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Circular dichroism in magneto-optical forces
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Abstract: In this article we use an exact method to resolve the fields scattered by a spherical
magneto-optical particle and calculate the optical forces exerted on it. The resulting force
and the contributing components, i.e. magneto-optical gradient force and magneto-optical
extinction force, are presented in an analytical form. We also derive analytical expressions for
the scattering and extinction cross sections of a magneto-optical particle, expressions which
intuitively demonstrate the effect of circular dichroism in magneto-optical scattering and forces.
Finally, we demonstrate that the magneto-optical extinction force is the result of circular dichroism
in magneto-optical scattering. We show that it is possible to completely cancel the scattering in the
forward or in the backward direction, when the incident field is composed of a circularly-polarized
reflected beam. Moreover, the directional scattering is interrelated to the direction of the force
exerted on the particle.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Magneto-optical (MO) materials have become a key tool in functional nanophotonics. The
unique nonreciprocal effect and magnetic tuneability of magneto-optical devices make them play
an irreplaceable role in high-performance isolators, polarization controllers, modulators, and
magnetic field sensors [1,2].

When an external magnetic field is applied, a magneto-optical particle exhibits an anisotropic
behavior and its permittivity takes a tensor form. The analysis of wave propagation and scattering
in magneto-optical medium becomes very difficult, as for this problem, Maxwell’s equations are
not separable in spherical coordinates.

The problem of scattering of an electromagnetic wave by a magneto-optical spherical particle
was solved in the literature both analytically and numerically using various methods. Among
them, a generalization of Mie scattering to the case where the dielectric constant is a tensor
with axial symmetry [3], spectrum domain Fourier transform approach [4], a modification of the
discrete dipole approximation (DDA) [5,6], the generalized Lorenz-Mie theory (GLMT) [7] and
Extended Boundary Condition Method (EBCM) [8–10].

Interaction between an electromagnetic wave and a particle leads to mechanical actions on
the particle, what is known as optical forces. Evaluation of optical forces requires knowledge of
the scattered field and analytical expressions for optical forces on a single particle were derived
using GLMT [11,12], the dipole approximation [13,14], generalized Mie theory [15] and more
[16]. These expressions led to the classification of optical forces into gradient and scattering
components. However, the expressions were derived for isotropic particles mainly.

In earlier papers, we used the dipole approximation to analyze optical forces on MO particles
[17,18]. We found that the MO effect leads to an additional contribution to optical forces, a
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contribution which can also be classified into gradient and extinction (scattering) components
[17].

In this paper, we use the method of eigen-expansion of the field in terms of spherical vector
wave functions (SVWF) and Fourier expansion for the unknown spectrum amplitude [19] to
find an exact solution for the field scattered by a magneto-optical particle. We then apply the
solution to the analysis of the optical forces exerted on such a particle, where we adapt analytical
expressions previously developed for optical forces on isotropic particles [15] to the MO case.

Magnetic Circular Dichroism (MCD), the differential absorption of left-handed circularly
polarized (LCP) light and right-handed circularly polarized (RCP) light in the presence of
a magnetic field, arises from the magnetic field induced Zeeman interactions of electronic
structure [20]. MCD spectroscopy is a predominant technique in studying excitonic transitions
in semiconductor nanocrystals, electronic transitions in noble metal nanoclusters, and plasmon
resonances in noble metal nanostructures. Moreover, MCD has provided new opportunities in
exploring the relationship between structure and magneto-optical properties in nanomaterials
[21].

The method we chose to solve the magneto-optical scattering problem [19], naturally reflects
the inherent circular dichroism in the magneto-optical scattering process. The solution obtained
for the scattered field is used to derive general expressions for the scattering and extinction
cross sections and to evaluate scattering and extinction circular dichroism for magneto-optical
particles. We show that circular dichorism constitutes a property of scattering interaction of
electromagnetic twisted fields [22] and is not only an effect due to absorption.

We also show that MO forces can be further classified into the contributions from the electric
and magnetic dipoles and an additional contribution from the interactions between the two, very
much like an isotropic particle [23–25] but with the addition of circular dichroism.

Tailoring electromagnetic scattering based on subwavelength nanostructures has gained an
unprecedented development attributed to the recent explosion in the number of investigations
on metamaterials [26,27]. However, active control of directional scattering using a simple
nanostructure still remains a challenging problem [28,29].

In the present paper, we show that when positioned in a standing-wave, a MO particle scattering
direction can be controlled with the direction of an external magnetic field bias, enabling active
control of directional scattering. The directional scattering leads to MO extinction force in a
direction opposite to the scattering direction. An isotropic particle positioned in the same field
will not experience any force at all.

The combination of mechanical action by optical forces and the active tuning of directional
scattering are of interest for the design of state-of-the-art functional nanophotonic devices, nanoan-
tennas engineering, sensors and enhancement of circular dichroism (CD, MCD) spectroscopies
[21,30].

