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Abstract

The present study analyzes the retrieval capacity of an Ensemble of diluted
Attractor Neural Networks for real patterns (i.e., non-random ones), as it is
the case of human fingerprints. We explore the optimal number of Attractor
Neural Networks in the ensemble to achieve a maximum fingerprint storage
capacity. The retrieval performance of the ensemble is measured in terms of
the network connectivity structure, by comparing 1D ring to 2D cross grid
topologies for the random shortcuts ratio. Given the nature of the network
ensemble and the different characteristics of patterns, an optimization can
be carried out considering how the pattern subsets are assigned to the en-
semble modules. The ensemble specialization splitting into several modules
of attractor networks is explored with respect to the activities of patterns
and also in terms of correlations of the subsets of patterns assigned to each
module in the ensemble network.
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1. Introduction

Amari-Hopfield type Attractor Neural Networks (ANNs) have been pro-
posed to solve a large number of problems in different domains (Amit, 1992;
Hopfield, 1982). This type of network is one of the computational models
that have been intensively analyzed in different contexts (Agliari et al., 2012,
2014, 2015a,b). Patterns are dynamically stored throughout the learning
process, using the generalized Hebb rule. In this type of network the pat-
terns stored in it are considered attractors, so the dynamics of the neural
system starting in a certain state converges to one of these stored attractors.
Recurrent dynamics allow the attractor networks (similarly to the brain) to
perform an interpretation process of pattern completion, and to construct
coherent neural states from noisy and/or incomplete data. ANNs dynam-
ics can be seen in many application domains like data clustering, pattern
denoising or image-processing (e.g. super-resolution).

ANNs are related to several deep learning auto encoding models such
as the Variational Autoencoders (Kingma and Welling, 2013) and denoising
autoencoders (Vincent et al., 2008). These models can be applied recur-
sively, however their convergence is not guaranteed nor the output quality
over iterations. Recently, ANNs have been revised in light of deep learning
methods and a convolutional bipartite architecture model has been proposed
(Iuzzolino et al., 2019) with a new training loss, activation function, and
connectivity constraints.

The communication between nodes (i.e. the information interaction) is
another important factor in most network-based computational models (Du
et al., 2018). Two aspects must be considered in the application of these
models to optimization processes: network structure (i.e. topology) and
information processing strategy, respectively. In general, a fully-connected
structure is usually not a good choice and a sparse structure is preferable.
Based on the defined network structure, the relevance of the network com-
ponents (i.e. nodes or subnetworks) can be different in defined information
processing strategies for optimization problems (Du et al., 2018). In the
context of ANN, the maximum storage capacity is approximately 0.13×N ,
where N is the number of neurons. This capability of storage is limited by
the well-known crosstalk term (Hertz et al., 1991; Amit, 1992). Fully con-
nected ANNs are very expensive computationally speaking, due to intensive
updating of local neuron fields (each local field involves N nodes’ activa-
tion). A possible alternative approach is the well-known diluted networks
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(K connections per unit instead of N connections, with K < N), where it
is shown that the computation is less intensive (each local field only involves
a K neighborhood activation), and most importantly, the capacity of the
attractor network per connection is also increased (Sompolinsky and Kanter,
1986; Derrida et al., 1987; Amit and Brunel, 1993; Arenzon and Lemke, 1994;
Wemmenhove and Coolen, 2003).

Recently, it has been empirically demonstrated how the storage capacity
of random patterns can be increased in an Ensemble of Attractor Neural
Networks (EANN) using the concept of dilution of network connections in
the different modules (Gonzalez et al., 2017; González et al., 2017), when we
compare with a single attractor network with equal connectivity than all the
modules (ensemble of attractors). With this new combination of attractors
that exploits the concept of dilution in network connections, one wonders
how this system will behave with real and non-random patterns (i.e. struc-
tured patterns). A first naive exploration of this question has been carried
out in this regard in two congress works: for 2D Gesture Retrieval (Dávila
et al., 2019), and for fingerprint patterns storage (González et al., 2019). In
all these seminal works the connectivity of each module of the network en-
semble is not optimized. In this work, we optimize the connectivity of the
attractor sets using fingerprint images as real patterns and we perform an
exhaustive analysis of how real patterns affect the storage characteristics of
the attractor set. An initial analysis of how storage capacity varies depend-
ing on the dilution of connections for a single attractor network with random
patterns was analyzed in (Dominguez et al., 2012), and later with fingerprint
patterns in (González et al., 2014). Specifically in this work we looked for a
topology that maximizes the storage capacity of fingerprint patterns for a set
of attractor networks with a considerable dilution of connections in each of
the modules of the ensemble. We compare the resulting capacity of optimized
ensemble connectivity with the capacity of a single diluted attractor network
with a number of connections equal to the sum of all the connections of the
different modules in the ensemble.

Human fingerprints are one of the most extended biometric modalities to
verify the identity and to recognize a person (Maltoni et al., 2009). This kind
of pattern results from impression of the structure of ridges on the last joint of
a person’s finger. There are some properties which make a fingerprints widely
used in forensic applications: (1) their uniqueness of the characteristic curved
lines of ridges and (2) the stability of the papillary drawing over a person
lifetime. Fingerprint retrieval problem consists in being able to recover as
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accurately as possible the most similar fingerprint from a collection of learned
patterns using a query fingerprint (which could be a noisy or incomplete
pattern). Due to the increasingly large size of biometric databases, there is a
need from computational methods to increase the efficiency of the fingerprint
retrieval task (Maltoni et al., 2009).

