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Improving robustness in Q-matrix validation using an iterative and dynamic procedure 

Abstract 

In the context of cognitive diagnosis models, a Q-matrix reflects the correspondence between 

attributes and items. The Q-matrix construction process is typically subjective in nature, 

which may lead to misspecifications. All this can negatively affect the attribute classification 

accuracy. In response, several methods of empirical Q-matrix validation have been developed. 

The general discrimination index (GDI) method has some relevant advantages, such as the 

possibility of being applied to several CDMs. However, the estimation of the GDI relies on 

the estimation of the latent groups sizes and success probabilities, which is made with the 

original (possibly misspecified) Q-matrix. This can be a problem, especially in those 

situations in which there is a great uncertainty about the Q-matrix specification. To address 

this, the present study investigates the iterative application of the GDI method where only one 

item is modified at each step of the iterative procedure, and the required cutoff is updated 

considering the new parameter estimates. A simulation study was conducted to test the 

performance of the new procedure. Results showed that the performance of the GDI method 

improved when the application was iterative at the item level and an appropriate cutoff point 

was used. This was most noticeable when the original Q-matrix misspecification rate was 

high, where the proposed procedure performed better 96.5% of the times. The results are 

illustrated using Tatsuoka's fraction-subtraction dataset. 

Key words: CDM, G-DINA, Q-matrix, validation, GDI. 
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Improving robustness in Q-matrix validation using an iterative and dynamic procedure 

In the context of cognitive diagnosis assessment, cognitive diagnosis models (CDMs) 

are latent class multidimensional statistical models that classify examinees as masters or non-

masters of different skills. Those skills are often referred to as attributes. Several CDMs have 

been developed in the last years, which can be categorized as either reduced or general 

models. The reduced models are the most specific ones; they provide low generalization but 

high parsimony. The deterministic input noise and gate (DINA; Haertel, 1984; Junker & 

Sijtsima, 2001), the deterministic input noise or gate (DINO; Templin & Henson, 2006), and 

the noisy input, deterministic output and gate (NIDA; Maris, 1999; Junker & Sijtsima, 2001) 

are some of the most widely known reduced models. Reduced models are usually preferred 

because of the less number of parameter estimates and ease of interpretation. However, they 

make strong assumptions about the data and model fit is therefore compromised. Reduced 

models are nested in the general models, which allow for greater flexibility, but with more 

demanding requirements (e.g., larger sample sizes). The general diagnosis model (GDM; von 

Davier, 2005) and the generalized DINA model (G-DINA; de la Torre, 2011) are two 

examples of general models. These models are preferred when there is not enough evidence to 

assume a specific response process underlying the item responses. 

The estimation of a CDM typically requires two inputs: the item responses of the 

examinees and a Q-matrix (Tatsuoka, 1983). The Q-matrix is a J (number of items) × K 

(number of attributes) matrix that reflects which attributes are measured by each item. Thus, 

each item will have a q-vector (qj), in which each q-entry (qjk) will adopt a value of 1 or 0 

denoting if attribute k is relevant for correctly answering item j or not, respectively. 

The original Q-matrix construction process should have a theoretical foundation, and 

thus it is usually performed after a literature review, by analyzing examinees’ reports, or by 

domain experts. These processes are subjective in nature and can lead to some 
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misspecifications in the Q-matrix. These Q-matrix misspecifications negatively affect the 

estimation of the model parameters and the accuracy of the attribute profile classification 

(Gao, Miller & Liu, 2017; Rupp & Templin, 2008). For this reason, in the last years, several 

empirically-based methods of Q-matrix validation have been developed with the aim of 

detecting and correcting misspecified entries in a Q-matrix. 

The present paper will focus on the general discrimination index (GDI) method, also 

known as the general method of Q-matrix validation, developed for the G-DINA framework 

by de la Torre and Chiu (2016). The structure of the paper will be the following. First, the G-

DINA model will be briefly introduced, followed by a description of the GDI method and its 

advantages and limitations. Second, an item-level iterative procedure for the GDI method is 

proposed and described. Third, the performance of the iterative procedure is compared to that 

of the GDI method by means of Monte Carlo simulation. Fourth, a real data illustration is 

conducted. Finally, a discussion of the results is provided, as well as future research insights 

and comments on the advantages and limitations of the proposed procedure. 

Review of the G-DINA model 

The G-DINA model (de la Torre, 2011) is a general, saturated CDM that subsumes 

most of the reduced models (e.g., DINA, DINO, A-CDM). In its original formulation, the 

probability of success can be decomposed into the sum of the effects due to the presence of 

specific attributes and their interactions: 

𝑃(𝜶𝑙𝑗
∗ ) = 𝛿𝑗0 + ∑ 𝛿𝑗𝑘𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

+ ∑ ∑ 𝛿𝑗𝑘𝑘′𝛼𝑙𝑘𝛼𝑙𝑘′  … + 𝛿12…𝐾𝑗
∗ ∏ 𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

,

𝐾𝑗
∗−1

𝑘=1

𝐾𝑗
∗

𝑘′=𝑘+1

 (1) 

where 𝜶𝑙𝑗
∗  is the reduced attribute vector whose elements are relevant for solving the item j; 

𝛿𝑗0 is the intercept of item j; 𝛿𝑗𝑘 is the main effect due to 𝛼𝑘; 𝛿𝑗𝑘𝑘′ is the interaction effect due 

to 𝛼𝑘 and 𝛼𝑘′; and 𝛿12…𝐾𝑗
∗ is the interaction effect due to 𝛼1, … , 𝛼𝐾𝑗

∗, where 𝐾𝑗
∗ is the number

of attributes specified for item j. 
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The GDI method of empirical Q-matrix validation 

The GDI method of empirical Q-matrix validation (de la Torre & Chiu, 2016) is a 

generalization of the δ-method (de la Torre, 2008) that was developed for the DINA model. 

