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High consumption of ultra-processed food
may double the risk of subclinical coronary
atherosclerosis: the Aragon Workers’ Health
Study (AWHS)
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Fernando Civeira6,7,10, Martín Laclaustra6,7,10 and Pilar Guallar-Castillón1,3,4,5

Abstract

Background: Ultra-processed food (UPF) consumption, which is increasing worldwide, has recently been associated
with an increased risk of death and cardiovascular disease. We aimed to assess whether consumption of UPF is
directly associated with subclinical coronary atherosclerosis in middle-aged men.

Methods: A computed tomography scan was performed on 1876 men from the Aragon Workers’ Health Study,
recruited from January 2011 to December 2014, to assess coronary calcium. All participants were free of coronary
heart disease. Dietary intake was collected by a validated 136-item semi-quantitative food frequency questionnaire.
UPF was defined according to the NOVA classification. Associations between consumption of total energy-adjusted
UPF and Coronary Calcium Agatston Score (CACS)—categorized into CACS of 0, > 0 and < 100, and ≥ 100—were
cross-sectionally assessed by generalized ordered logistic regression adjusted for main confounders.

Results: No coronary calcium was detected in 60.2% of the participants, whereas 10.2% had a CACS ≥ 100. A
significant dose-response association was observed between energy-adjusted UPF consumption and the risk of
having a CACS ≥ 100, when compared with those in the lowest CACS categories (CACS of 0 together with CACS >
0 and < 100). The fully adjusted ORs (95% CI) of having a CACS ≥ 100 across quartiles of energy-adjusted UPF
consumption (approximately 100 g/day in the lowest quartile (ref.) and 500 g/day in the highest) were 1.00 (ref.),
1.50 (0.93, 2.42), 1.56 (0.96, 2.52), and 2.00 (1.26, 3.16), p trend .005.

Conclusion: In this middle-aged worker’s sample, approximately 500 g/day of UPF consumption was associated
with a 2-fold greater prevalence of subclinical coronary atherosclerosis than consuming only 100 g/day,
independently of total energy intake and other well-established cardiovascular risk factors.

Keywords: Ultra-processed food, Subclinical coronary atherosclerosis, Coronary calcium, Cross-sectional cohort
study, Nutritional epidemiology
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Background
The food and beverage industry has experienced high
growth in recent years, and the consumption of ultra-
processed food (UPF) has substantially increased, fos-
tered by attractive packaging and intensive marketing
[1]. UPF consumption in Spain is low to moderate [2],
but it is increasing rapidly. While in 1990, UPF con-
sumption represented 11% of daily energy intake in
Spain, it has almost tripled in 10 years [3]. In 2000, the
mean contribution of UPF in total energy intake was
about 35% in Spain and Italy, but it reached up to 60%
in the Netherlands, Sweden, Norway, Denmark, and the
UK general population [4].
UPF is formulated mostly or entirely from sub-

stances derived from food together with additives,
with little, if any, intact food. Processing entails
greater durability, tastier flavors, and readiness to
consume at a very low price. UPF is characterized by
poor nutritional value and high energy density with
low fiber and micronutrient content, as well as high
amounts of sodium, saturated and trans fats, and sim-
ple sugars [5, 6]. On the one hand, all aforemen-
tioned detrimental nutrients have been individually
associated with subclinical atherosclerosis and cardio-
vascular disease (CVD) [7–9]. On the other hand,
UPF also contains a great diversity of additives, many
of which have shown adverse effects on the vascular
system in experimental studies [10–12]. In particular,
the additive phosphate, present in almost all UPF, is
involved in atherosclerosis by inducing vascular calci-
fication both in vitro and in vivo [13]. Finally, UPF
consumption replaces the intake of other unprocessed
or minimally processed food and freshly prepared
meals that have beneficial nutritional attributes, also
affecting health in an indirect way.
Recently, in the large prospective NutriNet-Santé co-

hort, an absolute increment of 10% of UPF in the diet
has been associated with a 12%, 13%, and 11% statisti-
cally significant increase in the rates of overall CVD, cor-
onary heart disease (CHD), and cerebrovascular disease,
respectively [14]. Likewise, consumption of UPF has
been associated with cardiometabolic conditions [15],
such as overweight or obesity [16], hypertension [17],
dyslipidemia [18], and diabetes [19], as well as with CVD
mortality or total mortality [2, 20, 21].
Atherosclerosis, which underlies CVD, is a complex

disease in which fat, inflammation cells, scar tissue,
and deposits of calcium accumulate within the walls
of the arteries [22]. The presence of calcium in the
coronary arteries is an indicator of subclinical athero-
sclerotic disease and a marker of coronary damage
[23], as well as a strong and independent predictor of
future coronary heart disease [24, 25]. Current guide-
lines endorse the measurement of coronary calcium