In the present work we show that the maximum of the fingerprint storage
capacity is obtained for an optimal number of modules of the EANN, and for
a dilution connectivity in each module intermediate between the purely local
connectivity and a completely random connectivity. Different types of local
connectivities are also explored in the work, with 2D cross-type connectivity
being the most optimal. Finally, due to the structured (non-random) nature
of the patterns, the ensemble specialization of several modules of attractor
networks is explored to optimize the capacity of the network. First, it is
studied how to distribute the patterns by activities in the ensemble mod-
ules, thus specializing the modules for different activity degrees. It is also
investigated how to distribute the correlated patterns among the different
modules of the set of attractors (i.e., the ensemble modules) to optimize the
storage capacity in the ensemble of attractors. It is shown that to optimize
the capacity in this case it is necessary to distribute the fingerprints in the
different modules so that each module has similar characteristics in terms of
the correlation between the patterns learned by that module.

The rest of the paper is organized as follows. Section 2 describes differ-
ent aspects of the EANN model (i.e., topology, learning, retrieval dynamics,
and information measures). To better organize the results of the paper, the
results are presented in two sections, 3 and 4. Section 3 presents the results
related to topology optimization. In this section are shown the experimental
performance results achieved by the EANN model with optimal topology ver-
sus a single ANN under equivalent conditions of complexity. Section 4 shows
the results related to the specialization of the ensemble modules according to
the structural characteristics of the patterns to be stored. A case example of
pattern subset assignment and a case of module specialization are presented.
Finally, Section 5 outlines the main conclusions of this experimental study
and suggests future research.

2. EANN model

In this section the base module of the EANN model, the neural coding,
the network topology, learning and retrieval dynamics, are described. Finally,
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in this section, a schematic representation of the modularized EANN system
is illustrated for the fingerprint retrieval and specialization, being compared
to the single attractor network.

2.1. Modules coding, topology and dynamics

Let us define a particular ensemble module of the actual attractor neural
network model. The definition is equivalent for the single network as well
for each module in the ensemble. The state of a neuron by a set of N
binary variables τ t = {τi ∈ 0, 1; i = 1, . . . , N}, where 1 and 0 represent,
respectively, active and inactive states. The network stores a set of patterns,
i.e. the fingerprints {ηµ, µ = 1, . . . , P} , through a learning process. The
neurons are updated in time t and aim to retrieve the patterns, τ t ∼ ηµ, for
large enough time t. The patterns are encoded as a set of binary variables
ηµ = {ηµi ∈ 0, 1; i = 1, . . . , N}, with pattern activity aµ = 〈ηµ〉 ≡

∑
i η

µ
i /N

(Dominguez et al., 2012; Doria et al., 2016). Similarly, the neural activity is
q ≡ 〈τ〉.

It is convenient to use the normalized variables, ξi ≡ ηi−a√
A

, σi ≡ τi−q√
Q

,

where A ≡ V ar(η) = a(1−a) and Q ≡ V ar(τ) = q(1−q) are the pattern and
neuronal variances, respectively. The neuron dynamics (Dominguez et al.,
2009, 2012) can be written as

τ t+1
i = Θ(hti − θ(a)), hti ≡

1

K

∑
j

Jijσ
t
j, i = 1, . . . , N, (1)

where hti represents the neuron’s input field, and the step function is: Θ(x) =
0(1), x < (≥)0. A neural threshold defined as

θ(a) =
1− 2a

2
√
A
c, (2)

where c is adjusted around c ∼ 1, is necessary to keep the neural activity
close to that of the learned patterns (Dominguez et al., 2012; González et al.,
2015; Doria et al., 2016).

The synaptic couplings between the neurons i and j are given by the
matrix

Jij ≡ CijWij, (3)

where the topology matrix C = {Cij} describes the connectivity structure of
the neural network and W = {Wij} is the matrix with the learning weights.
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The topology matrix corresponds to a small-world network (Watts and Stro-
gatz, 1998) with connectivity K = Kl + Kr, and random shortcuts ratio of
ω = Kr/K, where Kr corresponds to the long-range connections and Kl to
the local connections. This definition is valid starting from a ring as well as
other 1D or 2D topologies. The network is also characterized by the connec-
tivity ratio γ = K/N , which represents the dilution degree of the ANN.

The weight matrix W is updated according to the Hebb’s learning rule,

W µ
ij = W µ−1

ij + ξµi ξ
µ
j , W 0

ij = 0. (4)

After P learning steps, the weights reach the value Wij =
∑P

µ ξ
µ
i ξ

µ
j .

We measure the retrieval ability of the network modules with the overlap,

mµ ≡ 1

N

N∑
i

ξµi σi, (5)

which is the statistical correlation between the learned pattern ξi and the
neural state σi. For m = 1 and q ∼ a one has a perfect retrieval of the pattern
by the network, for m = 0 no retrieval is achieved, and for intermediate values
the pattern is retrieved with noise. Hence, the value of m is a measure of
the retrieval quality of the pattern performed by the network (Dominguez
et al., 2009; Doria et al., 2016). Together with the overlap m, the load ratio
α = P/K is useful to evaluate the network retrieval permanence. The initial
state of the network is given by σt=0

i = ξµi , which is a noiseless state loaded
from a test pattern µ where mµ

t=0 = 1.

