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Abstract. As searches for thermal and self-annihilating dark matter (DM) intensify, it 
becomes crucial to include as many relevant physical processes and ingredients as possible to 
refne signal predictions, in particular those which directly relate to the intimate properties 
of DM. We investigate the combined impact of DM subhalos and of the (velocity-dependent) 
Sommerfeld enhancement of the annihilation cross section. Both features are expected to 
play an important role in searches for thermal DM particle candidates with masses around 
or beyond TeV, or in scenarios with a light dark sector. We provide a detailed analytical 
description of the phenomena at play, and show how they scale with the subhalo masses 
and the main Sommerfeld parameters. We derive approximate analytical expressions that 
can be used to estimate the overall boost factors resulting from these combined e�ects, 
from which the intricate phenomenology can be better understood. DM subhalos lead to 
an increase of the Sommerfeld e�ect by several orders of magnitude (for both s- and p-wave 
annihilation processes), especially on resonances, which makes them critical to get sensible 
gamma-ray signal predictions for typical targets of di�erent masses (from dwarf galaxies to 
galaxy clusters). 
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1 Introduction 

Gamma-ray astronomy, and more generally multimessenger astronomy, provides powerful 
probes of thermally produced non-asymmetric particle dark matter (DM), in particular sce-
narios in which DM self-annihilation proceeds through s-wave processes1 [2–5] — we gener-
ically refer to this kind of scenarios as the weakly-interacting massive particle (WIMP) 
paradigm [6–9]. Searches in the local universe are nicely complemented by early-universe 
probes, for instance those deriving from analyses of the cosmic-microwave background (CMB) 
radiation [10]. Current constraints disfavor DM particle masses below ˘ 50 GeV with canon-
ical cross sections annihilating into a variety of standard-model fnal states [11]. Indirect 
searches, namely the searches for DM annihilation or decay signals in astrophysical probes, 
are sensitive to parts of the parameter space usually hidden to direct searches (and vice 
versa), i.e. searches for DM particle collisions onto nuclear targets in underground detectors, 

1In the non-relativistic regime that prevails since before chemical decoupling, the DM annihilation cross 
2 2section can usually be expanded in powers of v = vrel/4, which directly relates to an expansion in partial waves 

[1]. Accordingly, we generically refer to s-wave processes as those giving a velocity-independent annihilation 
rate, while p-wave processes come with a hv 2i-dependent annihilation rate. 
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due to the di�erent velocity dependencies arising when Feynman diagrams are rotated from 
annihilation to elastic collision — for instance, a p-wave annihilation into quarks can usually 
be eÿciently probed by direct searches. Hence, deepening the exploration on both fronts is 
the best way to validate or exclude the thermal DM scenario. 

As observations and experiments have now entered the thermal DM parameter space, 
and as theoretical modeling improves, it becomes important to refne predictions in order 
to explore further non-trivial, though very interesting, corners of theory space. One of such 
corners implies particle models in which DM self-interacts through long-range forces, which 
may lead to what is called the Sommerfeld enhancement of the annihilation cross section [12– 
20]. It is basically triggered when the interaction range becomes larger than the spread of a 
DM-particle pair wavefunction. This typically occurs when there is a large mass hierarchy 
between the DM particle and interaction mediators, which is rather generic for multi-TeV 
DM, but can also be present on more general grounds in case of relatively light dark sectors. 
Recent examples can be found in, e.g., refs. [9, 21]. 

The Sommerfeld enhancement of the annihilation cross section is similar to gravitational 
−nfocusing as it depends on inverse powers of the relative speed, vrel , where n is an integer 

that will be specifed later. Since the DM dispersion velocity relates to the mass of the 
self-gravitating halo, one can naturally expect that DM subhalos, the tiniest DM structures 
expected in the universe [22–25], could be the sites for the largest enhancements. Of course, 
as we will see, that enhancement may saturate below some characteristic velocity inherent to 
the properties of DM particles and self-interactions, but subhalos still play a very important 
role in setting the overall annihilation signal predictions. In this paper, we restrict to DM 
annihilation into gamma rays, and our calculations are made in such a way that they can be 
applied to a diversity of DM targets in gamma-ray astronomy, from dwarf galaxies to galaxy 
clusters. 

Several references have actually already addressed the Sommerfeld enhancement in spe-
cifc DM systems with subhalos, e.g. [26–33] (see also refs. [34–38]). The goal of this paper 
is rather to expand upon these works and to provide a more complete and generic analytical 
understanding of the intricate processes at play, applicable to all targets and covering the 
full (though simplifed) parameter space relevant to the Sommerfeld e�ect. In particular, we 
will see that the role of subhalos is critical both on Sommerfeld resonances, and in the case 
of very large mass hierarchy between the DM particle and the interaction mediator. In some 
cases, the exploratory power of di�erent gamma-ray targets (e.g., dwarf galaxies vs. galaxy 
clusters) could even be inverted, which points to new interesting complementary ways to 
constrain the Sommerfeld parameter space. 

The paper develops as follows. In Sec. 2, we present our general reasoning in simple 
physical terms, which will pave the way to our more technical discussion in the following 
sections, and already unveil some of the main results. In Sec. 3, we introduce the velocity 
dependencies of the general problem in more technical terms. We start by characterizing the 
Sommerfeld enhancement in Sec. 3.1, and then introduce the velocity-dependent J-factor in 
Sec. 3.2, which defnes the amplitude of the gamma-ray signal for a given DM halo target. 
We further recall how one can get reasonable description of the phase-space distribution 
functions in self-gravitating DM halos. In Sec. 4, we extensively discuss how subhalos enter 
the game and a�ect the overall predictions, before concluding in Sec. 5. A companion paper 
[39] explores in details the consequences of Sommerfeld enhancement and subhalo boosts on 
specifc gamma-ray targets from dwarf galaxies to galaxy clusters, based on the full numerical 
calculation. 
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2 A glimpse of the main results 

Before digging into the technical aspects of the work, it is useful to summarize them in 
more simple terms. DM subhalos are well-known boosters of DM annihilation signals; see 
e.g. refs. [40–42] for their e�ects in indirect DM searches with di�erent messengers, and 
e.g. ref. [43] for a review. For velocity-independent s-wave processes, this is a mere conse-
quence of hρ2i � hρi2 , where ρ is the local DM density in a target host halo, which turns 
to a full inequality thanks to DM inhomogeneities such as subhalos. In that case, given the 
mass dependence of the signal for one object, the overall contribution is simply obtained by 
convolving this mass-dependent signal with the subhalo mass function. The latter derives 
from structure formation theory, and can be approached from both analytical considerations 
and cosmological simulations. If the signal associated with a single halo of mass m is scale 
invariant and proportional to mβ (which, we will show, is a reasonable approximation), and 
if the subhalo mass function scales like m−α , with both α, β > 0, then the signal integrated 
over the subhalo mass range is simply φsub / m−αeff , with an e�ective index αeff = α −β −1. 
One readily sees that depending on the sign of αeff , the signal will be dominated either by the 
light mass boundary of the integral (i.e., many small objects), or the heavy one (i.e., fewer 
massive objects). The former case generically leads to a stronger subhalo boost factor, which 
is a measure of the ratio hρ2iV /hρi2 in the relevant volume V , and which characterizes theV 

annihilation signal enhancement due to DM inhomogeneities. The amplitude of this boost 
factor is linked to that of αeff , and to the mass hierarchy between the host halo mass and 
the minimal subhalo mass, the latter being linked to the interaction properties of DM. This 
holds for s-wave annihilation processes. 

For p-wave processes, no subhalo enhancement is expected because the p-wave suppres-
sion factor, proportional to hv2i, is even more severe in subhalos inside which bound DM 
particles must have a smaller dispersion velocity not to escape. This argument makes it 
straightforward to guess that, in scenarios in which subhalos would represent a signifcant 
fraction of the total mass, the overall p-wave signal could actually even be further subhalo-
suppressed. On the other hand, it is also obvious that bigger halos, with larger dispersion 
velocities, will lead to larger global annihilation rates. 

The Sommerfeld enhancement of the annihilation cross section strongly a�ects the above 
statements, because it is itself velocity dependent, with a di�erent dependence between s-
and p-wave processes. Then two questions arise: (i) Since the Sommerfeld e�ect is local 
by nature, how does it scale at the level of a full object? (ii) How does it propagate over 
a population of objects? The main complication comes from the fact that the Sommerfeld 
e�ect behaves di�erently depending on whether the relative DM de Broglie wavelength is 
greater (saturation regime) or lower (Coulomb regime) than the DM self-interaction range, a 
transition which therefore depends on DM velocity. That specifc transition is actually fxed 
by particle physics independently of any astrophysics, and can therefore be predicted rather 
accurately (at least in simplifed particle DM models). Moreover, the reasoning made just 
above for Sommerfeld-free p-wave processes indicates a possible way: although (sub)halos are 
featured by spatially-dependent velocity distribution functions, which need to be integrated 
over to properly describe the Sommerfeld distortion of the annihilation cross section, one 
could still hope to capture the net e�ect from a typical velocity for each halo, which would 
then be related to its mass. If this typical velocity is a scale-invariant function of the halo 

νmass, for instance v / m , then we can apply the same recipe as above. The transition 
between the two Sommerfeld regimes occurs at a specifc velocity, ṽsat, entirely fxed by 

– 3 – 



particle physics, which can itself be translated into a specifc halo mass, which we denote 
m̃ sat. If the Sommerfeld enhancement scales locally like v−s1 in one of its regime, and like 
−s2 −s1 −ν s1v in the other one, then this converts into a global scaling like v / m , say for 

−s2 −ν s2m > m̃ sat (Coulomb regime), and v / m for m < m̃ sat (saturation regime) — s1 
and s2 may take di�erent values for s- and p-wave processes. In the same vein, the velocity 
dependence associated with the p-wave “bare” cross section scales like v2 / m2ν . To fgure 
out whether subhalos are susceptible to increase the signal, one needs to determine the 
overall velocity dependence of the Sommerfeld-corrected cross section (including the p-wave 
suppression). Basically, if si > 0 (or si − 2 > 0 for p-wave processes), where i 2 {1, 2}, then 
the Sommerfeld-corrected cross section will be larger with decreasing subhalo mass, which 
will make them increase the signal. 

By integrating this Sommerfeld-corrected cross section times the “bare” mass-dependent 
signal (/ mβ) over a power-law subhalo mass function of index α, and assuming that the 
transition mass m̃ sat lies within the subhalo mass range defned by [mmin,mmax], then we 
can readily infer two di�erent contributions: one scaling like m−α1 , with α1 = α + s1 − β − 1, 
and the other one scaling like m−α2 , with α2 = α + s2 − β − 1 (with an additional factor of 
m2ν for p-wave processes, and the corresponding change in the associated α1 and α2). The 
most contributing boundary will be either m̃ sat or mmax in the frst regime, and either m̃ sat 
or mmin in the second regime, depending on the signs of the α’s. 

As a frst important insight, we see that for p-wave processes, the mass hierarchy induced 
by the p-wave suppression factor can be fully compensated in the Sommerfeld-corrected case 
because globally, that suppression factor will simply disappear. The consequence in terms of 
target hierarchy is expected to be quite signifcant, as we shall see in more details below. 

This paper will enter the technical details of this general program which turns out to 
work reasonably well, and which allows to derive fully analytical results — our main results for 
the Sommerfeld-enhanced subhalo contribution to the signal are given in Eqs. (4.57)-(4.58). 
These (i) can help understand the di�erent scaling with the di�erent parameters at play 
(Sommerfeld particle physics parameters vs. cosmological or astrophysical subhalo param-
eters), and (ii) provide decent quantitative approximations to the more involved numerical 
calculations used in the companion paper [39]. 

3 Velocity-dependent annihilation: theoretical ingredients 

Calculations of Sommerfeld-enhanced signal predictions consist in scaling the velocity depen-
dence of a single annihilation process up to an ensemble of particle annihilations proceeding 
over an entire halo. Here, we frst introduce the velocity dependence of the Sommerfeld 
enhancement at the level of a pair of DM particles, before describing its integration over a 
DM halo along the line of sight. 

3.1 Dark matter annihilation and self-interaction: the Sommerfeld effect 

3.1.1 Conventional formulation 

We start by shortly introducing the most important features of the Sommerfeld enhancement 
to the DM annihilation cross section that we are going to use throughout this paper. A slightly 
more extended introduction can be found in App. A. We assume a simplifed model in which 
DM particles χ can self-interact through multiple exchanges of a single light mediator φp
of mass mφ, with a coupling gχ = 4παχ, where αχ plays the role of a dark fne structure 
constant. If the interaction range, 1/mφ, is larger than the DM Bohr radius, 1/(αχmχ) (close 
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to the Compton length 1/mχ), then the wave function of the two-DM-particle system can be 
distorted. This rather generically leads to a non-perturbative enhancement of the annihilation 
cross section called the Sommerfeld e�ect (we restrict ourselves to attractive interactions), 
which can often be e�ectively described by means of a Yukawa potential. This enhancement 
depends on the relative velocity between the DM particles and saturates when the DM de 
Broglie wavelength roughly exceeds the interaction range. More detailed descriptions of this 
phenomenon can be found in, e.g., refs. [12–20]. 

ˆThe Sommerfeld enhancement factor S allows one to correct for this e�ect and applies 
to the nominal annihilation cross section as follows [44]: 

σvrel = (σvrel)0 × Ŝ , (3.1) 

where the subscript 0 refers to the cross section as commonly computed from perturbation 
theory. Working in natural units (~ = c = 1) and expressing velocities in units of the speed 
of light c from now on, it turns useful to introduce the following dimensionless parameters, 

v 
�v � (3.2)

αχ 

mφ
�φ � ,

αχmχ 

where �φ roughly expresses the ratio of the Bohr radius of a pair of DM particles, 2/(αχmχ), 
to the interaction range, 1/mφ, with �φ . 1 indicating the possible onset of the Sommerfeld 
enhancement. On the other hand, the ratio �v/�φ roughly characterizes the ratio of the 
interaction range to the DM de Broglie wavelength. When this ratio gets < 1, then the 
long-range interaction is seen as fnite again by the quantum system and the Sommerfeld 
e�ects saturates. The DM particle speed v featuring above stands for half the relative speed 
of the pair, vrel/2, and c is the speed of light. Parameters �φ and �v fully characterize the 
Sommerfeld parameter space in our simple model, and encode the relevant properties of 
particles and interactions in the dark sector. 

Here we focus on s-wave and p-wave annihilation processes. We recall the more tractable 
expressions of the Sommerfeld enhancement factor for these two cases, which can be derived 
from the general analytical solution obtained for the Hulthén potential approximation—see 
App. A. For an s-wave annihilation process, the enhancement factor can be written in a 
simple form as [17] ! 

2π�v
sinh 

�� 
Ŝ  
s(v, �φ) ' π ! φ s ! (3.3) 

[Yukawa!Hulthén] �v �22π�v 1 vcosh − cos 2π − 
�� �� ��2 φ φ φ 

[Coulomb limit] π/�v−! ,p −π/�v�� ] 1 − e[�v˛ φ 

where 

�� φ � π2�φ/6 . (3.4) 

The frst line in the expression of the Sommerfeld factor in Eq. (3.3), i.e. the standard 
result for the Hulthén potential in the literature, provides a good approximation to the 
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exact result (Yukawa potential) all over the parameter space characterized by �v, �φ . 1q q 
(taking cos ! cosh when �v > �� ) [17, 19]. On the other hand, when �v ˛ �� (secondφ φ 

line), it boils down to the result obtained assuming the Coulomb potential, VC(r) = −αχ/r.q 
The condition �v ˛ �� is suÿcient but not necessary to ensure that the Coulomb-limit φ q 
expression in Eq. (3.3) is accurate; for example, in the intermediate case where �� < �v < �� φ φ 

and �v, �
� ˝ 1, the enhancement is also well-approximated by the Coulomb-limit expression φ 

[17, 28]. 
For a p-wave annihilation process, the enhancement factor reads instead !2 

1 �2 v− 1 + 4 
�� ��2 φ φ Ŝ  

p(v, �φ) = × Ŝ  
s(v, �φ) . (3.5)

�2 v1 + 4 
��2 φ 

Di�erent regimes arise according to the values of the dimensionless parameters �v and 
�φ: 

• Large velocity, �v ˛ 1 or heavy mediator, �φ ˛ 1 
ˆThere is no enhancement in that case: Ss ˇ 1 and Ŝ  

p ˇ 1. 

• Intermediate velocities, �φ ˝ �v ˝ 1 

Here, we have Ŝ  
s ˇ π/�v / 1/v and Ŝ  

p ˇ π/(4�3 v) / 1/v3 . This contains the regime in p
which the Yukawa potential tends to a Coulomb potential (for �v ˛ �φ) but spans a 
broader range of values of �v. 

• Small velocities, �v ˝ �φ ˝ 1 
This corresponds to the saturation regime of the Sommerfeld e�ect for which 

12 1Ŝs(v, �φ) ˇ (3.6)� q ��φ 2π2�2 v1 + − cos 2π 1/�� 
��2 φ 
φ!2 

1 
and Ŝ  

p(v, �φ) ˇ − 1 Ŝ  
s(v, �φ) ,

�� φ 

which is almost independent of the velocity of the DM particles, except at a series of 
resonances for 

= �res,n � 6/(π2 n 2) , (3.7)�φ φ � �2ˆ 2�2) / �res ˆ 2�2with n an integer, for which Ss ˇ 1/(n v φ /v
2 and Sp ˇ n2 − 1 /(n v) / 

1/(�resv2).φ 

These analytical formulations match with the full numerical results within 10%, ex-
cept on resonances where larger di�erences are found. This comes from the fact that the 
Hulthén potential approximation slightly o�sets the solution from the one obtained with the 
Yukawa potential [18, 34]. However, for the purpose of this work, the features of the solution, 
comprising resonances, are suÿciently well accounted for by the analytical solution. 
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We note that the Sommerfeld factor neglects bound-state decay in the low-velocity 
regime, which leads to nonphysically large enhancements on resonances, where DM bound 
states can form, that violate the partial-wave unitarity limit. Consequently, the factorization 
in Eq. (3.1) is expected to fail at vanishing velocities, �v ˝ �φ. Actually, DM bound states 
have a fnite lifetime, which induces a saturation of the enhancement at v ˇ αχ 

3 mφ/mχ 

[13, 18, 20], corresponding to v ˇ α4 
χ at resonances. As a result, a slightly modifed version 

of Eq. (3.1) holds, with the nonphysical divergences regularized by replacing v by v +α4 
χ [18]. 

We emphasize that this is only an approximate parametric regularization expected to capture 
reasonably well the relevant physical e�ects in the current study — for a more detailed 
description and discussion, see ref. [20]. If αχ ˝ 1, bound-state e�ects mostly restrict 
to resonances [34]. We can therefore consider a benchmark value of αχ = 10−2 , though 
generalized Sommerfeld corrections can be easily rescaled simply by shifting the values of �φ 
and �v. 

3.1.2 A practical ansatz 

The practical reasoning we develop in this part is general and will turn useful when expressing 
the Sommerfeld enhancement at the level of a full DM halo. The important aspect is to cor-
rectly describe the velocity dependence of the Sommerfeld enhancement. In contrast to our 
formal defnition of the Sommerfeld factor in Sec. 3.1.1, here we absorb the v2 dependence of 
the p-wave annihilation cross section into our e�ective defnition of the Sommerfeld enhance-
ment factor. To be specifc, we introduce the following e�ective Sommerfeld enhancement 

˜ 

factor: � 
S(v, �φ) =̆ 

v 
�p 

× Ŝ(v, �φ) , (3.8) 
vmax 

ˆwhere S is the exact Sommerfeld factor introduced in the previous paragraph, v is still half 
of the relative speed of the pair of DM particles, ṽmax is a reference speed that will be defned 
later, and ( 

0 for s-wave annihilation 
p = . (3.9)

2 for p-wave annihilation 

Accordingly, the p-wave annihilation cross section can be expressed as: 

(σ v)p-wave = σ0 (2 v)2 × Ŝ(v, �φ) ' σ0 (2 ̃vmax)2 × S(v, �φ) ,p p 

where σ0 is the amplitude of the p-wave cross section. The extra factor of 2 is due to thep 

fact that v = vrel/2 in our convention. This alternative form implies that there is no longer 
any velocity dependence in the reference cross section associated with the p-wave case. It 
is fully transferred to the e�ective Sommerfeld factor. Consequently, the e�ective p-wave 
Sommerfeld factor now scales like 1/v in the Coulomb regime (exactly like in the s-wave 
case), exhibits no speed dependence on resonances, and scales like v2 between resonances 
in the saturation regime, as we shall review below. This redefnition allows us to introduce 
a unique ansatz for both s- and p-wave annihilation processes, and will further make the 
analytical estimate of the Sommerfeld-corrected subhalo boost factor much simpler to derive 
and to understand. 