to improve risk prediction of coronary disease in se-
lected asymptomatic individuals [26, 27]. Accordingly,
high calcium in coronary arteries has been consist-
ently associated with general coronary disease [28],
myocardial infarction [28, 29], heart failure [29], and
stroke [30].
To date, no epidemiological study has yet evaluated

the direct impact of UPF consumption on the coronary
arteries in asymptomatic subjects. The aim of this study
is therefore to examine the association between UPF
consumption and subclinical coronary atherosclerosis in
a sample of middle-aged subjects with a low prevalence
of clinical comorbidities.

Methods
Study design and population
The present cross-sectional study includes a sample
of participants from the Aragon Workers’ Health
Study (AWHS), the design of which has been de-
scribed in detail elsewhere [31, 32]. Study partici-
pants are workers of Opel Spain automobile assembly
plant located in Figueruelas (Zaragoza, Spain) that
were recruited during a standardized clinical exam in
2009–2010 (participation rate 95.6%). In addition, be-
tween January 2011 and December 2014, all partici-
pants who were aged 40–60 years old (34% of initial
participants) were invited to undergo a coronary cal-
cification scan and provided blood and urine samples
for the study biobank, as well as to answer a com-
prehensive questionnaire on cardiovascular and life-
style factors, including diet. No relevant differences
were detected in baseline characteristics between
total participants and those who undergo the coron-
ary calcification scan. Among the 2617 workers (all
Caucasian) recruited into the AWHS imaging study,
2128 had complete quantification of coronary calcifi-
cation. Likewise, those subjects with previous history
of CVD (n = 28), women (n = 97), and those with an
extreme total energy intake (< 600 or > 4200 kcal)
(n = 127) were excluded, resulting in a final sample
of 1876 participants (Fig. 1).

Data collection
Demographic information including age, sex, marital sta-
tus, educational level, smoking, sleep duration (both on
weekdays and weekends), and diabetic status was obtained
by questionnaires. Also, leisure-time physical activity and
time spent in sedentary activities were assessed using a
formerly validated questionnaire, i.e., the Health Profes-
sionals’ Follow-up physical activity questionnaire [33], that
was highly correlated with objective measurements using
triaxial accelerometer (RT3 Triaxial Research Tracker) as
reference (Spearman’s correlation coefficient of 0.51; p <
0.001). Participants were asked about the time devoted to
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17 different activities during the preceding year, and
leisure-time physical activity was expressed in metabolic
equivalents (METs)-h/week.
Serum samples were obtained, and cholesterol, tri-

glycerides, and glycemia were measured. Study partici-
pants went through a standardized clinical exam with
blood pressure (BP) and heart rate measurements. BP
was measured three consecutive times using an auto-
matic oscillometric sphygmomanometer after being
seated for 5 min. Anthropometrics, including height,
weight, and waist circumference, were also measured
following standardized procedures, and body mass
index (BMI, in kg/m2) was calculated.
Physicians and nurses collecting these data underwent

specific training and standardization programs organized by
the study investigators. Compliance with study procedures
was routinely monitored, and deviations were corrected.
The study conforms to the ISO9001-2008 quality standard.

Dietary assessment and ultra-processed food
consumption
Their usual diet over the preceding year was assessed
using a 136-item semi-quantitative food frequency

questionnaire (FFQ) previously validated and repeatedly
re-evaluated in Spain [34–36]. This FFQ considers sea-
sonal variations and differences in food consumption be-
tween weekdays and weekend patterns. We measured
the frequency of food consumption in nine categories
(ranging from never or almost never to more than six
servings per day), also including a standard portion size
for each food item. To estimate daily consumption for
each food item, we multiplied the portion size by the fre-
quency of consumption.
We listed all food and beverage items of the FFQ ac-

