation. The most recent common ancestor of tentative M. a. asturianus 
specimens was estimated around 9,000 ybp in north-central Spain, and the more recent split 
within this clade were dated 8,500 – 4,000 years ago. The geographical expansion of the 
Iberian clade during the late Holocene (i.e. last 5,000 years) seems to be a key factor shaping 
its current population genetic structure. 

In central Europe, the presence of a glacial refugium has already been suggested for M. 
arvalis (Fink et al., 2004; Tougard et al., 2008), and for other species (reviewed in Schmitt & 
Varga, 2012), but for the first time we were able to pinpoint its geographic location using 
model-based phylogeographic inference. There is good evidence that several continental 
species had multiple differentiation centres around the European high mountain systems 
(Schmitt, 2007; Stewart & Lister, 2001), possibly due to the existence of more humid 
conditions around these mountains in a context of increased dryness westwards during the 
coldest phases of the Pleistocene in Europe. For this group of species it has been argued that 
water-limited conditions, rather than temperature, may have limited the species’ glacial 
distributions along an east–west gradient in response to moisture (Schmitt, 2007), and there is 
recent evidence of the importance of climate for the genetic structure of this and related 
species (Stojak, 2019). 
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Our analyses, however, failed to conclude whether only one or multiple refugia occurred 
scattered along the Alps and adjacent areas. Multiple glacial refugia have been proposed 
along the northern, southern, south-western, and eastern slopes of the Alps (e.g. 
(Schönswetter, Stehlik, Holderegger, & Tribsch, 2005). Particularly for M. arvalis, the Alpine 
region is a well-known contact zone between three evolutionary lineages (Western-North, 
Central and Italian), and both the northern and southern slopes of the Alps have been 
proposed as sources of post-LGM recolonization (Braaker & Heckel, 2009). Interestingly, the 
inferred location and time for the origin of expansion of the current lineages of M. arvalis 
coincide with the main routes of westward expansion of agriculture in Europe during the 
Neolithic period ~10,200-2000 ybp (e.g. Larson et al., 2007; Rowley-Conwy, 2011). The 
treeless tundra or steppe that had previously extended over much of Europe was progressively 
replaced by woodlands from the beginning of the Holocene, eleven thousand years ago (e.g. 
(Hejcman, Hejcmanová, Pavlŭ, & Beneš, 2013; Huntley & Birks, 1983; Turner & Hannon, 
1988). Thus, it could be argued, that the clearance of woodlands to turn them into cultivated 
lands (Roberts et al., 2018), and the progressive anthropogenic transformations of the 
landscape (Bouma, Varralyay, & Batjes, 1998; Garcia, Alda, et al., 2011; Garcia, Mañosa, et 
al., 2011; Novenko, Volkova, Nosova, & Zuganova, 2009; O’Connor & Shrubb, 1986; 
Ruddiman, 2003), could have facilitated the expansion and connectivity of populations of 
steppe and grassland species in a postglacial environment (Bouma et al., 1998; Garcia, Alda, 
et al., 2011; Garcia, Mañosa, et al., 2011; O’Connor & Shrubb, 1986; Pärtel, Bruun, & 
Sammul, 2005). 

