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ABSTRACT
For the rational design of new fluorophores, reliable predictions of fluorescence quantum yields from first principles would be of great help.
However, efficient computational approaches for predicting transition rates usually assume that the vibrational structure is harmonic. While
the harmonic approximation has been used successfully to predict vibrationally resolved spectra and radiative rates, its reliability for non-
radiative rates is much more questionable. Since non-adiabatic transitions convert large amounts of electronic energy into vibrational energy,
the highly excited final vibrational states deviate greatly from harmonic oscillator eigenfunctions. We employ a time-dependent formalism
to compute radiative and non-radiative rates for transitions and study the dependence on model parameters. For several coumarin dyes,
we compare different adiabatic and vertical harmonic models (AS, ASF, AH, VG, VGF, and VH), in order to dissect the importance of
displacements, frequency changes, and Duschinsky rotations. In addition, we analyze the effect of different broadening functions (Gaussian,
Lorentzian, or Voigt). Moreover, to assess the qualitative influence of anharmonicity on the internal conversion rate, we develop a simplified
anharmonic model. We address the reliability of these models considering the potential errors introduced by the harmonic approximation
and the phenomenological width of the broadening function.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5143212., s

I. INTRODUCTION

Luminescence has many technological applications, such as
organic light-emitting diodes, luminescent solar concentrators,1 and
in vivo fluorescence imaging.2 The high cost for synthesizing and
characterizing new molecules has revived the interest in reliable

prediction of fluorescence and phosphorescence quantum yields
(QYs) from first principles. To identify the candidate molecules
for synthesis, virtual screenings could be performed for identify-
ing the most promising novel compounds with high quantum yields
and other desirable properties, such as low emission energy in the
infrared part of the spectrum.
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Recently, several programs3,4 were developed for predicting
rates for radiative and non-radiative (internal conversion, IC,5,6 and
intersystem crossing, ISC7,8) decays using Fermi’s golden rule. They
are based on the idea that the decay processes are slower than
thermalization and that the couplings are small. In addition, all
of these approaches make use of the harmonic approximation for
the ground- and excited-state potential energy surfaces (PESs) since
this is at the moment the only way how to deal with systems of
interest having dozens or hundreds of normal modes. Some of the
methods can account for mixing of modes (Duschinsky rotation),
the Herzberg–Teller correction, and temperature dependence. The
scope of this article is to investigate the range of validity of these
state of the art methodologies. Despite some contributions in the
literature,9 this question is not yet well assessed.

Differences between simulated IC rates based on Fermi’s
golden rule and experimental non-radiative rates can have many ori-
gins: additional decay channels (ISC or conical intersections, dark
trap states), additional effects that were not considered (Duschin-
sky or Herzberg–Teller effect), or simply a questionable descrip-
tion of the electronic structure. These issues can be treated by
more advanced harmonic models that take all relevant vibronic
effects into account or by including additional rate constants for
pronounced non-harmonic processes, such as thermally activated
decay through a conical intersection.10,11 However, what about the
harmonic approximation itself, on which the whole theory rests?

The harmonic approximation is the central issue for calcu-
lations of radiative and internal conversion rates, in particular, if
one is interested in large systems. All kinds of transitions (radia-
tive, IC, ISC, and charge transfer) can be formulated in terms
of Fermi’s golden rule making use of the harmonic approxima-
tion.3,12 However, the approximation is not equally applicable to
all transitions. Radiative rates are usually determined by transi-
tions between vibrational ground states or states with few vibra-
tional quanta. Intersystem crossing is most effective if the singlet
and triplet states are almost degenerate so that the ISC rate is also
dominated by transitions between vibrational ground states. On
the other hand, internal conversion involves transitions to highly
excited vibrational final states (see Fig. 1). Electronic energy of a
few electron volts is converted into vibrational energy, which is
enough to overcome the barriers that separate different isomers on
the ground-state PES. These considerations should be taken as warn-
ings regarding the use of the harmonic approximation. However,
it is the only practical approach because of the convenient form of
multidimensional Gaussian integrals and it is very difficult to go
beyond it.

To test how well the harmonic approximation is suited for pre-
dicting fluorescence quantum yields, we study a series of coumarin
dyes for which experimental non-radiative rates and quantum yields
are available. We use a quite general time-dependent formalism13 to
compute rates as Fourier transforms of correlation functions. Den-
sity functional theory in combination with a polarizable continuum
model (PCM) for solvation provides the vibrational structure of the
initial and final electronic states. Since only a few standard elec-
tronic structure calculations are required and the time-dependent
formalism is very efficient, this approach for ab initio prediction of
fluorescence quantum yields seems attractive.

However, the question remains whether the harmonic approx-
imation is valid and how we can test its validity without knowing

FIG. 1. Morse potential for a C==C stretching mode. The initial and final states for
radiative (top) and non-radiative (bottom) transitions are also shown both for the
Morse potential (anharmonicity χ = 0.014, solid lines) and the harmonic approx-
imation (χ = 0.0, dashed lines). The radiative rate is dominated by the transition
between two vibrational ground states, for which the harmonic approximation is
valid. With perfect energy conservation, the non-radiative rate is determined by
the transition between a vibrational ground state on the excited-state PES and
a highly excited vibrational state on the ground-state PES. The wavefunction of
the final vibrational state differs considerably from a harmonic oscillator wave-
function. However, the overlap between the initial and the final state is very low
due to the narrow oscillations in both the Morse and the harmonic oscillator
wavefunction.

the exact solution. For 1D and 2D systems, the exact solution can
be obtained, but such low-dimensional systems are not relevant
models for typical chromophores, which contain dozens to a 100
vibrational modes, whose frequencies span the range from <50 cm−1

to >3500 cm−1.
Since in principle molecular PESs are not harmonic, one has

to choose a point at which the quadratic approximation is made.
This choice defines different harmonic models.14 The models can
be separated into two classes, depending on around which point the
potential energy surface of the electronic ground state is expanded
to second order. In adiabatic models (AS/ASF/AH), the potential
is expanded around the geometry of the ground-state minimum,
while in vertical models (VG/VGF/VH), the surface is expanded
around the excited-state minimum. The models can be further dis-
tinguished depending on whether the initial and final states have
different equilibrium geometries, but the same normal modes [adi-
abatic shift (AS) and vertical gradient (VG)] differ in equilibrium
geometry and frequencies [adiabatic shift frequencies (ASF) and ver-
tical gradient frequencies (VGF)] or differ in equilibrium geometry
and the Hessian matrix [adiabatic Hessian (AH) and vertical Hessian
(VH)].

