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with macroclimate on a global scale.

• Local soils contributed more than distant
soils to atmospheric bacterial diversity.
nces, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.

m 20 January 2023; Accepted 5 February 2023

ier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2023.162137&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2023.162137
mailto:yncpsb@nus.edu.sg
http://dx.doi.org/10.1016/j.scitotenv.2023.162137
http://creativecommons.org/licenses/by-nc/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


Abbreviations

ABL Atmospheric boundary layer
MAP mean annual precipitation
MAT mean annual temperature
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The dispersion ofmicroorganisms through the atmosphere is a continual and essential process that underpins biogeog-
raphy and ecosystemdevelopment and function. Despite the ubiquity of atmosphericmicroorganisms globally, specific
knowledge of the determinants of atmospheric microbial diversity at any given location remains unresolved. Here we
describe bacterial diversity in the atmospheric boundary layer and underlying soil at twelve globally distributed loca-
tions encompassing all major biomes, and characterise the contribution of local and distant soils to the observed atmo-
spheric community. Across biomes the diversity of bacteria in the atmosphere was negatively correlated with mean
annual precipitation but positively correlated to mean annual temperature. We identified distinct non-randomly as-
sembled atmosphere and soil communities from each location, and some broad trends persisted across biomes includ-
ing the enrichment of desiccation and UV tolerant taxa in the atmospheric community. Source tracking revealed that
local soils were more influential than distant soil sources in determining observed diversity in the atmosphere, with
more emissive semi-arid and arid biomes contributingmost to signatures fromdistant soil. Ourfindings highlight com-
plexities in the atmosphericmicrobiota that are relevant to understanding regional and global ecosystem connectivity.
1. Introduction

The atmospheric boundary layer (ABL) comprises the lowermost well-
mixed part of the troposphere, which supports diverse microorganisms
that are continuously aerosolised and dispersed from surface source habi-
tats (Šantl-Temkiv et al., 2022). As an airmass transits above various habi-
tats, new taxa will be added and their airborne longevity will depend on a
suite of factors such as cell size, association with particles, wind speed
(Burrows et al., 2009a). Taxa aerosolized from the closest source are
expected to dominate the microbial community, particularly for labile
surfaces or high biomass soils (Tignat-Perrier et al., 2019). There have
been attempts to track these sources (Lymperopoulou et al., 2016; Mayol
et al., 2017), however the fundamental question of how significant the con-
tributions of local and distant soils are to the ABL microbiota remains
largely unanswered.

At any location, the biomass of microorganisms in the ABL is extremely
low, with values ranging from 101 to 108 cells/m3 for bacteria and from un-
detectable to 105 cells/m3 for fungi (Tignat-Perrier et al., 2019), whilst
hotspots of microbial abundance and diversity occur in clouds (Amato
et al., 2007), and particulate plumes from desert dust (Maki et al., 2017)
and wildfires (Kobziar et al., 2022). Recent advances in methodology for
the study of ultra-low biomass microbiomes (Eisenhofer et al., 2019;
Luhung et al., 2021; Šantl-Temkiv et al., 2020), have led to enhanced un-
derstanding ofmicrobial diversity of the ABL at several locations. A number
of recent studies have assessed spatial and temporal changes in ABL micro-
bial communities and concluded that variation reflected passage of air mass
trajectories above land or ocean with different uses (Archer et al., 2020;
Caliz et al., 2019; Els et al., 2019; Lang-Yona et al., 2022; Tignat-Perrier
et al., 2019). Others have identified local land use as a potential factor
influencing microbial communities, e.g., (Gusareva et al., 2019;
Lymperopoulou et al., 2016; Nicolaisen et al., 2017; Spring et al., 2021).
Studies of remote terrestrial (Archer et al., 2019) and marine (Uetake
et al., 2020) locations have revealed that atmospheric transport limitation
can result in biogeographic patterns for bacteria and fungi in the ABL.
Considerable geographic knowledge gaps exist regarding microbial
communities in the ABL, and particularly for natural dryland biomes that
support highly emissive soils, and studies that have directly compared
atmospheric microbiota across biomes are scarce (Tignat-Perrier et al.,
2019; Zhao et al., 2022). Some studies have applied source-tracking
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algorithms to identify potential origin of bacteria in the ABL, e.g., (Mu
et al., 2020; Uetake et al., 2019), although a limitation has been the lack
of relevant surface microbial datasets with which to compare data from
atmospheric samples. A major knowledge gap therefore arises where data
is lacking for concurrently sampled atmospheric and underlying soil
communities across different biomes.

