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Introduction

The Standard Model (SM) [1–5] is a 4 dimensional quantum field theory, based on the

gauge symmetry SU(3)C × SU(2)L × U(1)Y . The SM describes three of the four fun-

damental interactions, the strong interaction (QCD), that binds quarks within hadrons,

such as protons and neutrons, the electromagnetic interaction (QED), responsible, for

instance, of the propagation of radio waves and the weak interaction that triggers the β

decay. Gravitation is the only fundamental force that is not included in the SM since up

to date no quantum field theory of gravity has been developed. This model describes with

amazing success most of the known phenomena and, indeed, the agreement between its

predictions and the data is excellent, tested in some cases to a precision greater than 1%.

The matter content of the SM corresponds to the fermionic sector (spin 1/2), leptons

and quarks, which are organized in a three-fold family structure. The gauge sector of

the SM corresponds to gauge bosons (spin 1-vector particles), W± and Z, 8 gluons and

one photon, which are exchanged when a weak, strong and electromagnetic interaction,

respectively, occurs.

For consistency reasons, the SM contains also a complex scalar doublet, the Higgs

doublet, which is the only fundamental scalar field of the model. The introduction of

this Higgs doublet at the electroweak scale, v ∼ O(100) GeV, is needed in order to pre-

serve unitarity in the scattering of four gauge bosons with longitudinal polarization. As a

consequence of the introduction of this Higgs field, the SU(3)C × SU(2)L × U(1)Y gauge

symmetry of the SM Lagrangian (can be) is broken by the vacuum, which triggers the

Spontaneous Symmetry Breaking (SSB) of the electroweak group to the electromagnetic

subgroup: SU(2)L×U(1)Y → U(1)QED. This mechanism of electroweak symmetry break-

ing (EWSB) is known as the Higgs mechanism [6–9] and it provides a general framework

to explain the observed masses of the W± and Z gauge bosons by means of charged and

neutral Goldstone bosons that end up as the longitudinal components of the gauge bosons.

Fermions also acquire mass through this mechanism via the Yukawa couplings.

1



2 Introduction

Moreover, the Higgs mechanism predicts the existence of a physical scalar particle,

the so-called Higgs boson, which has not yet been detected. Finding this particle and

understanding the underlying dynamics of EWSB is one of the most important challenges

of experimental and theoretical particle physics nowadays. The Higgs boson mass in the

SM is proportional to the quartic Higgs self coupling, λ . Since λ is presently unknown,

the value of the SM Higgs boson mass mh is not predicted. However, there are bounds

on the mass of this particle coming both from theory, for instance unitarity and triviality

bound, and from experiment, due to the contribution of the Higgs boson to observables

that are measured with high precision, such asMZ orMW . For example, the upper bound

from perturbative unitarity is mh ≤

√

8π
√
2

3GF
∼ 1TeV [10]. For values of mh above this

upper bound, weak interactions become strong in the TeV regime and perturbation theory

is no longer valid. From electroweak precision data, a 95% C.L. upper bound on mh can

be set, mh ≤ 169 GeV for a standard fit, and mh ≤ 143 GeV for the complete fit including

the constraints from the direct Higgs searches at LEP, Tevatron and LHC [11]. Regarding

the experimental bounds, prior to the LHC, the best direct information on the mass of

the Standard Model Higgs boson was a lower limit of 114.4 GeV at the 95% confidence

level, set using the combined results of the four LEP experiments [12] and an excluded

band of 158 GeV to 173 GeV from the combined Tevatron experiments [13, 14]. During

the present year 2011, the LHC has improved quite substantially the previous bounds.

The ATLAS experiment has excluded at 95% CL a very wide range of Higgs boson mass

in the two mass ranges from 155 GeV to 190 GeV and 295 GeV to 450 GeV [15]. The

CMS experiment, has excluded the SM Higgs boson at 95% C.L. in the two mass ranges

149-206 and 300-440 GeV [16]. The Higgs boson mass limits are indeed improving very

rapidly at the LHC. At the time this thesis is coming to an end, a very recent ATLAS

and CMS combined analysis has been performed, where a Higgs boson like mass in the

range from 144 to 476 GeV is excluded at at 95% C.L.. This analysis, combined with the

LEP lower bound on the SM Higgs mass, leaves a quite narrow window left for the SM

Higgs mass: 114 < mh < 141 GeV at 95% C.L. [17].