In this contribution, we compare the performance of these
models. There is a clear hierarchy with those higher up being in
principle more accurate: AS < ASF < AH and VG < VGF < VH.
Although AH and VH are the best models, retaining inferior ones
has the advantage that we can decompose the non-radiative rate into
contributions from different effects. Moreover, since AH and VH
models should deliver identical results if harmonic approximation is
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exact, we will inquire to what extent an analysis of their difference is
a trustworthy reporter of the importance of anharmonic effects.

As a second step of our analysis, in this contribution, we explic-
itly tackle the study of possible anharmonic effects on the inter-
nal conversion rate by considering simple models. More specif-
ically, for this purpose, we formulate a model that interpolates
smoothly between the harmonic approximation and a fictitious
anharmonic system.15 Realistic harmonic frequencies, displace-
ments, and electronic non-adiabatic coupling vectors are taken from
a TD-DFT+PCM calculation. These are the same quantities needed
for the adiabatic shift (AS) model, where ground- and excited-state
PESs differ only by a vertical shift in energy and a horizontal shift
of the equilibrium geometries. To incorporate anharmonicity, each
normal mode is replaced by a Morse potential that is characterized
by an anharmonicity χ. For χ = 0, the Morse potential turns into a
harmonic potential with the same frequency and equilibrium posi-
tion as the corresponding harmonic potential. χ is a global parameter
and it is the same for all modes. For χ > 0, the modes acquire some
anharmonicity. Since the dissociation energy D of a Morse potential
with frequency ω is related to the anharmonicity via D = ̵hω4χ , modes
with low frequencies are more affected.

It is important to note that the anharmonic model is not a
realistic representation of any molecule for a number of reasons:
low-lying modes, such as rotations, do not have the form of a
Morse potential; the modes are assumed to be independent of each
other and all other approximations made in the AS model, except
for the harmonicity of the potential, still apply. With these caveats
in mind, we investigate how the rate of internal conversion in
3-chloro-7-methoxy-4-methylcoumarin, ClMMC, changes with the
anharmonicity χ.

This paper is structured in the following way: in Sec. II, we
sketch the time-dependent formalism for obtaining transition rates
in the harmonic approximation and derive the anharmonic AS
model. Section III gives the computational details. In Sec. IV, we
present vibrationally resolved emission spectra, non-radiative rates,
and quantum yields for a selection of coumarin dyes, focusing on
the influence of anharmonicity, choice of the harmonic model, and
broadening function.

II. THEORY
A. Harmonic models—Transition rates
in the time-dependent formalism

Non-radiative transitions are treated with first-order perturba-
tion theory. We invoke the Born–Oppenheimer approximation so
that the initial (excited) and the final (ground) state can be expressed
as products of an electronic (Ψ) and a vibrational (Θ) wavefunc-
tion. The non-adiabatic transition is mediated by the nuclear kinetic
energy operator V̂ = T̂nuc,

∣Ψes,Θes,i⟩
V̂
Ð→ ∣Ψgs,Θgs,f ⟩. (1)

We further assume that the probability to be initially in state i
is given by the Boltzmann distribution with partition function
Z = ∑i e

−βE(es)
i with β = 1/(kBT). The internal conversion rate is then

given by Fermi’s golden rule,

kic(ΔE) =
2π
̵h ∑i,f

e−βE
(es)
i

Z
∣⟨Ψes,Θes,i∣V̂ ∣Ψgs,Θgs,f ⟩∣

2

× δ(ΔE + E(es)
i − E(gs)

f ). (2)

For the definition of the vibrational energies E(es)
i and E(gs)

f and
the adiabatic excitation energy ΔE, see Fig. 2. Enumerating and
summing over all relevant vibrational states in even a medium-
sized molecule is very difficult. In the time-dependent formalism,
this problem is solved by replacing the summation by a propaga-
tion in time. The lineshape function δ(. . .), which enforces energy
conservation, is replaced by its Fourier decomposition,

δ(ΔE + E(es)
i − E(gs)

f ) =
1

2π ∫
∞

−∞

eı(ΔE+E(es)
i −E(gs)

f )t f̃ (t) dt. (3)

Here, f̃ (t) is the Fourier transform of the lineshape function and
accounts for homogeneous and inhomogeneous broadening. In this
way, the Fourier transform of the rate is expressed formally as a time
correlation function,

k̃ic(t) =
2π
̵h

1
Z

Tr(e(ıt−β)Ĥ
(es)

V̂e,ge−ıtĤ
(gs)

V̂†
e,g). (4)

Ĥ(es) and Ĥ(gs) are the vibrational Hamiltonians of the excited and
ground states, respectively, and V̂e,g = ⟨Ψes∣V̂ ∣Ψgs⟩ is the matrix
element of the coupling operator between the electronic parts of
the wavefunctions. The rate is obtained by the inverse Fourier
transform,

kic(ΔE) =
1

2π ∫
∞

−∞

dt eıΔEt f̃ (t)k̃ic(t). (5)

The same formalism can also be applied to the radiative rate. Eval-
uating the correlation function in Eq. (4) is still a formidable task,
unless the vibrational Hamiltonians Ĥ(es) and Ĥ(gs) are approxi-
mated by harmonic oscillators. For the general case of two har-
monic potential energy surfaces, the working equations for comput-
ing radiative and non-radiative rates have been derived in Refs. 3,

FIG. 2. Harmonic potential energy surfaces, adiabatic excitation energy ΔE, and
vibrational energies of an initial and a final state.
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13, 16, and 17. The reader is referred to these publications for more
details. The formalism can deal with the changes in frequencies and
mixing of normal modes (Duschinsky effect) and only requires stan-
dard electronic structure calculations. Geometry optimizations and
frequency calculations can be routinely applied to the excited states
of medium-sized molecules. Two of us, Santoro and Cerezo, have
implemented the time-dependent formalism into a development
version of the code FCclasses3.4

To study the effect of anharmonicity, we modify the simplest
of the harmonic models, the AS model, by replacing the quadratic
potentials with Morse potentials. We now describe the anharmonic
AS model and derive the corresponding expressions for the non-
radiative rate.