cording to NOVA classification [6] which organizes food
into four groups based on the scope and purpose of in-
dustrial processing. The first group includes unprocessed
or minimally processed food, which is fresh or modified
by filtering, freezing, drying, or pasteurization, with no
addition of salt, sugar, oils, or fats. The second group
contains processed culinary ingredients. These are sub-
stances derived from nature, but have undergone pro-
cesses such as pressing, refining, or milling and might
contain additives to preserve the original properties (i.e.,
salt, sugar, honey, vegetable oils, butter, lard, and vin-
egar). The third group comprises processed food. This is
food which has undergone preservation or preparation
methods (e.g., smoking, curing, or fermentation) in order
to last longer or to enhance their sensory qualities. Ex-
amples include canned or bottled vegetables and le-
gumes, fruit in syrup, canned fish, cheese, freshly made
bread, and salted/sugared nuts and seeds. The fourth
group comprises ultra-processed food and drink prod-
ucts that are made predominantly or entirely from in-
dustrial substances and contain little or no whole food.
Under this classification, we can find products such as
hamburgers, frozen pizza and pasta dishes, French fries,
breads, cakes, industrially manufactured biscuits (cook-
ies), jams and confectionery, margarines, cereal bars, soft
drinks and other sugary beverages such as sugared milk
and fruit drinks, fruit yogurts, instant packaged soups
and noodles, and sweet or savory snacks.
For each participant, total UPF consumption in grams

per day (g/day) was calculated summing up the con-
sumption from each UPF item included in the fourth
group of the NOVA classification (Additional File 1:
Table S1). The grams per day of UPF were adjusted for
total energy intake by the residual method [37].

Outcome assessment: Coronary Agatston Calcium Score
Coronary calcium quantification was performed using
non-contrast ECG-gated prospective acquisition by a 16-
multidetector computed tomography scanner (Philips).
Agatston’s method is a summed score of all coronary
calcified lesions, accounting for both the total area and
the maximum density of coronary calcium. A high Cor-
onary Calcium Agatston Score (CACS) is a strong

Fig. 1 Flow chart for the study association: Coronary Artery Calcium
Score and ultra-processed food consumption. *Total energy intake
of < 600 or > 4200 kcal in men was considered extreme values.
Subjects recruited in the imaging AWHS. AWHS, Aragon Workers’
Health Study; CVD, cardiovascular disease
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indicator of extensive disease with a significant amount
of calcium deposits. CACS remains the reference stand-
ard and the most commonly used coronary artery cal-
cium score in clinical practice [38].
CACS was divided into three consecutive categories: 0,

> 0 and < 100, and ≥ 100. Having a CACS > 0 represents
the presence of calcium, and surpassing a threshold of ≥
100 is considered as having a moderate to severe sub-
clinical coronary atherosclerosis and has been associated
with increases in coronary heart disease rates [39].

Statistical analysis
Participants were categorized into quartiles of daily
grams of UPF consumption after adjusting for total en-
ergy intake using the residual method [37]. The analyses
were also carried out using quartiles of daily percentage
of energy derived from UPF, revealing very similar re-
sults (data not presented).
The adequacy of the proportional odds assumption

across response categories (a requirement for conduct-
ing ordered logistic regression) was examined by using
tests for proportionality (Wald’s test and Brant’s test).
We found a violation of this assumption (p values <
0.05). Accordingly, we estimated the odds ratio (OR)
and corresponding 95% confidence intervals (CI) for
having progressed to categories of more coronary artery
calcium using generalized ordered logistic models (golo-
git/partial proportional odds model). These models are
less restrictive than the proportional-odds/parallel-lines
models and do not assume the equality of slopes among
categories. This approach yields two ORs, one describing
the relationship between the lowest vs. the two highest
categories of the response variable (CACS), and the
other describing the relationship between the two lowest
categories vs. the highest one [40].
We additionally performed a standard binary logistic

regression for the collapsed categories to estimate the
OR for CACS > 0 (compared with CACS of 0) and for
CACS ≥ 100 (compared with CACS < 100), to provide
estimations which can easily be understood as they are
widely used. So, we provide two estimators to describe
the association between UPF consumption and CACS.
To calculate the p for linear trend, the mean concentra-
tions of UPF in each quartile were used and treated as a
continuous variable in the model. Likewise, the standard
binary logistic regression was used to perform restricted
cubic splines with 3 knots (at the 10th, 50th, and 90th
percentiles of the distribution) to visualize flexible dose-
response associations.
We used three models with progressive adjustment for

covariates that can operate as confounders [41]. Model 1
was adjusted for age (continuous, years); model 2 was
further adjusted for demographic and lifestyle factors:
marital status (married, not married), education (middle

school, high school, professional training, and college),
smoking status (never, former, and current smoker),
physical activity (in MET-h/week), time spent sleeping
during the weekdays (number of hours of sleep, continu-
ous), time spent sleeping during the weekend (number
of hours of sleep, continuous), and dietary factors such
as alcohol consumption (g/day), total fiber (g/day), chol-
esterol intake,(mg/day), and total energy intake (kcal);
and model 3 was further adjusted for cardiometabolic
risk factors: total cholesterol in blood (mg/dL), HDL
cholesterol in blood (mg/dL), systolic and diastolic blood
pressure (mmHg), BMI (< 25, 25 to < 30, ≥ 30 kg/m2),
and diabetes (yes, no).
To maximize the use of available information, missing

values on education (< 1%) and smoking (< 1%) were in-
cluded in a separate category. Missing values on hours
of sleep during the week (< 1%) and BMI (< 1%) were
imputed by predicted values from a multivariable regres-
sion model containing the corresponding explanatory
variables. Missing values on diabetes (3%) were consid-
ered as having a non-disease status.
We tested for interactions between UPF consumption

and age, BMI, smoking status, alcohol consumption, and
physical activity, on the multiplicative scale using the
likelihood ratio test, comparing binary logistic models
with and without an interaction term.
Analyses were performed with Stata/SE, version 15.1

