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Abstract: Severe COVID-19 disease leads to hypoxemia, inflammation and lymphopenia. Viral
infection induces cellular stress and causes the activation of the innate immune response. The
ubiquitin-proteasome system (UPS) is highly implicated in viral immune response regulation. The
main function of the proteasome is protein degradation in its active form, which recognises and
binds to ubiquitylated proteins. Some proteasome subunits have been reported to be upregulated
under hypoxic and hyperinflammatory conditions. Here, we conducted a prospective cohort study
of COVID-19 patients (n = 44) and age-and sex-matched controls (n = 20). In this study, we suggested
that hypoxia could induce the overexpression of certain genes encoding for subunits from the α

and β core of the 20S proteasome and from regulatory particles (19S and 11S) in COVID-19 patients.
Furthermore, the gene expression of proteasome subunits was associated with lymphocyte count
reduction and positively correlated with inflammatory molecular and clinical markers. Given the
importance of the proteasome in maintaining cellular homeostasis, including the regulation of
the apoptotic and pyroptotic pathways, these results provide a potential link between COVID-19
complications and proteasome gene expression.

Keywords: COVID-19; proteasome subunits; hypoxemia; lymphopenia; hyperinflammation

1. Introduction

Coronavirus disease 2019 (COVID-19) is a new respiratory disorder caused by se-
vere acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). The clinical manifestations
of COVID-19 range from asymptomatic to severe pneumonia. Growing evidence high-
lights the relevance of the immune response in severe COVID-19, including inflammatory
cytokine storm, lymphopenia and non-T-cell response [1–4].

Lymphopenia has been frequently associated in COVID-19 patients with severe and
fatal disease, indeed, it has been observed in up to 96.1% of patients with severe COVID-
19 [2], and T cells are usually reduced in acute SARS-CoV-2 infection [5]. A meta-analysis
found that lymphopenia is prominent in severe COVID-19, suggesting that lymphocyte
counts lower than 1.5 × 109/L might be useful for predicting clinical outcome [4]. Further-
more, SARS-CoV-2 infection has been proposed to cause lymphopenia, mainly through
lymphocyte apoptosis and pyroptosis, and T-cell exhaustion [6–8].

It is well described that continuous exposure to high levels of cytokines result in a
phenomenon called T-cell exhaustion. Functions of the exhausted T-cells are impaired so
that inflammatory states extend without effective limitation of infection [9]. Furthermore,
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lymphopenia and T-cell exhaustion have been observed in recent viral pandemics such
as H1N1 Influenza A [10,11], SARS-CoV [12,13] and Middle East respiratory syndrome
(MERS)-CoV [14]. In fact, a higher expression of inhibitory receptors such as PD-1 and
Tim-3 has been observed in PBMCs from patients with COVID-19 [3].

However, T-cell exhaustion might not be the only cause of lymphopenia in COVID-19
patients. In fact, patients with COVID-19 have elevated levels of serum lactate dehydroge-
nase, compared with healthy controls [15,16], which is accepted as a pyroptosis marker [17].
This type of programmed cell death, leads to an inflammatory exacerbation state in which
cytoplasmic contents and pro-inflammatory cytokines, including IL-1β, are released [18].
In this way, pyroptosis links the two signature events in SARS-CoV-2 infection, i.e., lympho-
cyte depletion and hyperinflammation. In addition, recent reports show that RNA viruses
promote the activation of the NLRP3 inflammasome, which leads to pyroptotic cell death
as a consequence of gasdermin D (GSDMD) cleavage by caspase-1 [19].

Incidence of lymphopenia is related to sepsis pathophysiology [20,21] and is involved
in clinical complications after heart transplant [22]. In septic patients, ARDS, cytokine
storm and lymphopenia are concomitant, which is similar to the process occurring in severe
COVID-19 patients [23,24]. Interestingly, in a recent report, Xue and colleagues identified a
set of genes that were upregulated in septic patients with hypoxaemic phenotype. Among
those, the authors found immune-related genes as NLRP3 and STAT3, which have been
previously described in studies of sepsis and hypoxia pathogenesis. Strikingly, Xue et al.
also reported the upregulation of some proteasome subunits, for which the relevance in
hypoxemia and hyperinflammation remains to be elucidated [25]. Indeed, 20S proteasome
has been described not only at the basis of several diseases but also has been highlighted
as an early prognostic biomarker for sepsis development mainly related to lymphocyte
apoptosis [26].