2. Electric and magnetic fields scattered from magneto-optical particle

Consider a magneto-optical particle of radius a positioned in free space. Assuming a monochro-
matic incident wave with time dependence e−iωt, Maxwell’s equations in such source-free
magneto-optical medium can be written in the following form:

∇ × E = iωµ0H,
∇ × H = −iωϵ̂E,

(1)

where E and H denote the electric and magnetic fields respectively, µ0 is the free-space
permeability and ϵ̂ is the permittivity tensor for the magneto-optical medium. If an external
constant magnetic field Bext is applied in the z-direction (parallel to the propagation direction of
the incident wave, in the so-called "polar" configuration. See Fig. 1), the permittivity tensor ϵ̂
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takes the following form:

ϵ̂ = ϵ0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ϵ1 −ϵ2 0

ϵ2 ϵ1 0

0 0 ϵ3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

where the permittivity tensor elements ϵ1, ϵ2 and ϵ3 are complex functions of ω, electron density,
phonon frequency and the strength of the applied constant magnetic field. From Eq. (1), we can
reach the electric field vector wave equation:

∇ × ∇ × E − ω2ϵ̂ µ0E = 0. (3)

Fig. 1. The geometry considered in this paper. A magneto-optical spherical particle or
radius a positioned in an electromagnetic field whose propagation direction k0 is parallel to
the direction of an external constant magnetic field Bext.

Unlike scattering from an isotropic particle, in the magneto-optical case, we cannot reduce
Eq. (3) to the simpler scalar wave equation (homogeneous Helmholtz equation). A plane
wave which enters a magneto-optical media is decomposed into two circularly polarized waves
propagating at different velocities and the value of the k vector, k = kxx̂ + kyŷ + kzẑ, is dependent
on the direction. Hence, solutions to the vector wave equation must be found.

For that purpose, we expand the incident fields and the scattered fields in terms of spherical
wave vectors M(l)

mn, N(l)
mn and L(l)

mn which form a complete set of vector basis functions [19,31] in
spherical coordinate system (r, θ, ϕ).

M(l)
mn =z(l)n (kr)

(︃
im

Pm
n (cos θ)
sin θ

θ̂ −
dPm

n (cos θ)
dθ

ϕ̂

)︃
eimφ ,

N(l)
mn =eimφ

[︃
n (n + 1)

z(l)n (kr)
kr

Pm
n (cos θ) r̂+

1
kr

d
(︂
rz(l)n (kr)

)︂
dr

(︃
dPm

n (cos θ)
dθ

θ̂ + im
Pm

n (cos θ)
sin θ

ϕ̂

)︃ ]︃
,

L(l)
mn =

kdz(l)n (kr)
d (kr)

Pm
n (cos θ) eimφ r̂+

kz(l)n (kr)
kr

(︃
dPm

n (cos θ)
dθ

θ̂ + im
Pm

n (cos θ)
sin θ

ϕ̂

)︃
eimφ ,

(4)
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where z(l)n (kr) denotes the corresponding kind of spherical Bessel or Hankel function (z(1)n (kr) =
jn(kr), z(2)n (kr) = yn(kr), z(3)n (kr) = h(1)n (kr), z(4)n (kr) = h(1)n (kr)), Pm

n is the associated Legendre
function and r̂, θ̂ and ϕ̂ are the unit vectors in the radial, angular and azimuthal directions
respectively.

Because spherical Bessel functions of the first to fourth kinds satisfy the same differential
equation and the same recursive relations, the first kind of vector wave functions in Eq. (4) can
be generalized to the second to fourth kinds.

Assuming that the electric field of the incident plane wave is given by Einc = E0
(︁
A0xx̂ + A0yŷ

)︁
ei(±kz−ωt),

the incident fields may be expanded in an infinite series of spherical vector wave functions as
follows (The coefficients of L(l)

mn are zero when the medium is isotropic [31])

Einc =E0

∞∑︂
n=0

∑︂
m=±1

[︃ (︁
A0xax

mn + A0yay
mn

)︁
M(1)

mn (r, k0) +
(︁
A0xbx

mn + A0yby
mn

)︁
N(1)

mn (r, k0)

]︃
,

Hinc =
E0k0
iωµ0

∞∑︂
n=0

∑︂
m=±1

[︃ (︁
A0xax

mn + A0yay
mn

)︁
N(1)

mn (r, k0) +
(︁
A0xbx

mn + A0yby
mn

)︁
M(1)

mn (r, k0)

]︃
,

(5)

where k0 = ω/c, and the coefficients of the incident fields are [31]

ax
1n =bx

1n = En,
ax
−1n =n (n + 1)En,

bx
−1n = − n (n + 1)En,
ay

1n =by
1n = −iEn,

ay
−1n =n (n + 1) iEn,

by
−1n = − n (n + 1) iEn,

(6)

for an incident beam propagating in the +z direction, and

ax
1n =(−1)nEn,

bx
1n =(−1)n+1En,

ax
−1n =bx

−1n = n (n + 1) (−1)nEn,
ay

1n = − i(−1)nEn,
by

1n =i(−1)nEn,
ay
−1n =by

−1n = n (n + 1) i(−1)nEn,

(7)

for an incident beam propagating in the −z direction. For both propagation directions, En =

in+1 (2n+1)
2n(n+1) .

According to the radiation condition of the scattered wave (attenuating to zero at infinity) and
the asymptotic behavior of spherical Bessel functions, only h(1)n satisfies this condition, therefore
the expansion of the scattered fields in terms of spherical wave vectors is given by

Es = E0

∞∑︂
n=0

n∑︂
m=−n

[︂
As

mnM(3)
mn (r, k0) + Bs

mnN(3)
mn (r, k0)

]︂
,

Hs =
E0k0
iωµ0

∞∑︂
n=0

n∑︂
m=−n

[︂
As

mnN(3)
mn (r, k0) + Bs

mnM(3)
mn (r, k0)

]︂
.