Furthermore, in the SM the Higgs boson mass has an instability under radiative cor-

rections, known as the hierarchy problem. All low-energy couplings and fermion masses

are logarithmically sensitive to the scale of new physics Λ. In contrast, scalar squared-

masses are quadratically sensitive to Λ. This implies that the Higgs boson can get huge

radiative corrections if the scale of new physics is large. Therefore, in order to obtain a

light Higgs boson mass of O(100) GeV, compatible with the present bounds, there has
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to be a cancellation between the tree level mass and higher order contributions. If Λ

is considerably larger than 1 TeV, then an “unnatural“ cancellation must occur. This

cancellation is what physicists refer to as fine tuning and, although it may be considered

a prejudice more than a real problem, many theories have been developed in order to

avoid this improbable coincidence.

A very positive aspect of going beyond tree level is that, quantum corrections offer

the possibility to be sensitive to heavy particles, which cannot be kinematically accessed,

through their virtual loop effects. The importance of these virtual effects from the heavy

particles at low energies depends critically on the decoupling or non-decoupling properties

of these heavy particles and these, in turn, depend on the particular features of the Quan-

tum Field Theory considered. For instance, in QED and QCD the vacuum polarization

contribution of a heavy fermion pair is suppressed at low energies by inverse powers of the

fermion mass. Therefore, at low energies, the information on the heavy fermions is then

lost. This decoupling of the heavy fields happens in theories with only vector couplings

and an exact gauge symmetry [18], where the effects generated by the heavy particles can

always be reabsorbed into a redefinition of the low-energy parameters. The SM involves,

however, a broken chiral gauge symmetry. This has the very interesting implication of

avoiding the decoupling theorem [18]. Thus, for instance, the vacuum polarization contri-

butions induced by a heavy top generate corrections to the W± and Z self-energies, which

increase quadratically with the top mass [19]. Therefore, a heavy top does not decouple

and its quantum effects are relevant even at very low energies compared with its mass.

The most stringent SM test comes from the high-precision measurements of the elec-

tron and the muon anomalous magnetic moments, al = (gl−2)/2, with l = e, µ. Radiative

corrections contributing to these anomalous magnetic moments are fully known to O(α4),

and some O(α5) corrections have been computed. In fact, ae provides the most accurate

determination of the fine structure constant, α−1 = 137.035999084 ± 0.000000051 [20].

The anomalous magnetic moment of the muon has been measured at Brookhaven Na-

tional Laboratory to a precision of 0.54 parts per million. The current average of the

experimental results is given by aµ = (1165920.80± 0.63)× 10−9, which is different from

the SM prediction by 2.2 σ to 2.7 σ [21], ∆aµ = aexpµ −aSMµ = (22.4±10 to 26.1±9.4)×10−10

1. This discrepancy between prediction and experiment seems to be a hint of new physics

that would contribute with positive sign to aµ, but it could also be explained by higher

1The main source of uncertainty in the SM prediction comes from the hadronic vacuum polarization.

The above result is determined directly from the annihilation of e−e+ into hadrons. If the hadronic decay

of the τ is also taken into account, ahadrµ becomes bigger and this reduces the discrepancy to about 1.6 σ.



4 Introduction

order QCD corrections that have not been calculated yet. This is the power of preci-

sion measurements, as the experimental sensitivity increases, the required precision of the

theory prediction becomes higher. Therefore, the calculation of higher order quantum

corrections to a certain observable is needed in order to check the agreement with the ex-

perimental value. If there is a discrepancy, then extensions of the SM can try to explain

it, but their parameter space might be very constrained in order to account for such a

precise measurement.

Processes involving Flavor Changing Neutral Currents (FCNC) provide excellent op-

portunities to search for evidence of new physics since in the SM they are forbidden

at tree level, and can only occur through higher order loop diagrams. For instance,

the decay Bs → µ+µ− has been identified as a very interesting potential constraint on

the parameter space of models for physics beyond the SM. The present upper limit to

this decay, measured by the CMS and LHCb collaborations [22], is given by, BR(Bs →
µ+µ−)exp < 1.1 × 10−8 at 95% C.L. However, the SM prediction is computed to be

BR(Bs → µ+µ−)SM = (3.6 ± 0.4) × 10−9 [23]. Within the SM, this decay is dominated

by a Z/Higgs-penguin diagram. Hence it is very sensitive to any new physics with new

scalar or pseudoscalar interactions, in particular to any model with an extended Higgs

sector.

