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Abstract: The layer-structured monoclinic Li2MnO3 is a key material, mainly due to its role in Li-ion
batteries and as a precursor for adsorbent used in lithium recovery from aqueous solutions. In
the present work, we used first-principles calculations based on density functional theory (DFT)
to study the crystal structure, optical phonon frequencies, infra-red (IR), and Raman active modes
and compared the results with experimental data. First, Li2MnO3 powder was synthesized by the
hydrothermal method and successively characterized by XRD, TEM, FTIR, and Raman spectroscopy.
Secondly, by using Local Density Approximation (LDA), we carried out a DFT study of the crystal
structure and electronic properties of Li2MnO3. Finally, we calculated the vibrational properties
using Density Functional Perturbation Theory (DFPT). Our results show that simulated IR and
Raman spectra agree well with the observed phonon structure. Additionally, the IR and Raman
theoretical spectra show similar features compared to the experimental ones. This research is useful
in investigations involving the physicochemical characterization of Li2MnO3 material.

Keywords: Li2MnO3; DFT; DFPT; Raman spectroscopy; IR spectroscopy

1. Introduction

The growing demand for portable devices, electronic vehicles and energy storage, as
well as attempts to mitigate the impacts of global warming, have led to rapid advances
in the development of lithium-ion batteries as well as the search for new technologies in
lithium recovery [1–4]. In this instance, lithium manganese oxide (LMO) materials have
attracted a great deal of interest due to their key roles as cathodic and precursor materials for
energy and lithium adsorption from aqueous solutions, respectively [5,6]. In the context of
these potential applications, Li-rich LMO such as Li2MnO3 has been identified as a crucial
component due to its interesting physicochemical properties [7,8]. Interestingly, it has been
reported that the increase of Li2MnO3 content enhances the cycling stability of cathode
materials based on Li-Mn-O, preventing the manganese dissolution [9,10]. Similarly, by
controlling the Li2MnO3 layered phase content in lithium adsorbent precursor materials,
it is possible to prevent the manganese dissolution from the LMO lattice during the Li+

desorption process [11].
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The layer-structured monoclinic Li2MnO3 materials (with the rock salt crystal struc-
ture; Figure 1) belong to the C2/m space group. Li2MnO3 structure consists of laminations
of alternating Li/Mn and Li-layers (Figure 1a). The Li+ and Mn+4 ions reside in the octa-
hedral interstices of a close-packed cubic oxygen lattice stacking order, as represented in
Figure 1b,c [12]. Their formula can also be written as:

{(Li1/2)2c(Li1)4h}interslab{(Li1/2)2b(Mn1)4g(O1)4i(O2)8j}

The lithium ions are scattered octahedrally in the 2c and 4h Wyckoff position inside the
[Li+] layer and in the 2b position into the [LiMn2] layer, while the Mn+4 ions are dispersed
octahedrally in the 4g sites [13].

Figure 1. (a) A 2 × 1 × 2 super-cell showing the [Li+] and [LiMn2] layers, (b) the conventional unit
cell, and (c) the top view of the monoclinic Li2MnO3 crystal (Li: grey, Mn: blue and O: red).

Li2MnO3-based LMO materials can be formed by different synthesis routes, varying
in conformation and composition. Structures such as core-shell type, spinel embedded
within the layered matrix, and spherical particles have been reported [9,14,15]. Whatever
the conformation and composition are chosen, a detailed characterization of the LMO
material is essential to provide an understanding of its different properties. For example,
one of the most critical issues in understanding electrochemical properties is determining
the local structure [16]. In this context, some studies have shown a relationship between the
structural properties and electrochemical performance in doped-LMO composites [7,17].
Kim et al. reported that the enhanced stability of the local structure of lithium manganese
oxides is related to the improvement of cyclability [18]. Likewise, the knowledge of the local
environment of LMO helps to elucidate the underlying mechanism of the ad/desorption
process in LMO-based lithium-ion sieves [19]. In this sense, vibrational spectroscopy can
be used to provide information on the structural aspects of LMO. Raman and infra-red (IR)
spectroscopies are very sensitive to the short-range environment of oxygen coordination
around the cations [20]. Julien and co-workers have extensively studied the structural
properties of spinel-type LMO by Raman and IR spectroscopies [20–26]. Their results are
based on the experimental analysis of the LMO building blocks, namely, the tetrahedra
LiO4 and the octahedra MnO6, which compose the crystal lattice. On the contrary, the
vibrational analysis of the Li2MnO3 has not been completely and vigorously studied
yet, despite the fact that its IR and/or Raman bands have been studied previously by
experiments [8,27]. Therefore, there is a need to perform detailed studies in order to
obtain solid knowledge about its vibrational properties. In this context, simulated IR and
Raman spectra based on density functional theory (DFT) calculations can be helpful in
understanding the vibrational properties of Li2MnO3. In fact, DFT-based theoretical studies
have shown excellent agreement with experimental IR and/or Raman spectra of organic
compounds [28], crystalline [29], and 2D materials [30].