(8)

The scattering coefficients are unknown and will be found from boundary conditions on the
particle-medium interface. The fields inside the magneto-optical particle can be represented in
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terms of the following eigenfunctions [19]

Eint =2π
2∑︂

q=1

∞∑︂
n=0

n∑︂
m=−n

∞∑︂
n′=0

Gmn′q

∫ π

0
Pm

n′ (cos θk) sin θkk2
q

[︃
Ae

mnq (θk)M(1)
mn

(︁
r, kq

)︁
+

Be
mnq (θk)N(1)

mn
(︁
r, kq

)︁
+ Ce

mnq (θk)L(1)
mn

(︁
r, kq

)︁ ]︃
dθk,

Hint =2π
2∑︂

q=1

∞∑︂
n=0

n∑︂
m=−n

∞∑︂
n′=0

Gmn′q

∫ π

0
Pm

n′ (cos θk) sin θkk2
q

[︃
Ah

mnq (θk)M(1)
mn

(︁
r, kq

)︁
+

Bh
mnq (θk)N(1)

mn
(︁
r, kq

)︁
+ Ch

mnq (θk)L(1)
mn

(︁
r, kq

)︁ ]︃
dθk,

(9)

where Gmn′q is unknown, Ae
mnq, Be

mnq, Ce
mnq, Ah

mnq, Bh
mnq and Ch

mnq are given in Appendix A

and θk = tan−1(
√︂

k2
x + k2

y/kz). k2
1,2 =

B±
√

B2−4AC
2A is the root of the bi-quadratic equation

Ak4
q − Bk2

q + C = 0 where

A =a1 sin2 θk + a3 cos2 θk,

B =
(︂
a2

1 + a2
2

)︂
sin2 θk + a1a3

(︂
1 + cos2 θk

)︂
,

C =a3

(︂
a2

1 + a2
2

)︂
,

and aj = ω
2ϵjµ0.

We then use boundary conditions from the continuity of the tangential components of the
electric and magnetic fields on the particle-medium interface, to reach two sets of linear equations

2π
2∑︂

q=1

∞∑︂
n′=0

Gmn′qQn′
mnq =

iE0

(k0a)2
(︁
δm,±1

)︁
ap

mn,

2π
2∑︂

q=1

∞∑︂
n′=0

Gmn′qRn′
mnq =

iE0

(k0a)2
(︁
δm,±1

)︁
bp

mn,

(10)

where ap
mn and bp

mn (p=x,y) are the coefficients of the incident fields, given in Eq. (6) and

Qn′
mnq =

∫ π

0

[︃
Ae

mnq (θk)
1

k0r

d
[︂
rh(1)n (k0r)

]︂
dr

jn
(︁
kqa

)︁
−

h(1)n (k0a)
iωµ0

k0

(︁
Bh

mnq (θk)
1

kqr
d

[︁
rjn

(︁
kqr

)︁ ]︁
dr

+

Ch
mnq (θk)

jn
(︁
kqr

)︁
r

)︁ ]︃
r=a

Pm
n′ (cos θk) k2

q sin θkdθk,

Rn′
mnq =

∫ π

0

[︃
iωµ0

k0
Ah

mnq (θk)
1

k0r

d
[︂
rh(1)n (k0r)

]︂
dr

jn
(︁
kqa

)︁
− h(1)n (k0a)

(︁
Be

mnq (θk)
1

kqr
d

[︁
rjn

(︁
kqr

)︁ ]︁
dr

+

Ce
mnq (θk)

jn
(︁
kqr

)︁
r

)︁ ]︃
r=a

Pm
n′ (cos θk) k2

q sin θkdθk.
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From Eq. (10) it can be seen that only the coefficients Gmn′q with m = ±1 have non-trivial
solutions. As such, we can represent Eq. (10) as two systems of linear equations (for m = ±1) in
square matrix form with dimensions 2nmax × 2nmax, where nmax is the maximum number of n′

used in Eqs. (10). The matrices have to be inverted in order to find the unknowns Gmn′q.⎡⎢⎢⎢⎢⎣
Qn′

mn1 Qn′
mn2

Rn′
mn1 Rn′

mn2

⎤⎥⎥⎥⎥⎦ ⎛⎜⎝
Gmn′1

Gmn′2

⎞⎟⎠ = iE0

2π (k0a)2
⎛⎜⎝

ap
mn

bp
mn

⎞⎟⎠ . (11)

We can now find the coefficients of the scattered fields

As
mn =

1
h(1)n (k0a)

[︃
1
E0

2∑︂
q=1

∞∑︂
n′=0

2πGmn′q

∫ π

0
Ae

mnq (θk) ×

jn
(︁
kqa

)︁
Pm

n′ (cos θk) k2
q sin θkdθk − ap

mnjn (k0a)
]︃
,

Bs
mn =

1
h(1)n (k0a)

[︃
iωµ0
k0E0

2∑︂
q=1

∞∑︂
n′=0

2πGmn′q

∫ π

0
Ah

mnq (θk) ×

jn
(︁
kqa

)︁
Pm

n′ (cos θk) k2
q sin θk dθk − bp

mnjn (k0a)
]︃
.

