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Abstract

We consider proper orthogonal decomposition (POD) methods to approximate the incompressible Navier–Stokes equations.
e study the case in which one discretization for the nonlinear term is used in the snapshots (that are computed with a full

rder method (FOM)) and a different discretization of the nonlinear term is applied in the POD method. We prove that an
dditional error term appears in this case, compared with the case in which the same discretization of the nonlinear term is
pplied for both the FOM and the POD methods. However, the added term has the same size as the error coming from the
OM so that the rate of convergence of the POD method is barely affected. We analyze the case in which we add grad–div
tabilization to both the FOM and the POD methods because it allows to get error bounds with constants independent of inverse
owers of the viscosity. We also study the case in which no stabilization is added. Some numerical experiments support the
heoretical analysis.

2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The computational cost of direct numerical simulations can be reduced by using reduced order models. The
roper orthogonal decomposition (POD) method is based on a reduced basis that is computed using snapshots
oming from a full order method (FOM). In this paper, we study the numerical approximation of incompressible
ows with POD methods.
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We consider the Navier–Stokes equations

∂t u − ν∆u + (u · ∇)u + ∇ p = f in (0, T ] × Ω ,

∇ · u = 0 in (0, T ] × Ω , (1)

n a bounded domain Ω ⊂ Rd , d ∈ {2, 3} with initial condition u(0) = u0. In (1), u is the velocity field, p the
inematic pressure, ν > 0 the kinematic viscosity coefficient, and f represents the accelerations due to external
ody forces acting on the fluid. The Navier–Stokes equations (1) must be complemented with boundary conditions.
or simplicity, we only consider homogeneous Dirichlet boundary conditions u = 0 on ∂Ω .

In [1] we can find a definition of FOM–ROM consistency. A ROM is said FOM consistent if it uses the same
omputational model and numerical discretization as the FOM. As stated in [1]: the theoretical investigation of
he FOM–ROM consistency is scarce and investigating the FOM–ROM consistency both computationally and
heoretically is an important research direction in reduced order modeling. As in [1], in the present paper we study
he consistency related to the nonlinear term. In practical simulations one can apply some given software to compute
he snapshots. It could then be the case that a different discretization is used for the discretization of the nonlinear
erm in the FOM method and the POD method (the last one being typically implemented by means of a hand-made
ode instead of an existing one). Our aim in this paper is to study the influence of the use of different discretizations
or the nonlinear terms on the final error bounds of the POD method.

In [2] POD stabilized methods for the Navier–Stokes equations were considered and analyzed for a case in which
he snapshots are based on a non inf–sup stable method and a case in which the snapshots are based on an inf–sup
table method. In the present paper, we consider the second case. Our snapshots are based on an inf–sup stable
ethod and, as in [2], we add grad–div stabilization to both the FOM and the POD methods. We analyze the case

n which different discretizations are applied for the nonlinear term. Adding grad–div stabilization we are able to
rove error bounds for the method with constants that do not depend explicitly on inverse powers of the viscosity,
lthough, as usual, may depend on it through the norms of the theoretical solution. In the last section, devoted to
umerical experiments, we also study the use of different values for the grad–div parameter in the FOM and ROM
odels. We conclude that it is advisable to use the same values for the grad–div parameter in both models.
In the recent paper [1] we have found an study of the consistency of the nonlinear discretization in FOM and

OD methods. In this reference no stabilization is included neither in the FOM nor in the POD method. The authors
f [1] conclude that the use of different discretizations in the nonlinear term yields additional terms that prevent
he POD method from recovering the FOM accuracy. In the present paper, we prove, in agreement with the results
n [1], that there are some additional terms in the error bound of the final POD method coming from the use of
ifferent discretizations in the nonlinear terms. We prove that the additional terms have the size of the L2 error in
he velocity and the L2 error of the divergence of the velocity of the FOM method. This holds both for the methods
ith grad–div stabilization and also for the plain methods considered in [1]. We then conclude that the extra error

erm coming from using different discretization for the nonlinear terms in the FOM and POD methods leads in
eneral to a less accurate method although in some examples the extra error is still small and the non consistent
OM–ROM method could be used in practice.

Following [1], we analyzed a concrete case in which the so called divergence or skew-symmetric form of the
onlinear term (commonly used in practice) is used for the FOM method and the EMAC form, see [3], is applied
or the POD method. The error analysis for any other combination of discretizations of the nonlinear terms with
nalogous properties could be carried out in a similar way. The EMAC formulation was designed to conserve
nergy, momentum and angular momentum. Considering a continuous in time method it is easy to see, as we prove
n Section 4, that the effect of grad–div stabilization in a method with EMAC form for the nonlinear term is a lost
f kinetic energy. The method maintains however the conservation of the momentum and angular momentum. In
ractice, as stated in [4], a fully version of a method with EMAC form for the nonlinear term is applied. In [4]
t is proved that using Newton method for the nonlinear term is the option from which more quantities are still
onserved, although the conservation of the kinetic energy is lost. In this sense, adding grad–div stabilization incurs
n the same phenomena so that it seems not to be a hard problem since either kinetic energy or any other properties
ill be lost with the EMAC formulation in the fully discrete case.
The outline of the paper is as follows. In Section 2 we introduce some notation. In Section 3 we state some

reliminaries concerning the POD method. Section 4 is devoted to the error analysis in which one considers different
iscretizations for the nonlinear term in the FOM and POD methods. In Section 5 we present some numerical

xperiments. We end the paper with some conclusions.
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2. Preliminaries and notation

The following Sobolev embeddings [5] will be used in the analysis: For q ∈ [1, ∞), there exists a constant
= C(Ω , q) such that

∥v∥Lq′ ≤ C∥v∥W s,q ,
1
q ′

≥
1
q

−
s
d

> 0, q < ∞, v ∈ W s,q (Ω )d . (2)

he following inequality can be found in [6, Remark 3.35]

∥∇ · v∥0 ≤ ∥∇v∥0, v ∈ H 1
0 (Ω )d , (3)

here, here and in the sequel, we use the notation ∥ · ∥ j for ∥ · ∥W j,2 = ∥ · ∥H j . Let us denote by Q = L2
0(Ω ) =

q ∈ L2(Ω ) | (q, 1) = 0
}
. Let Th = (τ h

j , φ
h
j ) j∈Jh , h > 0 be a family of partitions of Ω , where h denotes the

maximum diameter of the elements τ h
j ∈ Th , and φh

j are the mappings from the reference simplex τ0 onto τ h
j . We

shall assume that the partitions are shape-regular and quasi-uniform. We define the following finite element spaces

Y l
h =

{
vh ∈ C0(Ω ) | vh |K ∈ Pl(K ), ∀K ∈ Th

}
, l ≥ 1,

Yl
h = (Y l

h)d , Xl
h = Yl

h ∩ H 1
0 (Ω )d ,

Ql
h = Y l

h ∩ L2
0(Ω ).