In the present work, we report a computational study of the vibrational properties
of Li2MnO3. Initially, we synthesized and physicochemically characterized the Li2MnO3
powder material. Further, we proceeded to the calculation of the optimized crystal struc-
ture and the electronic properties by first-principle calculations using the Local Density
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Approximation (LDA). Then, by using Density Functional Perturbation Theory (DFPT), we
studied the vibrational modes and computed the phonon structure, IR and Raman spectra
of the Li2MnO3. Finally, a detailed interpretation of obtained data was presented.

2. Materials and Methods
2.1. Material Synthesis and Characterization

The Li2MnO3 samples were synthesized by way of a hydrothermal method. First,
LiOH (2 mol·L−1) and H2O2 (1.2 mol·L−1) were dissolved in ultra-pure water to produce Li
precursor solutions. Then, MnSO4 (0.4 mol·L−1) was dissolved in ultra-pure water to form
an Mn precursor solution. Both solutions were magnetically stirred for 2 h. Subsequently,
the mixture was crystallized for 8 h at 180 ◦C in a Teflon-lined stainless steel autoclave. The
crystallization product was washed and centrifuged numerous times. Finally, the resultant
product was dried at 60 ◦C for 12 h before being calcined at 800 ◦C for 4 h.

Powder X-ray Diffraction (XRD) in a Bruker New D8 Advance X-ray diffractome-
ter equipped with a Johansson monochromator (Cu-Kα1 radiation (Billerica, MA, USA),
λ = 1.5406 Å) and LYNXEYE XE detector was used to investigate the Li2MnO3 crystallo-
graphic structure. With an angular step of 0.02° and a scanning rate of 2◦/s, the diffraction
patterns were scanned from 2θ 10◦ to 90◦.

High-resolution transmission electron microscopy (HR-TEM) and electron diffraction
(ED) (JEOL 2100F, Tokyo, Japan), operating under an accelerating voltage of 200 kV, were
used to analyze the morphology and microstructure of Li2MnO3 samples.

The vibrational properties of Li2MnO3 samples were studied by Raman, and Fourier
transform infrared (FT-IR) spectroscopies. Raman spectra were acquired from Renishaw Ra-
mascope 2000 Raman microspectrometer, coupled to an Olympus BH-2 optical microscope
at room temperature using argon ion laser (514.5 nm wavelength (green)) for excitation.
The objective had a numerical aperture of NA = 0.80 and a magnification of 50×. On the
sample surface, the laser power was of the order of 1 mW. Each CCD pixel integration time
was 50 s. The FT-IR spectra were obtained from Spectrum Two Spectrometer (Perkin Elmer;
Waltham, MA, USA) with a resolution of 4 cm– 1 over the range of 4000–50 cm– 1.

2.2. Calculation Details

The calculations were carried out under the Density Functional Theory (DFT) frame-
work using the plane wave pseudopotential method coded inside the Quantum ESPRESSO
computational package [31]. We used the conventional unit cell to represent Li2MnO3,
which is composed of four formula units, resulting in a total of 24 atoms (Li8Mn4O12; see
Figure 1b). Then, the optimized cell parameters were obtained via DFT by variable-cell
relaxation. For Li, Mn, and O atoms, norm-conserving pseudopotentials based on Lo-
cal Density Approximation (LDA) were selected [32]. We used very tight values for the
kinetic energy cutoff, total energy and force tolerance, setting them to 80 Ry, 1 × 10−9