The GDI method has been shown to perform well under both reduced and general CDMs at 

detecting and modifying misspecifications in the Q-matrix. Apart from its great flexibility and 

generalization, this method is included in the GDINA package (Ma & de la Torre, 2018) of the 

R software (R Core Team, 2018) with a low computational cost. This makes it one of the 

most accessible and easily applicable methods. 

This validation method relies on the general discrimination index (GDI; usually 

represented as 𝜍𝑗
2), which is the variance of the probabilities of success of the different latent

groups that are possible for an item weighted by the posterior distribution of those groups: 

𝜍𝑗
2 = ∑ 𝜔(𝜶𝑙𝑗

∗ )[𝑃(𝜶𝑙𝑗
∗ ) − 𝑃̅(𝜶𝑙𝑗

∗ )]
2

2
𝐾𝑗

∗

𝑙=1

(2) 

where 2𝐾𝑗
∗

is the number of possible latent groups for item j, 𝜔(𝜶𝑙𝑗
∗ ) is the posterior

probability of examinees in group 𝜶𝑙𝑗
∗ , 𝑃(𝜶𝑙𝑗

∗ ) is the probability of success for examinees in

this group, and 𝑃̅(𝜶𝑙𝑗
∗ ) is the weighted mean probability of success across all the 2𝐾𝑗

∗

 possible 

latent groups for item j. 

The method is based on the rationale that the correctly specified q-vector will lead to 

the highest possible item discrimination value; that is, the correct q-vector for an item will be 

the one that maximizes 𝜍𝑗
2. When comparing nested q-vectors, the specification of more 

attributes in the q-vector will lead to a higher 𝜍𝑗
2, and thus a criterion needs to be included so 

that the suggested q-vector for all items is not the one containing all the attributes (𝜍
𝐪𝑗

1:𝐾
2 ). De

la Torre and Chiu (2016) defined the proportion of variance accounted for (PVAF), which is 

computed as PVAF𝑗𝑐 = 𝜍𝒒𝒋
𝒄

2 /𝜍
𝐪𝑗

1:𝐾
2 , where c reflects each of the 2𝐾∗

− 1 possible q-vectors
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(note that the zero q-vector, with no attributes specified, is not plausible). The inclusion of 

spurious attributes is prevented by determining a cutoff point (ϵ, also referred as EPS for 

epsilon), so the suggested q-vector would be the simplest one (i.e., the one with less attributes 

specified) among those that fulfill PVAF > EPS. 

Despite the good performance of the validation method, the original study was not 

without limitations, as de la Torre and Chiu (2016) noted. For instance, the authors did not 

justify the election criterion for the value of the EPS, which was set to 0.95. This aspect of the 

method was examined by Nájera, Sorrel, and Abad (2019), who found that the GDI method 

showed a good performance under a wide set of conditions, given that an optimal EPS for 

each specific condition was used. Specifically, they provided a predictive formula for the 

optimal EPS as a function of the average item quality (IQ), the sample size (N), and the 

number of items (J): 

𝐸𝑃𝑆 = inv. logit(−0.405 + 2.867 · 𝐼𝑄 + 4.840 · 10−4 · 𝑁 − 3.316 · 10−3 · 𝐽) , (3) 

where inv.logit(·) represents the inverse function of the logit function, computed as 

exp(x)/(1 + exp(x)). IQ is computed as the average item quality (𝐼𝑄 =
1

𝐽
∑ 𝐼𝑄𝑗

𝐽
𝑗=1 ), where 

IQj is the difference in the probability of success between the latent group that possesses all 

the relevant attributes specified in item j, 𝑃𝑗(𝟏), and the one with none of them, 𝑃𝑗(𝟎). 

There is another aspect of the GDI method that deserves specific attention. When 

computing 𝜍𝑗
2, the method assumes that the Q-matrix is correctly specified: 𝜍𝑗

2 relies on the

estimation of the latent group sizes and their success probabilities, which are estimated using 

the provisional (misspecified) Q-matrix. As the authors point out, “it would be difficult, if not 

impossible, for the same experts to correctly specify all the entries of the Q-matrix, 

particularly when the test is long. Consequently, (b) [this assumption] is expected to always 

be violated” (de la Torre & Chiu, 2016, p. 258). The authors state that the violation of the 
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assumption “does not automatically invalidate the viability of the proposed method. […] the 

proposed method appears to be robust when the misspecifications in the Q-matrix is 

controlled at a reasonable rate, which justifies the usefulness of the method in practice” (de la 

Torre & Chiu, 2016, p. 258). According to the favorable results found by them with 5% of 

misspecifications, and with 10% of misspecifications by Nájera et al. (2019), the method 

seems indeed to be robust when the misspecification rate is low.  

However, relying on the experts to make few mistakes while specifying the Q-matrix 

is another assumption that may not always be realistic or, at least, will remain uncertain. It is 

reasonable to think that different knowledge domains may vary in terms of Q-matrix 

specification difficulty. For instance, the Q-matrix of a scholastic exam of mathematical 

operations seems easier to specify (e.g., “8 + 3 × 2”, would be easily detected as measuring, 

for example, “sum” and “multiplication”, but not “subtraction” or “division”) than the Q-

matrix of a reading comprehension test, a clinical diagnostic test, or a test assessing students’ 

competencies (e.g., Sorrel et al. [2016] reported lower inter-rater reliability for more abstract 

attributes like “Study attitudes” compared to attributes easier to objectivize like “Helping 

others”). In fact, the Q-matrix of the popular fraction subtraction data set (Tatsuoka, 1990), 

which does not belong to a particularly ambiguous knowledge domain, is still controversial 

(Kang, Yang, & Zeng, 2019). Thus, the degree of uncertainty involved in the process could 

reasonably be higher than what has been assumed, especially when the response processes of 

the knowledge domain are somehow subjectively defined. Some authors have taken this point 

under consideration, and have used in their simulation studies misspecification rates up to 

40% (e.g., Wang et al., 2018). In light of the above, it is expected that the GDI method 

performance will be compromised if the misspecification rate is reasonably high, since the 

noise entered by the large number of misspecified q-entries can disrupt the calculation of 𝜍𝑗
2.