2.2. Ensemble of Attractor Neural Networks (EANN)

A schematic representation of the single ANN is presented in Fig. 1-left.
The connectivity ratio γ is diluted with K < N . A set of P fingerprints
ξ is presented to the network in a learning phase, represented with the red
dashed arrow. Then, this set of fingerprints is presented in a retrieval phase
in order to test the recall abilities of the network in terms of the retrieved
patterns load α, and the quality of the retrieval m. This is represented with
the solid black arrow.

In Fig. 1-right, a schematic representation of an ensemble of ANN modules
with a number of n components is presented. The connectivity in each ANNb

module b is highly diluted with Kb � N , b ∈ {1, ..., n}. The set of patterns
is divided into disjoint subsets of uniform size Pb = P/n, and each pattern
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Figure 1: Schematic representation of the single attractor vs. ensemble network model.
Left: single attractor network with entire fingerprint dataset. Right: ensemble of attractor
networks with pattern subsets.

subset is learned by its corresponding ANNb module as represented with
the red dashed arrows. E.g. {~ξµ, µ = 1, . . . , P/n} for the first module
ANNb, b = 1, as shown in Fig. 1-right. The solid black arrows in Fig. 1-right,
represent the retrieval stage, in which all the pattern subsets are presented
to all ANN modules in order to test the discrimination among them. The
target patterns are considered as retrieved by the ANN module with the
higher overlap value over the retrieval threshold θr i.e. max(mµ

b ) > θr. For
comparison purpose, the retrieval threshold is assumed to take the same value
θr = 0.7 for each component in the ensemble, as well as, for the single ANN
system.

In both cases, single ANN and EANN systems, one looks for the optimal
connectivity between the purely local and a completely random connectivity,
to obtain a maximum recovery capacity. Two types of local connectivities,
1D-ring and 2D-cross, are considered in this study. In the EANN system one
also looks for the optimal connectivity of the b modules to obtain a max-
imum recovery capacity with the two types of local connectivity that were
used in the single attractor network. Thus the two systems schemes are com-
pared with each having the same number of connections: the single attractor
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network versus the EANN network with total number of connections being
equal. The computational cost of the single ANN and the EANN are the
same, as shown in (Gonzalez et al., 2017), one uses K = Kb×n, the original
dataset can be divided in subsets in order to increase the storage capacity
when compared with single attractor.

As a use case, the EANN can perform specialization, where the finger-
prints to be learned are partitioned into subsets according to the overlap
between patterns and by assigning these subsets to different ensemble mod-
ules for reducing the overlap between patterns in each module (i.e, to reduce
the cross-talk noise in the network). Three strategies are compared: random
assignment, windowed assignment after sorting the datasets in terms of over-
lap between patterns, and alternate assignment of the sorted dataset. Next,
we present another use case which consists in assigning subsets of patterns to
modules according to similar dataset features, as it is the pattern activity. In
this case an EANN with n = 3, Kb = 100 per module is used. Each module
specializes its retrieval dynamics using a threshold adapted for the following
pattern subsets activities: skeletonized fingerprints (activity a ∼ 0.0844, and
field threshold θ(a) = 1.4951), normal binarized (a ∼ 0.2258, θ(a) = 0.656),
and thickened fingerprints (a ∼ 0.4660, θ(a) = 0.0681). The same dataset
have been used but differing the morphological operations applied over the
binary images to achieve the respective activity as described in Fig. 2.

2.3. EANN information measures

In order to evaluate the EANN performance, the retrieval efficiency R
is defined as the number of learned patterns that are successfully retrieved
R = Pr

P
, where Pr is the overall number of retrieved patterns that satisfy

mµ > θr, and P is the overall number of patterns presented to the net-
work during the learning phase. One has that P ≥ Pr. Here, θr = 0.7
is used as the retrieval threshold, unless stated otherwise. The mean re-
trieval overlap M is calculated over all patterns subset µ ∈ 1, 2, . . . , P ,
M = 〈m〉µ = 1/P

∑P
µ=1m

µ. It is worth noting that in the case of the

ANN ensemble, the retrieval pattern load is calculated as αR = Pr

Kb×n
where

n is the number of subnetworks. Thus, we use Kb × n = K constant for all
network ensembles studied, where K is the connectivity of the single “dense”
network. Also, it is of worth to define the pattern gain G of the ANN en-
semble by taking the single ANN system retrieval performance in terms of
recovered patterns (P s

r ) as baseline, and it is given by G = P e
r /P

s
r . Here P e

r

stands for the number of total recovered patterns by the ANN ensemble and
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grayscale a=0.08 a=0.23 a=0.47

Figure 2: Examples of fingerprints in the dataset and their associated transformations.
From left to right: gray-scale fingerprint, skeletonized fingerprint (activity a ∼ 0.08),
binarized fingerprint (a ∼ 0.23), dilated (thickened) fingerprint (a ∼ 0.47).

P s
r stands for the patterns recovered by the single network at the maximum

retrieval pattern load max(αR).