B. The anharmonic adiabatic shift model—internal
conversion rates

An adiabatic shift (AS) model for internal conversion is fully
characterized by the adiabatic excitation energy ΔE, the vibra-
tional frequencies ωi, the displacements ΔQi, and the electronic
non-adiabatic couplings between the ground and excited electronic
states, Ci = ⟨Ψes∣

∂Ψgs

∂Qi
⟩, for each of the independent vibrational

modes Qi (i = 1, . . ., N). Using these quantities, we construct poten-
tial energy surfaces for the electronic ground and excited states,
where the harmonic oscillators for both the ground and excited
states of a mode i are replaced by Morse potentials,18,19

V(i)gs (Qi) = Di(1 − e−αiQi
)

2, (6)

V(i)es (Qi) = Di(1 − e−αi(Qi−ΔQi)
)

2 + ΔE. (7)

The ground- and excited-state minima lie at Qi = 0 and Qi = ΔQi,
respectively. Around them, the potential energy surfaces can be
approximated by a harmonic oscillator potential with frequency ωi,

V(i)gs (Qi) ≈
1
2
ω2
iQ

2
i , (8)

V(i)es (Qi) ≈
1
2
ω2
i (Qi − ΔQi)

2 + ΔE. (9)

The parameters Di and αi in the definition of the Morse potential
can be expressed in terms of the frequency ωi and an anharmonicity
parameter χ,

Di =
ωi

4χ
, (10)

αi =
√

2ωiχ. (11)

For χ → 0, the Morse potentials turn into the harmonic oscillator
potentials of Eqs. (8) and (9). The time-independent Schrödinger
equation,

−

̵h2

2
∂2ϕ(i)

∂Q2 + V(i)(Q)ϕ(i)n (Q) = ϵϕ
(i)
n (Q), (12)

is exactly solvable for the Morse potential, leading to bound states
with the eigenenergies

ϵ(i)n = ̵hωi((n +
1
2
) − χ(n +

1
2
)

2
) n = 0, 1, . . . ,nmax. (13)

The index of the highest vibrational state nmax, which is still bound,
can be determined by the requirement that the energy increases
monotonically with the index n; therefore,

∂ϵ
∂n
∣

n=nmax

= 0 ⇒ nmax = ⌊
1
2
(

1
χ
− 1)⌋. (14)

The main difference between the harmonic and the Morse potential
is that in the latter most states are unbound so that the density of the
final states is increased if the adiabatic excitation energy exceeds the
dissociation energy.

We solve the Schrödinger equation for the ground- and excited-
state Morse potential numerically for each mode on an equidistant
grid by diagonalizing a finite difference Hamiltonian. The over-
lap integrals between eigenfunctions on the excited state (ni) and
the ground state (mi), ⟨n′i ∣mi⟩ = ∫dQiϕ(i)n (Qi − ΔQi)

∗ϕ(i)m (Qi),
as well as the nuclear non-adiabatic coupling vectors,

⟨n′i ∣∇mi⟩ = ∫dQiϕ(i)n (Qi −ΔQi)
∗ ∂ϕ(i)m (Qi)

∂Qi
, are evaluated numerically

and tabulated. The fact that the eigenenergies are known exactly and
that the Franck–Condon factors should sum to ∑mi=0 ∣⟨n

′

i ∣mi⟩∣
2
= 1

serves as a check.
A multidimensional potential energy surface (for the ground or

excited state) is constructed as a sum of the N Morse potentials,

V(Q1,Q2, . . . ,QN) =
N

∑

i=1
V(i)(Qi). (15)

A vibrational wavefunction is specified by the number of phonons
mi in each mode

∣m⃗⟩ = ∣m1,m2, . . . ,mN⟩, (16)
with eigenenergies

Em⃗ =
N

∑

i=1
ϵ(i)mi . (17)

Vibrational relaxation in the excited state is taken to be very fast
as compared to electronic relaxation. Therefore, the probability of
being in the initial vibrational state n⃗ is given by the Boltzmann
distribution Pn⃗ = e−βEn⃗

Z .
The total rate of internal conversion is the sum over all transi-

tions between the initial states ΨesΘes,n⃗ and the final states ΨgsΘgs,m⃗
weighted by the probability Pn⃗,

kic(ΔE) = 2π∑
n⃗,m⃗

Pn⃗∣∑
i
⟨Ψgs∣

∂Ψes

∂Qi
⟩⟨Θgs,m⃗∣

∂Θes,n⃗

∂Qi
⟩∣

2

× δ(ΔE + En⃗ − Em⃗). (18)

δ(. . .) enforces (approximate) energy conservation between the ini-
tial and final states, ΔE+En⃗ ≈ Em⃗. In the time-dependent formalism,
the non-radiative rate is expressed as

kic(ΔE) =
1

2π ∫
+∞

−∞

eıΔEt f̃ (t)k̃ic(t)dt, (19)

where f̃ (t) is the Fourier transform of the lineshape function
[Gaussian f̃G(t) = 1/(2π) exp(−1/2σ2t2

), Lorentzian
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f̃L(t) = 1/(2π)[exp(γt)θ(−t) + exp(−γt)θ(t)] with θ(t) the Heavi-
side step function, or a Voigt profile f̃V(t) = f̃G(t)f̃L(t)] and k̃ic(t) is
a correlation function,

k̃ic(t) = uicZ−1
∑

n⃗
e−βEn⃗∑

m⃗
Fn⃗,m⃗N

2
n⃗,m⃗e

−ı(Em⃗−En⃗)t . (20)