We now introduce a simplifying ansatz that captures the main features of the e�ective 
Sommerfeld enhancement in asymptotic regimes at the level of local interactions of test 
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particles in a (sub)halo. This ansatz provides a good approximation to the exact result. We 
can write it as follows (disregarding resonances for the moment): 

" #−� �−1 � �−sv,c (1+p) 
sv,c sv,c −v v(1+p)Sno-res(v, �φ) = S0 1 + S 

ṽmax 
(3.10)1 ṽsat(�φ) 

) Sno-res(v, �φ) 
limits−! 

8< : 
� 

S0 ṽmax� �−1 v 8ṽsat(�φ) ˝ v ˝ ṽmax�� � ,p −(1+p) 
vsat(�φ)ṽmax v 

ṽsat(�φ) ṽsat(�φ) 
/ vp � 8v ˝ ̃S0 S1 φ 

where ṽsat, which will be defned later on, marks the transition between the Coulomb and 
the saturation regimes, and S0 and S1 are calibration constants which can be calculated 
explicitly: 

S0 = (2 π)−p ; S1 = (6/π) (12/π2)p . (3.11) 

The ansatz of Eq. (3.10) is valid only when the Sommerfeld e�ect becomes e�ective, which 
corresponds to velocities v 6 ṽmax, where ṽmax is defned just below. Two power-law indices 
appear, p and sv,c, all positive defnite (p is defned in Eq. (3.9)). Index sv,c has no asymp-
totic relevance, and simply indicates how fast one transits from the Coulomb regime to the 
saturation regime. The Sommerfeld power-law index in the Coulomb regime is explicitly 
set to -1 for both s- and p-wave annihilation, as a consequence of absorbing the velocity 
dependence of the cross section in the defnition of the Sommerfeld correction for the latter. 
Parameter ṽmax stands for the velocity beyond which the Sommerfeld e�ect roughly turns o�, 
and ṽsat(�φ), which does explicitly depend on �φ, is the velocity below which the Sommerfeld 
e�ect saturates and resonances may appear. That transition occurs when the interaction 
range becomes shorter than the DM de Broglie wavelength. In between ṽsat and ṽmax, we 
are in the Coulomb regime (infnite interaction-range limit). These critical velocities can 
actually be related to the coupling strength αχ and to the reduced Bohr radius �φ, which 
both characterize the parameter space of our minimal Sommerfeld-enhancement setup. The 
appropriate defnitions read: 8>< >: 

ṽmax � π αχ 

ṽmaxṽsat(�φ) � �φ . (3.12)
π 

ṽunit � αχ 
4 

Here, we only consider situations in which the DM Bohr radius (/ Compton wavelength) 
is shorter than the interaction range (�φ . 1), a condition to trigger the Sommerfeld en-
hancement. The saturation velocity ṽsat delineates a transition in velocity dependence, fxed 
by �v = v/αX = �φ, at which the DM self-interaction range and the de Broglie wavelength 
are similar, and below which the fnite range of self-interactions becomes manifest again. 
Then, the Sommerfeld enhancement saturates and its velocity dependence is frozen, except 

= �res,non resonances. A resonance of order n can eÿciently pop up if v < ṽsat(�φ φ ), where 
the saturation velocity is evaluated at the corresponding resonant value of the reduced Bohr 
radius, �res,n . Finally, parameter ṽunit is meant to account for the unitarity constraint onφ 

Sommerfeld resonances. 
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Properties of resonances: We highlight the discussion of resonances, which will lead 
to non-trivial features throughout the paper and be specifc zones in parameter space of 
gigantic signal enhancements. In the same spirit as above, we can write a simplifying 
ansatz to describe the enhancement on resonances, which we deliberately separate from 
the non-resonant ansatz of Eq. (3.10) for clarity: � �� �(p−2) � �−2 

n>1+ p 
2 Sres ṽmax v ṽunitSres,n(v, �φ) = 0 1 + 

ṽsat(�φ) ṽsat(�φ) v 

×θ (ṽsat(�φ) − v) δ�φ/{�res,n}φ 

(1−p) (p−2)/ � v , (3.13)φ 

where ṽunit has been defned in Eq. (3.12), and saturates the amplitudes of resonant 
peaks when v < ṽunit, which allows us to e�ectively prevent any violation of the unitarity 
constraint (see discussion at the very end of Sec. 3.1.1). We have introduced ( 

1 if �φ 2 {�res,n}φδ�φ/{�res,n (3.14)
φ } � 

0 otherwise 

where again p = 0 / 2 for s/p-wave annihilation (and for which the frst resonance is at 
n = 1 / 2, respectively). The constant reads: 

S0
res = (π/6) (6/π3)p . (3.15) 

It is important to recall the generic features of resonances, which occur at �φ ˘ �res,n ,φ 

and can be triggered only if v 6 ṽsat(�
res,n) — in the above equations, for simplicity, we φ 

adopt an extreme simplifcation by means of a discrete measure, which triggers resonances 
only when �φ sits exactly on one of its resonant values (to avoid numerical discontinuities, 
this can be replaced by an extremely thin unnormalized Gaussian function, or even a 
Cauchy function if one fancies better capturing the actual shapes of resonances). 

In the s-wave case, resonances are boosted at low velocity / 1/(n v)2 / �φ/v2 , 
with decreasing amplitudes for higher-order resonances (in fact, linearly with �φ [or ṽsat], 
as the latter jumps to smaller and smaller resonant values �res,n)—see Eq. (3.6) and φ 

˘ 
Eq. (3.7). Note also the unitarity limit that saturates peak amplitudes to / �φ/(n ṽunit)

2 

when v < ṽunit, which will have some impact when inspecting the translation in terms 
of subhalo masses. As for the inter-resonance baseline (saturation regime), it scales like 
/ 1/ṽsat / 1/�φ and remains velocity independent—see Eq. (3.10) and Eq. (3.12). 

In contrast, as a consequence of absorbing the v2 suppression factor in the ansatz, 
2p-wave resonances / n / 1/�φ are velocity independent and have their amplitudes 

increasing for higher-order resonances, i.e. lower resonant values of �φ. That feature is 
actually very important because it implies that the annihilation signal is then only set by 
the full DM squared density on p-wave resonant peaks, except again when approaching 
the unitarity limit, v ˘ ṽunit. Indeed, at velocities lower than ṽunit, the p-wave suppres-
sion re-appears as / (v/ṽunit)2 , which bounds from below the phase-space distribution 
available to amplify resonances. On the other hand, the inter-resonance baseline remains 
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Figure 1. Left panel: Comparison between the Sommerfeld enhancement factor obtained for an 
s-wave annihilation process from Eq. (3.3) and the ansatz formulated in Eq. (3.17), for two di�erent 
values of the speed v. Right panel: Same for a p-wave annihilation process, but then the actual Som-
merfeld factor of Eq. (3.5) is multiplied by a factor of (v/ṽmax)2 to carry the full velocity dependence 
of the cross section. 

3fully velocity suppressed / v2/ṽ / v2/�3 Therefore, the surge of resonances in thesat φ. 
p-wave case is due to the relative suppression of the baseline. Actually, the amplitude 
ratio R between resonances and baseline scales exactly the same for both the s-wave and 
p-wave cases in this formulation, and reduces to: 

π �2 � v �−2� ṽunit 
�−2� ˘ / (�φ/v)2 . (3.16)= �res,nR(v, �φ ) = φ 1 + 

6 ˜ vvsat 

The dependence of the resonant amplitudes on the reduced Bohr radius �φ is shown in 
Fig. 1, while their dependence on v is shown in Fig. 2, which will be discussed further 
below. 

All this can be wrapped up in a more synthetic form, 

S(v, �φ) = Sno-res(v, �φ) 

0@1 − 
X 

δ�φ/{�res,n 
φ } 

1A+ 
X 

Sres,n(v, �φ) (3.17) 

n=1+ p n=1+ p 
2 2 

/ (v/v0)−sv , 

where the generic index sv takes di�erent values according to the di�erent Sommerfeld 
regimes: 

sv = 

8>< >: 
1 (Coulomb regime) 

−p (non-resonant saturation regime) , (3.18) 

(2 − p) (resonances) −! −p (if v . ṽunit) 

where p = 0/2 for s/p-wave annihilation. We stress that on resonances, the scaling of peak 
amplitudes becomes / (v/ṽunit)p as soon as v . ṽunit, as a consequence of the unitarity limit. 
This translates into a transition of sv from (2 − p) to −p on resonances at the unitarity 
boundary. 
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ṽ s
a
t(
ε φ
,2
) εφ,0 = 10−1

εφ,1 = 10−3

εφ,2 = εres,8
φ

p-wave

αχ = 10−2

(Hulthén)

(ansatz)

Figure 2. E�ective Sommerfeld enhancement factor as a function of DM speed, for di�erent values 
of the reduced Bohr radius �φ: a large value 0.1, a small value of 10−3 , and an intermediate value of 
˘ 10−2 sitting on the n = 8 resonance. The enhancement factor is valid up to ṽmax, and saturates 
below ṽunit on s-wave resonances (not on p-wave ones). Transition from Coulomb to saturation regimes 
occurs at ṽsat(�φ), reported as vertical dash-dotted lines. Left panel: s-wave case. Right panel: 
p-wave case. 

Our general ansatz of Eq. (3.17) fully parameterizes the Sommerfeld enhancement factor 
at the level of local interactions in DM halos. It will serve as a basis to integrate the 
Sommerfeld e�ect over an entire (sub)halo. A comparison of this ansatz with the exact 
solution of the Sommerfeld enhancement factor is provided in Fig. 1 for both the s-wave and 
p-wave cases, assuming two values (high and low) of the relative DM speed. We see that this 
form closely matches with the exact result, except when �φ approaches 1, as expected. In the 
p-wave case, the change of hierarchy in the Sommerfeld enhancement between the low and 
high velocity curves (with respect to the s-wave case) is simply due to the fact that we have 
absorbed the v2 suppression factor in the defnition of the e�ective Sommerfeld factor. The 
virtue of this is that we directly see the true hierarchy of full cross sections as function of 
velocity from this e�ective defnition. In particular, we see that even though there is a relative 
p-wave suppression of 10−6 between v = 10−3 and v = 10−6 , the Sommerfeld-enhanced cross 
sections have similar amplitudes at �φ ˘ 1.5 × 10−3 , with a net and increasing advantage to 
smaller velocities for smaller values of �φ. Already, this helps understand the fundamental 
role to be played by DM structures with small dispersion velocities in the following. 

To further illustrate the velocity dependency of the e�ective Sommerfeld factor, we ex-
plicitly show S as a function of DM speed in Fig. 2, for three di�erent values of the reduced 
Bohr radius �φ: a relatively “large” value of 0.1, which implies a moderate hierarchy between 
the DM particle mass and that of the force carrier (moderate Sommerfeld enhancement); a 
small value of 10−3 , hence a stronger hierarchy (signifcant enhancement); and an interme-
diate value of ˘ 10−2 , but sitting exactly on the n = 8 resonance (strong enhancement). 
The left (right) panel shows the dependence for an s-wave (p-wave) annihilation process. 
The saturation velocities ṽsat(�φ) associated with the di�erent choices of �φ are displayed 
as vertical dashed lines, which delineate the transition between the saturation (to the left 
thereof) and the Coulomb (to the right) regimes. This fgure illustrates the reasonably good 
match between our Sommerfeld ansatz of Eq. (3.17) (dashed curves) and the exact formula-
tion (solid curves). Following curves from right to left (decreasing velocity), for the s-wave 
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(left panel), the enhancement / 1/v in the Coulomb regime saturates as v � ṽsat, except on 
the resonance for which it further increases / 1/v2 down to the unitarity limit characterized 
by ṽunit(αχ), at which it fnally saturates. For the p-wave case (right panel), we actually see 
the product of the net Sommerfeld factor with the p-wave suppression factor / v2 [i.e. the 
e�ective Sommerfeld factor as defned in Eq. (3.8)], which slightly delays the onset of the 
enhancement as v decreases below ṽmax. Then, as for the s-wave case, the Coulomb regime 
(v > ṽsat) exhibits a 1/v scaling down to ṽsat (which hardly compensates for p-wave suppres-
sion for large reduced Bohr radii ˘ 0.1, leading to a small net enhancement). Transitioning 
to the saturation regime, the e�ective Sommerfeld e�ect saturates to its maximal value for 
the p-wave case for v ˘ ṽsat, before the p-wave suppression factor takes over at velocities 
smaller than ṽsat. On the resonance, however, the maximal saturation value is further main-
tained independent of the velocity all the way down to the unitary limit characterized by 
ṽunit (the actual Sommerfeld enhancement compensates for the p-wave suppression), below 
which p-wave suppression ends up taking over. All this explains the important role played 
by ṽsat(�φ) in the p-wave case, as well as the one of ṽunit on resonances. Fig. 2 will later help 
better understand the mass-velocity dependencies at fxed values of �φ. 

3.2 Gamma-ray signals: astrophysical factors and DM phase-space modeling 

The DM-induced γ-ray fux integrated over a sky region of solid angle �
 about a target 
halo center reads [45]2 

d�γ 1 (σvrel)0 dN 
= JS (�
) (3.19)

dEγ 4π ηm2 dEγχ 

where dN/dEγ is the γ-ray spectrum per annihilation, and η = 2 for self-conjugate DM (η = 4 
for non-self-conjugate DM). In the case of a velocity-dependent annihilation cross section 
that can be expressed as (σvrel)0 × S(v), like in the e�ective formulation of the Sommerfeld 
enhancement above, the astrophysical factor JS encodes the information on both the DM 
spatial and velocity distributions, and reads Z Z Z Z � � 

JS (�
) = d
 ds d3 ~v1 d3 ~v2 f(r(s, ) , ~v1) f(r(s, ) , ~v2) S 
vrel 

, (3.20)
2ΔΩ 

where ~vrel = ~v2 − ~v1 is the relative velocity with vrel = |~vrel|, and f(r,~v) is the phase-space 
distribution function (PSDF) of the DM (assuming spherical symmetry). Here, the PSDF is 
normalized to the total mass of the gravitational system of interest, such that at halocentric 
radius r Z 

ρχ(r) = d3 ~v f(r,~v) . (3.21) 

Note that if one trades the e�ective Sommerfeld factor S for its exact form Ŝ, one should add 
an additional factor of (v/c)2 in the expression of the J-factor for p-wave annihilation — see 
Eq. (3.8). Our e� ective form allows to write a unique form for both s- and p-wave processes 

2For easier comparison with the majority of previous works in the literature, we do not include in the 
definition of the J-factor the 1/(4π) factor that appears in the derivation of an intensity from a volume 
emissivity, and is a prefactor in Eq. (3.19). As a result, the J-factors given in this work are expressed in 
GeV2 cm −5 sr. 
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by absorbing the full velocity dependence in S. Eq. (3.20) is a generalization of the standard 
velocity-independent J-factor Z Z 

J(�
) = d
 ds ρχ 
2 (r(s, )) , (3.22) 

ΔΩ 

which is valid for s-wave annihilation without Sommerfeld enhancement. 
Assuming spherical symmetry of the DM halo, the integral over solid angle becomes 

an integral over the angular distance θ from the center of the object, with d
 = 2π sin θ dθp
and r(s, ) � r(s, θ) = s2 + D2 − 2sD cos θ, where D is the distance of the observer to the 
center of the object. The integral is usually performed over an angular size θint that depends 
on the target and the γ-ray detection technique. In this study, we will assume the distances 
of target halos to be suÿciently large to integrate the signals over angular extents exceeding 
the virial sizes of halos (point-like approximation). 

In practice, Eq. (3.20) can be rewritten in terms of a J-factor for an e�ective squared 
density profle ρχ,eff as Z Zθint 

JS (θint) = 2π dθ sin θ ds ρ2 χ,eff (r(s, θ)) , (3.23) 
0 

assuming that the telescope points to the center of the target halo (this is easily generalized 
to any direction, see, e.g., [46]), with a resolution angle of θint. Correspondingly, we introduce D � �E 

ρ2 
vrel 

χ,eff (r) � S (r) × ρ2 χ(r) , (3.24)
2 v 

where hiv denotes an average over the DM relative velocity distribution. The average of an 
observable O(vrel) that depends on the relative velocity is conventionally given by Z 

hO(vrel)i v (r) = d3 ~vrel O(vrel) Frel(r,~vrel) , (3.25) 

where the relative velocity distribution reads Z 
Frel(r,~vrel) = d3 ~vc f~v(r,~v1) f~v(r,~v2) , (3.26) 

with ~vc = (~v1 +~v2)/2 the center-of-mass velocity and f~v(r,~v) � f(r,~v)/ρχ(r) the DM velocity 
distribution, defned as a probability density function (PDF), i.e. normalized to 1 over the 
relevant phase space. 

The accurate numerical results of this work are based on the Eddington inversion for-
malism [47, 48], which, assuming an isotropic velocity distribution for DM particles and a 
spherically symmetric halo in dynamical equilibrium, predicts the full DM PSDF f(~r,~v). For 
a detailed discussion of the applicability of the Eddington inversion to di�erent classes of DM 
halos, see ref. [49]. Note that the predictive power of this formalism has been tested against 
cosmological simulations in ref. [50], and has been shown to predict the velocity moments 
of DM within ˘ 15% accuracy. Interestingly, such isotropic PSDF models have a similar 
predictive power as more elaborate models including anisotropy in the velocity feld [51]. 

Starting from the PSDFs of DM halos (in a large range of masses) as predicted from 
the Eddington inversion method, we found that a very good estimate (6 30% of error) 
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of the averaged e�ective Sommerfeld factor could be obtained by picking the non-averaged 
Sommerfeld factor at some averaged values of the relative speed: 0@ (r) 

1A 2�D �E (p−1) 
2

(p−1)hv ivrel relS (r) ' S , (3.27)
2 2v 

±nwhere the relative velocity moments hv iv(r) are calculated from the Eddington PSDFrel 

inferred for the considered halo. This is roughly valid for an extended range of halo masses, 
from very small subhalo to galaxy cluster masses. In the next section, we carefully inspect 
the impact of DM subhalos on the overall Sommerfeld-enhanced signal predictions. 

4 Subhalo boost factor for velocity-dependent annihilation 

DM subhalos, which are a generic prediction of the theory of structure formation within 
CDM [22, 52, 53] and thus also characterize the WIMP class of models [23, 24, 54–56], are 
known to increase the s-wave annihilation rate, which is referred to as subhalo boost factor 
in the frame of indirect DM searches [40–42, 57, 58]. Predictions for subhalo boost factors 
have been mostly derived for vanilla s-wave annihilation processes, for which the annihila-
tion rate is velocity-independent. The impact of subhalos is also expected to be important 
when the annihilation rate depends on (inverse powers) relative speed, but it is then slightly 
more diÿcult to calculate. Indeed, for the broad picture, since the internal average velocity 
dispersion of DM in subhalos decreases as their masses decrease, then the mass function of 
subhalos should translate into a non-trivial relative speed function. Since the Sommerfeld 
enhancement scales like powers of 1/v, it is clear that the presence of small subhalos can 
signifcantly amplify predictions of the annihilation rate in target objects. We shall see below 
that �φ, the DM Bohr radius (˘ Compton wavelength) in units of the interaction range, is 
actually the key parameter that determines the most relevant subhalo mass range. We shall 
also see that the related additional boost factor amounts to orders of magnitude. Before 
going into more details, we recall that the impact of subhalos was already studied in several 
references, e.g. [26–30, 59], though with di�erent perspectives. 

Here we improve over past studies on several aspects. First, we rely on an analytical 
subhalo population model mostly built from constrained and controlled theoretical inputs, 
which self-consistently obeys the global kinematic and dynamical constraints on the host 
halo, and which includes subhalo tidal stripping. This means that given an observationally 
constrained global mass model for the host halo, we can self-consistently translate it into a 
halo model that comprises both a smooth distribution of DM and a substructure component. 
The bases and features of this model were proposed in ref. [60], and further explored in, 
e.g., refs. [61–64]. This analytical subhalo population model can be easily applied to any 
host halo confguration. The complete model is used to get our more accurate numerical 
results on the Sommerfeld-enhanced subhalo contribution to J-factors, while further ana-
lytical approximations are used to derive fully analytical results. Second, similar to other 
recent studies (e.g. [32, 34–36]), we take advantage of the phase-space distribution studies 
performed in refs. [49, 50]. The latter rigorously determine the regimes where the applica-
tion of the Eddington inversion method [47] can lead to a reliable description of the PSDF 
of DM in structures, which can be used to compute any velocity-dependent DM signal (see 
direct applications of these studies in, e.g., ref. [65] for p-wave annihilation, or in ref. [66] for 
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DM capture by stars). Although hardly scalable to a full population of objects, the Edding-
ton inversion applied to a reduced subhalo mass range can be used to calibrate analytical 
approximations and get accurate results. 

In the following, we frst give in Sec. 4.1 a description of the subhalo population model, 
before formalizing the general calculation of the induced boost factor in Sec. 4.2. Finally, we 
turn to an approximate analytical derivation of the boost factor in Sec. 4.3, which will allow 
us to make a detailed physical interpretation of the more accurate numerical results. 