2.4. Fingerprint datasets

Fig. 2 shows several representative examples of grayscale fingerprint im-
ages obtained from the sensor (left) followed by the binarized outputs: skele-
tonized, binarized with normal width, and dilated (thickened) fingerprints
respectively. The fingerprint collections come from the International Finger-
print Verification Competition, editions FVC2000, FVC2002 and FVC2004
(Maio et al., 2004). Each edition has four different databases available, which
are usually collected using the following sensors/technologies: optical, capac-
itive, thermal sweeping sensor, as well as synthetic generated fingerprints.
The preprocessing details can be found in (González et al., 2014). These
patterns are used as the training set of fingerprints that the network will
learn. The mean activities, that is, the mean number of white pixels for each
fingerprint dataset are: skeletonized: a ∼ 0.08, normal width: a ∼ 0.23, and
dilated: a ∼ 0.47.
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3. Fingerprint recognition results: optimal topology

This section presents the performance results and comparison between the
single and EANN systems. The EANN optimization in terms of the topology
configuration (1D-ring vs 2D-cross) and for random connectivity shortcuts
for different number of modules in the ensemble. A threshold analysis is
also presented to understand how the performance of the ensemble system
behaves in terms of the retrieval threshold.

The model in section 2 was implemented in C++, and Python 3 was used
to process and visualize the output results. The code with a base example
can be found at https://github.com/marsgr6/ann/tree/master/cpp ann. All
experiments, in sections 3 and 4, were carried out on a Linux cluster using
Slurm cluster management and job scheduling system (Yoo et al., 2003).

3.1. Ensemble performance vs single network

In this section we compare through different examples the performances
of a single attractor with an EANN network. These examples contain all the
metrics used for comparison purposes, including the degree of randomness of
the chosen network topology. Thus Fig. 3 depicts the retrieval performance
for the normal activity: a ∼ 0.23 dataset, where a proper dynamic threshold
of θ(a) = 0.656 is used. The performance measures depicted are the mean
retrieval overlap M in blue lines with circle-markers, the retrieval efficiency
R = Pr/P in green lines with plus-markers, and retrieval capacity αR, which
is an information measure, in red lines with x-markers. The behavior shown
in Fig. 3 shows the increasing of the number of patterns loaded in the network
to be learned P in the x-axis. The y-axis depicts the the retrieval performance
measures M , R, αR. The curves for M and R remain with a value close to 1,
indicating the retrieval of most of the patterns with high quality overlap mµ.
When the pattern load P surpasses a certain value, the retrieval quantity
R and overall retrieval quality M goes continuously to 0. The critical value
can be found using the information measure αR, which measures the number
of retrieval patterns in terms of the ensemble connectivity αR = Pr

Kb×n
. The

curve for αR shows a non monotonic behavior exhibiting a maximum value,
which is used as a critical point and is depicted as a vertical red line in the
top panels of Fig. 3.

In the same figure, top-left panel, is depicted the retrieval performance for
the single network N = 89420, Kb = 240, n = 1 with ω = 1 ratio of random
shortcuts starting from a 1D-configuration ring network (equivalent to an
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Figure 3: Example of ensemble performance vs. single network for increasing number of
patterns to be learned. From left to right: random network ω = 1.0 and n = 1 modules;
1D network with ω = 0.8, n = 10 modules and initial structure of ring; 2D network with
ω = 0.6, n = 12 modules and initial structure of cross. Top panels: Ensemble performance
curves M, R,αR and maximum value cut-off for the pattern load P , indicated with the
solid red vertical line, and the fraction of retrieved patterns R = Pr/P . Bottom panels:
microscopic retrieval at the cut-off value, maximum αR, vertical red line in top panels.
Individual pattern overlaps mµ (blue filled circles). Blue dotted line, mean retrieval overlap
M = 〈mµ〉, red dashed line retrieval threshold θr.

Erdös-Rényi random network (Löwe and Vermet, 2011)). The transition
from retrieval M ∼ 1, R ∼ 1 to non-retrieval M ∼ 0, R ∼ 0 phases is
more discontinuous for the single network than for the ensemble systems
in top middle and right panels. The maximum αR for the single network
occurs at P = 22 patterns loaded, with a number of retrieved patterns over
Pr = 20 occurs above the retrieval threshold θr = 0.7, that is, Pr = 20 have
individuals overlaps mµ > θr. Thus, the retrieval efficiency achieved at the
critical point for the single network systems is R = Pr/P = 20/22 = 0.91,
with a mean retrieval overlap M = 〈m〉µ = 0.91. The individual pattern
retrieval mµ for the single network at the critical point, is depicted in Fig. 3
bottom-left panel, for P = 22, where Pr = 20 patterns have values of mµ >
θr, where θr = 0.7 is depicted as red dashed horizontal line, two patterns
are retrieved below such line corresponding to patterns µ ∈ {18, 21} with
mµ ≈ 0. The mean retrieval overlap M = 0.91 is depicted as a blue dotted
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line. Note that the values of M = 0.91 and R = 20/22 correspond to the
points intersecting the red vertical line at the maximum value of αR, in the
top-left panel. Fig. 3 top-middle panel depicts the retrieval performance for
an ensemble with N = 89420, Kb = 24, n = 10 with random shortcut
ratio ω = 0.8, starting from a 1-D ring. The transition from retrieval to
non-retrieval, maximum value of αR, occurs at a number of loaded patterns
P = 60, where Pr = 54 patterns are retrieved over θr = 0.7, for a retrieval
efficiency R = 54/60 = 0.9, with a mean retrieval overlap M = 0.81. Again,
the corresponding individuals overlaps mµ at the critical point are depicted in
the bottom-middle panel. Six patterns are considered as not retrieved with
individuals overlaps mµ < 0.2. Fig. 3 top-right panel shows the retrieval
performance for an ensemble with N = 89420, Kb = 20, n = 12 with random
shortcut ratio ω = 0.6, starting from a 2-D cross grid. The transition from
retrieval to non-retrieval, maximum value of αR, occurs at a number of loaded
patterns P = 72, where Pr = 65 patterns are retrieved over θr = 0.7, for a
retrieval efficiency R = 65/72 = 0.9, with a mean retrieval overlap M = 0.78.
The corresponding individuals overlaps mµ at the critical point are plotted
in the bottom-middle panel. Seven patterns are considered as not retrieved
with individuals overlaps mµ < 0.55. Note that the ensemble systems receive
at each learning/retrieval step a number of patterns equivalent to the number
of modules n, thus the curves for higher values of modules n have less points
than curves lower modules.