Vh,l = Xl
h ∩

{
χh ∈ H 1

0 (Ω )d
| (qh, ∇ · χh) = 0 ∀qh ∈ Ql−1

h

}
, l ≥ 2. (4)

f the family of meshes is quasi-uniform then the following inverse inequality holds for each vh ∈ Y l
h , see e.g.,

7, Theorem 3.2.6],

∥vh∥W m,p(K ) ≤ cinvh
n−m−d

(
1
q −

1
p

)
K ∥vh∥W n,q (K ), (5)

here 0 ≤ n ≤ m ≤ 1, 1 ≤ q ≤ p ≤ ∞, and hK is the diameter of K ∈ Th . Let l ≥ 2, we consider the MFE pair
nown as Hood–Taylor elements [8,9] (Xl

h, Ql−1
h ).

For these elements a uniform inf–sup condition is satisfied (see [8]), that is, there exists a constant βis > 0
ndependent of the mesh size h such that

inf
qh∈Ql−1

h

sup
vh∈Xl

h

(qh, ∇ · vh)
∥vh∥1∥qh∥L2/R

≥ βis. (6)

We will denote by PQh the L2 orthogonal projection onto Ql−1
h . The following bound holds

∥q − PQh q∥0 ≤ Chl
∥q∥l , ∀q ∈ H l(Ω ). (7)

As a direct method, as in [2, Section 5], we consider a Galerkin method with grad–div stabilization and for simplicity
in the analysis we consider the implicit Euler method in time. Let us fix T > 0 and M > 0 and take ∆t = T/M .
The method reads as follows: given u0

h ≈ u0 find (un
h, pn

h ) ∈ Xl
h × Ql−1

h for n ≥ 1 such that(
un

h − un−1
h

∆t
, vh

)
+ ν(∇un

h, ∇vh) + bh(un
h, un

h, vh) − (pn
h , ∇ · vh)

+µ(∇ · un
h, ∇ · vh) = (f n, vh) ∀vh ∈ Xl

h, (8)

(∇ · un
h, qh) = 0 ∀qh ∈ Ql−1

h ,

where µ is the positive grad–div stabilization parameter.
For the discretization of the nonlinear term we consider the following form, the so called divergence or skew-

symmetric form,

bh(u, v, w) = ((u · ∇v), w) +
1

((∇ · u)v, w). (9)

2
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It is well-known that considering the discrete divergence-free space Vh,l we can remove the pressure from (8)
since un

h ∈ Vh,l satisfies for n ≥ 1(
un

h − un−1
h

∆t
, vh

)
+ ν(∇un

h, ∇vh) + bh(un
h, un

h, vh)

+µ(∇ · un
h, ∇ · vh) = (f n, vh), ∀vh ∈ Vh,l . (10)

For this method the following bound holds, see [10]

∥un
− un

h∥0 +

⎛⎝µ

M∑
j=1

∆t∥∇ · (un
− un

h)∥2
0

⎞⎠1/2

≤ C(u, p, l + 1)
(
hl

+ ∆t
)
, (11)

or 1 ≤ n ≤ M , where the constant C(u, p, l + 1) depends on ∥u∥L∞(H l+1),
(∫ T

0 ∥ut∥
2
l

)1/2
,
(∫ T

0 ∥ut t∥
2
0

)1/2
and

p∥L∞(H l ) but does not depend explicitly on inverse powers of ν.
For the plain Galerkin method the following bound holds where the error constants depend explicitly on inverse

owers of ν

∥un
− un

h∥0 + h∥∇(un
− un

h)∥0 ≤ C(u, p, ν−1, l + 1)
(
hl+1

+ ∆t
)
. (12)

. Proper orthogonal decomposition

We will consider a proper orthogonal decomposition (POD) method. As for the FOM we fix T > 0 and M > 0
nd take ∆t = T/M . We consider the following space

U = ⟨u1
h, . . . , uM

h ⟩,

here u j
h = uh(·, t j ). Let dv be the dimension of the space U.

Let Kv be the correlation matrix corresponding to the snapshots Kv = ((kv
i, j )) ∈ RM×M , where

kv
i, j =

1
M

(ui
h, u j

h),

nd (·, ·) is the inner product in L2(Ω )d . Following [11] we denote by λ1 ≥ λ2, . . . ≥ λdv > 0 the positive
eigenvalues of Kv and by v1, . . . , vdv ∈ RM the associated eigenvectors. Then, the (orthonormal) POD bases are
given by

ϕk =
1

√
M

1
√

λk

M∑
j=1

v
j
k uh(·, t j ), (13)

here v
j
k is the j th component of the eigenvector vk and the following error formulas hold, see [11, Proposition 1]

1
M

M∑
j=0

∥u j
h −

r∑
k=1

(u j
h, ϕk)ϕk∥

2
0 ≤

dv∑
k=r+1

λk . (14)

We will denote by Sv the stiffness matrix for the POD basis: Sv
= ((sv

i, j )) ∈ Rdv×dv , sv
i, j = (∇ϕi , ∇ϕ j ). In that

ase, for any v ∈ U, the following inverse inequality holds, see [11, Lemma 2]

∥∇v∥0 ≤
√

∥Sv∥2∥v∥0. (15)

In the sequel we will denote by

Ur
= ⟨ϕ1, ϕ2, . . . ,ϕr ⟩,

v 2 r
nd by Pr , the L -orthogonal projection onto U .

