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CCL: CLASS-WISE CURRICULUM LEARNING FOR CLASS IMBALANCE PROBLEMS.

Marcos Escudero-Viñolo, Alejandro López-Cifuentes

Video Processing & Understanding Lab. Universidad Autónoma de Madrid.

ABSTRACT

Computer vision datasets usually present long-tailed train-
ing distributions where the classes are not represented with
the same number of training samples. This so-called class
imbalance problem hinders the proper learning of inference
models, biasing them towards over-represented classes and
decreasing their generalization. Adopted solutions to tackle
the effect of class imbalance are based on weighting the train-
ing loss according to the number of class samples, leading
to regimes where low-represented classes guide the learning
just accounting for their cardinal number. To also incor-
porate class complexity in the process, we propose a novel
training scheme called CCL: Class-wise Curriculum Learn-
ing. Classes are first sorted based on a difficulty criterion
which not only accounts for the number of training sam-
ples but also for their training outcomes. The curriculum
is then used to guide the training: easy classes are fed first
and—incrementally, the more difficult ones are added. The
proposed approach is validated for image classification using
long-tailed datasets. Results show that when the proposed
Class-wise Curriculum Learning scheme is used, trained
models outperform specific state-of-the-art methods devoted
to handle the class imbalance problem. The code, data and
reported models described along this paper are publicly avail-
able at https://github.com/vpulab/CCL.

Index Terms— Class imbalance, Curriculum learning,
Sample scoring, Training pace, Image Classification.

1. INTRODUCTION AND RELATED WORK

The advent of deep learning architectures, pushed by enor-
mous amounts of visual data, have led to the blossom of com-
puter vision. Deep Learning (DL) solutions and—in partic-
ular, Convolutional Neural Networks (CNNs) have proven
to significantly outperform traditional approaches on several
computer vision tasks. These solutions generally rely on a
learning stage to propagate training knowledge towards un-
observed data. The performance of the learned models is
highly impacted by the training stage; hence, learning biases
have a key impact on their whole operation. Common bi-
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Fig. 1. Long-tailed CIFAR-10 and CIFAR-100 training dis-
tributions with different Imbalance Factors.

ases in learning include the class imbalance and the difficulty-
imbalance problems.

Imbalance Problems. In imbalanced scenarios, the class
priors—the number of per-class samples, usually depict a
long-tailed distribution (see examples in Figure 1), result-
ing in the high-populated classes dominating the learning
process, hindering the learning of low represented classes
[1]. Class imbalance situations may be caused by impaired,
biased or erroneous data sampling methods, where some
training classes are heavily populated whereas some others
are just exemplified by few samples, or can arise naturally, as
they are intrinsic to the task. Existing approaches to tackle
the effect of imbalance can be broadly organized into four
categories: adding more new training data, re-sampling tech-
niques, weighting the training loss and feature-driven.

Adding more new training data to the under represented
classes is usually a good option for maximizing performance:
the availability of larger data sets is a key factor for success,
but usually entails considerable costs in terms of human re-
sources, energy and time. Alternatively, using augmented ver-
sions of the available data is usually preferred, e.g., by com-
bining samples [2], [3]. Re-sampling techniques are mainly
based on two regimes: under-sampling (removing training
samples from high represented classes until class-balance is
achieved) and over-sampling (adding repeated training sam-
ples for under represented classes). Whereas under-sampling
is prone to suppress relevant training samples, generally de-
creasing overall performance, over-sampling may lead to a
decrease of intra-class variation, inducing the model to high
over-fitting and to learn features with a lower generalization
power for the under represented classes. Alternatively, there



are solutions proposing to increase the number of samples by
interpolating existing ones [4], or by creating new synthetic
images [5]. Loss weighting techniques tackle the class im-
balance problem at the training stage by weighing the class
contributions to the loss. Generally, most of the methods are
based on assigning class weights depending on the number
of training samples per class. Common approaches usually
define weighting by inverse class frequency strategies [6, 7]
or smoothed versions of these strategies relying on square
roots of class frequency [8, 9]. These methods use the whole
training set for learning and force CNNs to learn features
from under-represented classes by adjusting the contribution
of samples from well-represented training classes in the loss.
However, the features learnt from under-represented classes
aren’t necessarily representative ones, harming the overall
learning process. To overcome this issue, Cui et al [10]
proposed to measure data overlap and to define an effective
number of samples for each class; hence, reducing the imbal-
ance ratio. Differently, instead of relying on fixed weights,
Focal Loss [11] defines a schedule that allows to dynamically
weight hard examples during training, inducing the network
to adapt the learnt features towards them. Loss weighting
strategies are able to deal with imbalanced problems. How-
ever, this promotes an over-influence in the learning process
of under-represented or difficult to learn, samples. Finally,
feature-driven techniques define frameworks for handling
imbalance by separately training features and classification
[12] and for scaling low-represented features and promot-
ing the learning of hard inter-class boundaries samples [13],
yielding current top performance in imbalanced problems.