To further advance understanding regarding the relationship between
bacterial diversity in the ABL and surface biomes, we concurrently sampled
the ABL and soil at twelve locations across six continents that encompassed
all major climate categories. We used 16S rRNA gene amplicon sequencing
with a rigorous process to remove potential contaminants that are
encountered in low biomass samples (Eisenhofer et al., 2019; Salter et al.,
2014), to characterise bacterial diversity. We estimated the influence of
macroclimate factors on observed diversity, modelled the assembly of com-
munities, and employed the FEAST source-tracking algorithm to identify
the contribution of local and non-local soil communities to the atmospheric
boundary layer. Our findings provide a globally distributed baseline refer-
ence dataset for application in future efforts to further resolve the sources
of atmospheric microorganisms.
2. Methods

2.1. Sample recovery

The sampling campaign retrieved 469 ABL and soil samples from 12 lo-
cations globally (Table 1). The Southern Hemisphere (Australia, South
Africa, Namibia, Uruguay and Chile) was sampled during April–May
2019 and theNorthernHemisphere (Hawaii (Hilo andMauna Kea), Califor-
nia, Arctic, Spain, Kuwait, Mongolia) during June–July 2019. All samples
had negative field sampling controls for each day of sampling to test for po-
tential contamination of equipment and field consumables, and additional
negative laboratory controls for each of the sample-randomised DNA ex-
traction batches to identify any potential contamination introduced
throughout sampling and laboratory workflow. All control samples were
processed as per experimental samples.

Atmospheric particles, includingmicrobial cells, were sampled from the
ABL using three Coriolis μ high-volume impingement devices (Bertin In-
struments) operated concurrently. All equipment was transported between
locations in sterile containers and bags. Each device was dis-assembled and
contact surfaces soaked for 1 h with 1.5 % v/v sodium hypochlorite
(NaClO) followed by three washes of Milli-Q H20 prior to and after each
sampling in order minimise contamination from cells or nucleic acids. All
apparatus and work surfaces used during sampling and sample processing
were also cleaned in this way prior to use. All operators wore surface
sterilised nitrile gloves during field collections. Air samplers were located
on tripods 1.5 m above the ground and 3 m apart from each other at each
sampling location and all inlets were aligned facing prevalent local wind di-
rection. Samplers were only approached from downwind during operation.
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Atmospheric particles were collected in 18 m3 volumes (300 L/min−1

for 1 h) into a sterile phosphate-buffered saline (PBS) impingement me-
dium as this volume has been shown to result in recoverable environmental
DNA (Archer et al., 2019). Sampling cones were replaced at hourly inter-
vals during a standardised sampling window ±3 h from solar noon at
each location. For sampling blanks at each location, collection cones were
assembled into the devices for 1 min without activating the air pump, and
these were used as the negative sampling controls at each location.
Collected samples were further concentrated by syringe filtration onto
25 mm polycarbonate filters with 0.2 μm pore size and preserved in
0.5 mL of DNA/RNA Shield (Zymo Research, USA) at ambient temperature
during transit and then frozen at−20 °C until processed for DNA extraction
in the laboratory.

At each location 6 undisturbed surface soil samples (upper 2 cm soil
captured in sterile 50 mL screw-cap tubes) were collected. One was col-
lected from the base of each Coriolis m device and three were collected
each 25 m away in different evenly spaced directions. In recognition of in-
herent soil heterogeneity each sample comprisedfive subsamples that were
mixed and then resampled to yield a representative sample for each analy-
sis. For each sample 0.5 g was preserved for DNA extraction in 0.5 mL of
DNA/RNA Shield (Zymo Research, USA) at ambient temperature during
transit and then frozen at −20 °C until processed for DNA extraction in
the laboratory.

Environmental DNA was recovered from filtered atmosphere and soil
samples using a CTAB-based manual extraction protocol optimised for
low biomass samples (Archer et al., 2019). DNA extractions from samples
were performed under strict microbiological biosafety conditions in
randomised sample batches, and each batch was processed with discreet
laboratory controls to assess potential laboratory or reagent contamination.
Each sample tube was processed individually to avoid potential cross-
contamination between samples due to micro-droplet transfer. DNA yield
was quantified using the Qubit 2.0 Fluorometer (Invitrogen, USA) and sam-
ples were then stored at −20 °C until processed.