The geographical structure of the lineages of M. arvalis, also hints at factors limiting 
postglacial recolonization and/or current dispersal of the species. The major mtDNA lineages 
of M. arvalis in Central Europe are well delimited by the major river systems (Figure 1). For 
example, the Loire and Rhone rivers in France divide the Western-North and Western-South 
lineages, something already indicated by (Tougard et al., 2008). Likewise, the Ebro river in 
Spain separates the tentative M. a. asturianus specimens and M. a. arvalis from the Western-
South clade, which includes populations from the Pyrenees and southern France. Overall, the 
distribution of M. a. asturianus in Iberia is limited to the north and south by the Ebro and 
Tajo rivers, respectively. The range of the Italian lineage is also limited to the south by the 
Po, and the Central lineage is roughly delimited by the transitional zone between Oder and 
Vistula to the west, and by the Danube to the south (Stojak et al., 2016a,b). Furthermore, the 
part of the Danube basin in the eastern Balkan region seems to represents a geographic 
boundary between the Balkan and Eastern lineages. Similarly, and in view of the current 
geographic distribution (Figure 1), the Don-Volga river system marks the eastern limit of the 
arvalis range (Bulatova et al., 2007; Jaarola et al., 2004; Tougard et al., 2013). As could be 
expected, these barriers are porous, and most lineages show haplotypes that have leaked to the 
other side of these rivers, somewhat blurring the boundaries between lineages near the 
headwaters. This could either be a consequence of recent dispersal during periods of reduced 
runoff in the Holocene (Bernárdez et al., 2008; Combourieu-Nebout et al., 2013), or by 
passage through river headwaters, where lineages often come into contact (e.g. Fouquet et al., 
2012). In fact, most European lineages of M. arvalis meet in a Central European region near 
de Alps (Figure 1), which coincides also with the headwaters of the major European rivers. 
Even more recently, river bridges and other human infrastructures also allow voles to cross 
these barriers. More populations from putative areas of secondary contact and lineage 
admixture, as well as the use of additional nuclear genetic markers, will be used in future 
studies to assess patterns of hybridization and introgression between lineages. 
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Our findings, therefore, provide support for a major role of large European river systems in 
shaping geographical boundaries of M. arvalis (Stojak et al., 2016). In contrast to the widely 
accepted role of mountain systems (e.g. Alps, Pyrenees) precluding post-glacial expansion of 
many temperate species in southern Mediterranean peninsulas (Habel et al., 2005; Hewitt, 
1999; Schmitt, 2007), or the role of humans as responsible for the colonization of some 
islands (e.g. Martinkova et al. 2013), very little is known about a similar potential role of 
rivers. 

It is expected that during the deglaciation of Europe, the distribution and extent of freshwater 
systems suffered dramatic changes; and these had a significant effect in the post-glacial 
recolonization of terrestrial species. When ice sheets started to retreat from their maximum 
extent, between 22,000 and 17,000 ybp, there was an increase meltwater production and river 
water runoff, causing a sudden reactivation of the hydrological cycle (Mangerud et al., 2004; 
Ménot et al., 2006). Therefore, these water bodies may have played a dual role, either as 
barriers for dispersal, and/or as corridors, along water banks, consequently affecting gene 
flow and genetic differentiation, especially in small mammals or species with low vagility 
such as voles. 

In conclusion, Microtus arvalis represents a remarkable study organism that combines 
attributes of continental and Mediterranean faunal elements (De Lattin, 1967; Schmitt & 
Varga, 2012). On one hand, central Europe acted as a glacial refugium and as a source for 
other European populations, and on the other hand, additional Mediterranean refugia acted as 
drivers of endemism. Although there is abundant literature on Mediterranean species that 
found shelter in extra-Mediterranean glacial retreats (Provan & Bennett, 2008; Schmitt & 
Varga, 2012), very few studies report continental species in both Mediterranean and extra-
Mediterranean refugia. The pattern we describe for the common vole is, however, highly 
congruent with the phylogeographical pattern in the bank vole Myodes glareolus, a European 
forest vole species with Mediterranean and continental refugia, and in which the 
Mediterranean phylogroups did not contribute to the postglacial recolonization of much of 
their range (Deffontaine et al., 2005). To the best of our knowledge, so far, the co-occurrence 
among Mediterranean and extra-Mediterranean glacial refugia for continental species is 
mainly restricted to eastern Europe, with few examples referred to continental species with 
refugial areas in the Balkan Peninsula, such as butterflies (Gratton, Konopiński, & Sbordoni, 
2008; Junker et al., 2015; Schmitt, Rákosy, Abadjiev, & Müller, 2007), reptiles (Ursenbacher, 
Carlsson, Helfer, Tegelström, & Fumagalli, 2006) and invertebrates (Pinceel, Jordaens, 
Pfenninger, & Backeljau, 2005). Whether M. arvalis majorly follows a continental or a 
Mediterranean specific biogeographic pattern (Schmitt, 2007) is still unclear, in part because 
of the difficulty to classify ecologically diverse and widely distributed species. More research 
on continental species is needed to test the generality of the biogeographic pattern of M. 
arvalis in Europe. 
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Figure Legends 