At present, the most evident signal of new physics beyond the SM is provided, however,

by the neutrino data, which indicate that neutrinos are massive particles and oscillate in

flavor, contrarily to the SM prediction. The experiments with solar, atmospheric and

reactor neutrinos [24–36] have provided compelling evidence for the existence of neutrino

oscillations [37, 38], transitions in flight among the different neutrino flavors νe, νµ, ντ (an-

tineutrinos ν̄e, ν̄µ, ν̄τ ), caused by nonzero neutrino masses and neutrino mixing. Strong

evidence for oscillations of muon neutrinos were obtained also in the long-baseline accel-

erator neutrino experiments K2K [39] and MINOS [40, 41]. It follows from the existing

data that at least 3 of the neutrinos mass eigenstates νj , say ν1, ν2, ν3, must be light,

m1,2,3 < 1 eV, and must have different masses, m1 6= m2 6= m3.

Since the SM does not include neutrino masses, the measured masses and mixings of

the neutrinos are clear signals of new physics and, therefore, a mechanism to generate

neutrino masses and mixings is needed. The simplest possibility to include neutrino

masses is to extend the SM by the introduction of 3 right-handed neutrinos in parallelism

with all the other fermions of the SM. Then, neutrinos as any other fermion would acquire

their masses via their Yukawa interactions with the Higgs field, concretely when EWSB
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takes place and the Higgs field acquires an expectation value. However, in contrast to

all the other fermions of the SM, right-handed neutrinos have the special property of

being singlets under all the gauge groups of the SM, and that implies that neutrinos with

definite mass νj can be Dirac fermions (with particles and antiparticles being different,

ν 6= νc) or Majorana particles (with particles and antiparticles being the same, ν = νc).

All the other fermions of the SM are Dirac particles.

Regarding the theoretical description of neutrino flavor oscillations, the neutrino mix-

ing can be described by an unitary mixing matrix U , which can be parameterized by

3 angles, and, depending on whether the massive neutrinos νj are Dirac or Majorana

particles, by 1 or 3 CP violating phases, respectively [42, 43]. The only way to forbid

neutrino Majorana mass terms, i.e. explicit mass terms, is to impose the conservation

of total lepton number, which is a global symmetry that is accidentally conserved in the

SM. Establishing whether neutrinos with definite mass are Dirac or Majorana fermions is

of fundamental importance for understanding the origin of neutrino masses and mixings

and the underlying symmetries of neutrino interactions.

The Majorana nature of massive neutrinos manifests itself, for instance, in the exis-

tence of processes in which the total lepton charge L changes by two units. At present, the

only feasible experiments having the potential of establishing that massive neutrinos are

Majorana particles are the ones searching for the neutrinoless double beta decay ((ββ)0ν

-decay): (A,Z) → (A,Z + 2) + e− + e−. The observation of this (ββ)0ν -decay and the

measurement of the corresponding half-life with sufficient accuracy, would not only be a

proof that the total lepton charge is not conserved, but might also provide unique infor-

mation on the i) type of neutrino mass spectrum [44], ii) Majorana phases in the neutrino

mixing matrix U [45, 46] and iii) the absolute scale of neutrino masses [44, 46–49].

For the rest of this study, we will work within the hypothesis that neutrinos are of

Majorana type. In this context a natural explanation of the smallness of neutrino masses is

provided by the seesaw mechanism of neutrino mass generation [50, 51]. This mechanism,

referred usually as seesaw type I, assumes the existence of right handed neutrinos with

very large Majorana mass mM compared to the electroweak scale, MEW ∼ O(100) GeV,

coupled to the left-handed neutrinos via Yukawa couplings. Moreover, the right handed

neutrino masses are chosen so that one obtains the three light neutrino masses, mνi

(i = 1, 2, 3), and the three neutrino mixing angles, θ12, θ23, θ13, in agreement with present

data [20].

An interesting property of Majorana neutrinos generated by a seesaw mechanism is
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that the Yukawa couplings can be large, Yν ∼ O(1), ifmM is large, say mM ∼ (1014−1015)

GeV, in contrast to Dirac neutrinos, with Yν ∼ O(10−12). In the first case, the heavy

neutrinos have a chance of being detected indirectly through quantum effects induced

to observables that are measured with high precision. However, in the Dirac case, the

contribution of right-handed neutrinos is negligible.