(StataCorp, College Station). Statistical significance was
set at the two-sided 0.05 level.

Results
All participants were Caucasian males with a mean age
of 51 ± 3.7 years. The average UPF consumption ranged
from 117 ± 56 g/day in the lowest quartile to 484 ± 217
g/day in the highest one. Those in the highest quartile of
UPF consumption were less frequently current smokers;
performed less physical activity; had a lower consump-
tion of alcohol, fiber, micronutrients (vitamins and min-
erals); and had lower HDL cholesterol levels. Likewise,
although non-statistically significant, those consuming
more UPF were more frequently obese than those con-
suming less. In general, no other meaningful differences
in demographic and lifestyle variables were observed
across UPF quartiles (Table 1).
Regarding CACS, 60.2% of the participants (n = 1129)

had no coronary artery calcium, 29.6% had a CACS > 0
but < 100 (n = 556), and the remaining 10.2% (n = 191)
had a CACS ≥ 100 (those with a well-defined and estab-
lished disease). A significant dose-response association
was observed between daily consumption of UPF and
the risk of progress from the two lowest categories
(CACS of 0 together with CACS > 0 and < 100) to the
highest category (CACS ≥ 100). The fully adjusted ORs
(95% CI) of having a CACS ≥ 100 across quartiles of
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UPF consumption (1st quartile as reference) were 1.50
(0.93, 2.42), 1.56 (0.96, 2.52), and 2.00 (1.26, 3.16), p
trend .005. However, there was no association between
consumption of UPF and the risk of progressing from
no coronary artery calcium (CACS of 0) to the two high-
est CACS categories (CACS > 0 and < 100 together with
CACS ≥ 100) (Table 2).
Similar results were observed when performing the

standard binary logistic regression to estimate OR for
CACS > 0 (with CACS of 0 as reference) and for CACS
≥ 100 (with CACS < 100 as reference) (Additional File 1:
Table S2). Thus, a clear dose-response relationship be-
tween UPF consumption and coronary artery calcium
was only appreciated for CACS ≥ 100 compared to those
with CACS < 100 (Fig. 2).
No interactions were detected between UPF consump-

tion and age (p = 0.68), BMI (p = 0.25), smoking status
(p = 0.15), alcohol consumption (p = 0.31), and physical
activity (p = 0.61).

Discussion
This is the first epidemiological study assessing the asso-
ciation between UPF consumption and early subclinical
atherosclerosis. In this sample of middle-aged male
workers, those with the highest consumption of UPF (on
average approximately 500 g/day) compared with those
with the lowest consumption (on average approximately
100 g/day) have a 2-fold increased risk of having a sub-
clinical coronary atherosclerosis outlined by a CACS ≥
100. This association was independent of the main car-
diometabolic risk factors (cholesterol level, blood pres-
sure, BMI, and diabetes), as well as dietary and lifestyle
factors. Results were robust and remained similar using
different methodological approaches. When we catego-
rized the coronary calcium as CACS ≤ 0 vs. CACS > 0,
we classified as having a “positive outcome”/“positive in
atherosclerosis” a very heterogeneous group of partici-
pants with mixing characteristics, including those with
CACS very close to 0 and those with mild, moderate,
and even severe subclinical coronary atherosclerosis.
This lack of specification and the fact that subjects with
very small and incipient lesions (and in some cases with the
coronary calcium almost expected by age) are classified as
“positive outcome”/“positive in atherosclerosis” may be the
reason for not having found an association when compar-
ing CACS > 0 vs. CACS ≤ 0. In contrast, in the second
categorization (CACS < 100 vs. CACS ≥ 100), by establish-
ing the cutoff point at a CACS equal to 100, we classified as
“positive outcome”/“positive in atherosclerosis” those with
a well-defined and more established disease.
Scientific evidence has placed fresh fruit, vegetables,

whole grains, nuts, legumes, and olive oil—for their high
content of fiber and micronutrients with antioxidant and
anti-inflammatory properties—as the most protective