Iterative Q-matrix validation methods 
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One way of mitigating the pernicious effects that the violation of the true Q-matrix 

assumption may provoke is to apply the validation method with an iterative procedure. Some 

validation methods follow this rationale. The iterative modified sequential search algorithm 

(IMSSA; Terzi & de la Torre, 2018a) and the iterative general discrimination index method 

(iGDI; Terzi, 2017; Terzi & de la Torre, 2018b) are two validation methods in which all 

proposed q-vector modifications are introduced in the Q-matrix in each iteration. In this 

sense, they can be referred to as test-level iterative methods. On the other hand, the Q-matrix 

refinement method (QRM; Chiu, 2013) and the data-driven approach proposed by Liu, Xu, 

and Ying (2012) update the Q-matrix after each q-vector modification; that is, they modify 

only one item in each iteration. Thus, they can be referred to as an item-level iterative method. 

Even though test-level iterative methods can improve the performance of non-iterative 

methods, it may be more precise to apply the iterative procedure at the item level. At the test-

level iteration, the first step will introduce several modifications based on the original and 

presumably misspecified Q-matrix, and thus the probability of introducing wrong 

modifications will be high. At the item-level, only the first item will be modified based on the 

information of the original Q-matrix, while the rest of the items will be modified based on 

progressively better specified Q-matrices. In the context of the GDI method, this will result in 

a better recovery of 𝜍𝑗
2 and a more precisely predicted EPS as the iterations take place.

In light of the above, an optimal method should take into consideration the following 

desired characteristics: first, it should be conducted iteratively; second, the iterations should 

be applied at the item level; third, if a cutoff point is required, it should be selected by 

empirical means and updated within each iteration; fourth, it should be applicable to both 

reduced and general models. Based on this, it is expected that an item-level iterative 

procedure based on the GDI method, applied with an optimal EPS that gets updated after each 
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iteration, will lead to promising results. The steps of the iterative procedure algorithm 

evaluated in this paper are the following: 

Step 1: Estimate the CDM according to the item responses and the provisional Q-

matrix (Q). 

Step 2: Select the EPS value. 

Step 3: Compute all items’ 𝜍𝑗
2 (and PVAF) for each possible q-vector specification and 

define, for each item, the set of appropriate q-vector(s), which fulfill(s) PVAF > EPS. 

Step 4: Select, for each item, the simplest element(s) among all the appropriate q-

vectors. 

4.1: If there is only one element, then it is defined as the suggested q-vector. 

4.2: If there are more than one element, the one with the highest PVAF is defined 

as the suggested q-vector. 

Step 5: Define, for each item, PVAF𝑗
0 as the PVAF of the provisional q-vector

specified in Q, and PVAF𝑗
∗ as the PVAF of the suggested q-vector.

Step 6: Calculate all items’ ∆PVAF𝑗, defined as ∆PVAF𝑗 = |PVAF𝑗
∗ − PVAF𝑗

0|.

Step 7: Define the hit item as the item with the highest ∆PVAF𝑗. 

Step 8: Update Q by changing the provisional q-vector by the suggested q-vector of 

the hit item. 

Step 9: Iterate over Steps 1 to 8 until ∑ ∆PVAF𝑗
𝐽
𝑗=1 = 0.

Step 2 and Steps 6 and 7 are of special relevance for the iterative procedure. Step 2 

dictates which q-vectors are going to become appropriate q-vectors in Step 3 and, 

consequently, which q-vector is going to become the suggested q-vector in Step 4. If the EPS 

value is improperly chosen, the suggested q-vectors will be more likely to be incorrect. Thus, 

each iteration will probably increase the distance between the provisional Q-matrix and the 

true Q-matrix in a sort of “snowball” effect (i.e., errors will lead to more errors), and the 𝜍𝑗
2

will be worse specified. Hence, it is very important that the EPS election criterion is not 

arbitrary. The predictive formula provided by Nájera et al. (2019; see Equation 3) showed a 

good performance under a wide range of conditions. Furthermore, it can be easily 
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implemented in the iterative procedure and entails an additional benefit: as the prediction 

formula considers the average item quality (IQ), which is computed after the model is 

estimated, the EPS in Step 2 can be updated after each iteration. Step 7 is also very important, 

because the election of the hit item can be neither be at random. Especially in the first 

iterations, in which the Q-matrix will presumably still have several misspecifications, the 𝜍𝑗
2

is going to be calculated with some error. Steps 6 and 7 are used to select, for each iteration, 

the q-vector that is more likely to be misspecified. These steps should optimize the 

performance of the iterative procedure by increasing the probabilities of properly modifying a 

q-vector in each iteration. The iterations would stop when all the provisional q-vectors and

suggested q-vectors are equal. 

Simulation study 

A simulation study was conducted to test if the proposed iterative procedure for the 

GDI method provides better results than the standard (non-iterative) procedure. Two 

hypotheses were stated: a) the iterative procedure will show a better performance than the 

standard procedure, especially when the misspecification rate is high, b) this will be true as 

long as the EPS value is properly chosen, based on the predictive formula. The performance 

of the iterative procedure based on an inappropriate EPS value is expected to be worse than 

that of the standard procedure, due to the “snowball” effect previously described. 