(12)

It is sufficient to calculate the coefficients of the fields scattered by an x-polarized incident
beam in order to find the scattering coefficients of y-polarized and circularly polarized incident
beams. From Eqs. (6), (7), (10) and (12) we can reach the following relations

As
1n |

y = − iAs
1n |

x,
Bs

1n |
y = − iBs

1n |
x,

As
−1n |

y =iAs
−1n |

x,
Bs
−1n |

y =iBs
−1n |

x,
As

1n |
LCP =2As

1n |
x,

Bs
1n |

LCP =2Bs
1n |

x,
As
−1n |

LCP =Bs
−1n |

LCP = 0,
As

1n |
RCP =Bs

1n |
RCP = 0,

As
−1n |

RCP =2As
−1n |

x,
Bs
−1n |

RCP =2Bs
−1n |

x,

(13)

where the electric field of a RCP incident beam is Einc = E0 (x̂ − iŷ) ei(kz−ωt) and the electric field
of a LCP incident beam is Einc = E0 (x̂ + iŷ) ei(kz−ωt). Similarly, the coefficients of the fields
scattered by a beam propagating in the −z direction can be found from the coefficients of the
fields scattered by a beam propagating in the +z direction

As
±1n |−z = (−1)nAs

±1n |+z,

Bs
±1n |−z = (−1)n+1Bs

±1n |+z.
(14)

The fields scattered by a magneto-optical spherical particle conserve the polarization of the
incident beam which is nicely demonstrated in Eqs. (6) and 13. For a LCP incident beam, only
the coefficients with m = 1 are non-zero and as such only scattering coefficients with m = 1 have
non-trivial solutions. For RCP incident beam, only those with m = −1 are non-zero. For clarity,
from now on we will refer to As

mn |
x
+z and Bs

mn |
x
+z as As

mn and Bs
mn respectively.
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3. Scattering and extinction cross sections for magneto-optical particles

We define the scattering cross section as Csca =
Ws
Ii [32] where Ii =

ϵ0c |E0 |
2

2 is the incident
irradiance and

Ws =
1
2

Re
[︃∫ 2π

0

∫ π

0

(︂
EsθH∗

sφ−EsφH∗
sθ

)︂
r2 sin θdθdϕ

]︃
, (15)

is the rate at which energy is scattered across the surface of an imaginary sphere with arbitrary
radius r ≥ a. Esθ and Hsθ are the angular components of the scattered fields, Esφ and Hsφ are the
azimuthal components of these fields and H∗ is the complex conjugate of H.

The extinction cross section is defined as Cext =
Wext

Ii where

Wext =
1
2

Re
[︃ ∫ 2π

0

∫ π

0

(︃
EiφH∗

sθ−EiθH∗
sφ−EsθH∗

iφ+EsφH∗
iθ

)︃
r2 sin θdθdϕ

]︃
, (16)

is the rate at which energy is extinguished across the surface of the imaginary sphere. Following
the same procedure as in Ref. [32], we reach the expression for the scattering cross section

Csca =
4π
k2

0

∑︂
n

1
2n + 1

[︃
n2 (n + 1)2

(︂|︁|︁As
1n

|︁|︁2 + |︁|︁Bs
1n

|︁|︁2)︂ + |︁|︁As
−1n

|︁|︁2 + |︁|︁Bs
−1n

|︁|︁2 ]︃
. (17)

When the particle is isotropic, As
−1n = n(n+ 1)As

1n and Bs
−1n = −n(n+ 1)Bs

1n, and so we recover
the known expression for scattering cross section with Mie coefficients [32]. The scattering cross
section expression is valid for any polarization or direction of the incident beam, as long as the
scattering coefficients As

mn and Bs
mn were calculated for that polarization and direction. However,

as seen previously, the scattering cross section for circularly polarized incident beam can be
calculated from the scattering coefficients of an x-polarized incident beam as follows,

CLCP
sca =

8π
k2

0

∑︂
n

n2 (n + 1)2

2n + 1

(︂|︁|︁As
1n

|︁|︁2 + |︁|︁Bs
1n

|︁|︁2)︂ ,

CRCP
sca =

8π
k2

0

∑︂
n

1
2n + 1

(︂|︁|︁As
−1n

|︁|︁2 + |︁|︁Bs
−1n

|︁|︁2)︂ .
(18)

It can be seen that the scattering cross section of linearly-polarized incident beam is the
average of the scattering cross sections of RCP and LCP incident beams. Similarly, we obtain the
following expression for the extinction cross section

Cext = −
2π
k2

0

∑︂
n

Re
(︃
(−i)n+1 (︁n(n + 1)(As

1n + Bs
1n) + As

−1n − Bs
−1n

)︁ )︃
. (19)

When the incident beam is circularly polarized, the extinction cross section can be written as

CLCP
ext = −

4π
k2

0

∑︂
n

Re
(︃
(−i)n+1n(n + 1)(As

1n + Bs
1n)

)︃
,

CRCP
ext = −

4π
k2

0

∑︂
n

Re
(︃
(−i)n+1 (︁As

−1n − Bs
−1n

)︁ )︃
.

(20)

Up till here, we have presented the necessary theoretical formulation of the electromagnetic
fields of a plane wave scattered by a MO sphere. To gain more physical insight into the problem,
we will provide in this section some numerical solutions to the problem. As an example for
magneto-optical material we use n-doped InSb, a polar semiconductor, that when subjected to an
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external magnetic field becomes magneto-optical [33]. The dielectric permittivity tensor can be
considered as a Drude-like metal which, at lowest order in the magnetic field, is given by [33]

ϵ1 =ϵ∞

(︄
1 +

ω2
L − ω2

T

ω2
T − ω2 − iΓpω

+
ω2

p(ω + iΓf )

ω(ω2
c − (ω + iΓf )2)

)︄
,

ϵ2 =
iϵ∞ω2

pωc

ω[(ω + iΓf )2 − ω
2
c ]

,

ϵ3 =ϵ∞

(︄
1 +

ω2
L − ω2

T

ω2
T − ω2 − iΓpω

−
ω2

p

ω(ω + iΓf )

)︄
.

