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imprescindibles para mı́. Nos vamos para Alemania. Gracias Carlos, mi “hermano 
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PREFACE 

In the last century, cosmology has unveiled one of the greatest mysteries of fundamen-
tal physics. There exist an hypothetical form of matter that makes up approximately 
83% of matter in our universe. It is invisible, i.e., it does not interact with light or 
other forms of electromagnetic radiation, so it cannot be directly observed. We only 
know its efect through its gravitational pull. Despite the overwhelming evidence of its 
existence, the nature of dark matter remains a mystery, and there are various theories 
about what it could be made of. One of most promising, due to the frst detection of 
a gravitational-wave signal reported by the LIGO/Virgo Collaboration in 2015, got 
back under spotlight, namely primordial black holes, an old dark matter candidate. 

The theoretical understanding of the clumpy structure of the matter distribution 
in our universe is therefore crucial for cosmology. One of the most efcient ways to 
learn about it, is by using gravitational lensing, which is the bending of a wave due to 
the presence of a gravitational feld and has the virtue of being directly sensitive to 
the presence of clumps. The theoretical understanding of gravitational lensing in a 
clumpy universe is the motivation of this thesis. 

This thesis is divided in two parts, where we study the two types of waves than 
can experience gravitational lensing, electromagnetic and gravitational waves. In 
Part I, we study the propagation of light in a universe flled with compact objects and 
improve the previous analysis about the amplifcation probabilities. In Part II, we 
perform a similar analysis with gravitational waves and make a forecast of the rate of 
lensed events in current and future detectors. 

Light consists of electromagnetic waves, which are oscillations of electric and 
magnetic felds. Electromagnetic radiation is emitted by accelerated and electrically 
charged particles. On the other hand, gravitational waves describe the propagation of 
the spacetime as waves of energy. Both waves follow null geodesics and one propagates 
at the speed of the other. This implies that the theory of light can also be applied to 
gravitational waves. However, they present some diferences. Gravitational waves do 
not follow a dipole radiation pattern like light but a quadrupole. Gravity is a weak 
force with only one sign of charge while electromagnetism is much stronger and with 
two opposing signs of charge. As a result, gravitational waves are extraordinarily 
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difcult to detect. On the other hand, while electromagnetic waves can be easily 
detected due to their strong interaction with normal matter, they can be absorbed or 
scattered by intervening matter. Gravitational waves however, can travel unobstructed 
through matter of any density or composition, making them a unique tool for observing 
objects and events in the universe. 

Despite their numerous diferences, we show in this thesis that they are both 
powerful probes to study and constrain the clumpiness of our universe. 



PREFACIO 

En el último siglo, la cosmoloǵıa ha revelado uno de los mayores misterios de la f́ısica 
fundamental. Existe una forma hipotética de materia que constituye aproximadamente 
el 83% de la materia en nuestro universo. Es invisible, es decir, no interactúa con la luz 
ni con otras formas de radiación electromagnética, por lo que no puede ser observada 
directamente. Solo conocemos su efecto a través de su atracción gravitacional. A 
pesar de la abrumadora evidencia de su existencia, la naturaleza de la materia oscura 
sigue siendo un misterio, y existen diversas teoŕıas sobre de qué podŕıa estar hecha. 
Una de las más prometedoras, debido a la primera detección de ondas gravitacionales 
por la colaboración LIGO/Virgo en 2015, volvió a estar en primer plano, los agujeros 
negros primordiales, un antiguo candidato a materia oscura. 

La comprensión teórica de la estructura grumosa de la distribución de materia 
en nuestro universo es, por lo tanto, crucial para la cosmoloǵıa. Una de las formas 
más efcientes de estudiarla es mediante lentes gravitacionales, las cuales desv́ıan la 
trayectoria de una onda debido a la presencia de un campo gravitacional y tiene 
la virtud de ser directamente dependiente de la presencia de cúmulos de masa. La 
comprensión teórica de la lente gravitacional en un universo grumoso es la motivación 
de esta tesis. 

Esta tesis se divide en dos partes, donde estudiamos los dos tipos de ondas que 
pueden experimentar un desv́ıo en su trayectoria debido a las lentes gravitacionales, 
las ondas electromagnéticas y las ondas gravitacionales. En la Parte I, estudiamos 
la propagación de la luz en un universo lleno de objetos compactos y mejoramos el 
análisis previo sobre las probabilidades de amplifcación. En la Parte II, realizamos 
un análisis similar con las ondas gravitacionales y hacemos una predicción de la tasa 
de eventos que han experimentado lensing en detectores actuales y futuros. 

La luz consiste en ondas electromagnéticas, las cuales son oscilaciones de campos 
eléctricos y magnéticos. La radiación electromagnética es emitida por part́ıculas 
cargadas eléctricamente y aceleradas. Por otro lado, las ondas gravitacionales de-
scriben la propagación del espacio-tiempo como ondas de enerǵıa. Ambas ondas siguen 
geodésicas nulas y una se propaga a la velocidad de la otra. Esto implica que la teoŕıa 
de la luz también se puede aplicar a las ondas gravitacionales. Sin embargo, presentan 
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algunas diferencias. Las ondas gravitacionales no siguen un patrón de radiación dipolo 
como la luz, sino un cuadrupolo. La gravedad es una fuerza débil con solo un signo 
de la carga, mientras que la fuerza electromagnética es mucho más fuerte y tiene dos 
cargas opuestas. Como resultado, las ondas gravitacionales son extraordinariamente 
dif́ıciles de detectar. Por otro lado, mientras que las ondas electromagnéticas se pueden 
detectar fácilmente debido a su fuerte interacción con la materia normal, pueden ser 
también absorbidas o dispersadas por ésta. Las ondas gravitacionales, sin embargo, 
pueden viajar sin obstáculos a través de materia de cualquier densidad y composición, 
lo que las convierte en una herramienta única para observar objetos y eventos en el 
universo. 

A pesar de sus numerosas diferencias, en esta tesis mostramos que el efecto de lente 
gravitacional en ambas ondas es una poderosa herramienta para estudiar el universo 
grumoso. 
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Part I 

Light propagation in a clumpy 
universe 



ABSTRACT 

Microlensing of extragalactic sources, in particular the probability of signifcant 
amplifcations, is a potentially powerful probe of the abundance of compact objects 
outside the halo of the Milky Way. Accurate experimental constraints require an 
equally accurate theoretical model for the amplifcation statistics produced by such a 
population. In this part, we argue that the simplest (strongest-lens) model does not 
meet this demanding requirement. We thus propose an elaborate practical modelling 
scheme for extragalactic microlensing. We derive from frst principles an expression 
for the amplifcation probability that consistently allows for: (i) the coupling between 
microlenses; (ii) realistic perturbations from the cosmic large-scale structure; (iii) 
extended-source corrections. An important conclusion is that the external shear 
applied on the dominant microlens, both by the other lenses and by the large-scale 
structure, is practically negligible. Yet, the predictions of our approach can still 
difer by a factor of a few with respect to existing models of the literature. Updated 
constraints on the abundance of compact objects accounting for such discrepancies 
may be required. 
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CHAPTER 

ONE 

INTRODUCTION 

This chapter highlights the major events in the history of light defection and the 
previous works that have motivated the frst part of this thesis. 

1.1 The theory of light 

The eighteenth century gave rise to an intense debate about the nature of light. The 
Dutch polymath Christiaan Huygens stated in this book Traité de la Lumière that 
a light source emits a wavefront in all directions in a continuous and homogeneous 
medium called aether and each point of the wavefront is, at the same time, the source 
of a secondary spherical wave [1]. This is called the Huygens-Fresnel principle. This 
theory manages to explain most of the properties of light such as the efect of refection 
and refraction. It also explains the phenomenon of wave difraction around edges. 
The wave theory of Huygens, however, had to compete with the most infuential 
“natural philosopher” of that time, sir Isaac Newton. In 1704, the English physicist 
published his work Opticks where he formulated the corpuscular theory of light. This 
theory states that the geometric nature of refection and refraction of light could only 
be explained if light were made of small particles named “corpuscles” emitted by a 
luminous body and propagated through the space along straight lines following the 
laws of classical mechanics [2]. Consequently, the speed of light changes according 
on the medium’s density through which it travels. Due to the success of the prism 
experiment and the fact that the wave theory of Huygens was never experimentally 
corroborated, Newton’s theory prevailed until 1802 when Thomas Young, through the 
famous double-slit experiment, settled the debate in favour of the wave theory [3]. 
However, the wave theory was reinforced in 1861 by James Clerk Maxwell, who 
proposed that light is an electromagnetic phenomenon that can propagate through 
vacuum without the need of a medium [4]. Furthermore, a few years later, Einstein 
described the photoelectric efect, in which light can actually be treated as a real 
particle that accounts for a few reasons and unexplained experiments [5]. He called 
this particle a photon. Finally, in 1924, with the basis of quantum mechanics already 
set, the wave–particle duality was born [6]. 

9 
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However, the corpuscular theory of light was the inception of a bigger idea. Based 
on this hypothesis Newton suggested, in a note at the end of his treaty Opticks, that, 
if these particles were massive, they could be afected by gravity and therefore their 
rectilinear trajectories could be deviated. Newton’s idea that light could be afected 
by gravity drew the attention of a clergyman and natural philosopher named John 
Michell in 1784. He thought that the speed of light could accelerate when passing 
near a star like the Sun due to its gravity. By measuring this acceleration, it might be 
possible to measure the mass of the star itself [7]. Michell explained this idea in a 
letter sent to the English chemist and physicist Henry Cavendish who, motivated by 
Michell’s suggestion, calculated the deviation that light should sufer in its encounter 
with the star. Following the laws of classical mechanics and Newton’s idea that light 
behaves like fast moving particles, it would be deviated at a distance R by a star of 
mass M by an angle 

2GM 
α(R) = (1.1) 

c2R 
where G = 6.67428×10−11 Nm−2kg−2 is the gravitational constant and c = 299792 km s−1 

is the speed of light. The quantity derived by Cavendish in his notes is called the 
defection angle (Fig. 1.1). Although he was the frst to calculate the deviation of 
light, his notes were never published and remained unknown until 1988 [8]. 20 years 
later, the German physicist and astronomer Johann Georg von Soldner published, 
with small variations, the same result [9]. Using eq. (1.1) he estimated the defection 
angle of a light ray that is deviated due to the gravitational feld of the Sun. For 
M = 1.989 × 1030kg and R = 6.957 × 108 m, the result yields α = 0.875 arcsec. 

Figure 1.1: Sketch of a light ray defected by an angle α due to the gravitational feld 
of the Sun. The dotted line indicates the position of the star if the light would not 
have been defected. 

The idea on how the speed of light would accelerate due to the gravity of a star 
was also developed independently by the French polymath Pierre Simon Laplace in 
1796 [10]. Using this, Michell argued in a paper in 1783, that a star with a suf-
ciently strong gravitational pull could trap light, making it invisible. He referred to 
such object as a “dark star” and thought that the universe was flled with them [7]. 
Michell is therefore the frst person known to have proposed the existence of black holes. 
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Figure 1.2: Imagine an observer with a fashlight in a spaceship that points to the 
other side of the elevator (right). Due to the relative motion between the light beam 
and the elevator, the trajectory would bend downwards. Due to the equivalence 
principle, this efect should also be noticeable on Earth (left). 

The idea of light defection is based on Newton’s corpuscle theory of light. As 
previously mentioned, in 1802 Thomas Young settled the debate about the nature of 
light in favour of the wave theory. For this reason, the idea was abandon and it was 
not revisited for over a century. It was not until 1907 that a young German physicist 
at the patent ofce had the “happiest idea of his life” and revived the idea of light 
defection. 

1.2 The Gedankenexperiment 
In a regular day at work at the patent ofce in 1907 in Bern (Switzerland), young 
Albert Einstein was sitting at his desk thinking about his reviewed article about the 
theory of relativity when he carried out a mental experiment (Gedankenexperiment) 
that summarizes, in Einstein’s own words, as follows: “If a person falls freely, he does 
not feel his own weight”. This refection amazed Einstein so much that years later 
called it “the happiest idea of his life” [11, 12]. From this happy thought, Einstein 
built the equivalence principle [13], which sets the basis of the frst version of the 
General Theory of Relativity. 

One of the main consequences of the equivalence principle applies directly to light. 
To illustrate this efect let us consider an observer in a windowless elevator. Imagine 
what would happen if we took a fashlight and pointed it from one side of the elevator 
to to the wall of the spaceship. Since the foor of the elevator would be rushing 
upwards the light beam would appear to curve downward (Fig. 1.2). Relative to an 
inertial frame (at rest in a gravity-free region) light still propagates in a straight line. 
On the other hand, according to the equivalence principle, the accelerated frame is 
indistinguishable from a homogeneous gravitational feld. This means that light must 
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bend in a gravitational feld. Gravity attracts light! As a result, since light always 
takes the shortest path between two points, Einstein realized that its trajectory should 
correspond to a curved line. Consequently, in the presence of mass and energy, space 
becomes curved. This was the key insight that Einstein had about gravity. The curved 
geometry forms the basis of General Relativity, in which gravity is entirely geometrical 
by nature. 

When Einstein studied this gravitational bending efect of light in 1907 he thought 
that it was too small to be observed and did not give it much thought. In Prague, 
however, he corrected this last consideration, noting that a beam of light that passes 
grazing through the solar disk, would be defected by a small but measurable angle. 
Therefore, a star that is very close to the Sun would appear slightly deviated from the 
position we attribute to it when the Sun is far away. In 1911, based on his Theory of 
Special Relativity, he published the calculation of the defection angle [14] whose result 
was precisely the same as that previously derived by Cavendish (Eq. 1.1). Einstein 
showed that this phenomenon would in principle be observable during a solar eclipse, 
because when direct sunlight is covered we would be able to see the star close to 
the Sun and measure its deviation. However, in 1915 he formulated his theory of 
general relativity and, using the equivalence principle, repeated the calculation of 
the defection angle and obtained an unexpected result [15]. The purely Newtonian 
deviation appeared, due to the “weight” of light, as expected, but also another of 
equal magnitude and purely relativistic (or post-Newtonian) due to the curvature of 
space induced by the presence of the Sun [11]. As a result, the deviation of light turns 
out to be twice that of its previous versions, i.e., 

4GM 
α(R) = . (1.2) 

c2R 

The deviation angle of light due to the gravitational feld of the Sun predicted by the 
General Theory of Relativity is therefore 1.75 arcsec. Einstein then insisted on the 
possibility of verifying his theory in an upcoming solar eclipse. Europe was at war and 
it was not possible to carry out this task soon, but even so, the Royal Astronomical 
Society of London organized a couple of expeditions to take advantage of the solar 
eclipse of May 29, 1919. The result of that eclipse changed completely the history of 
light defection and it was precisely that phenomenon, to which Einstein did not give 
much thought, that took him to the pinnacle of fame. 

1.3 The eclipse 
The verifcation of the light defection phenomenon was essential for Einstein. In 
1911, he sent a paper to the prestigious journal “Annalen Der Physik” entitled On the 
infuence of gravitation on the propagation of light [14]. Erwin Freundlich, a young 
assistant of the Institute for Cosmic Physics at the German University in Prague was 
stunned about his work and ofered his help in developing methods for observing the 
defection of light near the Sun or the planet Jupiter [16]. However, observing a solar 
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eclipse for scientifc purposes was challenging due to the intricate planning, logistics, 
and funding required. Due to these factors, Freundlich initially dismissed the idea of 
organizing an expedition to observe the next solar eclipse. However, that year, the 
astronomer Charles Dilon Perrine, an expert in solar eclipse observation who was in 
charge of three expeditions for the observation of solar eclipses in Sumatra (1901), 
Spain (1905) and Flint Island (1908) [17] and whose aim was to detect the presence 
of the new planet “Vulcano” visited the observatory and encouraged Freundlich to 
reach out to other astronomers who may have old eclipse plates to study the light 
defection efect. While Freundilich was waiting to receive the plates, Perrine was 
organizing an expedition to observe the next solar eclipse, on October 10, 1912, in 
Brazil, in which, thanks to Freundlich, light defection measurements were included in 
the observation program. In the English delegation was a young Arthur S. Eddington 
who had dinner in Rio de Janeiro with Perrine. If they talked about Einstein prediction 
of light defection, it may have been the frst time that Eddington learned about 
the new theory of gravitation and its observable efects. Unfortunately, the intense 
rain completely ruined the scientifc missions. As consolation, if the measurement of 
light defection had been carried out, the value obtained would have been twice that 
predicted by Einstein, since he obtained it with his Theory of Special Relativity. 

Einstein corresponded with several other astronomers over the course of months 
and years to bring attention to the signifcance of his theory and seek their assistance in 
refning his predictions through astronomical observations. One of these astronomers 
was Sir George Ellery Hale, Director of the Mount Wilson Observatory, which had 
the largest operational telescope in the world at the time [18]. In his letter to Hale 
in October 1913, Einstein asked for guidance on how to measure the positions of 
distant stars around the Sun during daylight. He wanted to compare these positions 
with those taken at night when the Sun was absent to assess the efect of the Sun’s 
mass on light’s path. In November, Hale replied that it was impossible to make these 
measurements during sunlight, but expressed his belief in the potential for doing so 
during a total eclipse. 

The next opportunity for light bending verifcation was during the total solar 
eclipse of August 21, 1914. Freundlich found support from Einstein and Max Planck 
and led the expedition in Crimea. However, the outbreak of the First World War and 
the climatic hostilities frustrated again the observation of the eclipse. 

Between the eclipse in Russia from 1914 to 1919, there was a renewed interest in 
the works of Albert Einstein. General Relativity was already published and groups of 
foreign astronomers began to compete to be the frst to test Einstein’s predictions. 

In early 1919, the British intended to send two expeditions to observe the eclipse 
in May of that year and test Einstein’s predictions. Arthur S. Eddington, who became 
interested in Einstein’s work thanks to the Dutch astronomer Willen de Sitter, would 
lead the expedition. On the other hand, Freundlich was determined to organize an 
expedition to observe the 1919 ellipse, if the war ended in time. Unfortunately, the 
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Figure 1.3: Left: One of the pictures of the solar eclipse taken in May 29, 1919 in 
Sobral (Brasil). Credit to ref [20]. Right: Fragment of the news published in the New 
York Times on November 10, 1919. 

Russians confscated all his instruments when World War I broke out, and Freundlich 
would have to wait. 

This eclipse was particularly promising for measuring the light defection efect since 
the Sun passed through the star cluster Hyades, located in the constellation Taurus 
which contains a large number of bright stars. The eclipse was visible across Africa, 
the Atlantic Ocean, and South America. A frst expedition made up of Eddington was 
based on Pŕıncipe Island. The second expedition was located in Sobral, in northern 
Brazil. The day of the eclipse the weather was favorable and the team was able 
to photograph the phenomenon (fg. 1.3). The team led by Eddington measured a 
deviation angle of 1.61 ± 0.30 and the team located in Sobral obtained a result of 
1.98 ± 0.12 [19]. Both results were compatible with Einstein’s prediction although the 
result given by Eddigton is considered more reliable. The announcement of the results 
was on November 6, 1919, at a joint meeting of the Royal Society and the Royal 
Astronomical Society where the representative of the expedition in Sobral proclaimed 
that “after a detailed study of the plates I am prepared to say that there is no doubt 
that they confrm Einstein’s prediction. A defnitive result has been obtained that 
light is defected according to Einstein’s law of gravitation.” Einstein became famous 
overnight (fg. 1.3). 

1.4 The amplifcation of light 

The term gravitational lensing was born in 1919 to describe a massive object (the 
lens) that bends the light of a luminous source. It seems to have been introduced by 
the British physicist and writer Sir Oliver Joseph Lodge, who remarked that it was 
“impermissible to say that the solar gravitational feld acts as a lens, for it has no focal 
length” [21]. That same year, Eddington discussed the possibility of observing a double 
image as a result of gravitational lensing and determined that the light defection 
would cause such a signifcant reduction in its intensity that it would be unnoticeable 
when it reaches us. This idea was further explored by the Russian physicist Orest 
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Chwolson, who indicated that a gravitational lens would produce a secondary image 
that forms a fctitious double star which could not be seen by a telescope [22]. He 
added that, in case of perfect alignment between the background and the foreground 
star that act as a lens, the two images would stretch out forming a ring (fg. 1.4). 
Although it would be more accurate to call this efect “Chwolson Ring”, it is today 
usually called “Einstein Ring”. 

Figure 1.4: When the light source (S), the lens (L) and the observer (O) are perfectly 
aligned, the lens produces a ring shaped image. 

In 1936, Einstein, who was a professor at Princeton, did not have many expecta-
tions to fnd astrophysical applications using gravitational lensing. However, a Czech 
amateur electrical engineer named Rudi Mandl persuaded him to further explore its 
applications. In particular, he proposed a basic model comparing gravitational light 
defection to the action of a lens in geometrical optics. Using this idea, Einstein 
published a short calculation named Lens-Like Action of a Star by the Deviation of 
Light in the Gravitational Field [23] in which he suggested that the apparent lumi-
nosities of the images of a background star could be changed due to gravitational 
lensing. In particular, if the observer, the lens and the light source are sufciently 
aligned, light would tend to be focused on the observer and the image is could be 
highly magnifed. However, in Einstein’s own words “Of course, there is no hope to 
observe this phenomenon directly” since the chances of this alignment are very low. 
However, years later, it was discovered that there are regions of the sky so dense that 
it is likely to fnd these alignments. Furthermore, thanks the the observations of the 
American astronomer Edwin Hubble, it was realized that there exist many galaxies 
besides ours and groups of them held by gravity, named galaxy clusters [24]. 

Mandl discussed the potential scope of gravitational lensing with other scientists 
and fnally arrived to the Swiss astronomer Fritz Zwicky. He suggested that multiple 
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images due to gravitational lensing should be observed in the future. If a lens is 
able to produce multiple images, the regime is called strong gravitational lensing. 
Motivated by this, a year after Einstein showed that amplifed images can be observed, 
he published a short paper entitled Nebulae as Gravitational Lenses [25] in which he 
stated that this efect is more likely to be observed if one considers larger structures as 
lenses, such as galaxies and galaxy clusters 1, rather than a single star. The reason is 
that the magnifcation of the image produced by these structures is higher. As a con-
sequence, this amplifcation efect enables to observe galaxies at far greater distances 
than what was currently possible with the largest telescopes on Earth. In a second 
paper entitled On the masses of nebulae and of clusters of nebulae [26] he studied the 
possibility of using gravitational lensing to determine galaxy masses and how mat-
ter is distributed. This is currently one of the main applications of gravitational lensing. 

However, the revolutionary statement arrived in 1933 when Zwicky was styding the 
motion of the Virgo and Coma clusters of galaxies. He used the virial theorem to obtain 
the expected mass of these nebulae and observed that was not sufcient to explain 
the observed large speeds of the galaxies in the cluster. He proposed the existence 
of an unseen or “dark” form of matter that could account for the discrepancy [27]. 
This idea was met with skepticism at the time, but subsequent observations and 
studies have confrmed the presence of dark matter and its critical role in shaping the 
universe. Today, the content of dark matter is considered one of the most mysterious 
and intriguing mysteries in astrophysics, and Zwicky’s work is widely recognized as a 
key early contribution to our understanding of this phenomenon. He also stated that 
dark matter should produce gravitational lensing efects. 

1.5 The theoretical research and the frst observa-
tion 

Just like the idea of light defection was abandoned until Einstein built the equiva-
lence principle, the feld of gravitational lensing remained on “stand-by” until a new 
discovery came to light. This happened in 1963, after Einstein died, thanks to the 
Dutch astronomer Maarten Schmidt. After World War II, radio astronomy underwent 
rapid advancement, resulting in the identifcation of mysterious radio wave sources 
that appeared to be extremely faint stars in the optic band. Using the Hale telescope, 
Schmidt examined the spectra of several stars, especially 3C273, and found that it 
was moving at a speed of 40,000 km/s, clearly indicating that it was an extragalactic 
object. To account for its apparent brightness, 3C273 had to have a massive lumi-
nosity, forty times that of an ordinary galaxy. By repeating the experiment with 
3C48, Schmidt obtained similar results [28]. In 1964, 3C273 and 3C48 were designated 
’Quasi-Stellar Objects’ by the Taiwanise-American astrophysicist Hong-Yee Chiu [29], 
and the terminology was later abbreviated by astronomers to form the current term 
quasar. Due to their huge intrinsic luminosity, quasars were thought to be ideal sources 

1In the article, he used the term nebulae 
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to observe gravitational lensing efects. 