2.2. Biomass estimation

Biomass estimation was made using a well-established real-time quanti-
tative PCR (qPCR) approach (Hospodsky et al., 2010). Primers used for
bacteria were S-D-Bact-0341-b-S-17 (5′-CCTACGGGNGGCWGCAG-3′) and
D-Bact-0785-a-A-21 (5′-GACTACHVGGGTATCTAATCC-3′) (Herlemann
et al., 2011; Klindworth et al., 2013) with LightCycler 480 SYBR Green I
Master mix (Roche Holding, Switzerland). A qPCR standard for the target
sequence was developed to estimate gene copy number using pooled sam-
ples of all extracted atmosphere and soil samples. These were amplified
using TaqMan Fast Advanced Master Mix without fluorescent markers
Table 1
Globally distributed sampling locations included in this study. Locations are ordered b
observations (https://climatecharts.net). Climate codes follow the Kӧppen climate class
E, polar [Peel MC, Finlayson BL&McMahon TA (2007), Updated world map of the Köpp
ples retained for downstream analysis after decontamination are shown for atmosphere

Location GPS
(decimal degrees)

MAP
(mean annual
precipitation, mm)

MAT
(mean annual
temperature, °C)

Alt
(m
sea

Arctic 69.131, −105.057 136.1 −13.9 5
Mongolia 44.573, 105.648 116.5 5.2 123
Spain 40.825, −3.961 537.8 11.9 183
California, USA 35.142, −116.104 153.1 20.0 30
Kuwait 28.951, 48.192 109.9 26.9
Hilo, Hawaii, USA 19.703, −155.090 1949.3 18.9 12
Mauna Kea, Hawaii, USA 19.823, −155.478 1949.3 18.9 420
Namibia −23.603, 15.038 10.4 21.5 38
Chile −24.105, −70.016 1 12.3 9
South Africa −25.753, −28.258 648.9 18.5 138
Australia −32.898, 116.906 544.3 16.2 32

Uruguay −34.354, −57.235 1168.7 17.4 1
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(Applied biosystems, USA) with the following conditions: denaturing
step: 95 °C for 20 s; cycling step: 35 cycles of 95 °C for 1 s and 60 °C for
20 s as used previously (Gusareva et al., 2019). These were then quantified
using a Bioanalyzer (Agilent Technologies, USA). Serial dilution of the DNA
was used to generate standard curves.
2.3. DNA sequencing

Sequence libraries were prepared using Illumina MiSeq v3 600 cycle
chemistry as per manufacturer's protocol. Template DNA in samples was
normalised prior to two-step PCR amplification for the bacterial 16S
rRNA gene V3-V4 hypervariable region (Herlemann et al., 2011;
Klindworth et al., 2013) as previously described (Archer et al., 2019). Li-
braries were first processed with cutadapt v2.7 (Martin, 2011) to remove
primer sequences and amplicon sequence variants (ASVs) (Callahan et al.,
2017), were generated using dada2 v1.14 (Callahan et al., 2016). Pseudo-
pooling was used in ASV calling to increase sensitivity and detect rare
ASVs. Taxonomic classification was conducted in dada2 with the SILVA
v138 database (Quast et al., 2013). DNA concentration for all control sam-
ples were below detection limits but these samples were retained through
amplicon sequencing preparation and run with associated samples. Any
samples associated with controls gaining >500 amplicon reads were re-
moved from downstream analysis. Decontamination was conducted using
the R package decontam (Davis et al., 2018) on all remaining samples
and controls resulting in 96.55 % of reads being retained. The decontami-
nation process was conducted by grouping samples into batches with corre-
sponding sampling controls from the same location and extraction controls
from the same sequencing batch. Potential contaminant ASVs were identi-
fied using the “isContaminant” function with the default “combine”
method, with a default probability threshold of 0.1 and the default “mini-
mum” method for combining the p-values of the ASVs across batches. In a
given batch, the p-value of an ASV not being a contaminant (the null hy-
pothesis) based on the frequency and prevalence methods were combined
using Fisher's method. The lowest p-value of a given ASV across batches
was used. Any ASVwith a final p-value< 0.1 was suspected to be a contam-
inant and removed. Any samples with >15 % of reads removed or with
<1000 reads remaining were removed to ensure reliable representation of
community structures resulting in a total of 309 biological samples for di-
versity analysis (Table 1). Taxonomic identity of reads removed from
retained samples during the decontamination process is reported according
to recommended best practice (Eisenhofer et al., 2019) (Appendix A). Sam-
pling curves for all post-filtered atmosphere and soil samples achieved near-
asymptote for ASV diversity (Appendix A). Sequence data for all samples
and controls are accessible in the European Nucleotide Archive at EMBL-
y latitude from north to south. Macroclimate data were obtained from long-term
ification: major delineations were: A, tropical; B, dry; C, temperate; D, continental,
en-Geiger climate classification, Hydrol. Syst. Sci. 11,1633–1644]. Number of sam-
(Atm.) and soil.