Method 

Design. The examinees’ responses were simulated under the G-DINA model. The 

number of attributes was fixed at 𝐾 = 5, and the underlying distribution of examinees’ 

attribute patterns was uniform. The number of examinees was fixed at 𝑁 = 1000, the average 

item quality at 𝐼𝑄 = 0.6, and the number of items at 𝐽 = 30. Those values are considered to 

be medium levels of each factor in applied contexts (Nájera et al., 2019). Table 1 shows the 

Q-matrix used to simulate the examinees’ responses (Qtrue). The Q-matrix was used in the
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paper of de la Torre and Chiu (2016). It contains the same number of one-, two- and three-

attribute items, and each attribute is measured by the same number of items. Its structure 

satisfies the required conditions to be a complete (Köhn & Chiu, 2017, 2018) and identifiable 

(Gu & Xu, in press a, in press b) Q-matrix. Three variables were studied: the proportion of 

misspecified q-entries or misspecification rate (MR = 0.1, 0.2, 0.3, 0.4), the application 

procedure for the GDI method (iterative, standard), and the EPS value (predicted EPS, 0.95). 

Thus, a total of 16 conditions resulted after combining the different factor levels (4 

misspecification rates × 2 GDI application procedures × 2 EPS values). 

Table 1 

Q-Matrix for the Simulated Data

Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5 

1 1 0 0 0 0 16 0 1 0 1 0 

2 0 1 0 0 0 17 0 1 0 0 1 

3 0 0 1 0 0 18 0 0 1 1 0 

4 0 0 0 1 0 19 0 0 1 0 1 

5 0 0 0 0 1 20 0 0 0 1 1 

6 1 0 0 0 0 21 1 1 1 0 0 

7 0 1 0 0 0 22 1 1 0 1 0 

8 0 0 1 0 0 23 1 1 0 0 1 

9 0 0 0 1 0 24 1 0 1 1 0 

10 0 0 0 0 1 25 1 0 1 0 1 

11 1 1 0 0 0 26 1 0 0 1 1 

12 1 0 1 0 0 27 0 1 1 1 0 

13 1 0 0 1 0 28 0 1 1 0 1 

14 1 0 0 0 1 29 0 1 0 1 1 

15 0 1 1 0 0 30 0 0 1 1 1 

Data generation. The probabilities of success of the latent groups with all the relevant 

attributes, 𝑃𝑗(𝟏), and the probabilities of success of the latent groups with none of them, 

𝑃𝑗(𝟎), were manipulated to generate the item’s quality (IQj). Specifically, 𝑃𝑗(𝟏) =

𝑈(0.7, 0.9) and 𝑃𝑗(𝟎) = 𝑈(0.1, 0.3), which results in average values of 𝑃̅(𝟏) ≅ 0.8 and 

𝑃̅(𝟎) ≅ 0.2, giving an average item quality of 𝐼𝑄 = 𝑃̅(𝟏) − 𝑃̅(𝟎) ≅ 0.6. For the other latent 

groups (those with some of the relevant attributes), the probabilities of success were simulated 

so that they increased as the number of mastered attributes grew (i.e., monotonicity 
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constraint). Thus, a latent group that masters more attributes than other will always have 

higher probabilities of success. 

Misspecifications in the Q-matrix were introduced randomly with two constraints: 

first, all items measured at least one attribute, and second, the first five items were not 

modified. This latter constraint ensured the completeness of the Q-matrix, by assuring that 

each attribute had, at least, one single-attribute item measuring it (Köhn & Chiu, 2017, 2018). 

A total of 200 data sets were generated for each of the conditions. For each data set, 

the IQj were generated according to the aforementioned uniform distribution, and a different 

misspecified Q-matrix (Qmiss) was produced. All simulations and CDM analyses were 

performed in R software, using the GDINA package. 

Dependent variables. Two different types of dependent variables were used to assess 

the performance of the validation method. First, the Q-matrix recovery rate (QRR) was used 

to measure the quality of the Q-matrix specification recovery. It reflects the number of q-

entries that the method correctly specifies divided by the total number of q-entries (J × K). 

Second, the proportion of correctly classified attributes (PCA) and the proportion of correctly 

classified vectors (PCV) were used to reflect the accuracy of attribute profile classification 

(Ma & de la Torre, 2018). The PCA measures the proportion of entries (i.e., attributes) 

correctly classified in the N × K matrix of attribute profile classification, while the PCV 

reflects the proportion of examinees’ attribute profiles that are completely correctly classified 

(i.e., correctly classified rows in the N × K matrix of attribute classifications). Please note that 

the PCV is a stricter measure than the PCA, and will usually obtain lower values. These 

accuracy measures are of high relevance, since they provide information about the impact of 

the Q-matrix specification quality in the final output of a CDM. 

When applying a Q-matrix validation method, the suggested Q-matrix might show 

some attributes positions (i.e., columns) interchanged. The possibility of having interchanged 
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attributes increases as the misspecification rate is higher. Thus, for each replica, the suggested 

Q-matrix was compared with Qtrue by checking the similarity between both matrices’

columns. Specifically, the mean absolute difference between the columns was conducted, and 

the suggested Q-matrix’s attribute columns were presented in the order that minimized the 

difference with the corresponding Qtrue attribute columns. This process is akin to a domain 

expert labelling the factors when interpreting a factor analysis, where the order of the factors 

is arbitrary. In the present case, the domain expert will evaluate whether the attributes are 

correctly labelled. 

Results 

Before describing the main results, a brief comment about the iterative process (when 

using the predicted EPS) is provided. No convergence problems were registered during the 

simulation study. Table 2 shows the average number of iterations and number of items 

modified (with one or more modifications in their q-vector) for each misspecification rate 

condition. As expected, both measures increased as the misspecification rate did. It is 

important to note that the number of iterations is usually higher than the number of items 

modified, given that one item can be modified several times during the iteration procedure. 