After the discovery of the frst quasar, the feld of gravitational lensing reopened. 
Yuri Klimov, Sydney Liebes and the Norwegian astrophysicist Sjur Refsdal studied 
the efect from a geometrical point of view. They are considered to be the founders of 
modern theoretical research on gravitational lensing. Klimov [30] studied the efect of 
gravitational lensing of galaxies on galaxies, in particular ring-shaped and multiple 
images. Liebes [31] contemplated lensing of stars on stars, lensing by globular clusters 
and lensing by objects such as asteroids and planets within the Milky Way. He also 
considered lensing of extragalactic sources by the stars in our galaxy and estimated 
the probability of lensing detection. In 1964, Refsdal [32] was the frst to study the 
possibility that the light rays emitted by a distant luminous source could traverse 
diferent and multiple paths around a lens. He added that these light rays would arrive 
to the observer at diferent times. He was therefore the frst to introduce the concept 
of time delay. He applied this idea and supposed that the source is a Supernova. Due 
to the time delay, one would observe multiple explosions at diferent times. Refsdal 
also studied possible astrophysical application of gravitational lensing2. In particular, 
he proposed to measure the time delays between the multiple images of a supernova 
to obtain the mass of the lens and the expansion rate of the universe, known as the 
Hubble constant. Furthermore, he introduced the idea that quasars’ luminosities may 
be variable and that they coud be used to measure lens masses and the Hubble constant. 

At that time, the observational technology was well behind the theoretical research. 
For that reason, the next decade represented a signifcant progress from the theoretical 
perspective. 

The Soviet physicists Yakov Zeldovich and Igor Novikov in 1967 [33] and especially 
the English theoretical physicist Stephen Hawking and his PhD student Bernard 
Carr in 1971 proposed which is to date the only known example of massive compact 
halo object (MACHO): primordial black holes (PBHs). In their work Gravitationally 
Collapsed Objects of Very Low Mass [34] they discussed how these structures are 
formed. It occurs at the end of infation if quantum fuctuations of space-time curva-
ture generate high-amplitude peaks. After reheating, these peaks become high-density 
regions dominated by radiation energy, which can be viewed as high-photon-density 
regions. If the density is high enough, gravitation is stronger than radiation pressure, 
leading to the collapse of these regions into black holes. PBHs could make up a 
signifcant fraction of the dark matter (see e.g. ref. [35] and references therein). Other 
MACHO candidates, such as neutron stars, planets or brown dwarfs, were excluded 
later by a variety of cosmological constraints implying that dark matter must be 
non-baryonic; those notably include the precision measurement of the CMB acoustic 
peaks and the abundance of light elements predicted in the context of the hot big-bang 
nucleosynthesis – see e.g. chapters 6–8 of ref. [36] for a detailed historical review. 

2This is the reason why the frst lensed supernova was named “Refsdal”. 
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In 1973, two years after Hawking proposed the existence of PBHs, the American 
astrophysicists William Press and James Gunn [37] suggested observational tests to 
confrm the presence of a cosmologically signifcant density of compact bodies using 
gravitational lensing. In particular, they claimed that the probability of a distant 
point source being gravitationally lensed into two roughly equal images is high if the 
universe is populated with compact objects. 

In 1979, thanks to the technological progress to increase the sensitivity of the 
telescopes and cameras, the frst gravitational lens was fnally found. The Anglo-
American team led by the astronomers Dennis Walsh, Robert Carswell and Ray 
Weyman [38] detected from a radio survey two quasars QSO 0957+561A/B at redshift 
z = 1.413 with an angular separation of 6 arcsec (fg. 1.5). 

Figure 1.5: Recent observation of the quasar QSO 0957+561 (center of the image), 
the frst gravitational lensing detection. Credit: NASA/ESA Hubble Space Telescope 

The team observed that the proximity between the two quasars was unusual and 
their redshift and visible light spectrum were highly similar. With the further detection 
of a lens galaxy at z = 0.39 [39], it was concluded that there were not two quasars 
but two multiple images of a single one. 
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1.6 Microlensing and current status 
In 1979, the South Korean astrophysicist Kyongae Chang and Refsdal [40] studied 
the fux variations of QSO Q0957+561 A,B and published a landmark paper that 
explored the efect of stars located between the observer and the observed quasars 
on the brightness of the quasar image. In particular, they suggested that, although 
the multiple images can not be observed due to the resolution of the telescopes, the 
amplifed apparent luminosity of the quasar might be. This magnifcation efect, 
which was frst suggested by Mandl when discussing with Einstein in 1936, is called 
microlensing and this was the frst time that the term was introduced. This regime 
is used when the angular separation between the multiples images is less than one 
milli-arcsecond. Furthermore, Chang and Refsdal proposed to use this enhanced 
brightness to search for compact objects. Although Refsdal was disappointed for not 
observing multiple images and therefore, time delays in quasar lensing events to obtain 
the Hubble constant, he created a new line of research. 

In 1981, the British astrophysicist Peter Young, who identifed the galaxy responsi-
ble for the frst gravitational lens system QSO 0957+561, used computer simulations to 
obtain variable star light curves due to microlensing [41]. The American astrophysicist 
Richard Gott, who performed similar calculations to obtain light curves, suggested that 
the intensity of the quasar images could be due to microlensing efects of individual 
low mass stars and claimed therefore that stellar microlensing is observable [42]. As 
an illustration of star light curves due to microlensing, the graph of fg. 1.6 has been 
obtained by monitoring the luminosity of a star (S) for about three years. Between, 
roughly, day 400 and day 600, another star (L) passed on the line of sight, producing 
an enhancement of the apparent luminosity of S. 

Figure 1.6: Gravitational amplifcation of a star by another star acting as a lens. The 
data was taken by the OGLE project in 2005. Credit to Jan Skowron, data from 
OGLE. 

However, the turning point arrived in 1986 thanks to the Polish astronomer Bohdan 
Paczyński. He argued that gravitational lensing, which has the virtue of being directly 
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sensitive to the distribution of mass, as opposed to the astronomical observations 
which rely on luminous matter, could be a suitable probe of the clumpiness of the dark 
matter. In particular, he suggested that microlensing could be a useful tool to detect 
compact objects in the Galactic halo. The idea is that, as a compact object crosses the 
line of sight of a distance source, it temporarily magnifes its apparent brightness [43]. 
He showed that galactic microlensing should be observable and created the Optical 
Gravitational Lensing Experiment (OGLE), the frst large-scale photometric survey. 
The aim of the experiment was to look for microlensing events towards the Magellanic 
Clouds, that were considered the best target due to the large number of source back-
ground stars, and place upper limits on the contribution of compact bodies to the 
dark matter halo in our galaxy. At the same time, Kayser, Refsdal and Stabell [44] 
studied the changes in luminosity that occur when a compact source crosses a critical 
curve. 3 

The frst detection of a microlensing event arrived in 1989. A team led by the 
British astronomer Michael Irwin presented photometric data for the gravitationally 
lensed quasar system 2237+0305 and observed a change in brightness in one of the four 
component images [45]. Remembering Einstein’s famous quote “Of course, there is no 
hope to observe this phenomenon directly”, 53 years were needed to prove him wrong. 
The idea of using quasar microlensing for detecting a cosmologically signifcant density 
of compact bodies was further investigated in the coming years by Hawkins [46, 47] 
and Hawkins and Verón [48] who studied the structure of dark matter using quasar 
light curves, and Schneider [49], who constrained the population of compact objects 
that could make up the total matter density. 

The frst microlensing detection was a motivation to put Paczyński’s idea of detect-
ing compact objects in the Galatic halo into practice. This was done by the MACHO 
experiment [50], which looked for microlensing events in the Magellanic Clouds for 
several years in the 90s by monitoring thousands of stars hoping that some compact 
objects in the mass range 3 × 10−4 to 0.06 M⊙ would cross the line of sight and amplify 
their brightness. Among the 9.5 million light curves that were analysed, only 3 events 
consistent with microlensing were found. After similar analyses were conducted by 
the EROS and OGLE collaborations [51, 52], the possibility that the dark halo of 
our galaxy is made of compact objects in that mass range was excluded. Those con-
straints keep being discussed today in the literature; for instance ref. [53] argues that 
detection method presented inconsistencies; ref. [54] suggests that the constraints may 
be alleviated if the compact objects are clustered. Importantly, galactic microlensing 
is inefcient at detecting high-mass compact objects [55]. 

The difculty of constraining the abundance of high-mass compact objects in our 
galactic halo motivated the observation of microlensing efects in images of multiple 
imaged quasars [56, 57, 58]. Microlensing can also manifest as fux ratio anomalies 

3For a given lensing system, a critical curve is the set of image positions θ whose partial 
amplifcation is infnite. 
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between multiple quasar images [59, 60, 61], which may be interpreted as a direct 
proof for the presence of CDM substructure around lensing galaxies. 

One possible alternative to detect extragalactic microlensing due to compact ob-
jects beyond the solar mass is via supernova lensing. As mentioned above, Refdsal 
was the frst to study the possibility of observing this phenomenon and use SNe 
as a cosmological probe. Since then there have been many research programmes 
looking for strong gravitational lensing of SNe [62], where microlensing is a poten-
tially worrisome source of noise. The idea of using SN microlensing as a signal, to 
constrain the abundance of compact objects was frst proposed by Linder, Schneider 
and Wagoner [63] in 1988. Rauch [64] and Metcalf and Silk [65] only considered two 
scenarios: all and none of the DM in the form of compact objects. Seljak and Holz [66] 
already contemplated that a fraction of DM in compact objects can be measured with 
any given SN survey [67]. The constraints were updated 7 years later by Metcalf 
and Silk [68], and most recently by Zumalacárregui and Seljak [69]; see also refs. [70, 71]. 

Another method to constrain compact dark matter, motivated by the recent dis-
coveries of the highly magnifed stars MACS J1149 Lensed Star 1 (“Icarus”) [72] and 
WHL0137-LS (“Earendel”) [73], both visible at cosmological distances, uses caustic-
crossing events in giant arcs. This mechanism allows the detection of compact objects 
in the subsolar-mass regime. 

As seen in this section, after the frst gravitational lens was fnally detected and 
microlensing was discovered, there has been a “boom” in the creation of new lines of 
research on this phenomenon. However, in 2015, an event that would forever change 
the way of doing astrophysics occurred. The LIGO/Virgo Collaboration [74] reported 
the frst detection of a gravitational-wave signal, “ripples” in space-time caused by some 
of the universe’s most explosive and energetic phenomena and predicted by Einstein in 
1915 in his theory of general relativity. Since then, the interest in using microlensing 
to detect compact objects has been once again at the forefront. Consequently, all the 
aforementioned methods share the need of an accurate modelling of the microlensing 
statistics. 

1.7 Modelling of the microlensing statistics 

From the theoretical perspective, all the aforementioned methods share the need, 
in particular, of an accurate modelling of the probability density function of the 
lensing amplifcation, p(A). This theoretical efort started in the 80s with the works 
of Peacock [75]; Turner, Ostriker, and Gott [76]; and Dyer [77]. They were the frst 
to compute analytically and show predictions of the probability that the light of a 
distant quasar is lensed by compact objects. They determined that low-mass lenses 
can cause high amplifcations. 

In 1986 Paczynski [43] determined that the probability distribution of a point 
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source exhibits a A−3 behaviour for large amplifcation. Years later, Schneider [78] and 
Seitz and Schneider [79] arrived to the same result. Still more elaborate analyses helped 
understanding the non-linear interaction between lenses [78, 80, 81, 82, 83, 84, 85]. 
Besides, a number of ray-shooting numerical simulations were performed to assess the 
accuracy of those theoretical works [44, 86, 64, 87]. 

However, those past analysis generally focused on a fraction of the efects po-
tentially afecting the amplifcation statistics. The motivation of this thesis is to 
extend and improve upon them by proposing an accurate modelling of the statistics of 
extragalactic microlensing from frst principles. Our model accounts for line-of-sight 
efects and lens-lens coupling in the mild-optical-depth regime, and extended-source 
corrections. The end product is a semi-analytical expression for the amplifcation 
probability, in a realistic universe whose dark matter is made of a certain fraction of 
compact objects. 

The remainder of Part I is organised as follows. In chapter 2, we discuss on the 
notion of microlensing optical depth, its role in amplifcation statistics, and we evaluate 
its relevant values in practice. In chapter 3 we account for the environment and line-
of-sight corrections of a single point lens; we turn this result into a probability density 
function for the amplifcation in chapter 4, where we also compare the predictions of 
the most recent analysis to our approach. We consider extended-source corrections in 
chapter 5 and conclude in chapter 6. 



CHAPTER 

TWO 

OPTICAL DEPTH AND EXTRAGALACTIC 
MICROLENSING 

This chapter is a preliminary discussion on the notion of microlensing optical depth, 
denoted τ , which will be central in the discussions. After providing defnitions of τ , 
and illustrating its role in amplifcation statistics, we demonstrate that microlensing 
by extragalactic compact objects is characterised by a low, although not very low, 
optical depth. 

2.1 Intuition and defnitions 
Consider a population of compact objects distributed in space. In this thesis, com-
pactness will be defned in the sense of lensing rather than in the sense of gravitation: 
a compact object will loosely refer to a celestial body capable of producing multiple 
images and strong amplifcations of point sources. Let us model such objects as point 
lenses. As illustration, consider the situation of a single point lens depicted in fg. 2.1. 
A light ray emitted by a source S is defected by a spherically symmetric distribution 
of mass m by an angle α following eq. (1.2). The angles β and θ are the unlensed and 
lensed position of the image of S and b is the impact parameter, which corresponds 
at lowest order to the minimal distance between the photon and the mass in the 
trajectory (equivaent to R in eq. (1.2)). Dod is angular-diameter distance to the lens 
(or defector), Dos is the angular-diameter distance to the light source (in the absence 
of the lens) and Dds is the angular-diameter distance to the source as seen from the 
lens. 

Let us call d the distance between the source S and the axis. If β, θ ≪ 1, then 

d = βDos = θDod + (θ − α)Dds (2.1) 
Substituting for α and dividing by Dos we obtain 

4GmDds 1 
β = θ − (2.2)

DodDos θ 
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Figure 2.1: Sketch of all the quantities involved. A light ray emitted from a source at 
Dos is deviated by a point lens at Dod. 

which is the lens equation of a point mass lens. It relates the position of the source 
and its image. The prefactor in the second term of the right-hand side of eq. (2.2) 
contains all the information of the lens. Each lens is then fully characterised by its 
so-called Einstein radius s 

4GmDds
θE ≡ , (2.3)

DosDod 

so the lens equation reads 
θE

2 
β = θ − . (2.4)

θ 
and the solutions are 

1 
θ± = β ± β2 + 4θE

2 (2.5)2 
which corresponds to the fact that light can pass ‘above’ or ‘below’ the lens in fg. 2.1. 

The Einstein radius technically represents the size of the ring that would be 
observed if a point source were exactly aligned with the lens (fg. 1.4). But it also 
gives an idea of the lensing cross section of the lens. If the angle β separating the 
source and the lens on the celestial sphere is comparable to θE, then the image’s total 
fux is appreciably amplifed compared to the source; if on the contrary β ≫ θE, then 
the amplifcation is close to unity. More precisely, the amplifcation factor A ≡ Fo/Fs 
between the observed fux Fo and the unlensed source’s fux Fs is obtained from the 
inverse of the determinant of the amplifcation matrix, A. Representing the angular 
positions of the sources and images by 2-dimensional vectors1, it is defned as the 
Jacobian matrix of the mapping from θ to β. 

Aab ≡ 
∂βab 
∂θab 

(2.6) 

By taking the derivative of eq. (2.2) we get 

Aab 
2θ2 

E= − θb + 
θ4 θa 1 − 

θ2 
E 

θ2 δab (2.7) 

1We can make this approximation because θ and β are very small. 
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and the determinant is therefore 
4 

det A = 1 − 
θE 

. (2.8)
θ 

If we substitute in the previous formula the image positions of the point mass lens, 
which are just the solutions of the lens equation (eq. (2.5)), and take its inverse we 
obtain 

1 u2 + 2 β 
A± = √ , u ≡ . (2.9)2 

± 
2u u2 + 4 θE 

Finally, assuming that u > 0 and that the absolute value brings a minus sign to one 
of the A±, the amplifcation factor reads, for a point lens [88], 

u2 + 2 
A = A+ + A− = √ (2.10) 

u u2 + 4 
For u = √1, i.e. when the source is at the verge of the Einstein disk, we have 
A1 = 3/ 5 ≈ 1.34. 

Assuming a fxed distance to a light source, we may now picture the Einstein 
disks of our population of lenses covering part of the celestial sphere. The probability 
that a certain light source gets signifcantly amplifed is then naturally quantifed by 
the fraction of the sky that is covered by Einstein disks. This fraction is called the 
microlensing optical depth, 

1 
τ ≡ 

⎥ 
πθ2 = Σ 

D 
πθ2 , (2.11)E,ℓ E4π ℓ 

where Σ denotes the angular density of lenses, i.e. the number of lenses per unit solid 
angle in the sky, and ⟨. . .⟩ denotes a statistical expectation value. If the distribution 
of lenses is inhomogeneous, then τ may be considered a feld on the sphere. 

It is instructive to express the optical depth in terms of more standard cosmological 
quantities. Suppose that the compact lenses are placed in a homogeneous-isotropic 
FLRW universe with zero spatial curvature. Denote with ρc(t, x) their contribution 
to the physical cosmic matter density at time t and position x. Then eq. (2.11) reads 
(see e.g. ref. [89]) ⎫ χs χ(χs − χ)

τ = 4πG dχ a 2(χ) ρc(χ) , (2.12)
0 χs 

where χ and χs respectively denote the comoving distances of the lenses and of the 
source from the observer; a denotes the cosmic scale factor, and the notation a(χ), ρc(χ) 
mean that those quantities are evaluated at χ down the FLRW light cone, that is 
at conformal time η(χ) = η0 − χ if η0 means today. It is also implicit that ρc is 
spatially evaluated along a straight line, thereby giving τ an angular dependency from 
the inhomogeneity of ρc. Note that eq. (2.12) is the expression of the weak-lensing 
convergence, if the mass of the point lenses were smoothly distributed. In that case, 
the average amplifcation, at frst order in τ and neglecting the shear, would be 

= 1 + 2τ (2.13)⟨A⟩wl 
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Figure 2.2: An extragalactic point-like source of light is observed through a fraction 
of the sky covered by N lenses with their individual Einstein radii. Top: Region of 
the sky with a low optical depth (N = 5). Lenses are rare and well separated from 
each other. Bottom: Region of the sky with a high optical depth (N = 30). Lenses 
are common and interact with each other. 

2.2 Amplifcation probability at very low optical 
depth 

The problem of determining the statistics of microlensing amplifcations turns out to be 
quite simple in the low-optical depth regime, τ ≪ 1. In this case, which corresponds to 
lenses being rare and well separated from each other, the total amplifcation produced 
on a given light source is well approximated by the amplifcation of the strongest 
lens of the population, i.e. with the smallest reduced impact parameter u to the 
source. This shall be referred to as the strongest-lens prescription. It is then quite 
straightforward to derive the (complementary) cumulative distribution function (CDF) 
and probability density function (PDF) of the amplifcation [90, 89] 

P (A; τ) = 1 − exp −2τ √ A − 1 , (2.14)
A2 − 1 

∂P 2τ A 
p(A; τ) = − = (A2 − 1)3/2 exp −2τ √ − 1 . (2.15)

∂A A2 − 1 

The PDF displays the well-known asymptotic behaviour p(A ≫ 1; τ ) ∝ 2τ/A3 for high 
amplifcations. It is also easy to check from eq. (2.15) that the average amplifcation 
reads 

⟨A⟩c = 1 + 2τ (2.16) 
which agrees with eq. (2.13) at lowest order in τ ≪ 1. This means that the 

average magnifcation due to a sparse population of lenses equals the amplifcation 
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that would be produced by the same matter density if it were smoothly distributed 
in space.2 Another remarkable property of the amplifcation PDF/CDF at very low 
optical depths is that it does not depend on the mass of the defectors, but only on 
the optical depth. In that sense a sparse population of high-mass lenses is statistically 
indistinguishable from an abundant population of low-mass lenses. 

2.3 Distribution of optical depth in a realistic uni-
verse 

Given the simplicity of the amplifcation statistics in the low-optical depth regime, 
the frst question that we need to address is whether or not this regime is a good 
description of extragalactic microlensing. A frst way to address this question consists 
in estimating the optical depth in a realistic inhomogeneous universe containing a 
population of compact objects. Let α be the fraction of the total matter that consists 
of compact objects. For simplicity, the distribution of compact objects is assumed to 
closely follow the total matter density feld: in a small region with density ρ(t, x), 
there is a population of compact objects with mean density 

ρc(t, x) = α ρ(t, x) . (2.17) 

We assume that α is constant in space and time. A concrete example of this scenario 
would be if a fraction fPBH = α/0.83 of the DM were made of PBHs. 

In such conditions, if we split the total matter density into cosmic mean ρ̄(t) and 
large-scale perturbations as ρ(t, x) = ρ̄(t)[1+ δ(t, x)], where δ(t, x) denotes the density 
contrast, then the optical depth (2.12) takes the form 

τ = α(∆os + κ̄ os) , (2.18) 

with3 

⎫ χs χ(χs − χ) 1∆os = 4πGρ̄0 dχ (2.19)
0 χs a(χ) , ⎫ χs χ(χs − χ) δ(χ)

κ̄ os = 4πGρ̄0 dχ (2.20)
0 χs a(χ) , 

where ρ̄0 = ρ̄(t0) denotes today’s cosmic mean density. If the universe were ho-
mogeneous on astronomical scales (δ = 0), then we would have τ = α∆os; this 

2This result was frst obtained in 1976 by Weinberg [91], who thereby showed the important result 
that, at linear order, the average luminosity distance measured in a clumpy universe is the same as 
in the underlying homogeneous model. This was later generalised at any order by refs. [92, 93]; see 
also ref. [94] for details.

3The reason why we specifed the subscript “os” in ∆os, κ̄ os will be clearer in chapter 3. 
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Figure 2.3: Evolution of the mean 
projected density term ∆os(zs) de-
fned in eq. (2.19) as a function 
of the redshift zs of the source. 
We note that this quantity is non-
negligible at high redshift, reaching 
about 10 % between z = 1 and 1.5. 

Figure 2.4: Simulated map of the microlensing optical depth τ (in logarithmic scale) 
in a universe with a fraction α = 0.5 of compact objects, and a source at zs = 0.45. 
The sky is dominated by very low values of τ , with rare occurrences of mild values. 

quantity thus represents the contribution of the mean cosmic density to the opti-
cal depth.4 The evolution of ∆os with the redshift zs of the source is depicted in fg. 2.3. 

The second quantity in eq. (2.18), κ̄ os, is a projection of the total density perturba-
tion along the line of sight; it coincides with the weak-lensing convergence that would 
occur if matter were entirely difuse, i.e., if the compact objects were smoothed out. 
For an overdense line of sight, κ̄ os > 0, there are more compact objects and hence 
τ increases. We estimate the distribution of κ̄ os from a combination of (i) publicly 
available numerical results from ray tracing in an N -body simulation [96] and (ii) 
standard cosmological calculations; see chapter A for details on the simulation and 
our ftting functions. 

For the sake of illustration, fg. 2.4 shows a sky map of the optical depth τ for 
zs = 0.45 and a fraction α = 0.5 of compact objects. More quantitatively, our 

4Note also that −∆os represents the convergence of Zel’dovich’s “empty-beam” [95], i.e., the 
negative convergence that would apply if light were propagating through an empty universe compared 
to FLRW. 
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Figure 2.5: Probability density p(τ ; zs, α) of the optical depth τ for a source at redshift 
zs in a realistic universe made of a fraction α of compact objects. Left: efect the 
source redshift for α = 0.5. Right: efect of the fraction of compact objects for zs = 1. 

prediction for the PDF of the optical depth τ is shown in fg. 2.5 for various values of 
the fraction of compact objects α and of the source redshift zs. We can see that, except 
for sources located at high redshift and for a fraction of compact objects approaching 
unity, the optical depth remains at most on the percent order for most of the lines of 
sight. 

2.4 Relevant optical depths are not that low 

The distributions shown in fg. 2.5 indicate that, except in rather extreme cases, 
most of the celestial sphere is characterised by a very low optical depth, thereby 
suggesting that the model of eq. (2.14) may be a good description of the amplifcation 
probabilities. However, this conclusion must be nuanced as we wish to focus on mild 
to high amplifcations. Suppose for instance that we seek a microlensing signal in the 
Hubble diagram of type-Ia SNe, such as in refs. [65, 66, 68, 69]. To be detectable, the 
efect of microlensing should be larger than the intrinsic dispersion of SN magnitudes, 
σint ∼ 0.1 mag [97]. The decrease of an SN magnitude by 3σint would be equivalent to 
an amplifcation factor A = 106σint/5 ≈ 1.3, which is considerable. 