Curriculum Learning. The difficulty-imbalance problem
is a natural—yet sometimes underestimated, one in multi-
class deep learning tasks. During training, the features de-
scribing some classes’ domains are harder to be learned than
others. This may be caused by a combination of large intra-
class variations, large inter-class overlapping and class im-
balance problems. Even though class population and class
difficulty are not always correlated, if easier classes are more
populated, the training process may naturally evolve towards
learning easy, high populated classes, as their learning helps
to minimize the global cost function. The use of curriculum
learning approaches is an accepted choice for incorporating
estimates on the difficulty of samples in the training.

Humans and animals learn better when the learning exam-
ples are not randomly presented but organized in a meaningful
order that illustrates gradually more concepts, and gradually
more complex ones [14]. Curriculum learning paradigm is
the formalization of this idea into a training strategy. Train-
ing CNNs is usually done by providing a sequence of random
mini-batches sampled uniformly from the entire training data.
Curriculum learning involves the non-uniform sampling of
mini-batches. The learning starts by training only easy sam-
ples of a task and then gradually and incrementally increase

the task difficulty. Hacohen et al [15] suggested that Curricu-
lum Learning improves classification results in a broad set of
datasets such as CIFAR-10 [16] and CIFAR-100 [16] when
samples are sorted with respect to their difficulty. Soviany et
al [17] proposed to use a predefined curriculum to ease Gen-
erative Adversarial Networks learning by feeding them first
with easy samples. Finally, Graves et al [18] proposed an
automated curriculum learning that increased the learning ef-
ficiency. Given the power of Curriculum Learning to obtain
features that generalize better for unseen samples, we propose
to use this idea to tackle class imbalance by defining a Class-
wise Curriculum Learning (CCL) that instead of sorting the
samples, sorts classes by difficulty.

In this paper we describe our contribution to both prob-
lems: CCL aims to use prior knowledge about the difficulty of
the target classes in order to define class-wise selection strate-
gies to consider non-uniformly sampled incremental subsets
of training examples during learning. The intuition behind
CCL is that the learning process is boosted when simpler
classes are fed first. In particular, we hypothesize that for
highly imbalanced distributions, the prior learning of easier
classes may benefit the learning of more complex or less pop-
ulated classes.

2. CLASS-WISE CURRICULUM LEARNING

Definition. Let X = {(xi, yi)}Ni=1 denote the training data,
with each xi ∈ Rd being a sample and yi ∈ C = {1, 2, ...C}
its label out of C classes. In classification problems, the aim
is to learn the parameters θ of a classifier ϕ(θ,X) : Rd → C.

The general process is to train ϕ(θ,X) sequentially, us-
ing uniformly sampled mini-batches of X. The learning is
guided by the optimization of a loss function, a common
choice for the loss function in classification problems is the
cross-entropy loss. A so-trained model is a Baseline one.

Sample-wise curriculum learning strategies first divide X
into subsets of increasing complexity—measured by a scor-
ing function on the training samples s (xi, yi). From these
subsets, mini-batches are uniformly sampled, resulting in a
non-uniform sampling of X. These mini-batches are then se-
quentially fed to the learning process according to a pacing
function hϕ(e, τ). The pacing function defines the subsets to
be sampled at each epoch e of the learning process according
to an update hyper-parameter τ .

The proposed CCL strategy follows the same idea but de-
fines the scoring and pacing functions on a per-class basis. X
is first divided into class subsets: [X1 ...Xc ...XC ] ⊆ X, with
Xc = {(xi, yi) | yi = c}Nc

i=1, and Nc the number of training
samples for class c. The subsets are ordered according to a
scoring function s (Xc) that accounts for all the training sam-
ples of class c. The pacing function hϕ(e, τ) determines how
and when incorporating the subsets in the training process.



Scoring and Pacing Functions. We evaluate two scoring
functions: Self-taught and Self-paced. For the Self-taught
scoring function, we train the network using uniformly sam-
pled mini-batches without curriculum, following the Base-
line model approach. Then, the per-class losses Lc of this
trained model on the training set are extracted and the Xc

subsets are sorted in increasing complexity order according
to these loss values—the lower the loss, the simpler the sub-
set: s (Xc) = Lc. This order is fixed during the training of the
CCL model. The Self-paced scoring function does not require
a prior model as the Xc subsets are ordered according to the
classes’ losses after a warm-up period. This order is updated
at each epoch e based on the corresponding loss values at its
end: se (Xc) = Le

c, with Le
c the loss for class c at epoch e.