The proteasome is made up of two subcomplexes: a catalytic core particle (also known
as the 20S proteasome) and one or two terminal regulatory particles. The 20S proteasome
is composed of four heptameric rings, which consist of seven structurally related α and
β subunits, displaying an α1-7, β1-7 setup [27,28]. The 19S regulatory particle recognize
ubiquitylated proteins, deubiquitylate them for recycling of ubiquitin, and then unfolds
and translocate them into the interior of the catalytic particle for degradation [29]. Ubiqui-
tylation is, along with phosphorylation, one of the main regulatory modifications proteins
can undergo [30]. In this context, the importance of the ubiquitin-proteasome system
(UPS) in the regulation and cell signaling of immune cells has been described [31]. In
response to viral infection, the UPS plays a key role in regulating the activity and sta-
bility of various key proteins as MAVS, TRAF3 or IKKα/β [32–34], which are involved
in the activation of interferon response pathway and NF-κB signaling [35]. Addition-
ally, UPS is implicated in the regulation of inflammation, with ubiquitylation acting as
an important post-translational modification for NLRP3 regulation [36]. Furthermore, in
most cells, oxidative stress, hypoxia or inflammatory cytokines are stimuli that lead to an
elevated production of immunoproteasomes, which increase the production of peptides
for the presentation on MHC class I molecules [37]. In addition to antigen processing,
immunoproteasomes influence cytokine production and T cell differentiation, survival and
function [38]. In fact, several viruses target the UPS to facilitate their entry by endocyto-
sis [39,40]. Other viruses mimic ubiquitin ligases in order to shut down cellular defense
proteins [41]. Additionally, the importance of UPS for efficient infection of Coronavirus
has been reported [42]. In this line, MERS-CoV, SARS-CoV-1 and SARS-CoV-2 contain their
own deubiquitynase-like enzyme, Nsp3-PLpro, which can target and dysregulate type-I
interferon signaling [43–45].

Therefore, evidence suggests that the proteasome could play a key role during SARS-
CoV-2 infection and disease complications. Here, we studied the expression of certain
subunits of the proteasome core and regulatory particles in peripheral blood mononuclear
cells (PBMCs) and their association with lymphopenia, hypoxemia and inflammation in
COVID-19 patients.
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2. Materials and Methods
2.1. Study Participants

A total of 20 healthy control (HC) subjects and 44 patients hospitalized for COVID-19
were consecutively recruited from La Paz University Hospital, Madrid, Spain. Inclusion
criteria for the COVID-19 group were a positive result on a RT-PCR assay of an upper
respiratory tract specimen for SARS-CoV-2; associated abnormalities or infiltrates on chest
X-ray or chest CT; active fever or documented fever within 48 h or antipyretic use; and
hypoxemia, defined as a room air oxygen saturation of less than 92% or requirement of
supplemental oxygen. Exclusion criteria included aged younger than 18 years, onset of
COVID-19 symptoms more than 14 days before hospital admission, concomitant systemic
bacterial of fungal infection, history of immunodeficiency or neutropenia (absolute neu-
trophil count <1500/mm3), active neoplasia, history of severe pulmonary disease requiring
home oxygen therapy or mechanical ventilation, history of current systemic autoimmune
or auto-inflammatory disease, or previous therapy with long-term oral corticosteroids,
anti-IL-1, anti-IL-6 or anti-TNF.

The COVID-19 pneumonia patients were treated according to institutional recommen-
dations without drug restrictions. Blood samples for study measurements and hospital-
based blood testing were obtained at the admission day and 7 days after. The ratio of
arterial oxygen partial pressure (PaO2) to fractional inspired oxygen (FiO2) was also deter-
mined at day 1. Exploratory endpoints were mortality at day 60, admission to the ICU for
intubation and mechanical ventilation and duration of hospitalization.

The study was approved by the local Ethics Committee (PI-4087) and informed consent
was obtained from all the participants.

2.2. Peripheral Blood Mononuclear Cell Isolation

Peripheral blood mononuclear cells (PBMCs) from COVID-19 patients or HC were
isolated using Ficoll-Paque Plus (Amersham Bioscience, Uppsala, Sweden) gradient by
centrifugation (1500 rpm for 20 min at 24 ◦C). PBMCs were removed from the interphase
and washed two times in PBS.

2.3. Hypoxia and PX-478 In Vitro Models

PBMCs were isolated from blood samples of healthy volunteers. After isolation,
2 × 106 PBMCs/well were cultured in M6 plates in RPMI medium supplemented with
100 U/mL Penicillin and 100 µg/mL Streptomycin. Cells were cultured for 16 h in standard
conditions (37 ◦C, 21% O2, 5% CO2) or using a specific hypoxic chamber (Oxycycler C42
from Biospherix, Parish, NY, USA) which can maintain 9% O2. For the PX478 inhibition
assay, cells were treated with 30 µM of PX478 (an HIF1α inhibitor; MedKoo Biosciences
Inc., Morrisville, NC, USA) [46,47] for 16 h.