Although regions with large optical depth τ are rare, they are also expected to 
produce more detectable amplifcations than the low-τ regions. The relevant question 
then becomes: are detectable amplifcations mostly lying in low-τ regions, which cover 
most of the sky, or in the rarer but more efcient high-τ regions? 

To answer this question, we√adopt the following protocol. Let us focus on events 
with amplifcation A > A1 = 3/5 ≈ 1.34 corresponding to sources falling within 
the Einstein disk of a lens, and which coincidentally produce a 3σ efect on type-Ia 
SNe. In a region with optical depth τ , this has a probability P (A1; τ) = 1 − e−τ in 
the strongest-lens approach (2.14). So for the entire sky, the probability of such a 
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Figure 2.6: Proportion R(τm, zs, α) of the microlensing events with amplifcation 
A > A1 ≈ 1.34 occurring within regions of the sky with optical depth lower than τm, 
for a source at zs in a universe with a fraction α of compact objects. Left: efect of 
the redshift of the source for α = 0.5. Right: efect of the fraction of compact objects 
for zs = 1. 

high-amplifcation event would be ⎫ ∞ 
P (A1; zs, α) = dτ p(τ ; zs, α) 1 − e−τ , (2.21)

0 

for a fraction α of compact objects and a source at zs. Now suppose that we mask 
all the regions of the sky with an optical depth larger than τm; the probability would 
become 

Pτm (A1; zs, α) = 
⎞ τm 

0 dτ p(τ ; zs, α) (1 − e−τ )⎞ τm dτ p(τ ; zs, α)0 
. (2.22) 

The ratio of those probabilities, 

R(τm, zs, α) ≡ 
Pτm (A1; zs, α) 
P (A1; zs, α) , (2.23) 

then defnes the fraction of high-amplifcation events that survive the masking opera-
tion; in other words, R(τm) is the proportion of high-amplifcation events happening 
in regions whose optical depth is lower than τm. 

The evolution of the ratio R(τm; zs, α) as a function of τm is depicted in fg. 2.6 for 
various values of zs, α. For sources at high redshift, and for a non-negligible fraction 
of compact objects, we see that in order to properly account for, say, 99 % of the 
high-amplifcation events, we must allow the optical depth to reach values larger than 
0.1. Hence, as far as high amplifcations (A > 1.34) are concerned, the relevant regions 
of the sky do not necessarily have very low optical depths. 

The general conclusion of the analysis conducted in this section is that we must a 
priori go beyond the simple model given by eqs. (2.14) and (2.15) in order to accurately 
model the statistics of extragalactic microlensing. This will be the purpose of the next 



31 2.4. RELEVANT OPTICAL DEPTHS ARE NOT THAT LOW 

two sections, where we propose a complete set of corrections to the strongest-lens 
approach. 



CHAPTER 

THREE 

POINT LENS WITH ENVIRONMENT AND 
LINE-OF-SIGHT PERTURBATIONS 

The discussion of chapter 2 suggests that the simplest modelling of extragalactic 
microlensing statistics – the strongest-lens approach sketched in sec. 2.2 – may not 
be sufcient, because the relevant optical depths are low but not extremely low. In 
this context, we shall thus add perturbative corrections to this simple approach. We 
assume that when a source’s light is signifcantly amplifed, lensing is still mostly due 
to a single lens, which we may call the dominant lens. However, we now allow for 
corrections due to the rest of the universe – large-scale matter inhomogeneities, their 
substructure and the other compact lenses altogether – which we shall treat as tidal 
perturbations to the dominant lens. 

In this section, we consider the problem of a single point lens that is perturbed 
by the presence of matter lumps in its environment and along the line of sight. We 
demonstrate that this problem can be suitably reformulated as a point lens with 
an external shear, and we derive the expression of the angular diferential cross 
section Ω(A) of the amplifcation. 

3.1 Description of the set-up 

The concrete situation that we consider is depicted in fg. 3.1. An extragalactic 
point-like source (supernova or quasar) at zs is observed through an inhomogeneous 
universe. On large scales, we assume that the inhomogeneity of the matter distribution 
is well described by the ΛCDM cosmological model. On small scales, we assume 
that a fraction α of the total matter density is made of compact objects, which 
we model as point masses.1 Just like in sec. 2.3, we assume that the distribution 
of compact objects closely follows the total matter density feld: in a region with 

1Although binary systems are generally common in the universe, the separation between members 
of a binary is generally much smaller than their Einstein radius; hence binaries practically behave as 
point lenses. 

33 
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observer 
source 

dominant lens 

difuse matter 

compact objects 

Figure 3.1: An extragalactic point-like source of light is observed through the inho-
mogeneous universe. A fraction α of the matter density is made of compact objects, 
ρc(t, x) = αρ(t, x), while the rest is treated as difuse matter. Since the microlensing 
optical depth associated with compact objects is small, any signifcant amplifcation is 
dominated by a single lens: the dominant lens. 

density ρ(t, x), there is a Poisson-distributed population of compact objects with mean 
density ρc(t, x) ≡ αρ(t, x). We assume that α is constant in space and time. 

Dominant lens We defne the dominant lens as the one that would produce the 
strongest amplifcation A if it were alone in the universe. Equivalently, it is the lens 
with the smallest reduced impact parameter β/θE, where β is the angle between the 
unlensed source position and the lens position, and θE its Einstein radius. We shall 
denote with a “d” subscript the quantities associated with the dominant lens, e.g., its 
redshift zd. 

Tidal perturbations All the other inhomogeneities of the universe, which includes 
both astronomical structures and the non-dominant compact objects, are treated 
in the tidal regime. In the terminology of ref. [98], this means that apart from the 
immediate vicinity of the dominant lens, light propagates through a smooth space-
time geometry. This is equivalent to stating that the angle between multiple images 
produced by the dominant lens, which is on the order of its Einstein radius θE, is much 
smaller than the typical scale over which the gravitational feld produced by the other 
inhomogeneities changes appreciably. This notably requires all the non-dominant 
compact objects to lie far from the line of sight. In practice, the tidal approximation 
means that non-dominant inhomogeneities only produce weak-lensing convergence 
and shear which perturb the behaviour of the dominant lens. 

3.2 Lens equation and equivalent lens 
We now discuss the lens equation associated with the set-up described in sec. 3.1. We 
then show that, with a suitable change of variables, it may be turned into the lens 
equation of a point lens with external shear. 



m 

� �

35 3.2. LENS EQUATION AND EQUIVALENT LENS 

Dds αPLDos 
Figure 3.2: Schematic rep-
resentation of the quantities 

θ involved in the lens equa-
β tion (3.1). The total dis-

placement θ − β is caused 
Dod, Aod Dds, Ads by the dominant point-like 

Dos, Aos 
lens and the tidal 
tions Aod, Ads, Aos. 

distor-

3.2.1 Lens equation with tidal perturbations 
The relevant quantities defned below are depicted in fg. 3.2. The line of sight is 
conventionally set as the direction in which the main lens is observed. With respect 
to that origin, we call β the unlensed position of the source. Throughout this article, 
“unlensed” will refer to the case where light would propagate in the reference FLRW 
model. We denote with θ the observed position of an image of the source. 

The lens equation is the relation between θ and β. For a dominant point lens with 
tidal perturbation along the line of sight, it takes the form [99, 100, 101, 102, 103, 
104, 98, 105] 

(3.1)β = Aos θ − Ads αPL(Aodθ) , 

where we have introduced some notation. The heart of eq. (3.1) is the displace-
ment angle αPL(θ) of the dominant (point-like) lens only. In the absence of other 
inhomogeneities, we would simply have β = θ − αPL(θ). Its explicit expression is 

θ2 θ2 
αPL(θ) = , (3.2)

|θ 
E 

| 
θ 
2 ≡ 

θ 
E 

where θE is the unperturbed angular Einstein radius, 

4GmDds 4Gm(χs − χd)
θE

2 ≡ = , (3.3)
DodDos a(χd)χdχs 

and m the mass of the dominant lens. 

The three quantities Aod, Aos, Ads are 2 × 2 distortion matrices which encode the 
tidal perturbations along the line of sight. They are defned as follows: in the absence 
of the main lens, for an observer at (a) and source at (b), the unlensed position βab and 
lensed position θab of the source are related by βab = Aabθab. Thus, in the absence 
of the dominant lens [αPL(θ) = 0] the lens equation would reduce to β = Aosθ, 
which corresponds to standard weak lensing [106]. The distortion matrices may be 
decomposed as 

κab + Re(γab) Im(γab) − ωabAab = 1 − , a, b ∈ {o, d, s} . (3.4)Im(γab) + ωab κab − Re(γab) 
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In this decomposition, κab ∈ R represents the convergence that is be produced by 
the difuse matter from (a) to (b); the symmetric trace-free part, encoded in γab ∈ C, 
represents the shear produced in the same interval; the anti-symmetric part ωab ∈ R 
represents the solid rotation of images from (a) to (b). 

In the following, we shall work at frst order in the shear, γab ≪ 1. In that regime, 
it can be shown that the rotation is a second-order quantity ω ∼ |γ|2 (see ref. [107], 
sec. 2.3.2); we shall thus neglect ωab. However, as will be clearer in the very next 
paragraph, the convergence may reach values exceeding 10 %, hence we shall work 
non-perturbatively in κab. 

3.2.2 Physical origin of the convergence and shear 

Let us now elaborate on the convergences κab and shears γab appearing in the distortion 
matrices that enter in the lens equation (3.1). 

Convergence is due to the difuse matter that is intercepted by the line of 
sight. More precisely, κab represents the excess (or defcit) of focusing from difuse 
matter, with respect to the homogeneous FLRW reference, for a source located at (b) 
and observed from (a). Its explicit expression is 

⎫ χb (χ − χa)(χb − χ)
κab ≡ 4πG dχ a 2(χ) [(1 − α)ρ − ρ̄] (3.5) 

χa χb − χa 

= (1 − α)κ̄ab − α∆ab . (3.6) 

where ∆ab and κ̄ab are generalisations of the ∆os and κ̄ os defned in eqs. (2.19) 
and (2.20), 

⎫ χb (χ − χa)(χb − χ) 1∆ab ≡ 4πGρ̄0 dχ (3.7) 
χa χb − χa a(χ) , ⎫ χb (χ − χa)(χb − χ) δ(χ)

κ̄ab ≡ 4πGρ̄0 dχ . (3.8) 
χa χb − χa a(χ) 

The frst term in eq. (3.6) is quite intuitive; since the fraction of difuse matter is 1 − α, 
any excess κ̄ab in total projected density translates into (1 − α)κ̄ab from its difuse 
component. The second term is more subtle; it encodes the defcit of difuse matter, 
relative to FLRW, that occurs as one turns a fraction α of it into compact matter. In 
the extreme case α = 1, there is no difuse matter at all, which implies a signifcant 
focusing defcit, κab = −∆ab, with respect to FLRW – this is Zel’dovich’s empty-beam 
case [95]. The presence of ∆ab in κab is the reason why the convergence can reach 
relatively large values and should not be treated at linear order. Note fnally that 
eqs. (2.18) and (3.6) imply the following relation between convergences and optical 
depth: κos = κ̄ os − τ . 
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Shear is due to both difuse and compact matter unlike convergence. This is 
because shear is associated with long-range tidal forces generated by any matter lump. 
For a source located at (b) and observed from (a), we may decompose the total shear 
as 

γab = γ̄ab + sab . (3.9) 

In eq. (3.9), γ̄ab is the macroshear associated with the smooth density contrast, that 
is, the shear that would be produced on a beam of light in the absence of any compact 
object near the line of sight. Its formal expression is [108] 

⎫ χb 
⎫(χ − χa)(χb − χ) d2r δ(χ, r) e2iφγ̄ab = −4πGρ̄0 dχ , (3.10) 

χa χb − χa R2 πr2 a(χ) 

where r = r(cos φ, sin φ) denotes the physical transverse position of a point, orthogo-
nally to the line of sight, d2r = rdrdφ. Specifcally, r is the distance between a point 
and the line of sight and φ is its polar angle about that axis. 

The second term of eq. (3.9), sab, is the microshear produced by compact objects 
in the vicinity of the line of sight, except the dominant lens. If the region between (a) 
and (b) contains N point-like lenses labelled with ℓ, then the microshear reads [105] 

N⎥ (χℓ − χa)(χb − χℓ) a(χℓ)mℓ e2iφℓsab = −4πG , (3.11) 
ℓ=1 χb − χa πrℓ 

2 

where mℓ is the mass of lens ℓ, χℓ its comoving distance from the observer, rℓ its 
physical distance from the optical axis and φℓ its polar angle about it. Note that 
eq. (3.10) is nothing but the continuous limit of eq. (3.11). 

The careful reader may have noticed that the macroshear γ̄ab does not come with 
any prefactor (1 − α). Such a prefactor could be expected indeed, to avoid double-
counting the shear of compact matter, which should be encoded in sab already. The 
reason is that, in the following, we shall compute sab as if the compact objects were 
randomly distributed transversely to the line of sight. Hence, sab will not account 
for the large-scale clustering of those objects. Because they follow the total matter 
density contrast δ(t, x) on large scales, their contribution to cosmic shear is essentially 
the same as if they were replaced by difuse matter. Therefore, γ̄ab is unchanged under 
changes of the compact matter fraction α. Increasing α only produces more shear via 
sab. 

3.2.3 Equivalent lens 
The lens equation (3.1) contains a priori nine real parameters besides the dominant 
lens’s Einstein radius: the three convergences and the six shear components. But 
only a few specifc combinations of those parameters turn out to be relevant to 
the problem of amplifcation probabilities. Multiplying eq. (3.1) to the left with 
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(1 − κod)(1 − κos)−1(1 − κds)A−1 and working at frst order in the shears, we fnd the ds 
equivalent lens equation 

β̃ = (1 − Γ) θ̃ − 
θ̃2 

E ,
θ̃ 

(3.12) 

whose new variables are 

β̃ ≡ 
(1 − κod)(1 − κds) 

1 − κos 
A−1 

ds β , (3.13) 

θ̃ ≡ Aodθ , (3.14) 

and the new parameters read s 

θ̃E ≡ 
(1 − κod)(1 − κds) 

1 − κos 
θE , (3.15) 

Γ ≡ Re(γ) 
Im(γ) 

Im(γ) 
−Re(γ) , γ ≡ 

γos 

1 − κos 
− 

γod 

1 − κod 
− 

γds 

1 − κds 
. (3.16) 

In other words, under the linear change of variables (β, θ) �→ (β̃ , θ̃), our initial 
problem of a point lens with generic tidal perturbations has turned into the much 
simpler eq. (3.12), which describes a point mass with an external shear2 γ in the same 
plane. This equivalent problem has been well studied since the 1980s [80, 83, 109]. 

3.3 Amplifcation cross section 
Let us use the equivalent lens model (3.12) to derive the amplifcation cross section. 
We defne the diferential amplifcation cross section Ω(A) so that Ω(A)dA is the 
angular area (solid angle) of the region of the sky where the amplifcation is between 
A and A + dA. 

3.3.1 For the equivalent lens 
We frst work in the twiddled world described by eq. (3.12). If the efective shear γ were 
zero, then the problem would reduce to a single point lens whose constant-amplifcation 

A) = ˜ A/( ˜contours are circles, with radius β̃0( ˜ θE [2 ˜ A2 − 1)1/2 − 2]1/2. The cross section 
would thus read, in this simple case, 

Ω̃0(Ã) = 2πβ̃0(Ã) dβ̃0 = 2πθ̃E
2 

. (3.17)
dÃ (Ã2 − 1)3/2 

The problem is more involved in the presence of shear. In that case the source 
plane displays two distinct regions separated by an astroid-shaped caustic3 (see right 

2This particular shear combination γ is diferent from the line-of-sight shear combination γLOS = 
γos + γod − γds that was isolated in ref. [105], even in the absence of the convergences. 

3For a given lensing system, caustics are the set of source positions β whose amplifcation is 
infnite. Hence, critical curves are the images of caustics by the lensing system. 
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(Ã

)/
Ω̃

0
(Ã
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Figure 3.3: Properties of the equivalent point lens with external shear. Left panel: 
Ratio of the amplifcation cross section Ω̃(Ã) in the presence of shear (here γ = 0.05) 
with the no-shear case Ω̃0(Ã) (3.17). The solid-line histogram shows results from ray 
tracing, while the dashed line shows the analytical ft k(|γ|Ã) of eq. (3.19) as proposed 
in ref. [109]. Right panel: Amplifcation map Ã(β̃). The astroid-shaped caustic has a 
size 2|γ|θ̃E; inside the astroid a source has four images, outside it has two images, and 
exactly on it it has three images among which one is infnitely amplifed. 

panel of fg. 3.3). Outside the caustic a source has two images while inside it has four 
images. The shear γ fxes the size and orientation of the astroid. To the best of our 
knowledge there is no analytic expression for the amplifcation Ã(β̃) or its contours in 
that case. Nevertheless, Nityanda & Ostriker [80] noticed the remarkable fact that for 
low values of the shear |γ|, corrections the the amplifcation cross section should only 
depend on the product |γ|A. More than a decade later, Kofman et al. [109] further 
pushed this idea by writing 

˜ ˜Ω(Ã) = Ω0(Ã) k(|γ|Ã) , (3.18) 

where Ω̃0(Ã) is the no-shear cross section of eq. (3.17), while k is a function ftted 
from numerical simulations,4 

 
3.5 21 + 7.7 x x ≤ √

3 
,

3 0.17 0.023 2 
k(x) = + √ ≤ x ≤ 1 , (3.19)

(x − 0.33)1/2 x − 0.33 3 3  0.85 0.371 + + 5 x ≥ 1 . 
x x 

For the sake of completeness, we have reproduced in fg. 3.3 the comparison between 
numerical ray tracing and Kofman et al.’s result (3.18) for γ = 0.05. The simulation 
uses inverse ray tracing with a simple adaptive mesh refnement, see ref. [89] for details. 
Agreement is excellent. 

4In ref. [109], that function was denoted with φ. We changed the notation so as to avoid confusion 
with the polar angle of subsec. 3.2.2, and adopted “k” instead, in honour of Lev Kofman. 
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3.3.2 Back to the original problem 
We now translate the results of the twiddled world in terms of Ω(A). The frst step is 
to express Ã in terms of A. At frst order in the shear, we fnd 

d2θ̃  (1 − κos)2 det Aod d2θ 
Ã ≡ = = (1 − κos)2A . (3.20)

d2β̃ (1 − κod)2(1 − κds)2 det A−1 d2βds 

The conversion of Ω̃ into Ω must take two aspects into account. On the one hand, 
since those are diferential cross sections, their relation involves the Jacobian |dÃ/dA|, 
just like when one changes variables in a probability density function, for example. 
Second, since Ω̃ is a cross section in the twiddled source plane, it is expressed in 
the twiddled units [β̃]2, which difer from the units [β]2 of the original source plane. 
Taking both aspects into account yields 

× ˜Ω(A) dA = d2β Ω(Ã) dÃ . (3.21)
d2β̃ 

Substituting eqs. (3.13), (3.18) and (3.20) into eq. (3.21), and still working at frst 
order in the shear, we fnd the following elegant expression for the cross section, 

|γ|A A2 
Ω(A) = 2πϑ2

E k min , (3.22)(A2 − A2Amin min)3/2 

where Amin ≡ (1 − κos)−2 is the minimal amplifcation in this setup, i.e. the am-
plifcation that would be observed if the dominant lens were infnitely far from the 
line of sight, so that only the weak-lensing convergence is at play. It is implicit that 
Ω(A < Amin) = 0. Besides, we have introduced ϑE such that 

(1 − κds) θE
2 4Gm(1 − κds)Dds

ϑ2
E ≡ = . (3.23)(1 − κod)(1 − κos) (1 − κod)Dod(1 − κos)Dos 

Physically, ϑE represents the the lensed Einstein radius, i.e. the size of the Einstein 
ring that would be observed if the source were perfectly aligned with the dominant 
lens in the presence of the external convergences; this can be checked by setting β = 0 
in eq. (3.1). 

Summarising, the convergence due to difuse matter has two distinct efect on Ω(A): 
(i) they rescale amplifcations according to A → A/Amin = (1 − κos)2A, thereby fxing 
the minimum amplifcation accessible to the system; (ii) they rescale the dominant 
lens’s Einstein radius as θE → ϑE, thereby changing the cross section directly. The 
shear, due to both difuse and compact matter, afects Ω(A) via Kofman et al.’s 
function k(|γ|A/Amin) only. 
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FOUR 

AMPLIFICATION PROBABILITIES 

In the previous section, we have derived the amplifcation cross section Ω(A) for a 
single point lens with perturbations (3.22). We shall now turn this result into a PDF 
for the amplifcation, p(A), using the statistical properties of the dominant lens and 
its perturbations. 

4.1 Amplifcation probability for a single lens 

In realistic scenarios where the mass of the compact objects is small (e.g. comparable 
to a solar mass), then the typical angle separating two such objects is much smaller 
than the angular scales over which κ,¯ γ̄, τ are changing appreciably. Thus, we may 
consider a “mesoscopic” cone with half angle Θ at the observer which contains a large 
number of compact objects, but across which the macroscopic quantities κ,¯ γ̄, τ are 
constant (see fg. 4.1). Since those empirically show signifcant changes on the arcmin 
scale, we have Θ ≪ 1. 

Θ 

zs 

Figure 4.1: Mesoscopic cone 
with half angle Θ at the 
observer, containing a large 
number of compact objects, 
but across which the macro-
scopic quantities τ, κ,¯ γ̄ can 
be considered constant. 

The frst step of our calculation consists in expressing the PDF p1(A) of the 
amplifcation due to one dominant lens in the mesoscopic cone. If all the parameters 
entering the amplifcation cross section (3.22) were fxed, then we would have by 
defnition p1(A) = Ω(A)/(πΘ2). But since the properties of the main lens – namely its 
mass m and comoving distance χ from the observer – and the microshear s = γ − γ̄ 
vary a lot across the mesoscopic cone, we must marginalise over their statistical 

41 
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distribution, 
⎫1 

p1(A) = dm dχ d2 s p(m, χ, s) Ω(A; m, χ, |γ̄ + s|) , (4.1)
πΘ2 

where Ω depends on m via the Einstein radius of the dominant lens, θE
2 ∝ m, and on 

χ via θE and the (od), (ds) convergences and shears. We did not explicitly include the 
fxed macroscopic parameters τ, κ̄ os, γ̄ os to alleviate notation. 

4.1.1 Approximations 

In order to model the joint distribution p(m, χ, s), we make the following assumptions: 

1. The mass m of the dominant lens is uncorrelated with the other parameters. 
Since Ω ∝ m, this implies that we may simply replace m by its average value 
⟨m⟩ in the remainder of this calculation. 

2. Compact objects are randomly distributed in space and their comoving number 
density nc is constant within the mesoscopic cone. This implies, in particular, 
that p(χ) = 3χ2/χ3

s . 

Besides, in order to simplify the evaluation of the various convergences and shears 
involved in Ω(A), we shall adopt the following mean-feld approximation: 

2 2
χb − χa χb − χa

κ̄ab ≈ κ̄ os , γ̄ab ≈ γ̄ os . (4.2)
χs χs 

The intuition behind this approximation appears by examining the integrals (3.8) and 
(3.10) defning κ̄ab and γ̄ab. Consider all the possible lines of sight with the same fxed 
κ̄ os, γ̄ os. They are in principle quite diverse, because the matter density contrast δ 
may display signifcant variations along them, and hence they may have a variety 
of κ̄od, κ̄ds, γ̄od, γ̄ds. However, on average all the elements dχ along the line of sight 
should conspire so as to produce the required κ̄ os, γ̄ os. If we neglect the efect of dark 
energy on structure formation, we know that δ ∝ a, which motivates us to consider 
that the mean-feld contribution of δ(χ)/a(χ) to κ̄ab, γ̄ab is independent of χ. As the 
latter is taken of the integrals over χ, eqs. (3.8) and (3.10) imply 

⎫ χb (χ − χa)(χb − χ)
κ̄ab, γ̄ab ∝ dχ ∝ (χb − χa)2 , (4.3) 

χa χb − χa 

whence eq. (4.2). We shall also apply a similar rule to the full convergence κab. 