(21)

Here, ϵ∞ is the high-frequency dielectric constant,ωL is the longitudinal optical phonon frequency,
ωT is the transverse optical phonon frequency, ω2

p = npe2(m∗ϵ0ϵ∞) is the plasma frequency of
free carriers of density np and effective mass m∗, Γp is the phonon damping constant, and Γf is the
free carrier damping constant. In all the calculations below, we consider the particular case taken
from Ref. [34], where ϵ∞ = 15.7, ωL = 36.2 × 1012 Hz, ωT = 33.9 × 1012 Hz, ωp = 31.4 × 1012

Hz, Γp = 0.565× 1012 Hz, Γf = 3.39× 1012 Hz, and m∗ = 0.022me. In all the following examples
we use n-doped InSb particle of 10µm radius.

In Fig. 2 we plot the evolution of the scattering efficiency (Csca/a2) as the value of the external
magnetic field is increased, for linearly and circularly polarized incident beams.

Fig. 2. Scattering efficiency of 10µm radius InSb particle for various values of external
magnetic field and for (a) LCP, (b) RCP and (c) linearly polarized incident beams.

It can be seen that for an isotropic particle (Bext = 0.001T), the scattering efficiency is
independent of the polarization but the circular dichroism in MO scattering changes that.

Note how the scattering efficiency of linearly polarized incident beam is the average of the
scattering efficiency of RCP and LCP incident beams and for certain wavelengths (for example
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λ = 76µm with Bext = 1T) the particle is nearly transparent to one helicity and responsive to the
other. This resembles the proposed mechanism of maximally chiral particles with dual response
[35], but easily tuned with an external magnetic field bias.

In Fig. 3 we plot the contributions to the scattering efficiency from the scattering coefficients
of the magnetic and electric dipoles (As

±11 and Bs
±11) and quadrupoles (As

±12 and Bs
±12). We plot

the contributions for both an isotropic and a magneto-optical particle, where the incident beam is
x-polarized.

Fig. 3. Contribution to scattering efficiency (for x-polarized incident beam) from scattering
coefficients of the magnetic and electric dipoles (As

±11 and Bs
±11) and quadrupoles (As

±12
and Bs

±12) for InSb particle of radius 10µm when (a) Bext = 0 and when (b) Bext = 1T . In
the isotropic case (Bext = 0), the contributions of coefficients with m = 1 and m = −1 are
the same. While for the anisotropic case, the contributions are different due to scattering
circular dichroism.

In the isotropic case, the contributions to the scattering from coefficients with m = 1 (LCP) are
the same as the contributions from coefficients with m = −1 (RCP). However when an external
magnetic field is applied, the cases decouple and the contributions are different.

4. Scattering and extinction cross sections – with the dipole approximation

For comparison, we briefly derive here the expressions for the scattering and extinction cross
sections within the dipole approximation for a magneto-optical particle in free space. When an
external magnetic field is applied in the z-direction, the particle’s polarizability takes a tensor
form

α̂ =

⎛⎜⎜⎜⎜⎝
αxx −αxy 0

αxy αxx 0

0 0 αzz

⎞⎟⎟⎟⎟⎠
, (22)
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where the derivation of α̂ can be found in [17]. From Eqs. (17), 33 and 36, αxx and αxy can be
expressed in terms of the scattering coefficients Bs

±1n as follows

αxx =
2π
k3

0

(︁
2iBs

11 − iBs
−11

)︁
,

αxy = −
2π
k3

0

(︁
2Bs

11 + Bs
−11

)︁
.

(23)

We define the scattering cross section as [32]

Cdipole
sca =

∫ 2π

0

∫ π

0

|T|2

k2 |Ei |
2 sin θdθdϕ, (24)

where T = ik3

4πϵm
r̂ × (r̂ × p) is the vector scattering amplitude, p = ϵ0α̂E is the polarization and

|Ei |
2 is the amplitude of the incident field. After converting the polarization p to spherical

coordinates and integrating with respect to θ and ϕ, we reach the expression for the scattering
cross section

Cdipole
sca =

k4

6π

(︃ (︂
|αxx |

2 +
|︁|︁αxy

|︁|︁2)︂ (︂|︁|︁A0y
|︁|︁2 + |A0x |

2
)︂
− 4Im

(︁
α∗xxαxy

)︁
Im

(︂
A0xA∗

0y

)︂ )︃
. (25)

Similarly, defining the extinction cross section as Cdipole
ext = 4π

k2 |Ei |2
Re(E∗

i · Tθ=0) [32], we reach
the expression

Cdipole
ext = k(Im(αxx)(|A0x |

2 + |A0y |
2) + 2Re(αxy)Im(A0xA∗

0y)). (26)

The expressions for the extinction and scattering cross sections are the same as obtained by the
extended DDA method [36].

Fig. 4. Scattering efficiency for InSb particle of 10µm radius. At the limit Bext → 0, both
Mie scattering and the method used in this paper (MO scattering) give the same results.
When Bext = 1T , MO scattering results agree with results from Finite Element Method
(FEM).
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In Fig. 4, we plot the scattering efficiency for n-doped InSb particle of 10µm radius. We
calculated the scattering efficiency using three methods, MO scattering with the method used in
this paper (Eq. (17)), Mie scattering [32] and the dipole approximation (Eq. (25)). The external
magnetic field was set to 0.001T such that the particle is nearly isotropic. It can be seen from
Fig. 4 that when the external magnetic field is very small, Mie scattering and magneto-optical
scattering are in very good agreement. To further prove the validity of our method, we plot the
scattering efficiency for the same particle with an applied external magnetic field of 1T and we
compare our results with the Finite Element Method.

