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Abstract

We use some characterizations of convex and concave-type orders to de-
fine discrepancy measures useful in two testing problems involving stochastic
dominance assumptions. The results are connected with the mean value of
the order statistics and have a clear economic interpretation in terms of the
expected cumulative resources of the poorest (or richest) in random sam-
ples. Our approach mainly consists in comparing the estimated means in
ordered samples of the involved populations. The test statistics we derive
are functions of L-statistics and are generated through estimators of the
mean order statistics. We illustrate some properties of the procedures with
simulation studies and an empirical example.
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1 INTRODUCTION

Stochastic orders have shown to be useful notions in several areas of economics,

such as inequality analysis, risks analysis or portfolio insurance. Since the begin-

ning of the 1970s, stochastic dominance rules have been an essential tool in the

comparison and analysis of poverty and income inequality. More recently, stochas-

tic orders have also played an important role in the development of the theory of

decision under risk and in actuarial sciences where they have been used to compare

and measure different risks. Therefore, it is of major interest to acquire a deep

understanding of the meaning and implications of the stochastic dominance as-

sumptions. The construction of suitable empirical tools to make inferences about

such assumptions is also clearly worthwhile.

The influential papers by Atkinson (1970) and Shorrocks (1983) are examples

of theoretical works that provided a far-reaching insight into the importance of

the stochastic dominance rules. In them, it was shown that the so called Lorenz

dominance can be interpreted in terms of social welfare for increasing concave, but

otherwise arbitrary, income-utility functions. The book by Lambert (1993) also

supplies a nice and general exposition on this subject and other topics related to the

theory of income distributions. On the other hand, the books by Goovaerts et al.

(1990), Kaas et al. (1994) and Denuit et al. (2005) provide different applications

of stochastic orders to actuarial sciences and risk analysis.

From the empirical point of view, there are many papers in the econometric

literature that propose different kinds of statistical tests for hypotheses involving

different stochastic orders. In them, income distributions (or financial risks) are

compared according to different criteria. For instance, Anderson (1996) uses Pear-

son’s goodness of fit type tests whereas the approach in Barrett and Donald (2003)

and in Denuit et al. (2007) is inspired in the Kolmogorov-Smirnov statistic. See

also Kaur et al. (1994), McFadden (1989) and Davidson and Duclos (2000) for

other related procedures.

In this paper we analyze convex and concave-type orderings between two in-

tegrable random variables X and Y . We recall that X is said to be less or equal

to Y in the convex order, and we write X ≤cx Y , if E(f(X)) ≤ E(f(Y )), for

every convex function f for which the previous expectations are well defined. The

increasing convex order, to be denoted ≤icx, is defined analogously, but impos-

ing on the convex functions to be also non decreasing. By replacing “convex” by

“concave” in the definitions above, we obtain the concave order (≤cv) and the

increasing concave order (≤icv).
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The increasing convex and concave orders can be defined equivalently by:

X ≤icx Y ⇐⇒
∫ ∞

t

Pr(X > u) du ≤
∫ ∞

t

Pr(Y > u) du, t ∈ R,

X ≤icv Y ⇐⇒
∫ t

−∞
Pr(X ≤ u) du ≥

∫ t

−∞
Pr(Y ≤ u) du, t ∈ R.

In this way, it is apparent that the increasing convex order compares the right tail

of the distributions, while the increasing concave one focusses on the lowest part

of the distributions. This difference leads to different uses of these two orders.

For instance, in actuarial sciences the risk associated to large-loss events is

extremely important. Since convex functions take larger values when its argument

is sufficiently large, if X ≤icx Y holds, then Y is more likely to take “extreme

values” than X (see Corollary 1 (a) below for the precise statement of this fact).

Therefore, the risk associated with X is preferible to the one with Y . Actually, the

partial order relations ≤icx and ≤cx are extensively used in the theory of decision

under risk, where they are called stop-loss order and stop-loss order with equal

means.

On the other hand, when comparing income distributions, it is sensible to

analyze carefully the lowest part of the distributions, that is, the stratus in the

populations with less resources. This is the reason why the increasing concave order

is mainly considered in the literature of social inequality and welfare measurement

under the name of the second order stochastic dominance. In this case, if X ≤icv Y ,

the distribution of the wealth in Y is considered to be more even than in X. If the

populations to be compared have different positive expectation, it is very usual to

normalize them by dividing by their respective means and then check if they are

comparable with respect to the concave order. This approach leads to the Lorenz

order, which is an essential tool in economics.

The convex and the concave orders are dual, and every property satisfied by

one of them can be translated to the other one due to the relationships between

the convex and the concave functions. Actually, it is easy to see that X ≤cx Y if

and only if Y ≤cv X, and X ≤icx Y if and only if −Y ≤icv −X.

In this work, we use some characterizations of the (increasing) convex and

concave orders related to the mean order statistics to define discrepancy mea-

sures useful in testing problems involving stochastic dominance assumptions. The

characterizations have a clear economic interpretation in terms of the expected

cumulative resources of the poorest (or richest) in a randomly selected sample of

individuals from the population. The considered discrepancy measures yield in
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turn a testing approach quite different from those quoted above. The estimators

which appear are functions of L-statistics and thus, in some situations, an asymp-

totic theory can be developed. However, in other cases computational techniques

such as bootstrap are also required.

The paper is structured as follows: Section 2 includes some theoretical results

linking the orderings with the mean order statistics. In Sections 3 and 4 we address

two different testing problems: a) testing whether two distributions are ordered

with respect to the increasing convex or concave order versus the alternative that

they are not, and b) testing whether two distributions are equal against the al-

ternative that one strictly dominates the other. Sections 5 and 6 include various

simulation studies. A real data example is considered in Section 7. Section 8

summarizes the main conclusions of the paper. Finally, the proofs are collected in

the appendix.