itude
above mean
level)

Climate Biome (surface cover) No.
samples

Atm. Soil

0 Polar (Ef) Polar ice (severe tundra) 12 5
5 Dry (BWk) Cold arid desert (grassland) 12 6
0 Continental (Dsb) Warm summer hemiboreal (grassland) 26 5
0 Dry (BWh) Hot arid desert (Mojave Desert) 5 6
0 Dry (BWh) Hot arid desert (coastal desert) 25 6
0 Tropical (Af) Tropical rainforest (coastal) 6 1
0 Polar (Et) Tundra (mountain peak) 27 6
0 Dry (BWh) Hot arid desert (Namib Desert) 29 5
0 Dry (BWk) Cold arid desert (Atacama Desert) 28 4
0 Temperate (Cwb) Subtropical highland (livestock and arable) 16 6
0 Temperate (Csa) Mediterranean hot summer

(grassland and arable)
29 5

0 Temperate (Cfa) Humid subtropical (wooded grassland) 33 6

https://climatecharts.net
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EBI under project accession number PRJEB58182 (https://www.ebi.ac.uk/
ena/browser/view/PRJEB58182).

2.4. Statistical treatments and ecological modelling

General processing of bacterial ASV data including the calculation of
relative abundance, estimates of alpha and beta diversity, and significance
testing were conducted using the R package phyloseq (McMurdie and
Holmes, 2013) and visualised using ggplot2 (Wickham, 2009). To visualize
patterns of community dissimilarity, Hellinger distances were ordinated
with t-distributed stochastic neighbor embedding (tSNE) using the R pack-
age Rtsne (Krijthe, 2015), and significance testing usedmany glmwith neg-
ative binomial distribution usingmvabund (Wang et al., 2012) because this
approach takes into account heterogeneity in mean-variance relationships,
i.e., autocorrelation (Warton et al., 2012). Differential abundance analysis
was conducted using ANCOMBC with P-values adjusted by the Holm–
Bonferroni method (Lin and Peddada, 2020). Calculation of geographic
distances was performed using the “distGeo” function in the R package
geospherewithWGS84 ellipsoid (Hijmans, 2019). Statistical modelling em-
ployed a general maximum entropy null model based on a bipartite config-
uration model for networks to model the location versus ASV occurrence
matrix (Cimini et al., 2019). The Z-scores for nestedness were calculated
using the NODF metric to indicate the number of standard deviations a
given data point lay from the mean (Almeida-Neto et al., 2008). Estimation
of niche overlap was achieved using the Jaccard distance to determine pair-
wise assemblage dissimilarity and test if the average dissimilarity deviated
from that expected under random assembly that randomised ASV identity.
Source tracking was conducted using fast expectation-maximization in the
R package FEAST (Shenhav et al., 2019). R code used for FEAST is available
at https://github.com/cyklee/STOTEN_FEAST.

3. Results and discussion

The sampling campaign encompassed twelve locations spanning the
five major climate types and multiple biomes (Table 1). For all locations
bacterial abundance per g soil greatly exceeded estimates per m3 of air.
Whilst such estimates between soil and atmosphere are not directly compa-
rable the data illustrates that magnitude-scale differences in abundance
occur and this pattern is conserved across multiple biomes on a global
scale and broadly matches modelled estimates (Fig. 1a) (Burrows et al.,
2009a). Taxonomic richness was also markedly higher in soils and the
pattern for the ABL broadly tracked those for the location-specific soils
(Fig. 1b). A clear trend in both abundance and richness was observed
where more extreme surface biomes, e.g. Mauna Kea (high altitude
mountain) and California and Chile (hot and cold deserts respectively)
were associated with less abundance and richness in the overlying ABL.