5. Optical forces on a magneto-optical particle

For a harmonic electromagnetic field, the time-averaged electromagnetic force on a dielectric
particle in a vacuum is given by

Fig. 5. Normalized force along ẑ generated by an x-polarized incident beam on an InSb
particle with radius 10µm when external magnetic field of (a) Bext=0 and (b) Bext=1T is
applied. Green line shows the force calculated with the Finite Element Method. Continuous
blue and red lines show the contribution to the force from the electric dipole, dashed lines
show the contribution from the magnetic dipoles and dotted lines show the contributions
from the interactions between the two. For LCP (blue) and RCP (red) polarizations.
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⟨F⟩ =
∮

dS · ⟨T ⟩, (27)

where the angle brackets stand for the time average, T is Maxwell’s stress tensor in spherical
coordinates, and the integral is taken over any surface enclosing the particle where the direction
of dS is r̂. The expression for the optical force is hence

⟨F⟩ = 1
2

Re
∮ [︃

(ϵ0EE∗ + µ0HH∗) · r̂ −
1
2
((ϵ0E · E∗ + µ0H · H∗)r̂)

]︃
dS, (28)

where the fields E and H are the sum of the scattered and the incident fields. The force is composed
of cross-interactions between the incident and scattered multipoles ⟨F⟩is and interactions between
different multipoles of different order and degree of the scattered field ⟨F⟩ss. There is no force
from the unperturbed incident field since it does not leave any momentum to the scatterer [37].

The Cartesian component of the optical force along the ẑ direction ⟨Fz⟩ can be expressed in
terms of the scattering coefficients and the incident field coefficients [15]. Using the following
relations between the spherical wave vectors

M(l)
−1n = −

1
n(n + 1)

M(l)∗
1n ,

N(l)
−1n = −

1
n(n + 1)

N(l)∗
1n ,

(29)

we can adapt the expressions in Ref. [15] to the MO case. As such the force exerted on a
magneto-optical particle by a linearly polarized beam is equal to ⟨Fz⟩is + ⟨Fz⟩ss where

⟨Fz⟩is =
πϵ0 |E0 |

2

k2
0

∞∑︂
n=1

[︃
2n2(n + 1)(n + 2)2

(2n + 1)(2n + 3)

Im
(︁
ax

1n(A
s∗
1(n+1) + Bs∗

1(n+1)) + ax∗
1(n+1)(A

s
1n + Bs

1n)
)︁

−
2n(n + 1)

2n + 1
Re

(︁
ax

1n(A
s∗
1n + Bs∗

1n)
)︁

+
2n(n + 2)

(n + 1)(2n + 1)(2n + 3)
Im

(︁
ax
−1n(A

s∗
−1(n+1) − Bs∗

−1(n+1)) + ax∗
−1(n+1)(A

s
−1n − Bs

−1n)
)︁

−
2

n(n + 1)(2n + 1)
Re

(︁
ax
−1n(A

s∗
−1n − Bs∗

−1n)
)︁ ]︃

,

⟨Fz⟩ss =
πϵ0 |E0 |

2

k2
0

∞∑︂
n=1

[︃
4n2(n + 1)(n + 2)2

(2n + 1)(2n + 3)
Im

(︁
Bs

1nBs∗
1(n+1) + As

1nAs∗
1(n+1)

)︁
−

4n(n + 1)
2n + 1

Re
(︁
As

1nBs∗
1n

)︁
+

4n(n + 2)
(n + 1)(2n + 1)(2n + 3)

Im
(︁
Bs
−1nBs∗

−1(n+1)+

As
−1nAs∗

−1(n+1)
)︁
+

4
n(n + 1)(2n + 1)

Re
(︁
As
−1nBs∗

−1n
)︁ ]︃

.

(30)

If the scattered field is described only by dipoles (both electric and magnetic), we reach a
simplified expression for the force

⟨Fz⟩ ≈
ϵ0π |E0 |

2

k2
0

Re
(︃
2As

11 + 2Bs
11 + As

−11 − Bs
−11 −

8
3

As
11Bs∗

11 +
2
3

As
−11Bs∗

−11

)︃
. (31)

It can be seen that the force is the sum of the radiation pressures for a pure electric and a pure
magnetic dipoles (Bs

11 and As
11 respectively) and an additional contribution from electric-magnetic
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dipolar interaction [23]. This interaction contribution to the radiation pressure could be negative
or positive depending on the signs of the electric and magnetic polarizabilities. We can express
the force in terms of extinction cross section (Eq. (19))

⟨Fz⟩ ≈ ϵ0 |E0 |
2Cext −

2ϵ0π |E0 |
2

3k2
0

Re(4As
11Bs∗

11 − As
−11Bs∗

−11). (32)

The force exerted by a circularly polarized beams can be calculated from the scattering
coefficients of an x-polarized incident beam

⟨Fz⟩
LCP ≈

ϵ0π |E0 |
2

k2
0

Re
(︃
8As

11 + 8Bs
11 −

32
3

As
11Bs∗

11

)︃
,

⟨Fz⟩
RCP ≈

ϵ0π |E0 |
2

k2
0

Re
(︃
4As

−11 − 4Bs
−11 +

8
3

As
−11Bs∗

−11

)︃
.