4
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3.1. A priori bounds for the orthogonal projection onto Ur

In [2, Section 3.1] some a priori bounds for the FOM and for the orthogonal projection were obtained assuming
for the solution of (1) the same regularity needed to prove (11). For 0 ≤ j ≤ M the following bound holds (see
2, (31), (35)])

∥u j
h∥∞ ≤ Cu,inf (16)

∥∇u j
h∥L2d/(d−1) ≤ Cu,ld. (17)

or 1 ≤ j ≤ M the following bounds hold (see [2, (39), (40), (41)])

∥Pv
r u j

h∥∞ ≤ Cinf, (18)

∥∇ Pv
r u j

h∥∞ ≤ C1,inf, (19)
∥∇ Pv

r u j
∥L2d/(d−1) ≤ Cld. (20)

. The POD method

We now consider the grad–div POD model. As for the full order model, for simplicity in the error analysis, we
lso use the implicit Euler method as time integrator. Taking an initial approximation u0

r ∈ Ur , for n ≥ 1, find
n
r ∈ Ur such that(

un
r − un−1

r

∆t
, ϕ

)
+ ν(∇un

r , ∇ϕ) + bpod (un
r , un

r , ϕ) + µ(∇ · un
r , ∇ · ϕ)

= (f n, ϕ), ∀ϕ ∈ Ur , (21)

where we observe that Ur
⊂ Vh,l so that there is no pressure approximation in (21). For the discretization of the

nonlinear term we consider the EMAC form

bpod (u, v, w) = (2D(u)v, w) + ((∇ · u)v, w), (22)

where the deformation tensor is

D(u) =
1
2

(
∇u + (∇u)T ) ,

nd the second term in (22) is added to ensure the property

bpod (v, v, v) = 0. (23)

he EMAC form is based on the identity

(u · ∇)u = 2D(u)u −
1
2
∇|u|

2. (24)

From (24) it can be observed that the EMAC form of the nonlinear term implies a modification of the pressure,
i.e., in a velocity–pressure formulation of a method with the EMAC form for the nonlinear term the pressure
approximation converges to p −

1
2 |u|

2 instead of to the original pressure p in (1).
Considering for simplicity the continuous in time case, i.e., the method:(

ur,t , ϕ
)
+ ν(∇ur , ∇ϕ) + bpod (ur , ur , ϕ) + µ(∇ · ur , ∇ · ϕ) = (f , ϕ),

taking ϕ = ur and assuming as in [3,4], f = 0 and ν = 0 one gets applying (23)
d
dt

∥ur∥
2
0 = −µ∥∇ · ur∥

2
0. (25)

his means that the grad–div stabilization produces a lost in the kinetic energy. As stated in the introduction,
onsidering a fully discrete method with Newton discretization for the nonlinear term one has also the effect of a
ost of kinetic energy, see [4]. On the other hand, it is easy to prove that the grad–div term has no negative effect
n the conservation of linear and angular momentum so that both are still conserved. To prove this, one can argue
s in [12, Theorem 3.3] and observe that the test functions used to achieve the conservation of linear and angular
omentum have divergence zero so that the grad–div term does not affect the proof.
5
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4.1. Error analysis of the method

Denoting by

ηn
h = Pv

r un
h − un

h,

it is easy to get(
Pv

r un
h − Pv

r un−1
h

∆t
, ϕ

)
+ ν(∇ Pv

r un
h, ∇ϕ) + bh(Pv

r un
h, Pv

r un
h, ϕ)

+µ(∇ · Pv
r un

h, ∇ · ϕ)

= (f n, ϕ) + ν(∇ηn
h, ∇ϕ) + µ(∇ · ηn

h, ∇ · ϕ) (26)

+bh(Pv
r un

h, Pv
r un

h, ϕ) − bh(un
h, un

h, ϕ), ∀ϕ ∈ Ur .

Subtracting (26) from (21) and denoting by

en
r = un

r − Pv
r un

h

we get ∀ϕ ∈ U r(
en

r − en−1
r

∆t
, ϕ

)
+ ν(∇en

r , ∇ϕ) + µ(∇ · en
r , ∇ · ϕ) (27)

=
(
bh(un

h, un
h, ϕ) − bpod (un

r , un
r , ϕ)

)
− ν(∇ηn

h, ∇ϕ) − µ(∇ · ηn
h, ∇ · ϕ).

Taking ϕ = en
r we obtain

1
2∆t

(
∥en

r ∥
2
0 − ∥en−1

r ∥
2
0

)
+ ν∥∇en

r ∥
2
0 + µ∥∇ · en

r ∥
2
0 (28)

≤
(
bh(un

h, un
h, en

r ) − bpod (un
r , un

r , en
r )
)
− ν(∇ηn

h, ∇en
r ) − µ(∇ · ηn

h, ∇ · en
r )

= I + I I + I I I.

We will bound the first term on the right-hand side above. Arguing as in [1] we get

|I | ≤
⏐⏐bpod (un

h, un
h, en

r ) − bpod (un
r , un

r , en
r )
⏐⏐

+
⏐⏐bh(un

h, un
h, en

r ) − bpod (un
h, un

h, en
r )
⏐⏐ . (29)

To bound the first term on the right-hand side of (29) we argue as in [13] (see also [14]). We first observe that

bpod (un
h, un

h, en
r ) − bpod (un

r , un
r , en

r ) = bpod (−ηn
h, un

h, en
r )

+bpod (Pv
r un

h, −ηn
h, en

r ) − bpod (Pv
r un

h, en
r , en

r )

−bpod (en
r , Pv

r un
h, en

r ) − bpod (en
r , en

r , en
r ). (30)

The last term on the right-hand side of (30) vanishes due to the property (23). The expression of the fourth one is

bpod (en
r , Pv

r un
h, en

r ) = ((Pv
r un

h · ∇)en
r , en

r ) + ((en
r · ∇)en

r , Pv
r un

h) + ((∇ · en
r )en

r , Pv
r un

h).

Integration by parts reveals that the first term on the right-hand side above equals −
1
2 ((∇ · Pv

r un
h)en

r , en
r ), whilst the

other two equal −((en
r · ∇)Pv

r un
h, en

r ), so that

bpod (en
r , Pv

r un
h, en

r ) = −
1
2

((∇ · Pv
r un

h)en
r , en

r ) − ((en
r · ∇)Pv

r un
h, en

r ).

Since the third term on the right-hand side of (30) is

b (Pvun, en, en) = 2((en
· ∇)Pvun, en) + ((∇ · Pvun)en, en),
pod r h r r r r h r r h r r

6
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we see that the last three terms on the right-hand side of (30) add to −((en
r · ∇)Pv

r un
h, en

r ) −
1
2 ((∇ · Pv

r un
h)en

r , en
r ), so

that (30) can be written as

bpod (un
h, un

h, en
r ) − bpod (un

r , un
r , en

r ) = bpod (−ηn
h, un

h, en
r ) (31)

+bpod (Pv
r un

h, −ηn
h, en

r ) −
1
2

((∇ · Pv
r un

h)en
r , en

r ) − (D(Pv
r un

h)en
r , en

r ).