Taxonomic richness of soil and ABL displayed a small but significant
negative correlation with mean annual precipitation (MAP) (R2 = 0.06, P
< 0.001) (Fig. 2a). This pattern complemented a macroclimate-
driven global latitudinal gradient observed for topsoil bacterial diversity
(Bahram et al., 2018). The ABL taxonomic richness showed a small but
significant positive correlation with mean annual temperature (MAT)
(R2 = 0.1, P < 0.001) that was not supported for soils (Fig. 2b). It is envis-
aged that locationswith higher precipitationmay support lower diversity in
the ABL due to a variety of factors including precipitation-mediated
deposition and less emissive surface soils. Conversely the increased diver-
sity in warmer climates largely reflected more emissive soils (Maki et al.,
2021; Salawu-Rotimi et al., 2021). However, our data showed that this
relationship breaks down for the ABL above the most extreme desert
locations, e.g. the Atacama Desert in Chile, and this likely reflects very
low soil biomass at these locations.

We employed multiple approaches to unravel patterns in beta diversity
and shed light on biogeographic patterns. Hellinger transformed Bray-
Curtis distances were used to identify substantial dissimilarity between
ABL communities (Fig. 3a). The habitat (i.e., ABL v. soil) and location
were significant in structuring the composition of the bacterial assemblages
4

(mvabun P = 0.001). The desert locations (Chile, Kuwait, Mongolia,
Namibia) and the agricultural location (South Africa) displayed least
within-group dissimilarity and this likely reflected less diverse surface
sources for bacterial recruitment to the ABL. Soil communities followed a
broadly similar trend where desert soils (Chile, Mongolia, Namibia)
displayed lower within-group dissimilarity. We then estimated distance-
decay relationships to estimate how community similarity varies with
geographic distance that separates the communities. A significant though
weak linear distance decay relationship for community structure was
observed for both ABL (R = 0.2175, P ≤ 0.01) and soil (R = 0.147, P ≤
0.01) (Fig. 3b).

To gain further insight we constructed a general maximum entropy null
model of taxa occurrence matrices (Caruso et al., 2022), to provide statisti-
cal evidence for the degree towhich communities in ABL and soil exhibited
taxonomic structuring that would indicate non-random community struc-
ture. This is important because traditional dogma has long assumed micro-
organisms in the atmosphere are ubiquitously and randomly distributed.
This identified that the atmospheric communities were significantly
under-nested at the node level (Z score ≤ −2, P ≤ 0.001) and the niche
overlap (the degree by which taxa shared locations) was significantly
lower (Z score ≤ −2, P ≤ 0.001) compared to the null model (Fig. 3c).
The two results indicated that ABL communities were taxonomically struc-
tured and fundamentally non-randomly assembled in terms of ASV identity.
This is indicative of taxa specificity and reflects environmental filtering to
habitat and location (Caruso et al., 2022). Soil communities displayed
similar trends (Fig. 3c), although values indicated a greater degree of taxo-
nomic structuring as expected for active soil bacterial communities and this
is congruent with observed global diversity patterns for soil bacteria
(Bahram et al., 2018). At the global scale ABL communities showed a
higher level of similarity than soils due to the number of inter-location
shared ASVs and greater location bias for soil (Z-score > 2, P-value <
0.001).

Assessment of taxonomic diversity in ABL and soil samples revealed
the bacteria enriched in the ABL compared to soil were largely accounted
for by classes with taxa that have known tolerance to environmental
stress including Alphaproteobacteria, Bacilli, Cyanobacteriia, and
Gammaproteobacteria (Fig. 4a). Other classes typified by stress-tolerant
taxa, e.g., Deinococci, were also enriched albeit with low relative abun-
dance. Other location-specific differences were indicative of influence
from local surface cover (Fig. 4b). For example, the high relative abundance
of Gammaproteobacteria in the farmland ABL in South Africa was consis-
tent with emission signatures from agricultural surfaces (Salawu-Rotimi
et al., 2021; Zhao et al., 2014), and the Cyanobacteria that are commonly
elevated in marine aerosols were more abundant in the ABL at the coastal
locations (Hawaii, Kuwait). The Mauna Kea location was a high elevation
mountain peak (4200 m) and this gave some indication of likely
atmospheric bacterial composition above the atmospheric boundary
layer, with ultra-low biomass and diversity reflecting enrichment in
stress-tolerant Cyanobacteria and Gammaproteobacteria.