Another appealing feature of the seesaw mechanism is that a Majorana mass term pro-

vides the violation of lepton number which might lead to the explanation of baryogenesis

via leptogenesis. Within the framework of leptogenesis, the observed baryon asymmetry

of the Universe (BAU) is explained by the out-of-equilibrium CP-violating decays of the

heavy right-handed neutrinos. The lepton symmetry violation converts into baryon asym-

metry due to the sphalerons that conserve B-L but violate B+L. If the heavy neutrinos,

Nj (j = 1, 2, 3), have a hierarchical spectrum, mN1 ≪ mN2 ≪ mN3 , the observed baryon

asymmetry can be reproduced, provided the mass of the lightest one satisfies mN1
>∼ 109

GeV [52].

Nevertheless, in the SM extended with three heavy right handed neutrinos, the exis-

tence of two separate mass scales, the electroweak scaleMEW and the Majorana scale mM ,

usually chosen in the range, 1010 − 1015 GeV, leads to a severe hierarchy problem. Thus,

one needs a proposal of new physics beyond the SM that can solve this puzzle. One of the

most appealing solutions to the hierarchy problem is provided by the introduction of a new

symmetry, called supersymmetry (SUSY) [53–55]. This symmetry relates fermions and

bosons in such a way that the contribution of the new SUSY particles exactly compensates

all the undesired quadratic contributions to scalar squared masses, therefore, stabilizing

the value of Higgs mass at the electroweak scale. On the other hand, any SUSY extension

of the SM may also incorporate the seesaw mechanism to generate the neutrino masses.

Therefore, these SUSY-seesaw models successfully accommodate neutrino data and at the

same time they do not suffer from the hierarchy problem.

The Minimal Supersymmetric Standard Model (MSSM) [56–58] is the minimal su-

persymmetric version of the SM which incorporates one supersymmetric partner per SM

particle with the same mass and quantum numbers but with spin differing in one half

unit. Thus, a new boson partner is assigned to each SM fermion and, correspondingly,

a new fermionic SUSY partner is added to each SM boson particle. It is called minimal

because it has the minimal number of possible supersymmetries (N = 1) and therefore,

the minimal SUSY particle content. In order to implement the seesaw mechanism within

the MSSM, one introduces, in addition to the usual MSSM spectra, three right-handed
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neutrinos and the three corresponding superpartners, the sneutrinos.

However, it is well known that supersymmetry can not be an exact symmetry of the

observed particle spectrum and, therefore, it must be broken in Nature, since no SUSY

particles have been found so far in the experiments [20]. Although the SUSY breaking

mechanism is not well known yet, if we do not want to spoil the cancellation of quadratic

divergences the SUSY breaking terms must be soft [59]. In addition, they must provide

proper masses for the SUSY particles in order to make them heavier than their SM

partners.

The MSSM and the MSSM-seesaw have an extended Higgs sector that contains five

physical Higgs bosons: two charged particles H±, 1 neutral CP-odd particle A0 and 2

neutral CP-even particles, h0 and H0. The lightest Higgs boson h0 mass, mh0 , is not a

free parameter. In contrast with the Higgs of the SM, mh0 has an upper bound at tree

level given by MZ , but it receives higher order corrections from loops of the SM particles

and its superpartners, which are logarithmically dependent on the soft breaking SUSY

masses and increase the tree level value. The main corrections to mh0 in the MSSM

come from the tops/stops sector because the Yukawa couplings are proportional to the

corresponding fermion masses, and the top mass is bigger than any of the other fermion

masses of the SM. The upper bound on mh0 is then shifted above MZ and the precise

bound depends on the specific choice of soft parameters. For soft SUSY masses ≤ 2TeV

the upper bound on mh0 is ∼ 135 GeV [60–62].

As we can appreciate, in the MSSM the Higgs boson mass is predicted to be relatively

light, close to the EW scale, which makes it a phenomenological interesting theory because

its predictions can be discarded or corroborated in the experiments, and particularly in the

LHC. Many areas of the Higgs mass region have already been excluded, as it was shown

above for the SM Higgs boson case. In the region of the parameter space wheremA0 ≫MZ

and the masses of supersymmetric particles are large (the decoupling limit), the decay

rates of the lightest MSSM Higgs boson h0 into SM particles are nearly indistinguishable

from those of the SM Higgs boson and, therefore, the exclusion bounds for hSM can be

applied to h0. However, the low Higgs mass region has not been tested yet at the LHC

because in this zone the most promising discovery decay mode of the Higgs is the diphoton

channel, which needs more luminosity due to the smallness of the corresponding branching

ratio with respect to other channels (bb̄, τ τ̄ ), which, on the contrary, suffer from a large

background, resulting very difficult to disentangle signal from background.