For the first term on the right-hand side of (31), applying (16), we obtain

bpod (−ηn
h, un

h, en
r ) ≤ C∥ηn

h∥1∥un
h∥∞∥en

r ∥0 ≤ CCu,inf∥η
n
h∥1∥en

r ∥0. (32)

Applying Hölder’s inequality, (19) and Sobolev embedding (2) we get for the second term on the right-hand side
of (31)

bpod (Pv
r un

h, −ηn
h, en

r ) ≤ 2∥D(Pv
r un

h)∥L2d/(d−1)∥ηn
h∥L2d ∥en

r ∥0

+∥∇ · Pv
r un

h∥L2d/(d−1)∥ηn
h∥L2d ∥en

r ∥0

≤ C∥∇ Pv
r un

h∥L2d/(d−1)∥ηn
h∥L2d ∥en

r ∥0

≤ CCld∥η
n
h∥1∥en

r ∥0. (33)

Finally, for the last two terms on the right-hand side of (31), applying (19), we get

−
1
2

((∇ · Pv
r un

h)en
r , en

r ) − (D(Pv
r un

h)en
r , en

r ) ≤ CC1,inf∥en
r ∥

2
0. (34)

From (31), (32), (33) and (34) and Poincaré inequality we finally reach

|bpod (un
h, un

h, en
r ) − bpod (un

r , un
r , en

r )|

≤ (1 + CC1,inf)∥en
r ∥

2
0 + C(C2

u,inf + C2
ld)∥∇ηn

h∥
2
0. (35)

For the second term on the right-hand side of (29), we recall that

bh(un
h, un

h, en
r ) = (un

h · ∇un
h, en

r ) +
1
2

((∇ · un
h)un

h, en
r ).

bpod (un
h, un

h, en
r ) = (un

h · ∇un
h, en

r ) + (en
r · ∇un

h, un
h) + ((∇ · un

h)un
h, en

r ).

We notice that both bh(un
h, un

h, en
r ) and bpod (un

h, un
h, en

r ) share the term (un
h · ∇un

h, en
r ), and both also have the term

((∇ · un
h)un

h, en
r ) but with a factor 1/2 in the second one, so that we have

bh(un
h, un

h, en
r ) − bpod (un

h, un
h, en

r ) = −(en
r · ∇un

h, un
h) −

1
2

((∇ · un
h)un

h, en
r )

Now, integrating by parts the first term on the right-hand side above we have

bh(un
h, un

h, en
r ) − bpod (un

h, un
h, en

r ) =
1
2

(|un
h |

2
, ∇ · en

r ) −
1
2

((∇ · un
h)un

h, en
r ),

and, since ∇ · u = 0, we can write

bh(un
h, un

h, en
r ) − bpod (un

h, un
h, en

r ) =
1
2

(|un
h |

2
, ∇ · en

r ) +
1
2

((∇ · (un
− un

h))un
h, en

r ), (36)

For the second term on the right-hand side of (36) we have

1
2

((∇ · (un
− un

h))un
h, en

r ) ≤
1
2
∥un

h∥∞∥∇ · (un
h − un)∥0∥en

r ∥0 (37)

≤ C2
u,inf

µ
∥∇ · (un

h − un)∥2
0 +

1
∥en

r ∥
2
0,
4 4µ

7
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T

w

a

For the first term on the right-hand side of (36), we have
1
2

(|un
h |

2, ∇ · en
r )| ≤

1
2

(|un
h |

2
− |un

|
2, ∇ · en

r )| +
1
2
|(|un

|
2, ∇ · en

r )|

=
1
2
|(|un

h |
2
− |un

|
2, ∇ · en

r )| +
1
2
|((I − PQh )|un

|
2, ∇ · en

r )| (38)

≤
1
2
∥un

+ un
h∥∞∥un

− un
h∥0∥∇ · en

r ∥0 +
1
2
∥(I − PQh )|un

|
2
∥0∥∇ · en

r ∥0.

hen, applying (16)
1
2
|(|un

h |
2, ∇ · en

r )| ≤
1
2

(∥un
∥∞ + Cu,inf)∥un

− un
h∥0∥∇ · en

r ∥0

+
1
2
∥(I − PQh )|un

|
2
∥0∥∇ · en

r ∥0 ≤ Cµ−1(∥un
− un

h∥
2
0 + ∥(I − PQh )|un

|
2
∥

2
0)

+
µ

4
∥∇ · en

r ∥
2
0, (39)

here the generic constant C above depends on ∥u∥L∞(L∞) and Cu,inf. Inserting (35), (36), (37) and (39) into (29)
we get

|I | ≤

(
1 + CC1,inf +

1
4µ

)
∥en

r ∥
2
0 +

µ

4
∥∇ · en

r ∥
2
0

+C(C2
u,inf + C2

ld)∥∇ηn
h∥

2
0 + C2

u,inf
µ

4
∥∇ · (un

h − un)∥2
0

+Cµ−1(∥u − uh∥
2
0 + ∥(I − PQh )|un

|
2
∥

2
0).

Including into a generic constant C the dependence on Cu,inf and Cld of the third and fourth terms above we may
write

|I | ≤

(
1 + CC1,inf +

1
4µ

)
∥en

r ∥
2
0 +

µ

4
∥∇ · en

r ∥
2
0

+C∥∇ηn
h∥

2
0 + Cµ∥∇ · (un

h − un)∥2
0

+Cµ−1(∥u − uh∥
2
0 + ∥(I − PQh )|un

|
2
∥

2
0). (40)

We also have

|I I | ≤
ν

2
∥∇ηn

h∥
2
0 +

ν

2
∥∇en

r ∥
2
0, (41)

nd

|I I I | ≤ ∥∇ · ηn
h∥

2
0 +

µ

4
∥∇ · en

r ∥
2
0. (42)

Inserting (40), (41) and (42) into (28) and adding terms we get

∥en
r ∥

2
0 + ν

n∑
j=1

∆t∥∇e j
r ∥

2
0 + µ

n∑
j=1

∆t∥∇ · e j
r ∥

2
0

≤ ∥e0
r ∥

2
0 +

n∑
j=1

∆t
(

1 + CC1,inf +
1

4µ

)
∥e j

r ∥
2
0 + C(ν + µ)

n∑
j=1

∆t∥∇η
j
h∥

2
0

+Cµ

n∑
j=1

∆t∥∇ · (u j
h − u j )∥2

0 + Cµ−1
n∑

j=1

∆t∥u j
h − u j

∥
2
0

+Cµ−1
n∑

∆t∥(I − PQh )|u j
|
2
∥

2
0. (43)
j=1
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Assuming

∆tCu := ∆t(1 + CC1,inf +
1

4µ
) ≤

1
2

(44)

nd applying Gronwall’s Lemma [15, Lemma 5.1] and (14), (15), (11) and (7) we obtain