2 CONVEX-TYPE ORDERS AND MEAN ORDER STATISTICS

Throughout the paper, X and Y are integrable random variables with distribution

functions F and G, respectively, and we denote by F−1 and G−1 their quantile

functions, i.e., F−1(t) := inf{x : F (x) ≥ t}, 0 < t < 1. For a real function ω on

[0, 1], we define

∆ω(X, Y ) :=

∫ 1

0

(
G−1(t)− F−1(t)

)
ω(t) dt, (1)

whenever the above integral exists. The following theorem shows that X ≤cx Y is

characterized by the fact that (1) is nonnegative for non decreasing ω. Moreover,

under a strict domination, ∆ω(X, Y ) is necessarily positive for increasing weight

functions. In the following, “=st” indicates the equality in distribution.

Theorem 1. Let I denote the class of non decreasing real functions on [0, 1] and

I0 the subset of functions ω ∈ I with the property ω(0) ≥ 0. Also, I∗ stands for

the subclass of strictly increasing functions of I and I∗0 := I0 ∩ I∗. We have:

(a) X ≤cx Y if and only if ∆ω(X, Y ) ≥ 0, for all ω ∈ I. The equivalence

remains true if “≤cx” and “I” are replaced by “≤icx” and “I0”, respectively.

(b) If X ≤cx Y and ∆ω(X, Y ) = 0 for some ω ∈ I∗, then X =st Y . The result

still holds if “≤cx” and “I∗” are replaced by “≤icx” and “I∗0”, respectively.
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The distance (1) is closely related to the expected value of the order statistics.

For k ≥ 1, let (X1, . . . , Xk) and (Y1, . . . , Yk) be random samples from X and Y ,

respectively. Xi:k and Yi:k denote the associated i-th order statistics, i = 1, . . . , k.

For k ≥ 1 and 1 ≤ m ≤ k, let us denote by Sm:k(X) (resp. sm:k(X)) the

expectation of the sum of the m greatest (resp. smallest) order statistics, i.e.,

Sm:k(X) :=
k∑

i=k+1−m

EXi:k, sm:k(X) :=
m∑

i=1

EXi:k. (2)

If X measures the income level of the individuals in a population, the function

Sm:k(X) (resp. sm:k(X)) is nothing but the expected cumulative income of the

m richest (resp. poorest) individuals out of a random sample of size k from the

population. On the other hand, if X is a risk, Sm:k(X) (resp. sm:k(X)) measures

the expected loss of the m largest (resp. lowest) loss events out of k as X.

Corollary 1. (a) When X ≤icx Y we have, Sm:k(X) ≤ Sm:k(Y ), for all k ≥ 1

and 1 ≤ m ≤ k. If additionally Sm:k(X) = Sm:k(Y ) for some k ≥ 2 and

1 ≤ m < k, then X =st Y .

(b) When X ≤icv Y , we have sm:k(X) ≤ sm:k(Y ), for all k ≥ 1 and 1 ≤ m ≤ k.

If additionally sm:k(X) = sm:k(Y ) for some k ≥ 2 and 1 ≤ m < k, then

X =st Y .

The first statements in (a) and (b) above are also consequences of Corollary 2.1

in de la Cal and Cárcamo (2006). However, the second parts are new and required

to derive the tests in Section 4.

By using Theorem 1 similar results can be obtained for the expected difference

between the resources of the richest and the poorest. For instance, X ≤icv Y also

implies that E(Yk:k − Y1:k) ≤ E(Xk:k −X1:k) for all k ≥ 2. That is, the expected

gap between the resources of the richest and the poorest individual (out of k) is

lower for Y . Moreover, if this expected gap is equal for some k ≥ 2, we necessarily

have X =st Y . Some results in the direction of Theorem 1 can also be found in

Sordo and Ramos (2007).

3 TESTING STOCHASTIC DOMINANCE AGAINST NO DOMINANCE

When it is assumed that two populations are ordered, it is important to ensure

that assumption is consistent with the data at hand. Accordingly, we consider

the problem of testing the null hypothesis H0 : X ≤icx Y against the alternative
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H1 : X �icx Y using two independent random samples X1, . . . , Xn1 and Y1, . . . , Yn2

from X and Y , respectively. A test for the second order stochastic dominance

H0 : X ≤icv Y versus H1 : X �icv Y can be accomplished from the test considered

in this section by just changing the sign of the data and exchanging the roles

played by X and Y . For relevant papers dealing with the same testing problem

we refer to Barrett and Donald (2003) and the references therein.

Our approach consists in comparing estimates of the mean order statistics of

the two variables. Following the same lines as in the proof of Lemma 4.4 in de

la Cal and Cárcamo (2006), it is easy to give a characterization of the alternative

hypothesis using the functions Sm:k(X) defined in (2):

H1 is true ⇐⇒ max
1≤m<k

(
Sm:k(X)− Sm:k(Y )

)
> 0, for all k ≥ k0, (3)

where k0 depends on the distribution of the variables X and Y .

As a consequence, a sensible procedure to solve the testing problem is to es-

timate the above quantity and reject H0 whenever the estimate is large enough.

Suppose that H1 holds and that the value of k is chosen so that k → ∞ when

n1, n2 → ∞. Due to (3), we will eventually find a value of k for which there is

at least a significant positive difference Ŝm:k(X) − Ŝm:k(Y ) (for some m), where

Ŝm:k(X) and Ŝm:k(Y ) are estimators of the quantities Sm:k(X) and Sm:k(Y ), respec-

tively. Hence, this procedure is expected to be asymptotically consistent. Indeed,

the precise consistency result is established below.

We adopt a plug-in approach to estimate Sm:k(X) and Sm:k(Y ) and we replace

F and G with the empirical distributions Fn1 and Gn2 . That is,

Ŝm:k(X) :=
k∑

j=k+1−m

EFn1
(Xj:k) and Ŝm:k(Y ) :=

k∑
j=k+1−m

EGn2
(Yj:k).