2.4. Lipopolysaccharide (LPS) Stimulation Model

PBMCs were isolated from blood samples of healthy volunteers and COIVD-19 pa-
tients. After isolation, 2 × 106 PBMCs/well were cultured in M6 plates in RPMI medium
supplemented with 100 U/mL Penicillin and 100 µg/mL Streptomycin. Cells were cultured
for 16 h in standard conditions (37 ◦C, 21% O2, 5% CO2) or with or without LPS (10 ng/mL)
for 16 h.

2.5. mRNA Isolation and Quantification by Quantitative PCR

Then, mRNA was isolated from PBMCs using the High Pure RNA Isolation Kit
(Roche Diagnostics, Basel, Switzerland), following the manufacturer’s protocol. After
quantification, complementary DNA (cDNA) was obtained by reverse transcription of 1
ug RNA using the High-Capacity cDNA Reverse Transcription kit (Applied Biosystems,
(Waltham, Massachusetts, USA). Then, human PSMA4,5, PSMB1-10, PSMD11,14, PSME1-3,
HIF-1α, NF-κB, NLRP3, ASC, CAS-1, GSDMD, STAT3, c-FOS, c-JUN and 18S expression
levels were measured by real-time quantitative polymerase chain reaction (qPCR) using the
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CFX96 Touch Real-Time PCR Detection System (Bio-Rad Laboratories, (Hercules, CA, USA)
and QuantiMix Easy SYG kit from Biotools (Madrid, Spain) with specific primers, which
are listed in Table S1, and then synthesized, desalted, and purified by Eurofins Scientific
SE (Luxembourg). The cDNA copy number of each gene of interest was determined using
a six-point standard curve and results were normalized to the expression of the house
keeping gene 18S.

2.6. Flow Cytometry

Peripheral blood mononuclear cells (PBMCs) were treated following a standard proto-
col using the Transcription Factor Buffer Set (BD Biosciences, Franklin Lakes, NJ, USA) and
stained with antibodies against CD14 (14A-100T, Inmunostep S.L., Salamanca, Spain) and
NLRP3 (030-712, MiltenyiBiotec, Madrid, Spain). Appropriate isotype controls were used
for each experiment. After staining for 30 min at 4 ◦C in the dark, cells were acquired using
a BD FACSCalibur flow cytometry from BD Biosciences (Franklin Lakes, NJ, USA), and the
collected data were analyzed using FlowJo vX.0.7 software (FlowJo, LLC, Franklin Lakes,
NJ, USA). The gating strategy is depicted in Figure S1.

2.7. Statistical Analysis

Data are presented as mean and standard error of the mean. The means were compared
using an unpaired t-test with Welch’s correction. For more than two groups, differences in
mean were analysed by ANOVA test and multiple comparisons were assessed by Tukey’s
test. Correlations were calculated with Spearman’s correlation test. Differences were
considered significant at p < 0.05. The analyses were conducted using Prism 8.0 software
(Graph Pad, Hercules, California, USA).

3. Results
3.1. Characteristics of the Study Subjects

COVID-19 pneumonia patients and healthy control subjects were homogeneous in sex
(50% vs. 68% males, p = 0.243), age (52 ± 9 vs. 57 ± 13 years, p = 0.125) and body mass index
(27.3 ± 5.6 vs. 29.7 ± 6.8 kg/m2, p = 0.405). Detailed clinical characteristics of patients with
COVID-19 pneumonia are shown in Table 1. Initially, hypoxemia was treated with oxygen
therapy, which was administered via the nasal canula, Venturi mask or high-flow nasal
oxygen, or other non-invasive ventilation according to its severity and patient tolerance. In
two patients (4.5%), respiratory failure progressed, requiring intubation and mechanical
ventilation, and two patients (4.5%) died in the 60-day follow-up period.

3.2. COVID-19 Patients Overexpress Certain Proteasome Subunits

We examined the mRNA expression of some proteasome subunits in PBMCs from
COVID-19 patients and healthy subjects (HC). Regarding the expression of 20S subunits
in the α- and β-ring the mRNA expression of PSMA4, PSMA5, PSMB2, PSMB9, PSMB10
significantly increased in COVID-19 patients (COV) when compared to healthy control
(HC). Moreover, PSMB1, PSMB4, PSMB8 were not overexpressed in COVID-19 patients
PBMCs (Figure 1A–C). Interestingly, PSMB5, PSMB6, and PSMB7 also did not reveal a
significant difference between COVID-19 patients and HC (Figure S1A), suggesting an
overexpression of the immunoproteasome rather than constitutive proteasome. In addition,
we assessed some subunits from the 19S and 11S regulatory particles and found that PSME1
and PSMD14 were significantly elevated in COVID-19 patients in comparison to HC, while
the other subunits assessed did not reach significance (Figures 1D and S1B).
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3.3. Proteasome Subunits Gene Expresion Are Related to Hypoxia

Severe COVID-19 patients might develop hypoxemia, which often requires oxygen
therapy. In line with this, we determined the Hypoxia-inducible factor 1-alpha (HIF-1α)
mRNA expression in PBMCs from COVID-19 patients to corroborate the hypoxemia condi-
tion in these patients (Figure S1D). Strikingly, proteasome-subunit mRNA expression was
strongly associated with HIF-1α mRNA expression in patients (Figures 2A–D and S1D,E).
These results suggest an association between proteasome mRNA expression and hypoxemia
induced by SARS-CoV-2 infection.