Ry and 1 × 10−5 Ry per Bohr, respectively. In order to sample the reciprocal space, we
used the Monkhorst–Pack method [33] with a k-point mesh of 4 × 4 × 4 for the cell model,
Li8Mn4O12. Despite the fact that the nature of Li2MnO3 is antiferromagnetic, several reports
demonstrated that the effect of various spin configurations on the total formation energies
is minimal; therefore, in order to simplify the model, only the ferromagnetic configuration
is taken into account when the spin polarization is included in the calculations [13,34–36].
The optimized cell parameters and atomic positions were used to construct the electronic
density of states (DOS) and the electronic band structure. In order to calculate the vibra-
tional properties, we performed Density Functional Perturbation Theory (DFPT) using the
Phonon Package of Quantum ESPRESSO [37]. Using the DFPT linear response approach
at the Γ point, the dynamic matrix and frequencies of the harmonic phonon modes were
determined. The calculated IR and Raman spectra were represented by a Gaussian function
with an FWHM of 10 cm– 1. The vibrational modes were visualized with the XCrysDen
software [38]. The phonon band structure and phonon DOS were computed by using a
q-point mesh of 2 × 2 × 2.
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3. Results and Discussion
3.1. Characterization of the Li2MnO3 Powder Material

The performance of the LMO is strongly influenced by the crystalline structure, particle
size, morphology and specific surface area. Therefore, it is important to conduct a detailed
characterization before its application [11]. In order to characterize synthesized Li2MnO3 in
terms of crystalline structure, we performed XRD analysis (Figure 2a). The high sharpness
and intensity of the experimental peaks are remarkable indicators of the good crystalline
nature of the material. Characteristic peaks of monoclinic Li2MnO3 (C2/m spatial group;
COD entry # 96-154-4474) [39] can be distinguished. Thus, between 20◦ and 25◦, shoulder-
like peaks related to the diffraction of the superlattice of Li2MnO3 are observed [40].
Moreover, the samples display the typical peak splitting between 63–67◦, corresponding to
the (-133) and (33-1) planes.

Figure 2. (a) X-ray diffraction pattern and (b,c) Transmission Electron Microscopy images of the
Li2MnO3 powder material used in this study.

HRTEM was used for the local study of the microstructure of LMO. HRTEM images
(Figure 2b) show the presence of agglomerated nanoparticles with granular morphology
and particle sizes between 100 and 200 nm. Moreover, by analyzing the HRTEM image in
Figure 2c, it is possible to identify the [001], [020] and [11-1] zone axes with interplanar
spacings of 4.7 Å, 4.2 Å and 3.6 Å, respectively, which correspond to the layered structure
Li2MnO3 [11,41].

3.2. Optimized Crystal Structure and Electronic Properties of the Li2MnO3

The Li2MnO3 crystal structure exhibits a monoclinic spatial ordering with a space
group C2/m. The parameters of the conventional unit cell are a = 4.933 Å, b = 8.535 Å,
c = 5.026 Å and β = 109.314◦ [42,43]. Herein, the Mn+4 ions are arranged in octahedral 4 g
sites, while the lithium-ion, Li+, are spread in 2c and 4h octahedral sites into the [LiMn2]
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layer and [Li+] layer stack [3]. Thus, we first calculated the structural parameters of the
relaxed conventional unit cell of the Li2MnO3 by using the LDA method and compared
them to the experimental values (Table 1). On the one hand, the results showed that
the calculated lattice parameters a, b and c were underestimated by the LDA method
compared to the experimental values by approximately 3%. On the contrary, the β angle
(the angle between axes a and c) was slightly overestimated. Despite the fact that LDA
has been shown to underestimate the lattice parameters for several types of materials
severely, our optimized lattice parameters for the Li2MnO3 present good agreement with
the experimental results.

Table 1. Optimized structural parameters of the Li2MnO3 crystal determined by DFT calculations.

a (Å) b (Å) c (Å) β (◦) Volume (Å³)

LDA 4.805 8.308 4.854 109.628 182.494
Experimental 4.933 8.535 5.026 109.314 211.608

Figure 3 shows the predicted projected density of states (pDOS) and band structure
of the Li2MnO3 along with the high-symmetry points of the first Brillouin zone. The
Fermi energy level (EF) has been set to zero energy. The electronic DOS of the Figure 3
shows an overlap/hybridization between the 3d state of Mn and the 2p state of O, which
is characteristic of 3d transition metal oxides [35]. The occupied states at the Fermi level
are largely constituted of O 2p, while the Mn 3d orbitals contribute more to the conduction
bands. The band gap between the lowest conduction and maximum valence levels are
1.65 eV and 1.99 eV for the spin-up and down configuration, respectively, thus assuming
a semiconductor behavior. On the other hand, the electronic band structure of Li2MnO3
indicates that both valence band maximum and conduction band minimum are localized at
the Γ-point.