A very conservative analysis of potential human-associated bacteria in
the ABL was obtained by screening for twenty genera that contain known
obligate human-associated species, although environmental species are
also recorded for some of these genera and so this represents a cautious
over-estimate: Bacteroides, Bifidobacterium, Corynebacterium, Cutibacterium,
Escherichia, Faecalibacterium, Haemophilus, Klebsiella, Lactobacillus,
Listeria, Moraxella, Neisseria, Porphyromonas, Prevotella, Propionibacterium,
Salmonella, Shigella, Staphylococcus, Streptococcus and Veillonella. The
screening indicated that potential human contribution to environmental
ABL communities was extremely low with a global average of 0.31 %.
Urban aerosols were not the subject of our study but they may support
elevated abundance of human-associated bacterial pathogens and allergens
(Woo et al., 2013; Zhao et al., 2022). Human influencemay also extend be-
yond the ABLwith a recent study reporting detection of pathogenic bacteria
in the free troposphere above the ABL (Triadó-Margarit et al., 2022).

Transit through the atmosphere is strongly related to survivability and
the biocidal effects of high ultraviolet light, low temperature and low

https://www.ebi.ac.uk/ena/browser/view/PRJEB58182
https://www.ebi.ac.uk/ena/browser/view/PRJEB58182
https://github.com/cyklee/STOTEN_FEAST
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Fig. 1. Comparison of biomass and diversity for bacteria in the atmospheric boundary layer and underlying soil across biomes. a) Biomass-diversity relationship visualised
using bacterial 16S rRNA gene copy number versus observed ASVs (standardised to: soil = g; atmosphere=m3), samples with zero value for gene copy number estimation
are not shown; b) Species richness of globally distributed ABL and soil bacterial communities, in rank order of richness in the ABL.
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relative humidity have been identified (Brotto et al., 2015; Hara and Zhang,
2012; Prussin et al., 2017; Šantl-Temkiv et al., 2017; Tong and Lighthart,
2000). However, evidence also suggests that not all microorganisms
become airborne in a uniform manner (Aalismail et al., 2019; Michaud
et al., 2018), and some taxa may be adapted to enhanced deposition during
5

transit (Reche et al., 2018). Our differential abundance analysis added
statistical evidence in support of the taxa enriched in the ABL, and patterns
also reflected potential differential adaptation to aerosolization and/or sur-
vival as well as source influences (Fig. 4c). For example, some classes such
as the Actinobacteria and Gammaproteobacteria were common in both soil



Fig. 2. The relationship between macroclimate and bacterial diversity in the atmospheric boundary layer and underlying soil across biomes. First and second order
polynomial regression of ASVs by location for ABL and soil samples; a) The relationship with mean annual precipitation (MAP) was negative for ABL and soil
communities; b) The relationship with mean annual temperature (MAT) was positive for ABL communities but not supported for soil communities.
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and ABL communities, in contrast the Planctomycetes were consistently
more abundant in soils, and this may indicate a group that is not well-
adapted to aerosolization or atmospheric survival. Conversely the
Cyanobacteria that are known to disperse readily in the atmosphere
between habitats, e.g., (Pointing et al., 2009), and Deinococcota that are
highly resilient to atmospheric abiotic stress (Satoh et al., 2022), were
both more abundant in the ABL than soil.

A central question in atmospheric microbiology is where airborne taxa
are recruited from, with the general presumption being that local sources
predominate, particularly soils (Salawu-Rotimi et al., 2021), but also
other terrestrial and aquatic surfaces, e.g. ocean surface waters (Mayol
et al., 2017; Uetake et al., 2020), the phyllosphere (Lymperopoulou et al.,
6