One item can be more properly modified at a later moment of the procedure, when the rest of 

the Q-matrix is better specified. On the other hand, information about the average IQ and EPS 

is given in Table 3. As expected, the initial IQ (i.e., the one estimated with the misspecified 

Q-matrix) rapidly decreased as the misspecification rate increased. However, after the

iterative procedure was completed, the final IQ was adequately recovered, even for the most 

unfavorable condition (i.e., MR = 0.4). This had an impact on the predicted EPS, which also 

showed an increase from the original misspecified Q-matrix to the final validated Q-matrix. 

In the following results, the performance of the standard and iterative procedures, as 

well as their interaction with the predicted EPS and the EPS of 0.95, will be described. Tables 
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4, 5, and 6 show the results for the different dependent variables and conditions of the 

simulation study in conjunction with the results obtained with the true Q-matrix and the 

misspecified Q-matrices, which serve as upper and lower baselines, respectively. The type of 

misspecification error (under- or over-specification) is disaggregated in Table 4. Plots for the 

distribution of the dependent variables across the 200 replicates per misspecification rate 

condition are provided in the Online Appendix. The different tables presented here include the 

median of the 200 replicates due to the existence of asymmetry in the results distributions. 

Results regarding the QRR, the PCA, and the PCV were consistent and showed similar 

patterns. Thus, unless otherwise indicated, results for the three measures are described 

together. 

Table 2 

Average Number of Iterations and of Modified Items 

Number of iterations Number of items modified* 

MR Mean SD Min Max Mean SD Min Max 

0.1 16.9 2.4 10 24 14.6 2.1 9 20 

0.2 23.2 2.8 17 31 19.4 1.9 14 23 

0.3 29.4 5.0 20 53 22.4 1.8 18 27 

0.4 35.3 5.3 26 62 24.2 1.6 19 28 

Note. * = with one or more modifications in their q-vector. MR = misspecification rate. This 

information refers to the iterative procedure in conjunction with the predicted EPS. 

Table 3 

Average Item Quality (IQ) and Used EPS 

IQ EPS 

MR Initial Final Initial Final 

0.1 0.545 0.574 0.824 0.836 

0.2 0.481 0.567 0.795 0.833 

0.3 0.421 0.549 0.765 0.825 

0.4 0.369 0.531 0.738 0.817 

Note. MR = misspecification rate. Initial IQ and EPS values are obtained with the original 

misspecified Q-matrix. Final IQ and EPS values are obtained with the validated Q-matrix 

after the iterative procedure (using the predicted EPS) is completed. Items were simulated 

with an IQ of 0.60. 

As can be seen from Tables 4 to 6, the iterative implementation used in conjunction 

with the predicted EPS always led to the best results. The Q-matrix recovery was very close 

to one when the initial misspecification rate was low (QRR = 0.940), and was still high even 
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when the initial misspecification rate was high (QRR = 0.893). This procedure achieved the 

highest QRR among the four presented procedures in most of the replicates, especially as the 

misspecification rate increased. Thus, the iterative-predicted EPS implementation obtained the 

highest QRR 62% of the times (MR = 0.1), 85.5% (MR = 0.2), 93.5% (MR = 0.3), and 96.5% 

(MR = 0.4). It is important to note that, in those replicas in which it did not obtained the 

highest QRR, it still obtained a QRR close to the highest, with a maximum loss of 0.07 

through all misspecification rates. On the other hand, it obtained a QRR up to 0.32 higher 

than the next best procedure, which reflects the better overall Q-matrix recovery shown in 

Table 4. According to the GDI method rationale, a higher EPS tends to suggest more complex 

q-vectors (i.e., with more attributes specified), and vice versa; thus, in Table 4 it can be seen

that the EPS of 0.95 produced more over-specification errors, while the predicted EPS 

produced more under-specifications. The accuracy measures obtained with the iterative-

predicted EPS procedure were generally close to the upper limit regardless of the 

misspecification rate. This was especially true for PCA. The misspecification rate affected 

more severely the rest of the procedures. For example, the range of the median PCA values 

reported in Table 5 for the standard and iterative implementations used in conjunction with 

the predicted EPS were 0.085 and 0.012, respectively. 

Table 4 

Medians for the Q-Matrix Recovery Rate (QRR) Results 

Predicted EPS EPS = 0.95 

MR Qtrue Qmiss std ite std ite 

0.1 1 
0.900 

(6, 9) 
0.940 
(8, 1) 

0.940 
(8, 0) 

0.887 

(1, 16) 

0.833 

(1, 24) 

0.2 1 
0.800 

(13, 17) 

0.907 

(11, 3) 
0.933 
(9, 1) 

0.827 

(2, 24.5) 

0.780 

(1, 32.5) 

0.3 1 
0.700 

(19, 26) 

0.817 

(17, 11) 
0.913 
(11, 2) 

0.720 

(6, 36) 

0.687 

(1, 46) 

0.4 1 
0.600 

(26, 34) 

0.740 

(21, 18) 
0.893 

(13, 3) 

0.627 

(8.5, 47) 

0.610 

(0.5, 58) 

Note. MR = misspecification rate; Qtrue = true Q-matrix; Qmiss = misspecified Q-matrix; std = 

standard procedure; ite = iterative procedure. A grayscale has been used for interpretation 

purposes. Highest QRRs among the validation methods for each MR are shown in bold. 
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Median values for the number of under- and over-specified q-entries, respectively, are shown 

in brackets. Q-matrices are formed by 150 q-entries. 

Table 5 

Medians for the Proportion of Correctly Classified Attributes (PCA) Results 

Predicted EPS EPS = 0.95 

MR Qtrue Qmiss std ite std ite 

0.1 0.910 0.895 0.907 0.907 0.900 0.894 

0.2 0.911 0.867 0.901 0.906 0.894 0.889 

0.3 0.911 0.813 0.862 0.903 0.868 0.880 

0.4 0.910 0.764 0.822 0.895 0.807 0.864 

Note. MR = misspecification rate; Qtrue = true Q-matrix; Qmiss = misspecified Q-matrix; std = 

standard procedure; ite = iterative procedure. A grayscale has been used for interpretation 

purposes. Highest PCAs among the validation methods for each MR are shown in bold. 