Figure 3. Electronic band structure and electronic density of states of Li2MnO3 calculated by
LDA. In the electronic band structure, the blue and black bands correspond to the spin-up and
down, respectively.

3.3. Vibrational Properties of Li2MnO3

The computed phonon bands dispersion and phonon DOS for Li2MnO3 along the
high-symmetry directions of the first Brillouin zone are shown in Figure 4. Importantly, the
absence of imaginary frequency modes in the Brillouin zone demonstrates the structural
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dynamical stability of our model of Li2MnO3 [44,45]. According to the dispersion curves in
Figure 4, the highest wavenumber is about 700 cm– 1. More interestingly, the phonon band
structure of Li2MnO3 does not contain a phonon gap [45]. The phonon DOS for Li2MnO3
is shown on the right-hand of Figure 4. The shaded green, red, and blue areas represent Li,
O, and Mn atom phonon partial DOS, respectively. On the one hand, it is evident that the O
atom contributes to the overall phonon distribution, dominating the zone with the highest
intensities at higher frequencies. Additionally, the phonon distribution of the Mn atom
extends to the whole spectrum but with lower intensity than the O atom. Interestingly,
there is a hybridization between Mn and O vibrational states at higher frequencies. On the
other hand, the phonon distribution of the Li atom mainly contributes to the middle part of
the spectrum, ranging from 200 cm– 1 to 500 cm– 1, suggesting hybridization between Li
and O vibrational states in this zone.

The unit cell of Li2MnO3 has 24 atoms. After the software analysis, there are three
acoustic and sixty-nine optical modes. Li2MnO3 belongs to the C2/m space group (point
group C2h), and its irreducible representations at the Brillouin zone point are the following:

Γacoustic = Au + 2Bu (1)

Γoptic = 15Au + 12Ag + 24Bu + 16Bg. (2)

Figure 4. Phonon dispersion and phonon DOS for Li2MnO3 calculated by using the LDA method. In
the phonon band structure, the acoustic bands are plotted in red.

Tables 2 and 3 show the calculated Γ zone-centered optical phonon frequencies of
Li2MnO3. In Li2MnO3, according to the C2h point group character table, the Au and Bu
modes are IR active, whereas the Ag and Bg modes are Raman active. The lowest and
highest phonon frequencies are 173.38 and 668.64 cm– 1, respectively, which is consistent
with our previous results of the computed phonon dispersion.
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Table 2. Experimental and calculated IR modes for the Li2MnO3 crystal determined by DFPT
calculations.

Exp. IR
freq.(cm– 1)

Calc. IR
freq.(cm– 1) Symmetry Exp. IR

freq.(cm– 1)
Calc. IR

freq.(cm– 1) Symmetry

173.38 Bu 417.7 Bu
181.89 Au 425 431.79 Au
184.75 Bu 439.87 Bu
208.99 Bu 437.8 461.78 Au
226.19 Bu 437.8 469.48 Bu
252.46 Au 489.38 Au
258.53 Bu 498.5 Bu

268 263.69 Bu 501.37 Au
282 274.87 Au 514 507.57 Bu
282 276.48 Bu 530.38 Bu
292 306.25 Bu 543.95 Bu
327 316.27 Au 537 570.37 Au

334.01 Au 537 579.04 Bu
352 350.02 Bu 537 581.66 Bu
352 354.15 Bu 627 609.12 Au

367.76 Bu 627 613.16 Bu
380 378.5 Bu 627 622.42 Au

393 Au 627 628.49 Au
401.78 Au 627 633.94 Bu
407.29 Bu

Table 3. Experimental and calculated Raman modes for the Li2MnO3 crystal determined by DFPT
calculations.

Exp. Raman
freq.(cm– 1)

Calc. Raman
freq.(cm– 1) Symmetry Exp. Raman

freq.(cm– 1)
Calc. Raman
freq.(cm– 1) Symmetry

201.07 Ag 482.56 Ag
218.24 Ag 501 493.99 Bg
224.08 Bg 501 514.9 Bg

250 238.84 Bg 501 520.66 Ag
309 300.07 Bg 501 522.63 Ag
324 322.81 Bg 549.63 Bg
335 347.34 Bg 552.83 Bg
374 372.87 Ag 565.07 Bg
374 376.47 Ag 574 572.2 Bg

390.11 Ag 574 574.7 Ag
419 427.5 Ag 616 619.61 Ag

435.11 Bg 623.26 Ag
442 441.91 Bg 668.64 Ag

454.22 Ag

The experimental and theoretical IR and Raman spectra are shown in Figure 5. The
IR and Raman spectra calculated for Li2MnO3 were based on lattice dynamic simulations.
As has been previously shown for other transition metal oxides, in our case, the number
of experimental modes is much lower than that expected theoretically due to the three
possible circumstances: (i) certain modes have very similar energy; (ii) stronger bands may
overlap some weaker bands, and (iii) in spectra of a randomly oriented crystalline material,
the relevant bands cannot be resolved properly [46,47].