4.1 Subhalo population model 

Here, we introduce the main properties of the subhalo population model proposed in ref. [60] 
(SL17 henceforth). The philosophy behind this model is to think of a DM halo as an assembly 
of smaller-scale pre-existing halos, consistently with the prescriptions of excursion set theory 
and merger-tree studies (see [67–69] and, e.g., [70, 71] for more recent approaches). Should 
these subhalos be hard spheres with negligible subhalo-subhalo encounter rate, they would 
simply track the global gravitational potential of the global host halo, which they are part of. 
However, they actually experience tidal mass loss and may even be disrupted in some cases. 
These phenomena depend on the time spent in the host and on their pericenter (deepest 
position in the host gravitational potential), and possibly encounters with stellar disks and 
individual stars in spiral galaxies. Sticking to a spherically symmetric description of both 
a smooth halo (which comprises both the originally di�use DM and the DM stripped away 
from subhalos) and a subhalo population, one can write down a constrained smoothed mass 
density profle hρhosti, where hi denotes an average in spherical shells here, for the host in 
terms of two components: 

hρhosti(R) = ρsm(R) + ρsub(R) , (4.1) 

where R is the distance to the host center, ρsm the smooth density profle and ρsub the 
averaged subhalo population density profle.3 The coarse-grained global host mass density 
profle hρhosti is constrained from structure formation to be close to a Navarro-Frenk-White 
(NFW) profle [72–78], which is also consistent with observational constraints on di�erent 
scales [79–81], pending ongoing debates about possible core-cusp issues [25, 82, 83]. An 
important point is that ρhost is also the one global density profle constrained by kinematic 
or dynamical studies of specifc objects, should they be dwarf galaxies, galaxies, or galaxy 
clusters. A consistent subhalo population model should then be such that the sum of the 
smooth halo profle and the overall subhalo profle matches with observational constraints on 
the global host halo, whenever available. 

Rigorously, ρsub should be described as a discrete sum over all subhalos mapping all 
inhomogeneities, but the smoothed limit (i.e., an average within spherical shells) can be 
considered to describe the overall subhalo density profle: * + ZXNtot dnsub(R, m)~ρsub(R) = ρi(|R − ~ri|) (R) = dm hmtic(m, R) , (4.2)

dm 
~i |R| 

where ~ri is the position vector (center) of the ith subhalo in the host frame and ρi its spherical 
density profle, m = m200 is the canonical virial mass a subhalo would have in a homogeneous 

3In practice, the smooth component is deduced from the subhalo population model and the global host 
profile, according to ρsm(R) = hρhosti(R) − ρsub(R), and must obey the condition ρsm(R) > 0. 
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�

background, hmtic(R) is the subhalo physical tidal mass mt � m averaged over concentration 
at radius R, and dnsub/dm is the di�erential number density of subhalos per unit mass, in 
the continuous limit. The implementation of tidal e�ects is hidden in the way the tidal mass 
mt is predicted, given a fctitious virial mass m, a concentration c, and a prescription for the 
density profle, which will be specifed later. 

Therefore, designing a subhalo population model implies defning this continuous limit in 
terms of a subhalo number density consistent with Eq. (4.1) while carrying imprints of initial 
cosmological conditions distorted by environmental e�ects (gravitational tides). Our model 
defnes this number density in terms of PDFs describing the mass function dPm(m)/dm, the 
concentration function dPc(c, m)/dc, the driving spatial distribution dPV /dV (the meaning 
of driving is made clear in the appendix), and the total number of subhalos Ntot orbiting the 
host halo: Z 

dnsub(R, m) d2Nsub Ntot dPV (R) d2Pc,m(c, m, R) 
= = dc . (4.3)

dm dm dV Ktidal dV dc dm 

In this equation, Ntot is the total number of surviving subhalos, and Ktidal � 1 is a normal-
ization constant that ensures the whole PDF to be normalized to unity (said di�erently, it 
accounts for the fact that the nominal concentration and mass PDFs can be cut o� by tidal 
e�ects). The concentration and mass PDFs are intricate as a result of tidal e�ects, which is 
explained in App. B. This comes from the fact that gravitational tides are more eÿcient in 
pruning less concentrated objects, which induces a selection of halos in concentration (hence 
on mass) depending on their averaged orbital distance to the host halo center. At this stage, 
it is therefore important to introduce two other parameters of the model: the minimal and 
maximal subhalo virial masses, mmin and mmax, respectively (keeping in mind that the ac-
tual smallest masses in the population model can be much smaller than mmin, due to tidal 
stripping). The former relates to the interaction properties of DM particles, and is in most 
cases fxed by the free-streaming length of DM at matter-radiation equality [23, 54, 56]—for 
WIMPs, it may take values in the range 10−12-10−4 M . The latter obviously depends on 
the host halo mass, and will be fxed to mmax = 0.01 Mhost throughout this work, similar to 
what is found in cosmological simulations [84–86]. 

While we include all the details in the full numerical calculations of J-factors, it is 
interesting to write down an approximation of the expected subhalo distribution as follows: 

d2nsub(R, m, c) dPV (R) dPm(m) dPc(c)ˇ Ntot . (4.4)
dc dm dV dm dc 

If subhalos were hard spheres insensitive to tides, this equation would give a decent descrip-
tion of the subhalo population, with concentration and mass PDFs being close to those of 
feld subhalos. In such a hard-sphere approximation, the spatial distribution would be merely 

dPV (R) hρhosti(R) 
= . (4.5)

dV Mhost 

In fact, departures from the spatial matching between the total halo mass profle and the 
total subhalo mass profle are mostly observed in the inner parts of host halos in simulations, 
where tidal e�ects are strong [84, 85]. Although the abundance of subhalos in the very 
central regions of host halos can hardly be measured reliably in simulations, due to resolution 
issues, this fattening of the subhalo spatial distribution in the central parts of host halos 
can actually still be predicted analytically by considering tidal disruption on top of tidal 
stripping, as detailed in App. B. The above approximation will still turn useful when trying 
to get analytical estimates of the Sommerfeld-enhanced subhalo boost factor. 
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4.2 Subhalo boost factor: generalities 

Here we establish the complete expressions that are used to perform generic computations of 
the subhalo boost factor — see more detailed discussions in, e.g., [5, 41, 45, 46, 60, 64, 87– 
90]. We have introduced the astrophysical J-factor in Sec. 3.2, which is proportional to the 
integral of the DM squared density profle ρ2 χ along the line of sight, with the replacement 
ρ2 $ ρ2 given in Eq. (3.24) to account for any velocity dependence in the annihilationχ χ,eff 

signals. Neglecting subhalos amounts to setting ρ2 χ(r) = ρ2 (r), where the total DM proflehost 

of the host object is given in Eq. (4.1) and includes both a smooth DM component and a 
subhalo population. A defnition of the subhalo boost factor is straightforward and may 
readily be expressed in terms of the relevant J-factors: 

JtotB � , (4.6)
Jsmooth approx 

where Jtot is the J-factor including rigorously both the smooth and subhalo contributions, 
while Jsmooth approx simply consider the contribution of the whole system after smoothing 
out all inhomogeneities. In this form, B is merely the multiplicative factor to apply to the 
smooth approximation of the J-factor to get the one accounting for subhalos. The fact that 
B > 1 is a rather generic4 consequence of that hρ2 hosti(r) > hρhosti2(r) [40]. 

Using Eq. (3.22), we can already express the smooth approximation of the total J-factor 
as Z Z 

Jsmooth approx = d
 ds hρhosti2(R(s, )) , (4.7) 
ΔΩ 

which is the integral of the squared global density profle of the host halo along the line 
of sight, neglecting any inhomogeneous component. Assuming that subhalos contribute as 
point-like sources, the actual total J-factor should rather be expressed as 

We have introduced ρsub 6= ρsub
2 to account for the fact that if subhalos contribute as point-

Z Z 
Jtot = d
 ds hρ2 hosti(R(s, )) , (4.8) 

ΔΩ 

with 

hρ2 = ρ2 (R) + ρsub 
2(R) + 2 ρsmhosti(R) ˘ sm (R) ρsub(R) . (4.9) 

2 

like sources, their contribution to the annihilation fux is not proportional to their smooth 
mass density profle squared ρ2 sub, but rather to Z Z 

d2nsub(c, m, R)
ρsub

2(R) � ρ~ 
2 dc dmξt(m, c, R) , (4.10)

dc dm 

where the subhalo number density in mass-concentration phase-space d2nsub/dc dm can be 
inferred from Eq. (4.3), and is given an approximation in Eq. (4.4). We have introduced 
the tidal annihilation volume ξt(m, c, R) for a subhalo of virial mass m, concentration c, and 
radial position R in the host halo, defned as Z ˆ ˙2 

2 ρ(r, m, c, R)
ξt(m, c, R) � 4 π dr r . (4.11)

ρ~ rt(m,c,R) 

4Note that for nominal velocity-suppressed p-wave annihilation, we could actually have B 6 1. 
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This is the integral of the inner subhalo density profle ρ(r, m, c) performed over the assumed 
spherically symmetric subhalo tidal volume δVt delineated by the tidal radius rt(m, c, R), 
whose parametric dependencies are explicit. The constant parameter ρ~ is an arbitrary 
normalization density, which allows ξt to be interpreted as the e�ective volume a (sub)halo 
would need to reach the same annihilation rate as if it had a constant density of ρ~ [42, 58]. 

Following Eq. (4.9), the total J-factor can be rewritten as 

Jtot = Jsm + Jsub + Jcross ' Jsm + Jsub , (4.12) 

where the defnition of each term is now obvious, and where it is assumed that we can neglect 
the cross term to a very good approximation [60, 64, 88]. We still include it, though, in our 
numerical calculations. 

Therefore, one can fully compute the subhalo boost factor once d2nsub/dc dm and ρsub 
are determined (assuming an universal shape for the subhalo density profle). When a velocity 
dependence of the annihilation cross section is considered, the above expressions change only 
by the substitutions already introduced in Sec. 3.2 (we specialize to the case of the Sommerfeld 
enhancement, though this statement is more general): � 

S 
D �E vrel 

8>< >: 
ρ2 (R) −! ρ2 sm sm,eff (R) × ρ2 sm(R) � (R) , Z2 

−! ξt,eff (m, c, R) � 4 π 
�E ˆ ˙2 

v �Drt(m,c,R) ρ(r, m, c)2 vrel
ξt(m, c, R) dr r S (r) . 

2 ρ~v0 

(4.13) 

All full numerical calculations presented in this paper will be based on these equations. 
However, since the main goal is to get analytical insights of the results, we shall try to 
extract the simplest description that still allows to capture the correct orders of magnitude. 

An additional simplifcation can be used if (i) the telescope is pointed to the center of 
the target host halo and (ii) if the smooth component dominates over the subhalo component 
there (which is expected as tidal stripping is very eÿcient in the central parts of host halos). 
In that case, we have Jsmooth approx ' Jsm to an excellent approximation [60]. Moreover, if 
the target host halo is suÿciently far away from the observer, at a distance D ˛ Rhost, and 
appears (at least almost) as a point-like source, then we can further simplify the expressions 
of the J-factors, and thereby that of the subhalo boost factor. By defning 

ρ2 ξt(m, c)~ J(m, c, D) � , (4.14)
D2 

where we now neglect tidal stripping and simply identify a (sub)halo with its conventional 
virial mass m and concentration c, and where it is assumed that ξt is integrated up to the 
virial radius; then we get ( 

Jsm ' Jsmooth approx = Jhost � J(Mhost, chost, D) 
, (4.15)

Jsub ˇ Ntot hJ(m, c, D)i m,c 

where from now on, Jhost characterizes the smooth approximation of the J-factor for the 
host halo, and where him,c denotes an average over mass and concentration phase space. 
For the latter, one can use the mass and concentration functions of feld subhalos for decent 
order-of-magnitude estimates, because most of subhalos lie away from the central parts of 
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the host halo, where tidal e�ects can be neglected. Consistently, the subhalo boost factor 
can be approximated by 

hJ(m, c, D)i m,cB ˇ 1 + Ntot , (4.16)
Jhost 

where it clearly appears that both the subhalo mass-concentration relation and the mass 
function will play decisive roles. To further account for any velocity dependence of the 
annihilation cross section, one has to trade ξt for ξt,eff in Eq. (4.14) [see Eq. (??)]. 

We are now equipped to investigate analytically how Sommerfeld e�ects act on the sub-
halo boost factor. In the next paragraph, we frst review the Sommerfeld-free case before 
moving to the more complex and intricate velocity-dependent cases induced by the Sommer-
feld enhancement. 

4.3 Subhalo boost factor: analytical insights 

Here, we derive analytical approximations that will allow us to interpret our full results in 
terms of the driving physical parameters in the calculation, which remain to be determined. 

Throughout this part, without so much loss of generality, we will assume that subhalos 
have NFW inner mass density profles: � 

ρ(x � r/rs) = ρ0 fnfw(x) � x −1(1 + x)−2 θ(xt − x) , (4.17) 

where we have introduced the shape function fnfw(x), the dimensionless radius x, and tidal 
radius xt, and where the structural properties such as the scale radius rs and scale density 
ρ0 are conventionally fxed by the mass and the mass-concentration relation. We will neglect 
tidal e�ects in the following discussion, as they are not critical to develop a good physical 
understanding of the Sommerfeld e�ect (we do account for them in the full numerical calcu-
lations). Thus, we can frst assume that whatever their positions in the host halo, subhalos 
keep their virial mass, hence xt = x200 = c. Rigorously, we should also take into account the 
fact that these structural properties are described by non-trivial PDFs when tidal e�ects are 
considered (we do so in the full numerical calculations). For simplicity here, we assume that 
both the mass function and the mass-concentration relation follow power laws: 8< : 

n 
dNsub(m,Mhost) ˇ N0(Mhost) mµ �dm m0 m0 

o−α 
c(m) ˇ c0 µ−ε 

(4.18) 

where m0 is an arbitrary reference mass, N0 is the normalization of the number of subhalos, 
which depends on the host halo mass Mhost, and where we have introduced the dimensionless 
reduced mass µ. That form of the mass function fnds strong theoretical support, as discussed 
in App. B — see Eq. (B.10). We can further neglect the concentration PDF, and assume 
that all subhalos of a given mass m have the same concentration c(m). These are good 
approximations to the more precise description used in our full numerical treatment – -our 
detailed subhalo population model is described in App. B, where we fnd that ( 

α ˇ 1.96 
(4.19)

ε ˇ 0.05 

– 19 – 



�

>>>
>>>

provide a decent matching to the numerical results over a signifcant subhalo mass range.5 

Given Eq. (4.18), we can relate the total number of subhalos Ntot to the subhalo mass 
fraction in the host fsub through the minimal and maximal reduced subhalo masses µmin, 
and the averaged subhalo mass hµim as follows: ( )� �2−αN0 2−α µmin

fsub µhost = Ntot hµim = µmax 1 − , (4.20)
(2 − α) µmax 

where µhost � Mhost/m0 is the reduced dimensionless host halo mass. In the limit µmax ˛ 
µmin and if α < 2, then we have 8 n o1−α 

N0 1−α γ µminNtot ' µmin ' > (α−1) (α−1) µhost< n o1−α 
µmaxhµim ' 10−2 (α−1) µhost . (4.21)

(2−α) µmin 

2−α 
n o2−α> µ γ ' 102(α−2)γ: N0 max µmaxfsub ' = ˘ 34%(2−α) µhost (2−α) µhost (2−α) 

We have assumed µmax = 10−2µhost, and N0 = γµα−1 
host , and except for the approximately 

universal subhalo mass fraction (before tidal stripping e�ects), the above values depend on 
Mhost $ µhost — see details in App. B.10. 

4.3.1 Subhalo boost factor without Sommerfeld enhancement 

Let us consider frst annihilation through an s-wave process and a subhalo of virial mass 
m, concentration c, and located at a radius R in a host halo. The intrinsic annihilation 
luminosity can be expressed in terms of the e�ective annihilation volume ξt introduced in 
Eq. (4.11), that we can rewrite as ˆ Z ˙ 

4π ρ2 xt 
3 0 2 f2ξt(m, c, R) = r ηt � 3 dxx , (4.22)s nfw(x)

3 ρ2 ~ 0 

where rs, ρ0, and fnfw(x) were introduced in Eq. (4.17). We see here that the luminosity is 
computed within the dimensionless tidal radius xt of the subhalo, which, in principle, implies 
a spatial dependence of the luminosity even for a given virial mass. For an NFW profle, the 
tidal cut reads 

ηt = ηt(m, c, R) = 1 − (1 + xt(m, c, R))−3 . 1 . (4.23) 

From the defnition of the virial mass m = m200, and assuming that the mass-concentration 
relation c(m) = c200(m) = r200(m)/rs(m) obeys the power-law function in mass given in 
Eq. (4.18), we get 

ξt(m, c, R) ' ξt(m) = ξt(µ = m/m0) = ξ0 µ 
1−3ε , (4.24) 

where 

3200 ρc m0 c0ξ0 � ηt , (4.25)
ρ2 A2 
~ 

5We find that c0 ' 12.9 for m0 = 1010 M [87] allows to get close to the parametric concentration function 
of field halos provided in ref. [91], which characterizes the initial concentration function of subhalos in most 
of the mass range of interest in our study. 
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ρc being the critical density today, and � � 
c 

A = A(c) = 3 ln(c + 1) − ˇ constant O(1 − 10) . (4.26)
(c + 1) 

As already mentioned above, we can at frst order neglect the position of a subhalo in its 
host, characterized here by the radial coordinate R. This is because subhalos that will 
dominantly contribute to the γ-ray fux are typically those located beyond the scale radius of 
the host (often called “feld” subhalos), for which tidal stripping e�ects are not so important. 
These feld subhalos actually constitute the bulk of the subhalo population (in an NFW 
host halo, subhalos located beyond the scale radius represent & 90% of the whole subhalo 
population). This holds true while the γ-ray fux is integrated over a volume bigger than 
the one encompassing the scale radius of the host (a more involved description is necessary 
for hosts much more extended than the angular resolution of the telescope, or for hosts that 
have experienced signifcant tidal stripping and have sizes of the order or less than their scale 
radii). 

From the annihilation volume ξt, we get an analytical expression for the point-like J-
factor given in Eq. (4.14): 

1−3ε+pνJ(m) = J(µ) = J0 × (2 v0)
p × µ , (4.27) 

where 

ρ2 3 
~ ξ0 200 ρc m0 c0J0 � = ηt , (4.28)
D2 D2 A2 

with ξ0 given in Eq. (4.25), and ρ~ the arbitrary reference mass density introduced in 
Eq. (4.11)—it is then clear that neither J(m) nor J0 depend on ρ~, as shown explicitly 
in the above equations. 

Note that the p-wave annihilation case is actually included in the previous two expres-
sions, by setting p = 2 (we remind that p = 0 stands for the s-wave case). In fact, we have 
implicitly assumed that the radial profle of hv2iv(r) ρ2(r) ˇ hv2iv,Vh 

ρ2(r), where hv2iv,Vh 
is 

2taken constant over the whole halo volume Vh. Assuming hv2iv,Vh 
= v0 µ

2ν ˝ 1 allows us to 
characterize the p-wave suppression factor in terms of halo mass. The spectral index ν will 
be specifed later, and v0 is an arbitrary reference velocity associated with a halo of arbitrary 
reference mass m0. 

From this, we can predict the ratio of J-factors of two point-like halos of di�erent masses, 
m1 and m2, and respectively located at distances D1 and D2 from the observer: ˆ ˙2 ˆ ˙1−3ε+p ν J(m1) D2 m1 

= . (4.29)
J(m2) D1 m2 

This will be helpful to understand forthcoming results. 
Let us now come back to our main working equation, Eq. (4.27). As we shall see just 

below, it will allow us to estimate the total contribution of subhalos to the γ-ray J-factor, 
assuming that the whole population of subhalos is contained within the feld of view of the 
instrument. Indeed, this simply amounts to convolving Eq. (4.27) with the subhalo mass 
function, which we take as the power law of index α introduced in Eq. (4.18). Then, the 
total J-factor associated with the contribution of the whole subhalo population reads: 
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Jsub = Jsub,0 µ 
−αboost 
min 

" 
1 − 

� 
µmax 

µmin 

�−αboost 
# 
, (4.30) 

where we have introduced the e�ective boost index αboost. We have also used 

Jsub,0(µhost) � 
N0(µhost) 

αboost 
× J0 × (2 v0)

p . (4.31) 

The critical parameter in the above result is the e�ective boost index, 

αboost � α + 3ε − 2 − pν , (4.32) 

which fully characterizes the part of the mass function that sets the overall subhalo population 
luminosity. Indeed, three di�erent regimes arise: 8>< >: 

αboost > 0 =) mmin-dominated regime (strong boost) 

αboost = 0 =) democratic regime (4.33) 

αboost < 0 =) mmax-dominated regime (weak boost) . 