(33)

In Fig. 5 we plot the force in the z-direction exerted by an x-polarized incident beam when (a)
no external magnetic field is applied and when (b) an external magnetic field of 1T is applied.
Theses forces are normalized in the form ⟨Fz⟩/(ϵ0 |E0 |

2a2), where |E0 | stands for the modulus
of the incident field. The exact force was calculated by numerical integration of Eq. (28). We
also plot the force calculated with the Finite Element Methods which shows good agreement
with the method used in this paper. The approximated force is calculated with Eq. (31). The
approximation deviates from the exact result when higher poles are significant (see also Fig. 3).
In the isotropic case, the contributions to the force from the electric and magnetic dipoles are the
same for RCP and LCP beams.

For a focused incident beam with power of 1W, the force on the sphere is between 1.06nN and
3.18nN. In comparison, the gravitational force on the same particle is 0.23nN.

6. Force on a magneto-optical particle by non-interfering standing waves

A standing wave does not exert any radiation pressure on an isotropic particle. However, it
does exert force on a magneto-optical particle [17]. When the incident electromagnetic field
is a standing wave which consists of two circularly polarized counter-propagating beams with
the same helicity, i.e. Einc = E0e−iωt((eikz + e−ikz)x̂ + (ieikz − ie−ikz)ŷ), there is a MO extinction
force on the particle [17]. From Eq. (30) and using the relations in Eqs. (13) and 14 we reach an
approximated expression for the MO extinction force

⟨Fz⟩
MO
ext ≈

2ϵ0π |E0 |
2

k2
0

Re(4As
11 + 4Bs

11 − 2As
−11 + 2Bs

−11 −
16
3

As
11Bs∗

11 −
4
3

As
−11Bs∗

−11). (34)

It can be seen that the MO extinction force equals to the difference between the force induced
by a LCP beam and the force induced by a RCP beam, when both beams are propagating in the
same direction. The MO extinction force is proportional to the extinction circular dichroism (also
called the Faraday rotation angle [5]).

⟨Fz⟩
MO
ext ≈

ϵ0 |E0 |
2

2
(CLCP

ext − CRCP
ext ) −

8ϵ0π |E0 |
2

3k2
0

Re(4As
11Bs∗

11 + As
−1nBs∗

−1n). (35)

When the incident field is a standing wave which consists of two cross polarized counter
propagating beams (i.e. an x-polarized beam propagating in the +z direction and a y-polarized
beam propagating in the −z direction with total electric field of Einc = E0e−iωt(eikzx̂ + e−ikzŷ)),
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there is a MO gradient force exerted on the particle [17]

⟨Fz⟩
MO
grad ≈

2πϵ0 |E0 |
2

k2
0

Im
(︃
−2As

11 + 2Bs
11 + As

−11 + Bs
−11+

8
3

As
11Bs∗

11 +
2
3

As
−11Bs∗

−11

)︃
cos(2k0z).

(36)

For an isotropic particle As
−11 = 2As

11 and Bs
−11 = −2Bs

11; and so, in the absence of circular
dichroism ⟨Fz⟩

MO
ext = 0 and ⟨Fz⟩

MO
grad = 0, as expected. In Fig. 6 we plot the magneto-optical

extinction force generated by two circularly polarized incident beams with the same helicity,
propagating in opposite directions. In its peak (when incident wavelength is 70µm) and when
using focused incident beam with power of 1W, the magnitude of this force is about 20 times
stronger than the gravitational force on the same particle.

Fig. 6. Magneto-optical extinction force on a n-doped InSb particle of 10µm radius for
various external magnetic field values.

In Fig. 7 we plot the differential scattering cross section for the same particle when the
wavelength is 48µm. As can be seen in Fig. 6, at this wavelength, the force is positive when the
external magnetic field is negative and vice versa. Figure 7 demonstrates that the MO extinction
force is due to directional scattering. When the force is positive (Fig. 7(b)) there is no forward
scattering (we take forward to be in the +z direction) and when the force is negative (Fig. 7(c))
there is no backward scattering.

Note how the scattered field is almost completely circularly polarized even though the incident
field has an undefined spin.
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Fig. 7. Differential scattering cross section (dCsca(θ)/dΩ) for a InSb particle in an incident
field composed of two counter propagating circularly polarized beams with the same helicity.
Black line represents the total field, blue line represents the contribution from LCP field,
red line the contribution from RCP field and green line the contribution from interaction
between RCP and LCP. (a) Bext = 0, no MO extinction force. (b) Bext = −1T , MO extinction
force in the +z direction and (c) Bext = 1T , MO extinction force in the −z direction. The
particle is of 10µm radius and the wavelength of the incident beams is 48µm.

7. Numerical methods

The computation of the scattered field coefficients was carried out by two steps. In the first step,
the matrix elements in Eq. (11) were evaluated using numerical integration. In the second step
the linear equations were solved by computing the inverse of the matrix.

We used built in functions of the software Mathematica for the calculation of the spherical
Bessel and Hankel functions and for the associated Legendre functions. The numerical integration
was performed using an adaptive strategy which reaches the required precision and accuracy goals
of the integral by recursive bisection of the sub-region with the largest error estimate into two
halves and computes integral and error estimates for each half (see Mathematica manual for more
details, https://reference.wolfram.com/language/tutorial/NIntegrateIntegrationStrategies.html).
To speed-up the integration we used parallel computing, evaluating the integrals for the
matrix cells in parallel. The method for finding the solutions for the linear equations
is automatically chosen by the software Mathematica (for more information see manual
https://reference.wolfram.com/language/ref/LinearSolve.html).