The difcult step then consists in determining the distribution for the microshear, 
and evaluating its consequences on p1(A). 
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4.1.2 Distribution of the microshear 
The statistics of the shear caused by a random distribution of point masses has been, in 
fact, a well-know problem for a long time. It was frst considered for masses placed in 
the same plane by Nityananda & Ostriker [80], using one of the methods exposed in the 
famous review [110] by Chandrasekhar in 1943 on statistical problems in astrophysics. 
However, the very last step of the calculation was only performed three years later 
by Schneider [111]. The result was then generalised to any lens profle by Lee & 
Spergel [84] and fnally to multiple lens planes in Lee et al. [85]. 

In the case that we are interested in here, if the dominant lens is fxed at a comoving 
distance χ from the observer, then the reduced microshear s = sos/(1 − κos) − sod/(1 − 
κod) − sds/(1 − κds) caused by the other compact objects has an amplitude S ≡ |s|
distributed as 

f(χ)τS dS S2 −1/2 

p(S; χ) dS = , P (S; χ) = 1 − . (4.4)[f 2(χ)τ 2 + S2]3/2 f 2(χ)τ 2 

Equation (4.4) is controlled by an efective optical depth fτ , with1 

⎞ χ dχ ′ χ ′(χs−χ ′) χ ′(χ−χ ′) ⎞ χs dχ ′ χ ′(χs−χ ′) (χ ′ −χ)(χs−χ ′)− + −0 a(χ ′) (1−κos)χs [1−κod(χ)]χ χ a(χ ′) (1−κos)χs [1−κds(χ)](χs−χ)
f(χ; χs, κos) ≡ ⎞ χs dχ ′ χ ′(χs−χ ′)

0 a(χ ′) χs 

(4.5) 
1 2χ χ ≈ 1 − . (4.6)(1 − κos)7/4 χs χs 

The last approximation holds when the scale factor can be considered constant in 
the integrals (i.e. for χs → 0) and in the mean-feld approximation for κod, κds. The 
(1 − κos)−7/4 is empirical. The shape of the function f(χ) for various values of the 
source redshift and external convergence κos is depicted in fg. 4.2. Since the derivation 
of eq. (4.4) in ref. [85] uses diferent conventions and notation, we propose a full 
derivation in chapter B for completeness. 

Let us fnally point out that eq. (4.4) is actually an approximation where high values 
of S are overestimated. Indeed, the compact objects responsible for the microshear are, 
by defnition, non-dominant lenses. As such, their individual shear should not exceed 
the one that would be produced by the dominant lens if it were alone. So in principle 
p(S) should also depend on, e.g., the impact parameter of the dominant lens βd, which 
would set an upper bound on S. This upper bound would go to infnity as βd → 0, i.e. 
for large values of the amplifcation. Albeit more rigorous, these considerations would 
signifcantly complicate the treatment of the problem. We thus choose to ignore them, 
with the perspective of placing an upper bound on the efect of the microshear on 
p(A). 

1We shall often omit the fxed variables χs, κos and just write f(χ) instead of f(χ; χs, κos), just 
like we do not specify the dependence of τ on those parameters. 
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Figure 4.2: Factor f(χ; χs, κs) defned in eq. (4.5) as a function of the ratio χ/χs. Left: 
showing the dependence on the source redshift, by comparing zs → 0 to zs = 1, 2 
for κos = κod = κds = 0. Right: showing the dependence in κos in the mean-feld 
approximation, for zs ≪ 1. 

4.1.3 The macroshear is negligible 
The total shear γ = γ̄ + s is the sum of the microshear s discussed above with the 
macroshear γ̄ due to the large-scale structure. While the distribution of microshear 
has a heavy tail, Prob(> S) ∝ S−1, it turns out that the macroshear does not share 
this property, because the structures producing it are more difuse. As shown in 
sec. A.2, the conditional PDF of the macroshear at fxed convergence is surprisingly 
well ft by a two-dimensional Gaussian distribution, which therefore predicts very few 
high values for the macroshear. 

Note that s must be compared with γ̄ ≡ γ̄ os/(1 −κos) − γ̄od/(1 −κod) − γ̄ds/(1 −κds) 
rather than with γ̄ os alone. The difculty is that ray tracing in numerical simulations 
is performed for a unique observer at present time; they allow one to compute γ̄ os, γ̄od, 
but not γ̄ds. To circumvent this issue we apply again the mean-feld approximation 
introduced in subsec. 4.1.1, which yields 

γ̄ ≈ f γ̄ os , (4.7) 

with f defned in eq. (4.5). It is not surprising to fnd here the same correction factor f 
as for the efective optical depth of microshear: both have the same origin. Within 
that approximation, the PDF of |γ̄| is obtained from eq. (A.10) by simple rescaling. 

Figure 4.3 compares the distributions of the microshear and macroshear amplitudes, 
for a source at zs = 0.95, a dominant lens at z = 0.5, and for a line of sight 
with κ̄ os = 0 for simplicity. Three values for the fraction of compact matter are 
considered, α = 0.83, 0.1, 0.01 – the frst case would correspond to the whole DM 
being made of compact objects. Those values correspond, respectively, to the efective 
optical depths fτ = 2.5 × 10−2 , 3.0 × 10−3 , 3.0 × 10−4. Although the macroshear is 
generally not negligible compared to the microshear, especially when α is small, it 
is unable to produce large amplitudes. But large values of the shear are necessary 



� � �

� �

� �

45 4.1. AMPLIFICATION PROBABILITY FOR A SINGLE LENS 

10−4 10−3 10−2 10−1 100

shear amplitude S

10−3

10−1

101

103

p(
S

)

α = 0.83

α = 0.1

α = 0.01

macroshear

10−3 10−2 10−1

shear amplitude S

10−4

10−3

10−2

10−1

100

P
(S

)

α = 0.83

α = 0.1

α = 0.01

macroshear

Figure 4.3: Distributions of the amplitude of microshear (solid lines), if the source 
located at zs = 0.95 and the dominant lens at z = 0.5. The left panel shows PDFs 
while the right panel shows CDFs. Three values for the fraction of compact matter are 
considered, α = 0.83, 0.1, 0.01. Dashed lines indicate the distributions of the amplitude 
of the macroshear |γ̄| ≈ f |γos|, for lines of sight with κ̄ os = 0. 

to produce changes in Ω(A) at reasonable amplifcations, A < 10 (see sec. 3.3). 
In the situation illustrated here, |γ̄| < 3 % which would only afect Ω(A ≳ 13). 
Summarising, when macroshear is comparable to, or even larger than, microshear, 
then both have a negligible impact on the amplifcation statistics anyway. We shall 
thus neglect macroshear from now on, and replace Ω(A; m, χ, |γ̄+s|) with Ω(A; m, χ, S) 
in eq. (4.1). 

4.1.4 Final expression of p1(A) 
Substituting, in eq. (4.1), the probability density p(m, s, χ) = p(m) p(S; χ) p(χ) – 
where p(S; χ) is given by eq. (4.4) – and the expression (3.22) of Ω(A; m, χ, S), and 
performing the change of variable S �→ y ≡ S/fτ , we fnd 

A2 ⎫ χs D2 min ϑ2 f(χ)τA 
p1(A) = dχ p(χ) E(χ) K , (4.8)Θ2 (A2 − A2 mmin)3/2 0 Amin 

where ⟨. . .⟩ m denotes an average over the mass m of the dominant lens, and2 

⎫ ∞ −8/3y k(xy) 3 
K(x) ≡ dy 2)3/2 ≈ 1 − 0.81 x 2(1 − 3x) 1 + 2 

x 3/2 . (4.9)
0 (1 + y 

The last step of the simplifcation of p1(A) consists in fully isolating the efect of 
the (micro)shear. For that purpose, we may multiply and divide eq. (4.8) with the 
average value of the weakly lensed squared Einstein radius, 
D ⎫ χs D ⎫ χs4G ⟨m⟩ dχ 1 − κds(χ)
ϑ2 ≡ dχ p(χ) ϑ2

E(χ) = 1 − κod(χ) χ(χs − χ) , (4.10) 
m E

0 (1 − κos)χs 0 a(χ) 
2In ref. [109], the function K(x) is denoted by f1(x). The approximation in the second equality of 

eq. (4.9) was proposed in ref. [109] and its comparison with the exact result is shown in fg. 4 therein. 
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to get 
2 ⟨ϑ2 A2 τ AE⟩ min p1(A) = ,Θ2 (A2 − A2

min)3/2 K (1 − κos)7/4 Amin 
(4.11) 

with the last function that we shall defne in this derivation: ⎞ χs dχ 1−κds(χ) 
1−κod(χ) χ(χs − χ) K[(1 − κos)7/4f(χ)x]0 a(χ)K(x) ≡ . (4.12)⎞ χs dχ 1−κds(χ)

0 a(χ) 1−κod(χ) χ(χs − χ) 

The presence of the (1 − κos)7/4 factor in the argument of K in eq. (4.12) is designed 
to absorb the empirical dependence on κos in f , and hence make K(x) practically 
insensitive to κos. 

The function K(x) defned in eq. (4.12) fully encapsulates the efect of the micros-
hear. In principle, this function depends on the source redshift zs via χs = χ(zs), and 
on the macrostructure along the line of sight via κos, κod, κds. In practice, however, 
fg. 4.4 shows that K(x) is quite insensitive to those parameters. Such an empirical 
independence of K(x) in its external parameters encourages us to look for a simple 
and universal ftting function for it. We fnd that 

−3.435 x 5/4 
K(x) = 1 − 0.254 x 2.33 (1 − 1.30 x) 1 + (4.13)4 1.83 

provides an excellent ft, with an accuracy of a few parts in 104 (see fg. 4.4). 

The main conclusion of this subsection is that, to an excellent level of precision, the 
efect of the microshear on p1(A) mostly depends on the optical depth τ . It reduces 
by about 1 % the probability of amplifcations A ∼ 1/τ , and enhances larger ones 
(A ∼ 10/τ ) by about 15 %. Since we are considering low values for the optical depths, 
we can already anticipate that the net impact of shear on reasonable amplifcations 
will be negligible. 

4.2 From one lens to many: the strongest-perturbed-
lens prescription 

Now that we dispose of an accurate expression for the amplifcation PDF p1(A) 
of a single perturbed lens within a mesoscopic cone (fg. 4.1), we can generalise it 
to a large number N ≫ 1 of such lenses. For that purpose, we shall adapt the 
strongest-lens prescription of sec. 2.2, which consists in assuming that the total 
amplifcation A produced by the N perturbed lenses in the cone, is well-approximated 
by the amplifcation due to the strongest of them. Importantly, that is not to say that 
we are entirely neglecting the efect of the other lenses, because it is already encoded 
in the convergence and microshear corrections. As such, the strongest-perturbed-lens 
approach must be understood as a statistical prescription that is physically consistent 
with the set of approximations that we have considered so far. 
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Figure 4.4: Integral K(x) defned in eq. (4.12) as a function of x = (1−κos)−7/4τA/Amin, 
which encapsulates all the microshear corrections to p1(A), with the empirical ftting 
function proposed in eq. (4.13). Left: Checking the dependence in χs = χ(zs), for a 
fxed κos = 0. Right: Checking the dependence in κos for zs = 1. The bottom panels 
show the relative accuracy of the empirical ft. We can see that K is mostly insensitive 
to both zs and κos, and that the ftting function is an excellent approximation. 

Let us be more specifc. The probability that the strongest individual amplifcation 
is smaller than A, is equal to the probability that all N lenses individually produce 
an amplifcation smaller than A. Hence, the probability P (A) that the strongest 
amplifcation is larger than A reads 

P (A) = 1 − 1 − 
⎫ ∞ 

A 
dA ′ p1(A ′) 

N 
. (4.14) 

The strongest-lens approximation consists in assuming that the above is a good model 
for the CDF of the total amplifcation. 

Examining the expression (4.11) of p1(A), we notice that it is proportional to 1/N , 

⟨ϑ2 D
E⟩ 1 1 τ 

p1(A) ∝ = Σπ ϑ2 ≈ , (4.15)Θ2 N E N 1 − κos 

where we recognised the projected angular density of lenses within the mesoscopic cone, 
Σ = N/(πΘ2), and the microlensing optical depth τ = Σπ ⟨θE

2 ⟩. We also considered 
⟨ϑ2

E⟩ ≈ ⟨θE
2 ⟩ /(1 − κos), as suggested by eq. (4.10) where κod, κds only produce minor 
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corrections.3 Thus, in the large-N limit, we have 
⎫ ∞ 

P (A) ≈ 1 − exp − dA ′ Np1(A ′) . (4.16) 
A 

Substituting the explicit expression of p1(A), and changing the integration variable to 
X ≡ A/Amin, we fnally obtain the main result of this article, 

⎫ ∞2τ dX τX 
P (A; zs, α, κ̄ os) = 1 − exp − , (4.17)1 − κos A/Amin (X2 − 1)3/2 K (1 − κos)7/4 

with the parameters τ = α(∆os + κ̄ os), κos = (1 − α)κ̄ os − α∆os and Amin = (1 − κos)−2, 
which explicitly depend on the fraction α of compact objects, the homogeneous conver-
gence defcit ∆os(zs) given in eq. (2.19), and the average weak-lensing convergence κ̄ os 
that would be observed if all the matter were difuse. Note that eq. (4.17) is indepen-
dent of the size Θ of the mesoscopic cone that we started with. In the case where the 
external convergence and shear are neglected, i.e. κos = 0, Amin = 1, K = 1, we recover 
the simple result of eq. (2.14). 

4.3 Marginalising over the line-of-sight convergence 

Equation (4.17) gives the amplifcation CDF within a mesoscopic area of the sky 
where κ̄ os, and hence τ, κos can be considered fxed. The full CDF is obtained by 
marginalising over all mesoscopic lines of sight, that is 

⎫ 
P (A; zs, α) = dκ̄os p(κ̄os; zs) P (A; zs, α, κ̄ os) . (4.18) 

Just like in sec. 2.3, we use the results from simulations and standard cosmology to 
estimate p(κ̄os; zs), as explained in sec. A.1. 

The fnal amplifcation CDF is depicted in fg. 4.5, for diferent values of the frac-
tion α of compact objects and of the source redshift zs. As expected, the probability of 
high amplifcations increases with both α and zs, because the optical depth τ increases 
with both parameters. For a source at zs = 1, the probability that it is amplifed 
by a factor larger than two is 1.6 % if all the DM (83 % of the total matter) in the 
universe is made of compact objects. This probability falls to 0.23 % if 10 % of matter 
is compact, and to 0.056 % if only 1 % of the matter is compact. 

The upper panels of fg. 4.5 show both the exact P (A; zs, α) and the case where 

3This implies that the weakly lensed optical depth is approximated as Σπ ϑ2
E ≈ τ/(1 − κos). In 

the presence of a positive convergence, i.e. an overdense line of sight, the efective optical depth is 
thus larger than the one expected without accounting for the convergence corrections. 
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Figure 4.5: Final CDF of the amplifcation, P (A; zs, α) ≡ Prob(> A|zs; α), once 
marginalised over the line-of-sight convergence κ̄ os. Left: dependence in the fraction α 
of compact objects for zs = 1. Right: dependence in the source redshift zs, for α = 0.1. 
Upper panels indicate both the exact result (solid lines) and the case where the efect 
of shear is neglected therein, i.e., for K = 1 (dashed lines). The solid and dashed 
lines are superimposed – their relative diference is depicted in the bottom panels; the 
rapidly oscillating features are non-physical artefacts due to numerical integration. 
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microshear is neglected, which corresponds to setting K = 1 in eq. (4.17), 
⎫ ∞2τ dX 

Pno shear(A; zs, α, κ̄ os) ≡ 1 − exp − (4.19)1 − κos A/Amin (X2 − 1)3/2    
2τ A = 1 − exp −  − 1 . (4.20)1 − κos A2 − A2

min 

The associated curves are essentially indistinguishable by eye; their relative diference, 
|P/Pno shear − 1|, is shown in the bottom panels of fg. 4.5 and is sub-percent for A < 6. 
Of course, due to the behaviour of the function K(x), larger amplifcations (A ∼ 1/τ ) 
are expected to be afected more signifcantly by the microshear. But in practice such 
high amplifcations are so rare that they have no observational relevance. Hence, the 
main take-home message of this subsection is that the efect of shear is negligible in 
the statistics of extragalactic microlensing. This implies that, for practical purposes, 
one may safely use the simple no-shear expression (4.20) for P (A; zs, α; κ̄ os). Such a 
conclusion could hardly have been guessed from the beginning. The external shear is 
known to be a crucial parameter in the modelling of strong lenses (e.g. [112]), and 
fg. 3.3 shows that it generally has a signifcant impact on the amplifcation cross 
section. But since the efect shows up around amplifcations A ∼ 1/τ , and that the 
amplifcation PDF is already low for A ≳ 1/τ , the net integrated efect on P (A) ends 
up being negligible for interesting values of A.4 

4.4 Comparison with Zumalacárregui & Seljak 
In ref. [69] (hereafter ZS17), Zumalacárregui & Seljak have set constraints on the 
fraction of extragalactic compact objects that would produce a microlensing signal 
in the supernova data. For that purpose, they used a phenomenological model for 
the amplifcation statistics. It is worth comparing the predictions of that model to 
our approach in order to evaluate what one may call theoretical systematics on any 
analysis of supernova microlensing. 

ZS17’s model, based on earlier developments by Seljak & Holz [66] and Metcalf & 
Silk [65, 68], is expressed in terms of a shifted magnifcation µ, such that 1+µ represents 
the magnifcation of an image with respect to its empty-beam counterpart, i.e., if that 
image were seen through an empty universe. It is related to our amplifcation A as 

1 + µ = (1 + ∆os)2 A , (4.21) 

where ∆os is the same as defned in eq. (2.19). With such conventions, µ = 0 corre-
sponds to A = (1 + ∆os)−2, which is indeed the empty-beam case. The distribution of 

4Another argument is that, for realistic sources of light, large amplifcations such that A ∼ 1/τ are 
very hard to access due to the fnite size of the sources (see chapter 5). However, with gravitational 
waves sources, magnifcation factors of many hundreds are possible and therefore the net efect could 
not be negligible. 
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µ is then designed by assuming that µ can be written as the sum µ = µs + µc of a 
weak-lensing contribution from the smooth matter, µs, and a microlensing contribution 
from compact objects, µc. 

The smooth part is written as µs = (1 − α)µ̄, where µ̄ would be the magnifcation 
in the absence of compact objects. Note that this is quite similar to our approach 
described in subsec. 3.2.2, except that we have worked with convergences rather than 
shifted magnifcations. In ZS17, the statistics of µ̄ are obtained using the TurboGL 
code [113, 114]. 

The statistics of microlensing part, µc, are based on an empirical model originally 
used by Rauch to ft ray-shooting simulations in ref. [115], 

3/21 − e−µc/∆µ 
pR(µc; µ̄c) = N , (4.22)(1 + µc)2 − 1 

where N and ∆µ are two functions of µ̄ c that are chosen so as to ensure that pR is 
normalised to 1 and with expectation value ⟨µc⟩ = µ̄ c. This value is set to be µ̄ c = αµ̄ 
by the magnifcation theorem [93], and plays a role comparable to the optical depth τ 
in our approach. 

In such conditions, ZS17’s model for the PDF of the magnifcation µ = µc + µs 
reads ⎫ ∞ 

pZS17(µ; zs) = dµ̄ pTurboGL(µ̄; zs) pR[µ − (1 − α)µ̄; αµ̄] , (4.23)
0 

which undoubtedly has the advantage of simplicity. Figure 4.6 shows a comparison 
between the predictions of our model with those of ZS17’s model, in the case of 
point-like sources for simplicity. Compared to our approach, ZS17’s model tends to 
overestimate by more than 10 % the large-amplifcation events for high values of α; for 
low values of α, on the contrary, it tends to underestimate them by more than 100 %. 
Coincidentally, both models nearly agree (up to a few percent) for α = 0.35, which 
turns out to be the maximum fraction of compact objects allowed at 95 % confdence 
level in ZS17. Since PZS17(A) > P (A) for smaller values of α, this suggest that 
conducting an analysis similar to ZS17’s with our model for amplifcation statistics 
would yield slightly weaker constraints on α. Such an analysis is beyond the scope of 
this article, but the present results show that theoretical systematics can generally 
reach 100 % for extragalactic microlensing. 

http://www.turbogl.org
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EXTENDED SOURCES 

So far we have considered point-like sources, but the fnite size of real light sources is 
known to have signifcant efects on the amplifcation distribution. As a rule of thumb, 
if a source has an unlensed angular size σ, then it smoothes out the amplifcation map 
obtained in the point-source case on the angular scale σ – see e.g. fg. 13 of ref. [89] 
for illustration. This implies that the efect of small structures, i.e. lenses with small 
Einstein radii, is suppressed.1 In this subsection, we show how to add fnite-source 
corrections to the amplifcation distributions derived in the previous sections. 

5.1 Extended-source corrections on an isolated point 
lens 

We have seen in subsec. 3.2.3 that the problem of a point lens with tidal corrections 
can be conveniently phrased as an equivalent point lens with a single efective shear 
correction. Besides, the analysis leading to fg. 4.5 shows that the efect of shear 
is statistically negligible in the point-source case. Since the extended-source case is 
deduced from the point-source case by a smoothing of its amplifcation map, if the 
efect of shear is small in the latter, it must also be small in the former. Hence, in all 
the remainder of this section we shall neglect the shear, so the equivalent lens is a 
mere unperturbed point lens, 

θ̃2 
β̃ = θ̃  − E , (5.1)

θ̃  

where the twiddled quantities are expressed in terms of the original ones in eqs. (3.13) 
to (3.15), all the shears being set to zero. 

Let us now consider a source shaped as a disk with angular radius σ, and whose 
surface brightness is homogeneous within the disk. Since we are neglecting the shear, 
the source shape is still a disk in the twiddled world, with radius σ̃ = (1 − κod)(1 − 

1That is why, for example, the constraints on the abundance of PBHs set by SN microlensing in 
ref. [69] only apply to masses larger than 10−2M⊙. 
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κds)−1(1 − κos)−1σ. The amplifcation profle of such a homogeneous disk source by 
a point lens was derived in ref. [116]. If β̃  denotes, in the twiddled world, the angle 
between the centre of the source and the main lens, we defne the reduced impact 
parameter as ũ ≡ ˜ θE and the reduced source’s radius ˜ σ/θ̃E; the amplifcation β/˜ r ≡ ˜ 
profle then reads 

ũ+ r̃ ũ − r̃  8 + (ũ2 − r̃2)
Ã(ũ, r̃) = 2 4 + (ũ − r̃)2 E(m) − 2 F(m)2πr̃ 2πr̃  4 + (ũ − r̃)2 

2(ũ − r̃)2 1 + r̃2 
+ Π(n, m) , (5.2)
πr̃2(ũ + r̃) 4 + (ũ − r̃)2 

where 
4ũr̃ 4n 

n ≡ , m ≡ , (5.3)(ũ + r̃)2 4 + (ũ − r̃)2 

and the functions F, E and Π are the complete elliptic integrals of the frst, second and 
third type, respectively, in Wolfram’s convention for elliptic integrals2. The maximum 
amplifcation is obtained when ũ = 0 and reads s 

Ã max(r̃) ≡ Ã(0, r̃) = 1 + 
4 
2 , (5.4) 
r̃  

which goes to infnity as the source becomes very small (r̃  → 0). More generally, the 
entire amplifcation profle of the point-source case (2.10) is recovered in that limit. 
The left panel of fg. 5.1 illustrates the amplifcation profle for several values of r̃. 

In the next sections, we proceed with the calculation of the amplifcation probability 
in the presence of fnite-source corrections. This calculation will closely follow the 
point-source case: amplifcation cross-section; strongest-lens approximation; and 
marginalisation over the mesoscopic cone. 

5.2 Amplifcation cross section of an isolated lens 
With an extended source, the amplifcation profle changes from eq. (2.10) to eq. (5.2), 
so the diferential cross section amplifcation must change as well. In particular, since 
Ã ≤ Ã max(r̃), we must have Ω̃ 

σ̃ (Ã > Ã max) = 0. Thanks to the axial symmetry of the 
amplifcation profle, just like the point-lens case, we have 

∂β̃  uΩ̃ 
σ̃(Ã) = 2πβ̃(A,˜ r̃) = πθ̃2 ∂˜2 

, (5.5)
∂Ã E 

∂Ã 

except that now ũ(A,˜ r̃) is the inverse of eq. (5.2) at fxed r̃, which cannot be done 
analytically. 

2https://reference.wolfram.com/language/guide/EllipticIntegrals.html 

https://reference.wolfram.com/language/guide/EllipticIntegrals.html
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Ã− 1

100

101

102

103

F
(Ã
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Figure 5.1: Finite-source corrections for the amplifcation of a homogeneous disk 
source with angular radius σ̃ = r̃θ̃E by a point lens with Einstein radius θ̃E. Left: 
Amplifcation profle Ã as a function of the reduced impact parameter ũ = β/˜ θ̃E. The 
larger the source, the smoother the profle and the smaller the maximum amplifcation. 
Right: Correction factor to the diferential amplifcation cross section, F ≡ Ω̃ 

σ̃/Ω̃0, for 
the same values of r̃. 