The factor uic = 2.598 × 1017 s−1 converts the rate to s−1 if
all other quantities are given in atomic units. The sum extends
over all vibrational initial and final states with occupation num-
bers n⃗ and m⃗, respectively. Fn⃗,m⃗ is the product of Franck–Condon
factors FCFni ,mi ,i = ∣⟨n

′

i ∣mi⟩∣
2,

Fn⃗,m⃗ = ∣⟨n⃗∣m⃗⟩∣
2
=

N

∏

i=1
FCFni ,mi ,i, (21)

and Nn⃗,m⃗ is the scalar product of the electronic with the nuclear non-
adiabatic coupling vector (divided by the overlap),

Nn⃗,m⃗ =
N

∑

i=1
⟨Ψes∣

∂Ψgs

∂Qi
⟩ ⋅

⟨n′i ∣ ∂
∂Qi
∣mi⟩

⟨n′i ∣mi⟩
=∑

i
Ci ⋅ Kni ,mi ,i. (22)

To bring Eq. (20) into a manageable form, we define

Gn,m,i(β, t) = e−βϵ
(i)
n Fn,m,ie−ı(ϵ

(i)
m −ϵ

(i)
n )t (23)

and sums over products Gn ,m ,i with the non-adiabatic couplings
Kn ,m ,i,

g(0)i (β, t) =∑
m
∑

n
Gm,n,i(β, t), (24)

g(1)i (β, t) =∑
m
∑

n
Gm,n,i(β, t)Kn,m,i, (25)

g(2)i (β, t) =∑
m
∑

n
Gm,n,i(β, t)K2

n,m,i. (26)

For a harmonic oscillator, these sums can be obtained analytically,
in the case of the Morse potentials, the sum runs over all eigenstates,
whose number is limited by the size of the grid that was used to
calculate them.

It can be shown that with these abbreviations, the correlation
function becomes

k̃ic(t) = uicZ−1

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

N

∑

i=1

N

∑

j=1
g(1)i (β, t)g(1)j (β, t)∏

k
k≠i
k≠j

g(0)k (β, t)

+
N

∑

i=1
g(2)i (β, t)∏

k
k≠i

g(0)k (β, t)

⎫
⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪
⎭

. (27)

III. COMPUTATIONAL DETAILS
For the simulation of vibrationally resolved fluorescence spec-

tra of the studied systems, the molecular structure has been first opti-
mized in the framework of density functional theory (DFT), using
the PBE0 hybrid functional (25% HF exchange)20,21 and the B3LYP

hybrid functional22,45 in combination with the def2-SVP23 basis set
as implemented in the Gaussian1624 software package. The PBE020

functional was employed for the main part of the analysis, because it
has been found to give reasonably accurate spectral lineshapes in the
previous studies of coumarin dyes.25,26 The excited-state properties
have been calculated using time-dependent density functional the-
ory (TD-DFT) with the same functional and basis set. The solvent
effects are treated in an implicit way via the polarizable continuum
model (PCM).27 For the calculation of excited-state properties, the
reaction field of the solvent is adjusted to the electronic density
of the first excited state (equilibrium solvation). The vibrationally
resolved emission spectra together with radiative and non-radiative
rates from the lowest electronic excited state were simulated within
the harmonic and Franck–Condon approximations employing the
FCclasses34 program.

The internal conversion rates based on the anharmonic AS
model are calculated for a range of anharmonicity parameters,
χ = {0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07}. The correlation
function k̃ic(t) of Eq. (27) is evaluated on an equidistant time grid
covering the interval [−T, T] for T = 1000 fs with Nt = 214 + 1
samples. k̃ic(t) is Fourier transformed followed by interpolation on
the discrete energy grid to obtain the rate kic(ΔE) at the emission
energy ΔE.

IV. RESULTS
To test whether we can predict fluorescence quantum yields

using harmonic models, we selected a sample of coumarin deriva-
tives, for which experimental quantum yields in solution are avail-
able in the literature.28–33 Coumarin derivatives are versatile laser
dyes34 and photosensitizers in solar cells and have been studied
before by some of us.35 Interestingly, coumarin itself does not flu-
oresce presumably because of a conical intersection that opens an
ultrafast decay channel to the ground state through ring cleavage.36

In other coumarin derivatives, fluorescence is diminished by the
presence of a dark nπ∗ state below the photoexcited ππ∗ state, whose
relative position depends on the polarity of the solvent.36 Since we
want to study the validity of the harmonic approximation separately
from other problems that might occur, we selected coumarins 102,
343, 522, and ClMMC, which are well-behaved from the theoret-
ical point of view: they do not have low-lying accessible conical
intersections. Their S1 state is bright and of ππ∗ character and is
separated by a large energy gap from higher states so that no mixing
of states and breakdown of the Born–Oppenheimer approximation
has to be considered. In coumarins 102 and 343, the amine group is
rigidized by six-membered rings,34 which impedes pyramidalization
and rotation.

A. Harmonic models and broadening functions
First, we compare different harmonic models. In Fig. 3 (and

Figs. 1 and 2 in the supplementary material), we present emission
spectra and radiative and internal conversion rates for all coumarins.
Comparing vertical (V∗) and adiabatic (A∗) models gives us the
opportunity to assess the degree of anharmonicity, because corre-
sponding adiabatic and vertical models should give the same results
for a strictly harmonic potential. In this case, the point around which
the potential is expanded to second order becomes irrelevant. The
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FIG. 3. c343 in EtOH (top) and ClMMC in cyhex (bottom) (at T = 300 K). (a) Vibrationally resolved emission spectrum for different harmonic models (with Gaussian broadening
of HWHMG = 0.02 eV). (b) IC rate vs emission energy for different models and the same Gaussian broadening. (c) IC rate with the AH model for different broadening functions:
Gaussian (HWHMG = 0.02 eV), Voigt I (HWHMG = 0.02 eV and HWHML = 0.001 eV), and Voigt II (HWHMG = 0.02 eV and HWHML = 0.0001 eV). The solid (dashed) red line
marks the adiabatic (vertical) emission energy.

agreement between vertical and adiabatic models, however, is only
a necessary but not sufficient condition for the validity of the har-
monic approximation, since the models become identical if the shift
between the initial and final state minima is very small.