Table 1. General characteristics of the COVID-19.

Age, year 57 ± 13

Sex, Male/Female 30/14

Days since onset of symptoms 7.7 ± 4.0

Symptoms at admission

Cough 28 (64)

Active fever 32 (73)

Dyspnea 31 (70)

Myalgia 15 (34)

Sputum production 8 (18)

Chest tightness 3 (7)

Headache 8 (18)

Fatigue 12 (27)

Anorexia 5 (11)

Nausea 3 (7)

Diarrhea 7 (16)

Chest pain 5 (11)

Anosmia 6 (14)

Comorbidities

Hypertension 12 (27)

Coronary artery disease 3 (7)

Diabetes mellitus 13 (30)

Obesity 10 (23)

Chronic lung disease 4 (9)

Chronic kidney disease 1 (2)

Hypothyroidism 2 (3)

Smoking history

Current, n (%) 31 (70)

Former, (%) 3 (7)

Never, n (%) 10 (23)

Pneumonia severity scores

CURB-65 0.84 ± 0.88

Fine risk class 2.4 ± 1.3
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Table 1. Cont.

Laboratory findings

PaO2, mmHg 65.0 ± 25.9

PaO2/FiO2 ratio 282.5 ± 113.5

PaCO2, mmHg 36.8 ± 14.7

White cell count, 103 cells/µL 6.74 ± 4.41

Neutrophils, 103 cells/µL 4.90 ± 3.10

Lymphocytes, 103 cells/µL 1.31 ± 2.04

Eosinophils, 103 cells/µL 0.02 ± 0.03

Platelets, 103 cells/µL 227.7 ± 101.8

Hemoglobin, g/dL 13.9 ± 4.7

C-reactive protein, mg/L 68.8 ± 57.7

Aspartate aminotransferase,
U/L 48.8 ± 38.5

Alanine aminotransferase,
IU/L 43.7 ± 29.6

Υ-Glutamyltransferase, IU/L 84.8 ± 81.0

Bilirubin, µmol/L 0.51 ± 0.28

Albumin, g/L 4.34 ± 1.82

Ferritin, ng/mL 839.1 ± 899.4

Lactate dehydrogenase, U/L 304.2 ± 163.6

D-dimer, ng/mL 697.4 ± 677.4

Fibrinogen, mg/dL 672.1 ± 270.9

Evolution results

Duration of hospital
admission, days 9.9 ± 5.6

ICU admission, n (%) 2 (4.5)

Exitus, n (%) 2 (4.5)

In order to verify the contribution of HIF1-α to the upregulation of proteasome sub-
units in COVID-19 patients, we exposed PBMCs from healthy volunteers to hypoxic condi-
tions in combination with PX-478 (S-2-amino-3-[4V-N, N-bis (2-chloroethyl) amino]-phenyl
propionic acid N-oxide dihydrochloride), which suppresses constitutive and hypoxia-
induced levels of HIF1α (Figure S2A). The mRNA levels from all of the proteasome subunits
studied (unless PSMB5, PSMB6) increased under hypoxic condition, and this increment
was impaired when the cells were treated with PX-478 (Figures 3A–D and S2B,C).
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Figure 1. Upregulation of proteasome subunits in COVID-19 patients. mRNA expression in PBMCs
from healthy controls (HC) compared to COVID-19 patients (COV) of (A) 20S proteasome alpha ring
subunits: PSMA4 (HC n = 20; COV n = 32), PSMA5 (HC n = 15; COV n = 34); (B) 20S proteasome
beta ring non-catalytic subunits: PSMB1 (HC n = 11; COV n = 15), PSMB2 (HC n = 12; COV n = 14),
PSMB4 (HC n = 12; COV n = 13); (C) 20S immunoproteasome beta ring catalytic subunits: PSMB8
(HC n = 13; COV n = 18), PSMB9 (HC n = 12; COV n = 17), PSMB10 (HC n = 13; COV n = 14); and
(D) 11S proteasome subunits: PSME1 (HC n = 11; COV n = 18), PSME2 (HC n = 14; COV n = 19),
PSME3 (HC n = 12; COV n = 21). Mean differences were analysed using unpaired Student’s t-test
analysis with Welch’s correction. Error bars: standard error of the mean. *: p < 0.05, **: p < 0.01.
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Figure 2. Hypoxia-inducible factor 1-alpha correlation with proteasome subunits. Correlation of
hypoxia-inducible factor 1-alpha (HIF-1α) mRNA expression and mRNA expression of (A) 20S
proteasome alpha ring subunits: PSMA4 (n = 31), PSMA5 (n = 32); (B) 20S proteasome beta ring non-
catalytic subunits: PSMB1 (n = 14), PSMB2 (n = 14), PSMB4 (n = 13); (C) 20S immunoproteasome beta
ring catalytic subunits: PSMB8 (n = 16), PSMB9 (n = 17), PSMB10 (n = 15); and (D) 11S proteasome
subunits: PSME1 (n = 19), PSME2 (n = 19), PSME3 (n = 19). Correlations were analysed using
Spearman’s analysis. p-value and Spearman’s correlation coefficient (ρ) are shown.
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Figure 3. In vitro model of the effect of hypoxia on proteasome subunits expression. mRNA ex-
pression of proteasome subunits from healthy volunteers PBMCs (n = 5) cultured in normoxia
(N) or hypoxia (H) and treated with PX478 (PX) or untreated (C). (A) 20S proteasome alpha ring
subunits: PSMA4, PSMA5; (B) 20S proteasome beta ring non-catalytic subunits: PSMB1, PSMB2,
PSMB4; (C) 20S immunoproteasome beta ring catalytic subunits: PSMB8, PSMB9, PSMB10; and
(D) 11S proteasome subunits: PSME1, PSME2, PSME3. Mean differences were analysed using mixed-
effects analysis with Bonferroni’s multiple comparison test. Error bars: standard error of the mean.
*: p < 0.05, **: p < 0.01.
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3.4. Some Proteasome Subunits Are Related to Poor Clinical Outcome