In the end, our estimators are L-statistics since it can be readily shown that

EFn(Xj:k) =
n∑

i=1

[
j
(

k
j

)∫ i/n

(i−1)/n

tj−1(1− t)k−j dt

]
Xi:n. (4)

Once we know how to estimate Sm:k(X) and Sm:k(Y ), we define the statistics

Λ̂k,n1,n2 :=
1

k
max

1≤m<k

(
Ŝm:k(X)− Ŝm:k(Y )

)
. (5)

Our proposal is to reject H0 when an appropriately normalized version of Λ̂k,n1,n2

is large enough, that is, we use the following critical region:
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{
(1/n1 + 1/n2)

−1/2Λ̂k,n1,n2 > c
}
, (6)

where k → ∞ if n1, n2 → ∞, and the critical value c > 0 is chosen so that the

test has a preselected significance level, α, in the limiting case under H0, i.e., in

the case X =st Y . The following result collects some properties of the test defined

by the previous rejection region. The limits in the theorem are taken as n1 and

n2 go to infinity in a way such that n1/(n1 + n2) → λ ∈ (0, 1). We note that

the value of k implicitly depends on n1 and n2 since we have to estimate the

expectations of the order statistics EXi:k and EYi:k with samples of sizes n1 and

n2, respectively. However, for the following asymptotic result it is only required

that k →∞, without any additional restriction.

Theorem 2. Let X be a random variable such that
∫∞

0

√
Pr(|X| > x) dx < ∞.

(a) Under H1, lim Pr(reject H0) = 1.

(b) Under H0, if X 6=st Y , then lim Pr(reject H0) = 0.

The condition E|X|2+δ < ∞, for some δ > 0, implies
∫∞

0

√
Pr(|X| > x) dx <

∞. Therefore, the procedure described above yields a consistent test under a

condition only slightly stronger than the existence of the second moment. If one is

only willing to assume E|X|γ < ∞ for some 1 < γ < 2, then the rate of convergence

is slower and the consistency requires to modify slightly the test (see Remark 1 in

the Appendix). In such a case, the critical region (6) has to be replaced by{
(1/n1 + 1/n2)

1/γ−1Λ̂k,n1,n2 > c
}
. (7)

The previous theorem does not require the variables to have finite support,

neither the continuity of the distribution functions. However, it does not make

any statement over the asymptotic size of the test, that is, it is not shown that

lim supn1,n2→∞ sup Pr(reject H0) = α, where the supremum is taken over all X and

Y under the null.

Theorem 2 assumes that we know the distribution of the test statistics when

X =st Y so that we can determine the threshold value c beyond which we reject for

each significance level α. Unfortunately, it seems extremely difficult to derive such

a distribution, which in general depends on the underlying unknown distribution

of the data. To apply the test in practice we propose to rely on a bootstrap

approximation to simulate p-values, according to the following scheme:

1. Compute Λ̂m,n1,n2 from the original samples X1, . . . , Xn1 and Y1, . . . , Yn2 .
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2. Consider the pooled data set Z1, . . . , Zn, with n = n1 + n2, and resample

with replacement to obtain Z∗
1 , . . . , Z

∗
n. Divide this bootstrap sample into

two parts X∗
1 , . . . , X

∗
n1

and Y ∗
1 , . . . , Y ∗

n2
. Use these two parts to compute a

bootstrap version of the test statistics Λ̂∗
m,n1,n2

.

3. Repeat step 2 a large number B of times, yielding B bootstrap test statistics

Λ̂
∗(b)
m,n1,n2 , b = 1, . . . , B.

4. The p-value of the proposed test is given by p := Card{Λ̂∗(b)
m,n1,n2 > Λ̂m,n1,n2}/B.

We reject at a given level α whenever p < α.

The null hypothesis of the test is composite. By resampling from the pooled

sample we approximate the distribution of our test statistics when X =st Y , which

represents the least favorable case for H0. If the probability of rejection in this case

is approximately α, then α is expected to be an upper bound for the probability of

rejection under other less advantageous situations. This idea has been confirmed

in the simulation study carried out in Section 5. Similar bootstrap approximations

have been successfully applied in an alike context in Abadie (2002) and Barrett

and Donald (2003).

4 TESTING STOCHASTIC EQUALITY AGAINST STRICT DOMINANCE

In this section we want to test if two variables are equally distributed against the

alternative that they are strictly ordered. Hence, we provide a test for the null

hypothesis H0 : X =st Y against the alternative H1 : X ≤icx Y and X 6=st Y (or

its dual, H1 : X ≤icv Y and X 6=st Y ).

This kind of unidirectional tests may appear naturally in economics where a

certain change in the scenario, for example a change in tax policy or a technology

shock, is expected to produce a decrease or increase in the variability of the vari-

ables such as income or stock return, and therefore is not unreasonable to assume

that the distributions are ordered. The goal is to determine if they are different.

In other occasions we can apply a two step procedure. First, we use the test

described in Section 3 to show that it is reasonable to assume that the variables

are ordered and afterward apply this test. One possible solution to control the

significance level of the final test is to use the Bonferroni method. For example,

to test the two hypotheses on the same data at 0.05 significance level, instead of

using a p-value threshold of 0.05, one would use 0.025.

It is important to remark that these tests use the additional information that

the variables are ordered, and thus the corresponding power is by far much higher
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than the power of the usual tests of equality of distribution, as the Kolmogorov-

Smirnov test, for instance. Some illustrations regarding this question are included

in Subsection 6.3 (see also Figure 2).

Let us consider first the test for the increasing convex order. Theorem 1 and

Corollary 1 provide a large number of potential discrepancy measures on which

our test statistic could be based on. Among them, we have opted for a relatively

simple one, namely, the difference between the expected value of the maximum of

k ≥ 2 observations. By selecting m = 1 in Corollary 1 (a), we obtain:

If X ≤icx Y , then EXk:k ≤ EYk:k. Moreover, if additionally EXk:k = EYk:k

for some k ≥ 2, then X =st Y .

Therefore, we consider the discrepancy ∆k(X, Y ) := EYk:k − EXk:k, k ≥ 2.

∆k(X, Y ) = 0 under H0, while ∆k(X, Y ) > 0 under H1. A natural idea is to

estimate ∆k(X, Y ) and reject H0 whenever the estimate is large enough. As before,

to estimate ∆k(X,Y ) we replace F and G with the empirical distributions, Fn1

and Gn2 . The resulting estimators are obtained by setting j = k in (4).