The positive sign convention has been chosen such that the boost is strong if αboost > 0, 
which means that the smallest, most numerous, and most concentrated subhalos carry the 
dominant contribution to the annihilation rate. The democratic regime corresponds to a 
logarithmic dependence in the subhalo masses, / ln(mmax/mmin), in Eq. (4.30). The sign of 
αboost is therefore crucial here, as already known from past studies. From this very simple 
equation, since ε ˇ 0.05, we understand that changing α from 1.9 to 2 amounts to going from 
an mmax-dominated regime to an mmin-dominated regime for an s-wave annihilation. In the 
latter case, the overall subhalo population luminosity becomes very sensitive to the subhalo 
minimal mass cuto� mmin, as is well known. This is reinforced by the fact that the total 

˘ 1−αnumber of subhalos Ntot / µ We shall see later on that this e�ective power-law indexmin . 
αboost can also be expressed analytically in the Sommerfeld-enhanced case, which will allow us 
to use a reasoning very similar to the one presented here. Before moving to the Sommerfeld-
enhanced case, let us just introduce an analytical expression for the Sommerfeld-free boost 
factor B: ( � �−αboost 

) 
J sub 
tot Jsub,0 µmax−αboost B − 1 ' 1 − , (4.34)= µminJhost Jhost µmin 

Rwhere Jhost is the J-factor calculated assuming a fully smooth density profle for the host 
ds hρhosti2)halo (/ — we call this the smooth approximation. The ”-1” on the left-hand 

side implicitly assumes that the contribution to the J-factor of the smooth part of the actual 
inhomogeneous host halo, Jsm, equals the smooth approximation, but one should keep in 
mind that formally Jhost & Jsm. Given the analytical expressions introduced above, we 
fnally get 
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B − 1 ' N0 A
2 
host 

αboost A
2 
sub µ 

1−3ε 
host 

µ −αboost 
min 

( 
1 − 

� 
µmax 

µmin 

�−αboost 
) 

(4.35) 

' γ 

αboost 

A2 
host 

A2 
sub 

ˆ 
µmin 

µhost 

˙−αboost 
( 

1 − 
� 
µmax 

µmin 

�−αboost 
) 

, 

where Ahost and Asub, introduced in Eq. (4.26), are shown explicitly for defniteness because 
their ratio is not strictly 1. Note that the power-law dependence in the bracket on the 
right-hand-side becomes logarithmic, ln(µmax/µmin), when αboost = 0 (democratic regime, 
for which each decade of subhalo mass contributes the same signal). In the latest equation 
line above, we have traded N0 for its dependence in µhost according to Eq. (B.10), with γ a 
constant predicted from a merger-tree calculations, which provides a very compact expression 
that depends only on the subhalo-to-host mass ratio and on the subhalo mass index. 

From the numerical values introduced in Eq. (4.19), we get αboost(p = 0) ' 0.11 > 0 for 
s-wave annihilation processes, hence a signifcant boost factor dominated by the contribution 
of the lightest subhalos to the annihilation rate (the last term in brackets in the right-hand-
side of the above equation simplifes to 1): ( )� �−αboost N0 A

2 
host −αboost Bs-wave − 1 ' 1−3ε µ 1 − µmax 

(4.36)minαboost A
2 µ µminsub host ˙−αboost 
host' γ A2 ˆ 

µmin 
. 

A2αboost sub µhost 

In that case, the boost factor is fxed by the hierarchy between the host halo mass and the 
minimal subhalo mass, and modulated by the amplitude of the e�ective boost index αboost. 

There is no boost factor in the p-wave annihilation case because since the cross section is 
proportional to v2 and the internal dispersion velocity decreases with the mass of a structure, 
the signal contributed by subhalos is strongly reduced with respect to that contributed by 

2 νthe host halo. Still under the assumption of hv2i / m , where ν will be evaluated later to 
be ˘ 1/3, and that for a halo of density profle ρ(r), hv2 ρ2i(r) ˇ hv2iρ2(r) / m2 ν ρ2(r), then 
it is easy to show from Eq. (4.30) that 

A2 ˆ ˙−αboost 
ˆ ˙−αboost γ γ 1host µmaxBp-wave − 1 ˇ − ˇ − ˝ 1 . (4.37)

A2αboost sub µhost αboost 100 

We have used the fact that mmax ' Mhost/100, that the boost mass index for the p-wave 
annihilation αboost(p = 2) = α + 3ε − 2(1 + ν) ˇ −0.56 < 0 [see Eq. (4.30)], and that 
A2 ˇ A2 In that approximation, valid as long as Jsm ' Jhost, then clearly Bp-wave ' 1.host sub. 
If Jsm < Jhost, which can be the case if the mass fraction in subhalos is signifcant within the 
scale radius of the host halo, then we could even have Bp-wave < 1, which would imply that 
subhalos would no longer act as a boost factor, but rather as a damping factor to the signal. 
We will see just below that this picture changes radically when Sommerfeld e�ects kick in. 

4.3.2 Sommerfeld enhancement at the level of one (sub)halo. 

In this part, we initiate the derivation of an analytical expression for the subhalo boost 
factor further subject to Sommerfeld-enhancement e�ects. The derivation proceeds in three 
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steps. We frst develop an analytical understanding of the Sommerfeld e�ect at the level of 
a single structure (this paragraph). This is a crucial step before generalizing to a population 
of structures in the next paragraph, where we derive a full analytical expression for the 
Sommerfeld-enhanced J-factor associated with a subhalo population. Finally, we determine 
the overall boost factor by calculating the ratio between the Sommerfeld enhanced J-factor 
for the subhalo population and that of the host halo. This series of analytical developments 
is helpful to reach a clearer physical understanding of the intricate phenomena at play in 
terms of the specifc particle physics model parameters, here characterized by the reduced 
DM Bohr radius, �φ. We recall that a Sommerfeld confguration is entirely fxed by �φ and the 
coupling strength αχ in our simplifed model. Decreasing �φ roughly amounts to increasing 
the DM particle mass or the interaction coupling constants, or decreasing the mediator mass, 
assuming all of the other parameters are fxed. 

We start by examining the overall Sommerfeld enhancement for one halo. The particle-
velocity dependent ansätze introduced in Sec. 3.1.2 suggest the possibility of formulating an 
e�ective Sommerfeld enhancement factor at the level of an entire (sub)halo. This can be 
done by picking the most representative value of the particle velocity in a DM structure, 
which depends on the structure mass (a mere consequence of the virial theorem for systems 
in dynamical equilibrium). If such a characteristic velocity in a (sub)halo can be estimated 
(e.g. from its averaged velocity dispersion), then one can e�ectively relate an average Sommer-
feld enhancement to the (sub)halo mass. We can actually expect the characteristic velocity 
of a structure of mass m, v(m), to scale like s p GN m(rc) 

v(m) ˘ hv2i ˘ , (4.38) 
rc 

where rc is some characteristic radius to be determined. For the sake of generality, considering 
that we can also relate that characteristic radius to the virial mass, we shall assume 

v = v0 µ 
ν , (4.39) 

where ν is the power-law index that relates the characteristic dimensionless velocity v/v0 
to the dimensionless (sub)halo mass µ = m/m0. Parameter v0 is the characteristic velocity 
associated with the arbitrary reference virial mass m0 = m0(r200,0) of an NFW halo, obeying 
the general relation s 

GN m(rs) 
v(m) � ω0 , (4.40) 

rs 

where ω0 ˘ 1 is a tuning parameter, rs is the scale radius associated with some halo of virial 
mass m, and m(rs) is the mass contained within rs. The speed parameter ω0 is meant to 
optimize the estimates of the speed moments relevant to the Sommerfeld enhancement over 
a given structure with a single value of v, which should capture di�erent regimes at the same 
time (/ h1/vi or h1/v2i). By picking the subhalo characteristic mass and size at the scale 
radius of an NFW halo, it is easy to show that ˆ ˙ 

1 2 1 
ν ' − ε ˇ , (4.41)

2 3 3 
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where ε is the power-law index of the approximate concentration-mass relation given in 
Eq. (4.18). More concretely, in numbers, this gives ˆ ˙1/3 m 

v ' 6 × 10−6 ω0 , (4.42)
106 M 

with ω0 ˘ 1. 
Even though v can be used as a characteristic velocity where most of the phase-space 

distribution is supposed to concentrate, one should still not forget that the speed of any 
DM particle bound to a (sub)halo can actually take any value between 0 and the escape 
speed. The Sommerfeld factor should therefore be integrated over the full available range— 
hence di�erent parts of the (sub)halo phase-space distribution may contribute to di�erent 
Sommerfeld regimes, not necessarily to a single regime. However, the characteristic velocity-
mass relation written above is meant to refect the typical velocity at which the bulk of 
annihilations in a (sub)halo of mass m proceeds, which turns out to be a good approximation. 

We can now opportunely reformulate the ansatz of Eq. (3.10) by replacing the depen-
dence on velocity v by a dependence on the characteristic (sub)halo velocity v(m), and then 
by a dependence in (sub)halo mass m. This gives 

Sno-res(m, �φ) = Sno-res(v(m), �φ) (4.43) " #− (1+p)� �−ν sv,c 
� �−νsv,c sv,cm − m(1+p)= S0 1 + S1 ,

˜ ˜mmax msat 

with m the (sub)halo mass, and the constants S0 and S1 given in Eq. (3.11). This ansatz 
is essentially valid for v(m) 6 ṽmax, or equivalently m 6 m̃ max = m(ṽmax), for which the 
Sommerfeld e� ect starts being operative. This maximal mass m̃ max should not be confused 
with the maximal subhalo mass mmax in a given host halo; it is really the (sub)halo mass 
beyond which the characteristic velocity of DM is too large for the Sommerfeld enhancement 
to be turned on eÿciently. The power-law indices have been introduced in Eq. (3.10) up 
to a correction by the speed-to-mass index ν, introduced in Eq. (4.39), and evaluated in 
Eq. (4.41). Switching from velocity to mass dependence, the power-law index in the Coulomb 
regime becomes −ν. We have also introduced m̃ sat = m̃ sat(�φ) = m(ṽsat(�φ)), the halo mass 
below which most of the halo phase-space volume is in the Sommerfeld saturation regime 
and resonances may appear. The di�erent velocity dependencies in the di�erent regimes are 
summarized below Eq. (3.10). 

Similarly to the corresponding velocities, the transition masses introduced above can be 
expressed in terms of the main Sommerfeld parameters: 8 � � 1 � � 1 

ν ν � �3ṽmax π αX αXm̃ max = m0 = m0 ˇ 9.6 × 1017 M v0 v0 0.01> � � 1 � � 1< 
˜ ν αX �φ ν αX �φ 

�3
˜ = m0 

vsat = m0 ˇ 7.6 × 109 M × . (4.44)msat(�φ) v0 v0 0.01 0.01� 1 > � 
ṽunit ν αX 

�12:m̃ unit = m0 ˇ 8 × 10−4 M v0 0.01 

We stress that m̃ sat is a smooth function of �φ even on resonances. This saturation mass 
defnes a threshold in phase space: halos with masses below m̃ sat will have most of their 
phase-space distribution in the saturation regime. Resonant saturation masses are simply 
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�res,n 
1/ν

characterized by m̃ sat = m̃ sat(�φ = ). The power-law dependence of m̃ sat / � canφ φ 

be predicted from Eq. (4.41) to be close to m̃ sat / �3 φ. This is actually recovered from a 
numerical calculation of Eq. (4.40), as shown in the bottom right panel of Fig. 4, which 
will be discussed more thoroughly later on. Finally, the numerical estimate of m̃ unit given 
above can make us anticipate the important role it will play in the determination of the 
resonant peak amplitudes, and then the intrinsic limit set in the potential of the latter to 
probe the minimal (sub)halo masses if m̃ unit > mmin. We stress that this mass boundary 
m̃ unit is extremely sensitive to the DM fne structure constant, as it scales like ˘ α12 in ourχ 

approximate parametric regularization (but see the discussion at the end of Sec. 3.1.1). 
We can get a similar formulation for the halo mass dependent Sommerfeld factor on 

resonances by inserting v = v(m) in Eq. (3.13): 

Sres,n(m, �φ) = Sres,n(v(m), �φ) (4.45)� �−ν � �−ν(2−p) � ν 
�−2 

n>1+ p 
2 Sres m̃ sat(�φ) m m̃ unit = 1 + 

ν0 m̃ max m̃ sat(�φ) m 

× θ (m̃sat(�φ) − m) δ�φ/{�res,n}φ 

where δ�φ/{�res,n} was defned in Eq. (3.14), and where we see that a halo can eÿciently trigger 
φ 

resonances provided its mass m ˝ m̃ sat(�
res,n).φ 

A full understanding of the mass dependence in the resonant regime actually follows 
from that of the velocity dependence discussed around Eq. (3.13) and illustrated in Fig. 2, 
keeping in mind that v / mν—focus on dark blue curves in both panels. Indeed, beside the 
step function responsible for turning resonances on or o�, the only direct dependence of the 
above resonant Sommerfeld factor on the halo mass m shows up in the s-wave case, down 
to the unitarity limit characterized by m̃ unit. In contrast, the amplitudes of p-wave resonant 
peaks (p = 2) do not, essentially, depend on m, which is reminiscent from the fact that 
the e�ective Sommerfeld enhancement (which includes the v2 p-wave suppression factor as 
well) is velocity independent on p-wave peaks, as shown in Eq. (3.13) and in the right panel 
of Fig. 2. The p-wave suppression factor re-appears once the unitarity bound is reached, 
and translates into a mass-dependent suppression factor of (1 + m̃ unit/m)−2ν that becomes 
operative when m . m̃ unit. Hence, the potential numerical error made by converting a local 
velocity into a global velocity is signifcantly reduced on p-wave resonances (except close to 
the step function threshold, m . m̃ sat, where only part of the phase-space distribution lies 
in the saturation regime, or close to the unitarity bound). 

All this allows us to translate the velocity-dependent ansatz of Eq. (3.17) in terms of a 
halo-mass-dependent and generic e�ective Sommerfeld factor, 0 1 

S(m, �φ) = Sno-res(m, �φ) @1 − 
X 

δ�φ/{�res,n} 
A+ 

X 
Sres,n(m, �φ) (4.46)

φ 

n=1+ p n=1+ p 
2 2 

/ µ −sm , 

where Sres(m) is the transcript of Sres(v) of Eq. (3.13) in terms of mass m (evaluated at 
v = v(m)). At the level of a (sub)halo, the Sommerfeld enhancement can be written as 
power law in mass, whose e�ective index sm = ν sv can be readily inferred from the possible 
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values of sv listed in Eq. (3.18): 

ν (Coulomb regime) 

sm = 

8>< >: −ν p (non-resonant saturation regime) . (4.47) 

ν (2 − p) (resonances) −! −p ν (if m . m̃ unit) 

We stress that the correspondence between the characteristic speed and the (sub)halo 
mass in the Sommerfeld factor has only a global meaning—we shall refer to v as the charac-
teristic speed in a (sub)halo, and to v as an arbitrary or local speed from now on. Indeed, 
as mentioned above, the DM speed v in a subhalo can take any value between ˘ 0 ˝ v and 
the escape speed ve & v. The whole (sub)halo lies in the Sommerfeld-enhancement regime 
typically when ve � ṽmax. Then, the part of the phase-space distribution located between 
ṽsat(�φ) and ṽmax will essentially participate in the Coulomb enhancement (/ 1/v), while the 
part of the phase-space distribution below ṽsat(�φ) will instead contribute in the saturation 
regime. In the latter case, the speed dependence saturates, except at resonances, which are 

= �res,ntriggered at special values of �φ φ at which all of the phase-space distribution located 

below ṽsat participates in the enhancement (/ 1/v2 for s-wave annihilation). The very fact 
that di�erent parts of the phase-space distribution of a (sub)halo feed di�erent Sommerfeld 
regimes implies that the ansatz of Eq. (4.46) cannot lead to accurate predictions. However, 
we shall see below that it is still very powerful to capture the main phenomenological features 
of the intricate phenomena at play. 

It is instructive to further inspect the relative amplitudes of resonant peaks when the 
Sommerfeld factor is applied over an entire halo. To do so, let us briefy convert the ratio 
of resonance-to-baseline enhancement in the saturation regime, introduced in Eq. (3.16), in 
terms of an overall mass-dependent ratio: ˆ ˙−2 ν �ˆ �ν˙−2�π �2 µ̃unitµR(µ, �φ) = 1 + 

˘ / �2 φ µ −2/3 . (4.48)
6 µ̃sat µ 

Therefore, the relative amplitudes of peaks scale like v−2(m) $ m−2/3 for both s- and p-wave 
processes, which means that resonances are more pronounced for less massive halos (though 
saturating when m . m̃ unit), while still suppressed like (�φ ˘ �res,n)2 at higher and higherφ 

resonances, with respect to the saturation baseline. 
We pursue by writing down the analytical expression obtained for the J-factor corrected 

for the Sommerfeld enhancement at the level of one structure of mass m (or dimensionless 
reduced mass µ = m/m0), combining Eq. (4.27) and Eq. (4.46): ˆ 

µ 
˙−pν 

× S(µ, �φ)JS (m, �φ) = JS (µ, �φ) = J(µ) × (4.49) 
µ̃max 

= J0 × (2 ̃vmax)p × µ 1−3ε S(µ, �φ) 
1−3ε−sm= J0,S (�φ) µ , 

which gives an implicit defnition to the factor J0,S (�φ), and where the Sommerfeld mass 
)−pν )−pindex sm was introduced in Eq. (4.47). Note that the factor (µ/µ̃max = (v/ṽmax 

is simply there not to double count the v2 dependence of the p-wave cross section that is 
included in the defnition of the nominal J-factor J(m) [see Eq. (4.27)], which we have also 
conveniently absorbed in the defnition of the e�ective Sommerfeld enhancement factor [see 
Eq. (3.8)]. 
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�
Like in the Sommerfeld-free case, it is interesting to determine the ratio of J-factors for 

halos of di�erent masses, say m1 $ µ1 and m2 $ µ2 (assumed here to be located at di erent 
distances, D1 and D2, from the observer): ( )ˆ ˙2 ˆ ˙1−3ε −sm1JS (m1, �φ) mD2 m1 1= , (4.50)−sm2JS (m2, �φ) D1 m2 m2 

where smi refers to the Sommerfeld mass index of the halo of index i. In the absence of 
Sommerfeld enhancement, J1/J2 ˘ (m1/m2)

(1−3ε+p ν) according to Eq. (4.29), where the 
vp(m) factor relevant to the p-wave case remains (contributing νp in the power-law mass 
index, a contribution hidden in the defnition of the index sm in the Sommerfeld-enhanced 
case). 

Now, we determine the asymptotic expressions for the di�erent Sommerfeld regimes, 
which will turn useful later because subhalos are not necessarily all in the same Sommerfeld 
regime, nor necessarily in the same Sommerfeld regime as the host halo itself. This gives: 

• Coulomb regime (µ > µ̃sat(�φ)): ˆ ˙1−3ε−ν 
µ>µ̃sat µ1−3εJS (µ, �φ) −! J0 (2 ˜ )p S0 µ̃ (4.51)vmax max 
Coulomb µ̃max 

1−3ε−ν/ µ . 

• Saturation (µ 6 µ̃sat(�φ)): ˆ ˙ν ˆ ˙1−3ε+νp 
µ6µ̃sat µ̃max 1−3ε µ

JS (µ, �φ) −! J0 (2 ˜ )p S0 S1 µ̃ (4.52)vmax sat
saturation ˜ ˜µsat µsat 

−(1+p) 1−3ε+νp / � µ .φ 

• Resonances (µ ˝ µ̃sat(�
res,n)):φ ˆ ˙ν ˆ ˙1−3ε−ν(2−p) 

= �res,n 
µ˝µ̃sat 

)p Sres µ̃max 1−3ε µ
JS (µ, �φ ) −! J0 (2 ̃  µ̃ (4.53)φ vmax 0 sat 

resonance/s µ̃sat µ̃sat ˆ � �ν˙−2 µ̃unit × 1 + 
µ 

(1−p) 1−3ε−ν(2−p)/ � µ .φ 

The full mass dependence (which derives from velocity dependence) of the overall 
Sommerfeld-enhanced JS factor at the level of a single halo is shown in Fig. 3, where the 
power-law scalings derived just above are illustrated for di�erent values of the reduced Bohr 
radius �φ, hence for di�erent particle physics confgurations. We actually took the same ref-
erence cases as in Fig. 2, �φ = 0.1 (moderate enhancement), 10−3 (signifcant enhancement), 

= �res,8and the n = 8 resonance popping up at an intermediate value of �φ ' 10−2 (strongφ 

enhancement). The corresponding saturation masses m̃ sat(�φ) are reported as dashed vertical 
lines, which mark the transition between the Coulomb regime domination of the phase-space 
volume (m > m̃ sat) and the saturation regime domination (m < m̃ sat). We see that in both 
the s- (left panel) and p-wave (right panel) cases, this transition is characterized by a change 
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Figure 3. Sommerfeld-enhanced JS factor as a function of halo mass, for di�erent values of the 
reduced Bohr radius �φ: a large value 0.1, a small value of 10−3 , and an intermediate value of ˘ 10−2 

sitting on the n = 8 resonance. This fgure is somewhat a translation of the local e�ective Sommerfeld 
factor as a function of DM velocity shown in Fig. 2 (times the nominal J factor). Transition from 
Coulomb to saturation regimes occurs around m̃ sat(�φ), reported as vertical dashed lines. Left panel: 
s-wave case. Right panel: p-wave case. 

of logarithmic slope for JS , as analytically predicted above. The important point to note 
here is that the slope gets generically steeper below the saturation mass (stronger decrease 
with decreasing mass), except on the resonance, where the mass dependence is much shal-
lower toward low masses down to the unitary mass m̃ unit (from both panels, we see that the 
resonant curves maintain a higher level of JS factor compared to non-resonant curves, as m 
decreases down to m̃ unit). This will obviously have strong consequences when integrated over 
a subhalo population, whose power-law mass function will act as an extra weight in favor of 
low-mass subhalos. 