In order to reduce the large number of free parameters introduced by the soft SUSY
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breaking terms one often assumes constrained SUSY models. For instance, the well known

constrained supersymmetric standard model (CMSSM) [63] minimizes the number of these

parameters by assuming universal values at the gauge unification scale, leaving only five

free parameters: the universal soft scalar mass,M0, the universal soft gaugino mass,M1/2,

the universal trilinear coupling, A0, the ratio of the two Higgs vevs, tanβ, and the sign

of the Higgsino mass term, sign(µ). An interesting departure from the CMSSM can be

obtained by relaxing the universality hypothesis for the soft SUSY breaking masses of

the Higgs sector, MH1 and MH2 , so that they are independent of the soft scalar mass

M0. This partially constrained MSSM has seven free parameters, MH1 , MH2 , M0, M1/2,

A0, tan β and sign(µ), and is commonly referred to as the Non Universal Higgs Mass

(NUHM) scenario [64]. The enlarged version of the CMSSM and the NUHM (including

right handed neutrinos and sneutrinos) will be here designated as CMSSM-seesaw and

NUHM-seesaw, respectively.

No SUSY particles have been detected yet and the LHC as well as Tevatron are setting

bounds on the parameter space of constrained SUSY models, in particular the CMSSM.

For instance, the CMS detector has excluded squark and gluino masses below ∼ 1 TeV

for a common value of the scalar mass at the GUT scale of M0 < 0.5 TeV and for certain

fixed values of the model parameters [65, 66]. Complementary to the direct search for

SUSY particles, the indirect effects of those particles via radiative corrections to high

precision observables is a very useful tool to test whether SUSY is compatible with data,

and therefore a good candidate of new physics, or not, and thus SUSY (or some region of

the parameter space) could be ruled out.

This thesis is devoted to the study of some of the indirect effects of Majorana neutrinos

and sneutrinos via their radiative corrections to low energy observables that are planned

to be measured with high precision and that have a potential sensitivity to the Higgs

sector. Concretely, we have focused on two of the most relevant loop effects, namely: 1)

the radiative corrections to the lightest Higgs boson mass of the MSSM-seesaw due to

Majorana neutrinos and their SUSY partners, the sneutrinos, and, 2) the contributions

induced by the Majorana neutrinos and sneutrinos to Higgs mediated lepton flavor violat-

ing decays within constrained SUSY-seesaw models. In the following we shortly introduce

both studies.

In the first part of this thesis we study the indirect effects of Majorana neutrinos and

sneutrinos in Higgs physics, via their radiative corrections to the MSSM Higgs boson

masses. The main motivation for this study is that we expect these effects to be relevant
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for sufficiently large Majorana mass, mM ≫ mEW , due to the large size of the involved

neutrino couplings, Yν ∼ O(1). In fact, in Ref. [67] the one-loop corrections to the lightest

MSSM Higgs boson mass,Mh, were first estimated within a different scenario, the so-called

split SUSY, and by the use of several approximations, and they already found a large and

negative correction from the neutrino/sneutrino sector. Here we will present a full one-

loop diagrammatic computation of the neutrino/sneutrino contributions to Mh and we

will work in general MSSM-seesaw scenarios with no universality conditions imposed to

the neutrino/sneutrino sector. Our study will also explore the role played by the large

Majorana scale in the numerical size of the Higgs mass corrections. Furthermore, we will

focus particularly in the features of these corrections with regard to the issue of decoupling

or non-decoupling of the heavy Majorana neutrinos in Higgs physics. This will allow us

to find out the interesting values of the Majorana mass where the size of the Higgs mass

corrections enter into the measurable range. Although not fully set yet, the expected

accuracy on the Mh measurement is challenging. The LHC expected precision on the

measurement of a Standard Model (SM)-like Higgs boson is ∼ 200 MeV [68–71] , while

the ILC expected precision could reach the 50 MeV level [72–75]. On the other hand, the

current precision in the predicted value of the MSSM Higgs corrected mass is estimated

to be ∼ 2− 3 GeV [76]. Any correction comparable or larger than this current precision,

should, therefore, be taken into account. We will show in this thesis that corrections from

the Majorana neutrinos and their SUSY partners can be, indeed, of this order or even

larger.