2016; Vorholt, 2012) and desert dust events (Kellogg and Griffin, 2006;
Pointing and Belnap, 2012). A connectivity analysis of our data revealed
that the ABL generally displayed greatest taxonomic connectivity with
local soil at any given location and less connectivity with soil from different
locations (two-way ANOVA with permutation test [5000 iterations] P ≤
2.2 × 10−16) (Fig. 5a). We then employed fast expectation-maximization
source tracking (FEAST) (Shenhav et al., 2019), to estimate recruitment
of ASVs to the ABL from soil samples collected concurrently at the same lo-
cations (Fig. 5b). The contributions of global soil ASVs to the ABL varied
substantially with overall soil contribution ranging from 6.8 to 32.9 % of
observed atmospheric bacterial diversity at any given location. This level
of explained sources in our analysis is comparable to the 30 % achieved
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Fig. 5. Source tracking of bacteria in the atmospheric boundary layer from soil across different biomes. a) Comparison of the number of ASVs from the ABL recruited from
soils fromwithin and between different locations; b) Fast expectation-maximization source tracking of ASVs in the ABL that matched soil ASVs frommultiple sources in this
study. Data are represented as relative contributions using two colour scales: white-purple for sources recognised by data in this study, and yellow-blue for overall known and
unknown sources.
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in another recent study that employed FEAST source tracking to bacteria at
the ASV level above the Southern Ocean (Malard et al., 2022). Another
study under controlled conditions in a microcosm estimated that for
bacterial taxa clustered at the genus level 19.5 % of airborne taxa could
be explained by source tracking from a defined soil source whilst only
3 %were attributed to the phyllosphere source (Zhou et al., 2021). It is im-
portant to note that we matched exact ASV taxa in our FEAST source-
tracking analysis and so our data revealed exact matches rather than the
less specific approach of clustering operational taxonomic units (OTU)
based on 97 % sequence similarity that has been previously applied to
atmospheric source-tracking, and this resulted in a large volume of taxa
9

with unexplained source and also highlights that it is impossible to exhaus-
tively sample all potential sources.

The largest single contributor to the ABL identified from source
tracking was derived from local soils, and this reinforced the findings
from the connectivity analysis. Some locations also displayed relatively
high non-local soil contributions. Environments with relatively stable,
plant covered surfaces in the Arctic, Hawaii, South Africa, Spain, and
Uruguay all had higher relative non-local soil contributors and gener-
ally had lower overall soil contributions than locations with more labile
local surfaces in desert locations. This highlights both the importance of
surface soil stability and the potential of phyllosphere-derived bacteria
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to form a dominant part of the microbial community. Identification of
diverse bacteria in aerosolised dust from agricultural and dryland
soils has indicated the potential for soils to directly contribute to atmo-
spheric microbiota (Elliott et al., 2019; Salawu-Rotimi et al., 2021). The
direct emission of bacteria from phyllosphere to atmosphere has yet to
be experimentally demonstrated but estimates derived from measure-
ments of cultivable bacteria in air above grassland and forest suggest
the phyllosphere is a major source (Burrows et al., 2009b).

4. Conclusion

Overall, thefindings highlight that a clear cross-biome trend in diversity
within the ABL occurs with regard to macroclimate variables, reflecting
negative correlation with MAP and positive correlation with MAT. This
generally matched observed trends for underlying soils although the
relationships were more pronounced for ABL bacteria. Our statistical
modelling confirmed that atmospheric bacterial composition was non-
randomly structured and patterns reflected environmental filtering, thus
refuting hypotheses that bacteria are ubiquitously distributed in the atmo-
sphere, although at a global scale ABL bacterial communities displayed a
higher level of similarity than soils. Soil was a significant source although
other major inputs remain unexplained but are likely to include the
phyllosphere as a major contributor. We conclude that diverse surface
sources aswell as temporal and stochastic variation inmicrobial occurrence
within a given air mass likely all contribute to a complex ABL microbial
community (Šantl-Temkiv et al., 2022). Taken together we anticipate
these findings will be valuable in future hypothesis-driven research to
identify interactions between the atmosphere and surface habitats across
multiple ecological scales, and to testmodels of recruitment, turnover, func-
tionality, and resilience. Given that the atmosphere is also the sink for a
large fraction of anthropogenic emissions (Archer and Pointing, 2020),
and climate change has been predicted to negatively impact microbial
diversity in the ABL (Ontiveros et al., 2021), it is timely that this new
contribution to the global inventory of microbial diversity is provided
in order to expand a baseline for measuring future responses to change.
Finally, the study complements efforts to inventory global environmen-
tal microbiomes (Thompson et al., 2017) and expands the scope of the
pan-global microbiota.
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