∥en
r ∥

2
0 + ν

n∑
j=1

∆t∥∇e j
r ∥

2
0 + µ

n∑
j=1

∆t∥∇ · e j
r ∥

2
0

≤ e2T Cu

(
∥e0

r ∥
2
0 + CT (ν + µ)∥Sv

∥0

dv∑
k=r+1

λk (45)

+C(1 + µ−1T )C(u, p, l + 1)2 (h2l
+ (∆t)2)

+ Cµ−1h2l T ∥|u|
2
∥L∞(H l )

)
.

emark 4.1. Let us observe that the error terms in the last line of (45) arise from using different discretization for
he nonlinear term in the FOM and the POD methods. We also observe that these errors are of the same size as the
rror of the FOM method. More precisely, in view of (37) and (38), the extra errors have the size of µ∥∇·(un

h−un)∥2
0,

u−uh∥
2
0 and ∥(I − PQh )|un

|
2
∥

2
0 times several constants of the same size as the others appearing in the error analysis

f the method. Although in general the dominant contribution to the extra error comes from µ∥∇ · (un
h − un)∥2

0,
hanks to the use of grad–div stabilization the error µ∥∇ · (un

h − un)∥2
0 has the same rate of decay with h as the L2

elocity error: ∥u − uh∥
2
0.

heorem 4.2. Let u be the velocity in the Navier–Stokes equations (1), let ur be the grad–div POD stabilized
pproximation defined in (21), assume that the solution (u, p) of (1) is regular enough and condition (44) holds.
hen, the error can be bounded as follows

n∑
j=1

∆t∥u j
r − u j

∥
2
0 ≤ 3T e2T Cu

(
∥e0

r ∥
2
0 + CT (ν + µ)∥Sv

∥0

dv∑
k=r+1

λk

+C(1 + µ−1T )C(u, p, l + 1)2 (h2l
+ (∆t)2)

+Cµ−1h2l T ∥|u|
2
∥L∞(H l )

)
+ 3T

dv∑
k=r+1

λk

+3T C(u, p, l + 1)2 (h2l
+ (∆t)2) . (46)

roof. Since
∑n

j=1 ∆t∥e j
r ∥

2
0 ≤ T max1≤ j≤n ∥e j

r ∥
2
0 and

n∑
j=1

∆t∥u j
r − u j

∥
2
0 ≤ 3

⎛⎝ n∑
j=1

∆t∥e j
r ∥

2
0 +

n∑
j=1

∆t∥Pv
r u j

h − u j
h∥

2
0

+

n∑
j=1

∆t∥u j
h − u j

∥
2
0

⎞⎠ ,

rom (45), (14) and (11) we easily obtain (46). □

emark 4.3. We have chosen, as in [1], to analyze the concrete case in which the divergence form is used for the
OM method and the EMAC form is applied for the POD method but the error analysis of any other combination
f discretizations of the nonlinear terms with analogous properties could be carried out in a similar way.

emark 4.4. With the POD method defined in (21) we can obtain an approximation to the velocity but not to

he pressure. In case an approximation to the pressure is also required one can use a supremizer pressure recovery

9
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v

b

C

t

method. This procedure is analyzed in [2], see also [16]. One can argue exactly as in [2, Theorem 5.4] to get an
error bound for the pressure, in which, as in Theorem 4.2, one will have to add to the error terms in [2, Theorem
5.4] those coming from the different discretizations used in the nonlinear terms (i.e. fourth and fifth terms on the
right-hand side of (40)).

4.2. Error analysis of the method without grad–div stabilization

In this section we consider the case analyzed in [1] in which the plain Galerkin method is used instead of the
grad–div stabilized method, i.e, we take µ = 0 both in Eqs. (10) and (21).

In the following error analysis, as in [1], one does not get error bounds independent on inverse powers of the
iscosity. The analysis can be obtained with slight modifications of the analysis of the previous section.

First, we notice that the last terms on each side of identity (27) are not present. Then, applying (3) in (38) to
ound ∥∇ · en

r ∥0 by ∥∇en
r ∥0, instead of (39) we get

1
2
|(|un

h |
2, ∇ · en

r )| ≤
1
2

(∥un
∥∞ + Cu,inf)∥un

− un
h∥0∥∇ · en

r ∥0

+
1
2
∥(I − PQh )|un

|
2
∥0∥∇ · en

r ∥0 ≤ Cν−1(∥un
− un

h∥
2
0 + ∥(I − PQh )|un

|
2
∥

2
0)

+
ν

4
∥∇ · en

r ∥
2
0. (47)

onsequently, instead of (40) we obtain

|I | ≤

(
1 + CC1,inf +

1
4

)
∥en

r ∥
2
0 +

ν

4
∥∇en

r ∥
2
0

+C∥∇ηn
h∥

2
0 + C∥∇ · (un

h − un)∥2
0

+Cν−1(∥u − uh∥
2
0 + ∥(I − PQh )|un

|
2
∥

2
0).

Instead of (41) we can write

|I I | ≤ ν∥∇ηn
h∥

2
0 +

ν

4
∥∇en

r ∥
2
0,

to conclude the following inequality instead of (43),

∥en
r ∥

2
0 + ν

n∑
j=1

∆t∥∇e j
r ∥

2
0

≤ ∥e0
r ∥

2
0 +

n∑
j=1

∆t
(
5/4 + CC1,inf

)
∥e j

r ∥
2
0 + Cν

n∑
j=1

∆t∥∇η
j
h∥

2
0 (48)

+C
n∑

j=1

∆t∥∇ · (u j
h − u j )∥2

0 + Cν−1
n∑

j=1

∆t∥u j
h − u j

∥
2
0

+Cν−1
n∑

j=1

∆t∥(I − PQh )|u j
|
2
∥

2
0.