We are now equipped with all necessary analytical results to understand the Sommerfeld 
enhancement at the level of an entire halo. A fnal characteristic ingredient to better identify 
the Sommerfeld regime a given a (sub)halo of mass m should fall in is the value of �φ for which 
that halo would transition from the Coulomb to the saturation regime. Since the saturation 
mass m̃ sat is defned from �φ, we can conversely assign a reference value �sat(m) to a halo ofφ 

virial mass m such that 

m̃ sat(�
sat) = m (defnition of �sat) (4.54)φ φ ˆ ˙νn o−1 

) �sat αX m ˘ 1/3(m) ' 0.01 × × / m .φ 0.01 6 × 109 M 

From this defnition, we can have a better intuition of the Sommerfeld enhancement regime 
in which a (sub)halo sits: if �φ > �sat(m) (�φ < �sat(m)), then most of the halo phase-space φ φ 

distribution is located in the saturation regime (Coulomb regime, respectively). 
It is also helpful to understand the dependence on �φ. At fxed values of the coupling 

strength αχ, decreasing �φ amounts to exploring di�erent particle physics model confgura-
tions (increasing the DM particle mass, or equivalently decreasing the mediator mass). This 
also amounts to decreasing m̃ sat(�φ) accordingly, hence moving the halo phase-space distribu-
tion from the saturation regime domination (m < m̃ sat) to the Coulomb regime domination 
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(m > m̃ sat). We have the following behaviors for the effective Sommerfeld enhancement as a 
function of (sub)halo mass m: 

• m > m̃ sat(�φ) $ �sat > �φ: The bulk of the phase-space volume is located in theφ 

Coulomb regime of the Sommerfeld factor, since ṽsat(�φ) < v, so the enhancement is 
/ (m/m̃ max)−ν / (v/ṽmax)−1 . Hence, the enhancement factor does not depend on 
�φ, and it is fxed at a value / v−1(m) even for decreasing (while non-resonant) �φ. 
This situation is typically encountered when �φ is very small, or when the halo is very 
massive. 

= �res,n) $ �sat = �res,n• m < ˜ 6 < �φ 6 : In this confguration, most of the halo phase msat(�φ φ φ φ 

space lies in the non-resonant saturation regime (v < ṽsat(�φ)), and the Sommerfeld fac-
−(p+1)

tor scales at / (ṽmax/ṽsat(�φ))−1(v/ṽsat(�φ))p / (m̃max/m̃ sat(�φ))−ν(m/m̃ sat(�φ))pν�φ , 
independent of mass only in the s-wave case. The overall Sommerfeld factor is therefore 
entirely set by �φ (and is / 1/�φ or 1/�3 for s- or p-wave annihilation).φ 

) $ �sat < �φ ˘ �res,n th• m < m̃ sat(�φ ˘ �res,n : Here, we sit on the n resonance, and sinceφ φ φ 
res,nv(m) < ṽ , the bulk of the phase-space volume participates in the enhancement, sat 

res,n res,nwhose amplitude is maximized when ṽunit . v ˝ ṽ $ m̃ unit . m ˝ m̃ .sat sat 

The amplitude of the resonance peak relative to the baseline enhancement is larger for 
smaller halos, as predicted from Eq. (4.48). It is also suppressed like �2 φ at higher and 
higher resonances, which, combined with the 1/�φ scaling of the baseline, explains why 
the amplitude of the series of peaks globally decreases linearly with �φ as �φ decreases. 

˘ �res,n ˘ �res,n < �sat th• m̃ sat(�φ ) < m $ �φ : Here, we also sit on the n resonance,φ φ φ 

but only the lower tail of the phase-space volume participates in the enhancement 
because v > ṽsat(�

res,n). The remaining (higher) part of the phase-space volume is inφ 

the Coulomb regime. The amplitude of the resonance is therefore controlled by the 
res,nreduced volume of available relevant phase space, and then suppressed if v ˛ ṽ .sat 

In that case, only the Coulomb enhancement is active, and actually saturates at the 
characteristic velocity of the (sub)halo / (v/ṽmax)−1 $ (m/m̃ max)−ν . 

All this is illustrated in Fig. 4, where the top panels show the Sommerfeld-enhanced 
JS -factors for halos of di�erent masses located at the same distance from the observer (nor-
malized to the Sommerfeld-free J-factor of a reference halo of 1015M ). They are plotted 
as a function of the Bohr-to-interaction length ratio �φ. These enhanced JS -factors are cal-
culated fully numerically assuming an s-wave (p-wave) annihilation in the top left (right) 
panel, with, from the top to bottom curves, predictions for halos of masses from 1015 M 
(typical of galaxy clusters) down to 10−6 M (typical of the cuto� mass in the matter power 
spectrum for WIMPs). This corresponds to characteristic speeds v spanning a range from 
˘ 10−3 down to ˘ 10−9 (in natural units), hence of �v = v/αX of ˘ 10−1 , down to ˘ 10−7 . 

As a practical toolkit to better understand these results, we also trace in the bottom 
left panel the key relation between the saturation velocity ṽsat and �φ (solid black curve), 
with the Sommerfeld enhancement factor represented in a third dimension as a function of 
both the velocity v and �φ (gray color contrast code). In the same panel, we report the 
characteristic DM velocity v(m) for halos of masses 1015 , 1012 , and 106 M , as inferred from 
Eq. (4.38). To each of them, we associate along the right vertical axis the full (unnormalized) 
DM velocity distribution calculated from the Eddington inversion at the scale radii of these 
halos. This plot is particularly helpful to illustrate how the phase-space distribution of DM 

– 30 – 



�

�

10−4 10−3 10−2 10−1 100 101 102

εφ

10−20

10−16

10−12

10−8

10−4

100

104
J

S
/J

(1
015

M
�

)

10−6 M�

10−3 M�

1 M�

103 M�

106 M�

109 M�

1012 M�

1015 M�

s-wave

10−4 10−3 10−2 10−1 100 101 102

εφ

10−36

10−32

10−28

10−24

10−20

10−16

10−12

10−8

10−4

100

104

J
S
/J

(1
015

M
�

)

10−6 M�

10−3 M�

1 M�

103 M�

106 M�

109 M�

1012 M�

1015 M�

p-wave

10−4 10−3 10−2 10−1 100

εφ

103

105

107

109

1011

1013

1015

1017

m̃
sa

t
[M
�

]

m = 106 M�

m = 1012 M�

m = 1015 M�

Coulomb

Saturation/resonances

Sommerfeld saturation mass

Numerical m̃sat(εφ)

m̃sat ∝ ε
1/ν
φ , ν ≈ 1/3

Figure 4. Sommerfeld-enhanced JS -factors as a function of �φ for DM halos of di�erent masses 
located at the same distance, normalized to the Sommerfeld-free J-factor of a 1015M halo. Top 
left: The s-wave annihilation case. Top right: Same as left panel, but for a p-wave annihilation. 
Bottom left: Saturation velocity as a function of �φ (solid black curve), delineating the transition 
between the Coulomb and saturation regimes. The (log10 of the) Sommerfeld factor is represented as 
the third dimension (gray color scale), as a function of velocity v and �φ. The characteristic speeds 
of 1015 , 1012 , and 106 M halos are indicated, with the corresponding (unnormalized) full Eddington 
velocity distribution taken at the scale radius, along the right vertical axis for illustration. Bottom 
right: Saturation mass of the Sommerfeld e�ect as a function of �φ. 

concentrates around v(m), though with a lower and a higher tail. The bottom right panel of 

Fig. 4 further shows the scaling of the saturation mass m̃ sat with �φ, namely m̃ sat / �1/ν ˇ �3 φ,φ 

which follows from Eq. (4.44) and from Eq. (4.41). This approximation matches pretty well 
with the exact numerical result. 

Let us now describe the top left panel of Fig. 4, which shows the Sommerfeld-enhanced 
JS -factors in the s-wave case for di�erent halo masses. Large values of �φ imply that most 
halos have the bulk of their phase-space volume in the saturation regime, as long as m is 
smaller than m̃ sat(�φ) (equivalently v(m) < ṽsat(�φ)). The transition to the Coulomb regime 

= �satoccurs as �φ decreases below a specifc value, �φ φ (m), defned in Eq. (4.54) (equivalently 

ṽsat(�
sat) = v(m)). We can read values of �sat(m) o� the plot in the bottom right panelφ φ 

of Fig. 4, and can also use the bottom left panel to translate the halo masses in terms of 
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characteristic velocities and velocity distributions. For illustration, let us focus on three 
specifc virial halo masses, 1015 , 1012 , and 106 M . All these masses have characteristic 
velocities smaller than ˘ αχ = 0.01, and are therefore subject to Sommerfeld enhancement 
(m < m̃ max). Let us follow their JS -curves on the top left panel from the right to left (large 
to small �φ or m̃ sat), while keeping in mind Eq. (4.51), which describes the Coulomb regime, 
Eq. (4.52) the saturation regime, and Eq. (4.53) resonances: 

• m = 1015 M $ v ˘ 6 × 10−3: The transition from saturation to the Coulomb 
> �satregime occurs at �sat ˘ 0.5, a value just below the frst resonance. For �φ ,φ φ 

we are in the saturation regime (m < m̃ sat(�φ)): the Sommerfeld factor saturates at 
/ (m̃sat/m̃ max)−ν / (ṽsat/ṽmax)−1 / 1/�φ, but takes a small value because m̃ sat . 
m̃ max. When �φ hits the frst resonance, �res,1 ' 2/3, only a tiny part of the phase-φ 

space volume can participate in the enhancement / 1/v2 , because the bulk of the 
res,1velocity distribution lies around v ˘ ṽ . Consequently, the amplitude of the frstsat 

resonance is suppressed. The transition from the saturation regime to the Coulomb 
regime occurs when �φ < �sat , below which the bulk of the Sommerfeld boost becomes φ 

/ 1/v(m). Once the whole phase-space distribution fnds itself in the Coulomb regime, 
the Sommerfeld boost factor remains fxed at a constant value / 1/v determined by 
the characteristic velocity of the halo. For the same reason, higher-order resonances are 
suppressed (no phase-space volume left below ṽsat(�φ)). Therefore, for further decreas-
ing values of �φ, even though in the Coulomb regime, the Sommerfeld enhancement 
factor remains constant, fxed by the characteristic velocity / 1/v: the J-factor stops 
evolving accordingly and remains fat. 

• m = 1012 M $ v ˘ 6 × 10−4: The transition from the saturation to the Coulomb 
regime occurs at �sat ˘ 0.05, which is located between the fourth (�res,4 ' 1/24) andφ φ 

For �φ > �satthird (�res,3 ' 2/27) resonances. φ , we are in the regime m̃ sat > m, henceφ 

in the saturation regime for which the enhancement is / 1/�φ. When �φ hits resonant 
values of order n < 3, a signifcant part of the phase-space volume can participate in 
the (ṽsat/v)2 enhancement, which cannot exceed ˘ (ṽsat/v)2 because most of the phase-
space volume concentrates around v. Therefore, even though the frst resonances are 
turned on, their amplitudes are phase-space limited. When �φ further decreases below 
�sat φ , the bulk of the phase-space volume switches to the Coulomb regime, but with a 
Sommerfeld factor asymptoting to a constant / ṽmax/v. There is no longer enough 
phase-space volume available below ṽsat(�φ) to trigger higher-order resonances, and the 
JS -factor stops evolving and remains fat. 

• m = 106 M $ v ˘ 6 × 10−6: The saturation-Coulomb transition occurs at �sat φ ˘ 
5 × 10−4 , which is located in the resonance forest. Like in the previous case, as long as 
�φ > �sat φ (equivalently m̃ sat > m), we are in the saturation regime, and the Sommerfeld 

factor is / 1/ṽsat / 1/�φ. All resonances encountered by decreasing �φ down to �sat areφ 
2turned on and have their amplitudes roughly set by 1/(n v)2 / �φ/v — the amplitudes 

decrease linearly with �φ as the latter decreases. When �φ becomes smaller than �sat , we φ 

switch to the Coulomb regime, and the enhancement is frozen to / 1/v, and there is not 
enough phase-space volume available in the lower tail to turn the remaining resonances 
on. Hence, the Sommerfeld enhancement remains frozen and no longer evolves as �φ 
keeps on decreasing below �sat .φ 
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The ratio of J-factors for two halos of masses m1 and m2 can easily be estimated from 
Eq. (4.29) and Eq. (4.50). In the absence of Sommerfeld enhancement, i.e. �φ & 1, then 

˘ (m1/m2)
1−3 ε+p ν J1/J2 . From this rough scaling relation, we can predict a factor of 

˘ 3.5 × 102 between each successive curve in the top left panel of Fig. 4 for the s-wave case, 
and ˘ 3.5 × 104 for the p-wave case in the top right panel. This is reasonably close to the 
exact results, ˘ 5 × 102 and 4 × 104 , respectively. When the Sommerfeld enhancement kicks 

−sm1 −ν p −sm2 −ν p 
in, this ratio is corrected by an additional factor ˘ (m /m ), where sm1 and1 2 

sm2 refer to the Sommerfeld mass indices of the halo of mass m1 and the halo of mass m2, 
respectively [see Eq. (4.47)]—indeed, the two halos can be in di�erent Sommerfeld regimes. 
We can still verify from the top panels of Fig. 4 that, for instance, when halos are in the 
Coulomb regime (asymptotic values on the very left parts of the panels), then successive 
curves should be asymptotically split by a factor of ˘ 35 for both the s- and p-wave cases, 
according to Eq. (4.29). This is again close to the accurate numerical evaluation. 

For the p-wave case illustrated in the top right panel of Fig. 4, the main di�erences with 
the s-wave case are the following. (i) In the saturation regime, the baseline enhancement 
is / 1/�3 (instead of 1/�φ). (ii) The amplitude of the resonance peak scales like n2 / 1/�φφ 

(instead of 1/n2 / �φ), and therefore increases with the order of the resonance (linearly 
2with 1/�φ, as �φ decreases). (iii) The overall / v suppression factor in the cross section 

(e�ectively captured in our ansatz for the Sommerfeld boost factor above), is compensated 
for by the Sommerfeld enhancement, except on the baseline of the saturation regime where 

2νit contributes an additional splitting factor / m (very right part of the plot), which then 
disappears in the Coulomb regime (very left part of the plot). A full description of resonance 
properties can be found around Eq. (3.13). 

Finally, before moving to the study of the global contribution of a subhalo population 
to the Sommerfeld enhancement, it is interesting to compare the accurate numerical results 
at the level of single halos with those derived from our approximate ansatz of Eq. (4.46). 
We report such a comparison in Fig. 5 in terms of both the Sommerfeld-enhanced JS fac-
tors (top panels) and the ratios JS /J (bottom panels) for halos of masses 108 , 1012 , and 
1015 M , typical of dwarf galaxies, spiral galaxies, and galaxy clusters, placed at distances 
0.1, 1, 100 Mpc, respectively. An averaged Sommerfeld enhancement factor at the level of 
an entire halo can be formulated from the ratio JS /J – J and JS are calculated from a 
full phase-space integration in the accurate numerical results shown in the plots. We ac-
tually compare these accurate results (dotted curves) with our analytical approximations 
(dashed and dot-dashed curves) — see Eq. (4.27) for the J-factor, and Eq. (4.49) for the 
Sommerfeld-enhanced JS -factor. The left (right, respectively) panels show the comparisons 
for an s-(p-)wave annihilation. We have also reported solid curves that correspond to the ex-
act Sommerfeld factors of Eq. (3.3) and Eq. (3.5) evaluated at a single characteristic velocity 
v(m) for each halo. We used Eq. (4.40) for the latter, and tuned the constant ω0 to 0.6 (0.8, 
respectively) for s-(p-)wave annihilation. The baselines and the peaks envelopes (dashed and 
dot-dashed curves) are instead calculated from our analytical ansatz of Eq. (4.46), evaluated 
at the same characteristic velocities. We see that the analytical approximations capture the 
exact behaviors reasonably well. The peaks amplitudes are slightly underestimated because 
v(m) overestimates the typical speed at the very center of objects. As expected from our 
analytical approximations, the Sommerfeld enhancement at the level of a full halo is quite 
similar to the local velocity-dependent e �ective Sommerfeld enhancement depicted in Fig. 1 

2(except for the v p-wave correction absorbed in the defnition of S in the latter case, which 
does not change the scaling in �φ but rescales the Sommerfeld enhancement by a factor of 
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Figure 5. Top left panel: Sommerfeld-enhanced JS factors over entire halos obtained for an s-wave 
annihilation process calculated (i) from the full phase-space numerical integral of exact expressions 
(dotted curve), (ii) from the analytical approximation of the J-factor in Eq. (4.27) times the Som-
merfeld factor of Eq. (3.3) and Eq. (3.5) evaluated at speeds v(m), and (iii) from the full analytical 
approximation of Eq. (4.49) (for the Coulomb and saturation baseline, and for the peaks envelope) – 
we consider three halos of masses m = 108 , 1012 , and 1015 M . Bottom left panel: Correspond-
ing e�ective Sommerfeld enhancement factors over entire halos ratio expressed as JS /J , neglecting 
subhalos. Right panels: Same as left panels for a p-wave annihilation process. 

µ2ν : this benefts more massive halos but at the same time is more representative of the 
scaling of the true cross section). 

4.3.3 Sommerfeld enhancement for a population of subhalos 

To understand the global Sommerfeld enhancement arising from a population of subhalos, 
it is convenient to combine the results obtained in the previous paragraph, where we have 
defned an ansatz for the Sommerfeld enhancement in terms of the (sub)halo virial mass 
m, with the analytical results obtained for the subhalo boost factor in Sec. 4.3.1. We warn 
the reader that the analytical results derived from now on will be much less precise when 
compared to the numerical results (generically much more precise for s-wave than for p-wave 
processes). Still, they turn very useful to really understand the di�erent features of the 
numerical results. 

Given a (sub)halo of virial mass m, we can defne a JS -factor corrected for the overall 
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1−3ε−smSommerfeld e�ect according to Eq. (4.49), which scales like / µ . Exponent sm is 
the e�ective power-law mass index introduced in Eq. (4.46), which takes di�erent values for 
the di�erent Sommerfeld regimes. From this, assuming m̃ unit < mmin < m̃ sat(�φ) < mmax < 
m̃ max (which is not always the case6), it is easy to express the total J-factor for a population 
of subhalos: Z mmax dNsub

JS,sub(�φ) = dm JS (m, �φ) (4.55)
dm Zm 

˜ 
min Z msat(�φ) mmaxdNsub dNsub 

= dm JS (m, �φ) + dm JS (m, �φ)
dm dmmmin m̃ sat(�φ)| {z } | {z } 

saturation+resonances Coulomb X lower relevant mass bound 
/ ˘ 1 

µ −αs . 
αs upper relevant mass bound 

s2Somm. regimes 

Our sign convention for the Sommerfeld-enhanced subhalo boost factor mass index αs is such 
that a positive value gives large values of the total subhalo J-factor, hence of the boost factor. 
This occurs when lighter subhalos contribute the most to the annihilation rate, hence when 
the integral above is dominated by contributions at the lower mass boundary [see discussion 
around Eq. (4.33)]. The important features of this total luminosity are therefore (i) the mass 
boundaries of the integral, and (ii) the e�ective subhalo mass index αs (and its sign), which 
depends on the mass and mass-concentration indices α and ε, as well as on the Sommerfeld-
enhancement mass index sm introduced earlier for di�erent regimes. This e�ective index 
can easily be derived by integrating Eqs. (4.51)-(4.53) over the subhalo mass function. It 
generically reads: 

αs = α − 2 + 3ε + sm , (4.56) 

where sm is the Sommerfeld mass index that depends on the Sommerfeld regime—it is given 
in Eq. (4.47). 