∆̂k,n1,n2 :=

n2∑
i=1

ωi,k,n2Yi:n2 −
n1∑
i=1

ωi,k,n1Xi:n1 , (8)

where for k ≥ 2, n ≥ 1 and 1 ≤ i ≤ n, the weights are given by

ωi,k,n :=

(
i

n

)k

−
(

i− 1

n

)k

. (9)

Theorem 3. Assume that H0 holds and that the common distribution F satisfies∫ ∞

−∞
F (x)2k−2x2dF (x) < ∞. (10)

Assume also that n1/n tends to λ ∈ (0, 1), as n →∞, where n := n1 + n2. Let U

be a random variable uniformly distributed on (0, 1). Define the random variable

W := kUk−1F−1(U) + k(k − 1)

∫ 1

U

tk−2F−1(t) dt (11)

and let σ2
W be the variance of W . Then, as n1 →∞,

(1/n1 + 1/n2)
−1/2 ∆̂k,n1,n2 −→d N(0, σ2

W ), (12)

where the symbol −→d stands for the convergence in distribution, and N(0, σ2
W ) is

a normal random variable with mean 0 and variance σ2
W .
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Hence, to test H0 against H1, we can use the simple critical region{
(1/n1 + 1/n2)

−1/2∆̂k,n1,n2/σ̂W > z
}
, (13)

where σ̂W is any consistent estimate of σW and z is a quantile of the standard

normal distribution that depends on a suitable significance level.

To estimate σW we proceed as follows: given U with uniform distribution on

(0,1), we obtain a pseudo-value of W , Ŵ , by replacing in (11) the unknown true

distribution F by the pooled empirical distribution Fn, n = n1 + n2, computed

from the observations of the two samples (since under H0 both samples come from

the same distribution). Let Z1:n ≤ · · · ≤ Zn:n be the order statistics of the pooled

sample. After some computations, Ŵ can be expressed as:

Ŵ = k

(
dnUe

n

)k−1

ZdnUe:n + k
n∑

i=dnUe+1

ωi,k−1,nZi:n,

where d·e is the ceiling function and ωi,k−1,n is defined as in (9). Finally, we generate

a large number of pseudo-values and compute its standard deviation. According to

our computations, 5000 pseudo-values are enough to obtain a precise estimate σ̂W .

The consistency of this estimator is analyzed in Proposition 1 of the Appendix.

If we are interested in the alternative hypothesis H1 : X ≤icv Y and X 6=st Y ,

some modifications of the procedure described above are needed. In this case, the

appropriate discrepancy measures are Γk := EY1:k − EX1:k, k ≥ 2. This quantity

can be estimated by setting j = 1 in (4). That is,

Γ̂k,n1,n2 :=

n2∑
i=1

γi,k,n2Yi:n2 −
n1∑
i=1

γi,k,n1Xi:n1 ,

where now the weights are given by

γi,k,n :=

(
1− i− 1

n

)k

−
(

1− i

n

)k

. (14)

Comparing (9) with (14) we see that when we are interested in the second

order dominance, we use an L-statistics that places more weight on the lowest

order statistics whereas for the increasing convex order, the highest order statistics

receive more weight.

The proof of the following theorem is analogous to that of Theorem 3 so that

it is omitted.
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Theorem 4. Assume that H0 holds and that the common distribution F satisfies∫ ∞

−∞
(1− F (x))2k−2x2 dF (x) < ∞. (15)

Assume also that n1/n tends to λ ∈ (0, 1), as n →∞, where n := n1 + n2. Let U

be a random variable uniformly distributed on (0, 1). Define

V := −k(1− U)k−1F−1(U) + k(k − 1)

∫ 1

U

(1− t)k−2F−1(t) dt

and let σ2
V be the variance of V . Then, as n1 →∞,

(1/n1 + 1/n2)
−1/2 Γ̂k,n1,n2 −→d N(0, σ2

V ).

The procedure to estimate the asymptotic standard deviation σV is also ana-

logous to that proposed for σW . In this case the pseudo-values are

V̂ = −k

(
1− dnUe

n

)k−1

ZdnUe:n + k
n∑

dnUe+1

γi,k−1,nZi:n,

where γi,k−1,n is defined in (14). For an appropriate normal quantile z, H0 is

rejected in the critical region
{
(1/n1 + 1/n2)

−1/2Γ̂k,n1,n2/σ̂V > z
}
.

An appealing aspect of Theorem 4 is that it guarantees the asymptotic normal-

ity of the test statistic under remarkably mild conditions. For instance, when the

variables are nonnegative (which is the case of most interesting economic variables)

the condition EX < ∞ implies x[1− F (x)] → 0 as x →∞, which in turn implies

(15) for k ≥ 2. Therefore, in this important case, the finiteness of the expectation

is all what is needed to ensure the asymptotic normality whereas the asymptotic

behavior of most related test statistics in the literature involves the existence of the

second moment. See for instance, Aly (1990, Theorem 2.1), Marzec and Marzec

(1991, Theorem 2.1) and Belzunce et al. (2005, Theorem 2.1).

5 MONTE CARLO RESULTS: STOCHASTIC DOMINANCE AGAINST

NO DOMINANCE

To investigate the properties of the test of Section 3 for small samples, we have

carried out a simulation study inspired by that of Barrett and Donald (2003). We

consider the test for the second order stochastic dominance, that is, H0 : X ≤icv Y

versus H1 : X �icv Y across five different models (M1–M5). The models are

11



related to log-normal distributions, which are frequently found in welfare analysis.

We consider three mutually independent standard normal variables Z, Z ′ and

Z ′′. In all models X = exp(0.85 + 0.6Z) is fixed. In the first three models,

Y = exp(µ + σZ ′) is also log-normal. The models only differ in the values of the

parameters µ and σ:

• M1: µ = 0.85 and σ = 0.6. Hence, H0 is true and X =st Y .

• M2: µ = 0.6 and σ = 0.8. In this case, H0 is false.

• M3: µ = 1.2 and σ = 0.2. In this model, H0 is true but X 6=st Y .

In the last two models, Y is a mixture of two log-normal distributions:

Y = 1{U≥0.1} exp(µ1 + σ1Z
′) + 1{U<0.1} exp(µ2 + σ2Z

′′),

where 1A stands for the indicator function of the set A, U is a uniform [0,1] random

variable also independent of the normal variables Z, Z ′ and Z ′′.