From the above inequality one can argue exactly as before to conclude that, if

∆tCu := ∆t
(
5/4 + CC1,inf

)
≤

1
2

(49)

hen, the following bound holds

∥en
r ∥

2
0 + ν

n∑
j=1

∆t∥∇e j
r ∥

2
0 ≤ e2T Cu

(
∥e0

r ∥
2
0 + CT ν∥Sv

∥0

dv∑
k=r+1

λk

+CT (h−2
+ ν−1)C(u, p, ν−1, l + 1)2 (h2l+2

+ (∆t)2)
−1 2l 2 )
+Cν h T ∥|u| ∥L∞(H l ) , (50)

10



B. Garcı́a-Archilla, J. Novo and S. Rubino Computer Methods in Applied Mechanics and Engineering 405 (2023) 115866

t
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where we have applied (3) to bound the fourth term on the right-hand side of (48) and the error bound of the plain
Galerkin method (12). From (50) and arguing as before we conclude

Theorem 4.5. Let u be the velocity in the Navier–Stokes equations (1), let ur be the grad–div POD approximation
without stabilization (case µ = 0) and assume that the solution (u, p) of (1) is regular enough. Then, assuming
condition (49) holds, the error can be bounded as follows

n∑
j=1

∆t∥u j
r − u j

∥
2
0 ≤ 3T e2T Cu

(
∥e0

r ∥
2
0 + CT ν∥Sv

∥0

dv∑
k=r+1

λk

+CT (h−2
+ ν−1)C(u, p, ν−1, l + 1)2 (h2l+2

+ (∆t)2)
+Cν−1h2l T ∥|u|

2
∥L∞(H l )

)
+ 3T

dv∑
k=r+1

λk

+3T C(u, p, ν−1, l + 1)2 (h2l+2
+ (∆t)2) . (51)

The final error bound depend explicitly on ν−1 and on both the L2 error of the FOM velocity approximation and
he error in the divergence of the FOM approximation (that we have bounded by the H 1 error).

emark 4.6. Integrating by parts in (37) and applying (16), (17) and (2) we can bound

1
2

((∇ · (un
− un

h))un
h, en

r ) ≤ CC2
u,ld

ν−1

4
∥un

− un
h∥

2
0 +

ν

4
∥∇en

r ∥
2
0

+C2
u,inf

ν−1

4
∥un

− un
h∥

2
0 +

ν

4
∥∇en

r ∥
2
0.

rguing in this way, we remove the divergence term from (48) and, consequently, the factor h−2 in (50).

emark 4.7. Alternatively, we can also bound the method without grad–div stabilization in a way that inverse
onstants of the viscosity do not appear explicitly in the constants. However, the error depends on the error of the
lain Galerkin method (12) which in terms depend on ν−1.

To this end, instead of (38), we can write, integrating by parts
1
2

(|un
h |

2, ∇ · en
r )| ≤

1
2

(|un
h |

2
− |un

|
2, ∇ · en

r )| +
1
2
|(|un

|
2, ∇ · en

r )|

=
1
2
|(∇

(
|un

h |
2
− |un

|
2), en

r )| +
1
2
|(∇

(
(I − PQh )|un

|
2), en

r )|

≤ C∥un
+ un

h∥1,∞∥un
− un

h∥1∥en
r ∥0 +

1
2
∥(I − PQh )|un

|
2
∥1∥en

r ∥0

≤ C
(
∥un

− un
h∥

2
1 + ∥(I − PQh )|un

|
2
∥

2
1

)
+

1
2
∥en

r ∥
2
0.

Then, applying (3), instead of (40) we get

|I | ≤
(
1 + CC1,inf

)
∥en

r ∥
2
0 + C∥∇ηn

h∥
2
0 + C∥un

h − un
∥

2
1

+C(∥(I − PQh )|un
|
2
∥

2
1),

and then, for Cu = 1 + CC1,inf and ∆tCu ≤ 1/2, we conclude

∥en
r ∥

2
0 + ν

n∑
j=1

∆t∥∇e j
r ∥

2
0 ≤ e2T Cu

(
∥e0

r ∥
2
0 + CT ν∥Sv

∥0

dv∑
k=r+1

λk

+CT C(u, p, ν−1, l + 1)2h−2 (h2l+2
+ (∆t)2)

+Ch2(l−1)T ∥|u|
2
∥L∞(H l )

)
.

As pointed out in [14], from the above error bound we observe that the grad–div stabilization could be suppressed

when we use the EMAC form of the nonlinear term in the ROM method and we can still obtain error bounds with

11
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constants independent on inverse powers of ν, apart from the dependence thought the error of the plain Galerkin
method. However, the price to be paid is a lower rate of convergence. Compare the last term on the right-hand side
above with (46). The rate of convergence obtained with this argument is also lower than the bound (51).

Remark 4.8. Let us observe that using divergence free elements in the FOM method (Scott–Vogelius [17], Neilan–
Falk [18]) the ROM method heritages the divergence free property and all the different formulations for the nonlinear
term are equivalent. This means that there is no discrepancy in the nonlinear terms in that case. As stated in [19],
this case could be seen as the limit of Taylor–Hood elements with grad–div stabilization for µ → ∞ assuming
a mesh for which Scott–Vogelius pair is inf–sup stable, since in that case the sequence of velocity solutions for
the Taylor–Hood pair with grad–div stabilization converges to the velocity solution of the Galerkin method for the
Scott–Vogelius pair. On the other hand, the case µ = 0 corresponds to the case analyzed in this section for the
method without grad–div stabilization. The intermediate case, 0 < µ < ∞ has been analyzed in Section 4.1 and
there is an extra error term coming from using different discretizations of the nonlinear term in the FOM and ROM
methods, respectively, which decreases, accordingly to the above comments, as µ increases.

5. Numerical experiments

In this section, we present numerical results for the grad–div reduced order model (ROM) (21), introduced and
analyzed in the previous section. Actually, a comparison is performed by using both the skew-symmetric (9) and
the EMAC (22) form for the discretization of the nonlinear term at ROM level. In this context, also different
offline/online values of the grad–div stabilization parameter µ are tested.

For comparison purposes, we repeat the numerical experiments without grad–div stabilization, as in [1], for
which the error analysis performed in Section 4.2 holds.

The numerical experiments are performed on the benchmark problem of the 2D unsteady flow around a cylinder
with circular cross-section [20] at Reynolds number Re = 100 (ν = 10−3 m2/s). The open-source FE software

reeFEM [21] has been used to run the numerical experiments, following the setup from [2].
FOM and POD modes. The numerical method used to compute the snapshots for the grad–div-ROM (21) is the

rad–div finite element method (FEM) (8) described in Section 2, with the skew-symmetric form (9) of the nonlinear
erm. A spatial discretization using the Hood–Taylor MFE pair P2

− P1 for velocity–pressure is considered on a
relatively coarse computational grid (see [2]), for which h = 2.76 · 10−2 m, resulting in 32 488 d.o.f. for velocities
nd 4 151 d.o.f. for pressure.