For later convenience, we introduce the fnite-source factor F as the ratio between 
the fnite-source and point-source amplifcation cross sections, 

Ω̃ 
σ̃ (Ã) ∂β̃2 dÃ 

F (A,˜ r̃) ≡ = . (5.6)
Ω̃0(Ã) ∂Ã dβ̃0

2 

This way, fnite-source corrections are fully encapsulated in a single function, just 
like shear corrections were encapsulated in the function k in sec. 3.3. A signifcant 
diference, however, is that the function F has two variables while k had only one, 
which makes the analysis technically harder. The right panel of fg. 5.1 shows three 
examples of Ã �→ F (A,˜ r̃), for r̃ = 0.1, 1, 10. As expected, for low amplifcations 
F ≈ 1, which translates the fact that far from the lens, the fniteness of the source 
has essentially no efect. For larger amplifcations, the cross section is enhanced for 
Ã ≲ Ã max(r̃) and then suddenly drops to zero beyond. 

The amplifcation cross section in the original problem (non-twiddled world) is 
obtained from Ω̃(Ã) similarly to subsec. 3.3.2. The calculation uses that, in terms of 
the original quantities, r̃ = 

√ 
Amin σ/ϑE. The fnal result is 

A σ A2 
Ωσ(A) = 2πϑ2

E F , Amin 
min . (5.7)

Amin ϑE (A2 − Amin
2 )3/2 

5.3 Amplifcation probabilities with extended sources 
Just like in the point-lens case, the amplifcation PDF for one lens in a mesoscopic 
cone with half angle Θ reads ⎫1 

p1(A; σ) = dm dχ p(m, χ) Ωσ(A; m, χ) . (5.8)
πΘ2 
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Substituting eq. (5.7) and p(m, χ) = (3χ2/χ3
s ) p(m), we may again gather all the 

fnite-source corrections within a single function as 

2 ⟨ϑ2 A2 AE⟩ min p1(A; σ) = , σ, κos , (5.9)Θ2 (A2 − A2
min)3/2 F 

Amin 

with F ≡ ⟨ϑ2
EF ⟩ / ⟨ϑE

2 ⟩, that is, explicitly, 

⎞ χs dχ 1−κds χ(χs − χ) 
⎞ 

dm m F X, σ 1−κod a(χ)χχs 
0 a(χ) 1−κod ⟨m⟩ (1−κos)(1−κds) 4Gm(χs−χ)

F(X, σ, κos) = ,⎞ χs dχ 1−κds
0 a(χ) 1−κod 

χ(χs − χ) 
(5.10) 

where X = A/Amin. Equation (5.9) is formally quite similar to eq. (4.11), which 
was the case of point-like sources with external shear. However, here the correction 
factor F(X, σ, κos) has three variables, instead of one for the function K(x) of eq. (4.11). 

Figure 5.2 shows examples of the F function for two types of sources (SNe and 
QSOs)3 at zs = 1, in the case where all the compact objects have the same mass 
m; we have set all the convergences to zero for simplicity. As expected, F being a 
smoothed version of F , it preserves some of its features; in particular, the amplifcation 
probability is suppressed beyond a critical value of X = A/Amin. For a given source 
size σ, the lower the defectors’ mass m, the larger the values of r and hence the 
smaller the critical amplifcation; this is apparent in both panels of fg. 5.2, where 
the curves are displaced to the left as m decreases. For relatively large values of the 
defectors’ mass, F(X, σ) is almost self-similar. As expected, the lens mass required 
to allow large amplifcations to happen is much larger for QSOs than for SNe, because 
the latter is much closer to a point source than the former. 

Finally, the total amplifcation CDF, produced by an infnite population of lenses 
in the mesoscopic cone, is derived from eq. (5.9) following the exact same method as 
in sec. 4.2, i.e. in the framework of the strongest-perturbed lens approximation. The 
result is 

⎫ ∞−2τ dX 
P (A; σ, zs, α, κ̄ os) = 1 − exp (X2 − 1)3/2 F(X, σ, κos) , (5.11)1 − κos A/Amin 

with τ = α(∆os + κ̄ os), κos = (1 − α)κ̄ os − α∆os and Amin = (1 − κos)−2. Averaging over 
the mesoscopic cone is obtained by marginalising over κ̄ os, as discussed in sec. 4.3. 

Examples of P (A; zs, α, κ̄ os, σ) for various values of its parameters are depicted 
in fg. 5.3; we fxed κ̄ os = 0 for simplicity. Compared to the point-source case, the 
amplifcation probability is slightly enhanced near some critical value that depends on 

3The typical size of type-Ia SNe can be inferred from the typical expansion velocity of 20 000 km s−1 

of the luminous envelope about a month after explosion, which gives around 2 light-days, or 300 AU. 
The size of the inner region of QSO, which sufers the efect of microlensing, is also about 4 to 
8 light-days [117, 118]. 
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Figure 5.2: Examples of the extended-source correction factor F(X, σ, κos = 0) involved 
in eq. (5.9), for two diferent kind of sources at zs = 1, in the case where all the 
compact objects have the same mass m. Left: The sources are SNe, with physical 
radius 300 AU, i.e. σSN = O(10−13) rad at zs = 1. Right: The sources are QSOs, with 
physical radius 4 light days, i.e. σQSO = O(10−9) rad at zs = 1. 

the lens masses, source redshift and size, after what it gets quickly suppressed. As 
expected from our analysis of the function F , fnite-source efects are stronger as the 
source size increases and the mass of the compact objects decreases. 
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sources, as given by eq. (5.11), for a line of sight with κ̄ os = 0. Top left: Varying 
the mass m of the compact objects. Top right: Changing the source type, namely 
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[physical radius 4 light days i.e. σQSO = O(10−9) at zs = 1]. Bottom left: Varying the 
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CONCLUSION 

Extragalactic microlensing is a potentially powerful probe of the nature of dark matter 
(DM). In particular, a handful of past studies have used supernova microlensing to set 
constraints on the fraction of intergalactic DM that could be made of compact objects. 
Those analyses relied on a simple phenomenological modelling of the microlensing 
amplifcation statistics, which did not account for the coupling between the main 
defector responsible for the amplifcation and its environment – the other lenses and 
the large-scale cosmic structures. Such an approximation is expected to be valid in 
the limit of very low optical depths, and for lines of sight that are representative of 
the mean homogeneous and isotropic model. 

In this work, we started assessing the validity of the very-low-optical-depth as-
sumption, and found that for observationally interesting values of the microlensing 
amplifcation, relevant optical depths are low to mild (τ ≲ 0.1). This frst result, 
together with the known fact that environmental efects are generally non-negligible 
in strong lensing, suggests that environmental and line-of-sight corrections may be 
signifcant in extragalactic microlensing. Hence, they must be taken into account in 
order to accurately predict the probability of microlensing amplifcation by a cosmic 
population of compact objects. 

We have derived, from frst principles, an expression for the amplifcation prob-
ability that we expect to be valid up to mild optical depths. Our approach, which 
may be referred to as the “strongest perturbed lens model”, consistently accounts 
for: (i) the external convergences due to overdensities or underdensities in the smooth 
matter distribution along the line of sight; and (ii) the external shears produced by 
the large-scale structure and the lenses near the line of sight. This result and its 
derivation constitute the main focus of the article. The derivation was performed in 
the case of point-like sources of light, but we also explicitly derived the extended-source 
corrections for completeness. In numerical illustrations, the statistical distributions of 
the line-of-sight convergences and shears were extracted from ray tracing in N -body 
simulations, for which we found interesting ftting functions. 
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From this new model of microlensing amplifcation probabilities, two conclusions 
turn out to be particularly noteworthy. First, in observationally relevant situations, 
the efect of external shear (both due to the large-scale structure and to compact 
objects near the line of sight) is statistically negligible – corrections are at most on 
the order of a part in a thousand. Second, however, the predictions of our model 
are still quantitatively discrepant from the literature, with relative diferences larger 
than 100 % in some cases. Such diferences might be explained from our non-linear 
treatment of the external convergences and our careful embedding of microlenses 
within the cosmic large-scale structure. This result emphasises the crucial importance 
of an elaborate theoretical modelling of amplifcation statistics in order to extract 
accurate constraints on the fraction of compact objects in the universe. 

The next step of this work naturally consists in applying its result to, e.g., SN 
data similarly to what was done in refs. [66, 65, 68, 69, 119]. This will require an 
efcient numerical implementation of our model for the amplifcation probability, 
which can be technically challenging for extended-source corrections. Application to 
data requires to properly deal with their outliers, in order to distinguish between 
lensed and intrinsically anomalous SNe. 



Part II 

Gravitational wave propagation in a 
clumpy universe 



ABSTRACT 

Just like light, gravitational waves can also experience gravitational lensing in the 
presence of a gravitational feld. However, the wavelength of gravitational waves is 
larger than in the electromagnetic case and the geometric optics approximation may 
no longer hold. Difraction efects may arise and one has to use a full wave optics 
treatment. In the second part of this thesis, we investigate the scales in which these 
efects are important and detectable. An important conclusion is that these scales 
are normally very tiny implying that, in most of the cases, geometric optics is a 
valid approximation. However, interference efects may arise also in this regime. We 
thus propose a new terminology for that particular case. Finally we compute the 
expected rate of lensed events for three diferent scenarios: (i) a universe flled with 
compact objects in which microlensing efects are observable; (ii) a universe flled 
with dark matter halos in which the change of the waveform is due to strong lensing 
efects; (iii) the same dark matter halos flled with compact objects in which the strong 
lensing signal is observed with small microlensing contributions. An other important 
conclusion is that lensed events are expected to be observed in the current and near 
future observation runs. Just like light, lensing of gravitational wave is a potentially 
powerful probe to study and constrain the abundance of compact objects. 
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CHAPTER 

SEVEN 

INTRODUCTION 

This chapter highlights the major events in the history of lensing of gravitational 
waves1 and the previous works that have motivated the second part of this thesis. 

7.1 A gravitational and electromagnetic analogy 

As mentioned in Part I, the eighteenth century gave rise to an intense debate about the 
nature of light. The wave theory of Huygens was contradicted in 1861 by the Scottish 
mathematician James Clerk Maxwell, who proposed that light is an electromagnetic 
phenomenon that can propagate through vacuum without the need of a medium [4]. 
In 1865, he published the article A Dynamical Theory of the Electromagnetic Field 
and showed that electromagnetic felds can propagate through space as waves, moving 
at the speed of light [121]. His theory suggested that light is a form of oscillation 
within the same feld responsible for electric and magnetic phenomena. 

In 1893 the British mathematician and physicist Oliver Heaviside, who used 
Maxwell’s equations to made signifcant contributions to the development of electro-
magnetic theory and telegraphy, published his paper A Gravitational and Electro-
magnetic analogy where he used the electromagnetic theory to study gravity and the 
possibility of waves propagating through the gravitational feld [122]. In the frst part 
of the article, he uses the analogy between the inverse-square law of gravitation and 
the electrostatic force to defne a wave equation for gravity that could be form without 
the presence of matter. In the second part of the volume, he suggests that it is likely 
that the speed of propagation of gravity is equal to that of light. Although indirectly, 
Heaviside was the frst to propose a theory on the possible existence of gravitational 
waves. 

In July 1905, the French Academy of Sciences published a paper written by 
the French mathematician and theoretical physicist Henri Poincaré entitled Sur la 

1For a more detailed historical introduction of gravitational waves see ref. [120] 
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dynamique de l’électron. In this work he suggested that, just like accelerating electric 
charges produce electromagnetic waves, accelerating masses should produce waves of 
energy through gravitational felds. He was the frst to call them gravitational waves 
(onde gravifque) [123]. Using Lorentz transformations these proposed gravitational 
waves should propagate at the speed of light. 

7.2 Einstein’s approximations 

In 1915, Albert Einstein published his theory of general relativity [15] where he 
explains that gravity is geometrical by nature. He tried to emulate Heaviside and 
Poincaré’s idea of gravitational waves by fnding an analytical wave solution for grav-
ity similar to electromagnetic waves. Since an oscillating electric dipole generates 
electromagnetic waves, according to Poincare’s idea, a “gravitational dipole” should 
generate gravitational waves. However, in a gravitational feld there is no equivalent 
to a negative electric charge because there are no negative masses. Furthermore, due 
to momentum conservation, the rest of the universe should also oscillate. As a result, 
gravitational waves do not follow a dipole radiation pattern but a quadrupole. 

Einstein was therefore a bit skeptical about the idea of gravitational waves. In fact, 
on February 1916, he wrote a letter to the German physicist Karl Schwarzschild saying, 
in Einstein’s own words, “according to the fnal theory there are no gravitational waves 
analogous to light waves”.2 This reminds us of his famous quote in which he believed 
it was impossible to observe gravitational lenses. But this time we needed more years 
to prove that he was wrong again. 

After publishing his theory of general relativity, Einstein did not give up and tried 
to fnd a wave equation for gravity. However, Enstein’s feld equations can only be 
analytically solved in particular cases with specifc approximations and symmetry 
assumptions. He therefore used some approximations and manipulated his equations 
to make them look like the Maxwell’s equations that predict electromagnetic waves. 
Finally, under a coordinate system change, he found a wave solution and concluded 
that there are, in fact, three diferent types of gravitational waves. Einstein assumed 
gravitational waves that propagate in an empty and fat space. In 1922, the German 
mathematician and theoretical physicist Hermann Weyl named these solutions longi-
tudinal–longitudinal, transverse–longitudinal, and transverse–transverse gravitational 
waves [124]. 

That year, Arthur Eddington, at the pinnacle of fame due to the discovery of the 
frst experimental evidence of light defection thanks to the eclipse in 1919, published 
an article in which he criticizes Einstein’s wave solutions. In particular, he suggested 
that, in the frst two solutions, Einstein used a fat space and a coordinate system 
that oscillates. Consequently, he stated that they were not real gravitational waves. 

2https://einsteinpapers.press.princeton.edu/vol8-trans/224 

https://einsteinpapers.press.princeton.edu/vol8-trans/224
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However, he did not exclude the third solution and proved that it propagates at the 
speed of light regardless of the coordinate system. 

In 1936 Einstein was already a professor at Princeton. He submitted an article 
to Physical Review, together with his young assistant the American-Israeli physicist 
Nathan Rosen, in which they claimed that gravitational waves do not exist. The referee 
of the journal, Howard P. Robertson, reported that their conclusion was due only on 
the existence of cylindrical-coordinate singularities. The Einstein-Rosen manuscript 
had an important error. That same year, after other scientists confrmed the error, 
Einstein made fundamental changes in his article with Rosen and arrived to new 
conclusions. In the paper, renamed On gravitational waves, he obtained a solution 
for cylindrical gravitational waves and concluded that gravitational waves are just 
conventional cylindrical waves in Euclidean space [125]. Einstein eventually became 
convinced that gravitational waves actually existed, while Nathan Rosen remained 
convinced that they were simply a mathematical concept without any genuine physical 
signifcance. 

In order to settle this debate it was needed to observe the physical efects of 
gravitational waves in order to prove their existence. The frst one to propose this 
idea was the British theoretical physicist Felix Pirani. In 1956, he published the 
article On the physical signifcance of the Riemann tensor in which he performed a 
gedankenexperiment and studied the behaviour of free particles moved by waves and 
provided a physical interpretation for the Riemann tensor [126]. The relevance of 
his work lies on the fact of assessing the problem of coordinate system choice from a 
physical point of view. This was further explored in 1969 by the German-American 
physicist Peter Bergman, an important Einstein’s collaborator. In his article The 
Riddle of Gravitation he described how a set of particles would move in the presence 
of a gravitational wave [127]. When a gravitational wave passes over a set of particles, 
it causes them to experience a slight distortion in their positions, perpendicular to 
the gravitational wave direction. This distortion is known as the strain, and it is 
proportional to the amplitude of the gravitational wave. 

Bergmann’s work helped to establish the mathematical formalism for describing the 
strain induced by a gravitational wave. Later on it was showed that the strain could 
be decomposed into two polarizations, known as the “plus” and “cross” polarizations, 
which correspond to diferent directions of stretching and squeezing (fg. 7.1). 

7.3 The frst detector 

1957 was an important year in the history of gravity. In a meeting in Chapel Hill, 
North Carolina, the interest in searching for gravitational waves began. At that time, 
the community was focused on whether gravitational waves could transmit energy. 
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Figure 7.1: When a gravitational wave passes over a set of particles, it causes their 
directions to stretch (top) and squeeze (bottom). Credit to ref. [128]. 

At that meeting,3 the American theoretical physicist Richard Feynman proposed an 
experiment to solve the issue. This thought experiment, known today as the “sticky 
bead argument”, involves two beads initially at rest threaded on a horizontal wire that 
is free to move. If a gravitational wave passes transversely through the wire it would 
produce longitudinal compressive stress and the beads would eventually start to move 
and oscillate along the wire (fg. 7.2). If the contact between the bead and the wire 
is “sticky”, then they would heat up due to friction implying that the gravitational 
wave would have transmitted energy to the wire. As a result, gravitational waves 
can transmit energy. This argument was further developed by the Austrian-British 
mathematician and cosmologist Hermann Bondi who showed that General Relativity 
predicts the existence of gravitational radiation and can actually have physical efects. 
This claim led to a series of papers between 1959 to 1989 by Bondi and Pirani which 
concluded that gravitational waves are plane waves. 

The feat of gravitational wave detection had also its beginning at the meeting 
in Chapel Hill. The American engineer Joseph Weber, who was in the audience, 
was fascinated by the discussions about gravitational wave and decided to create a 
mechanism to detect gravitational waves. In 1966, he developed the frst resonant mass 
gravitational wave detector, which is now commonly known as the “Weber bar” [129]. 
This pioneering work in the feld of gravitational wave detection was essentially a large 
cylinder made of aluminum that was designed to vibrate at its resonant frequency in 
response to a passing gravitational wave. The cylinder was suspended by wires and 
kept in a vacuum to minimize any external disturbances (fg. 7.3). 

3The Chapel Hill conference is today known as GR1, the frst of a series of conferences held every 
three years and whose aim is to discuss the state of the art in the feld of General Relativity and 
gravitation. The last two editions were GR22, held in Valencia in 2019, and GR23, held in Beijing in 
2022. 
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Figure 7.2: Sketch of the “sticky bead argument”, originally proposed anonymously 
by Feynman. Credit to ref. [130]. 

Figure 7.3: Sketch of the cylinder detector. The piezoelectric crystals detect the 
vibrations induced by gravitational waves. Credit to ref. [131]. 

When the cylinder vibrated, it would generate a small electrical signal that could 
be measured and analyzed. In order to minimize the local noise he built two detectors 
and separated them by 950 km. One was placed at the University of Maryland and the 
other at the Argonne National Laboratory in Chicago. In 1969, Weber believed that 
his gravitational wave detector had detected gravitational waves from astrophysical 
sources from the center of our galaxy [132]. However, his results were controversial 
and not widely accepted by the scientifc community at the time, mainly because 
other groups built their own “Weber bars” and failed to fnd any detection. 
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7.4 The laser interferometers: LIGO and Virgo 

Gravitational waves are incredibly difcult to detect because gravity is much weaker 
than electromagnetism. Einstein himself thought that their efect would be practically 
negligible. Furthermore, by the 1970s many groups searched for detections using and 
improved Weber’s original design but with no success. Consequently, during that 
period, there was a prevailing sense of pessimism and disappointment among those who 
were actively searching for gravitational waves. However, in 1974 there was a glimmer 
of positivism. The American physicists Russell Alan Hulse and Joseph Hooton Taylor 
Jr. discovered the frst binary pulsar using the Arecibo radio telescope in Puerto 
Rico. The binary pulsar, also known as PSR B1913+16, consists of two neutron stars 
orbiting around each other in a tight binary system. The discovery was made by 
observing the regular pulses of radio waves emitted by one of the neutron stars, which 
was a known pulsar. The observations revealed that the pulsar’s pulses were arriving 
at Earth at slightly diferent times, depending on the position of the pulsar in its 
orbit. This indicated that the pulsar was in orbit around another massive object, 
which was later identifed as a second neutron star. The binary pulsar was particularly 
signifcant because it provided strong evidence for the existence of gravitational waves. 
The emission of gravitational waves causes the two neutron stars to gradually lose 
energy, causing them to spiral closer together at a rate that is consistent with the 
predictions of General Relativity (fg. 7.4). Hulse and Taylor were awarded the Nobel 
Prize in Physics in 1993 for their discovery of the binary pulsar and their subsequent 
measurements of its orbit. 

This indirect detection of gravitational waves was announced in 1979 [134] and 
motivated the community to keep searching for further detections. Some groups 
started to use interferometric methods in order to observe gravitational waves. The 
idea of using a laser interferometer was frst suggested in 1962 by the soviet physicists 
M. E. Gertsenshtein and V. I. Pustovoit [135] and frst implemented in the early 1970s 
by the American physicists Robert L. Forward, who was a former student of Weber, 
and Rainer Weiss. 

A laser interferometer is designed to detect small changes in the length of a pair 
of perpendicular arms. The basic principle is to use interferometry to measure the 
diference in length between the two perpendicular arms, which are typically on the 
order of several kilometers. The interferometer consists of a laser beam that is split 
into two beams, which are then sent down the arms. The beams are then refected 
back by a mirror towards the point of origin, where they are recombined. When the 
beams are recombined, they create a pattern of interference that is used to measure the 
diference in length between the two arms. If the two arms are exactly the same length, 
the interference pattern will be perfectly stable. However, if there is a diference in 
length between the two arms, the interference pattern will shift slightly (fg. 7.5). 

In order to detect gravitational waves, the interferometer must be extremely sen-
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Figure 7.4: Orbital decay of PSR B1913+16. Data points show the point of closest 
approach of the stars. The solid line show the prediction of General Relativity. Credit 
to [133]. 

sitive to changes in length. This requires using a long vacuum tube to isolate the 
mirrors and reduce any external noise or interference. The vacuum helps to prevent 
air molecules from interfering with the laser beam. The interferometer must also be 
carefully designed and constructed to minimize any sources of noise that could interfere 
with the measurement. For example, the mirrors must be carefully suspended so they 
can move under the gravitational wave and isolate them from external vibrations. 
In addition, the laser beam must be carefully controlled to ensure that it remains stable. 

When a gravitational wave passes through the interferometer, it exerts a tidal 
force which gives a movement to the mirrors and causes the lengths of the two arms to 
change slightly. This change in length causes a corresponding change in the interference 
pattern that is observed at the point of recombination. By carefully analyzing the 
interference pattern, one can detect and measure the strain of the gravitational wave. 
The signal produced by a gravitational wave is extremely small, typically less than 
one thousandth of the diameter of a proton. This requires using sophisticated data 
analysis techniques to separate the signal from the noise. 

In the following decades the community constructed more detectors using inter-
ferometric methods with increased sensitivity [136, 137]. In 1985, a German group 
from Garching proposed at the Marcel Grossmann Meeting in Rome the frst full-sized 
interferometer with a length of 3 km [138]. A year later, a Scotish group designed the 
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Figure 7.5: The light path through a basic interferometer. If there is a diference in 
length between the two arms due to, for example, the efect of a gravitational wave, a 
diferent interference pattern is observed at the detector. 

frst Long Baseline Gravitational Wave Observatory [139]. Later on, these two groups 
started a collaboration that culminated in the construction in 1995 of GEO600, an 
interferometer with arms of 600 m in length. 

On the other hand, the French wanted to start their own project of gravitational 
wave detectors. In 1983 they proposed the idea for the Virgo interferometer [140], 
named for the large cluster of galaxies. After some funding issues at the beginning, in 
1993 the project was approved with funding provided by the Italian National Institute 
for Nuclear Physics (INFN) and the French National Centre for Scientifc Research 
(CNRS). The interferometer was built near the town of Cascina, in the Tuscany region 
of Italy. The construction of Virgo was not without its challenges. The interferometer 
was originally designed to be 6-kilometer long, but difculties in acquiring land for 
the detector meant that the length had to be reduced to 3 kilometers. Additionally, 
there were technical challenges in building the detector itself, including the need 
to achieve ultra-high vacuum conditions inside the interferometer tubes in order to 
minimize interference from air molecules. Despite these challenges, Virgo was com-
pleted in 2003 and began its frst observational run in 2007. The detector underwent a 
major upgrade between 2011 and 2017, which improved its sensitivity by a factor of ten. 