Severe COVID-19 patients are characterized by lymphopenia development during
the first days of infection. Therefore, we explored the association between proteasome
subunits expression and lymphocyte count in patients. Patients with high PSMA4 and
PSMA5 mRNA expression suggested more acute lymphopenia, more severe hypoxemia
and higher concentrations of C-reactive protein and ferritin in plasma (Table 2).

Table 2. Clinical parameters of COVID-19 patients grouped by proteasome subunits expression.

Gene
Lymphocytes

(×103 Cells/mm3) PaO2/FiO2 Ratio C-Reactive Protein (mg/L) Ferritin (mg/mL)

Low High p Low High p Low High p Low High p

PSMA4 1.018 ±
0.293

0.740 ±
0.168 0.0084 320.0 ±

92.90
232.9 ±

105.0 0.028 46.97 ±
32.63

90.42 ±
67.20 0.044 486.1 ±

532.2
1361 ±

1158 0.024

PSMA5 1.035 ±
0.476

0.734 ±
0.164 0.0498 302.2 ±

75.82
229.5 ±

88.98 0.0429 50.36 ±
34.32

94.5 ±
66.77 0.0470 473.8 ±

475.6
927.6 ±

471 0.0339

PSMB1 0.983 ±
0.306

0.655 ±
0.199 0.056 288.3 ±

100.8
247.5 ±

82.38 0.438 41.93 ±
38.4

47.1 ±
29.8 0.791 707.7 ±

684.4
876.5 ±

696.4 0.659

PSMB2 0.983 ±
0.306

0.626 ±
0.207 0.048 288.3 ±

100.8
245.7 ±

88.81 0.441 41.93 ±
38.4

47.20 ±
32.2 0.796 707.7 ±

684.4
796.3 ±

711.2 0.824

PSMB4 1.030 ±
0.380

0.784 ±
0.360 0.301 295.7 ±

106.5
247.7 ±

90.97 0.407 48.25 ±
35.95

37.51 ±
30.14 0.576 772.3 ±

621.6
775.3 ±

734.7 0.994

PSMB8 0.957 ±
0.287

0.919 ±
0.528 0.164 284.3 ±

92.6
262.6 ±

95.12 0.663 42.57 ±
35.08

47.81 ±
29.88 0.763 812.0 ±

683.0
747.5 ±

672.7 0.857

PSMB9 0.873 ±
0.317

0.976 ±
0.471 0.623 302.0 ±

85.14
244.4 ±

88.27 0.209 52.13 ±
35.46

38.77 ±
26.52 0.423 804.9 ±

690.5
707.1 ±

639.2 0.777

PSMB10 0.798 ±
0.272

0.963 ±
0.456 0.441 296.2 ±

91.72
241.6 ±

85.97 0.283 58.45 ±
34.26

34.71 ±
29.01 0.202 936.0 ±

654.0
705.3 ±

708.5 0.541

PSME1 0.920 ±
0.311

0.885 ±
0.489 0.867 285.6 ±

89.74
249.2 ±

86.46 0.409 56.75 ±
37.74

42.46 ±
33.01 0.422 614.1 ±

618.9
795.3 ±

687.2 0.576

PSME2 0.831 ±
0.381

0.974 ±
0.423 0.491 289.4 ±

93.14
245.9 ±

81.42 0.325 58.65 ±
37.17

40.77 ±
32.65 0.312 641.8 ±

621.7
770.8 ±

691.2 0.691

PSME3 0.939 ±
0.370

0.866 ±
0.443 0.728 294.6 ±

91.56
241.2 ±

79.86 0.223 52.24 ±
32.69

46.47 ±
38.63 0.743 779.6 ±

626.1
648.2 ±

687.5 0.686

Clinical parameters (lymphocyte count, PAFI ratio, C-reactive protein concentration and ferritin concentration)
comparison in COVID-19 patients grouped by high or low expression of proteasome subunits (PSMA4/5,
PSMB1/2/4/8/9/10 and PSME1-3). Data are mean ± standard deviation. p-values are shown. Differences were
considered significant p < 0.05.

3.5. Some Proteasome Subunits Are Associated with Inflammatory Markers

Given the acute inflammation and lymphopenia in COVID-19 patients, we tested
whether the gene expression of proteasome subunit might be involved in the inflammatory
pathways leading to cell death. First, we observed that PBMCs from patients tended to
overexpress nuclear factor kappa B (NF-κB) and NLRP3 when compared to HC although
not reaching statistical significance (Figure S3A,B). Interestingly, all the studied protea-
some subunits were positively correlated with NF-κB. Besides, the majority of proteasome
subunits studied (unless PSMB9 and PSME1) positively correlated with NLRP3 mRNA
expression in COVID-19 patients (Figures 4A and S3F).
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Figure 4. Proteasome subunits relationship with inflammation components. (A) Heatmap represents