In fact, both αs and the mass boundaries depend on the relevant Sommerfeld regime, 
which is itself fxed by �φ or, equivalently, by m̃ sat(�φ) [hence the splitting of the integral 
as a sum of di�erent pieces in Eq. (4.55)]. Consequently, for a given �φ, there can be two 
di�erent contributions, assuming mmin < m̃ sat(�φ) < mmax < m̃ max: one from the Coulomb 
regime, involving subhalo masses between m̃ sat(�φ) and mmax, and another one from the 
saturation regime, involving subhalo masses lighter than m̃ sat(�φ). For resonant values of �φ 

msat(�
res,n(i.e. still in the saturation regime), subhalos lighter than ˜ φ ), for any order n, are also 

the ones most involved in the enhancement. Since the minimal subhalo mass mmin is fxed 
for all host halos (it depends on the DM particle scenario itself), and the maximal subhalo 
mass mmax ' Mhost/100 is always smaller than m̃ max in the confgurations studied in this 
paper, we can advantageously split the subhalo population yield to the J-factor by taking the 
asymptotic form of the Sommerfeld enhancement factor relevant to each part of the integral 
of Eq. (4.55). This provides us with a one of our main fully analytical results: 

6Among the possible departures from this assumed mass hierarchy, we indicate three generic variants: (i) 
mmin < m̃ unit, which is actually the case for the template parameters used in this paper; (ii) m̃ sat < mmin, 
which is generic in the Coulomb massless-mediator limit �φ ! 0, in which case there is no saturation regime; 
(iii) mmax < m̃ sat, which can happen for small host halos (typically dwarf galaxies) and moderate values of 
�φ. In all of those cases, one needs to recast the splitting of the mass integral accordingly, which leads to 
different mass boundaries in the asymptotic regimes. 
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JS,sub(�φ) = θ(mmax − ̃msat(�φ)) JCoul 
S,sub(�φ) (4.57) 

+θ( ̃msat(�φ) − mmin) J sat 
S,sub(�φ) 

+ 
X 

n=1+ p 
2 

δ�φ/{�res,n 
φ } θ( ̃msat(�φ) − mmin) J res 

S,sub(�φ) . 

We have deliberately separated the di�erent Sommerfeld regimes for clarity. We have respec-
tively for the Coulomb, saturation, and resonance regimes: 

JCoul 
S,sub(�φ) = 

N0(µhost) J0 
αCoul 

(2 v0)
p S0 µ̃ 

ν(1+p) 
max µ −αCoul 

max(µ̃sat,µmin) 

µmax 

(4.58a) 

J sat 
S,sub(�φ) = 

N0(µhost) J0 
αsat 

(2 v0)
p S0 S1 

ˆ ̃
µmax 

µ̃sat 

˙ν(1+p) 

µ −αsat 
µmin 

min(µ̃sat,µmax) 
(4.58b) 

J res 
S,sub(�φ) = 

N0(µhost) J0 
αres 

(2 v0)
p Sres 

0 

ˆ ̃
µmax 

µ̃sat 

˙ν(1+p) 

µ̃ 2 ν sat (4.58c) 

× ̂
 
µ −αres 

max(µmin,µ̃unit) 

min(µ̃sat,µmax) 
+ 

θ(µ̃unit − µmin) 

µ̃2ν 
unit 

αres 

αunit 
res 

µ −α
unit 
res 

µmin 

µ̃unit 

˙ 
, 

where µmin and µmax are the subhalo reduced minimal and maximal masses, given a host 
halo of mass Mhost and a DM particle scenario. The boost mass index Eq. (4.56) allows us to 
determine the di�erent indices, αCoul, αsat, and αres, from the Sommerfeld mass index sm of 
Eq. (4.47) given for the three Sommerfeld regimes. This separation is rather artifcial though, 
because the Sommerfeld enhancement factor smoothly transits between these regimes. That, 
together with the fact that we approximate phase-space integrals by evaluating the relevant 
functions at characteristic velocities, which induces nonphysical thresholds between the sat-
uration/resonant and Coulomb regimes, will be the main source of numerical errors with 
respect (i) to the full mass integral of the Sommerfeld factor, and (ii) a fortiori also to the 
exact numerical integration over both mass and phase space. However, this division has the 
virtue of providing fully analytical scaling relations and a fne understanding of parameter 
dependencies, despite the signifcant cost in precision. 

As an additional detail, mind the last term of the result obtained for resonances, which 
features µ̃unit and includes the possibility of having µmin < µ̃unit, in which case we have to 
account for the unitarity saturation of resonances. In this small corner of the parameter 
space, the Sommerfeld-corrected index αres changes, which we write explicitly by using αunit 

res 

(this term is not crucial, so we will mostly neglect it in forthcoming discussion). As the 
frames indicate, these are still very insightful results which allow us to fully understand how 
the Sommerfeld enhancement propagates over a full population of subhalos. 

Assuming a value for �φ such that mmin < m̃ sat(�φ) < mmax, the upper subhalo mass 
range 2 [m̃sat(�φ),mmax] lies in the Coulomb regime, while the lower one 2 [mmin, m̃ sat(�φ)] 
lies in the saturation regime, for which the asymptotic mass slopes associated with JS,sub 
take di�erent values—resonances further show up in the saturation regime. Each regime 
is featured by its own index αs, whose generic form is given in Eq. (4.56). The dominant 
boundary term of each piece in Eq. (4.58) will be selected according to the sign of each index: 
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as explained above, a positive sign implies a dominant contribution from lighter and therefore 
more numerous and more concentrated subhalos. Let us inspect these indices in more detail, 
by combining Eq. (4.47) and Eq. (4.56): 88 >< αCoul ˇ 0.43 

0.10 (for p = 0)
αsat ˇ 

(αCoul � α − 2 + 3ε + ν ><αsat � α − 2 + 3ε − ν p numerical−!αs = −0.57 (for p = 2) (4.59)(αres � α − 2 + 3ε + ν (2 − p) evaluation >: 0.76 (for p = 0)
αunit 
res � α − 2 + 3ε − ν p = αsat >:αres ˇ 

0.10 (for p = 2) 

From Eq. (4.41), we have the characteristic-speed-to-mass index ν ' 1/3. Parameter p = 0/2 
for an s/p-wave annihilation. Since α ˇ 1.95 and ε ˇ 0.05, we see that αCoul > 0 quite 
generically. Therefore, the Coulomb regime is m̃ sat-dominated (provided m̃ sat < mmax, which 
is not always the case in particular if the host halo is a dwarf galaxy). On the other hand, 
in the saturation regime, αsat > 0 for the s-wave case (p = 0), while it gets negative for the 
p-wave case (p = 2). Therefore, the saturation regime is either mmin-dominated (s-wave) 
or m̃ sat-dominated (p-wave). In the latter case, this means that mostly subhalo masses 
down to m̃ sat(�φ) participate in an extra-Sommerfeld enhancement, whereas the lower part 
of the mass function does not add up a signifcant yield—this actually comes from the v2 

p-wave suppression factor absorbed in our e�ective Sommerfeld ansatz, which remains in 
the saturation regime of p-wave annihilation. In contrast, on resonances, we see that αres is 
positive for both s-wave and p-wave annihilation processes. Therefore, all subhalos down to 
the cuto� mass mmin participate in the extra-enhancement on resonances in both cases. There 
is still a fundamental di�erent between s- and p-wave resonances that needs to be emphasized: 
there is formally a velocity dependence in the s-wave case, which can be seen from the 2ν 
contribution to αres, while p-wave resonance amplitudes do not depend on velocity—see 
detailed discussion around Eq. (3.13). Finally, it is important to stress that values of αs close 
to 0 are subject to uncertainties. A small change in the mass function slope α, for instance, 
could change the hierarchy in the contributing masses, hence in the global enhancement. 
This concerns mostly the saturation regime of the s-wave annihilation and resonances of the 
p-wave annihilation. 

The previous discussion is illustrated in Fig. 6, where we have actually calculated a 
dimensionless quantity proportional to the product of the integrated number of subhalos 

1−αmore massive than m, N(> m) / m , with the JS (m) factor for a single (sub)halo of 
mass m (divided by J(1 M ) to get a dimensionless quantity). This is meant to capture 
the dominant scaling of the global JS,sub factor given in Eq. (4.57) with the lower mass 
bound m, which also gives insight on the most contributing mass range in JS,sub [Eq. (4.57)]. 
Again, we take the three di�erent Sommerfeld confgurations used before: �φ = 0.1 (moderate 
enhancement), 10−3 (signifcant enhancement), and the n = 8 resonance (�φ ˘ 10−2 , strong 
enhancement). The corresponding saturating masses m̃ sat(�φ) are shown as vertical dashed 
lines, marking the transition between subhalos mostly in the Coulomb regime (m > m̃ sat) or 
mostly in the saturation regime (m < m̃ sat). For the s-wave case (left panel), we see that 
the lower bound is always the most contributing one (curves increase as the mass boundary 
m decreases in all Sommerfeld regimes), consistently with the positive values of αs found in 
Eq. (4.59). In contrast, the p-wave curves (right panel) only increase down to the saturation 
mass, below which contributions become negligible; except of course on the resonance, where 
the contribution increases as the boundary mass m decreases down to the unitary limit. This 
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Figure 6. Estimate of the contribution of the subhalo population to the Sommerfeld-enhanced 
JS,sub factor above some mass m, for di�erent values of the reduced Bohr radius �φ: a large value 0.1 
(moderate e�ect), a small value of 10−3 (signifcant e�ect), and an intermediate value of ˘ 10−2 sitting 
on the n = 8 resonance (strong e�ect). A maximum in the curves show the subhalo mass range that 
contributes the most to the annihilation signal. This recasts most of the information already included 
in Fig. 2 (e� ective Sommerfeld enhancement as a function of velocity), and in Fig. 3. Transition from 
Coulomb to saturation regimes occurs around m̃ sat(�φ), reported as vertical dash-dotted lines. Left 
panel: s-wave case. Right panel: p-wave case. 

is again consistent with the fact that αsat < 0 while αres > 0 with our choice of parameters 
for the p-wave case. 

The peak-to-baseline ratio in the saturation regime for a full subhalo population, Rsub, 
is given by: 

Sres p (2−p) 
0 2ν+ 

2 
αsat 2 

αsat−αresRsub(�φ, µmin, α) = µ̃sat µmin µmin (4.60)
S0S1 

π2 p (2−p)
2ν+ αsat αsat2 −αres 2= µ̃sat µmin µmin6 

(2−p)αsat2+ p αsat2 ν −αres 2/ � µmin µ .φ min 

For s-wave processes, we have Rsub / �2 φ, while for p-wave processes,7 Rsub / �0.3 . This result φ 

predicts that the peak-to-baseline ratio should decrease much faster as �φ decreases in the 
s-wave case than in the p-wave case. Note that the above ratio assumes µ̃sat < µmax, which is 
not always verifed (notably for light host halos). If instead µ̃sat > µmax, then the dependence 
in �φ becomes / �2 in both cases, and the ratio decreases fast with �φ (the baseline increases φ 

fast) until µ̃sat enters the subhalo mass range, whence the dependence becomes much weaker. 

7The indices or parameters in blue featuring factors of p are tricks to account for the change of sign of αsat 

here between the s- and p-wave processes. Indeed, the sign of the index decides whether one picks only the 
lower or the upper bound of the integral, as generically illustrated in Eq. (4.55), so as to write a simplified 
approximate results in the limit mlower ˝ mupper. It turns out that with our choice of parameters, the sign 
of the saturation mass index αsat changes from the s- to the p-wave case, hence the associated final results 

−αsat −αsatscale with different boundary masses (for instance / m in one case, and / mupper ). Therefore, whilelower 

Eq. (4.58) is generic, Eq. (4.60) is not and is only valid for our choice of reference parameters. In the same 
vein, other equations with blue indices are not generic. All generic results can formally be expressed from 
Eq. (4.58), but would lead to rather tedious expressions. Parameter µmin also appears in blue whenever it 
could be traded for µ̃unit, i.e., when µmin < µ̃unit. 
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Figure 7. Left column: Global Sommerfeld-enhanced subhalo J-factors for s-wave annihilation, 
after integration of the whole subhalo population for three di�erent host halo masses, 108 , 1012 , and 
1015 M , from top to bottom panels. Right column: Same for p-wave annihilation. 

We can further determine the e�ective Sommerfeld enhancement at the level of a subhalo 
population, which helps understand how the Sommerfeld e�ect manifests itself on top of the 
subhalo boost factor. We defne this global Sommerfeld enhancement as 

e JS,sub(�φ)S(Mhost,mmin, �φ) � , (4.61)
Jsub 

where the Sommerfeld-enhanced subhalo contribution JS,sub is given in Eqs. (4.58a)-(4.58c) 
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Figure 8. Left column: Global Sommerfeld enhancement for s-wave annihilation after integration 
of the whole subhalo population for three di�erent host halo masses, 108 , 1012 , and 1015 M , from 
top to bottom panels, expressed in terms of the ratio of the Sommerfeld-enhanced-to-Sommerfeld-free 
J-factors. Right column: Same for p-wave annihilation. 

for the di�erent regimes, while the Sommerfeld-free subhalo contribution Jsub is given in 
Eq. (4.30) for the s- and p-wave cases. 

In Fig. 7 and Fig. 8, we compare the exact numerical calculations with the analytical 
approximations of respectively the total Sommerfeld-enhanced J-factors JS,tot � JS,host + 
JS,sub ' JS,sub, and their ratios to the Sommerfeld-free cases, JS,tot/Jtot, for the three 
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template host halos introduced before. Note the resemblance with Fig. 5 (top and bottom 
panels, respectively), which compares calculations of the Sommerfeld enhancement at the 
level of a single halo—this is indicative of the fact that a few specifc masses drive the overall 
enhancement in each of the Sommerfeld regimes. Again, the dotted curves represent the full 
integrated results, while the solid curves represent the subhalo mass integral performed over 
the exact Sommerfeld factor evaluated at subhalo mass-dependent characteristic velocities. 
The analytical baselines and the peaks envelopes (dot-dashed curves) are instead calculated 
from the ansatz of Eq. (4.46), integrated over the subhalo mass function. Panels in the 
left (respectively right) column display our results for the s-wave (p-wave) case. While the 
results for the J-factors can be understood from Eq. (4.58), we can better interpret the 
ratio JS,tot/Jtot ˇ JS,sub/Jsub � Se, i.e. the overall e�ective Sommerfeld enhancement of the 
subhalo population, by inspecting the analytical expression of each asymptotic regime of the 
mass-integrated Sommerfeld enhancement Se:8 

µsat, µmin))−αCoul(max(˜ αboost (1+p) νSeCoul = S0 µ̃max µmin 
, (4.62a)

αCoul µ−αboost 

µmax 

µmin−αsat e αboost ν −ν(p+1) 
µ 

min(µmax,µ̃sat)Ssat = S0 S1 µ̃max µ̃sat µmin 
, (4.62b)

αsat µ−αboost 

µmax 

max(µmin,µ̃unit)−αresµ
αboost 

Sres ν −ν(p−1) min(µmax,µ̃sat)Se res = 0 µ̃max µ̃sat µmin 
. (4.62c)

αres µ−αboost 

µmax 

We have removed the relevant step functions assuming mmin < m̃ sat < mmax for simplicity, 
but the general result can easily be derived from Eqs. (4.57)-(4.57) and Eq. (4.30)—a couple 
of footprints of the general result are still indicated with the min() and max() functions. The 
only parameter that depends on �φ is µ̃sat, while the only parameter that depends on Mhost 

is µmax ' µhost/100. The other masses, including the minimal dimensionless subhalo mass 
µmin, are taken universal.9 Since µmin ˝ µ̃sat(�φ) over a wide range in �φ, we can assume that 
most subhalos are in the saturation regime. Therefore, they contribute both to the baseline 
and to the resonance peaks of the overall Sommerfeld factor (we can disregard the Coulomb 
regime). Looking each term of the initial ratio expression, we see that the denominator Jsub 

−αboost is / µ in the s-wave case, and therefore can be assumed constant for any host halo.min 

This explains why all plots in the left column of Fig. 8, which are associated with di�erent 
host halo masses, look the same. On the other hand, in the p-wave case, the denominator is 
/ µ−αboost / (µhost/100)−αboost , and therefore Se indirectly depends on the host halo mass,max 

which is readily verifed in the right panels. 
νIt is now straightforward to further predict the scaling in �φ / µ̃ [see Eq. (4.44)] andsat 

µhost from the previous analytical expressions, by accounting for the signs of the α’s indices 

8Note that for p-wave annihilation, the Sommerfeld-free J-factor Jtot ˛ Jsub, so that JS,tot/Jtot as reported 

in Fig. 8 does not strictly measure the amplitude of the overall Sommerfeld boost factor Se � JS,sub/Jsub in 
that case, but rather the full combined boost factor and its scaling with �φ. 

9Strictly speaking, µmin depends on the full underlying particle physics scenario, and may therefore depend 
on �φ [59]. Here, we assume that self-interactions play no role in setting the kinetic decoupling of DM particles 
in the early universe, and thereby that µmin does not depend on �φ. 
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given in Eq. (4.59): 

p (2−p) αCoul− SCoul / µ 

Ssat e 
e αboost αboost 2 2 ν� (4.63a)µminhost φ 

�
−(p+1) 
φ × 

8< : 
− p 

2 
αsat(2−p) 

2 
if µmax < µ̃sat

p µ(αboost−αsat)αboost host2/ µ (4.63b)µ − p αsat 
2 

minhost 
ν� elseφ 

p (2−p) 
2 2
αboost αboost −(p−1)

µ {max (µmin, µ̃unit)}−αres �host minSres 

We recall that p = 0 (2) for an s-(p-)wave annihilation. From these expressions, we can 
understand why in the s-wave case (left-column panels of Fig. 7 and Fig. 8) the baseline of 
the saturation regime goes / �−1 , while the curve following the amplitude of the peaks isφ 

instead / �φ. We also understand why in the p-wave case (right-column panels), the baseline 
of the saturation regime experiences a change in the slope in �φ when µ̃sat < µmax ˘ µhost/100. 
This is due to the fact that the exponent αsat is negative in the p-wave case, which implies 
that it is the upper bound of the subhalo mass integral min(µmax, µ̃sat) that matters. Indeed, 
as shown in the second equation above, the scaling in �φ goes from / �− φ 3 when µmax < µ̃sat 

αsat−3− 
ν ˘ �−1.3to a much more moderate / � when µmax > µ̃sat, which explains why theφ φ 

increase of the ratio is frst very steep as �φ decreases from large values, and then changes of 
slope. This is particularly visible for the lightest host halo with a mass of 108 M because 
then mmax ˘ 106M , which corresponds to a scaling transition around �sat(mmax) ˘ 6×10−3 φ 

(see bottom right panel of Fig. 4), above which no subhalo can participate in the saturation 
regime. The same transition is slightly less visible for the host halo of 1012 M . On the 
other hand, the scaling of the resonance peaks does not feature any such transition, as 
expected from the analytical results. The peak-to-baseline ratio can be fully understood 
from Eq. (4.60), and associated discussion. We emphasize that in our template calculations, 

e 

the peak amplitudes are fxed by m̃ unit ˘ 8 × 10−4 M , not by mmin = 10−6 M < m̃ unit. 
From these plots, we see that a quick integration of our simplifed ansatz describes 

reasonably well the more accurate numerical results, slightly degrading from the s-wave to 
the p-wave case. This departure from the numerical results comes from the error made by 
changing the phase-space integral by an evaluation through a characteristic speed v(m), which 
needs to be adjusted by playing with the value of ω0 in Eq. (4.39) (the tuning values are given 
in the plots, and are fxed once and for all for a given confguration). Further splitting the 
subhalo mass integral into analytical asymptotic pieces as done just above to get analytical 
approximations and insight on the full result would induce bigger numerical errors (a factor 
of a few for s-wave processes, up to an order of magnitude for p-wave processes), because the 
actual Sommerfeld enhancement factor transits smoothly between regimes over the available 
mass range. Still, the full analytical prediction gets the scaling relations correct, which 
strongly helps in the interpretation. We also see from Fig. 7 that a very simple expression, 
like that in Eq. (4.57), can be used for quick signal predictions to a reasonable precision, 
without resorting to a complex numerical machinery. 

To summarize, independently of the scaling relations, we see that the overall Sommerfeld 
e�ect induced by subhalos does not change the host target hierarchy in the s-wave annihilation 
case, because it is driven by the minimal subhalo mass µmin, taken the same for all host halos 
and all values of �φ. Decreasing µmin would simply enhance the signal by the same amount 
for all host halos (though one should keep in mind the unitarity limit on resonances, set by 
µ̃unit if µmin < µ̃unit). In contrast, in the p-wave case, we see that the subhalo contribution to 

/ µ (4.63c).φ 
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the global Sommerfeld enhancement is relatively stronger for lighter host halos (see the right 
panels of Fig. 8), and could therefore potentially invert the hierarchy of the Sommerfeld-free 
p-wave signal set by the (squared) dispersion velocities of the most massive subhalos. This 
is due to the fact that while further suppressing the overall Sommerfeld-free signal, subhalos 
now act as extra enhancement factors due to their smaller dispersion velocities, making the 
Sommerfeld-enhanced to Sommerfeld-free ratio much more contrasted than in the s-wave 
case. 

4.3.4 Sommerfeld-enhanced subhalo boost factor 

We can now determine the overall Sommerfeld-corrected subhalo boost factor for a host of 
mass Mhost. It may be written as [see Eq. (4.34)] 

JS,sub(�φ)BS ' 1 + , (4.64)
JS,host(�φ) 

where the Sommerfeld-enhanced contribution of the host in the denominator is given in 
Eq. (4.49), while the Sommerfeld-enhanced contribution of the subhalo population is given 
in Eq. (4.57). Here, the diÿculty comes from the fact that di�erent Sommerfeld regimes 
come about at di�erent values of �φ depending on the (sub)halo masses (including the host 
halo). The clearest way to understand the net impact of subhalos in Sommerfeld-enhanced 
scenarios is to separate the discussion in terms of the di�erent Sommerfeld regimes for the 
host halo. 