8. Conclusions

By expansion of the scattered and incident fields with spherical vector wave functions, and
Fourier transform of the internal fields, we could use boundary conditions to resolve the scattering
of plane wave by a magneto-optical sphere.

We have derived expressions for the scattering and extinction cross sections as well as for the
forces exerted on a magneto-optical particle, expressed in terms of the scattering coefficients.
We showed that when the external magnetic field is zero, those expressions coincide with the

https://reference.wolfram.com/language/tutorial/NIntegrateIntegrationStrategies.html
https://reference.wolfram.com/language/ref/LinearSolve.html
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known expressions that use Mie scattering coefficients for isotropic particles. The method we
used helps understand intuitively the circular dichroism in magneto-optical scattering and forces.

In the numerical calculations, we showed that the magneto-optical extinction force results
from directional scattering. This radiation forces, based on the magneto-optical effect, might
open routes to applications in the fields of optical manipulation, sensors, and enhancement of
circular dichroism spectroscopy.

A. Coefficients of internal field

Following are the expressions for the coefficients Ae,h
±1nq, Be,h

±1nq and Ce,h
±1nq which are used in

Eqs. (9)–(12). Their derivation can be found in Ref. [19].

Ae,h
1nq = Ae1,h1

1nq + Ae2,h2
1nq (37)

Be,h
1nq = Be1,h1

1nq + Be2,h2
1nq (38)

Ce,h
1nq = Ce1,h1

1nq + Ce2,h2
1nq (39)

where

Ae1
1nq =in

2n + 1
2n2(n + 1)2

∆1
∆

(︂
n(n + 1)P0

n − P2
n

)︂
,

Ae2
1nq =in+1 2n + 1

2n2(n + 1)2
[︁∆2
∆

(︂
n(n + 1)P0

n + P2
n

)︂
+ 2P1

n
]︁
,

Be1
1nq =

in

2n2(n + 1)2
∆1
∆

[︁
n(n + 1)2P0

n−1 + (n + 1)P2
n−1 + n2(n + 1)P0

n+1 + nP2
n+1

]︁
,

Be2
1nq =

in

2n2(n + 1)2
[︁ i∆2
∆

(n(n + 1)2P0
n−1 − (n + 1)P2

n−1 + n2(n + 1)P0
n+1 − nP2

n+1
]︁

+ 2n2iP1
n+1 − 2(n + 1)2iP1

n−1),

Ce1
1nq =

in

2kqn(n + 1)
∆1
∆

[︁
n(n + 1)P0

n−1 + P2
n−1 − n(n + 1)P0

n+1 − P2
n+1

]︁
,

Ce2
1nq =

in

kq2n(n + 1)
[︁ i∆2
∆

(n(n + 1)P0
n−1 − P2

n−1 − n(n + 1)P0
n+1 + P2

n+1)

− 2(2n + 1) cos θkiP1
n
]︁
,

Ah1
1nq =in+1 kq

ωµ0

2n + 1
2n2(n + 1)2

[︁
− cos θk

∆1
∆
(n(n + 1)P0

n + P2
n) + 2P1

n sin θk
]︁
,

Ah2
1nq =in+1 kq

ωµ0

2n + 1
2n2(n + 1)2

[︁
− cos θk

i∆2
∆
+ i sin θk)(n(n + 1)P0

n − P2
n
]︁
,

Bh1
1nq =

kq

ωµ0

in+1

2n2(n + 1)2
∆1
∆

[︁
− cos θk

(︁
n(n + 1)2P0

n−1 − (n + 1)P2
n−1 + n2(n + 1)P0

n+1

− nP2
n+1

)︁
+ 2 sin θk

(︁
n2P1

n+1 − (n + 1)2P1
n−1

)︁ ]︁
,

Bh2
1nq =

kq

ωµ0

in+1

2n2(n + 1)2

(︃
−i∆2
∆

cos θk + i sin θk
)︃ [︁

n(n + 1)2P0
n−1 + (n + 1)P2

n−1

+ n2(n + 1)P0
n+1 + nP2

n+1
]︁
,

Ch1
1nq =

in+1

2ωµ0n(n + 1)
∆1
∆

[︁
− cos θk(n(n + 1)(P0

n−1 − P0
n+1) − P2

n−1 + P2
n+1)

− 2(2n + 1) sin θk cos θkP1
n
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,

Ch2
1nq =

in+1

ωµ02n(n + 1)

(︃
−i∆2
∆

cos θk + i sin θk
)︃ (︂

n(n + 1)(P0
n−1 − P0

n+1) + P2
n−1 − P2

n+1

)︂
.

(40)

Pm
n is the associated Legendre function with the parameter cos(θk), ∆1 = a2k2

q sin θk cos θk,
∆2 = (k2

q − a1)k2
q sin θk cos θk and ∆ = k4

q cos2 θk − a1k2
q(1 + cos2 θk) + (a2

1 + a2
2).
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The coefficients for m = −1 can be derived as follows

Ae,h
−1nq =n(n + 1)(−Ae1,h1

1nq + Ae2,h2
1nq ),

Be,h
−1nq =n(n + 1)(Be1,h1

1nq − Be2,h2
1nq ),

Ce,h
−1nq =n(n + 1)(Ce1,h1

1nq − Ce2,h2
1nq ).

(41)
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