• M4: µ1 = 0.8, σ1 = 0.5, µ2 = 0.9 and σ2 = 0.9. In this case, H0 is false.

• M5: µ1 = 0.85, σ1 = 0.4, µ2 = 0.4 and σ2 = 0.9. Here H0 is again false.

We have simulated samples with sizes n1 = n2 = 50 and n1 = n2 = 100,

and then we have applied the test based on (6) with k = dn1/10e (denoted by

CX10), with k = dn1/20e (denoted by CX20), and a test proposed by Barrett

and Donald (2003) for the same testing problem (denoted by BD). We have used

the bootstrap scheme described in Section 3 with B = 1000 to approximate the

p-value. Accordingly, we have selected the Barrett-Donald test using the same

bootstrap scheme, namely, the one called KSB2 in that paper.

For each model, we have performed 1000 Monte Carlo replications of the ex-

periment and recorded the rejection rates at the significance levels α = 0.01 and

α = 0.05 for both tests. The results can be found in Table 1.

Both tests behave similarly under H0: under M1, we obtain rejection rates

not far from the nominal significance levels. This suggests that the bootstrap

approximation works well for the three tests. Under M3, H0 is true but X 6=st Y

so that we expect a rejection rate below the nominal significance level. Observe

that the tests never reject H0 in this case. Regarding models for which H1 is true,

neither of the tests is uniformly better than the others: CX10 and CX20 are more

powerful than BD under M2, but BD is more powerful than CX10 and CX20 under

the mixtured models M4 and M5.
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α n Test M1 M2 M3 M4 M5

0.01 50 BD 0.013 0.085 0.000 0.029 0.068

0.01 50 CX10 0.010 0.198 0.000 0.026 0.030

0.01 50 CX20 0.010 0.242 0.000 0.021 0.023

0.01 100 BD 0.004 0.127 0.000 0.053 0.136

0.01 100 CX10 0.004 0.299 0.000 0.044 0.070

0.01 100 CX20 0.007 0.421 0.000 0.043 0.038

0.05 50 BD 0.055 0.248 0.000 0.140 0.237

0.05 50 CX10 0.047 0.420 0.000 0.095 0.116

0.05 50 CX20 0.051 0.496 0.000 0.078 0.087

0.05 100 BD 0.043 0.391 0.000 0.185 0.368

0.05 100 CX10 0.039 0.609 0.000 0.168 0.217

0.05 100 CX20 0.040 0.705 0.000 0.144 0.138

Table 1: Rejection rates for BD, CX10 and CX20 tests with
bootstrap p-value under models M1–M5.

6 MONTE CARLO RESULTS: STOCHASTIC EQUALITY AGAINST STRICT

DOMINANCE

We have carried out a simulation study to assess the performance of the tests

proposed in Section 4 for finite sample sizes. Also we want to illustrate some ideas

about the choice of the parameter k.

6.1 General description and results for fixed k

We have considered a situation in which X has a Weibull distribution with shape

parameter 10 and scale parameter 1/Γ(1 + 1/10). On the other hand, Y has a

Weibull distribution with shape parameter θ and scale parameter 1/Γ(1 + 1/θ),

for θ = 6, 8, 10. The scale parameters have been chosen so that EX = EY = 1,

which is the most unfavorable situation to detect deviations from H0. The null

hypothesis corresponds to θ = 10. All the considered pairs of variables are ordered

since they have the same mean and the difference between their density functions

has two crossing points (see Shaked and Shanthikumar (2006, Theorem 3.A.44,

p. 133)). For all the described combinations, we simulate couples of independent

samples with sizes n1 = n2 = 50, 100 and apply the test based on the critical

region (13) for k = 2, 4, 6, 10 at the significance level α = 0.05. After replicating
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this experiment 1000 times, we registered the proportion of times for which H0

was rejected, that is, the empirical power of the tests.

In Figure 1 the resulting empirical power curves (n1 = n2 = 50 and n1 =

n2 = 100) are represented. The horizontal dotted line corresponds to the nominal

significance level of the test. From the results of the experiment it is apparent that

the largest values of k perform clearly better than the smallest ones. However, as

k increases the improvement seems to be less significant. These results point

out that the power of the test may strongly depend on the value of k. In the

following subsection we address the problem of choosing an appropriate value of

this parameter.

We also performed similar simulation studies with both gamma and Student t

random variables. The results were remarkably similar and have been omitted for

the sake of briefness.
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Figure 1: Empirical power curves for the test (13) under dif-
ferent Weibull alternatives, sample sizes 50 and 100, and several
values of k.

6.2 Data-driven selection of k

There are two factors that should be taken into account in the selection of k. The

first one is the ability of the discrepancy measure ∆k(X,Y ) to detect deviations
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from the null hypothesis. From this point of view we should choose the value k that

maximizes ∆k(X, Y ). In some important situations it can be shown that ∆k(X,Y )

increases with k and then we should choose k as large as possible in these cases.

However, since X and Y are unknown, in practice we use the estimate ∆̂k,n1,n2

instead of ∆k(X, Y ). Therefore, another important factor to be considered is the

variability of ∆̂k,n1,n2 . It is intuitively clear that as k increases (for fixed n1 and

n2), it is more difficult to estimate ∆k(X,Y ), so that an increase in the variance

of ∆̂k,n1,n2 should be expected. As a consequence, a large value of k might not

be a good choice regarding this second aspect. The results displayed in Figure 1

collect the overall effect of the two factors under the Weibull model.

A simple measure to quantify which of the two factors is more influential is the

inverse of the coefficient of variation. If X is a random variable with finite second

moment, we denote by CV−1 := EX/σX the inverse of the coefficient of variation

(σX being the standard deviation of X). Let us denote by CV−1
k the inverse of the

coefficient of variation of the test statistics ∆̂k,n1,n2 given in (8). Overall, a high

value of CV−1
k could generate a test with a good power. A reasonable data-driven

choice of k would be then the value of k that provides the highest estimated value

of CV−1
k . In practice, a standard bootstrap procedure can be used to estimate

CV−1
k .

A hindrance of this approach is that the asymptotic result for fixed k derived

in Section 4 is no longer applicable. The procedure described above automatically

selects a value of k “against the null” so that the critical value prescribed by

equation (13) is too liberal. Again, bootstrap techniques may help to approximate

the appropriate critical value for a given significance level. The method is fairly

similar to the one described in Section 3 and the details are omitted.