We order the di�erent Sommerfeld regimes of the host halo by varying the reduced Bohr 
radius �φ from large to small values. Therefore, we frst discuss the saturation regime, and 
then the Coulomb regime. Note that for host halo masses of 1015 , 1012 , and 108 M , the 
transition between these regimes occurs around �sat ˘ 0.5, 5 ×10−2 , 3 ×10−3 , respectively. Aφ 

concrete illustration is given in Fig. 9, where we see the Sommerfeld-corrected subhalo boost 
factors computed for the s-wave (p-wave) annihilation case in the left-column (respectively 
right-column) panels, and for di�erent host halo masses. 

Saturation regime of the host halo The saturation regime of the host halo corresponds 
to values of �φ > �sat(Mhost), or equivalently m̃ sat(�φ) > Mhost—see Eqs. (4.54) and (4.44).φ 

Since subhalos are all lighter than the host halo, they are also all in the saturation regime. 
The boost factor can then be written as, assuming that mmin < mmax < Mhost < m̃ sat(�φ): 

Bsat S − 1 ' 
J sat 
S,sub(�φ) 

J sat 
S,host(�φ) 

= 
γ 

(1 − p)αsat 

A2 
0,host 

A2 
0,sub 

ˆ 
µmin 

µhost 

˙− (2−p) 
2 

αsat 
ˆ 
µmax 

µhost 

˙− p 
2 
αsat 

,(4.65) 

where the multiple appearance of p here is simply a trick to account for the change of sign in 
the boost mass spectral index αsat between the s- and p-wave cases in our specifc choice of 
parameters, which makes either µmin or min(µmax, µ̃sat) = µmax / µhost dominate the mass 
function integral. From this equation, we clearly understand why in the saturation regime of 
the host halo (right parts of panels in Fig. 9), the baselines of both the s-wave and p-wave 
boost factors remain constant: this is due to the fact that they are independent of �φ. The s-
wave one has its amplitude / µhost/µmin, though hindered by a small power index αsat ˘ 0.1. 
In contrast, the boost factor amplitude for p-wave annihilation is vanishingly small because 
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Figure 9. Left column: Subhalo boost factor for s-wave Sommerfeld-enhanced DM annihilation, 
calculated for three typical host halos of masses 108 , 1012 , and 1015 M , from top to bottom panels. 
The di�erent curves show (i) the exact numerical results (dotted lines), (ii) an approximation in which 
we calculate the mass integral numerically by taking the exact Sommerfeld formula but evaluated at 
the characteristic velocity of (sub)halos (plain curves), and (iii) the integrated analytical ansatz, which 
is reported for both the baseline and the peak amplitude (dot-dashed curves). Right column: Same 
for p-wave annihilation. 

(µmax/µhost)
−αsat < 1, as a consequence of αsat < 0 in that case (asymptotically similar to 

the Sommerfeld-free case). 
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On resonances, this becomes 

Bres S − 1 ' 
J res 
S,sub(�φ) 

J res 
S,host(�φ) 

= 
γ 

αres 

A2 
0,host 

A2 
0,sub 

ˆ 
µmin 

µhost 

˙−αres 

. (4.66) 

The minimal subhalo mass µmin is featured in blue to keep in mind that it should be replaced 
by µ̃unit when µmin < µ̃unit (this is the case in our template examples, but this is not generic). 
Interestingly, when both the host halo and its subhalos sit on resonances (m < m̃ sat), the 
boost factor does not depend on Sommerfeld parameters, and remains fat as a function of 
�φ. This can be seen from all panels of Fig. 9 by inspecting the right-hand-side peaks (more 
peaks are concerned as the host halo mass decreases, as the latter remains longer in the 
saturation regime). Not visible in this formula but also theoretically important, there is a 
formal di�erence between predictions of the s- and p-wave boost factors on resonant peaks. In 
the latter case, the Sommerfeld-enhanced annihilation cross section does not depend on DM 

2velocity (the v suppression is canceled out by the 1/v2 enhancement), which in principle 
reduces the potential error associated with the approximation of trading the phase-space 
average of the e�ective Sommerfeld factor for a its local expression evaluated at an average 
characteristic velocity. 

Coulomb regime of the host halo When the host halo is in the Coulomb regime, then 
subhalos can themselves be either in the Coulomb regime or in the saturation regime (which 
includes resonances). Therefore, we need to combine all possibilities, which depend on 
whether m̃ sat lies within the subhalo mass range [mmin,mmax] or not. The corresponding 
expression for the boost factor is slightly more involved: ( 
BCoul JS,sub(�φ) αCoul 

θ (µmax − µ̃sat) 
µsat, µmin)]−αCoul− 1 ' = γ µ [max (˜ (4.67)S JCoul host 

S,host(�φ) αCoul ˆ ˙ν(p+1) (2−p)S1 µ̃max − 
2 

αsat αsat+ θ(µ̃sat − µmin) µ [min (µ̃sat, µmax)]− 
p 
2 

min(1 − p)αsat µ̃sat )X Sres 
ˆ ˙ν(p+1) 

0 µ̃max −αres 2ν+ δ�φ/{�res,n} θ(µ̃sat − µmin) µmin µ̃sat . 
φ αresS0 µ̃sat 

n=1+ p 
2 

Assuming mmin < m̃ sat < mmax, this expression simplifes to: 

BCoul 
S − 1 ' γ µαCoul 

host 

( ̃
µsat 

−αCoul 

αCoul 
/ � − 

αCoul 
ν 

φ (4.68) 

+ 
S1 

(1 − p)αsat 

ˆ ̃
µmax 

µ̃sat 

˙ν(p+1) 

µ 
− (2−p) 

2 
αsat 

min µ̃ 
− p 

2 
αsat 

sat / � −(p+1)− αsatp 
2ν 

φ µ 
− (2−p) 

2 
αsat 

min 

+ 
X 

n=1+ p 
2 

δ�φ/{�res,n 
φ } 

Sres 
0 

αresS0 

ˆ ̃
µmax 

µ̃sat 

˙ν(p+1) 

µmin 
−αres µ̃ 2ν sat / �1−p φ µmin 

−αres 

) 
. 
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From the top to bottom lines, we have the Coulomb/Coulomb, saturation/Coulomb, and 
resonant peaks/Coulomb terms. The scaling in �φ and µmin is made explicit at the end of 
each line, for convenience. 

Quite generically, we frst see that when the host halo lies in the Coulomb regime, the 
αCoulsubhalo boost factor is / µ , with αCoul ˘ 0.57 > 0 here. Consequently, the boost factorhost 

increases with the host halo mass for both s- and p-wave Sommerfeld-enhanced annihilation 
processes, a result similar to the Sommerfeld-free result for the s-wave annihilation [see 
Eq. (4.36)]. 

The Coulomb/Coulomb term is not visible Fig. 9, and would asymptotically take over in 
the extreme left parts of the panels at lower values of �φ < �sat(µmin). It would then freeze inφ 

−αCoulas µ̃sat ˘ µmin, and remain constant, / µ , similar to the Sommerfeld-free boost factormin 

for s-wave annihilation processes. 
The saturation/Coulomb term characterizes the baseline of the boost factor over a large 

2 [�sat αCoul −αsatrange of �φ (µmin), �sat(µhost)]. In the s-wave case, it scales like / µ �−1 µ .φ φ host φ min 

Except for the explicit host halo mass dependence, which sets an absolute hierarchy, we see 
that the scaling in µmin and �φ is the same for all halos. The only implicit di�erence is that the 
onset of the subhalo saturation regime at �sat(µhost) shifts to lower values as µhost decreases.φ 

We can therefore understand why the boost factor behaves the same, i.e. it increases linearly 
/ �−1 as �φ decreases, while with some increasing delay as µhost decreases. Besides, theφ 

minimal subhalo mass µmin participates in setting the overall amplitude of the saturation 
baseline of the subhalo boost factor, which increases as µmin decreases. In the p-wave case, 

αsat−3−αCoul ν αCoul �−1.3the baseline scales like / µ � ˘ µ , which is independent of µmin (as long host φ host φ 

as µmin < µ̃sat). The slope in �φ is therefore slightly steeper than in the s-wave case, but the 
delay in the onset of the saturation regime as �φ decreases is the same. 

Finally, the resonant peaks/Coulomb term, which characterizes the amplitude of the 
αCoul 1−psubhalo boost factor on resonant peaks, scales like / µ � max(µmin, µ̃unit)

−αres . Inhost φ 
αCouladdition to the host-halo mass hierarchy set by µhost , we frst see that the amplitude of 

the boost is also a�ected by µmin (or µ̃unit), but more for s-wave (αres ˘ 0.76) than for 
p-wave processes (αres ˘ 0.1). In contrast, we also see that the dependence in �φ is inverted 
from the s- to p-wave case, with a scaling / �φ in the former case, but / �−1 in the latterφ 

case. This explains why the relative amplitude of peaks with respect to the baseline of the 
subhalo boost decreases faster, / �2 φ, in the s-wave confguration than in the p-wave one, for 

which the relative decrease is accordingly / �0.3 . This behavior matches exactly the peak-to-φ 

baseline ratio of the subhalo signal derived in Eq. (4.60), which means that the signal itself 
is completely driven by subhalos. 

From the plots of Fig. 9, we see that our semi-analytical approximations (numerical mass 
integrals of analytical expressions) come with signifcant errors, but get the scaling relations 
and the orders of magnitude correct. Note that the numerical errors are more exacerbated in 
the subhalo boost factor than in individual signals because it is a ratio that combines quite 
di�erent mass scales (µhost ˛ µmin). 

4.3.5 Absolute Sommerfeld-enhanced subhalo boost factor 

As a last useful result which may help re-evaluating the hierarchy of targets, we calculate 
the Sommerfeld-enhanced subhalo boost factor with respect to the Sommerfeld-free signal of 
the host halo. We recall that we keep the subhalo mass slope α “fxed by theory”, which 
determines the signs of the Sommerfeld mass slopes αCoul, αsat, and αres. In that case, we 
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get: 

JS,sub(�φ)BS/no-S − 1 ' (4.69)
Jhost(µhost)( 

S0 ν(p+1) µsat, µmin)]−αCoul= γ µαsat − ̃ µ̃ [max(˜host θ(µmax µsat) maxαCoul ˆ ˙ν(p+1)µ̃max 
+ θ(µ̃sat − µmin) × 

µ̃sat n (2−p)S0S1 − 
2 

αsat 
2 
αsatµ [min(µ̃sat, µmax)]− 

p 

min(1 − p)αsat )X Sres o 
0 2 ν −αres+ δ�φ/{�res,n} µ̃sat µmin . 

φ αres 
n=1+ p 

2 

Assuming mmin < m̃ sat < mmax, this simplifes as follows: 

BS/no-S − 1 ' γ µαsat 
host 

( 
S0 

αCoul 
µ̃ ν(p+1) 
max µ̃sat 

−αCoul (4.70) 

+ 

ˆ ̃
µmax 

µ̃sat 

˙ν(p+1) 

× 
n S0S1 

(1 − p)αsat 
µ 
− (2−p) 

2 
αsat 

min µ̃ 
− p 

2 
αsat 

sat 

+ 
X 

n=1+ p 
2 

δ�φ/{�res,n 
φ } 

Sres 
0 

αres 
µ̃ 2 ν sat µmin 

−αres 

o) 
. 

From this equation, we see the crucial roles played by both mmin and �φ in the s-wave case 
(p = 0, αsat ˘ 0.1) to set the boost amplitude. We also see that for s-wave processes, the 
global factor of µ αsat makes the boost factor increase as µhost increases, which exacerbateshost 

the signal hierarchy between targets as function of their mass. In contrast, the p-wave boost 
factor (p = 2, αsat < 0) is almost entirely fxed by �φ through µ̃sat, as long as µ̃sat > µmin. 
Besides, the global factor of µ αsat makes the boost factor decrease as µhost increases for p-wave host 

processes (αsat ˘ −0.57), which now tends to invert the signal hierarchy between targets as 
function of their masses. On resonance peaks, it is again µmin (or µ̃unit if µmin < µ̃unit) that 
sets the amplitude, with a stronger impact in the s-wave (αres ˘ 0.57) than in the p-wave 
case (αres ˘ 0.1). 

In Fig. 10, we display our di�erent results for the absolute boost factor introduced 
just above, for the di�erent reference host halo masses. The full numerical calculation results 
appear as dotted curves, the mass integral performed over the exact Sommerfeld enhancement 
factor evaluated at the characteristic speeds of subhalos as solid curves, and the integrated 
ansatz envelope as dot-dashed curves. There is a reasonable agreement between the analytical 
approximation and the full numerical results. The left-column panels show the results for s-
wave annihilation, while the right-column panels show our results for p-wave annihilation (the 
latter are quite similar to the right panels of Fig. 8, because JS,sub(�φ)/Jhost ' JS,sub(�φ)/Jtot 
in the p-wave case). We do not discuss longer the former, which exhibit no surprise, but we 
emphasize the inverted hierarchy now occurring in the latter, where it is evident that the 
absolute boost factor can then be much larger for less massive host halos (from bottom to 

– 47 – 



�

10−4 10−3 10−2 0.1 1 10 102

εφ

102

105

108

1011

J
S,

to
t/
J

h
os

t
108 M�

res. (ana)

base (ana)

from S(v)

accurate

s-wave

ω0 = 0.6

10−4 10−3 10−2 0.1 1 10 102

εφ

10

103

105

107

109
108 M�

res. (ana)

base (ana)

from S(v)

accurate

p-wave

ω0 = 0.8

10−4 10−3 10−2 0.1 1 10 102

εφ

102

104

106

108

1010

1012

J
S,

to
t/
J

h
os

t

1012 M�

res. (ana)

base (ana)

from S(v)

accurate

s-wave

ω0 = 0.6

10−4 10−3 10−2 0.1 1 10 102

εφ

10

103

105

107
1012 M�

res. (ana)

base (ana)

from S(v)

accurate

p-wave

ω0 = 0.8

10−4 10−3 10−2 0.1 1 10 102

εφ

102

104

106

108

1010

1012

J
S,

to
t/
J

h
os

t

1015 M�

res. (ana)

base (ana)

from S(v)

accurate

s-wave

ω0 = 0.6

10−4 10−3 10−2 0.1 1 10 102

εφ

10

103

105

1015 M�

res. (ana)

base (ana)

from S(v)

accurate

p-wave

ω0 = 0.8

Figure 10. Left column: Absolute subhalo boost factor for s-wave Sommerfeld-enhanced DM 
annihilation, calculated for three typical host halos of masses 108 , 1012 , and 1015 M , from top 
to bottom panels. The di�erent curves show (i) the exact numerical results (dotted lines), (ii) an 
approximation in which we calculate the mass integral numerically by taking the exact Sommerfeld 
formula but evaluated at the characteristic velocity of (sub)halos (plain curves), and (iii) the integrated 
analytical ansatz, which is reported for both the baseline and the peak amplitude (dot-dashed curves). 
Right column: Same for p-wave annihilation. 

top right panels). We have already explained why above, but these plots allow us to be 
slightly more quantitative. Let us for instance compare a dwarf galaxy-like host halo of 
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� �mass m1 ˘ 108 M and a galaxy cluster-like host halo of mass m2 ˘ 1015 M , both located 
at the same distance. The p-wave suppression factor induces an extra relative reduction of 
˘ (m1/m2)

2ν ˘ (m1/m2)
2/3 ˘ 10−3.7 , not favorable to the lightest host halo. As soon as 

both host halos have entered the Coulomb regime and have their subhalos contributing in the 
saturation regime, then a boost factor applies with an inverse balance, giving a boost factor 
ratio of ˘ (m1/m2)

αsat ˘ (m1/m2)
−0.57 ˘ 104 (in perfect agreement with the numerical 

results in the plots), which fully compensates for the initial Sommerfeld-free p-wave penalty. 
Such a compensation might actually change the initial hierarchy between targets of di�erent 
masses, depending on their respective distances to the observer. 

4.3.6 Caveats 

Before summarizing and concluding, it is useful to mention a few caveats. 

(i) The calculations of the J-factors (enhanced or not) presented in this paper assume 
the integration of a subhalo population over an entire target object, i.e., within its 
virial radius. If the real target halo has its tidal radius signifcantly smaller than its 
virial radius, or if the angular size used to perform the signal analysis is signifcantly 
smaller than the angular extension of the target halo, then although the host J-factor 
may not change signifcantly, the subhalo contribution (hence the subhalo boost factor) 
can be more strongly a�ected because subhalos dominate the overall mass profle in the 
outskirts of their host halo (they are subject to gravitational tides in the central regions, 
where they can experience strong mass losses and even disruption). Our results likely 
overestimate the contribution of the subhalo population to the signal in that case. A 
possible way out is to rescale our results for subhalos by the tidal-to-virial (or contained-
to-virial) mass ratio of the host halo, assuming the missing or lost mass is mostly made 
of subhalos. This may be particularly relevant to dwarf satellite galaxies that orbit 
within our Milky Way, and also to targets with large angular extensions in the sky such 
as galaxy clusters. 

(ii) We have used fxed values for the subhalo mass slope α and the free-streaming cuto� 
mass mmin. We have motivated the former from theoretical arguments in the frame-
work of concordance cosmology (see App. B), and the latter by uncorrelating DM 
self-interactions from DM-baryons interactions, but all this does not come without un-
certainties. If the primordial power spectrum departs from almost scale invariant and 
exhibits extra features on small scales, then our predictions would be strongly a�ected. 
It is a priori possible to adapt our analysis by starting from another subhalo mass func-
tion inferred from a modifed primordial spectrum, but explaining what would happen 
in di�erent specifc scenarios goes beyond the scope of this paper. One can easily guess, 
though, the impact if the only change is in the mass slope α, or even if the mass function 
exhibits spectral breaks or bumps. On the other hand, if mmin becomes related to the 
intrinsic Sommerfeld parameters, then it is a priori easy to determine the consequences 
from our results. 

(iii) We have limited our study to NFW profles for both the host halo and the entire subhalo 
population. Changing the shape of profles either for the host halo or its subhalos would 
mostly change our analytical approximation for the J-factor of Eq. (4.27), which would 
propagate in subhalo-to-host ratios and then a�ect our predictions. However, we do not 
expect a signifcant change in the overall subhalo signal, because subhalos are mostly 
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characterized by cuspy profles and are essentially not subject to baryonic feedback. 
Anyway, modifcations of inner shapes are in principle not diÿcult to account for, 
even analytically. For changes to Einasto profles [75–77], see, e.g., SL17. For other 
changes, one simply needs to feed our results with another J-factor-to-mass relation 
[see Eq. (4.27)]. 

(iv) We do not include sub-subhalos (nor any subsequent sublayers), which would a priori 
tend to further increase the Sommerfeld enhancement. Indeed, our subhalo mass func-
tion introduced in App. B only contains the frst generation of objects (those accreted 
directly into the host halo). It is actually not diÿcult to incorporate all layers in the 
model, which would tend to sharpen the mass function by increasing the e�ective mass 
index α [92], and further proceed with the hard-sphere approximation discussed above 
or in the appendix. This goes beyond the scope of this paper, and would certainly add 
extra theoretical uncertainties related to tidal e�ects internal to the di�erent layers 
of subhalos. A more detailed semi-analytical subhalo population study is in prepara-
tion [93], where it is shown that these additional layers mostly shape the lower part 
of the subhalo mass range (see also ref. [70] for another merger-tree inferred subhalo 
population example). 

5 Summary and conclusion 

In this paper, we have reviewed quite in detail how the presence of DM subhalos a�ects 
the gamma-ray signal amplitude predictions in a scenario in which DM self-interacts through 
long-range interactions, leading to the Sommerfeld enhancement of the annihilation cross sec-
tion. We have proposed a simplifying analytical ansatz in Eq. (3.17) to incorporate the rather 
complex Sommerfeld enhancement factor in the signal predictions, showing that calculations 
can then be performed fully analytically. This helps better understand the dependencies 
of signal predictions in terms of the main physical parameters. These parameters are the 
Sommerfeld-enhancement parameters on the one hand, dictated by particle physics only, and 
the subhalo parameters on the other hand, dictated both by cosmology (DM power spec-
trum and structure formation) and particle physics (minimal subhalo mass). We adopted a 
simplifying description for the former by means of a DM fne-structure constant αχ, that we 
have kept fxed to 0.01 throughout the paper, and of the reduced Bohr radius �φ, which then 
characterizes the mediator-to-DM mass ratio (the Sommerfeld-enhancement regime typically 
corresponds to 0 < �φ < 1, triggered at velocities v < παχ). Although it is formally DM 
velocity-dependent and related to local interactions, we have shown that an averaged Som-
merfeld factor could be expressed at the level of a full DM halo of virial mass m by means of 
the corresponding characteristic dispersion velocity v(m), and that �φ could be turned into a 
transition velocity ṽsat(�φ) below which halos transit from the Coulomb regime to the satura-
tion regime of the Sommerfeld enhancement. This global expression of the Sommerfeld e�ect 
allowed us to perform the whole chain of calculation fully analytically up to the gamma-ray 
signal amplitude in terms of J-factors. Our main results for the subhalo population sig-
nal, given a host halo mass, are summarized in Eqs. (4.57)-(4.58), to be compared with the 
Sommerfeld-free results in Eq. (4.30). They can also be expressed as a Sommerfeld-enhanced 
subhalo boost factor with respect to the Sommerfeld-enhanced smooth-halo approximation 
[see Eqs. (4.65)-(4.68)], or with respect to the Sommerfeld-free smooth-halo approximation 
[see Eqs. (4.69)-(4.70)]. We have shown that our analytical results are in reasonable agreement 
with the more accurate numerical calculations (but still in excellent qualitative agreement), 
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by a factor of a few (with respect to amplitudes of several orders of magnitude), and can 
therefore be used for quick estimates associated with specifc targets. 