Figure 1. Current distribution and sampling locations for Microtus arvalis in Europe. The 
blue-shaded zone corresponds to the distribution range of the common vole and the solid black 
line marks the suture zone between the western (arvalis) and eastern (obscurus) subspecies. 
The approximate geographic boundaries of major phylogenetic lineages described in the 
literature are indicated with dashed lines. Sampling localities are coloured according to the 
cytochrome b lineage (red: Iberian; orange: Western–South; dark blue: Western–North; light 
blue: Balkan; light green: Italian; dark green: Central; pink: Eastern). The numbers refer to 
sample locality numbers listed in Appendix 1. Major European rivers are shown with light blue 
lines and names in black. 

Figure 2. Maximum clade credibility (MCC) tree of Microtus arvalis. Bayesian analysis of 
the cytochrome b gene (141 haplotypes sampled in 78 different localities from 23 countries 
across the species range; Appendix 1) with the best fit model (Cauchy RRW). The 95% 
highest probability density (95%HPD) for the most internal nodes and major lineages are 
shown as blue bars. Bayesian posterior probability values are included for major nodes. 
Coloured branches represent each of the major lineages, color-coded as in Figure 1. Grey 
background shaded range (95% HPD) and white line (median) indicates the effective 
population size trajectory based on Bayesian skyride analysis of mtDNA. The abscissa shows 
the time in years before present. 

Figure 3. Median-joining network of Microtus arvalis haplotypes. Each node corresponds 
to a haplotype determined for a unique cytochrome b sequence. Numbers in circles show the 
numbers of nucleotide differences between major lineages. Black dots represent missing 
haplotypes not observed in the analyzed individuals. Haplotypes were broadly grouped into 
their respective lineages (see also Figure 1). Haplotypes under the previously described 
Western-South lineage are sub-grouped into samples from Iberian (tentative M. a. asturianus 
specimens), and samples from Pyrenees and France (M. arvalis). 

Figure 4. Spatial projection of the diffusion pattern in Microtus arvalis through time. 
Results based on the maximum clade credibility (MCC) tree, estimated with a Bayesian 
phylogeographic analysis in BEAST (Cauchy RRW model) at ten time slices defined to 
coincide with major internal nodes within the MCC tree. The yellow lines represent the 
branches of the MCC tree. The polygons in the map (panels B to J) represent the 80% HPD 
uncertainty in the geographic locations of internal nodes in the MCC tree. The white-red 
gradient of the polygons represents the relative age of the dispersal events from white (old) to 
red (recent). The inferred location of the most recent common ancestor of M. arvalis lineages 
in Europe is shown in panel A (contours represent the 80% [yellow], 60% [orange] and 40% 
[red] HPD regions, based on kernel density estimates). 
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1028 Appendix 1. List of all M. arvalis haplotypes used for Bayesian analysis of the cytochrome b 
1029 gene in this study, geographic location and number of different haplotypes in each locality 
1030 (NH). The numbers in parentheses correspond with localities in Figure 1. 
1031 