The second part of this thesis is devoted to the study of indirect effects of Majorana

neutrinos and sneutrinos in Lepton Flavor Violating processes that can be mediated by

Higgs bosons. In the context of indirect searches, Lepton Flavor Violating (LFV) processes

provide one of the most challenging windows to test supersymmetric extensions of the

standard model and also to test the neutrino sector beyond the SM [77–83]. The reason

for this relies on the fact that Lepton Flavor Violating interactions are forbidden in the

SM and, therefore, the SM predicts zero rates for those LFV observables. When extending

the SM to include neutrino masses and mixings via a seesaw-type-I mechanism with no

SUSY, LFV processes occur via loops of neutrinos, but they are extremely suppressed

due to the small masses of the light neutrinos. However, this might not be the case in

other low scale seesaw models (see for instance [84]).

In a MSSM-seesaw framework the situation is completely different. Besides the SM-

seesaw contributions, supersymmetry provides new direct sources of flavor violation,
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namely the possible presence of off-diagonal soft terms in the slepton mass matrices and

in the trilinear couplings at low energies. In practice, flavor violation originates from the

misalignment between fermion and sfermion mass matrices, that cannot be diagonalized

simultaneously. Even if the scalar masses are universal at high energy, flavor mixing

in the Yukawa couplings of the Majorana neutrinos induces, through renormalization ef-

fects, flavor mixing in the slepton masses at low energies and these sleptons, in turn, when

propagating in the loops can, therefore, generate large rates in LFV processes [77–81].

The LFV process that is the most sensitive to the neutrino Yukawa couplings, in

the SUSY-Seesaw context, is µ → eγ, where the present experimental sensitivity is at

2.4 × 10−12 [85]. Also µ − e conversion in heavy nuclei, with present bounds at CR(µ −
e,Ti) < 4.3× 10−12 [86] and CR(µ− e,Au) < 7× 10−13) [87], and µ→ 3e with BR(µ →
3e) < 1.0× 10−12 [88], are quite sensitive to LFV in the µ− e sector.

In the τ − µ sector the upper bound in the decay τ → µγ is now set to 4.4 × 10−8

by the BABAR collaboration [89]. Moreover, the sensitivity to LFV in τ → 3µ has

improved remarkably in the last years. The present upper bounds from BELLE and

BABAR collaborations are 2.1 × 10−8 [90] and 3.3 × 10−8 [89], respectively. In the last

years, the semileptonic τ decays have already become competitive with the pure leptonic

decays [91, 92].

In this thesis we perform a comparative study of the semileptonic decays τ → µf0(980)

and τ → µη. Both channels have competitive upper bounds BR( τ → µη) < 2.3×10−8 [93]

and BR( τ → µf0(980)) < 3.4 × 10−8 [94]. The advantage of τ → µη [95–97] and

τ → µf0(980) [98] over the τ → µγ channel is their potential sensitivity to the Higgs

sector. It is known that within SUSY-seesaw scenarios τ → µγ is not sensitive to the Higgs

sector at the one-loop level. On the other hand, τ → 3µ is sensitive to the Higgs sector

via the one-loop Higgs penguin diagrams [99]. However, the Higgs mediated contribution

in this τ → 3µ channel is usually overwhelmed by the γ penguin diagrams in most

of the constrained MSSM-seesaw scenarios. Therefore, to reach some sensitivity to the

Higgs sector one must consider semileptonic τ decays [97]. The two semileptonic channels

τ → µη and τ → µf0(980) do not have γ mediated contributions and, therefore, they have

direct access to the Higgs sector. Whereas the τ → µη can be mediated by a Z boson and

a CP-odd Higgs boson A0, and it is dominated by the A0 just at large tanβ & 20 [97, 100],

the τ → µf0(980) decay is exclusively mediated by the exchange of the neutral CP-even

Higgs bosons H0 and h0. Therefore, through the τ → µf0(980) channel one is testing

directly the neutral CP-even Higgs sector at all tanβ values.
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Our computation of the BR(τ → µf0(980)) improves the estimate of [98] in several

aspects. First, we demand compatibility with present data on light neutrino masses and

mixings. Second, we do not use the mass insertion approximation, we take into account

the full set of SUSY one-loop diagrams in the LFV vertex τµH (H = h0, H0), and include

the two contributions mediated by the h0 and H0 respectively. Consequently, we explore

the full 5 ≤ tan β ≤ 60 interval. Besides, the hadronization of quark bilinears into the

f0(980) meson is performed here quite differently than in [98], where a simplified quark-

flavour scheme was used to express these bilinears in terms of phenomenological meson

decay constants. We instead pay close attention to the chiral constraints, following the

standard Chiral Perturbation Theory (χPT) [101–103] and the Resonance Chiral The-

ory (RχT) [104–108] to incorporate resonances. Concretely, we follow the description of

f0(980) in [107], where it is defined by a mixing between the octet and singlet components

of the nonet of the scalar resonances which are included in RχT.