The single system is used as a reference for calculating the gain G =
P e
r /P

s
r achieved by the ensemble systems. For the single network n = 1 in

Fig. 3 left panels, the number of retrieved patterns P s
r = 20 can be used to

calculate the gain for the ensembles, which for the middle panels corresponds
to G = 54/20 = 2.7, that is the ensemble with N = 89420, Kb = 24, n =
10, ω = 0.8, 1D− ring manage to retrieve 2.7 more patterns than the single
network. For the right panels the ensemble with N = 89420, Kb = 20, n =
12, ω = 0.6, 2D − cross, the gain is G = 65/20 = 3.25 indicating that the
ensemble manages to retrieve 3.25 more patterns than the single network.

From this introducing figure, one may conclude that the retrieval per-
formance is optimized for an ensemble with modules starting in a 2D-cross
configuration, for intermediate values of the randomness shortcut parameter
ω = 0.6. The optimization occurs for a given number of modules n = 12 with
very diluted connectivity, however for extreme dilution, which is called as
pathological dilution (larger number of modules), the performance worsens,
given that for practical applications (experimental) such extreme dilutions
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topology parameter ω, initial network structure and number of ensemble modules for ring
vs cross. Right panel: Comparison of best results in left and middle panels (i.e. optimums
of retrieval performance for each topology, according to maximum αR for the parameter
ω and number of modules).

induce the network to non-retrieval states.

3.2. Ensemble optimal topology parameter ω for number of modules

Fig. 4 shows the extensive search analysis performed to identify the op-
timal parameters in terms of the random shortcuts ratio ω and the num-
ber of modules n in the ensemble. The analyzed parameters values are
ω ∈ {0.0, 0.1, 0.2, . . . 1.0}. For ω = 0.0 one gets a regular nearest neigh-
bors 1D-ring or a 2D-cross network; and for ω = 1.0, a random network.
Intermediate values of the parameter ω represent the fraction of random
shortcuts rewired from the initial regular configuration. The searched values
for the number of modules are n ∈ {1, 2, 3, 4, 5, 6, 10, 12, 15, 20}.

In Fig. 4 left-panel the analysis performed is shown for the initial 1D-ring
configuration, for the different values of the ω parameter. The retrieval ca-
pacity αR is depicted in y-axis. Different values of the number of modules
n are tested and depicted with different line colors and markers. The gen-
eral behavior is that the retrieval capacity αR increases with the fraction of
random shortcuts ω starting from the regular topology 1D-Ring, and the re-
trieval capacity increases with the number of modules achieving a maximum
capacity for n = 10 and then decreasing when the number of modules is
larger implying very diluted modules where the pathological dilution trans-
lates to very low ensemble capacity. A similar analysis is performed for the
2D-cross initial configuration and is shown in Fig. 4 middle-panel. Again the
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general behavior is that the retrieval capacity αR increases with the value
of ω, but now a maximum occurs for n = 12 modules with ω = 0.6 and
the capacity decreases for larger values, indicating an optimization of the
network capacity occurs for intermediate values of the ω parameter. This
behavior is more moderate for the 1D-ring in the left panel. The maximum
capacity occurs for n = 12 modules decreasing for larger values due to the
pathological dilution of each component in the ensemble. Fig. 4 right-panel
summarizes the results for the 1D-ring and 2D-cross initial configurations in
terms of the number of modules. As commented before the optimal capacity
occurs for a given number of modules, showing a non monotonic behavior
and maximum can be found for intermediates values of both number of mod-
ules n and ω parameters, occurring for n = 10 and n = 12 modules for the
1D-ring and 2D-cross with αR ≈ 0.22 for ω = 0.8 and αR ≈ 0.27 for ω = 0.6
respectively. The capacities achieved by the 2D-cross initial configuration
are higher, as can be observed when comparing the left and middle panels,
or the two curves in the summary plotted in the right panel. Thus the op-
timal ensemble parameter for learning an retrieving fingerprint patterns is
the 2D-cross initial configuration with a random shortcut ratio of ω = 0.6
and n = 12 modules. This is consistent with (González et al., 2014), where
the 2D structure of the fingerprint pattern images was tested for different
topology parameters and configurations in a single attractor network.

Fig. 5 depicts the retrieval performance in terms of M, R, αR measures,
as discussed in Fig. 3 for the critical values indicated with the red vertical
line. The retrieval performance is presented for selected values of the en-
semble parameters and the optimal topology 2D-cross initial configuration
in the summary diagram in Fig. 4 right-panel. Fig. 5 top-left panel, shows
that the single network system, n = 1, Kb = 240 modules, achieves to re-
trieve Pr = 25 patterns above the selected retrieval threshold θr = 0.7. The
number of retrieved patterns increases to Pr = 56 n = 6, Kb = 40 ensembles,
in the top second panel; before reaching the maximum retrieval capacity of
Pr = 65 for the n = 12, Kb = 20 ensemble in the top-third panel. For larger
number of modules, n = 15, Kb = 16, the retrieval capacity starts to degrade,
as shown in the top right panel of Fig. 5. Note that the smaller the number
of modules in the ensemble, the more discontinuous is the transition between
retrieval and non retrieval phases given that the connectivity is less diluted.