Geographic origin Ref. NH Lat. Long. GenBank 
Accession Number 

Kranj; Slovenia (1) a 1 46.24 14.36 GU187381 
Ljubljana; Slovenia (2) a 2 46.04 14.52 GU187382-3 
Gacko; Bosnia (3) a 4 43.10 18.33 GU187368, GU187373, GU187376-7 
Kupres, BH; Bosnia (4) a 4 43.56 17.11 GU187365-7, GU187369 
Mt. Zelengora; Bosnia (5) a 4 43.15 18.35 GU187368, GU187373-5 
Bosanski Petrovac; Bosnia (6) a 1 44.35 16.21 GU187384 
Mt.Šator; Bosnia (7) a 1 44.09 16.37 GU187385 
Mt. Komovi; Montenegro (8) a 2 42.42 19.39 GU187378-9 
Slano Kopovo; Serbia (9) a 2 45.20 20.10 GU187384, GU187362 
Mt. Suva planina; Serbia (10) a 1 43.07 22.16 GU187380 
Białowieża; Poland (11) b 3 52.42 23.52 KP255605-7 
Popówka; Poland (12) b 3 52.04 23.26 KP255614-6 
Sochaczew; Poland (13) b 3 52.13 20.14 KP255599-601 
Poddębice; Poland (14) b 3 51.54 18.58 KP255587-9 
Łowicz; Poland (15) b 3 52.06 19.56 KP255602-4 
Chernobyl; Ukraine (16) c 1 51.27 30.22 U54488 
Buchak; Ukraine (17) b 3 49.87 31.43 KP255618-20 
Vienna; Austria (18) d 2 48.38 16.35 AY708460-1 
Brussels; Belgium (19) d 4 50.80 4.35 AY708508-10, AY708462 
Stalhille; Belgium (20) e 2 51.21 3.07 GU190540, GU190536 
Vetrkovice; Czech Republic (21) d 4 49.76 17.80 AY708471-3, AY708505 

Drnholec; Czech Republic (22) f 2 48.85 16.48 FR865434 
Nosislav; Czech Republic (23) f 2 49.00 16.65 FR865432-3 
Studenec; Czech Republic (24) f 1 50.55 15.53 FR865434 
Freiburg; Germany (25) g 7 48.00 7.80 FJ789987, FJ789989, FJ790014-8 
Heilsbronn; Germany (26) d 3 49.32 10.80 AY708476-8 
Alflen; Germany (27) e 2 50.18 7.04 GU190616-7 
NE Hamburg; Germany (28) e 2 53.60 10.05 GU190662-3 
Schiltach; Germany (29) e 1 48.30 8.34 GU190618 
Rosenheim; Germany (30) g 2 47.85 12.12 FJ790019-20 
Aigle; Switzerland (31) g 4 46.35 6.92 FJ789990-1, AY708519, FJ790029 
Lausanne; Switzerland (32) g 4 46.57 6.55 AY708514, AY708467-9 
Walenstadt; Switzerland (33) g 3 47.12 9.30 AY708519, FJ790011-2 
Chur; Switzerland (34) g 2 46.83 9.48 AY708512, AY708466 
Mont-la-ville; Switzerland (35) g 3 46.63 6.40 AY708510, FJ790005, FJ790029 
Trento; Italy (36) h 1 46.06 11.11 AY220766 
Laas; Italy (37) g 1 46.62 10.70 FJ789995 
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Bozen; Italy (38) g 1 46.50 11.30 FJ790024 
Marling; Italy (39) g 2 46.65 11.13 FJ790025, AY220766 
Neumarkt; Italy (40) g 1 46.32 11.27 FJ790026 
Bendern; Liechtenstein (41) g 1 47.22 9.50 FJ790031 
Ruggell; Liechtenstein (42) g 2 47.23 9.52 FJ790030, FJ790032 
Nagycsány; Hungary (43) h 1 45.86 17.95 AY220769 
Velké Kosihi; Slovakia (44) h 1 47.76 17.88 AY220767 
Stebník; Slovakia (45) h 1 49.38 21.27 AY220768 
Hjerl Hede; Denmark (46) h 1 56.48 8.87 AY220776 
Nørre Farup; Denmark (47) e 2 55.35 8.73 GU190660-1 
Lauwersee; Netherlands (48) h 1 53.38 6.18 AY220778 
Pumerend; Netherlands (49) e 2 52.51 4.94 GU190512, GU190516 
Oostburg; Netherlands (50) e 1 51.33 3.49 GU190531 
Mantet; Pyrenees (51) h 1 42.48 2.30 AY220789 
Vernet les Bains; Pyrenees (52) e 1 42.50 2.35 GU190383 
Plà de Beret; Pyrenees (53) e 3 42.72 0.84 GU190385, GU190388-9 
Luumäki; Finland (54) h 1 60.91 27.56 AY220770 
Nuijamaa; Finland (55) h 1 60.95 28.57 AY220770 
Vladimir; Russia (56) h 1 56.13 40.42 AY220771 
Zvenigorod; Russia (57) h 1 55.73 36.85 AY220770 
Luxemburg; Luxemburg (58) e 2 49.61 6.13 GU190395-6 
Aiffres; France (59) e 4 46.29 -0.41 GU190547-50 
Armendarits; France (60) e 1 43.30 -1.17 GU190634 
Baie de l'Aiguillon; France (61) e 3 46.30 -1.17 GU190417-8, GU190421 
Cissé; France (62) e 4 46.64 0.23 GU190552-5 
Ste. Marie du Mont; France (63) e 4 49.38 -1.23 GU190566-7, GU190569-70 
Pihen lès Guînes; France (64) e 2 50.87 1.79 GU190604, GU190606 
Outre; France (65) e 4 46.08 3.03 GU190411-3, GU190415 
Les Forts; France (66) e 3 48.33 1.18 GU190557-8, GU190560 
Crépaillat; France (67) e 3 46.14 2.74 GU190405-6, GU190408 
Arbejal; Spain (68) i 5 42.88 -4.50 MG874847, MG874849, MG474853-5, 
Bello; Spain (69) i 5 40.92 -1.50 MG874851, MG874856-9 
Ventosa del Río Almar; Spain (70) i 5 40.94 -5.31 MG874854, MG874863, MG874870, 