Spearman’s correlation coefficient (ρ) between proteasome subunits mRNA expression and genes
related to inflammation mRNA expression. White gaps represent non-significant correlations, while
the rest of correlations are significant (p < 0.05). (B) NLRP3 expression in monocytes analysed by
flow cytometry in monocytes from healthy controls (HC), and COVID-19 patients (COV) presenting
LOW or HIGH expression of proteasome subunits. Mean differences were analysed using one-way
ANOVA analysis with Tukey’s multiple comparisons test. Error bars: standard error of the mean.
*: p < 0.05, **: p < 0.01, ***: p < 0.001.

In this line, we evaluated NLRP3 protein expression in CD14+ monocytes (gated strat-
egy in Figure S3C). Our data suggested that patients characterized by elevated expression
of the proteasome subunits PSMA5; PSMB1,2,4; PSMB5, PBMB8, had higher levels of
NLRP3 protein expression than patients characterized by low proteasome subunits mRNA
expression (Figure 4B and Figure S3D). Furthermore, NLRP3 inflammasome components
were upregulated in COVID-19 patients compared to HC (Figure S3E). In fact, we observed
a direct correlation between the mRNA expression of the majority of proteasome subunits
studied and the mRNA expression of members of the NLRP3 inflammasome complex
such as apoptotic speck-like protein containing a caspase recruitment domain (ASC) and
caspase-1 (CAS-1) (Figure 4A and Figure S3F). Finally, the mRNA expression of the protea-
some subunits studied (unless PSMB8 and PSME2) were also positively correlated with
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gasdermin D (GSDMD) (Figure 4A), the main effector molecule for the lytic and highly
inflammatory form of programmed cell death known as pyroptosis.

3.6. Proteasome Subunitswere Related with STAT3 Cascade

Furthermore, STAT3 was identified to be upregulated in the context of intensive in-
flammation and hypoxemia, and its potential role in COVID-19 pathogenesis has been
recently reviewed [48,49]. Here, we reported the mRNA upregulation of STAT3 together
with its well-known downstream effectors c-FOS and c-JUN in COVID-19 patients com-
pared with healthy controls (Figure S3G). A positive correlation was observed between
all the proteasome subunits studied and STAT3. In addition, some proteasome subunits
correlated with c-FOS and c-JUN (Figures 5 and S3F).
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Figure 5. Proteasome subunits relationship with STAT3 pathway genes. Graph represents Spearman’s
correlation coefficient (ρ) between proteasome subunits mRNA expression and STAT3, cFOS and
cJUN. White gaps represent non-significant correlations, while the rest of correlations are significant
(p < 0.05).

3.7. Proteasome Subunits Upregulation May Be a Cause and Not a Consequence of Inflammation

Finally, in order to clarify whether inflammation is a cause or consequence of protea-
some upregulation in COVID-19, patients we treated HC and COVID-19 patients PBMCs
with LPS (10 ng/mL) during 16 h. Our in vitro data suggested that inflammation may
not have an impact on proteasome subunit expression (Figure S4). Therefore, consider-
ing the proteasome subunits overexpression data in COVID-19 patients, we speculate a
possible role of proteasome subunits mRNA expression in the inflammatory condition of
these patients.