foods for the cardiovascular system [42, 43]. Despite all
this knowledge, during the last decade, there has been a
worldwide rapid increase in the consumption of UPF, in
which these healthy components are scarce, due to the
prevailing fact that UPF is easily accessible, tasty, and
cheap [44].
Of particular concern is that (i) UPF is highly energy

dense and is usually consumed in large portion sizes; (ii)
UPF contains excessive salt, saturated fat, and refined
sugars, while lacking fiber and micronutrients such as vi-
tamins and antioxidants; (iii) additionally, potentially
harmful compounds may be added or generated during
UPF processing (such as colorants, additives, acrylamide,
trans-fatty acids (TFAs)). Several of these UPF character-
istics are known risk factors for cardiometabolic condi-
tions [15], as we explain next.
To begin with, dense food and sugar-sweetened bever-

ages might delay the trigger of the internal satiety signal,
leading to excessive caloric ingestion [45]. Excessive in-
take of energy, fat, and sugar contributes to weight gain
and increases the risk of obesity [16], which is a major
risk factor for CVD. However, the associations observed
in this study between consumption of UPF and subclin-
ical coronary atherosclerosis were statistically significant
even after adjusting for BMI. Thus, BMI does not fully
explain the association between UPF and subclinical
atherosclerosis.
Most of the salt intake in high-income nations comes

from UPF. Among them, bread and bakery products, ce-
reals and grains, meat products, and dairy products are
the most significant contributors to dietary salt [46]. The
high salt content of these industrial products may also
partly contribute to the appearance of hypertension [47],
endothelial dysfunction [22, 48], and, as a consequence,
also CVD [49, 50].
Moreover, for the industrial production of UPF, vege-

table oils (the most used due to their low cost) are hy-
drogenated. If the hydrogenation is total, saturated fat is
formed, but if the hydrogenation is partial, TFAs are also
produced. These partially hydrogenated oils are con-
sumed in margarine, fast food, and other UPF such as
cakes, rolls, confectionery, biscuits, chocolate, potato
chips, and crisps. A relationship between TFA intake
and increased risk of CVD has been established [51, 52].
In a meta-analysis of prospective studies, a 2% increase
in total daily energy intake from TFAs was associated
with a 23% increased risk of CVD [53]. In addition, it
has been observed that TFAs increase the incorporation
of calcium to vascular endothelium cells [54]. Likewise,
controlled dietary trials have shown that TFAs have
markedly adverse effects on serum lipids [55], raising
serum concentrations of LDL cholesterol [56], while also
decreasing the serum concentration of HDL cholesterol
[57]. TFAs have also shown to rise inflammation
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Table 1 Characteristics of the study participants according to quartiles of energy-adjusted ultra-processed food (UPF) consumption,
the AWHS cohort study (N = 1876)

Energy-adjusted UPF consumption (g/day)*

Q1 (n = 469) Q2 (n = 469) Q3 (n = 469) Q4 (n = 469) p value

Energy-adjusted UPF consumption (g/day)* 117 ± 56 169 ± 66 263 ± 76 484 ± 217 < .01

Total energy intake (kcal) 2988 ± 564 2685 ± 616 2793 ± 638.4 2840 ± 601 < .01

Age (years) 51.5 ± 3.6 51.3 ± 3.7 51.0 ± 3.7 50.7 ± 3.9 < .01

Married (%) 85.6 (406) 85.5 (401) 84.9 (398) 85.3 (400) .90

Education (%) .68

Middle school 52.6 (245) 49.1 (229) 52.2 (242) 55.0 (255)

High school 12.0 (56) 11.8 (55) 10.1 (47) 10.1 (47)

Professional training 31.8 (148) 33.5 (156) 34.0 (158) 30.6 (142)

College 3.6 (17) 5.6 (26) 3.7 (17) 4.3 (20)

Smoking (%) < .01

Never 20.6 (96) 19.7 (92) 26.3 (123) 25.5 (119)

Former 29.2 (136) 29.4 (137) 34.1 (159) 36.2 (169)

Current 50.2 (234) 50.9 (237) 39.6 (185) 38.3 (179)

Physical activity (MET-h/week) 36.22 ± 23.8 31.84 ± 21.0 31.0 ± 22.1 31.5 ± 22.5 < .01

Sleep duration (hours)

During the week 6.3 ± 1.0 6.3 ± 0.9 6.3 ± 1.0 6.3 ± 1.0 .66

During the weekend 7.3 ± 1.1 7.3 ± 1.2 7.3 ± 1.2 7.3 ± 1.2 .92

Body mass index (%) .35

< 25 kg/m2 20.5(96) 17.5 (82) 18.8 (88) 19.6 (92)