Table 6 

Medians for the Proportion of Correctly Classified Vectors (PCV) Results 

Predicted EPS EPS = 0.95 

MR Qtrue Qmiss std ite std ite 

0.1 0.637 0.583 0.625 0.625 0.603 0.581 

0.2 0.642 0.484 0.604 0.623 0.586 0.560 

0.3 0.643 0.325 0.457 0.613 0.492 0.531 

0.4 0.639 0.227 0.337 0.579 0.335 0.483 

Note. MR = misspecification rate; Qtrue = true Q-matrix; Qmiss = misspecified Q-matrix; std = 

standard procedure; ite = iterative procedure. A grayscale has been used for interpretation 

purposes. Highest PCVs among the validation methods for each MR are shown in bold. 

The following comments can be made regarding the manipulated factors. First, as it 

was expected, for both application procedures (standard vs. iterative) and EPS values 

(predicted EPS vs. EPS = 0.95), results were worse as the misspecification rate increased. 

Second, for both the standard and iterative procedures, and in line with the conclusions of 

Nájera et al. (2019), the predicted EPS provided better results than the EPS of 0.95. Third, 

regarding the interaction between the application procedure and the EPS value, the iterative 

procedure showed a better performance than the standard procedure only when the predicted 

EPS was used. Results were very similar for both procedures when the misspecification rate 

was low (MR = 0.1), but, as the misspecification rate was higher, the differences between both 

procedures substantially increased favoring the iterative procedure. On the contrary, when the 

EPS of 0.95 was used, the QRR of the iterative procedure was lower for all misspecification 

rates. As previously stated, these results were expected, since an inappropriate EPS increases 
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the probability of selecting an incorrect suggested q-vector, enlarging the distance between 

the provisional Q-matrix and the true Q-matrix, disrupting the calculation of 𝜍𝑗
2. However,

regarding the PCA and the PCV, the iterative procedure, in conjunction with the EPS of 0.95, 

showed slightly worse results when the misspecification rate was low (MR = 0.1 or 0.2), but 

outperformed the standard procedure when the misspecification rate was high (MR = 0.3 or 

0.4). All this reflects the fact that both an iterative procedure and a dynamic optimal EPS 

value are required in order to achieve optimal results. 

Real Data Example 

Data and Analysis 

In order to facilitate a direct comparison between the proposed procedure and the 

original GDI method, we used the same dataset as de la Torre and Chiu (2016). It consists of 

536 examinees’ responses to 11 fraction-subtraction items (Tatsuoka, 1990) measuring four 

attributes (see strategy b in Mislevy, 1996): (1) performing basic fraction-subtraction 

operation, (2) simplifying/reducing, (3) separating whole number from fraction, and (4) 

borrowing one from whole number to a fraction. Table 7 shows the initial Q-matrix for these 

data, which is the same as the one used by de la Torre and Chiu (2016). A higher-order G-

DINA model (de la Torre & Douglas, 2004) was used to fit the data. 

Results 

Table 7 shows the Q-matrix suggested by the iterative procedure. Six q-entries 

modifications were proposed, all of them switching from 1 to 0, and all of them involving 

attribute 2, with the exception of attribute 1 in Item 1. These results are somewhat congruent 

with those found by de la Torre and Chiu (2016), who reported three modifications in 

attribute 2 (Items 4, 5, and 11). According to the results found in the simulation results, the 

iterative procedure suggested a less complex Q-matrix (i.e., less attributes specified) than the 

original GDI method (see Table 4). 



IMPROVING ROBUSTNESS IN Q-MATRIX VALIDATION 

18 

Regarding the original Q-matrix, attribute 2 (simplifying/ reducing) seems to have 

theoretical relevance to solve the modified items. However, it is important to note that it 

shows a great collinearity with attributes 3 and 4; that is, almost every time attribute 2 is 

required, attributes 3 and 4 are also required. The only time that attribute 2 appears without 

attributes 3 or 4 is in Item 6, which is the only one that retains attribute 2 in the suggested Q-

matrix. Thus, even though this attribute makes theoretical sense and seems to be correctly 

specified in the original Q-matrix, it cannot be properly separated from other attributes. Since 

it cannot provide any additional value, it becomes an irrelevant attribute and almost 

disappeared in the suggested Q-matrix. 

Table 7 

Original and suggested Q-matrices for the fraction-subtraction data 

Item 

Original Q-matrix Suggested Q-matrix 

α1 α2 α3 α4 α1 α2 α3 α4 

1 
3

1

2
− 2

3

2
1 1 1 1 0* 0* 1 1 

2 6

7
−

4

7

1 0 0 0 1 0 0 0 

3 
3

7

8
− 2

1 0 1 0 1 0 1 0 

4 
4

4

12
− 2

7

12

1 1 1 1 1 0* 1 1 

5 
4

1

3
− 2

4

3

1 1 1 1 1 0* 1 1 

6 11

8
−

1

8

1 1 0 0 1 1 0 0 

7 
3

4

5
− 3

2

5

1 0 1 0 1 0 1 0 

8 
4

5

7
− 1

4

7

1 0 1 0 1 0 1 0 

9 
7

3

5
−

4

5
1 0 1 1 1 0 1 1 

10 
4

1

10
− 2

8

10

1 1 1 1 1 0* 1 1 

11 
4

1

3
− 1

5

3

1 1 1 1 1 0* 1 1 

Note. Q-entries modifications are highlighted with an asterisk. 