4. Discussion

Severe COVID-19 patients are well characterized by hypoxemia, a reduced number
of T cells and inflammatory storm during the first days after SARS-CoV-2 infection [2,50].
Additionally, there is a wide range of evidence supporting the idea that proteasome ac-
tivity play a role in the inflammatory response [51]. Indeed, ubiquitylation maintains
a balance between the activation and inhibition of the immune system response due to
infection [52]. In our study, we assessed the expression of 16 genes from the catalytic core
and regulatory particles of the 20S proteasome. Our data showed an increased expression
in seven of the subunits of proteasome (PSMA4,5; PSMB2,9,10; PSMD14 and PSME1) in
PBMCs from COVID-19 patients, suggesting a potential increase in proteasome activity,
since other studies have already related an overexpression of proteasome subunits with
a higher proteasome activity [53,54]. Besides, many studies have attempted to elucidate
the mechanisms underlying the regulation of proteasome subunit expression, leading to
the identification of multiple transcription factors which in turn are regulated by several



Biomolecules 2022, 12, 442 13 of 19

interrelated pathways [55–59]. This suggests that the regulation of proteasome subunit
expression is intricate and complex, and supports the fact that only seven of the protea-
some subunits studied are upregulated in COVID-19 patients, while the others are not.
Consequently, further studies are required in order to elucidate the mechanism underlying
proteasome subunits expression in a physiological and COVID-19 pathological context.

Both PSMA4 and PSMA5 are part of the α-rings of the catalytic core proteasome [60],
which comprise the outer rings of the 20S proteasome [61]. We observed PSMA4 and
PSMA5 overexpression in COVID-19 patients. In agreement with these findings, PSMA5
mRNA expression was elevated in patients with sepsis [25]. Furthermore, PSMB1-10
are part of the β-rings of the catalytic core proteasome (20S) [28], which comprise the
inner rings of the 20S proteasome. The β-rings form a proteolytic chamber where only
the subunits encoded by PSMB5, PSMB6 and PSMB7 genes demonstrate hydrolytic ac-
tivity [62,63]. Furthermore, β-type proteasome subunits PSMB8, PSMB9 and PSMB10,
which are homologous to PSMB5, PSMB6 and PSMB7, respectively, form the immunopro-
teasome, a type of proteasome with a specialized role in processing intracellular antigens
for presentation to the immune system [64]. Interestingly, we only observed an increase
in PSMB9 and PSMB10, suggesting mediation of the immunoproteasome in COVID-19
pathology. Curiously, mutations in genes encoding for immunoproteasome subunits have
been related to the development of proteasome-associated auto-inflammatory syndromes
in mouse models [65] and humans [66]. In addition, PSMD11 and PSMD14 are part of the
lid of the 19S regulatory particle [28]. Our data showed an increase in PSMD14 expression.
As is known, PSMD14 encodes the metalloisopeptidase Rpn11, which plays an essential
role in the de-ubiquitylation of captured substrates to facilitate their degradation, which
constitutes the main biochemical activity of 19S lid [67]. Besides, PSMD14 is implicated
in viral replication and pathogenesis in hepatitis B [68]. Moreover, PSME1-3 are subunits
of the 11S (also called PA28 or REG) regulatory particles. PSME1 and PSME2 assemble to
form a complex (also called proteasome activator PA28alpha/beta) that binds the ends of
the 20S proteasome and dramatically accelerates the generation of a subset of MHC class
I-presented antigenic peptides. Our data revealed the upregulation of PSME1 in COVID-19
patients. Interestingly, the role of 11S proteasome during viral infection has already been
reported [69,70].

Our data suggested proteasome subunits overexpression to be related to the hypoxic
condition in COVID-19 patients. In agreement, some proteasome subunits have been previ-
ously reported to increase under hypoxaemic conditions [25,71–73]. Thus, we hypothesised
that hypoxia might play a role in the upregulation of proteasome subunits in COVID-19
patients, according to the patient and in vitro model data. Other authors have highlighted
the role of 20S proteasome in septic patients suggesting its involvement in immunological
activity [74]. Moreover, in a recent study, 20S proteasome serum content was related to re-
quirement of oxygen therapy in COVID-19 patients [75]. Along with hypoxia development,
COVID-19 severity is tightly bounded to hyperinflammatory state.