Since we use bootstrap both for estimating the coefficient of variation and

for approximating the critical level, our procedure is computationally expensive.

Fortunately, using a small number of bootstrap samples yields acceptable results.

In Table 2, we report the empirical significance level and power of the test, with

k automatically selected as described above using only 10 bootstrap samples to

estimate the coefficient of variation and 200 bootstrap samples to approximate the

critical value. The experiment has been replicated 1000 times and α = 0.05 is the

nominal significance level. We see that the data-driven selection of k yields good

power and at the same time allows us to control the significance level.
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Weibull θ = 6 θ = 8 θ = 10

n1 = n2 = 50 0.845 0.309 0.067

n1 = n2 = 100 0.988 0.542 0.052

Table 2: Rejection rates for the test of equality against strict
dominance when k is automatically selected. The nominal sig-
nificance level is α = 0.05. The last column corresponds to the
null hypothesis.

6.3 Comparison with the Kolmogorov-Smirnov test

As it was mentioned at the beginning of the Section 4, the tests generated by this

approach take into account the important information of the ordering between the

two variables. Therefore, the power of these tests is expected to be higher than the

power of the usual omnibus tests for equality of the distributions in the literature

(which work against all and not just ordered alternatives). To illustrate this point,

we have compared the empirical power of our test (both with fixed k = 10 and data-

driven selected k) with that of the Kolmogorov-Smirnov test, under the Weibull

model described in Subsection 6.1 with sample sizes n1 = n2 = 50, 100. The results

are summarized in Figure 2. We see that the tests proposed in this section have

(uniformly) by far a much higher power than the Kolmogorov-Smirnov test. Note

also that the automatic procedure to select k yields similar results to the case

k = 10 (which is the best one across all the considered values, see Figure 1).

7 AN EMPIRICAL EXAMPLE

To illustrate the tests of Sections 3 and 4, we discuss a data set previously con-

sidered in Barrett and Donald (2003). The data set is drawn from the Canadian

Family Expenditure Survey from the years 1978 and 1986. We are interested in

the comparison of the income distributions in these years.

We normalize incomes dividing the data in each sample by its average, and

analyze whether the resulting distributions are ordered with respect to the concave

order. This is equivalent to comparing the distributions according to the Lorenz

order.

Some descriptive graphics of the normalized incomes can be found in Figure 3.

In the panels on the left we have plotted the empirical distribution functions for the

pre-tax and post-tax normalized income data. The corresponding kernel density
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Figure 2: Empirical power curves for the test (13) with fixed
k = 10 (solid line), automatic selection of k (dotted-dashed
line), and the Kolmogorov-Smirnov test (dashed line) under the
Weibull model. The sample sizes are n1 = n2 = 50 (left) and
100 (right). Horizontal dotted line corresponds to significance
level α = 0.05.

estimates are plotted in the right panels. Notice that the empirical distribution

functions for 1978 and 1986 are rather similar. From the estimated densities

we notice that qualitative aspects of both distributions (positive skewness, slight

bimodality) are also comparable.

Figure 4 displays the difference between the integrated empirical quantile func-

tions of the normalized samples. This difference is exactly the empirical counter-

part of the function given in Lemma 1 in the appendix. This function is for the

most part positive and this fact suggests that both distributions could be ordered

according to the Lorenz order. A more formal evaluation of this ordering property

can be achieved by applying the test developed in Section 3. The null hypothe-

sis is that the income distribution of 1978 dominates in the Lorenz order that of

1986. To be more precise, if X1978 and X1986 denote the variables in the years 1978

and 1986, we test H0 : X1986/EX1986 ≤cv X1978/EX1978 against H1 : not H0 (or

equivalently, H0 : X1978/EX1978 ≤cx X1986/EX1986 against the same alternative).

Therefore, we have applied the test based on the critical region (6), where the

critical value c has been approximated using B = 500 bootstrap samples. Also,

several values of k have been considered. The corresponding p-values are displayed

in Table 3.

Since the p-values are quite large, the conclusion is that the null hypothesis

cannot be rejected. This also means that the negative parts of the functions
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Figure 3: Empirical distribution functions and kernel density
estimates for pre-tax and post-tax income data in 1978 and 1986.

depicted in Figure 4 are not significant. The p-values are almost the same for the

considered values of k. Moreover, p-values are also similar when considering the

after tax or before tax incomes.

Since the assumption that both distributions are ordered is acceptable, a nat-

ural question is if the distributions are equal (according to this order), or if one

strictly dominates the other. We note that the equality for the Lorenz order is

the equality in distribution up to dilations of the variables. To answer this ques-

tion we use the test introduced in Section 4. We have used bootstrap estimates

(based on B = 500 resamples) of the inverse of the coefficient of variation of the

discrepancies, as described in Subsection 6.2, to explore which values of k are more

suitable. A graphical representation of these estimates can be found in Figure 5.

It turns out that the maximum is attained at k̂ = 14 (before tax) and k̂ = 11 (after

tax). Accordingly, we carry out the tests corresponding to these values, where the

p-values are approximated using again bootstrap. The resulting p-values are 0.006

(before tax) and 0.002 (after tax). Therefore, our conclusion is that the income
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Figure 4: Difference between the integrated quantile functions
(1986 minus 1978).

k dmin{n1, n2}/100e dmin{n1, n2}/500e dmin{n1, n2}/1000e
Before tax 0.666 0.628 0.636

After tax 0.590 0.592 0.598

Table 3: p-values for testing the null hypothesis that the income
distribution of 1978 dominates in the Lorenz order that of 1986
versus the alternative that both distributions are not ordered.

distribution in 1978 strictly dominates that of 1986, according to Lorenz order. In

this sense, we conclude that the income distribution in 1978 was more even than in

1986. The conclusion does not depend upon the mean income level since we have

used normalized incomes and neither upon the consideration of incomes before tax

or after tax. Moreover, we can assert that X1986 6=st aX1978, for all a > 0, that is,

the situation in 1986 was not a dilation of that in 1978.