The accuracy of the harmonic approximation for the radiative
decay rate kr is remarkable (see Table I). For all cases, in which
experimental data are available, our computations agree within a fac-
tor of 2, except the AH value for ClMMC in cyhex, which is 37% of
the experimental value. The VH value for coumarin 102 in MeCN
is only 7% smaller than what is measured in experiment. The emis-
sion spectra are narrow and structured for AS and VG models and
are broadened and shifted to lower energies for VH and AH mod-
els. Therefore, the radiative rate, kr, is also larger for AS and VG
models, since the rate scales as ΔE3. Differences in the predictions
of AH and VH models are almost in all cases very minor, except for
ClMMC in cyhex where a factor of 1.7 is observed. This is not unex-
pected since kr mainly depends on the overlap between the thermally
populated vibrational states of the excited states (few quanta) and
the low-energy vibrational states of the ground electronic state (due
to the ΔE3 dependence). These states should be well described in
the harmonic approximation for rigid molecules as the coumarins
considered here.

Moving to the predictions for the internal conversion rate, for
all coumarins, they increase if frequency changes and Duschinsky
mixings are taken into account. The rates of all harmonic mod-
els follow the exponential energy gap law, kic(ΔE) ∝ e−αΔE, yet the
exponent depends on the model. Interestingly, also for kic AH and
VH predictions are always similar, even in those cases in which

kic is very small, order of magnitudes less than what is neces-
sary for a reliable prediction of the fluorescence quantum yield
(see below). This means that if, in those cases, the underestima-
tion of kic is due to anharmonic effects, a comparison between
AH and VH does not seem to be able to highlight it. Interestingly,
broad emission spectra correlate positively with high non-radiative
rates.

The choice of the broadening function has only a moder-
ate effect on the radiative rate but, on the contrary, it can have a
profound influence on the non-radiative rate. It determines how
tightly energy conservation between the initial and final states is
enforced. The physical origin of the broadening is twofold: Inho-
mogeneous broadening (with a Gaussian lineshape) occurs because
different molecules in the solution experience slightly different envi-
ronments leading to small shifts in their energy levels. The energy
shifts in an ensemble of molecules follow a Gaussian distribution.
These random fluctuations increase with temperature so that the
Gaussian broadening can be related to the thermal energy and the
solvent reorganization energy.37,38 The inhomogeneous broadening
can actually be estimated from first principle (using state-specific
solvation models38 or from molecular dynamics simulations39) but
all these estimates may introduce a computational error. Therefore,
due to the scopes of this paper, we prefer to treat is as a phenomeno-
logical parameter to better understand its impact on kr and kic.
In Fig. 4, the vibrationally resolved emission spectra from the AH
model are compared to the experimental spectra. An inhomoge-
neous broadening of HWHMG = 0.125 eV reproduces the spectral
width and shape well. However, since the vibrational structure is
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TABLE I. Fluorescence quantum yields QY = kr(kr + kic)−1 of coumarins predicted by harmonic models. The broadening functions are a Gaussian with HWHMG = 0.02 eV
and a Voigtian with HWHMG = 0.02 eV and HWHML = 0.001 eV. knr is the experimental non-radiative rate. For caveats about using the Voigt profile, see Sec. IV A.

Coumarin Broad. kr/108 s−1 kic (s−1) knr (s−1) QY

(solvent) funct. AH VH Expt. AH VH Expt. AH VH Expt. References

102 Gauss 2.4 2.6 2.8 2.1× 101 5.4× 10−1 2.7× 107 1.00 1.00 0.91 29
(MeCN) Voigt 2.3 2.6 4.6× 107 4.6× 107 0.83 0.85
102 Gauss 1.9 2.1 . . . 1.4× 101 2.6× 10−1 . . . 1.00 1.00 1.05 29
(cyhex) Voigt 1.9 2.1 3.2× 107 3.1× 107 0.85 0.87
102 Gauss 2.3 2.6 1.3 2.0× 101 5.3× 10−1 8.6× 107 1.00 1.00 0.60, 0.77 30 and 31
(EtOH) Voigt 2.3 2.6 4.6× 107 4.6× 107 0.84 0.85
343 Gauss 3.0 3.4 . . . 7.9× 100 9.6× 10−1 . . . 1.00 1.00 0.81, 0.63 32 and 34
(EtOH) Voigt 2.9 3.4 5.8× 107 6.1× 107 0.83 0.85
522 Gauss 1.7 2.0 1.5 4.3× 103 6.9× 102 2.3× 107 1.00 1.00 0.87 29
(MeCN) Voigt 1.7 1.9 6.4× 107 6.3× 107 0.73 0.75
522 Gauss 1.4 1.6 2.3 4.0× 104 1.3× 104 5.0× 106 1.00 1.00 0.98 29
(cyhex) Voigt 1.4 1.6 4.3× 107 4.3× 107 0.76 0.79
ClMMC Gauss 0.7 1.2 1.9 6.6× 109 5.1× 109 1.4× 109 0.01 0.02 0.12 33
(cyhex) Voigt 0.7 1.2 6.7× 109 5.2× 109 0.01 0.02
ClMMC Gauss 2.6 2.9 2.1 4.0× 107 1.4× 107 6.0× 107 0.87 0.95 0.83 33
(water) Voigt 2.6 2.9 7.9× 107 5.2× 107 0.76 0.85

completely washed out, we use a smaller inhomogeneous broaden-
ing of HWHMG = 0.02 eV for presenting the emission spectra in
Fig. 3. The effect of the inhomogeneous broadening on the radiative
and non-radiative rates is only minor.