Figure 5a shows the FT-IR spectra of synthesized Li2MnO3 powder. The sample
exhibited strong absorption bands around 500–700 cm– 1. Specifically, these bands ap-
pear at 514, 537 and 627 cm– 1. The major contribution of these bands is related to the
asymmetric stretching vibrations of octahedral MnO6 [21,25]. In this range, however, the
stretching vibrations of tetrahedral LiO4 groups have also been observed at 650 cm– 1 [19]
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and 350–550 cm– 1 [23]. IR spectroscopy investigations of lithium inorganic compounds
have demonstrated that the vibrations of MnO6 groups are tightly related to LiOn polyhe-
dral vibrational modes at low and high frequencies (LiO6 and LiO4) [21]. The calculated
IR spectra of Li2MnO3 are shown in Figure 5b. Interestingly, the theoretical spectrum
shows similar characteristics to the experimental one, with some shifts in the frequency
of the main vibrational modes. The results show two IR active modes with high intensity
at higher frequencies (550–650 cm– 1). Additionally, four intense IR active modes appear
at the middle-to-low frequencies zone (250–510 cm– 1). The absorption bands around
550–650 cm– 1 and 250–510 region are attributed mainly to the MnO6 and LiOn functional
groups, respectively, as can be seen in the atomic displacements for the IR vibrations modes
of Li2MnO3 (Figure 6). Remarkably, these theoretical results are in agreement with the
phonon study, which shows a strong hybridization between Li-O and Mn-O at low and
high frequencies, respectively.

Figure 5c shows the typical Raman spectra of the synthesized Li2MnO3 powder.
Eight major contributions are resolved with clarity. Strong bands at high frequencies,
related to the stretching of Mn-O bond modes that arise from the MnO6 octahedra, are
evidenced [48]. Additionally, weak bands in the low-frequency region related to Li-O bonds
are observed [49]. The Raman spectra exhibited active Raman bands around 616, 574, 501,
442, 419, 374, 335, and 250 cm– 1. Similar results were reported by other authors [49,50]. The
calculated Raman spectrum of Li2MnO3 is shown in Figure 5d. Interestingly, the theoretical
spectrum shows similar characteristics to the experimental one, showing minor differences
in intensities. The results show eight Raman signals. Two main Raman active modes were
evidenced at high and middle frequencies around 620 and 522 cm– 1. These bands can be
assigned to Ag and Bg modes due to the vibrations of the Mn atoms and the vibrations of
Li atoms in the Mn layer, respectively [50,51]. Two representative atomic displacements for
the Raman vibration modes of Li2MnO3 are shown in Figure 6. Interestingly, our phonon
and Raman simulations are in agreement.

Figure 5. Experimental and theoretical IR (a,b) and Raman (c,d) spectra of Li2MnO3.
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Figure 6. Atomic displacements for representatives IR and Raman vibrations modes of Li2MnO3

calculated by LDA.

4. Conclusions

In the present study, we have systematically computed the phonon structure, infra-
red, and Raman spectra of Li2MnO3 by first-principles calculations. We analyzed its
crystal structure, optical phonon frequencies, IR, and Raman active mode and compared
them to the experimental findings. By using the LDA exchange functional, we have
found an underestimation of the lattice parameters by approximately 3% compared to the
experimental one. Moreover, the electronic properties evidenced a semiconductor behavior
with a strong hybridization between Mn 3d and O 2p states near the Fermi level. From
the point of view of the vibrational properties, the phonon band structure of Li2MnO3
does not show a phonon gap. Additionally, the phonon distribution shows that Mn and O
vibrational states dominate at higher frequencies, and Li and O atoms mainly contribute to
the middle-to-low part of the spectrum. Simulated IR and Raman spectra agree with the
experimental data. Thus, this work can be considered helpful for future studies dealing
with the vibrational characterization of Li2MnO3 material.
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