Our data revealed a relation of the proteasome subunits with inflammation markers.
Similarly, ubiquitin-proteasome axis has been described to be dually essential for inflam-
mation via the NF-κB pathway and NLRP3 inflammasome [76]. On the one hand, all
proteasome subunits studied correlated with NF-κB and an LPS in vitro model showed no
effect on proteasome subunits expression, suggesting that proteasome upregulation might
be implicated in COVID-19 inflammatory condition development. On the other hand, we
identified a direct relation between the majority of proteasome subunits studied and NLRP3
inflammasome components (NLPR3, ASC, CAS-1). The ubiquitin-proteasome system (UPS)
is involved in the regulation of NLRP3 and ASC stability by selective ubiquitilation [36,77].
Rodrigues and colleagues demonstrated NLRP3 inflammasome is activated in response
to SARS-CoV-2 infection [78]. Furthermore, NLRP3 inflammasome activation drives cells
into pyroptosis, a process leading to cell-death by mean of gasdermin D [79], which may
be the prominent cause of lymphopenia, and high levels of inflammation. Overall, we
hypothesized that proteasome subunits upregulation is related to inflammation and pyrop-
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tosis, highlighting a potential connection between UPS regulatory activities and COVID-19
clinical features. Upregulation of proteasome has also been described in critically ill septic
patients and trauma patients, both sharing extensive inflammatory conditions [74].

Concomitantly to pyroptosis, lymphopenia may also be related with hyperinflamma-
tion, which is able to induce lymphocyte exhaustion and apoptosis. Although apoptotic cell
death was not assessed in this study, we related proteasome subunits with STAT3. Recent
reports show that the IL-6/STAT3 pathway can drive the upregulation of the transcription
of TGF-β [80], which is related to T-cell exhaustion and mediates apoptosis of virus-specific
CD8+ T cells [81], although it has been typically described as an anti-apoptotic pathway [82].
Furthermore, activated STAT3 can induce P53 transcription, enhancing COVID-19 patients’
lymphopenia [83]. Interestingly, the IL-6/STAT3 axis could contribute to an exacerbated
immune response and COVID-19 complications such as thrombosis and lung fibrosis [49].
Proteasome and its subunits also play a direct role in apoptosis. Indeed, the overexpression
of proteasome subunits has been identified to protect different lung and colon cancer cells
from apoptosis [54,84–86].

In this line, we suggested that hypoxia might upregulate proteasome subunits mRNA
expression, which could be implicated in lymphocyte cell-death. Many studies discuss
that proteasome inhibitors are capable to induce apoptosis; indeed, they are frequently
used in the treatment of cancer [87,88]. Furthermore, an inhibition of proteasome has been
described to induce apoptosis in human monocyte-derived dendritic cells, suggesting a pro-
tective role of proteasome in the immune system [89]. This protective role is supported by
a proteasome-dependent degradation of proteins such as NLRP3 and P53. However, other
studies have demonstrated a requirement of proteasomes during apoptosis in non-cycling
and differentiated cells [90]. In addition, evidence has suggested that viruses and their
infected hosts exploit the proteasomal degradation machinery to promote efficient viral
replication and restrict invading viruses in the infected host [42,91]. In regard, proteasome
inhibitors have been demonstrated to be efficient in limiting viral life cycle, including in
SARS-CoV [92,93]. Conversely other authors report that the proteasome inhibitor can also
enhance viral disease [94]. In the context of COVID-19, Longhitano et al. hypothesized the
therapeutic value of proteasome inhibitors [95]. The issue of whether proteasome subunits
overexpression exerts a protective or pathogenic role remains to be elucidated.

The study has several limitations which we acknowledge. Firstly, the study is limited
to mRNA expression quantification although other studies have related mRNA expression
of proteasome subunits with a higher proteasome activity [53,54]. Secondly, the procedures
with infected cells were restricted due to local biologically secure conditions. Thirdly,
we have not considered the possible impact on proteasome subunits expression of the
differences in PBMCs subpopulation described in COVID-19 patients. Therefore, the results
obtained allow us to hypothesize involvement between the pathogenic pathways and limit
the mechanistic and causative description of the processes involved.

In this study, we explored the proteasome subunits in COVID-19 patients to deter-
mine the potential association between hypoxemia, lymphopenia and hyperinflammation.
Collectively, these findings suggested a link between proteasome subunits expression and
the clinical manifestations in COVID-19 patients. In this line, a recent study by Wendt et al.
also suggests a relation between proteasome expression and the hyperactivation of the
immune system and tissue damage in COVID-19 patients [75]. Future studies should focus
on the proteasome activity in SARS-CoV-2 infection severity, which might corroborate our
findings on the relationship between proteasome activity and lymphopenia, hypoxemia
and inflammation. (Figure 6). Additional work is needed to corroborate the causative
relations of the upregulation of proteasome subunits and COVID-19 severity.
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Figure 6. Proteasome might play an important role in COVID-19 pathogenesis. SARS-CoV-2 infection
induces hypoxia which, we suggested, leads to overexpression of proteasome subunits in PBMCs
from patients with COVID-19, potentially leading to an overactivation of the ubiquitin-proteasome
system. The pleiotropic roles of proteasome in immune biology include regulation of master proteins
such as, NF-κB, NLRP3, GSDMD and STAT3, which have been related to COVID-19 complications,
mainly lymphopenia and hyperinflammation.
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