In our calculation, we focus on the constrained SUSY-seesaw scenarios described above,

i.e. CMSSM-seesaw and NUHM-seesaw. In this later case the physical Higgs boson

masses, mh0 and mH0 , can be both light, ∼ 100− 250 GeV, indeed close to their present

experimental lower bounds and, therefore, the corresponding Higgs mediated contribution

to the previous LFV processes can be relevant, even for large soft SUSY masses at ∼
O(1 TeV). This is precisely the main interest of the channel τ → µf0(980), namely, the

fact that the decay rates can be sizable even for large SUSY masses, MSUSY ∼ O(1 TeV),

in clear contrast with other competitive tau flavor violating channels like τ → µγ, whose

rates decrease as 1/M2
SUSY and lie below the present experimental bound for such a heavy

SUSY spectrum. In this thesis we will find that these two semileptonic channels, τ →
µf0(980) and τ → µη are indeed very competitive to test the three relevant sectors: SUSY,

Higgs and the neu/sneu sectors.

The present thesis is organized as follows. In Chapter 1 the main aspects of the

MSSM are reviewed paying special attention to the Higgs sector of this model. The

relevance of radiative corrections to the lightest Higgs boson mass in the MSSM is shown,

both analytically and numerically. Afterwards, we describe the main features of two

constrained SUSY models of relevance for our work: CMSSM/mSUGRA and NUHM.

Finally, we comment about the experimental status of the MSSM.

In Chapter 2, we review the need of enlarging the MSSM spectrum to accommodate

neutrino masses. The benefits of the seesaw mechanism for generating neutrino masses

are pointed out. The new ingredients of the MSSM-seesaw with respect to the MSSM,
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which are original of this thesis, will be presented in this chapter. In particular, the

mass spectrum of neutrinos and sneutrinos and their interactions with the neutral Higgs

bosons of the MSSM and the Z gauge boson will be derived, being the relevant ones for

the calculation in Chapter 3 of the radiative effects of heavy Majorana neutrinos and

sneutrinos in the neutral CP even Higgs boson masses. The corresponding Feynman rules

will also be presented.

The following chapters contain the central work of this thesis.

In Chapter 3 we present the calculation of the 1-loop radiative corrections to the

lightest CP even Higgs boson mass from the neutrino/sneutrino sector within the MSSM-

seesaw framework. We work here in general MSSM-seesaw scenarios with no universality

conditions imposed, and explore the full parameter space of the neutrino/sneutrino sector.

We restrict our calculation to the 1 generation case of neutrinos/sneutrinos for simplicity

and to fully understand the effect of just a single Majorana scale, although we know that

at least two right handed neutrinos are needed in order to accommodate neutrino data.

The complete set of one-loop neutrino/sneutrino contributing diagrams will be taken

into account, with both Yukawa and gauge couplings switched on. We also analyze the

results in different renormalization schemes, which will be shown to provide remarkable

differences. In addition to the exact results, we present some analytical and numerical

results in the interesting limit of very large mM as compared to all other scales involved.

Finally, we will discuss to what extent the radiative corrections computed here enter into

the measurable range.

In Chapter 4 we perform a comparative study of the LFV semileptonic decays τ →
µη [95–97] and τ → µf0(980) within constrained MSSM-seesaw scenarios. Firstly, the

generation of flavor mixing in the lepton sector of SUSY-seesaw models is explained. Then

the framework used for the calculation of the mentioned decays is introduced, namely,

the CMSSM-seesaw and the NUHM-seesaw. The numerical predictions of the neutral

Higgs boson masses with respect to the other SUSY parameters is shown. Moreover, the

connection between neutrino physics and LFV is illustrated in different contour plots. The

full one-loop computation of the τµHi vertex is presented. The hadronization of quark

bilinears is performed within the Chiral framework. We further present an approximate

formula of the decays, which will provide very good results as it will be shown in the

numerical estimates of the branching ratios. Finally, a comparison of the predictions with

the experimental bounds will be addressed.

This thesis is based on the results published in the articles, [109], [110] and [111] and
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in the conference proceedings [112], [100], [113], and [114].