The pacing function, hϕ(e, τ) is defined as a monotoni-
cally increasing function, i.e., at each updating stage of CCL,
all the samples for a specific number of classes are included.
The process is guided by a ρ parameter (ρ ∈ R | 0 < ρ ≤ 1),
that defines the relative classes increment at each updating
stage, depicting a stair-case pacing function. We use a regular
updating strategy by including ⌊ρ · C⌋ additional classes in
the learning process every τ epochs.

CCL Method. The combination of the Self-taught scoring
function and the pacing function is as follows:

(i) The class subsets are ordered according to their loss
estimates at the output of a learnt Baseline model:

[X1 ...Xc ...XC ]
s(Xc),∀c−−−−−→ [X(1) ...X(j) ...X(C)], (1)

with s
(
X(j)

)
≤ s

(
X(j+1)

)
and X(j) the jth scored subset.

(ii) The first ⌊ρ · C⌋ classes in the ordered set of subsets are
included in the training by defining an initial set of subsets:

X0 =

⌊ρ·C⌋⋃
j=1

X(j), (2)

and the model is trained considering only uniformly sampled
mini-batches from the training samples of the classes in X0.
(iii) Every τ epochs—{e = kτ, k ∈ [1, C − 1]}, the set of
considered classes is updated by incorporating ⌊ρ · C⌋ new
classes to the training set:

Xe =

k⌊ρ·C⌋⋃
j=1

X(j) ⇐⇒ e = kτ. (3)

At epoch e = Cτ , with all the classes included, the learning
rate is decayed following a predefined decay policy.

When the Self-paced scoring function is used, the process
is equivalent with slight modifications: step (i) is performed
after the warm-up stage and then at every epoch, step (ii) starts
after the warm-up stage, and step (iii) incorporates a gap equal
to the number of warm-up epochs in its updating policy.

3. EXPERIMENTAL RESULTS

Datasets and Training Details. We conduct a set of ex-
periments on CIFAR-10 [16] and CIFAR-100 [16] datasets.
Both datasets are class-balanced and are composed of 50.000
training and 10.000 validation images. CIFAR-10 is made up
of 10 different classes whereas CIFAR-100 extends it to 100
classes. To create long-tailed versions for both CIFAR-10 and
CIFAR-100, we follow an existing unbalancing process [10].
The number of samples per class is reduced by randomly sam-
pling N samples for each class according to an exponential
function: N = Ncµ

c, where c is the class index, Nc is the
original number of training images and µ ∈ (0, 1) is a pa-
rameter controlling the imbalance1. Validation sets remain
unchanged. The imbalance factor is defined as the ratio be-
tween the number of training samples in the highest populated
class divided by that of the lowest populated one. Figure 1
depicts long-tailed training distributions from Imbalance Fac-
tors ranging from 10 to 200 for CIFAR-10 and CIFAR-100.

We use the same training procedure defined by Cui et al.
[10]. The ResNet-32 architecture [19] is used as backbone for
image classification. All models in the experiments ahead are
fully trained from scratch using regular Stochastic Gradient
Descend with Momentum (SGD) as the optimizer function
and 128 samples batches. We use an initial linear warm-up
stage for the first 5 epochs with a starting learning rate of
0.001 and ending in 0.1, the learning rate for training that is
decayed every 200 epochs by 0.01. For CCL the decay policy
is only applied when all the class subsets have been fed to the
learning process (see Section 2). For data augmentation we
use padding, random crop, horizontal flips and normalization
operations. The models design, training and evaluation has
been implemented using PyTorch 1.7.0 DL framework ([20])
running on a PC using a 12 Cores CPU, 30 GB of RAM and
a NVIDIA TITAN Xp 12GB GPU.

Parameter Setup. We have conducted two experiments to
asses the effect of the hyper-parameters of the pacing func-
tion hϕ(τ): the effect of relative class increment ρ (see top
of Figure 2) and the number of τ epochs (see bottom of Fig-
ure 2). All the results have been obtained using an Imbal-
ance Factor of 50 for both CIFAR datasets. For comparison,
Baseline (see section 2) performance is included. Results
in Figure 2 (top) indicate that there is a range (between 0.1
and 0.6) of ρ in which the CCL method clearly outperforms
the Baseline’s decreasing error rates for both CIFAR-10 and
CIFAR-100. From there, as ρ increases the performance of
CCL method linearly converges towards Baseline’s perfor-
mance, until ρ = 1 for which both approaches are equiva-
lent. Regarding the influence on the performance of increas-
ing τ , i.e., the number of epochs a given subset of classes
is trained depicted in Figure 2 (bottom), results suggest that

1Long-tailed versions of CIFAR-10 and CIFAR-100 will be made pub-
licly available
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Fig. 2. Results (in error rates) for different relative class incre-
ment ρ (top) and τ values (bottom) in long-tailed CIFAR-10
and CIFAR-100. The red cross (top) and line (bottom) repre-
sents the performance of the Baseline.

there is a lower limit for τ : small values seem to be insuf-
ficient for learning representative features. However, using
large τ values might derive in over-fitted representations, hin-
dering feature generalization to new classes. Furthermore, as
the decay policy is only applied after epoch Cτ , a larger step
size τ increases the learning time. We select ρ = 0.1 and
τ = 10 as trade-off parameters that yield good performance
for both datasets.