The individual retrieval is presented in Fig. 5 middle row panels for the
critical value depicted with the vertical red line in the top panels. The larger
the number of modules the larger the number of patterns that can be stored,
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Figure 5: Retrieval performance for several selected values of the ANN ensemble for
optimal topology 2D-cross (see parameter ω for n = {1, 6, 12, 15}, in Fig. 4 right-panel).
Top panels: Ensemble performance curves M, R, αR and maximum value cut-off for the
pattern load P , indicated with the solid red vertical line, and the fraction of retrieved
Patterns R = Pr/P . Middle and bottom panels: microscopic retrieval of the individual
pattern overlaps mµ. Blue dotted line, mean retrieval overlap M = 〈mµ〉, red dashed line
retrieval threshold θr. Middle panels, microscopic retrieval at the cut-off value, maximum
αR, vertical red line in top panels. Bottom panels, microscopic retrieval to the right of
the cut-off value. In each panel the value of R = Pr/P indicates the load at each panel
and the retrieved patterns.

although the quality of the retrieval is lower than the single network system
with M = 0.94, the quality of the ensembles remain high with values around
M = 0.8. Moving to the right of the critical point (right to the vertical red
lone), the retrieval degrades for all ensemble systems as depicted in Fig. 5
bottom row panels.
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Figure 6: Optimal retrieval performance for topology parameter ω, initial network struc-
ture and number of ensemble modules for different retrieval threshold. Left: Ring initial
topology structure. Right: Cross initial topology structure.
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Figure 7: Optimal gain G for topology parameter ω, initial network structure and number
of ensemble modules for different retrieval threshold. Left: Ring initial topology structure.
Right: Cross initial topology structure.

3.3. Effect of the retrieval threshold over the ensemble capacity

Fig. 6 shows the retrieval capacity analysis for different values of the re-
trieval threshold θr ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. The retrieval threshold affects
the modules performance in terms of quality of retrieval, however the re-
trieved pattern are always distinguished from the non retrieved patterns as
was checked in (Gonzalez et al., 2017). The panels represents the retrieval

16



performance in terms of the information parameter αR for each ensemble
systems (module number) and their optimal ω parameter for the 1D-Ring
in the top-left panel and the 2D-Cross in the top-right panel. The smaller
the retrieval threshold θr the larger the retrieval capacity, this effect is more
pronounced for the optimal region of the random shortcut parameter around
0.5 ≤ ω ≤ 0.8, and number of modules n ∈ {10, 12}. The retrieval ca-
pacity αR is higher for the 2D-Cross initial configuration for all values of θR,
achieving a maximum of αR ∼ 0.325 versus the 1D-Ring configuration, which
achieves αR ∼ 0.27, for θR = 0.5.

Fig. 7 depicts the performance in terms of the pattern gain, G, compared
with each single system using as a reference each topology configuration, 1D-
Ring single network (n = 1) in the left panel, and 2D-Cross single network
(n = 1) in the right panel. Again the optimal ω parameter is depicted for
each number of modules in the ensemble systems. In terms of pattern gain,
G, the maximum is similar for both configurations (1D-Ring vs. 2D-Cross),
G ∼ 3.1, for θr = 0.5. The gain is measured comparing the single system for
for each configuration 1D-Ring vs. 2D-Cross with the respective ensemble
for the number of modules n. This gain is similar to the one observed for
random patterns, deserving further investigation to discover that it is an
invariant measure.

4. Ensemble modules assignment and specialization results

This section presents the results of applying the ensemble of attractor
networks to a case of modules specialization, where the assignment of pat-
terns subsets to a module is carried out according the subset features, namely
the patterns overlaps and activities.

4.1. Assignment of pattern subsets to ensemble modules

Given the ensemble system separation in modules and the pattern subset-
ting input, it originates an optimization assignment problem. The correlation
between patterns increases the cross-talk noise term between patterns (Hertz
et al., 1991; Amit, 1992), an application of the subset to module assignment
is to feed the different modules in a way of reducing the overlap between pat-
terns in the subset. Fig. 8 top-left panel, depicts the overlap of each pattern
µ with the rest of patterns in the whole set. Each element of the overlap ma-
trix O, which is a P × P matrix, can be calculated as Oµν = 1/N

∑N
i ξ

ν
i ξ

µ
i ,

indicating the overlap between patterns µ and ν. Once the overlap matrix is
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Figure 8: Different strategies of assignment of pattern subsets to modules of the ensemble
system. Oµ defines the overlap between the pattern µ and the rest of P − 1 patterns.
Ensemble with n = 10 modules/subsets. Top-left: Blue points indexing is equivalent
to random pattern assignment. The orange crosses represent the patterns ordered from
least overlap to greatest overlap between one pattern and the rest. Top-right: Random
assignment of subsets to modules, blue points between vertical lines (windows). Bottom-
left: Windowed assignment of subsets to modules, orange crosses between vertical lines
(windows) Bottom-right: Alternating assignment of subsets to modules, same color arrows.

calculated the sum of each row, subtracting the diagonal element, will give the
total overlap of any pattern µ with all the pattern set: Oµ =

∑
ν:∀ν|ν 6=µOµν .