FIG. 4. Comparison between experimental and theoretical emission spectra. The
theoretical spectra were obtained with the AH model (HWHMG = 0.125 eV and
HWHML = 0 eV) at T = 300 K. To make comparison of the spectral width and
shape easier, the theoretical spectra were shifted so that the maxima of the exper-
imental and theoretical curves coincide. Experimental spectra were digitized from
the following sources: c522 in MeCN,44 c102 in EtOH,30 and ClMMC in water.33

The homogeneous broadening (Lorentzian lineshape) in turn
is due to the finite lifetime τ of vibrational states, with HWHML = γ
=

1
τ . This type of broadening can be understood as a consequence of

the Heisenberg uncertainty principle. Both types of broadening are
combined in the Voigt profile, which is the convolution of a Gaus-
sian with a Lorentzian function. Data in Table I show that the effect
of the adopted Lorentzian broadening on kr is negligible. In con-
trast, while results for the non-radiative rate are not very sensitive
to the Gaussian broadening, they can be dramatically affected by the
Lorentzian broadening. A Lorentzian profile has a long tail and, thus,
allows transitions between vibrational states with large energy mis-
match, where the Franck–Condon factors are large. Consequently,
the internal conversion rate increases with γ, as demonstrated in
Fig. 4 of the supplementary material. For large γ, the rate in fact
becomes independent of the vibrational structure and is completely
dominated by the broadening function. It is very difficult to esti-
mate γ without knowledge of the experimental emission spectrum.
If a spectrum is available with some luck a Voigt profile can be fit-
ted to a shoulder of the lowest vibrational peak. However, separating
the inhomogeneous from the homogeneous broadening is a tricky
task, in particular since both types of broadening affect the spectral
width and, thus, the radiative rate, while it is mostly the homoge-
neous broadening which affects the internal conversion rate. Also,
this approach defeats the purpose of predicting decay rates from first
principles. Actually, we compute the contribution to the lifetime due
to spontaneous emission as k−1

r (data in Table I). So we can say that
k−1

r represents an upper bound for the lifetime. It is usually so long
that it does not alter kic.

The choice of the broadening function affects the non-radiative
rates strongly, unless the rate is very large already. The Voigt profile
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gives a high non-radiative rate at energies where the rate is zero with
a Gaussian profile. In this regime, the non-radiative rate depends
solely on the width of the Lorentzian and not on the vibrational
structure. For instance, for coumarin 343 the Gaussian profile pre-
dicts kic ≈ 0.0 s−1 at an adiabatic emission energy of 3 eV, while the
Voigt profile predicts kic = 107 to 109 s−1 depending on the width of
the Lorentzian (see the top of Fig. 3).

In the case of ClMMC (see the bottom of Fig. 3), accounting for
frequency changes (ASF and VGF) increases the rate dramatically by
several orders of magnitude relative to the displaced oscillator mod-
els. The Duschinsky effect, which in the case of ClMMC is small,
increases the rates further. Here, adiabatic and vertical models give
similar results pointing to the validity of the harmonic approxima-
tion. Unlike all other coumarins, the non-radiative rate does not
depend on the broadening function, and Gaussian and Voigt profiles
give the same results over the entire energy range.

We proceed to compare the predicted fluorescence quantum
yields, QY = kr(kr + kic)

−1, with experiment in Table I. The large
difference between AS/VG and the other models shows that the
assumption of independent modes is usually not valid. In Table I,
we, therefore, only list rates and quantum yields for the AH and
VH models. With the exception of ClMMC, the Gaussian profile
yields non-radiative rates, which are orders of magnitude too low so
that the fluorescence quantum yield is always 1. With a Voigt pro-
file, the non-radiative rates increase to a reasonable level; however,
they depend on the arbitrary choice of the width of the Lorentzian.
The apparent agreement between the experimental and theoretical
rates when using the Voigt profile with γ = 0.001 eV can be mis-
leading. If we interpret the homogeneous broadening as the result
of a finite lifetime of the excited state, this γ corresponds to a life-
time of 658 fs, i.e., to the existence of another non-radiative decay
process (e.g., ISC and CI) that has k′nr = 1.5 × 1012 s−1. If this pro-
cess exists, it completely dominates the other ones and brings QY
to 0 since QY = kr(kr + kic + k′nr)

−1. In other terms, the fact that
the internal conversion rate increases from 101 to 107 s−1 is of little
interest. No excited-state population decays via internal conversion
since the other process is much faster. Before internal conversion can
set in, all population has already decayed via the additional chan-
nel. Thus, if a large γ is needed to reproduce experimental rates,
this means that either the most important decay channel is miss-
ing in the model or that anharmonicities are not negligible. There-
fore, fitting γ to reproduce experimental non-radiative rates40 is not
advisable.

A possible way to determine a unique γ is to use a self-
consistent procedure: we start with an arbitrary γ and compute the
radiative and IC rates. In the following iterations, we set γ = kr + kic
and repeat the calculation of the rates with the new Lorentzian
broadening. γ converges typically after a few iterations to a unique
value that does not depend on the initial starting value. The self-
consistent broadenings are close to 0: γSC = 4.4 × 10−6 eV for
ClMMC in cyhex and γSC = 1.0 × 10−7 eV for 343 in ethanol.
Although substituting the results of first-order perturbation the-
ory back into a first-order theory is somewhat questionable, this
procedure shows that if we require γ to be uniquely defined, its
value is much smaller than what would be necessary to reproduce
experimental non-radiative rates.

Only for ClMMC in water and cyclohexane (cyhex), the quan-
tum yield is predicted reliably.

We can identify two conditions that should be met if the results
are to be trusted: (1) AH and VH models should agree and (2) Gaus-
sian and Voigt profiles should not differ greatly at the adiabatic
emission energy. There is also an apparent connection between the
width of the emission spectrum and the robustness of the predicted
rates to the choice of the broadening function.

For systems with short vibronic progressions (narrow spec-
tra), such as coumarins 102, 343, and 522, the rate is small and
very sensitive to the broadening, while for those with long vibronic
progressions (broad spectra), such as ClMMC in cyhex and to
a lesser degree in water, all broadening functions give the same
result.