As in [2], for the time discretization, a semi-implicit Backward Differentiation Formula of order two (BDF2)
as been applied (see [22] for further details), with time step ∆t = 2 · 10−3 s. Time integration is performed until a
nal time T = 15 s. In the time period [0, 5] s, after an initial spin-up, the flow is expected to develop to full extent,

ncluding a subsequent relaxation time. Afterwards, it reaches a periodic-in-time (statistically- or quasi-steady) state.
The POD modes are generated in L2 by the method of snapshots with velocity centered-trajectories [23] by

toring every FOM solution from t = 5 s, when the solution had reached a periodic-in-time state, and just using
ne period of snapshot data. The full period length of the statistically steady state is 0.332 s, thus we collect 167
elocity snapshots to generate the POD basis Ur .

With the same strategy, we repeat the numerical experiments without grad–div stabilization, as in [1], so that in
his case we use the FOM (8) with µ = 0 to compute the snapshots for the construction of the POD modes.

In Section 5.1, we discuss numerical results for grad–div-ROM with different discretization of the nonlinear term,
ut using in the online phase the same grad–div stabilization parameter µ used in the offline phase. In Section 5.2,
e repeat this test by using in the online phase a different grad–div stabilization parameter µon w.r.t. the one used

n the offline phase. Finally, in Section 5.3, we turn off the grad–div stabilization both in the offline and in the
nline phase, as in [1].

.1. Numerical results for grad–div-ROM with different discretization of the nonlinear term

With POD velocity modes generated, the fully discrete grad–div-ROM (21) is constructed as discussed in the
revious section, using the semi-implicit BDF2 time scheme as for the FOM, and run with both skew-symmetric (as
or the FOM) and EMAC (different from the FOM) formulation of the nonlinear term in the stable response time

−3
nterval [5, 15] s with ∆t = 2 · 10 s. In this case, the value used as grad–div stabilization parameter for the ROM

12
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m
s

Fig. 1. Temporal evolution of kinetic energy (top) and drag coefficient (bottom) computed with grad–div-ROM (21) using r = 12 velocity
modes. Comparison with grad–div-FOM (8).

is the same used for the FOM, that is µ = 10−2. The initial reduced-order velocity is given by the L2-orthogonal
projection Pv

r of the velocity snapshot at t = 5 s on the POD velocity space Ur .
For this first numerical experiment, the temporal evolution of the local drag coefficient and kinetic energy are

monitored and compared to the FOM solutions in the predictive time interval [10, 15] s, for which the quantities of
interest stabilizes for all methods (for ease of comparison, drag is shown only on the last part of the time interval
[14, 15] s). To compute drag coefficient, we used the volume integral formulation from [24], where the pressure
term is not necessary if the test function is taken properly in the discrete divergence-free space Vh,l (4) (by Stokes
projection, for instance), as done in [25,26].

Numerical results for kinetic energy and drag predictions using r = 12 velocity modes are shown in Fig. 1,
where we display a comparison of grad–div-FOM (8) with the skew-symmetric form of the nonlinear term, and
grad–div-ROM (21) with both skew-symmetric and EMAC form of the nonlinear term.

From this figure, we see that the grad–div-ROM with the skew-symmetric form of the nonlinear term (as for the
FOM) gives better results for both kinetic energy and drag predictions. The good match that we observe using the
same discretization for the nonlinear term as for the FOM (Skew) is slightly degraded using a different formulation
of the nonlinear term (EMAC) in the online phase, as predicted by the theoretical study.

To further assess the numerical accuracy of the grad–div-ROM (21) with both skew-symmetric and EMAC form
of the nonlinear term, numerical results for kinetic energy and drag predictions varying r , i.e. the number of velocity

odes, are shown in Figs. 2 and 3, respectively, where we display a comparison to grad–div-FOM (8) with the

kew-symmetric form of the nonlinear term. From these results, we can check again that better results are obtained

13
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Fig. 2. Temporal evolution of kinetic energy computed with grad–div-ROM (21) (Skew, top; Emac, bottom) using r = 8, 12, 16 velocity
modes. Comparison with grad–div-FOM (8).

when using the grad–div-ROM with the skew-symmetric form of the nonlinear term (as for the FOM). In agreement
with our theoretical analysis, we can observe a reduction of the ROM error when increasing r for both forms of
the nonlinear term. In case of using a different formulation of the nonlinear term (EMAC) in the online phase the
difference to the FOM solution is bigger, due to the extra error term, as the analysis predicts.

5.2. Numerical results for grad–div-ROM with different discretization of the nonlinear term and stabilization
coefficient

In this section, we are interested in numerically investigate how the value of the grad–div stabilization parameter
influences the results. For this purpose, we perform numerical experiments considering a larger value of the online
grad–div stabilization parameter (µon = 1) with respect to the one used for offline computations (µoff = 10−2), and
repeat the previous computations. We observed that this parameter influences especially the sensitive local quantity
of drag coefficient, so that we show results for its temporal evolution.

In Fig. 4, numerical results for drag predictions using r = 12 velocity modes are displayed. From this figure,
we see that, independently of the online form of the nonlinear term, larger differences are present with respect to
the previous results.

Also, if we vary the number of velocity modes, as done in Fig. 5, we observe that in this context we do not get
convergence in any case by increasing r . The explanation for this behavior is as follows. When using different values
for the grad–div parameter in the offline, µoff, and online computations, µon, there is an extra term in the error of size
|µ − µ |

1/2
∥∇ · u ∥ . In Fig. 6 we have plotted the strong (∥∇ · u ∥ ) and weak (max |(∇ · u , q )|/∥q ∥ )
on off h 0 h 0 qh∈Qh h h h 0
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Fig. 3. Temporal evolution of drag coefficient computed with grad–div-ROM (21) (Skew, top; Emac, bottom) using r = 8, 12, 16 velocity
modes. Comparison with grad–div-FOM (8).