On the other side of the Atlantic, in 1967 at the Massachusetts Institute of 
Technology (MIT) and soon after Gertsenshtein and Pustovoit suggested to use 
laser interferometry, Rainer Weiss implemented that idea and proposed the Laser 
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Interferometer Gravitational-Wave Observatory (LIGO) [141]. However, it took several 
decades for the technology and funding to become available to build such a detector. 
Construction of the frst LIGO detector began in 1994, with funding from the National 
Science Foundation (NSF) and other international partners. The detector was built in 
Livingston, Louisiana, and was based on a design called the Michelson interferometer, 
which splits a laser beam into two perpendicular beams and measures changes in 
the interference pattern when the beams are recombined. The construction of LIGO 
was a massive undertaking that involved many technical challenges. One of the 
most signifcant challenges was achieving ultra-high vacuum conditions inside the 
interferometer tubes, which were 4-kilometer long, in order to minimize interference 
from air molecules. Another challenge was the need to isolate the detector from sources 
of noise, such as seismic vibrations from nearby roads and railroads. Despite these 
challenges, the frst LIGO detector began operating in 2002, and its frst observational 
run began in 2005. The detector was upgraded between 2008 and 2010 to improve 
its sensitivity, and a second detector was built in Hanford, Washington, which began 
operating in 2015. 

7.5 GW150914: The frst detection 
Gravitational waves were not detected during the period when the frst LIGO was 
operational, from 2002 to 2010. However, on September 14, 2015, at 5:51 a.m. Eastern 
Daylight Time, both LIGO detectors observed a signal [74] with a time diference of 
7 milliseconds that lasted about a ffth of a second (fg. 7.64). The signal matched the 
predicted waveform of gravitational waves generated by the merger of two black holes 
of around 36 and 29 solar masses into a single, more massive black hole located 1.3 
billion light-years away (fg. 7.7). 

During the inspiral and merger of the binary system, an enormous amount of 
energy was released in the form of gravitational waves. The total energy emitted was 
equivalent to 3M⊙ c

2. At its peak, the power radiated as gravitational waves was 
greater than the combined power of all the light emitted by all stars in the observable 
universe. The probability of the signal being a random fuctuation in the detectors’ 
noise was calculated to be less than 6 · 10−7. The gravitational-wave event was named 
GW150914, from the date of observation. 

After the frst observation of gravitational waves, the LIGO/Virgo collaboration 
reported the detection of other binary black hole merger events. Nonetheless, on 
August 17, 2017, the LIGO and Virgo detectors observed a signal that was unique from 
previous detections because it was caused by the merger of two neutron stars [142]. 
The signal was also observed in the electromagnetic spectrum by several telescopes 
around the world, marking the frst time that a cosmic event was observed in both 
gravitational waves and light. Just like the frst detection, the event, which last 100 

4https://www.gravitational wave-openscience.org/events/gravitational 
wave150914/P150914 

https://www.gravitational wave-openscience.org/events/gravitational wave150914/##P150914
https://www.gravitational wave-openscience.org/events/gravitational wave150914/##P150914
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Figure 7.6: GW150914 observed by the LIGO Hanford (H1) and Livingston (L1) 
detectors. Top: Strain of the signal. For comparison, the H1 signal is shown in the L1 
signal shifted in time of arrival and inverted. Bottom: Time-frequency representation 
of the energy associated with GW150914. Credit to the Gravitational Wave Open 
Science Center. 

Figure 7.7: Reconstructed waveform of GW150914 by H1 (left) and L1 (right) compared 
to the predictions of General Relativity. Shaded areas show 90% credible regions. 
Credit to the Gravitational Wave Open Science Center. 
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seconds, was named GW170817 and occurred about 130 million light-years away in 
the galaxy NGC 4993. The merging of the two neutron stars generated a burst of 
gravitational waves and a kilonova. 

Figure 7.8: A time-frequency decomposition of the energy associated with GW170817. 
The Virgo detector did not capture any visible data of the event due to its relatively 
lower sensitivity compared to the other detectors. Credit to ref. [142] 

The detection of GW170817 (fg. 7.8) and the observation of its subsequent elec-
tromagnetic counterpart marked a major breakthrough in multi-messenger astronomy, 
which involves studying the universe using multiple forms of radiation, including grav-
itational waves, light, and cosmic rays. The gamma-ray burst detected by the Fermi 
and INTEGRAL spacecraft began only 1.7 seconds after the gravitational wave merger 
signal. As a result, GW170817 set a constraint on the propagation speed of gravita-
tional waves, |cGW/c − 1| ≲ 10−15, leading to a crucial evidence: gravitational waves 
propagate at the speed of light. This result corroborated therefore the predictions of 
Heaviside, Poincaré and Einstein, and confrmed the analogy between gravity and light. 
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7.6 Other gravitational wave observatories 

As of March 2023, there have been more than 20 detections and there are more than 90 
candidates. The observations are conducted in a series of “runs”, with three completed 
so far, during which the detectors undergo maintenance and upgrades. The frst run, 
referred to as O1, took place from September 12, 2015 to January 19, 2016, while O2 
took place from November 30, 2016 to August 25, 2017 [143]. O3 commenced on April 
1, 2019 and was divided into two parts: O3a, from April 1 to September 30, 2019, 
and O3b, from November 1, 2019 to March 27, 2020 [144, 145, 146]. The suspension 
of observation during October 2019 was for upgrades and repairs to the equipment, 
while cessation in March 2020 was due to the COVID-19 pandemic. The fourth run, 
O4, is planned to start in May 20235. O5 observing period is expected to last until 2028. 

Besides the LIGO and Virgo detectors, there is another large interferometer de-
signed to detect gravitational waves that will join the LIGO/Virgo collaboration in 
the next observation run (O4) and whose frst observation run ended on April 21, 
2020. The Kamioka Gravitational Wave Detector (KAGRA) [147] is a gravitational 
wave observatory located in Japan. It is designed to detect gravitational waves in the 
frequency range of 10 to 104 Hz. KAGRA uses a cryogenic system to cool its mirrors 
to near absolute zero, which reduces thermal noise and improves its sensitivity to 
gravitational waves. KAGRA is expected to become fully operational in the coming 
years. 

Furthermore, there are several proposed gravitational wave observatories, each 
with its own unique characteristics and capabilities. Together they aim to create a 
network of interferometers that would allow to observe gravitational waves regardless 
of the sky location. Here’s an overview of them. 

• IndIGO (LIGO-India): The IndIGO (Indian Initiative in Gravitational-wave 
Observations) is a collaborative project between several Indian research institu-
tions to build and operate gravitational wave observatories in India. Currently, 
there are two IndIGO observatories under construction, located in Hingoli and 
Hanle. The observatories are expected to be completed in the next few years 
and will join other gravitational wave observatories [148]. 

• Cosmic Explorer : Cosmic Explorer is planned to be an underground facility 
consisting of multiple interferometers whose arms would be 40 km long, several 
times longer than those of LIGO and Virgo. The longer arms would allow Cosmic 
Explorer to detect gravitational waves from much farther away and with greater 
sensitivity, potentially detecting hundreds or thousands of events per year. 

5https://www.ligo.caltech.edu/page/observing-plans 

https://www.ligo.caltech.edu/page/observing-plans
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• Einstein Telescope: The Einstein Telescope is a proposed gravitational wave 
observatory that will be built in Europe. It will consist of three nested detectors, 
each with arms 10-kilometer long, arranged in an equilateral triangle. The 
Einstein Telescope will be designed to detect gravitational waves in the frequency 
range of 0.1 to 104 Hz, which is a range that has not been extensively explored by 
other gravitational wave observatories. The detector will be built underground, 
to diminish seismic noise. The project is still in the planning stages and is 
expected to be completed in the late 2030s or early 2040s. 

• LISA: The Laser Interferometer Space Antenna (LISA) is a planned gravitational 
wave observatory that will consist of three spacecraft in a triangular formation, 
separated by millions of kilometers. LISA will detect gravitational waves in 
the low-frequency range of 0.1 mHz to 1 Hz, which is too low for ground-based 
observatories like LIGO and Virgo to detect. LISA is expected to be launched 
by the European Space Agency in 2037. On December 3, 2015 the European 
Space Agency (ESA) launched LISA Pathfnder, a spacecraft whose mission was 
to test the technologies needed for LISA. The mission demonstrated that the 
LISA operation is feasible. 

It is worth mentioning that there is a plan to improve the sensitivity of the existing 
LIGO detectors by a factor of two, and lower the low-frequency cutof to 10 Hz with 
a third-generation detector, named “LIGO Voyager”. Voyager, which would be an 
upgrade to A+, is planned to be operational around 2027–2028. 

7.7 Lensing of gravitational waves 
As mentioned in the previous section, there is a direct connection between gravity and 
light due to the similarities between gravitational and electromagnetic waves. As a 
result, just like light, gravitational waves can also be defected due to the gravitational 
feld of a mass, sufering therefore, gravitational lensing. This idea was frst proposed 
in 1971 by J.K. Lawrence [149]. He studied the gravitational radiation observed by 
Weber and concluded that it is focused by the galactic core acting as a gravitational 
lens. In 1974, Hans C. Ohanian [150] investigated the gain in intensity that can be 
achieved by the gravitational radiation by using a massive object as a lens. 

However, gravitational and electromagnetic waves present important diferences. 
While geometric optics is a valid approximation to treat the propagation of light [151, 
152, 88], it might not be the case for gravitational waves, since the wavelength is 
comparable to the size of the lens [153]. Consequently, a full wave optics analysis is 
needed [154, 155, 156, 157]. 

Just like electromagnetic waves, lensing can manifest itself in diferent regimes. 
When a gravitational wave passes by a lens with a smaller impact parameter than 
its Einstein radius, the lens can produce multiple images and strong lensing ef-
fects. If the detector is sensitive enough, the two images appear as two independent 
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gravitational wave sources with diferent amplitudes and arrival times. Some ap-
proaches [158, 159, 160] consider that this efect results in a magnifcation of the 
waveform leading to a change in the inferred luminosity distances. 

However, when the gravitational wave travels through a region of compact ob-
jects, microlensing efects may arise. References [156, 161] study the microlensing of 
stellar-mass objects. References [162, 163] investigate the efect of those microlenses 
embedded in galaxy or cluster and conclude that they would produce interference 
distortions in the observed strains and therefore microlensing would become increas-
ingly signifcant. Reference [164] mix strong and microlensing to enhance the inference 
of the microlensing efects. Some authors also study the microlensing efects from a 
phenomenological approach [165]. 

As it happens with light, if a signifcant fraction of dark matter is in the form of 
compact objects like primordial black holes, there can be microlensing efects in the 
gravitational wave signal [166, 167, 168, 169] and can be observable by LIGO and 
Virgo. Lensing of gravitational waves is therefore a good observable and a powerful 
method to constrain the abundance of compact objects. 

The motivation of the second part of this thesis is to explore this method further 
from the theoretical perspective. In particular, the aim is to study the gravitational 
lensing of gravitational waves through a region of compact objects and obtain an 
expected rate of observed lensed events. To do so, we study the scales in which wave 
optics efects are relevant and detectable and we model the lensing probability in 
diferent scenarios. The remainder of Part II is organised as follows. In chapter 8, we 
review the theory of lensing of gravitational waves and study its diferent regimes. In 
chapter 9 we explore the relevant scales for lensing detection. We use the results to 
model the probability of lensed signals in a more realistic universe with dark matter 
halos flled with compact objects in chapter 10 and compute the predictions in chapter 
11. We conclude in chapter 12. 



CHAPTER 

EIGHT 

SCALES OF LENSING OF GRAVITATIONAL WAVES 

In this chapter we review the theory of lensing of gravitational wave and study its 
diferent regimes. In particular, we use the wave optics approximation to derive the 
amplifcation factor from the difraction integral and apply the result to the particular 
case of a point lens and a singular isothermal sphere. Furthermore we explore the 
geometric optics limit of the lens and conclude with the diferent regimes in which 
lensing can manifest itself. 

Gravitational waves are solutions of the Einstein’s feld equations that are obtained 
using the “linearized gravity” approximation. Let us assume that the spacetime metric 
can be decomposed into 

gµν = ḡ µν + hµν , |hµν | ≪ 1 (8.1) 

where ḡ µν represents a general background metric and hµν the amplitude of the fuctua-
tions that constitute the gravitational wave. In the remainder of this part, a subscript 
with a comma denotes the coordinate partial derivative, semicolons refer to background 
covariant derivatives, ∇ ¯ 

µ, and □̄ ≡ ∇ ¯ µ∇ ¯ 
µ = ḡµν ∇ ¯ 

ν ∇ ¯ 
µ is the D’Alembert operator 

of the background metric. The linearized limit and the gauge invariances lead us 
to the propagation equation in vacuum (see sec. 5.4 in [170] for the complete derivation) 

□̄γµν + 2R ¯ 
αµβν γ

αβ = 0 (8.2) 
¯where Rαµβν is the Riemann curvature tensor of the background metric and 

γµν ≡ hµν − 2
1 
hḡ µν (8.3) 

with h ≡ hµµ = ḡµν hµν . 

In the framework of the eikonal approximation, the typical wavelength of the 
gravitational wave is much smaller than the curvature radius of the background and 
much smaller than the typical scale in which the amplitude evolves. In this regime, 
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the second term in eq. (8.2) vanishes and the propagation equation can be turned into 
a wave equation [171] 

□̄hµν = 2hρ(µ;ν) − hµν;ρ (8.4) 
where the brackets indicate the indices being symmetrized. Let us now introduce the 
wave-ansatz 

hµν = Hµν e iϕ + c.c. (8.5) 
where Hµν is the complex amplitude and polarization of the gravitational wave and ϕ 
its phase, which includes information about the spin and the masses of the source, 
and c.c. means complex conjugate. Inserting the wave-ansatz into 8.4 we obtain 

□̄hµν = (−kρkρHµν + iDHµν + □Hµν )e iϕ + c.c. (8.6) 

where kµ ≡ ϕiµ is the wave four-vector, and D is a diferential operator defned as 

D ≡ 2kµ∇ ¯ 
µ + k; 

µ
µ. (8.7) 

By taking the real part of eq. (8.6) we get the dispersion relation 

kµkµ = 0 (8.8) 

which shows, as mentioned in the introduction, that gravitational waves propagate at 
the speed of light. Finally, if we take the gradient of the dispersion relation we obtain 
the geodesic equation 

kµkν;µ = 0. (8.9) 
which implies that, just like light, gravitational waves propagate along null geodesics. 
This means that everything that we know about light can be applied to gravitational 
waves. As a result, gravitational waves can also experience gravitational lensing. 

Let us now compute the solution of hµν for a gravitational wave propagating in 
the z-direction, which takes the form, over a basis that is parallel transported along 
the geodesic    

0 
0 h+ h× 0 
0 0 0  (8.10)hµν = 0 h× h+ 0 
0 0 0 0 

where h+ and h× are the two transverse polarization modes known as the plus (+) 
and cross (×) tensor modes. These two tensors are parallel transported. Gravitational 
waves are therefore purely tensor polarized. The h+ polarization mode acts like a 
gravitational force in the x and y direction and h×, diagonally. The general wave is a 
linear combination of the two polarization modes. In the propagation basis they read 

h0(t)
h+(t) = (1 + cos2 ι) cos [ϕ(t) + ϕ0] (8.11)2 

h×(t) = h0(t) cos ι sin [ϕ(t) + ϕ0] (8.12) 
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where ι is the polar inclination angle, i.e., the angle between the axis of rotation of 
the binary and the line of sight, ϕ0 is the phase at the moment of emission of the 
gravitational wave and 

[2M5 
z ω0

2(t)]1/3 
h0(t) = (8.13)(1 + z)2DA 

is the time dependent amplitude of the gravitational wave. DA is the angular diameter 
distance in the background metric, ω0(t) is the observed cyclic frequency of the 
gravitational wave and Mz is the redshifted chirp mass of the binary system that 
produces the gravitational wave, defned at leading order for a quasi-circular inspiral, 
as 

(m1m2)3/5 
Mz = (1 + z) (8.14)(m1 + m2)1/5 

where m1 and m2 are the masses of the binary. 

8.1 Difraction integral and wave optics 
Now, let us consider the situation depicted in fg. 8.1. A source of gravitational waves 
at zs is observed through an inhomogeneous universe. As mentioned in Part I, Dos, Dod 
and Dds correspond to the angular diameter distance from the observer to the source, 
from the observer to the lens and from the lens to the source respectively. The line of 
sight is conventionally set as the direction in which the main lens is observed. With 
respect to that origin, we denote β the unlensed position of the source and θ the 
observed position of an image of the source. Since Dos, Dod and Dds are very large 

Figure 8.1: Schematic representation of the quantities involved in the time delay 

compared to the typical size of a lens, we can use the thin lens approximation in which 
lensing occurs in the plane of the main lens. In this regime the time delay between 
the lensed and unlensed path at a given θ is determined by: 

1 DodDos 
td(θ, β) ≈ |θ − β|2 + tΦ(θ) (8.15) 

c 2Dds 

The frst term of the equation is the geometric time delay, which is the diferent 
amount of time that light rays take to reach the observer from diferent path lengths, 
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and tΦ is the Shapiro time delay from traversing a lensed path s through diferent 
values of the gravitational potential of the lens [172] ⎫2 

tΦ ≈ − 3 Φ ds (8.16) 
c 

In the remainder it is useful to work in units of the redshifted Einstein radius of a 
lens of mass ML at redshift zL s 

4GML(1 + zL)Dds
θE ≡ (8.17) 

c2DosDod 

and time delays in units of the dilated Schwarzschild diameter crossing time 

tM = 4GML(1 + zL)/c3 . (8.18) 

With these units we can express the dimensionless position of the source and the 
image 

x ≡ 
θ 
, y ≡ 

β (8.19)
θE θE 

and the dimensionless time delay and frequency 

Td ≡ 
td 
, w ≡ tMω (8.20)

tM 

where ω = 2πf . We have oriented the source at α = 0 in the polar coordinates (x, α) 
of the transverse plane. 

Suppose that the wavelength of the gravitational wave λ is comparable to the 
path diference between the signals emitted at the same time. In that case, difraction 
efects become relevant and lensing has to be treated in the wave optics regime. In 
that case, there is only one image formed from the superposition of all paths. If we 
write the dimensionless frequency as a function of the Schwarzschild radius of the lens 
Rs [173] 

4πRs(1 + zL) 
w = (8.21)

λ 
we obtain a handy condition to use the wave optics approximation, 

w < 2π (8.22) 
i.e., if the wavelength of the gravitational wave is comparable to the Schwarzschild 
radius of the lens (λ > Rs), the wave optics treatment is necessary. 

Let us denote the amplitude of the unlensed gravitational wave [h0 in eq. (8.11) 
and eq. (8.12)] in frequency domain by h(f, β). Lensing efects in the waveform can 
be described in terms of the amplifcation factor F 

hL(f, β) = F (f, β)h(f, β) (8.23) 
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Figure 8.2: Amplitude of a lensed (blue) and unlensed (orange) waveform in frequency 
domain. We also show the amplitude of a gravitational wave that has been only 
amplifed. The gravitational wave is sourced by a non-rotating compact binary at 
zs = 1.0 and y = 0.5 (left) and y = 3 (right) with m1 = m2 = 30M⊙, q = m1/m2 = 1 
and the lens is a point mass of ML = 103M⊙ located at zL = 0.2. When we move far 
away from the lens (increasing y), the interference is very small and the lensed and 
unlensed signal are practically indistinguishable. 

where hL(f, β) is the observed lensed waveform and f , its frequency. This frequency-
dependent amplifcation of the waveform is the main diference with respect to 
electromagnetic waves (fg. 8.2). 

If the time delay is known, one can obtain the amplifcation factor in the thin lens 
approximation by solving the difraction integral [88] 

DodDos 1 f ⎫ 
2πif td(θ,β)F (f, β) = d2θ e (8.24)

Dds c i 
The observed waveform in time domain is therefore ⎫ 

−2πiftF (f, β)h(f, β)hL(t, β) = df e (8.25) 

Here, h(f, β) is the Fourier transform of the temporal profle of the unlensed waveform 
h(t, β). 

8.2 Point lens 
In this section we compute the time delay produced by a point lens and obtain the 
difraction integral. The point lens approximation is also valid for extended lenses 
whose size is much smaller than its Einstein radius. In the Born approximation the 
Shapiro time delay reads 

D2tM ds + b2 − Dds 
tΦ ≈ − ln (8.26)2 D2 

od + b2 + Dod 
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where b is the impact parameter, which corresponds at lowest order to the minimal 
distance between the gravitational wave and the mass of the lens in the trajectory. If 
θ ≪ 1, we can approximate b ≈ θDod. Assuming that Dds and Dod are on the same 
order of magnitude the Shapiro time delay can be approximated as 

tΦ ≈ −tM ln θ + const. (8.27) 

Including the geometric term, the dimensionless time delay becomes 

1 
Td = [(x cos α − y)2 + x 2 sin2 α] − ln x − ln θE (8.28)2 

where x ≡ |x| and y ≡ |y|. Inserting the above equation into eq. (8.24) we obtain the 
amplifcation factor for a point mass lens [174] 

⎫ ∞ ⎫ 2πw iwTd = ν1−ν 2ν ln θE Γ(ν)Lν (−νy2)F (w, y) = x dx dα e e (8.29)2πi 0 0 

where ν ≡ −iw/2 and Ln(z) is the Laguerre polynomial. 

8.3 Singular isothermal sphere 

The singular isothermal sphere (SIS) is the simplest and most used galaxy halo profle 
to ft to the lensing signal. The density profle is given by 

σ2 
ρ(r) = v (8.30)2πGr2 

whose surface density is characterized by their velocity dispersion σv. In that case the 
amplifcation factor (eq. (8.24)) can be expressed as [173] 

⎫ ∞w 1iwy2/2F (w, y) = e dx xJ0(wxy) exp iw 2 − ψ(x) + ϕm(y) (8.31)2x2πi 0 

where J0 is the Bessel function of zeroth order, ψ(x) = x is the lensing potential and 
ϕm(y) = y + 1/2 is the phase for the minimum time delay. Equation (8.31) is valid for 
any axially symmetric lensing object and in our case can be analytically solved [175] 

∞ Γ 1 + n ⎥ n/2 
F (w, y) = e 2 

i w(y2+2ϕm(y)) 2 
2we i 32 

π 

1F1 1 + 
n 
2 
, 1; −2 

i 
wy 2 (8.32) 

n=0 n! 

where we have Taylor-expanded the second term of the exponential into an infnite 
zsum and used that e 1F1(a, b; −z) = 1F1(a, b; z) [176]. 
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8.4 Geometric optics approximation 
Now suppose that the wavelength of the gravitational wave is much smaller than the 
Schwarzschild radius of the lens (λ ≪ Rs). In that case, we will see that lensing is 
strong enough to produce two distinct bright images, which can be viewed as the 
stationary phase points of the integral path according to Fermat’s principle. This is 
called the stationary phase approximation or, more popularly, the geometric optics 
approximation. In that case, one can resolve the distinct images due to the lack 
of difraction. In general, this approximation is valid when the time delay between 
stationary paths is much greater than the inverse frequency of the wave. 

In geometric optics we obtain the amplifcation factor by calculating the contri-
bution from the j-th image. We start by Taylor-expanding the time delay at the 
quadratic level1 

21 ⎥ 
td(θ) ≈ td(θj ) + δθaδθb∂a∂btd(θj ) (8.33)2 (a,b)=1 

where the j-image is located at θj and δθ = (θ − θj ). In the diagonalized basis the 
amplifcation factor reads ⎫⎥DodDos 1 f 2πiftd(θj )

2λ2j )
DodDos

F ≈ e dθ ̄ exp πif(θ ̄ 12λ1j + θ ̄2 (8.34)
Dds c i cDdsj ⎞ ∞ √

ix2 
πeiπ/4where λ1,2 are the two eigenvalues for each image. Using that −∞ dx e = 

we obtain the fnal expression for the amplifcation factor. 
⎥ 

F ≈ |µ(θj )| exp 2πiftd(θj ) − sign(f)nj π (8.35) 
j 2 

where µ(θj ) is the j-th image magnifcation and nj = [0, 1, 2] when θj is a minimum, 
saddle or maximum point of td respectively. For nj = k the light bundles cross k 
caustics and the images are said to be of type I, II and III respectively. 