One of the decay processes we have neglected so far is inter-
system crossing from S1 to the energetically close T2 state (see
Table 1 in the supplementary material). Although the spin-orbit
couplings are very small, we cannot exclude that this decay chan-
nel contributes significantly to the non-radiative rate. We leave this
question to a future study. In a relativistic treatment, where spin
is not a good quantum number anymore, singlet and triplet states
would be mixed so that the distinction between IC and ISC becomes
blurred. Therefore, all of the above considerations would also apply
to ISC. However, we expect the harmonic approximation to be
better justified in the case of ISC since the energy gap is usually
smaller.

B. Anharmonic AS model—Anharmonicity
and broadening function

Finally, we consider the effects of anharmonicity and the choice
of the broadening function on the internal conversion rate in the
adiabatic shift model. We use coumarin ClMMC in cyhex as an
example.

Figure 5 depicts kic(ΔE) for increasing anharmonicity. At inter-
mediate energies (0.5 < ΔE < 3.0 eV), the anharmonic rates are
higher than the harmonic one, but log(kic) still decreases linearly
with ΔE, while at higher energies (3.0 < ΔE) the rates start to devi-
ate from the exponential energy gap law.41 High internal conversion

FIG. 5. ClMMC in cyhex. Internal conversion rates from an anharmonic AS model
for different degrees of anharmonicity χ. The dashed line shows the rate obtained
with FCclasses3 for the AS model, which should be identical to the χ = 0.0 case.
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rates require energy conservation and large Franck–Condon factors,
but these two conditions cannot be fulfilled at the same time: if the
final states are low-lying vibrational states, the Franck–Condon fac-
tors are high but energy conservation is poorly fulfilled. On the other
hand, if the final states are highly excited vibrational states such that
the sum of the vibrational energies equals the optical gap ΔE, the
Franck–Condon factors are very low, due to the oscillatory nature
of high-lying vibrational states. In the harmonic approximation, the
Franck–Condon factors |⟨n′|m⟩|2 vanish quickly as m → ∞. The
effect of including anharmonicity is that the Franck–Condon factors
decrease slower with increasing m (see Fig. 3 in the supplementary
material). Therefore, more final states are available, which have rel-
atively high overlaps with the initial states in the anharmonic case
than in the harmonic case.

What value should one take for the anharmonicity χ? A pos-
sible qualitative argument for selecting a plausible value for χ is
the following: in infrared spectroscopy, it is rather customary to
multiply the computed harmonic frequencies by a factor, usually
0.96 for B3LYP/6-31G(d),42 since this improves the comparison of
the harmonic vibrational frequencies with the experimental fun-
damentals. Of course, this is just a phenomenological parameter
and it corrects also for other errors, but it is considered that one
of the most important effects is anharmonicity.42 According to
Eq. (13), the ratio of the first transition energy and the harmonic
frequency is

ϵ1 − ϵ0
̵hω

= 1 − 2χ. (28)

Therefore, if we impose that this fraction is 0.96, we get χ = 0.02. This
suggests that the values χ = 0.03, . . ., 0.07, where the deviations of kic
from the harmonic approximation are sizable, might be too large.
On the other hand, the anharmonic AS model just includes diagonal
anharmonicities, while for the harmonic models, we have seen that
quadratic couplings (frequency changes and Duschinsky effect) play
an important role. Therefore, it is conceivable that the off-diagonal
anharmonicities would be even more important than the diagonal
ones.

These simple calculations with the AS model show that devi-
ations from the energy gap law are attributable to anharmonici-
ties. Choosing a large Lorentzian broadening γ has a similar effect
(cf. Fig. 4 in the supplementary material). However, a large γ actually
implies the existence of a non-radiative process we have not consid-
ered, which reduces the lifetime of the excited states. In both cases
(large χ or large γ), the rates are higher and the function log(kic(ΔE))
exhibits a kink, where the slope of the curve suddenly becomes less
steep.

Furthermore, it should be noted that the choice of the method
to describe the electronic structure adds another uncertainty to the
computed rates. Even within density functional theory, the choice of
the functional type (GGA, hybrid, range-corrected hybrid) and the
solvation model can lead to differences in the vibrational structure
and, above all, to deviations in the vertical/adiabatic energies in the
order of 0.5 eV. The differences in the resulting emission energies
and IC rates between the PBE0 and the B3LYP functional are shown
in Table II. Since the slope of the curve kic vs ΔE is very steep, the
choice of the functional can change the internal conversion rates by
several orders of magnitude.

TABLE II. Emission energies and internal conversion rates for the functionals PBE0
and B3LYP. Eem is the energy at the maximum of the emission spectrum. The
theoretical spectra were obtained with the AH model (HWHMG = 0.125 eV and
HWHML = 0 eV) at T = 300 K. Sources for experimental spectra are the same as
in Fig. 4, except for coumarin 34343 (PhotochemCAD online database).

Coumarin Eem (eV) kic (s−1)

(solvent) PBE0 B3LYP Expt. PBE0 B3LYP

102 (MeCN) 3.06 2.63 . . . 2.1× 101 4.1× 103

102 (cyhex) 3.26 2.99 . . . 1.4× 101 9.0× 102

102 (EtOH) 3.06 2.64 2.65 2.0× 101 3.9× 103

343 (EtOH) 2.88 2.77 2.65 7.9× 100 1.5× 102

522 (MeCN) 2.78 2.39 2.42 4.3× 103 4.6× 105

522 (cyhex) 2.99 2.70 . . . 4.0× 104 3.8× 105

ClMMC (cyhex) 3.43 3.40 . . . 6.6× 109 1.2× 1010

ClMMC (water) 3.31 3.32 3.04 4.0× 107 3.0× 107

V. CONCLUSION
In this work, we investigated the reliability of the harmonic

approximation for the prediction of the radiative and non-radiative
decay rates and, therefore, of the fluorescence quantum yield of a
number of coumarin dyes. We first examined the performance of a
hierarchy of vertical and adiabatic harmonic models, and afterward,
we developed and applied a simple AS anharmonic model in order
to qualitatively analyze the possible effect of anharmonicity. There-
fore, we can try to enunciate a number of “rules of thumb” that can
help judging whether the results predicted from harmonic models
are reliable:

(Rule I) Harmonic predictions for kr are in good agreement with
experiment for the few cases where experimental data are available.
Frequency changes and Duschinsky mixings have only a moderate
effect and tend to slightly decrease kr. (Rule II) As far as the predic-
tion of kic is concerned, it is fundamental to account for frequency
changes and Duschinsky rotation since they increase kic strongly. In
the examples considered, the Duschinsky effect is more moderate,
but this is a peculiarity of coumarins, and there are many other sys-
tems where mode mixing can be significant. Therefore, we advise
against using the AS and VG models, as they neglect the effects
that contribute most to the non-radiative rate. kic shows a much
larger dependence on the specificity of the molecule and the adopted
methodology than kr. Therefore, it is much more difficult to com-
pute. This is an expected result since kic mainly depends on a reliable
description of strongly excited vibrational states, i.e., the same states
that are responsible for the very far tail of the emission spectrum.
(Rule III) As a matter of fact, a broad emission spectrum correlates
with large kic. These observations suggest that a further check of
the reliability of computational estimates might be: do the calcula-
tions allow for a realistic reproduction of the low-energy tail of the
emission spectrum?

Broadening functions insert phenomenologically those effects
that attenuate the energy conservation rule. They account for impor-
tant facts like the effect of energy fluctuations, lifetimes, and other
effects that matter. (Rule IV) The inhomogeneous broadening has
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a weak impact on kr and practically no impact on kic. The homo-
geneous broadening is connected with the lifetime of the excited
state, which is equal to or shorter than the fluorescence lifetime k−1

r .
Of course, other processes can decrease the lifetime so that we also
treated γ as a parameter. However, since, in general, we are not able
to compute a realistic number for the lifetime, we use this analysis
only to set a limit on the reliability of our results. (Rule V) If our
results strongly depend on γ, they are not reliable. In fact, in those
cases, kic is not dominated by the vibronic profile (which carries
information on the target molecule) but by the phenomenological
width of the Lorentzian γ. This happens when, with our level of
theory, we predict a very small kic. It may be that in reality, the non-
radiative decay is much faster than what we predict, but this depends
on other processes—conical intersections, intersystem crossing, and
internal conversions due to interactions with the environment (a
kind of pressure broadening)—that have not been considered in
our calculations. They would strongly modify the prediction of the
fluorescence quantum yield and, clearly, their effect cannot be repro-
duced by a phenomenological increase in γ in the computation of
the non-radiative process we have considered. In summary, when
they are important, they should be identified and properly taken into
account. This clearly makes a reliable computational prediction of
QY for these systems much more complicated.

The effect of anharmonicity (beyond the AS model) is the
most delicate and elusive point since anharmonicities can be many.
In principle, conical intersections and multiple conformations all
fall into the category of extreme anharmonicities. Assuming Morse
potentials for all modes, we find that for a typical value of χ = 0.02,
anharmonic effects are not drastic. One should bear in mind, how-
ever, that a Morse potential does not describe low-energy modes,
such as rotations around single bonds correctly, and that the cou-
pling between different modes is also neglected in the AS model.
Including anharmonic corrections for a realistic model of coupled
modes is not feasible so far.

(Rule VI) An obvious condition is that results from AH and VH
models must be similar, as this is necessary for the validity of the
harmonic approximation. Since we should expect that the error is at
least equal to the difference of AH and VH predictions, this sets a
lower bound for the accuracy. Our results, however, clarify that it is
only a necessary and not a sufficient condition. A second condition
is that small values of the Lorentzian broadening should not strongly
modify our estimate of the QY.

(Rule VII) Interestingly, our results suggest that the width of
the Lorentzian function and anharmonic effects start ruling kic for
values of ΔE, for which kic(ΔE) < 10−5kmax

ic . In summary, we can
conclude that our methodology can be considered reliable only
for molecules with adiabatic excitation energies such that kic(ΔE)
> 10−5kmax

ic . Since kmax
ic is typically 1012 to 1013 s−1, the critical val-

ues for which our computed non-radiative rates start not being
robust anymore are 107 to 108 s−1, i.e., the typical values for kr.
This limits our predictability to the extreme case QY = 0: if kic ≫ kr
already in the harmonic approximation, the prediction QY = 0 is
very robust since anharmonicity and homogeneous broadening only
increase the internal conversion rate. However, values of QY > 0 are
likely those more challenging for our theory and in those cases our
prediction will always be a little bit questionable.

The fulfillment of the condition kic(ΔE) > 10−5kmax
ic depends

on two factors working in different directions: the value of ΔE and

the extension of the vibronic progressions. The smaller ΔE and the
longer the vibronic progressions, the easier it is that the condition
is true. Small ΔE means emission in the red region of the visible
spectrum or in the near infrared. Long vibronic progression means
molecules with broad emission spectra and, therefore, characterized
by significant displacements of the excited- and ground-state equi-
librium geometries and, according to our analysis, also significant
changes in the normal mode frequencies. It is worthwhile to reiter-
ate the hypotheses underlying these considerations: we assume that
direct internal conversion from a thermalized bright state to the
ground state, triggered by non-adiabatic couplings, is the only rel-
evant non-radiative process. In other words, sequential decay, possi-
ble ISC, photoisomerizations, and decay at conical intersections are
neglected.

The chosen examples illustrate that in order to make theoret-
ical predictions for fluorescence quantum yields, it is not sufficient
to compare only simulated quantum yields with the experimental
ones, but it is recommendable to compare and analyze the radiative
and non-radiative rates and the influence of varying the harmonic
model and broadening parameterization. If there is a drastic differ-
ence in the obtained values for kic, one should not consider these
results accurate enough for the description of fluorescence quantum
yields. In conclusion, a “black-box” method for predicting fluores-
cence quantum yields from first principles does not seem within
reach, yet.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional figures men-
tioned in the text.
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