This value is depicted, in Fig. 8 top-left panel, as blue circles. In the same
panel is depicted the overlap of each pattern with the whole pattern set,
which can be sorted in ascending ordered, as plotted with orange crosses,
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Figure 9: Retrieval performance for different strategies of assignment of pattern subsets
to modules of the ensemble. Left panels: Windowed subset to module assignment. Center
panels: Random assignment. Right panels: Alternating subset to module assignment. For
each strategy top row shows the ensemble performance curves M , R, αR, the maximum
value cut-off for the pattern load P , is indicated with the solid red vertical line, and the
fraction of retrieved patterns R = Pr/P . Finally, bottom row shows the microscopic
retrieval for the critical value depicted with the vertical red line in the top panels.

this order gives the pattern that is less correlated with the rest, ascending to
the one which is more correlated with the rest of patterns. This correlation
value can be used as a criterion to assign the pattern sets to the modules in
the ensemble. Three orders are tested, the first order consists on selecting
the patterns subsets randomly, as depicted in Fig. 8 top-right panel. The
second one, selecting a moving window of size corresponding to the number
of modules, n = 10 subsets, windowed assignment, as depicted schematically
Fig. 8 bottom-left panel. The third one, alternating patterns to build the
n = 10 subsets, as depicted schematically in Fig. 8 bottom-right. One may
conjecture that the third order must be better given that the modules are
assigned with equivalent subsets of similarly uncorrelated patterns.

In Fig. 9 the retrieval performance for the different orders is presented.
The EANN ensemble parameters are n = 12, Kb = 20, ω = 0.6 corresponding
to the optimum found in 4. Given such number of modules, the subsets are
also n = 12. The worst performance corresponds to the moving window
subsetting, presented in Fig. 9-left panel, where the maximum αR occurs for
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a load of P = 60, patterns, where the number of retrieved patterns over θR =
0.7 is Pr = 45. The retrieval performance for the alternating subsetting by
window, is similar than a random order, achieving Pr/P = 65/72 and 66/72,
respectively. Although, there is an overlap degree between fingerprints, a
random order is enough to overcome this overlap as it has similar retrieval
performance as the alternating order. The pattern to module assignment is
more prominent for more correlated patterns, as in the gesture recognition
presented in (Dávila et al., 2019), where a simple random order might not
be enough. Further investigation is warranted.

The differences between the different pattern subsets to modules assign-
ment can be observed in Fig. 10, using as performance evaluation an infor-
mation measure defined as follows. An approximation from (Dominguez and
Bollé, 1998; Dominguez et al., 2007, 2009) can be used to calculate the mu-
tual information MI in terms of this mean retrieval overlap M . This will
give

MI[M ] = 1− S[M ], S[M ] = −1 +M

2
log2

1 +M

2
− 1−M

2
log2

1−M
2

.

(6)
Hence the information ratio can be defined in terms of αL and M as

iM(αL,M) ≡ αLMI[M ], (7)

where αL = P
(Kb×n)

is the measure of the pattern load P over the system
connectivity.

As observed in Fig. 9 starting form a sorted dataset in terms of correlation
with the rest of patterns, the windowed order, blue x-markers line, is the
worst assignment given that correlated patterns are assigned to the same
modules. Alternating the assignment gives better results, blue circle-markers
line. This results, albeit, of being better than a random assignment, orange
plus-markers line, the random assignment is almost equivalent, indicating
that for the fingerprint dataset the subset to module assignment is not as
critical as in more correlated patterns such as the 2D gestures explored in
(Dávila et al., 2019).

4.2. Ensemble modules specialization

Fig. 11 shows the retrieval performance for specialized modules in an
EANN system N = 89420, Kb = 80, n = 3. The specialization occurs accord-
ing the activity of the pattern subsets as follows, module b = 1: skeletonized
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Figure 11: Pattern specialization for different pattern activities and numbers of pattern
loaded to the 3-module ensemble. Skeletonized (a ∼ 0.0844) in blue circles and Mskel in
blue dashed line, normal binarized (a ∼ 0.2258) in green circles and Mnormal green dashed
line, and dilated fingerprints (a ∼ 0.4660) in red circles and Mdilated in red dashed line.
Solid red line corresponds to the retrieval threshold θr = 0.7. From left to right increasing
number of patterns loaded: P = {30, 45, 75, 100} respectively.