As a general conclusion, we see that the Sommerfeld enhancement exacerbates the 
subhalo boost factor, and vice versa. This is true not only for s-wave processes, for which 
a subhalo boost factor was already present in the Sommerfeld-free case, but also and more 
dramatically so for p-wave processes, for which subhalos tended to further suppress the signal 
in the Sommerfeld-free case. In the latter case, this comes from a full compensation of the 
v2 p-wave suppression factor by the velocity-dependent Sommerfeld factor. This may lead 
to changes in the hierarchy of targets as a function of mass (assuming the same distance 
to the observer), initially more favorable to bigger host halos in the Sommerfeld-free case, 
but then conversely to less massive halos in the Sommerfeld-enhanced case. For both s- and 
p-wave processes, the enhancement at resonances is phenomenal. For s-wave processes, we 
have boost factors ranging from ˘ 108 for dwarf-like host halos (108M ) up to ˘ 1013 for 
galaxy cluster-like host halos (1015M ), for the frst peaks, decreasing like 1/n2 / �φ, where 
n is the order of the resonance. They are more moderate for p-wave annihilation, ranging 
from a few for a 108M host halo up to a few tens for a 1015M host halo, but increasing like 
n2 / 1/�φ with the order of resonance – -this still shows that subhalos provide the dominant 
contribution to the overall signal for Sommerfeld-enhanced p-wave annihilation processes, 
and therefore must be included in the predictions. 

There has been lots of studies considering the Sommerfeld enhancement induced by 
subhalos, e.g. [26–33] (see also refs. [34–38]). Most of them address the s-wave case, and 
overall, our results are in qualitative agreement with these. There are quantitative di�erences 
coming from the di�erent theoretical assumptions or parameters used, but our analytical 
results can be applied to a wide range of model confgurations, and should allow to recover 
(or complete in overlooked regimes) those of past studies. We are not aware of such a full 
analytical derivation, especially for p-wave annihilation, thus we hope that our study will 
allow the reader to grasp the very details of the Sommerfeld-enhanced subhalo contributions 
to gamma-ray signals. These questions are further explored in a companion study [39], 
dedicated to a thorough analysis of the combined Sommerfeld and subhalo enhancement 
e�ects on concrete target examples. 
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A Short review of the Sommerfeld enhancement 

In this appendix section, we shortly review the impact of DM self-interaction on DM self-
annihilation, which leads to the Sommerfeld enhancement. We consider a phenomenological 
scenario in which DM particles self-interact through the exchange of a (light) mediator φp
of mass mφ with coupling gχ = 4παχ, where αχ plays the role of a dark fne structure 
constant. In this approach, attractive self-interactions between non-relativistic DM particles 
are described by an attractive Yukawa potential, 

−mφre 
VY(r) = −αχ , (A.1) 

r 

with r the relative distance between two annihilating DM particles. In the absence of self-
interaction, i.e. for αχ = 0, the annihilation cross section times relative velocity (σvrel)0 is 
computed perturbatively from the short-range annihilation process. However, a long-range 
Yukawa potential, which encodes multiple exchanges of the light mediator between the two 
incoming DM particles, can distort the wave function of the corresponding two-body system 
in a non-perturbative way, leading to Sommerfeld enhancement of the annihilation cross 
section.10 The Sommerfeld-enhanced cross section is then expressed as in Eq. (3.1), which 
we simply repeat here [44]: 

σvrel = (σvrel)0 × S` , (A.2) 

where vrel is the relative speed of DM particles, and the enhancement factor S` is computed 
by solving the Schrödinger equation for the radial part of the wave function R`(r) for the 
partial wave with angular momentum ` (e.g. [16, 17, 19]), � 

2 
� 

~2 v ~2`(` + 1) − ∂r 
2 − mχ 2 

+ VY(r) + χ`(r) = 0 , (A.3)
2mχ c mχr 

where χ`(r) = rR`(r) and v = vrel/2 the velocity of the incoming DM particles in the center-
of-mass frame. Eq. (A.3) is solved with the boundary conditions that the interaction only 

` leads to outgoing spherical plane waves at infnity, and with R`(r) / r as r ! 0. Then the 
Sommerfeld enhancement factor for partial wave ` reads [16, 17, 19] 

2 
(2` + 1)!! χ `+1(0)` S` = , (A.4)

(` + 1)! k `+1 

where k = mχv/~, and (2` + 1)!! � (2` + 1)!/(2 ̀  `!). The radial function χ` can only be 
obtained numerically when assuming a Yukawa potential, but a good approximation of the 
latter is given by the Hulthén potential, 

−m�rαχm�e 
VH(r) = − −m�r , (A.5)

1 − e 

for m� = (π2/6)mφ. Note that strictly speaking, the above result is only valid for s-wave 
annihilation (` = 0), as an extra centrifugal term must be added to derive analytical ex-
pressions for larger partial-wave expansion modes [19]. Accounting for this generalization to 

10We restrict ourselves to symmetric DM with attractive interactions, for which the Sommerfeld factor is 
effectively an enhancement factor. 
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` =6 0, the radial Schrödinger equation can be solved analytically for the Hulthén potential, 
leading to a closed form of the Sommerfeld enhancement factor S`: 

2 
�(a−)�(a+) 1 S` = , (A.6)

�(1 + ̀  + 2i�v/�� ) ̀ !φ 

where �φ and �v have been defned in Eq. (3.2). Other parameters are: �� � π2�φ/6, � isφ� q � 
±the Gamma function, and a = 1 + ` + i�v/�

� 1 ± 1 − �� /�2 , with a square root to be φ φ v 

understood as a complex number. 
From this equation, we may derive the relevant expressions for the s-wave and p-wave 

annihilation processes, corresponding to ` = 0 and ` = 1, respectively. They are given in 
Eq. (3.3) and Eq. (3.5). This already covers a broad variety of underlying particle-physics 
models. 

B Building up a semi-analytical subhalo population model 

Here we provide more technical details as for the modeling of subhalo populations in host 
halos. This theoretical modeling is improved from ref. [60] (SL17), to which we add a subhalo 
mass fraction normalization based on frst-principle arguments rather than calibrated from 
cosmological simulation results. We start by rewriting Eq. (4.3) that describes the di�erential 
number density of subhalos, 

dnsub(m, R) d2Nsub 
= 

dm dm dV 

Z 
1 dPV (R) 

= Ntot 
Ktidal dV 

d2Pc,m(c, m, R)
dc . 

dc dm 
(B.1) 

As we shall see below, in the above formulation, the concentration and mass pdfs are actually 
intricate as a result of tidal e�ects. Therefore, in contrast to many works, we see an explicit 
dependence of the mass-concentration pdf (consequently also of the mass function) on the 
position R, which makes the phase space fully intricate. This spatial dependence is induced 
by tidal stripping e�ects, which depend on the position of subhalos in the host halo and on 
its detailed gravitational potential (including all components, DM and baryons). We shall 
discuss tidal e�ects in more detail below. Note that in order to interpret Ntot as the total 
number of subhalos in the host, one must have the volume integral of the above equation 
over the host halo normalized to Ntot, which constrains the full phase-space integral of the 
pdfs to be equal to the constant Ktidal. All this will be more clearly defned below. 

Before specifying the pdfs, we can already provide the link between the subhalo number 
density of Eq. (4.3) and the associated averaged density profle of Eq. (4.2), which is the tidal 
mass: ˆ Z ˙ 

4π 1 xt 
3 mt(m, c, R) = r ρ0 dxx 2 f(x) , (B.2)s3 3 0 

where we defne the subhalo profle shape f(x) in terms of the dimensionless radius x � r/rs 
and subhalo scale density ρ0 as follows: 

ρ(r)
f(x) � . (B.3)

ρ0 

The dependence of the tidal mass mt on the virial mass m and concentration c appears 
indirectly as a dependence on the rs and ρ0. The dependence on the radial position R within 
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the host halo is further hidden in the upper bound of the volume integral over f(x), the 
dimensionless tidal radius xt = xt(m, c, R) � rt(m, c, R)/rs—we impose xt = min(xt, x200), 
such that mt(m, c, R) � m. Here, rt is the subhalo tidal radius and rs its scale radius, given 
an inner density profle shape f(x). In the following, we will only consider an NFW profle 
for subhalos,11 such that 

f(x) = fnfw(x) = x −1(1 + x)−2 . (B.4) 

The tidal radius further depends on the virial mass, concentration, position (somewhat related 
to accretion time), and can be predicted. Our model actually provides such a prediction, 
based on a detailed description of both the baryonic and global DM components within 
the host halo [60, 63, 92]. A simplifcation of the model is to consider that the density 
profle within xt is not signifcantly a�ected by gravitational tides, which is a reasonable 
approximation [94–96] and can further be justifed in some cases from adiabatic invariance 
arguments [97, 98]. Trying to describe more precisely the evolution of the inner profle would 
lead to very little change in our predictions, but would be prohibitive in terms of numerical 
convergence, since DM subhalos may cover up to ˘20 orders of magnitude in mass for galaxy 
clusters. 

A related important ingredient of our subhalo population model is the tidal disruption 
threshold, �t � 0, which basically allows us to disrupt subhalos with xt � �t. This tidal 
disruption criterion is inspired from studies of tidal disruption performed with dedicated 
numerical simulations [99], but might be an oversimplifed description of this complex process. 
Still, it allows us to e�ectively implement tidal disruption in a very eÿcient way, and study 
the impact of either aggressive disruption (�t ˘ 1), or subhalos strongly resilient to tidal 
disruption (�t ˝ 1). The recent literature tends to suggest that the latter case is more 
likely [100]. The calculation of the tidal radius xt and the value taken for the disruption 
threshold �t are actually key parameters at the origin of the spatial dependence of the mass 
and concentration pdfs introduced in Eq. (4.3). 

We now specify the pdfs introduced in Eq. (4.3). For the initial spatial distribution, 
we adopt the hard-sphere approximation and simply assume that should subhalos be hard 
spheres with a negligible encounter rate, they would simply track the global host gravitational 
potential (like the bodies of N -body simulations), such that: 

dPV (R) ρhost(R) 
= θ(Rhost − R) , (B.5)

dV Mhost 

where Rhost is the radial extent of the host halo, and Mhost is the total DM mass within 
Rhost and allows for normalization to unity over the volume of the host halo. We emphasize 
that this spatial pdf is not the actual spatial distribution of the subhalo population, which 
accounts for tidal stripping and can formally simply be inferred from Eq. (4.3) as: 

dPactual(R) nsub dPV (R)V = 6= . (B.6)
dV Ntot dV 

The di�erence between the “initial” and “fnal” spatial pdf will become more striking after 
the impact of tidal stripping on the concentration and mass pdfs is discussed. This explains 
the term “driving pdf” used earlier. Note that if our tidal disruption parameter �t −! 0, 
then the actual spatial distribution tends to the initial one (i.e. the host profle), a trend 

11See [60] for discussion on the impact on changing the inner subhalo profile). 
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confrmed by recent work on the resilience of subhalos to tidal e�ects [101]. On the other 
hand, non-zero values of �t up to ˘ 0.1 allow us to recover antibiased spatial distributions 
found in several past analyses of cosmological simulations [84, 85, 102, 103], though very 
likely a�ected by spurious numerical e�ects [100, 104]—we will shortly come back to that 
below. For completeness, in our numerical study, we will use the following two values: ( 

1 (fragile subhalos) 
�t = (B.7)

0.01 (resilient subhalos) , 

with the former very conservatively limiting the number of subhalos, and the latter being 
more realistic according to recent literature. 

We resort to the mass-concentration relation as ftted in ref. [91], to which we further 
assign a log-normal pdf of constant width σc = 0.14 log(10) (in natural logarithm basis), 
which stems from analyses of cosmological simulations and associated interpretations [91, 
105–107]. This pdf, hidden in the mass pdf in Eq. (4.3) (this will appear explicitly below), is 
initially universal. We denote this universal initial pdf dPc(c, c0(m))/dc, where c0(m) carries 
the mass dependence and refers to the mass-concentration relation proposed in ref. [91] (this 
pdf is taken log-normal, normalized to unity within 1 � c < 1—see SL17 for details). 
The spatial dependence of the evolved concentration pdf is then fully induced by our tidal 
disruption criterion, according to: 

dPc(c, c0(m), R) dPc(c, c0(m)) 
= × θ(xt(m, c, R) − �t) . (B.8)

dc dc 

The main technical diÿculty here concerns the calculation of the dimensionless tidal radius, 
which is detailed in ref. [60]. Note that in addition to being spatial-dependent, Pc is no longer 
normalized to unity because of tidal disruption (unless �t = 0), which will actually allow us 
to predict the total number of surviving subhalos after tidal disruption. 

Finally, for the subhalo mass function, we signifcantly improve over the initial version 
of the subhalo population model of ref. [60], which was previously used either with power-
law mass functions [61–63] or with the Sheth-Tormen mass function [64]. Here, instead, 
we fully resort to merger-tree techniques. This semi-analytical approach is still based on the 
extended Press-Schechter formalism [67, 68, 108], which allows us not only to self-consistently 
incorporate relevant cosmological information,12 but also to predict the subhalo mass fraction 
in host halos of di�erent sizes (from dwarf galaxies to galaxy clusters)—in ref. [60], the 
subhalo mass fraction was a tunable free parameter of the model. We perform a calculation 
similar to the one presented in refs. [70, 110], which compares very well with cosmological 
simulations when artifcial tidal disruption is included [101, 110]. We have used the merger-
tree algorithm introduced in ref. [111] on purpose, because it only depends on cosmological 
parameters and is not tuned on cosmological simulations—more details on the model upgrade 
will be given in subsequent papers [92, 93]. We fnd that the unevolved subhalo mass functions 
for several realizations of merger trees and for di�erent host halos can be very well ftted by 
the parametric function proposed in ref. [70]: " # ( )� �−α1 

� �−α2 
� �ζdN(m, Mhost) 1 m m m 

= γ1 + γ2 exp −β ,(B.9)
dm Mhost Mhost Mhost Mhost 

12We use the most recent Planck cosmological parameters [109]. 
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with the best-ft parameters γ1 = 0.014, γ2 = 0.41, α1 = 1.965, α2 = 1.57, β = 20, ζ = 3.4. 
These parameters very slightly di�er from the parameters found in ref. [70], because they 
derive from di�erent cosmological inputs and normalization procedure. However, this only 
leads to order percent di�erences in terms of global subhalo mass fraction. The mass function 
just above counts the average number of subhalos accumulated along the history of the host 
halo per “bin” of mass (here assumed to be hard spheres, i.e. keeping their virial masses after 
accretion). As in other studies, this leads to an unevolved e�ective subhalo mass fraction of 
˘ 10% in a mass range m/Mhost 2 [10−5 , 10−3] [43, 71, 84, 85, 87, 110, 112] (this fraction is 
calculated by taking subhalos with their virial masses, not their actual tidal masses). Like for 
the concentration, the unevolved mass function is universal here, prior to any tidal stripping 
e�ect. 

Note that despite the rather complex form of Eq. (B.9), the unevolved mass function 
remains rather close to a single power-law function / (m/m0)

−α , with m0 an arbitrary 
normalization and α ˇ α1 ' 1.96. Therefore, introducing µ � m/m0 and µhost � Mhost/m0, 
a useful approximation is the following: 

dN(m, Mhost) N0 −α' µ (B.10)
dm m0 n noα−1 o0.96 

= 1.4 × 1012(α−1)−2 
µhost µhost

with N0 � γ µα−1 ˇ 4.67 × 109 
1012 

,host 1012 

where we have used γ = γ1. This is the approximation we use to get analytical understanding 
of our numerical results. 

For completeness, it is useful to defne the total number of subhalos prior to tidal 
stripping, N0 ]:tot, from the considered subhalo mass range [mmin,mmax Z mmax dN(m, Mhost)

N0 = N0 
tot tot(mmin,mmax,Mhost) = dm , (B.11)

dmmmin 

such that we can now fully defne the unevolved mass pdf prior to tidal e�ects: 

dPm(m) 1 dN(m, Mhost) 
= . (B.12)

dm N0 dmtot 

This unevolved pdf is then normalized to unity within the considered subhalo mass range. 
The evolved subhalo mass function, in contrast, accounts for tidal stripping and as a 

consequence, as emphasized in ref. [60], becomes spatially dependent. This is again induced 
by the disruption parameter �t, that depletes the subhalo population according to position, 
mass, and concentration. In our model, the spatially dependent evolved mass pdf is somewhat 
entangled with the concentration pdf, but can be formally derived from (in terms of the virial 
mass m): 

d2Pc,m(c, m, R) dPm(m) dPc(c, c0(m), R) 
= × (B.13)

dc dm dm dcZ 
dPm(m, R) dPm(m) dPc(c, c0(m), R)) = × dc ,

dm dm dc 

where Pc is the evolved concentration pdf given in Eq. (B.8). Since Pc is not normalized to 
unity because of tidal disruption, neither is Pm (except if �t = 0). As a result, we see explicitly 

– 56 – 



here how the concentration pdf is entangled with the mass function as a consequence of tidal 
disruption, in the formulation of Eq. (4.3). 

We have now all the necessary ingredients to determine the total number of subhalos 
Ntot and the normalization constant Ktidal introduced in Eq. (4.3). Indeed, we have Z Z 

dPV (R) dPm(m, R)
Ktidal = dV dm � 1 , (B.14)

dV dmVhost 

and 

= N0 × Ktidal � N0 (B.15)Ntot tot tot . 

Note that we have Ktidal ! 1 and Ntot ! N0 in the limit �t ! 0, i.e. in the absence of tidaltot 

disruption (which does not mean absence of tidal stripping). 
For more physical insight on the real subhalo mass function, it might prove useful to 

have access to the tidal mass distribution instead of the virial mass distribution. Indeed, 
virial masses have no physical meaning for subhalos, for which the only true masses are the 
tidal ones. The actual spatial-dependent tidal mass function is simply given by: Z Z 

dPmt (mt, R) d2Pc,m(c, m, R) ? = dm dc δ(mt − m (m, c, R)) (B.16)tdmt dc dm 

dPm(m, R)6 .= 
dm 

In this equation mt is a free variable and m?(m, c, R) is the tidal mass calculated from thet 

model, given m, c, and R; the cross pdf d2Pc,m/dc dm was introduced in Eq. (B.13). An 
important remark to make here is that even in the absence of tidal disruption (i.e. �t = 0), 
the real tidal mass function still di�ers from the nonphysical virial mass function, simply as 
a consequence of tidal stripping. Furthermore, as already mentioned above, tidal e�ects are 
typically much stronger in the central region of the host, and much less important beyond the 
scale radius. The model e�ectively leads to a selection in concentration: more concentrated 
(i.e. denser) subhalos are more resilient to tidal e�ects, which explains why originally lighter 
subhalos (which formed earlier and are denser) survive more eÿciently in the central regions 
of the host. Consequently, the mass function is strongly altered in the central parts of the 
host halo, and becomes much steeper than the unevolved one. In contrast, the mass function 
is very close to its initial shape in the outskirts of the host halo. All this is consistent with 
other works showing a spatial evolution of the mass-concentration relation [46, 87, 113]. 
Therefore, so long as we are not concerned with the inner subhalo population of the host 
halo, the relevant mass function should remain close to Eq. (B.9). This is actually the case 
for all targets considered in this paper, for which total luminosity of subhalos dominates over 
that of the host beyond the scale radius, typically. 

As we have just seen, tidal stripping and tidal disruption slightly degrade the e�ective 
global unevolved subhalo mass fraction, but more importantly, they can strongly fatten the 
spatial distribution of subhalos in the host center. A damping of the subhalo population is 
even predicted in the very inner parts of the host for most of the model parameters used in 
our study (which is only moderately refected by the mass fraction, which integrates subhalos 
over the whole host volume). The level of this fattening is obviously driven by the value 
taken for �t, the disruption eÿciency parameter, with a population damping more severe for 
larger values. This is consistent with other analytical studies based on di�erent approaches 
(see e.g. [101]). 
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[93] G. Facchinetti et al., Analytical dark matter subhalo mass functions, in preparation (2022) . 

[94] M. Sten Delos, Evolution of dark matter microhalos through stellar encounters, Phys. Rev. D 
100 (Oct., 2019) 083529, [1907.13133]. 
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