25 to < 30 kg/m2 59.9 (281) 58.6 (275) 57.1 (268) 54.6 (256)

≥ 30 kg/m2 19.6 (92) 23.9 (112) 24.1 (113) 25.8 (121)

Cholesterol intake (mg/day) 456.7 ± 139.3 440.5 ± 129.4 461.6 ± 140.6 460.4 ± 140.4 .07

Total cholesterol in blood (mg/dL) 223.3 ± 36.1 222.1 ± 35.7 223.3 ± 35.4 220.0 ± 37.6 .46

HDL cholesterol in blood (mg/dL) 54.1 ± 11.9 52.4 ± 10.9 52.7 ± 11.1 52.0 ± 11.2 .03

Blood pressure (mmHg)

Systolic 126.3 ± 14.3 125.3 ± 13.9 125.6 ± 14.8 126.6 ± 14.1 .47

Diastolic 83.2 ± 9.6 82.9 ± 9.5 82.9 ± 9.6 83.8 ± 9.1 .42

Prevalent diabetes (%) 4.5 (21) 3.4 (16) 4.3 (20) 3.8 (18) .84

Alcohol consumption (g/day) 25.2 ± 22.2 18.8 ± 17.7 20.1 ± 20.5 20.6 ± 18.7 < .01

Total fiber* (g/day) 27.2 ± 7.7 25.2 ± 7.9 24.3 ± 7.0 23.2 ± 6.7 < .01

Omega 3 non-marine source* (g/day) 1.6 ± 0.7 1.6 ± 0.6 1.6 ± 0.5 1.5 ± 0.6 0.08

Omega 3 marine source* (g/day) 0.73 ± 0.4 0.71 ± 0.4 0.67 ± 0.4 0.63 ± 0.4 < .01

Vitamin C* (mg/day) 180.9 ± 72.8 184.4 ± 68.9 177.9 ± 61.5 178.4 ± 71.3 .45

Vitamin D* (μg/day) 5.4 ± 3.3 5.5 ± 3.0 5.2 ± 2.8 5.0 ± 2.7 .02

Vitamin A* (μg/day) 1226.4 ± 673 1220.6 ± 554 1272.4 ± 643 1206.7 ± 682 < .01

Vitamin E* (mg/day) 10.5 ± 3.6 10.9 ± 3.2 11.4 ± 3.8 11.5 ± 3.7 < .01

Vitamin B6* (mg/day) 2.5 ± 0.5 2.5 ± 0.5 2.4 ± 0.4 2.3 ± 0.5 < .01

Vitamin B9* (mg/day) 379.7 ± 72.6 369.9 ± 71.0 357.4 ± 61.6 345.3 ± 66.6 < .01

Vitamin B12* (mg/day) 10.1 ± 4.4 9.7 ± 3.4 9.8 ± 4.1 9.2 ± 4.0 < .01

Magnesium* (mg/day) 429.6 ± 69.6 426.7 ± 68.3 415.3 ± 60.6 407.3 ± 61.7 < .01

Calcium* (mg/day) 1018.9 ± 323.2 1035.8 ± 285.1 1019.0 ± 280.3 1019.9 ± 304.0 .78

Zinc* (mg/day) 15.5 ± 2.1 14.9 ± 2.0 14.5 ± 1.9 14.3 ± 1.9 < .01
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markers including C-reactive protein (CRP), interleukin-
6 (IL-6), and tumor necrosis factor-alpha (TNF-α) [58].
All these factors contribute independently to the devel-
opment of atherosclerosis [22]. It should be mentioned,
however, that the food industry has made remarkable ef-
forts to reduce TFAs these past few years. Consequently,
their presence in current UPF may be small [59].
UPF is also much rich in saturated fatty acids (SFAs)

than in monounsaturated fatty acids (MUFAs) or poly-
unsaturated fatty acids (PUFAs). Higher intake of SFAs
from pastries and processed food has been associated
with a higher risk of CVD [60]. Likewise, the isocaloric
substitution of SFAs or TFAs with MUFAs or PUFAs
has been consistently associated with a lower risk of
CVD and death, both in cohort studies [61] and in ran-
domized controlled trials [62] .
Refined sugars and sweeteners added in UPF have

been described as implicated in the development of
CVD [63, 64] and its risk factors, such as hyperten-
sion [65], diabetes [66], metabolic syndrome [67], and
obesity [64].