Fig. 4. Temporal evolution of drag coefficient computed with grad–div-ROM (21) with µon = 1 using r = 12 velocity modes. Comparison
with grad–div-FOM (8).

divergence of uh . We can observe that while the weak divergence is essentially zero the strong divergence is quite
large. Since in the experiment the value |µ − µ | = 0.99, this means that the extra error has size approximately
on off

15
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Fig. 5. Temporal evolution of drag coefficient computed with grad–div-ROM (21) (Skew, top; Emac, bottom) with µon = 1 using r = 8, 12, 16
velocity modes. Comparison with grad–div-FOM (8).

Fig. 6. Temporal evolution of the strong (red) and weak (black) divergence of uh . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
16
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w

r

Fig. 7. Temporal evolution of drag coefficient computed with grad–div-ROM (21) with µon = 0.1 using r = 12 velocity modes. Comparison
ith grad–div-FOM (8).

Fig. 8. Temporal evolution of drag coefficient computed with grad–div-ROM (21) (Skew, top; Emac, bottom) with µon = 0.1 using
= 8, 12, 16 velocity modes. Comparison with grad–div-FOM (8).
17
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Fig. 9. Temporal evolution of kinetic energy (top) and drag coefficient (bottom) computed with ROM (21) (µ = 0) using r = 12 velocity
modes. Comparison with FOM (8) (µ = 0).

equal to the value ∥∇ · uh∥0 which is considerably big, explaining the big difference between the FOM values of
the drag coefficient compared to the ROM values.

To support the above explanation we now repeat Figs. 4 and 5 with µon = 0.1. In this case the difference
µon − µoff| is divided by around 10 and |µon − µoff|

1/2 is 0.3. In Figs. 7 and 8 we have plotted the results. While
n Figs. 4 and 5 the error in the drag coefficients has the size of ∥∇ · uh∥0, in Figs. 7 and 8 this error has size 0.3
imes ∥∇ · uh∥0 (the error is divided by 3.3 approximately respect to the previous experiment as can be observed).
ince the error |µon − µoff|

1/2
∥∇ · uh∥0 is smaller than before, in Fig. 8 we can now observe some improvement

hile increasing the number of modes. The improvement is bigger from r = 8 to r = 12 than from r = 12 to
= 16 since once the error reaches the quantity |µon − µoff|

1/2
∥∇ · uh∥0, no further reduction of the errors is

xpected.

.3. Numerical results for ROM without grad–div and different discretization of the nonlinear term

Finally, as in [1], we repeat the numerical experiments of Section 5.1 without grad–div stabilization, for which
he error analysis performed in Section 4.2 holds. In particular, we use the FOM (8) with µ = 0 to compute the
napshots for the construction of the POD modes. With POD velocity modes generated, the fully discrete ROM (21)
ith µ = 0 is run with both skew-symmetric (as for the FOM) and EMAC (different from the FOM) formulation
f the nonlinear term.

Numerical results for kinetic energy and drag predictions using r = 12 velocity modes are shown in Fig. 9,
here we display a comparison of FOM (8) (µ = 0) with the skew-symmetric form of the nonlinear term, and
OM (21) (µ = 0) with both skew-symmetric and EMAC form of the nonlinear term.
18
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Fig. 10. Temporal evolution of kinetic energy computed with ROM (21) (Skew, top; Emac, bottom; µ = 0) using r = 8, 12, 16 velocity
modes. Comparison with FOM (8) (µ = 0).

From this figure, similarly to Section 5.1 and in agreement with [1], we see again that the ROM with the
skew-symmetric form of the nonlinear term (as for the FOM) gives better results for both kinetic energy and drag
predictions, in the sense that the good match that we observe using the same discretization for the nonlinear term as
for the FOM (Skew) is slightly degraded using a different formulation of the nonlinear term (EMAC) in the online
phase, as predicted by the theoretical study.

Also in this context, we show numerical results for kinetic energy and drag predictions varying r , i.e. the number
of velocity modes, in Figs. 10 and 11, respectively, where we display a comparison to FOM (8) (µ = 0) with the
skew-symmetric form of the nonlinear term. From these results, similarly to Section 5.1, we can again observe
that better results are obtained when using the ROM with the skew-symmetric form of the nonlinear term (as for
the FOM). In view of Remark 4.6, we can avoid the appearance of the term ∥∇ · (uh − u)∥0 in the error analysis

aving instead the term ν−1/2
∥uh − u∥0. Since ν−1/2

≈ 31.6 in this experiment this extra term is still small and,
onsequently, we can observe a reduction of the ROM error when increasing r with both nonlinear terms, although
he reduction is larger when the same term is used in the FOM and ROM methods. We want to remark that, in
ase of using a coarser mesh to compute the FOM approximation and/or a bigger Reynolds number, the error term:
in(ν−1/2

∥uh −u∥0, ∥∇·(uh −u)∥0) could dominate the behavior of the ROM approximation giving no improvement
hile increasing the number of modes, see the numerical experiments in [1].

. Conclusions

As a conclusion, we can say that there are extra error terms in the case in which different discretizations are
sed for the nonlinear terms in the FOM and POD methods. Although these extra error terms lead in general to
less accurate method, in many examples, specially in the case in which grad–div stabilization is used, the extra

rror is small and the non consistent FOM–ROM method can still be used in practice.
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Fig. 11. Temporal evolution of drag coefficient computed with ROM (21) (Skew, top; Emac, bottom; µ = 0) using r = 8, 12, 16 velocity
modes. Comparison with FOM (8) (µ = 0).

In the case in which grad-did stabilization is added to both the FOM and POD methods error bounds with
constants independent on inverse powers of the viscosity can be obtained. Comparing the case in which the same
discretization of the nonlinear term is used for both FOM and POD methods we have bounded the added term in
the error that has the size of the error of the FOM method (in the L2 norm of the velocity and the L2 norm of the
divergence of the velocity).

On the other hand, in the case in which no stabilization is added neither to the FOM nor to the POD method,
we have carried out two different error analysis. In the first one, the error bounds depend on inverse powers of
the viscosity and on the L2 error of the velocity and the L2 error of the divergence of the velocity of the FOM
method plus the L2 error of the projection of the square modulus of the velocity onto the FEM pressure space. In
the second one, we are able to prove error bounds with constants independent on inverse powers of the viscosity
but with the price of having bounds that depend on the H 1 norm of the FEM velocity error and the H 1 error of
the projection of the square modulus of the velocity onto the FEM pressure space. Moreover, since the bounds for
the plain Galerkin method depend on inverse powers of the viscosity the dependence on ν−1 cannot completely be
avoided also in this case.

Overall, we have identified all the terms in the error bounds for different combinations of discretizations of the
nonlinear term adding or not grad–div stabilization.
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