fingerprints (activity and neural threshold a ∼ 0.0844, θ(a) = 1.4951); mod-
ule b = 2: normal binarized (a ∼ 0.2258, θ(a) = 0.6560); and module b = 3:
thickened fingerprints (a ∼ 0.4660, θ = 0.0681). The continuous red line
means retrieval threshold overlap of the whole system (θr = 0.7). The
dashed lines represent the mean retrieval overlap of each module. That is,
given the specialization, each module is evaluated for the subset it was as-
signed with. Note that each module gets a third of the whole pattern set
(n = 3). In Fig. 11 can observed from left to right for increasing pattern
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load P = {30, 45, 75, 90} that the EANN system retrieval capacity worsens.
However the degradation of the retrieval is not uniform for the modules. The
first module assigned with the skeletonized fingerprints subset, a = 0.0844,
is the one that achieves greater capacity when the number of patterns to
learn is increased, i.e. see panel with P = 75 in Fig. 11; followed by the
second module with normal binarized a ∼ 0.2258 patterns. The worst is the
third module (i.e., the one corresponding to dilated fingerprints) with near
unbiased pattern a ∼ 0.4660. This result is expected as the capacity of the
attractor network increases with the sparseness of the pattern/network activ-
ity as studied in (Dominguez et al., 2012). One can think of an optimization
of the modules connectivity, assigning more connections to the modules to
improve the performance. That is, the connections, which are evenly dis-
tributed, in the EANN scheme in Fig. 1, can be redistributed assigning more
connections to the modules where the performance is worst to increase the
overall number of retrieved patterns. The modules that are in charge of pat-
terns with low activity would need fewer connections than those in charge of
higher activity patterns. Therefore, the distribution of connections would be
made according to the activity of patterns that each module handles within
the EANN.

5. Conclusions

The ensemble attractor model (EANN) was extended, in the present work,
to deal with structured patterns, i.e. fingerprints. This work has also taken
into account the study of i) the optimized number of diluted modules in
EANN, and ii) the optimized intra-modular connectivity range in relation to
storage capacity of 1D and 2D module topologies in the EANN. The EANN
system proved to triple the capacity of a single attractor with the same con-
nectivity and the network topology of modules was optimized. Such behavior
is desirable for real patterns applications, such as the fingerprints tested in
this work, where the EANN system was capable of retrieving three times
the number of fingerprints of the single attractor system used as reference,
with the same total connectivity. The performance retrieval was tested for
two topology configurations 1D Ring vs 2D Cross, with the latter perform-
ing better given the 2D structure of the ridges in the fingerprints. For the
topology parameter, random shortcut ratio ω, a non trivial topology, that is
an intermediate value ω = 0.6 optimizes the retrieval capacity of the EANN
system. Similarly, the performance for increasing number of modules is non-
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monotonic, reaching an optimum for n = 12 modules, where the connectivity
is diluted, but has not reached the level of pathological dilution, where re-
trieval is hindered.

Given the EANN modular structure and the fact that each module is as-
signed a subset of patterns, an assignment optimization problem arises. As
a proof of concept, the patterns have been divided in subsets according to
the overlap of each pattern with the rest of the pattern set. Two extreme
cases were used, one that assign windowed subsets, where patterns with high
overlap can be assigned to the same EANN module; and the other, reducing
the overlap alternating the pattern assignment. The latter performed better
given that the overlap between subsets was reduced. This proved to be a help-
ful characteristic of the EANN system, given that structured patterns, such
as the fingerprints, are usually correlated. Taking advantage of the pattern
subset to module assignment, another application arises, such as the module
specialization according to intrinsic characteristics of the subset. An exam-
ple for pattern subsets with different activities was presented for skeletonized
fingerprints (low activity), normal binarized fingerprints (medium activity),
and dilated fingerprints (high activity - unbiased). The module assigned with
the skeletonized fingerprints outperformed the other two modules, this ex-
pected as the sparse pattern network have a larger storage capacity. With
the modules specialization an optimization of the modules parameters, such
as connectivity, topology parameters, dynamical parameters can be carried
out. As future works, we propose the optimization of the module parameters
according to the subsets intrinsic characteristics. Also, the ensemble will be
explored for more complex biometric patterns, such as retina blood vessels,
where the module specialization can be used in a multi-modal biometrics
verification.
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Mario González, David Dominguez, Francisco B Rodŕıguez, and Angel
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Matthias Löwe and Franck Vermet. The hopfield model on a sparse erdös-
renyi graph. Journal of Statistical Physics, 143(1):205–214, 2011.

Dario Maio, Davide Maltoni, Raffaele Cappelli, Jim L Wayman, and Anil K
Jain. Fvc2004: Third fingerprint verification competition. In International
conference on biometric authentication, pages 1–7. Springer, 2004.

Davide Maltoni, Dario Maio, Anil K Jain, and Salil Prabhakar. Handbook of
fingerprint recognition. Springer Science & Business Media, 2009.

Haim Sompolinsky and I Kanter. Temporal association in asymmetric neural
networks. Physical review letters, 57(22):2861, 1986.

P Vincent, H Larochelle, Y Bengio, and P-A Manzagol. Extracting and
composing robust features with denoising autoencoders. In International
Conference on Machine Learning (ICML ’08), pages 1096—-1103. ACM,
2008.

26



Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’
networks. nature, 393(6684):440–442, 1998.

B Wemmenhove and ACC Coolen. Finite connectivity attractor neural net-
works. Journal of Physics A: Mathematical and General, 36(37):9617,
2003.

Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple linux
utility for resource management. In Workshop on Job Scheduling Strategies
for Parallel Processing, pages 44–60. Springer, 2003.

27


	plantilla_actualizada_ELSEVIER1.pdf
	ensemble_gonzalez_neurocomputing_2021_ps
	Introduction
	EANN model
	Modules coding, topology and dynamics
	Ensemble of Attractor Neural Networks (EANN)
	EANN information measures
	Fingerprint datasets

	Fingerprint recognition results: optimal topology
	Ensemble performance vs single network
	Ensemble optimal topology parameter  for number of modules
	Effect of the retrieval threshold over the ensemble capacity

	Ensemble modules assignment and specialization results
	Assignment of pattern subsets to ensemble modules
	Ensemble modules specialization

	Conclusions