Food additives in UPF are of special concern. Some of
them, such as sulphites [12] and monosodium glutamate
[11], have shown several adverse effects on cardiovascu-
lar health in experimental studies on cellular models and
animals. Likewise, it has been found that long-term con-
sumption of acesulfame K (non-caloric artificial sweet-
ener) might accelerate atherosclerosis in cellular models
[10]. However, among the additives, phosphates deserve
special mention [68]. UPFs with high amounts of added
phosphates are processed meat, ham, sausages, canned
fish, baked goods, cola drinks, and other soft drinks.
Phosphorus in inorganic phosphate coming from UPF is
very effectively absorbed in the gastrointestinal tract
(absorbed by approximately 90%) with respect to natur-
ally occurring phosphorus in food (absorbed by 40–60%)
[69]. Phosphate induces vascular calcification both
in vitro and in vivo [13, 70]. The promoted process is
not merely the passive precipitation of calcium by phos-
phate, but rather an active cellular process in which
smooth-muscle cells in blood vessels are reprogrammed
to become osteoblast-like cells [13]. This alteration also

Table 1 Characteristics of the study participants according to quartiles of energy-adjusted ultra-processed food (UPF) consumption,
the AWHS cohort study (N = 1876) (Continued)

Energy-adjusted UPF consumption (g/day)*

Q1 (n = 469) Q2 (n = 469) Q3 (n = 469) Q4 (n = 469) p value

Iodine* (μg/day) 301.3 ± 195.6 294.7 ± 151.1 276.2 ± 147.7 258.9 ± 156.3 < .01

Selenium* (μg/day) 132.7 ± 27.5 123.0 ± 25.8 116. 8 ± 25.7 113.1 ± 26.2 < .01

Continuous variables are presented as mean ± standard deviation and categorical variables as percentage (frequency, n)
p value estimates are based on one-way ANOVA (Bonferroni’s multiple-comparison test) for variables expressed as mean (standard deviation) or Pearson’s χ2 test
for variables expressed as percentages
UPF ultra-processed food, Q quartiles
*Energy adjusted by the residual method

Table 2 Progression to higher coronary artery calcium score (CACS) categories according to quartiles of ultra-processed food (UPF)
consumption, using generalized ordered logistic models, the AWHS cohort study (N = 1876)

CACS categories Quartiles of energy-adjusted UPF consumption (g/day)*, odds ratio (95% confidence intervals)

Q1 Q2 Q3 Q4 p trend

From the lowest category to the two highest†

Model 1, OR (95% CI) 1 (ref.) 1.10 (0.84, 1.44) 1.18 (0.90, 1.55) 1.15 (0.88, 1.51) .315

Model 2, OR (95% CI) 1 (ref.) 1.09 (0.83, 1.44) 1.19 (0.90, 1.57) 1.14 (0.86, 1.51) .382

Model 3, OR (95% CI) 1 (ref.) 1.09 (0.83, 1.45) 1.17 (0.88, 1.56) 1.13 (0.85, 1.50) .425

From the two lowest categories to the highestγ

Model 1, OR (95% CI) 1 (ref.) 1.39 (0.88, 2.18) 1.47 (0.93, 2.31) 1.86 (1.20, 2.87) .006

Model 2, OR (95% CI) 1 (ref.) 1.37 (0.86, 2.19) 1.54 (0.96, 2.47) 1.96 (1.24, 3.07) .003

Model 3, OR (95% CI) 1 (ref.) 1.50 (0.93, 2.42) 1.56 (0.96, 2.52) 2.00 (1.26, 3.16) .005

The generalized ordered logistic model (gologit/partial proportional odds model) allows for the no equality of slopes among categories, being less restrictive and
more flexible than the ordinal ordered logistic model (parallel-lines model). OR odds ratio, CI confidence interval
Model 1: logistic regression model adjusted for age
Model 2: as in model 1 and additionally adjusted for marital status, education, smoking, physical activity, sleep duration during weekdays and during the
weekend, alcohol consumption, total fiber intake, cholesterol intake, and total energy intake
Model 3: as in model 2 and additionally adjusted for cardiovascular risk factors: total serum cholesterol, HDL serum cholesterol, systolic and diastolic blood
pressure, body mass index, and diabetes
*Energy adjusted by the residual method
†Lowest category: CACS of 0; the two highest categories: CACS > 0 and < 100 together with CACS ≥ 100
γTwo lowest categories: CACS of 0 together with CACS > 0 and < 100; highest category: CACS ≥ 100
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seems to occur in the human arteries [71, 72]. Moreover,
it has been shown that increased phosphate intake leads
to an endothelial-cell function impairment in the vascu-
lar system, in both animals and humans [73]. High to
normal serum phosphate concentrations are associated
with coronary calcification in young healthy men [74]
and were found to be a predictor of cardiovascular
events in the Framingham study [75].
Neo-formed substances which are produced through