A point mass lens forms two images whose magnifcation are 

1 y2 + 2 
µ± = √ (8.36)2 

± 
2y y2 + 4 

so the amplifcation factor reads 

iwtdF (w, y) = |µ+|1/2 − i|µ−|1/2 e (8.37) 

For a SIS, the number of images that the lens forms depend on the position of the 
source. If y < 1 the lens forms double images while only a single image is formed if 

1This is valid when we use the stationary phase approximation since |2πf∆td| ≫ 1, where ∆td is 
the time delay between stationary points, i.e., between the multiple images. 
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y ≥ 1. Taking the limit of w ≫ 1 the amplifcation factor in the geometric optics 
approximation is  

S S iwtd|µ+|1/2 − i|µ |1/2 e y < 1−
F (w, y) =  

+
S |1/2|µ y ≥ 1 

where µ± 
S = 1/y ± 1 are the partial amplifcations of the two images produced by a 

SIS. It behaves like a point mass lens for y < 1 in the geometric optics regime. 

In fg. 8.3 we show the modulus of the amplifcation factor of a point mass lens 
for diferent positions of the source together with the geometric optics limit. For 
small values of w, the wavelength of the gravitational wave is much larger that the 
Schwarzschild radius of the lens and therefore difraction efects are relevant. That is 
why the amplifcation is very small is that regime (|F | → 1). One can also argue that 
the lens is so small compared to the wavelength of the gravitational wave that lensing 
is practically negligible. On the other hand for large values of w the amplifcation 
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Figure 8.3: Amplifcation factor of a point mass lens for diferent values of the position 
of the source (solid line) and its geometric optics limit (dashed line). We can distinguish 
small amplifcations for w ≪ 1 and a oscillating behaviour for w > 1. One can also 
observe that for large values of the position of the source geometric optics is a good 
approximation regardless of the frequency of the waveform. 

factor converges to the geometric optics limit 

|F |2 = |µ+| + |µ−| + 2|µ+µ−|1/2 sin (wtd) (8.38) 

where |µ−| = 0 for y ≥ 1 in the SIS. The frst two terms defne the total amplifcation 
while the third term represents the interference that we see in fg. 8.3 between the 
multiple images. From eq. (8.36) we see that the amplifcation decreases when y 



87 8.5. STRONG LENSING, MICROLENSING AND INTERFERENCE 

−0.4 −0.2 0.0 0.2 0.4
∆t [s]

−3

−2

−1

0

1

2

3

S
tr

ai
n

[×
10

22
]

Unlensed Lensed

−0.4 −0.2 0.0 0.2 0.4
∆t [s]

−3

−2

−1

0

1

2

3

S
tr

ai
n

[×
10

22
]

Unlensed

Lensed

Figure 8.4: A gravitational wave from a pair of non-rotating merging black holes 
with masses ms = 30M⊙ and inclination ι = 0 is lensed by a compact object. We 
set t = 0 as the time of arrival of the gravitational wave. The minimum frequency 
is 20Hz. Left: The mass of the lens is ML = 104 M⊙ and the impact parameter 
b = 0.7 θE. In this case, the lens produces two distinct images. Right: The mass of the 
lens is ML = 102 M⊙ and the impact parameter b = 0.3 θE. In this case, we can not 
distinguish between the two images and therefore, microlensing efects are relevant 
and leave an interference imprint in the waveform. 

increases. That is why in fg. 8.3 the amplitude of the oscillation also decreases when 
increasing y. From the fgure we can also anticipate that there is a critical position of 
the source, yc from which geometric optics is a good approximation regardless of the 
frequency of the gravitational wave and the mass of the lens. 

8.5 Strong lensing, microlensing and interference 
As it happens with electromagnetic waves, when a gravitational wave passes by a 
lens with a smaller impact parameter than its Einstein radius, the lens can produce 
multiple images and strong lensing efects. If the detector is sensitive enough the two 
images appear as two independent gravitational wave sources with diferent amplitudes 
and arrival times (fg. 8.4). The waveform of the multiple images may have diferent 
phase shifts. In particular each additional caustic crossing would add a −π/2 shift 
[177]. 

Now let us imagine that a strongly lensed gravitational wave passes through a 
region of compact objects with masses of a few hundreds of solar masses. That is the 
case, for example, of a gravitational wave passing through a dark matter halo flled 
with primordial black holes (PBH). In that case, if the magnifcation due to strong 
lensing efects is large enough, then there is a non negligible change of microlens-
ing. Microlensing efects leave an interference imprint in the lensed waveform. This 
means that one has to use a full wave-optics treatment when dealing with microlensing. 
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However, there can be a third scenario. Equation (8.38) shows that the geometric 
optics approximation allows for interference efects. Why do not we have such a 
regime with light? The answer is coherence. When the fnite size of light sources 
and thin spectral extension is accounted for, the interference term is suppressed. 
However, the sources of gravitational waves are point-like and monochromatic in 
the spiral phase. As a result, applying this approximation and high frequencies in 
eq. (8.33) leave us with the extra term in eq. (8.38) of absolute coherence (interference). 

Although some authors call this regime millilensing, it is not very clear in the 
literature. In order to have a more intuitive and well established notation, we propose 
to call this regime, the absolutely coherent geometric optics. 
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CHAPTER 

NINE 

DETECTING LENSING OF GRAVITATIONAL WAVES 

In this section we explore the relevant scales for lensing and wave detection. In 
particular we investigate for which masses of the lens and impact parameters wave 
efects are relevant and detectable. 

9.1 Template-based searches 

We have seen in the previous section that lensing modifes the waveform of the unlensed 
signal through the frequency-dependent amplifcation factor. Is is therefore possible 
that we miss a signal in a gravitational wave observing run because its parameters 
are diferent from the ones we are looking for. To address this matter we set up an 
ensemble of templates in order to minimize the loss of a signal’s signal-to-noise ratio 
(SNR), which is the flter that we use to analyze the matching of a lensed signal in a 
template search. 

Let us suppose that our signal s(t) is composed by a gravitational wave with 
amplitude h(t) and a Gaussian noise n(t) 

s(t) = h(t) + n(t) (9.1) 

The SNR of that signal with respect to a template hT(t) is given by 

SNR = 
(s|hT) 
(hT|hT) 

(h|hT)≈ 
(hT|hT) 

(9.2) 

where we have assumed that the noise has a zero mean and we have defned the inner 
product of the data with the template as  ⎫ ∞ ã(f)b̃∗(f) (a|b) = 4Re df (9.3)

0 Sn(f) 
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where the functions are in Fourier space and Sn(f) is the one-sided power spectral 
density. The optimal SNR is obtained when the signal matches the template h ∝ hT, 
obtaining 

SNRopt = (h|h) (9.4) 
The SNR depends on the geometrical confguration of the binary, its luminosity dis-
tance and the redshifted chirp mass. It determines the detection threshold from which 
gravitational waves can be observed. We set this threshold for a single detector to be 
SNRth = 8, which corresponds to the most distant coalescences that we can detect. 
Only sources with SNR > SNRth will be detected. 

For the remainder it is useful to determine how much the signal deviates from the 
template. We quantify this discrepancy with the parameter ϵ defned as 

SNR 
ϵ = 1 − (9.5)SNRopt 

so ϵ → 0 when h → hT. 

In order to check the consistency of the lensed hypothesis on the signal template 
we use the ∆χ2 test, defned as 

∆χ2 = χ2 (9.6)lensed − χ2 
unlensed. 

We consider that the detection of a lensed event is signifcant if the signal is above a 
3σ interval from the unlensed model, which corresponds to ∆χ2 > 10. The conditions 
for lensing detection are therefore 

SNR > SNRth, ∆χ2 > X (9.7) 

with SNRth = 8 and X = 10. ∆χ2 can be obtained as a function of the SNR and ϵ 

∆χ2 = 2ϵ SNR2 (9.8) 

from which we obtain the minimum value of ϵ for lensing detection if SNR = SNRth, 
i.e., ϵth ≃ 0.08. 

9.2 Relevant scales for lensing detection 
Here, we investigate the combination of masses of the lens, ML, and impact parameters, 
b, for which a lensed signal is detected. For that purpose, we use a lensed gravita-
tional wave in the wave optics regime as our signal, h, and an unlensed waveform 
as our template, hT. In order to quantify the discrepancy between the signal and 
the template we show in fg. 9.1 a contour plot of ϵ as a function of the mass of the 
lens and the reduced impact parameter (u ≡ b/θE ≃ y), i.e., expressed in units of the 
lens’ cross-sectional radius. We draw explicitly ϵth (red contour line). For points that 
are within ϵth, lensing in the wave optics approximation is detectable. The source of 
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gravitational waves is a compact binary at zs = 1 with m1 = m2 = 30M⊙. In general, 
ϵ increases when decreasing y since the lensing signal is very strong for small impact 
parameters (F increases when y decreases). For ML ≲ 40M⊙ we do not detect any 
lensed signal independently of y, since ML is so small that the gravitational wave does 
not feel the presence of the lens. For ML ≳ 40M⊙, the detectability depends on the 
impact parameter. We call the reduced impact parameter in which ϵ = ϵth the critical 
reduced impact parameter, yc. For 40M⊙ ≲ ML ≲ 100M⊙ yc increases with ML. This 
is because y decreases with ML (the Einstein radius increases) and therefore, the ampli-
fcation factor increases (fg. 8.3). As a result, the SNR increases and the gravitational 
wave does not need to pass so close to the lens to be detectable. Finally for large 
masses of the lens (ML ≳ 200M⊙), a lensed signal is always observed as long as y ≲ 0.7. 

We observe that two islands appear in the contour plot of the detectability of 
lensing. We believe that their existence is due to the competition of the detectability 
of the gravitational wave, given by the SNR, and the lensing detectability, given by 
∆χ2. On the left island, which corresponds to small impact parameters and a big 
range of lens masses, the efect of lensing dominates. On the other hand, on the right 
island, which corresponds to larger impact parameters and lens masses, the signal of 
the gravitational wave dominates and it partially compensates the small lensing efect 
produced for being further away from the lens. 

9.3 Relevant scales for wave optics detection 

In sec. 8.4 we anticipated that there exist critical impact parameters in which geometric 
optics is a good approximation to solve for the trajectory and the arrival time of 
distinct gravitational wave images. Here, we explore those scales by considering a 
gravitational wave signal in the wave optics regime and the amplitude of a gravitational 
wave in the geometric optics approximation as a template. In fg. 9.2 we show again a 
contour plot of ϵ as a function of the reduced impact parameter and the mass of the 
lens. We defne ϵWO = 10% as the scale from which wave optics efects are relevant (red 
contour line). We call yWO its reduced impact parameter. From ML ≳ 30M⊙, ϵ < ϵWO 
and the Schwarzschild radius of the lens is much bigger that the wavelength of the 
gravitational wave. The signal matches the template and therefore the geometric optics 
approximation is valid independently of y. On the other hand, for ML ≲ 30M⊙, the 
wavelength of the gravitational wave is comparable to the Schwarzschild radius of the 
lens and difraction efects become relevant. However, one can still use the geometric 
optics approximation in this regime if lensing occurs far enough from the lens (fg. 8.3). 
In particular, for y > yWO ∼ 0.7 the approximation is still valid regardless of the mass 
of the lens. For 1M⊙ ≲ ML ≲ 30M⊙, yWO decreases when ML increases. One of the 
main conclusions of this section is that a gravitational wave needs to pass by a lens 
with a smaller impact parameter than its Einstein radius in order to detect wave efects. 

We summarize the results of the previous two sections in a more general way in 
fg. 9.3, where we show the reduced impact parameter of the lens as a function of 
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Figure 9.1: Detectability of lensing ϵ as a function of the lens mass ML and the reduced 
impact parameter y. A gravitational wave sourced by a non-rotating compact binary 
at zs = 1.0 with m1 = m2 = 30M⊙ and q = m1/m2 = 1 is lensed by a point mass 
lens at zL = 0.2 and mass ML. The polar and azimuthal angles of the source in the 
detector frame are θ = 0.3 and ϕ = 0.4 respectively. The orientation angle, i.e., the 
orientation of the angular momentum projected onto sky coordinates, is ψ = 1.5. The 
observed polar inclination angle is ι = 0. The higher modes are also considered. We 
have described the signal in the wave optics regime and an unlensed template and 
have obtained ϵ as a function of ML and y. 

the ratio λ/Rs. There is wide range (1 ≤ λ/Rs ≤ 250) in which geometric optics 
is a valid approximation even if the wavelength of the gravitational wave is larger 
than the Schwarzschild radius of the lens. This is due to the fact that the relative 
diference between both approximations does not reach the 10% that we have imposed 
to consider that wave efects are relevant. 

For λ/Rs ≳ 350 or y > yc we do not detect any gravitational wave lensed signal. For 
λ/Rs ≲ 250 geometric optics (GO) is a good approximation to obtain the amplifcation 
factor and the signal is detectable. For 250 ≲ λ/Rs ≲ 350 and y < yWO we detect 
a signal that has to be treated in the wave optics (WO) regime. If y > yWO, the 
geometric optics approximation is valid again. The scale interval in which difraction 
efects are relevant and detectable is very small and may vary. The main conclusion of 
this section is that one can, in practise, always use the geometric optics regime since 
difraction efects are very unlikely to be observed. 
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Figure 9.2: Relevance of wave-optics efects in lensing as a function of the lens mass 
ML and the reduced impact parameter y. The gravitational wave source is the same as 
in fg. 9.1. We have described the signal in the geometric optics regime and a template 
in the wave optics approximation and have obtained ϵ as a function of ML and y. 

Figure 9.3: Relevant scales for lensing detection in the wave (WO) and geometric 
optics (GO) regime. We show in green the regions in which lensing is observed. On 
the other hand, lensing is not detectable in the red areas. 



CHAPTER 

TEN 

THE PROBABILITY OF LENSING OF GRAVITATIONAL 
WAVES 

In this section we compute the rate of lensed signals for three diferent scenarios: 
(a) A universe flled with compact objects, like PBHs, where microlensing efects are 
observed, (b) dark matter halos, in which the change of the waveform is due to strong 
lensing efects and (c) a universe with dark matter halos flled with compact objects, 
in which combined microlensing and strong lensing efects are observed. 

Independently of lensing, for compact binary sources, the number of gravitational 
wave detections is ⎫ R0 dVc

NGW = dxs p(θs) pdet(w) (10.1)1 + zs dzs 

where w = SNRth/SNR(θs) and θs = (m1,m2, zs) describes the set of parameters 
of the source that vary, R0 represents the local merger rate density, which depends 
on the source population, dVc/dzs is the diferential comoving volume and p(θs) is 
the intrinsic, astrophysical distribution of source parameters. We follow the redshift 
distribution of sources from [178] whose expression is given by 

(1 + zs)α 
p(zs) = α+β (10.2)

1 + (1+zs) 
1+zp 

with α = 1.9, β = 3.4 and zp = 2.4 and depicted in fg. 10.1. We assume that m1 
follows a power-law distribution, p(m1) ∝ m1 

−0.4 and m2 is uniformly distributed in 
mmin < m2 < m1 < mmax with mmin = 5M⊙ and mmax = 50M⊙. pdet(w) determines 
the probability of detecting a gravitational wave signal that is above a given signal-to-
noise (SNR) threshold, which we set for an Advanced LIGO detector to be SNRth = 8. 
Therefore, pdet(w > 1) = 0. We consider aLIGO at upgraded sensitivity (A+) [179]. 
This function also includes the efect of random orientations, inclinations and sky 
positions of the source in the SNR (see sec. 4.2 in [180]). We use an IMRPhenomD [181] 
waveform of a binary black hole merger generated by PYCBC1. For the lensing model 

1https://github.com/gwastro/pycbc/tree/v1.14.4 
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we use the strongest-lens prescription described in Part I in which lensing is clearly 
dominated by the strongest lens, the one which is closest to the line of sight. 
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Figure 10.1: Redshift distribution of sources. 

10.1 Microlensing 

We now consider a region with density ρ(x) flled with an spatially homogeneous 
and isotropic monochromatic distribution of compact objects with mean density 
ρL(x) = αρ(x), which can be treated as point lenses. The situation is depicted 
in fg. 10.2. The probability of a given source being lensed is determined by the 
microlensing optical depth. For a given lens model, it depends on the properties of 
the source, θs, the cross section σ and the number density of lenses nL = ρL/ML. ⎫1 

τL(zs) = dVc nL(θL)σ(θs, θL) (10.3)Ω 

where Ω = 4π for the full sky and θL = (ML, zL, b) is the set of lens parameters. We 
have defned the detectability efective cross section as 

σ(θs, θL) = πu2
c θE

2 (zs, zL) (10.4) 

Figure 10.2: A lensed signal is observed through a universe flled with a fraction α of 
the matter density made of compact objects. 
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where we recall that uc ≃ yc is the detectability threshold. We have redefned the 
cross section because we are interested in the probability of detecting lensing, not just 
the probability of a gravitational wave being lensed. Equation (10.3) reads 

2πα G Ω0,M ρcrit
τL(zs) = 3 c2 uc

2 Dos(zs) (10.5) 

where Ω0,M and ρcrit are the matter density today and the critical density respectively. 

The observed waveform due to microlensing is given by eq. (8.23). In fg. 10.3 we 
show the optical depth for 3 diferent values of the critical reduced impact parameter. 
Increasing uc increases the efective cross section and hence increases the microlens-
ing optical depth. Including the optical depth in eq. (10.1) the rate of observed 
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Figure 10.3: Optical depth as a function of the redshift of the source for 3 diferent 
values of the critical reduced impact parameter of the lens. 

gravitational wave signals reads ⎫ ⎫ R0 dVc
Nmicro = dθs dθL τL(zs) p(θs) pdet,micro(w, v) (10.6) 1 + zs dzs 

where pdet,micro(w, v), with v = X/∆χ2 and X = 10, determines the probability of 
detecting a lensed gravitational wave signal. Therefore, pdet,micro(w, v > 1) = 0. 

10.2 Strong lensing 
In the next scenario we consider a universe flled with an homogeneous distribution of 
dark matter halos, which we defne as the region where the density is 200 times the 
critical density of the universe, ρ200. The number density of dark matter halos, which 
we model using a Press–Schechter function, is nhalo = ρhalo/Mhalo, with ρhalo = ρ200. 
In this regime, we observe multiple images and need to account for the efect of 
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lensing magnifcation. We assume that strong lensing is identifed by type II waveform 
distortions. This scenario is schematically represented in fg. 10.4. We choose the 
singular isothermal sphere (SIS) as our fducial lens model whose lensing cross-section 
is determined by their velocity dispersion σV, a proxy for the lens mass. Although 
the SIS is not a good model of dark matter halos but of the mass distribution of 
elliptical galaxies near their Einstein radius, it has the clear advantage of simplicity. 
We nonetheless think that this model is a good frst approximation. The Einstein 
radius of a SIS is 

σV 2 DLS
θE,halo = 4π . (10.7) 

c DS 

The probability of a gravitational wave being strongly lensed is determined by the 
lensing optical depth of the lens model ⎫1 

τhalo(zs) = dVc nhalo(θL)σhalo(θs, θL) (10.8) Ω 

with σhalo = πθE
2 
,halo. In fg. 10.5 we show the optical depth for diferent halo masses. 

Increasing the halo mass, increases its velocity dispersion and hence increases the 
lensing cross-section. Dark matter halos induce strong gravitational lensing efects 

Figure 10.4: A lensed signal is observed through a universe flled with a dark matter 
halos. We assume a SIS profle to model the halos 

so we use a waveform in the geometric optics regime without interference efects, i.e., 
hL ∼

√ 
µ h. Including the magnifcation distribution and the lensing optical depth 

into the integration in eq. (10.1) we obtain the rate of strong lensing signals. ⎫ ⎫ R0 dVc
Nstrong = dθs dµ τhalo(zs) p(θs) p(µ) pdet(w̃) (10.9)1 + zs dzs 

with w̃ = ρth/ √ 
µρ(xs). 

10.3 Strong lensing with microlensing corrections 
Finally we consider a homogeneous distribution of dark matter halos with radius R 
flled with a monochromatic distribution of compact objects, such as the situation 
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Figure 10.5: Optical depth as a function of source redshift for 3 diferent intervals of 
halo masses. 

depicted in fg. 10.6. Again, we assume a SIS profle for the dark matter halos. 
The signal is due to strong lensing efects produced by the dark matter halos with 
microlensing contributions of the small lenses inside. In this case, the amplifed signal 
produced by the halos allows us to observe the small contributions of the small lenses. 
For simplicity, we combine the microlensing efect of the small lenses and the strong 
lensing efect produced by the dark matter halos in a multiplicative way. 

hL(xs, xL, f, µ) = F̃ (f, µ) h(xs, xL, f) (10.10) 

with √ 
F̃ (f, µ) = µ F (f) (10.11) 

where √ 
µ is the strong lensing amplifcation and F (f), the microlensing amplifcation 

factor. This combination neglects the efect of shear, which has a direct correlation 
with µ and would therefore change eq. (10.11). However, there are reasons to neglect 
this efect because, as seen in Part I, the efect of shear is negligible in the statistics of 
extragalactic microlensing of light. As a result, we believe that these are all good frst 
approximations. Furthermore, we also consider that the halos only contain compact 
objects whose density is given by eq. (8.30). 

We model the combination of the microlensing and strong lensing efects similarly 
to the microlensing model only but with an extra parameter, the strong lensing 
magnifcation. In particular, the number density of compact objects and the cross 
section depend on that parameter. The diferential optical depth in this scenario is 
therefore ⎫1dτL(zs, zL, µ) = dVc dnL(θL, µ)σ(θs, θL, µ) (10.12)Ω 
which represents the fraction of the sky magnifed between µ and µ + dµ where the 
efect of microlensing is detectable. The cross section in this scenario is the detectabil-
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Figure 10.6: A lensed signal is observed through a universe flled with dark matter 
halos that contain only compact objects. 

ity efective cross section of the microlensing-only case amplifed by µ. 
√ 

σ(θs, θL, µ) = µπu2
c θE

2 (zs, zL) (10.13) 
The number density of compact objects is given by nL(µ, θL) = ρ(µ)/ML where we 
have replaced ρ(r) by ρ(µ) because there is a direct correlation between the strong 
lensing amplifcation and the distance to the center of the halo. In particular, the 
closer to the center the lens is, the higher the amplifcation. The optical depth is 
fnally obtained by marginalizing over the amplifcation. ⎫ dτL(zs, zL, µ)

τL(zs, zL) = dµ p(µ) (10.14)dµ 
In fg. 10.7 we show the optical depth as a function of the redshift for diferent 

values of the critical impact parameter. As expected, due to the contribution of the 
dark matter halos, the optical depth is larger than the microlensing optical depth. As 
a result, we anticipate that the rate of lensed events is also higher. 

Including the diferential lensing optical depth into eq. (10.1), we obtain the rate of 
strongly lensed signals due to the dark matter halos with the microlensing corrections 
due to the population of compact objects that are contained in them. ⎫ ⎫ dτL(zs, zL, µ) R0 dVc

Nstrong+micro = dθs dµ p(θs) pdet,micro(w̃, v) (10.15)dµ 1 + zs dzs 

Note that we have included the diferential optical depth because pdet,micro depends in 
this case on the strong lensing amplifcation. 
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Figure 10.7: Optical depth as a function of source redshift for 3 diferent values of uc. 
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ELEVEN 

FORECASTS 

In this chapter we compute the predictions for the rate of lensed gravitational wave 
signals for the diferent scenarios described above. We fx the local merger rate density 
to R0 = 30 yr−1 Gpc−3 . By solving eq. (10.1) we obtain the expected observed source 
merger events per year for diferent sensitivities. 

O3 (yr−1) O4 (yr−1) O5 (yr−1) VOY (yr−1) ET(yr−1) 
64.2 193.4 1244.9 12091.5 43258.3 

Table 11.1: Merger rate for the 3 observation runs of LIGO (O3, O4, O5), LIGO 
Voyager (VOY), and the Einstein Telescope (ET). 

In fg. 11.3 we show the results for a universe flled with compact objects whose 
energy density constitutes a fraction α of the matter content. As expected, the lensing 
probability increases with α because the optical depth increases with that parameter. 
The more lenses in the line of sight, the more lensed events we observe. For a fxed α 
the rate reaches a maximum at ML ≃ 300M⊙. From this mass a lensed signal can be 
detected at higher uc (second island of fg. 9.1). In addition we also show in the fgure 
the evolution of the rate of microlensed events with redshift for diferent sensitivities 
and compare it with the merger rate. As expected the rate increases with the sensitivity 
and reaches a maximum at diferent redshifts, from which it starts decreasing due to 
the redshift distribution (fg. 10.1). The rate is not afected by the presence of higher 
modes in the gravitational wave. In table 11.2 we show the expected observed lensed 
events after integrating for all redshifts. The main conclusion is that this method 
could help to constrain the abundance of compact objects with the detection of lensed 
events. While the chance of observing such signals is small for O3 we do expect to 
detect them in the next observation runs, even for a low fraction of compact objects. 
Obviously the expected rate will increase with the subsequent upgrades of the detectors. 