MG874872, MG874877 

Campo Azálvaro; Spain (71) i 5 40.68 -4.38 MG874847, MG874849, MG874854, 
MG874865-6 

Chañe; Spain (72) i 3 41.33 -4.39 MG874849, MG874854, MG874870 
San Emiliano; Spain (73) i 4 42.96 -6.02 MG874860, MG874873-5 
Grañón; Spain (75) i 5 42.46 -3.02 MG874850, MG874854, MG874860, 

MG874867, MG874871 
Milles de la Polvorosa; Spain (76) i 2 41.92 -5.73 MG874860, MG874863 
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Revilla de Campos; Spain (77) i 5 42.01 -4.71 MG8741847, MG874863, MG874873, 
MG874860-1 

San Martín de Valderaduey; Spain 
(78) 

i 7 41.81 -5.47 MG8741847, MG874860-1, 
MG874868, MG874863-4, MG874876 

Nofels; Austria (79) g 2 47.15 9.34 FJ790031-2 

1032 a>Bužan et al., 2010; b>Stojak et al., 2015; c>Barker et al., 1996; d>Fink et al., 2004; 
1033 e>Martínková et al., 2013; f>Tougard et al., 2013; g>Braaker & Heckel, 2009; h>Haynes et 
1034 al., 2003; i>This study 
1035 
1036 
1037 
1038 Table 1. Average pairwise genetic distance (uncorrected, p) of cytochrome b sequences for 
1039 within (diagonal) and between (below diagonal) clades of M. arvalis. The Iberian clade was 
1040 separated from the rest of the Western-South (W-S) clade (France and Pyrenees). 
1041 

1042 
W-S (Iberian) W-S (FR+Py) Western-North Balcan Italian Central Eastern 

W-S (Iberian) 0,0035 
W-S (FR+Py) 0,0159 0,0037 
Western-North 0,0219 0,0210 0,0043 
Balcan 0,0269 0,0259 0,0264 0,0061 
Italian 0,0344 0,0322 0,0313 0,0241 0,0057 
Central 0,0310 0,0276 0,0268 0,0267 0,0247 0,0048 
Eastern 0,0293 0,0300 0,0294 0,0264 0,0248 0,0149 0,0080 

1043 
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Figure 1. Current distribution and sampling locations for Microtus arvalis in Europe. 
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Figure 2. Maximum clade credibility (MCC) tree of Microtus arvalis 
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Figure 3. Median-joining network of Microtus arvalis haplotypes 
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Figure 4. Spatial projection of the diffusion pattern in Microtus arvalis through time 
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