packaging, moisture removal, heat treatments, chilling
and freezing, acidity control, reaction with chemical addi-
tives, and irradiation might also contribute to the harmful
effect derived from UPF consumption. An example of a
neo-formed substance from packaging is bisphenol A,
which has been related to CVD [76]. Likewise, acrylamide,
which is produced by heat treatments and found in fried
potatoes, biscuits, bread, processed meat, and even coffee,
has also been associated with CVD [77, 78].
Further research is needed to identify what specific

processes, compounds, or UPF subtypes play an import-
ant role in this association found between UPF con-
sumption and increased risk of early atherosclerosis, also

taking into account the possibility of synergic effects
among the abovementioned mechanisms. This know-
ledge will allow, in the short term, to recommend a re-
duction of the consumption of these products and, in
the long term, to refine the processes of the food indus-
try with the aim of providing a healthier offer.
Some limitations of our study must be recognized.

First, the cross-sectional design of our study prevents us
from establishing a causal link between consumption of
UPF and subclinical coronary atherosclerosis. However,
since calcium in the coronary artery is subclinical, re-
verse causation is highly unlikely. Also, although we ad-
just for a wide range of potential confounders, we
cannot rule out residual confounding.
Although the FFQ provides an adequate assessment of

an individual’s usual diet [35], because of its self-
reported nature and the potential recall bias, inaccur-
acies in the exposure assessment cannot be ruled out.
Likewise, the FFQ was not designed specifically to col-
lect data on UPF following the methodology of the
NOVA classification, which could lead to misclassifica-
tion. Nonetheless, the applied methodology is the most

Fig. 2 Restricted cubic splines for the association of Coronary Artery Calcium (CACS) and ultra-processed food (UPF) consumption, in the AWHS
cohort study (N = 1876). The standard binary logistic regression was used to perform restricted cubic splines with 3 knots of the distribution (at
the 10th, 50th, and 90th percentiles of the distribution). Participants with an exposure above the 99th percentile were not included. Dashed lines
represent 95% CIs. The histograms show the distributions of energy-adjusted ultra-processed food consumption. a The odds of CACS > 0 (p value
of the Wald test for non-linearity is 0.59) and b the odds of CACS > 100 (p value of the Wald test for non-linearity is 0.029) as ultra-processed
food consumption increases. Models adjusted for age, marital status, education, smoking, physical activity, sleep duration during weekdays and
during the weekend, alcohol consumption, total fiber intake, cholesterol intake, total energy intake, and cardiovascular risk factors: total serum
cholesterol, HDL serum cholesterol, systolic and diastolic blood pressure, body mass index, and diabetes. AWHS, Aragon Workers’ Health Study;
CACS, Coronary Agatston Calcium Score; UPF, ultra-processed food; OR, odds ratio; CI, confidence interval
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frequently used classification of UPF in epidemiological
studies. Despite the NOVA classification being reprodu-
cible and easily incorporated into messages and its con-
sequent utility for public health, it is not exempted from
controversies [79, 80].
We should note that the CACS fails to capture infor-

mation about the regional distribution of calcification
within the coronary tree and does not incorporate infor-
mation on the number or size of calcified coronary le-
sions. The limited external validity of our findings
should also be mentioned, as the cohort was not repre-
sentative of the general population.
This study notably presents important strengths, such

as its novelty and the quality of the methodology used to
collect clinical data and to quantify coronary calcium,
which is a measurement with strong published support
of its value for clinical risk prediction. Also, the detailed
data collection for confounders, including accurate mea-
surements of blood pressure and serum lipids, helps re-
duce confounding. Finally, another asset is the
consistency of the findings after using different statistical
approaches to assess the association between UPF and
subclinical atherosclerosis.

Conclusion
In conclusion, in this study of asymptomatic Spanish
working men, we found that those consuming the high-
est amount of UPF had twice as much probability of
having subclinical coronary atherosclerosis, regardless of
blood lipids, hypertension, BMI, and other cardiovascu-
lar risk factors.

Supplementary information
Table S1 displays the food-items in the AWHS food frequency questionnaire
classified as ultra-processed foods according to degree of processing (NOVA
group 4). Table S2 Association between Agatston's Coronary Artery Calcium
Score and quartiles of UPF consumption by using the standard binary
logistic regression. The =R(95% CI) for CACS > 0 (compared with CACS score
≤ 0) and for CACS score ≥ 100 (compared to CACS score < 100) are displayed.
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12916-020-01678-8.

Additional file 1: Table S1 Food-items included as UPF; Table S2 UPF-
CACS association.
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