The evolution of observed strongly lensed events with redshift is shown in fg. 11.2. 
We have not consider lens masses above log(Mhalo/M⊙) = 12, which is the typical 
mass of a galaxy. The reason is that larger masses produce time delays greater than a 
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Figure 11.1: Left: Expected fraction of microlensed gravitational wave signals for 
O3: dependence in the fraction α of compact objects. Right: Evolution of observed 
microlensed with redshift for diferent sensitivities, LIGO (O3, O4, O5), Voyager 
(VOY) and the Einstein Telescope (ET) and its comparison with the unlensed rate. 
As expected the rate of lensed events is lower than the merger rate. 

α O3 (yr−1) O4 (yr−1) O5 (yr−1) VOY (yr−1) ET(yr−1) 
0.10 0.2 (0.32%) 0.9 (0.47%) 13.6 (1.09%) 239.8 (1.98%) 999.4 (2.31%) 
0.35 0.5 (0.78%) 2.7 (1.40%) 41.3 (3.32%) 756.5 (6.26%) 3285.1 (7.59%) 
0.83 0.8 (1.25%) 4.5 (2.33%) 71.3 (5.73%) 1405.6 (11.63%) 6648.4 (15.37%) 

Table 11.2: Microlensed rate for the 3 observation runs of LIGO (O3, O4, O5), Voyager 
(VOY) and the Einstein Telescope (ET) for diferent values of the fraction of compact 
objects, α with the percentage of the merger rate in brackets. 

O3 (yr−1) O4 (yr−1) O5 (yr−1) VOY (yr−1) ET(yr−1) 
0.01 (0.02%) 0.1 (0.05%) 3.1 (0.24%) 127.3 (1.05%) 978.4 (2.26%) 

Table 11.3: Strongly lensed rate for the 3 observation runs of LIGO (O3, O4, O5), 
Voyager (VOY) and the Einstein Telescope (ET) with the percentage of the merger 
rate in brackets. In this case 6 ≤ log(Mhalo/M⊙) ≤ 12 

year (fg. 11.2), which is the observation time of the detector. 

Just like the case of a universe flled with compact objects, we integrate for all the 
redshifts of the source and obtain the total number of strongly lensed events. The 
chances of observing multiple images in the waveform are low for the next observation 
run. However, this situation will change in the following observation runs of LIGO 
where we aim to observe around the 1% of the merger rate strongly lensed. 

Finally, we consider the last scenario in which the compact objects are enclosed in 
dark matter halos. In this case, the lenses produce strong and microlensing efects 
combined. As we anticipated, the probability of detecting microlensing contributions 
in the strong lensing signal is larger than the probability of detecting only microlensing. 
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Figure 11.2: Left: Time delay between images as a function of the halo mass and for 
diferent values of the position of the source. Since we are only interested in the events 
that take place within the observation time of the detector we exclude the halo masses 
that produce time delays greater than a year. Right: Evolution of observed strongly 
lensed events with redshift for diferent sensitivities, LIGO (O3, O4, O5), Voyager 
(VOY) and the Einstein Telescope (ET) and its comparison with the merger rate. 

O3 (yr−1) O4 (yr−1) O5 (yr−1) VOY (yr−1) ET(yr−1) 
0.8 (1.25%) 4.3 (2.22%) 65.9 (5.29%) 1207.2 (9.98%) 5194.3 (12.01%) 

Table 11.4: Expected rate of strong lensing detections with microlensing contributions 
for the 3 observation runs of LIGO (O3, O4, O5), LIGO Voyager (VOY), and the 
Einstein Telescope (ET) with the percentage of the merger rate in brackets. 

As explained in the previous section, the magnifed signal produced by the dark matter 
halos allows to observe the small contribution of the compact objects inside the halo, 
which would not be possible if they were isolated producing only microlensing efects 
in the waveform. However, this is only true up to a fraction of the total matter that 
consists of compact objects. From α ≳ 0.50 the universe is sufciently populated by 
compact objects that the rate of microlensing events becomes higher than the rate of 
strong lensing and microlensing combined. 

The conclusion of this section is that ground-based detectors are likely capable 
of detecting lensing events of gravitational waves. Furthermore, the upcoming third-
generation detectors, such as the Einstein Telescope, which will reach sensitivities of 
104Hz and will be able to detect the merger of low-massive black holes, will make 
these observations a certainty and will open up new possibilities for gravitational wave 
astronomy. 
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Figure 11.3: Evolution of observed lensed events with redshift for diferent sensitivi-
ties, LIGO (O3, O4, O5), Voyager (VOY) and the Einstein Telescope (ET) and its 
comparison with the merger rate. 



CHAPTER 

TWELVE 

CONCLUSION 

The observations of gravitational waves show that they are compatible with the 
predictions of general relativity. In this theory, gravitational waves, in the eikonal 
approximation, follow null geodesics, just like light. As a result, gravitational waves 
experience the same lensing efects as light. 

However, as opposed to light, the wavelength of gravitational waves can be com-
parable to the size of the lens. Consequently, interference efects may arise and 
the geometric optics regime, which is used in electromagnetic waves, is not a good 
approximation in some cases. In this work, we have summarized aspects of the 
theory of lensing of gravitational waves and have explored the cases in which the 
wave optics approximation is needed. We fnd that for small impact parameters, i.e., 
if the gravitational wave passes near the lens, wave efects are relevant except for 
high frequencies. On the other hand, geometric optics is a good approximation for 
larger values of the impact parameter regardless of the frequency of the waveform. 
We also fnd that, even if the wavelength of the gravitational wave is comparable 
to the size of the lens and the geometric optics approximation holds, it can also 
present an interference pattern (absolute coherence). This regime is not present in 
light due to the thin spectral extension. In order to unify and have a more intuitive 
nomenclature, we propose to name this regime, the absolutely coherent geometric optics. 

Furthermore, we have explored the scales in which these regimes are detectable. 
We have studied the dependency on the mass of the lens and the impact param-
eter and have found that the scales in which wave optics efects are relevant and 
detectable are very tiny, just for low-mass lenses and impact parameters. This implies 
that, in most of the cases, geometric optics is a valid approximation. We have also 
showed that there exist a critical impact parameter from which lensing is not detectable. 

We have used those results to compute the optical depth and the rate of lensed 
signals for three scenarios: a universe flled with compact objects only, dark matter 
halos and the same halos flled with compact objects, similar to what we have done 
in Part I. We have redefned the cross section in order to obtain the probability of 
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detecting lensing, not only the probability of having lensing. 

Finally we have made a forecast of the rate of microlensed events as a function of 
the fraction of compact objects, α, for diferent detectors and show that it peaks at 
lens masses of 100M⊙. We have predicted that in the next observation run we should 
see those events regardless of α. The predicted strongly lensed rate is very low for 
current observation runs but we expect to see those events in O5 and maybe in O4. 
We have not considered larger halo masses than 1012M⊙ because they produce time 
delays bigger than a year, which is the observation time. Current detectors are also 
able to detect lensing caused by compact objects enclosed in the dark matter halos. 
In addition, more detections are expected with the upcoming ground detectors like 
the Einstein Telescope. Just like light, lensing of gravitational waves demonstrates to 
be a potentially powerful probe to constrain the abundance of compact objects. 



EPILOGUE 

In this thesis, we have studied the gravitational lensing efect of light and gravitational 
waves in a clumpy universe. In Part I, we have showed that extragalactic microlensing 
is a powerful tool to study the clumpiness of dark matter and have derived, from 
frst principles, a theoretical model for the amplifcation probability. The next step of 
this work consists in applying its results to real data, which will require an efcient 
numerical implementation of our model for the amplifcation probability. In Part II, 
we have explored the scales in which wave efects are detectable. Furthermore we have 
studied the diferent regimes in which the lensing of gravitational waves manifests 
itself and have proposed a new nomenclature for the interference efects that appear 
in the geometric optics approximation. Finally, we have computed the expected rate 
of lensed events in current and future detectors. The next step of this work is to use 
more realistic models. These include, other fducial lens model, such as the Einasto 
and Navarro–Frenk–White profles, a diferent coupling between strong lensing and 
microlensing that accounts for the efects of shear and caustic crossing events and 
diferent source distributions. 

Just like the last century was the quantum revolution, this century is certainly 
the century of gravity. We live in an era in which theory and data are practically 
simultaneously performed. As mentioned in the preface, the study of the nature of 
dark matter is the core of modern cosmology and the theoretical understanding of 
the clumpy structure of the matter distribution in our universe is therefore crucial for 
physics. This thesis has done its bit to move in that direction. However, the best is 
yet to come. Future observational data will bring the next revolution in physics: the 
confrmation that our universe is, in fact, clumpy. 
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EPÍLOGO 

En esta tesis hemos estudiado el efecto de lente gravitacional de la luz y las ondas 
gravitacionales en un universo grumoso. En la Parte I, hemos demostrado que el 
efecto de microlensing extragaláctico es una herramienta poderosa para estudiar la 
naturaleza de la materia oscura y hemos derivado, a partir de principios básicos, un 
modelo teórico para la probabilidad de amplifcación. El siguiente paso de este trabajo 
consiste en aplicar sus resultados a datos reales, lo que requerirá una implementación 
numérica efciente de nuestro modelo para la probabilidad de amplifcación. En la 
Parte II, hemos explorado las escalas en las que los efectos de onda son detectables. 
Además, hemos estudiado los diferentes reǵımenes en los que el efecto de lente gravita-
cional se manifesta y hemos propuesto una nueva nomenclatura para los efectos de 
interferencia que aparecen en la aproximación de la óptica geométrica. Finalmente, 
hemos calculado la tasa esperada de eventos de ondas gravitacionales que han sido 
desviadas de su trayectoria debido a lentes gravitacionales en los detectores actuales y 
futuros. El siguiente paso de este trabajo consiste en utilizar modelos más realistas. 
Estos incluyen, otro modelo de lensing, como los perfles de Einasto y Navarro-Frenk-
White, un acoplamiento diferente entre los efectos de lentes gravitacionales fuertes y 
microlentes que explica los efectos de cizalladura y los eventos de cruce de cáusticas, y 
las diferentes distribuciones de fuentes. 

Si el siglo pasado se produjo la revolución cuántica, este siglo es sin duda el siglo 
de la gravedad. Vivimos en una era en la que la teoŕıa y el análisis de datos se realizan 
prácticamente a la vez. Como se mencionó en el prefacio, el estudio de la naturaleza de 
la materia oscura es el núcleo de la cosmoloǵıa moderna y, por lo tanto, la comprensión 
teórica de la estructura de la distribución de la materia en nuestro universo es crucial 
para la f́ısica. Esta tesis ha puesto su granito de arena para avanzar en esa dirección. 
Sin embargo, lo mejor está por venir. Los datos observacionales futuros traerán la 
próxima revolución en la f́ısica: la confrmación de que nuestro universo es, de hecho, 
grumoso. 
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APPENDIX 

A 

WEAK-LENSING STATISTICS WITH 
RAYGALGROUPSIMS 

This appendix is dedicated to our analysis of the statistics of weak-lensing convergence 
and shear from a numerical simulation. Specifcally, we have used results from a 
dark-matter-only simulation performed with the N -body code RAMSES [182, 183]. 
The simulation has been performed with the best-ft parameters of WMAP-7 [184], 
a comoving length of 2625h−1 Mpc and a particle mass of 1.88 × 1010h−1M⊙. Fully 
relativistic ray tracing has been performed through this simulation [96] using the 
Magrathea library [185, 186]. Healpix maps with various lensing quantities, such as 
convergence, shear and magnifcation, are publicly available.1 We focus here on the 
PDF of convergence κ̄ os and (macro)shear γ̄ os. 

A.1 Convergence 
We analysed the PDF of the weak-lensing convergence κ̄ os obtained by ray tracing. In 
the redshift range zs < 2, we found that the following ansatz provides a good ft to 
the data,  

ν(zs) ν(zs)d ∆κ(zs) ∆κ(zs) 
p(κ̄os; zs) = (A.1)+exp −  ,dκ̄os κ̄ os − κ0(zs) 1 − κ0(zs) 

where the parameters ν, κ0 and ∆κ depend on the source redshift zs. Note that 
eq. (A.1) is normalised to 1 for κ̄ os ∈ [κ0, 1] by defnition; κ0(zs) < 0 thus denotes 
the minimum convergence for sources at a redshift zs. Imposing that the convergence 
averages to 0 imposes the following constraint between the model parameters, 

ν − 1 
κ0 = −Γ ∆κ , (A.2)

ν 
where Γ denotes the usual Gamma function. Together with the above, we fnd that 

ν(zs) = 2.3 (1 + zs) (A.3) 
1https://cosmo.obspm.fr/public-datasets/raygalgroupsims-relativistic-halo-catalogs 
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Figure A.1: Statistics of the weak-lensing convergence κ̄ os. Left: comparison between 
the PDF of the convergence κ̄ os obtained from ray tracing in an N -body simulation 
(solid lines) and the ansatz of eq. (A.1) (dashed lines), with the constraint (A.2), 
ν(zs) = 2.3(1 + zs) and ∆κ left as a free parameter. Right: standard deviation of the 
convergence computed from camb with a Planck-2018 cosmology, compared with the 
empirical ft of eq. (A.6). 

fts well the data as ∆κ is left as a free parameter. The accuracy of this empirical ft 
is illustrated in the left panel of fg. A.1. 

As could be guessed from eq. (A.1), ∆κ is related to the variance of the convergence. 
Specifcally, we have 

ν − 2 ν − 1D 
κ̄ os

2 = Γ − Γ2 ∆κ2 . (A.4)
ν ν 

The variance of the convergence signifcantly depends on the cosmology. In the 
weak-lensing regime, at linear order and in Limber’s approximation, it is known to 
read D ⎫ ∞ ℓdℓ 

κ̄ os
2 = Pκ(ℓ, zs) , (A.5)

0 2π 
where Pκ denotes the convergence angular power spectrum, which is directly related 
to the matter power spectrum [106]. Since the simulation data at our disposal usedD 
slightly outdated cosmological parameters, we thus expect the resulting κ̄ os

2 to be D 
outdated as well. In order to circumvent this issue, we estimated κ̄2

os from eq. (A.5) 
using camb.2 For a Planck-2018 cosmology [187], we fnd that the standard deviation 
of the convergence is well ft by 

D 
κ̄2

os = 0.0218 (1 + 12.6 z)0.315 − 1 , (A.6) 

as illustrated in the right panel of fg. A.1. In practice, we substitute this expression 
into eq. (A.4) to determine ∆κ(zs) for application in this article. 

2https://camb.info/ 

https://camb.info/
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Figure A.2: Conditional PDF of the magnitude of weak-lensing shear |γ̄ os| at fxed 
values of the convergence κ̄ os, for sources at zs = 0.95. The fgures compare results 
from simulations (solid lines) with the ansatz of eq. (A.10) (dashed lines). Left: linear 
scale. Right: logarithmic scale. 

A.2 Macroshear 
In the range of redshift relevant for the present discussion, we fnd that the conditional 
PDF for the shear at a fxed convergence, p(γ̄ os; κ̄ os, zs), is surprisingly well ft by a 
two-dimensional Gaussian distribution, 

1 |γ̄ os|2 
p(γ̄os; κ̄os, zs) d2γ̄ os = − d2γ̄ os . (A.7)2πσ2(κ̄os, zs) 

exp 2σ2(κ̄os, zs) 

Since the universe is statistically isotropic, there is no preferred orientation for the 
complex shear, and hence the conditional PDF of its magnitude takes the form 

P(|γ̄ os|; κ̄os, zs) = 2π|γ̄ os| p(γ̄os; κ̄os, zs) (A.8) 
|γ̄ os| |γ̄ os|2 

= − (A.9)
σ2(κ̄os, zs) 

exp 2σ2(κ̄os, zs) 
d |γ̄ os|2 

= exp − . (A.10)d|γ̄ os| 2σ2(κ̄os, zs) 

Figure A.2 shows a comparison between the numerical data and the ansatz (A.10) 
for zs = 0.95; at that redshift we fnd the empirical expression σ(κ̄ os, zs = 0.95) = 
0.01 + 0.26 ̄κos. 
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APPENDIX 

B 

DERIVATION OF THE MICROSHEAR DISTRIBUTION 

This appendix is dedicated to the derivation of the distribution of the efective reduced 
microshear that was given in eq. (4.4). 

B.1 PDF of a sum of complex shears 
Consider N randomly distributed lenses ℓ, each one producing a complex shear sℓ ∈ C. 
The total shear is the sum of all those contributions, 

N⎥ 
s = sℓ . (B.1) 

ℓ=1 

The PDF of s is, therefore, the convolution product of the N PDFs of the individual 
shears. Assuming – without loss of generality – that the N lenses are indistinguishable 
and have identical statistical properties, we have 

⋆N pN (s) = (p1 ⋆ . . . ⋆ p1)(s) ≡ p1 (s) , (B.2) 
N times 

where a ⋆ denotes a convolution product and p1 is the PDF of the shear for 1 lens, 
accounting for the randomness of its position, mass, etc. The convolution product is 
better handled in Fourier space. We defne here the Fourier transform in a way that 
acknowledges the spin-2 character of the complex shear, ⎫ ⎫ 

∗ ∗ 
s e−2iRe(q s) 

(2
d 
π 

2q 
)2 e2iRe(qp̃(q) ≡ d2 p(s) , p(s) = s) p̃(q) , (B.3) 

∗with q ∈ C the Fourier variable dual to s; denotes complex conjugation and 
the diferential elements are d2q = dq1dq2, d2s = ds1ds2. We shall also use polar 

Se2iφ Qe2iψcomponents for both s = and q = , with φ, ψ ∈ [0, π), in which case 
d2s = 2SdSdφ and d2q = 2QdQdψ. In Fourier space with the above convention, 
eq. (B.2) becomes 

p̃N (q) = p̃1 
N (q) . (B.4) 
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Consider now the case where the lenses are all axisymmetric – this is valid for the 
application that will eventually interest us, namely point lenses. In that case the PDF 
of each lens only depends on S ≡ |s|, 

dφ 
p1(s) d2 s = P1(S)dS with P1(S) ≡ 2πS p1(S) (B.5)

π 

the PDF of the magnitude of the shear for single lens. The polar angle can be 
integrated out in the expression of the Fourier transform, which then only depends on 
Q = |q|, ⎫ π ⎫ ∞ ⎫ ∞dφ dS P1(S) e−iQS cos 2(φ−ψ)p̃1(Q) = = dS P1(S) J0(QS) , (B.6)

0 π 0 0 

where J0 is the zeroth order Bessel function. From the above, we notice that p̃1(q) 
may be also be interpreted as the expectation value of that Bessel function for a single 
lens, 

p̃1(Q) = ⟨J0(QS)⟩1 , (B.7) 
where ⟨. . .⟩1 denotes the average over statistics of a single lens. 

In the same manner, since p̃N (Q) does not depend on the polar angle ψ of q, we 
may integrate this angle out in its inverse Fourier transform, ⎫ ∞ ⎫ π ⎫ ∞Q dQ dψ 1 eiQS cos 2(ψ−φ) ˜pN (S) = pN (Q) = dQ QJ0(QS) p̃N (Q) . 

0 2π 0 π 2π 0 
(B.8) 

The PDF of the sole magnitude S of the sum all all N complex shears is, therefore, ⎫ ∞ 
PN (S) = 2πS pN (S) = dQ QS J0(QS) p̃N (Q) . (B.9)

0 

B.2 Large-N limit 
Now consider the setup depicted in fg. 4.1: the N ≫ 1 lenses are distributed within a 
mesoscopic cone with half angle Θ. Now as Θ is much larger than the typical Einstein 
radius of the lenses, it quite clear that P1(S) must approach δ(S).1 Since J0(0) = 1, 
we conclude that p̃1(Q) = ⟨J0(QS)⟩1 ≈ 1. This suggests the following manipulation 

p̃N (Q) = ⟨J0(QS)⟩1 
N = ⟨1 + [J0(QS) − 1]⟩1 

N ≈ exp [N ⟨J0(QS) − 1⟩1] (B.10) 

in the large-N limit. 
1A more technical, though heuristic, argument goes as follows. Just like the amplifcation PDF, 

the shear PDF of a single lens may be expressed as the ratio of a shear cross section with the solid 
angle of the cone, so that P1(S) ∝ (πΘ2)−1. Since Θ is much larger than the typical angular scale 
characterising a single lens, we expect P1(S) → 0 for S ≠ 0. But since P1(S) is a PDF it must be 
normalised to 1. The only way out consists in having P1(S → 0) very large, in agreement with the 
intuition that it is very likely that a single lens lost in a huge domain produces a tiny shear. 
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B.3 Application to the efective reduced micros-
hear due to point lenses 

The quantity of interest here is the efective reduced microshear, due to the compact 
objects located near the line of sight of the dominant lens at χ, 

N sos sod sds ⎥ 4Gmℓ 
s ≡ − − = sℓ , sℓ ≡ )2 W (χℓ), (B.11)1 − κos 1 − κod 1 − κds ℓ=1 (β 

ℓ 
∗ 

with  χs − χℓ χd − χℓ− χℓ ≤ χd (1 − κos)χℓχs (1 − κod)χℓχd 
W (χℓ) ≡ (1 + zℓ) × (B.12)

χs − χℓ (χℓ − χd)(χs − χℓ) − χℓ ≥ χd (1 − κos)χℓχs (1 − κds)χ2 
ℓ (χs − χd) 

where mℓ, zℓ, χℓ denote the mass, redshift, comoving position of lens ℓ, and β its 
complex unlensed angular position with respect to the line of sight; χd, χs are 

ℓ 
the 

comoving positions of the main defector and source. 

We assume for simplicity that the lenses are uniformly distributed in comoving 
space, with masses independent of the positions, so that within the mesoscopic cone 
of fg. 4.1 we have 

3χ2 
ℓ dχℓ 2βℓdβℓ 

p(χℓ, βℓ,mℓ) dχℓdβℓdmℓ = p(mℓ)dmℓ . (B.13)
χ3

s Θ2 

In the remainder of this appendix we shall drop the subscript ℓ to alleviate notation.2 

In such conditions, the Fourier transform p̃1(Q) of the one-lens shear, interpreted 
as the expectation value of J0(SQ) following eq. (B.7) reads ⎫ d(χ3) d(β2) 4Gm 

p̃1(Q) = ⟨J0(SQ)⟩1 = p(m)dm J0 W (χ)Q − 1. (B.14)
χ3

s Θ2 β2 

We may then perform the change of variable β2 �→ x = 4GmW Q/β2 to get ⎫ ⎫ χs 
⎫ ∞4GQ d(χ3) dx ⟨J0(SQ)⟩1 − 1 = dm mp(m) W (χ) [J0(x) − 1].Θ2 χ3 20 4GmW Q/Θ2 xs 

(B.15) 
In the limit where Θ is very large, the lower limit in the integral over x can be set to 
zero, in which case the integral is known, ⎫ ∞ dx 

2 [J0(x) − 1] = −1 , (B.16)
0 x 

2This implies that in this appendix only χ ≡ χℓ refers to the comoving position of a secondary 
defector; in the main text we have instead χ ≡ χd. 
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so that 
4G ⟨m⟩ Q ⎫ χs d(χ3)⟨J0(SQ)⟩1 − 1 ≈ − W (χ) . (B.17)Θ2 0 χ3 

s 

The last steps of the calculation consist in (i) substituting the above in eq. (B.10) 
and (ii) computing the inverse Fourier transform to get pN (S). Step (i) yields 

pN (Q) = e−fτQ ˜ , (B.18) 

with the optical depth τ = N ⟨θE
2 ⟩ /Θ2 corrected by the factor 

⎞ χs d(χ3)
0 χ3 W (χ)

sf ≡ (B.19)⎞ χs d(χ3) χs−χ 
0 χ3 a(χ)χχss⎞ χd dχ χ(χs−χ) χ(χd−χ) ⎞ χs dχ χ(χs−χ) (χ−χd)(χs−χ)− + −0 a(χ) (1−κos)χs (1−κod)χd χd a(χ) (1−κos)χs (1−κds)(χs−χd)= . (B.20)⎞ χs dχ χ(χs−χ)

0 a(χ) χs 

Note that, in the large-N limit, p̃N (Q) is independent on N . The last step (ii) is 
performed by substituting eq. (B.18) into eq. (B.9), which fnally yields ⎫ ∞ fτS PN (S) = dQ QS J0(QS)e−fτQ = . (B.21)

0 [(fτ)2 + S2]3/2 
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[16] D. Pérez. Erwin Freundlich, el olvidado primer astrónomo de la relatividad. 
Bolet́ın radioastronómico, 2019. 
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