State-of-the-art Comparison. Table 1 compares reported
performances of state-of-the-art methods with those of the
proposed training protocol in its Self-Paced (CCL-SP) and
Self-Taught (CCL-ST) variants. For comparison, we include
two versions of mix-up augmentation strategies ([2], [3]),
loss-weighting methods such as Focal Loss [11] and Class-
Balanced Focal Loss [10], a margin-loss regularization [21],
and two feature-driven methods [12] [13]. The proposed cur-
ricula naturally accounts for semantic inter-class similarities
together with the number of samples, e.g., for CIFAR-10,
the Cat class is the fourth one in terms of samples, but is
considered the most difficult one in the curriculum of the
Self-Taught variant. To further validate the proposed CCL
strategy, we have also included an Anti-Curriculum version
(CCL-A). CCL-A equals Self-Taught method but reversing
the obtained class order, i.e., the most complex classes are
learnt first. Performances in Table 1 are either extracted
from [13]—indicated by the * symbol, or with models built
with the same backbone and trained from scratch using the
hyper-parameters suggested by their authors.

Performances in Table 1 indicate that class complexity is
also a key factor for explaining performance of class imbal-
ance trained models. The simple yet effective CCL-ST pro-

Table 1. ResNet-32 error rates results for Long-Tailed CIFAR
10 (top) and CIFAR 100 (bottom). *: as reported in [13].

Dataset Long-Tailed CIFAR 10
Imbalance 200 100 50 20 10 1

Baseline 36.25 28.95 23.66 17.18 13.35 6.71
[11] (γ = 1) 34.71 29.62 23.29 17.24 13.34 6.60

[10] 31.11 25.43 20.73 15.64 12.51 6.36
[2] (*) - 26.94 - - 12.90 -
[3] (*) - 24.64 - - 11.85 -

[21] (*) - 22.97 - - 11.84 -
[12] (*) - 20.18 - - 11.68 -
[13] (*) - 19.91 - - 11.61 -
CCL-A 40.18 27.16 23.74 17.21 13.86 6.64

CCL-SP 29.93 24.14 17.82 13.47 9.96 5.66
CCL-ST 29.75 23.87 17.80 12.14 9.76 4.95
Dataset Long-Tailed CIFAR 100

Imbalance 200 100 50 20 10 1
Baseline 68.33 61.29 55.52 49.07 43.09 28.66

[11] γ = 1 64.38 61.59 55.68 48.05 44.22 28.85
[10] 63.40 60.40 54.68 47.41 42.01 28.39

[2] (*) - 60.46 - - 41.98 -
[3] (*) - 58.06 - - 40.64 -

[21] (*) - 57.96 - - 41.29 -
[12] (*) - 57.44 - - 40.88 -
[13] (*) - 57.03 - - 40.64 -
CCL-A 69.19 63.82 56.32 51.47 45.77 28.89

CCL-SP 64.61 58.30 54.43 47.62 39.46 27.78
CCL-ST 64.28 58.20 53.25 45.53 40.43 26.30

tocol outperforms all the compared methods for slightly im-
balanced CIFAR-10 and CIFAR-100 datasets and performs
close to leading approaches for highly imbalanced factors.
Notwithstanding, for the balanced scenario—where Imbal-
ance Factor is 1, the proposed learning strategy reduces the
error rates, suggesting that even with uniform class distribu-
tion, following a proper order in the class feeding is benefi-
cial, agreeing with the Curriculum Learning paradigm [15].
The CCL-ST method benefits from stronger evidences on the
classes’ complexities provided by the Baseline model, yield-
ing slightly better results than CCL-SP for the analyzed im-
balance factors. CCL-A performs worse than all the other
reported methods disregarding the imbalance factor; stressing
the relevance of using adequate scoring functions that sort the
classes in an useful order. If difficult classes are fed first re-
sults might be even worse than feeding all the classes simul-
taneously.

4. CONCLUSIONS

In this paper, we describe Class-wise Curriculum Learning
(CCL) strategies to train target classes in a non-uniform fash-
ion to tackle the effect of class imbalance problems in long-
tailed datasets. Experimental results in highly imbalanced
datasets support the advantages of using class curricula for
image classification. Our future work will explore the use of
CLL for multi-label problems and loss-driven strategies to dy-
namically adapt the step values in the pacing function and its
combination with feature-driven methods.
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