8 CONCLUSIONS

We propose a new approach to solve two different testing problems related to the

second order stochastic dominance. First, we discuss a test for stochastic domi-

nance versus no dominance. The technique consist in comparing the estimated

expected cumulative resources of the m-poorest in random samples of size k of the

populations. We derive the asymptotic consistency of the method and approximate

the p-values via bootstrap. The simulation studies show that the methodology

works well. However, in this work it is not proved the asymptotic consistency of
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Figure 5: Bootstrap estimates of the inverse of the coefficient
of variation of ∆̂k,n1,n2 as a function of k.

the considered bootstrap scheme. The selection of the tuning parameter k affects

the power of the resulting test and further research will be needed to understand

better the influence of this parameter. Also, we consider a test of stochastic equal-

ity against strict domination. In this case, we compare the estimated expected

maxima or minima of random samples of size k of the populations. The estima-

tors of the discrepancies are L-statistics and we show that their distributions are

asymptotically normal (for all k). Again, the choice of k has an impact on the

power of the tests. For this reason, we derive a data-driven selection of k to obtain

a value of this parameter generating a powerful test. One important advantage

of this last test is that it is much more powerful than the usual tests of equality

in distribution since we include the additional information that the variables are

stochastically ordered.

APPENDIX: PROOFS

Without loss of generality we assume the functions ω ∈ I are right continuous. For

ω ∈ I, µω is the Lebesgue-Stieltjes measure defined by µω((a, b]) = ω(b) − ω(a),

(a, b] ⊂ [0, 1].

The following lemma is a consequence of the results in Rüschendorf (1981),

where 1A stands for the indicator function of the set A.

Lemma 1. X ≤cx Y if and only if ∆1(t,1]
(X, Y ) ≥ 0, for 0 ≤ t < 1, with equality

for t = 0. The equivalence remains true if “≤cx” is replaced by “≤icx” and the

restriction for t = 0 is dropped.
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Lemma 2. Let f be a continuous and nonnegative function on [0, 1]. If
∫

[0,1]
f dµω =

0, for some ω ∈ I∗, then f ≡ 0 on [0, 1].

Proof. If for some t0 ∈ [0, 1], f(t0) > 0, by the continuity of f there would exist

a nonemply interval (a, b] ⊂ [0, 1] such that f > 0 on (a, b]. Since ω ∈ I∗, we

have µω((a, b]) > 0. Therefore, f > 0 on an interval with positive measure, which

contradicts the assumption on the value of the integral.

Proof of Theorem 1. We restrict to the case X ≤icx Y . The proof for the

convex order is analogous taking into account X ≤cx Y if and only if X ≤icx Y

and EX = EY . From Lemma 1, ∆ω(X, Y ) ≥ 0 for all ω ∈ I0 implies X ≤icx Y .

For the reverse implication, let us assume that X ≤icx Y . For ω ∈ I0, by Fubini’s

theorem, we have

∆ω(X, Y ) = ω(0)(EY − EX) +

∫ 1

0

(
G−1(t)− F−1(t)

)(∫
[0,t]

dµω(s)

)
dt

= ω(0)(EY − EX) +

∫
[0,1]

∆1(s,1]
(X, Y ) dµω(s).

(16)

By Lemma 1, ∆1(·,1](X, Y ) is nonnegative on [0, 1] and since EX ≤ EY provided

X ≤icx Y , we obtain that ∆ω(X, Y ) ≥ 0 and this completes the proof of part (a).

To show (b), let us assume that X ≤icx Y and there exists a function ω ∈ I∗0
such that ∆ω(X, Y ) = 0. By (16), we have

∫
[0,1]

∆1(s,1]
(X, Y ) dµω(s) = 0. By

Lemma 1, the function ∆1(·,1](X, Y ) is nonnegative on [0, 1] and it is trivially

continuous. We apply Lemma 2 to conclude ∆1(·,1](X, Y ) ≡ 0 on [0, 1]. This

implies F−1 = G−1 a.e. on [0, 1] and thus X =st Y . �

Proof of Corollary 1. Fix k ≥ 1 and 1 ≤ i ≤ k. Following the same lines as in

de la Cal and Cárcamo (2006, Lemma 4.3), we obtain

Sm:k(Y )− Sm:k(X) = ∆ω(X,Y ) with ω(t) = k Pr(βk−m:k−1 ≤ t), (17)

where βk−m:k−1 (m < k) is a Beta(k−m,m) random variable and β0,k−1 is degen-

erate at 0. This implies that ω ∈ I0 and for k ≥ 2 and 1 ≤ m < k, ω ∈ I∗0 . Hence,

Corollary 1 (a) follows from Theorem 1. Part (b) is analogous. �

Proof of Theorem 2. We only give a proof for part (a) since (b) is analogous.

Given a random sample X1, . . . , Xn1 (resp. Y1, . . . , Yn1) of X (resp. Y ), we denote
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by Fn1 and F−1
n1

(resp. Gn2 and G−1
n2

) the empirical distribution and quantile

functions of the sample. By (17) and (1), for all m and k, we obtain∣∣∣∣∣ Ŝm:k(X)− Ŝm:k(Y )

k

∣∣∣∣∣ =

∣∣∣∣∫ 1

0

(
F−1

n1
(t)−G−1

n2
(t)
)
Pr(βk−m:k−1 ≤ t) dt

∣∣∣∣
≤
∫ 1

0

∣∣F−1
n1

(t)− F−1(t)
∣∣ dt +

∫ 1

0

∣∣F−1(t)−G−1
n2

(t)
∣∣ dt

=

∫ ∞

−∞
|Fn1(t)− F (t)| dt +

∫ ∞

−∞
|F (t)−Gn2(t)| dt.

(18)

Therefore, the statistics Λ̂k,n1,n2 given in (5) satisfies

(1/n1+1/n2)
−1/2|Λ̂k,n1,n2| ≤

√
n1

∫ ∞

−∞
|Fn1(t)− F (t)| dt+

√
n2

∫ ∞

−∞
|F (t)−Gn2(t)| dt.