Regarding Item 1, the first attribute is also removed in the suggested Q-matrix. This 

item can be correctly solved by following different strategies: 

(a) 3
1

2
− 2

3

2
=

7

2
−

7

2
= 0 (attributes 1 and 4); 
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(b) 3
1

2
− 2

3

2
= 2

3

2
− 2

3

2
= 0 (attributes 1, 3, and 4). 

A mesaplot (Ma & de la Torre, 2018), which shows the PVAF related to each possible 

q-vector specification, for Item 1 is presented in Figure 1. Four q-vectors (0011, 0111, 1011,

1111) clearly show a higher PVAF than the rest. Since their PVAF is higher than the EPS 

(0.903), they form the set of appropriate q-vectors. The q-vector of 0011 is chosen as the 

suggested q-vector because it is the simplest one. This attribute specification is related to 

strategy (b), although attribute 1 is missing. A possible explanation to this could be that the 

subtraction required in Item 1 may be a very easy operation that almost every examinee can 

solve, since it involves two identical elements. As a consequence, attribute 1 would no longer 

provide additional information. Nevertheless, these are modification suggestions, and domain 

experts can seek among the appropriate q-vector in order to find the most suitable 

specification. The last decision about the Q-matrix specification should rely on the judgment 

of domain experts (de la Torre & Chiu, 2016). 

Figure 1. Mesaplot for Item 1 of Tatsuoka’s fraction-subtraction dataset included in Table 7. 

The black dot represents the original q-vector specification (1111). The PVAF represents the 

ratio of the GDI associated to a q-vector to the highest possible GDI that is obtained when all 

the attributes are specified. 



IMPROVING ROBUSTNESS IN Q-MATRIX VALIDATION 

20 

Discussion 

CDMs rely on a correctly specified Q-matrix to provide an accurate classification of 

examinees’ attribute profiles. Domain experts are expected to specify the Q-matrix along with 

a theoretical background, but they may commit some errors while doing so, especially when 

the knowledge domain is particularly complex and ambiguous (e.g., mental pathologies, 

reading comprehension, students’ competencies). In this context, among the many Q-matrix 

validation methods that have been developed in the last few years, de la Torre and Chiu 

(2016) proposed the GDI method, which has some important advantages, such as its great 

flexibility to be used with several reduced or general CDMs, its good performance at 

modifying incorrectly specified q-vectors, and its low computational cost (Ma & de la Torre, 

2018). Despite its benefits, the GDI method relies on the original Q-matrix, which may not be 

correctly specified in most applied contexts. Although the method seemed robust to the 

violation of this assumption when the Q-matrix misspecification rate was low, it is expected 

to show a poorer performance when validating Q-matrices with more misspecifications. 

The present paper evaluated an item-level iterative with dynamic EPS implementation 

for the GDI method (this approach can be referred to as “ILD-GDI”). Considering past 

research (e.g., Chiu, 2013; Liu et al., 2012; Nájera et al., 2019; Terzi & de la Torre, 2018ab), 

we hypothesized that this implementation would lead to better results compared to the 

existing procedures, especially when the misspecification rate is high. A simulation study was 

conducted to test this hypothesis. Results showed that the new implementation did provide 

better results. The gain obtained increased as the misspecification rate was higher. 

The iterative procedure was hypothesized to have a poorer performance than the 

standard procedure when used in conjunction with an inappropriate EPS. However, even 

though the iterative-0.95 EPS (ite95) obtained a lower QRR than the standard-0.95 EPS 

(std95), it provided better attribute profile classification results when the misspecification rate 
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was high (MR = 0.3 or 0.4). A tentative explanation of this result could be related to the type 

of misspecification error. Some prior studies in the field (e.g., Gao, Miller, & Liu, 2017; Choi, 

Templin, Cohen, & Atwood as cited in Kunina-Habenicht, Rupp, & Wilhelm, 2012) have 

found that under-specifications have a greater impact in attribute profiles classification than 

over-specifications. This effect is logically expected, since removing a parameter with a 

substantive effect from a model might dramatically disrupt the probabilities of success of the 

affected item; on the other hand, a spurious parameter added to the model may obtain a 

marginal effect estimate, mitigating its impact (as long as the sample size is big enough to 

produce stable parameter estimates).  

This effect can explain the aforementioned results regarding ite95 and std95. Table 4 

shows the information regarding the Q-matrix recovery, disaggregated by specification error 

type. On one hand, when MR = 0.1 or 0.2, std95’s QRR was higher than ite95’s. Std95’s PCA 

and PCV were also higher than ite95’s. However, PCA differences were not as big as QRR 

differences, since the higher amount of misspecifications in ite95 were mainly over-

specifications, and both procedures had a similar number of under-specifications. On the other 

hand, when MR = 0.3 or 0.4, std95’s QRR was still higher than ite95’s. However, ite95’s PCA 

and PCV were higher than std95’s. Here, the QRR differences between both procedures were 

smaller than those obtained with MR = 0.1 or 0.2. In addition, the higher amount of 

misspecifications in ite95 were mainly over-specifications, while std95 obtained more under-

specifications. As previously stated, the latter might provoke a bigger disruption in the 

posterior probabilities estimates, causing a worse attribute classification.  

The explanation given above is certainly conditioned by the total number of 

misspecifications. Under-specifications may have a bigger impact than over-specifications as 

long as the total number of misspecifications remains at a similar range. The validation 

procedure proposed in the present work (iterative in conjunction with the predicted EPS) 
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showed a higher number of under-specifications than std95 and ite95; however, it showed a 

much better performance in terms of Q-matrix specification recovery, which resulted in a 

higher classification accuracy. It is important to note that other factors may have a relevant 

role in modulating the relation between Q-matrix specification and attribute classification, 

such as the number of different q-vectors represented in the Q-matrix (Rupp & Templin, 

2008) and the identifiability of the Q-matrix (Gu & Xu, in press a, in press b). 