Now, if X =st Y and X fulfills
∫∞

0

√
Pr(|X| > x) dx < ∞, Theorem 2.1 (b) in del

Barrio et al. (1999) ensures that for i = 1, 2 the sequences
{√

ni

∫∞
−∞ |F (t)− Fni

(t)| dt
}

ni≥1

are bounded in probability. This directly implies that
{
(1/n1+1/n2)

−1/2|Λ̂k,n1,n2|
}

n1,n2≥1

is bounded in probability. Hence the value c that appears in (6) is bounded.

On the other hand, if H1 is true, a similar argument as in the proof of Lemma

4.4 in de la Cal and Cárcamo (2006) shows that there exist an ε0 > 0 and a positive

integer k0 such that for all k ≥ k0

1

k
max

1≤m<k
{Sm:k(X)− Sm:k(Y )} > ε0. (19)

A similar reasoning as in (18), the integrability of X and Glivenko-Cantelli yield∣∣∣∣∣ Ŝm:k(X)− Sm:k(X)

k

∣∣∣∣∣ ≤
∫ ∞

−∞
|F (t)− Fn1(t)| dt → 0, a.s. as n1 →∞, (20)

uniformly in m and k. Now, we have that

Ŝm:k(X)− Ŝm:k(Y )

k
=

Ŝm:k(X)− Sm:k(X)

k
+

Sm:k(X)− Sm:k(Y )

k
+

Sm:k(Y )− Ŝm:k(Y )

k
.

(21)

For n1 and n2 large enough, (20) ensures that for all m and k∣∣∣∣∣ Ŝm:k(X)− Sm:k(X)

k

∣∣∣∣∣ ,
∣∣∣∣∣Sm:k(Y )− Ŝm:k(Y )

k

∣∣∣∣∣ < ε0/4. (22)
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Finally, equations (19), (21) and (22) imply that for k ≥ k0, Λ̂k,n1,n2 > ε0/2

(almost surely) for n1 and n2 large enough. This implies that, under H1, when

n1 and n2 → ∞ and k ≥ k0, (1/n1 + 1/n2)
−1/2Λ̂k,n1,n2 → ∞, a.s., and since the

rejection region in determined by a bounded quantity c, we conclude that (a) holds

and the proof is complete. �

Remark 1. Under the condition E|X|γ < ∞ for some 1 < γ < 2 instead of∫∞
0

√
Pr(|X| > x) dx < ∞, the same proof but using Theorem 2.2 in del Barrio et

al. (1999) yields the consistency of the test given by the critical region (7).

Proof of Theorem 3. First, we shall show that the L-statistic
∑n1

i=1 ωi,k,n1Xi:n1 ,

where the weights ωi,k,n1 are defined as in (9), is asymptotically equivalent to

(k/n1)
∑n1

i=1(i/n1)
k−1Xi:n1 . Notice that for all k, n1 and 1 ≤ i ≤ n1, there exists

θi ∈ ((i− 1)/n1, i/n1) such that ωi,k,n1 = k
∫ i/n1

(i−1)/n1
tk−1 dt = (k/n1)θ

k−1
i . Then,∣∣∣∣∣

n1∑
i=1

ωi,k,n1Xi:n1 −
k

n1

n1∑
i=1

(
i

n1

)k−1

Xi:n1

∣∣∣∣∣
≤ k

n1

n1∑
i=1

∣∣∣∣∣
(

i

n1

)k−1

− θk−1
i

∣∣∣∣∣ · |Xi:n1| ≤
k(k − 1)

n1

∑n1

i=1 |Xi:n1|
n1

.

Since X has finite expectation, the last quantity is Op(1/n1).

Next, we apply Li el al. (2001, Theorem 2.1) with H(u) = u and J(u) = kuk−1

to obtain

√
n1

(
k

n1

n1∑
i=1

(
i

n1

)k−1

Xi:n1 − µ

)
−→d N(0, σ2

W ), n1 →∞,

where µ := EXk:k and

σ2
W := Var

[
J(U)F−1(U) + µ +

∫ 1

0

(1{U≤t} − t)J ′(t)F−1(t) dt

]
= Var

[
kUk−1F−1(U) + k(k − 1)

∫ 1

0

(1{U≤t} − t)tk−2F−1(t) dt

]
= Var(W ),

with W defined in (11). For the last equality, take into account that∫ 1

0

(1{U≤t} − t)tk−2F−1(t) dt =

∫ 1

U

tk−2F−1(t) dt−
∫ 1

0

tk−1F−1(t) dt,
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and the second term is not random. Condition (10) is needed to ensure that

conditions (i)-(iii) in Li el al. (2001, Theorem 2.1) hold. By the asymptotic

equivalence established above and the assumption n1/n → λ we also have

√
n

(
n1∑
i=1

ωi,k,n1Xi:n1 − µ

)
−→d N(0, σ2

W /λ), n →∞.

Following the same lines, we can also show

√
n

(
n2∑
i=1

ωi,k,n2Yi:n2 − µ

)
−→d N(0, σ2

W /(1− λ)), n →∞.

Finally, since both samples are independent we deduce

√
n∆̂k,n1,n2 −→d N(0, σ2

W /[λ(1− λ)]), n →∞,

which in turn implies (12). �

Next proposition shows the consistency of the estimators of the asymptotic

standard deviations σW and σV described in Section 4. Although we ask for a

finite second moment, we believe the conditions (10) and (15) are enough.

Proposition 1. If the variable X has finite second moment, the estimators σ̂W

and σ̂V described in Section 4 are consistent.

Proof. We only give a proof for σ̂W since the one for σ̂V is analogous. If EX2 <

∞, it is easy to check that EW 2 < ∞, where W is defined in (11). Therefore,

recalling that Ŵ is the empirical counterpart of W , we only need to show that

E(Ŵ −W )2 → 0, as the sample size n →∞. Some computations show

E(Ŵ −W )2 ≤ k2‖F−1
n − F−1‖2

2 + k2(k2 − 1)‖F−1
n − F−1‖1,

where F−1
n is the empirical quantile function and ‖ · ‖1, ‖ · ‖2 stand for the L1 and

L2 norms, respectively. The existence of the second moment of X guarantees that

‖F−1
n − F−1‖2, ‖F−1

n − F−1‖1 → 0, as n →∞ and the proof is complete.
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