Finally, a reviewer proposed examining whether the proposed procedure performs also 

well when the underlying attribute’s distribution is non-uniform. The performance of the 

procedures under a multivariate normal distribution (𝜌 = 0.25; see Xu & Shang, 2018) and a 

higher-order distribution (𝜆0 = (−1, −0.5, 0, 0.5, 1), 𝜆1𝑘 = 1.5; see de la Torre & Chiu, 2016) 

are provided in the Online Appendix. It was observed that the pattern of results was very 

similar to the ones obtained with the uniform distribution. Thus, the interpretation of the 

findings do not differ according to the underlying attribute distribution, and the proposed 

procedure still showed the best Q-matrix recovery and classification accuracy. 

In conclusion, the ILD-GDI method proposed in this paper outperformed the original 

method developed by de la Torre and Chiu (2016), as well as the method with the optimized 

EPS value election (Nájera et al., 2019). The proposed procedure showed good performance 

at detecting and modifying the Q-matrix even with a high misspecification rate (QRR ≥ 

0.893) and also at classifying attribute profiles (PCA ≥ 0.895; PCAQtrue ≈ 0.910), being the 

only procedure that achieved a PCV higher than 0.5 under the worse misspecification rate 

scenario (PCV ≥ 0.579; PCVQtrue ≈ 0.640). The iterative procedure’s computation time was 

short. On a laptop computer with four 2.2-GHz processors and 7 GB of RAM memory, the 

average replica computation time under the worst condition (MR = 0.4) was 111 seconds. 

The performance of the ILD-GDI method was also illustrated with Tatsuoka’s 

fraction-subtraction data. De la Torre and Chiu (2016) found that the standard GDI method 
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with an EPS of 0.95 proposed three modifications. These modifications were congruent with 

the ones suggested by the ILD-GDI method. The suggestions of the ILD-GDI should be 

considered rather than the GDI method’s ones, since it provides a better recovery of the Q-

matrix, as shown in the simulation study. However, two consideration should be noticed. 

First, even though Q-matrix validation methods are helpful in the search for the best possible 

specified Q-matrix, some misspecifications may remain after their application. Second, 

attribute positions in the Q-matrix are arbitrary just as factors are in a factor analysis; thus, 

when two attributes (i.e., Q-matrix columns) have a similar specification through the items 

and / or the number of misspecifications in the original Q-matrix is high, there exists the 

possibility that the suggested Q-matrix shows interchanged positions for these attributes with 

respect to the original Q-matrix. These considerations emphasize the role of domain experts in 

the review of the validated Q-matrix. They should reject those suggested modifications that 

lack a theoretical interpretation and check that the attributes maintain their original meaning. 

Also, if they consider that several strategies can be followed to answer the items, multiple-

strategy models may be of help (e.g., de la Torre & Douglas, 2008; Ma & Guo, 2019). These 

considerations may provide the most useful Q-matrix specification, since a tradeoff between 

theoretical interpretation and data fit can be more easily achieved. 

Further research is needed to extend the applicability of the ILD-GDI method. Even 

though the performance of the GDI method was deeply studied under a wide range of 

conditions by Nájera et al. (2019), the performance of the ILD-GDI method has only been 

tested under a limited set of conditions. Further research would help to know whether it is 

robust when the conditions are less favorable (e.g., small sample size, short test length, low 

item quality). In this sense, other factors can be added to the study design, such as the number 

of attributes or the underlying CDM (e.g., DINA). 
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Furthermore, it would be interesting to study whether the inclusion of model fit indices 

to the iterative procedure could improve its performance. For instance, Kang et al. (2019) 

used the item-level version of the RMSEA, which provided good results under the DINA 

model. For the general CDMs framework, the Akaike’s information criterion (AIC; Akaike, 

1974) and the Bayesian information criterion (BIC; Schwarzer, 1976), which have been 

previously used as fit indices in CDMs (e.g., Chen, de la Torre, & Zhang, 2013), could be 

good candidates at selecting the suggested q-vector. One important drawback of this approach 

would be the dramatic computational cost increment, since one additional model should be 

estimated for each q-vector for each hit item. In this vein, the Wald test for model comparison 

has also been recently used for Q-matrix validation under the sequential G-DINA model (Ma 

& de la Torre, 2019). 

Final remarks 

The authors want to emphasize that empirical validation methods suggest 

modifications, and cannot derive a true Q-matrix in empirical settings. The suggested Q-

matrix represents a model with empirical support. The purpose of Q-matrix validation should 

not be to replace experts from the Q-matrix specification process, but to “provide 

supplemental information for improving model-data fit, and consequently, increasing the 

validity of inference from cognitive diagnosis assessments” (de la Torre & Chiu, 2016, p. 

268). Especially in those contexts in which there is a certain degree of uncertainty involving 

the Q-matrix, modification suggestions may help to understand which cognitive processes are 

involved in responding each item. Also, as has been shown in the real data illustration, 

validation methods can help detecting problems regarding the structure of the Q-matrix (e.g., 

attributes collinearity). Thus, we recommend applying three steps during the Q-matrix 

specification process. First, construct the original Q-matrix with the help of domain experts. 

In this step, the Delphi methodology can be of great help, facilitating the debate and 
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subsequent agreement between the judges (see Sorrel et al., 2016). It is also useful to track the 

degree of uncertainty involved in each q-entry during the process. Second, apply an empirical 

Q-matrix validation method, in order to detect any possible misspecifications made in the first

step. Third, gather again the panel of experts to debate the theoretical viability of the 

suggested modifications and the meaning of the attributes after the process is completed. The 

degree of uncertainty involving each q-entry recorded in the first step can be of help at this 

point; a q-entry in which all experts showed a total agreement should probably not be 

modified even though the validation method suggests the opposite. In conclusion, the authors 

are of the opinion that the theory should be the main guide in the Q-matrix specification 

process. Empirical validation methods’ role should be to support the domain experts’ 

judgements. 
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