Introducción

El Modelo Estándar (SM) [1–5] es una teoŕıa de campos en cuatro dimensiones, basada

en la simetŕıa gauge SU(3)C × SU(2)L × U(1)Y . El SM describe tres de las cuatro inter-

acciones fundamentales, la interacción fuerte (QCD), que mantiene unidos a los quarks

dentro de los hadrones, como pueden ser los protones o neutrones, la interacción electro-

magnética (QED), que es, por ejemplo, la responsable de la propagación de ondas de radio

y las interacciones electrodébiles que desencadenan la desintegración β. La gravitación es

la única fuerza fundamental, que no está inclúıda en el SM, ya que hasta la fecha no se

ha desarrollado ninguna teoŕıa cuántica de la gravedad. Este modelo describe satisfacto-

riamente la mayoŕıa de los fenómenos conocidos y, de hecho, la concordancia/el acuerdo

entre sus predicciones y los datos experimentales es excelente, habiéndose comprobado

algunas veces hasta una precisión mayor del 1%.

El contenido de materia del SM consiste en el sector fermiónico (spin 1/2), leptones

y quarks, que están organizados en una estructura de tres familias. El sector gauge del

SM está formado por los bosones gauge (part́ıculas vectoriales de spin 1), W± and Z,

8 gluones y un fotón, que son intercambiados cuando tiene lugar una interacción débil,

fuerte y electromagnética, respectivamente.

Por argumentos de consistencia, el SM contiene también un doblete escalar complejo,

el doblete de Higgs, que es el único campo escalar fundamental del modelo. La intro-

ducción de este doblete de Higgs a la escala electrodébil, v ∼ O(100) GeV, es necesaria

para preservar la unitariedad en la interacción de cuatro bosones gauge con polarización

longitudinal.

Como consecuencia de la introducción del campo de Higgs, la simetŕıa gauge SU(3)C×
SU(2)L×U(1)Y del Lagrangiano del SM no es una simetra del vaćıo, provocando la ruptura

espontánea de simetŕıa (SSB) del grupo electrodébil en el subgrupo electromagnético:

SU(2)L × U(1)Y → U(1)QED. Este mecanismo de ruptura de la simetŕıa electrodébil

15



16 Introducción

(EWSB), es conocido como el mecanismo de Higgs [6–9] y proporciona un marco teórico

para explicar las masas observadas de los bosones de gaugeW± y Z, a través de los bosones

de Goldstone cargados y neutro que se convierten en las componentes longitudinales de

los bosones gauge. Los fermiones también adquieren su masa gracias al mecanismo de

Higgs a través de los acoplamientos de Yukawa.

A su vez, el mecanismo de Higgs predice la existencia de una part́ıcula f́ısica escalar, el

bosón de Higgs, que todav́ıa no ha sido detectado. Encontrar esta part́ıcula y comprender

la dinámica subyacente de EWSB es, en la actualidad, uno de los retos más importantes

de la f́ısica de part́ıculas, tanto teórica como experimental. La masa del bosón de Higgs

es proporcional al auto acoplamiento cuártico del Higgs, λ. Puesto que λ es un parámetro

desconocido hoy en d́ıa, el valor de la masa del bosón de Higgs del SM no está fijada

por el modelo. No obstante, hay cotas a la masa de esta part́ıcula que provienen tanto

de la teoŕıa, por ejemplo la cota de trivialidad y unitariedad, como de los experimentos,

relacionadas con la contribución del bosón de Higgs a observables que se miden con gran

precisión, como son MZ o MW .

Por ejemplo, la cota superior impuesta por unitariedad perturbativa esmh ≤

√

8π
√
2

3GF
∼

1TeV [10]. Para valores de mh por encima de esta cota las interacciones débiles se con-

vierten en fuertes a la escala del TeV y la teoŕıa de perturbaciones deja de ser válida. De

los datos de precisión electrodébiles, podemos extraer una cota superior sobre mh al 95%

de nivel de confianza, mh ≤ 169 GeV para un ajuste estándar y mh ≤ 143 GeV para un

ajuste completo incluyendo las cotas de búsqueda directa del Higgs en LEP, Tevatron y

el LHC [11].

Respecto a las cotas experimentales, antes del LHC, la mejor información directa sobre

la masa del bosón de Higgs del SM era un ĺımite inferior de 114.4 GeV al 95% de nivel de

confianza, que se hab́ıa obtenido gracias al resultado conjunto de los cuatro experimentos

de LEP [12] y una banda exclúıda desde 158 GeV a 173 GeV, resultado de un estudio

conjunto de los experimentos de Tevatron [13, 14]. En el presente año 2011, el LHC ha

mejorado considerablemente las cotas previas. El experimento ATLAS ha exclúıdo al 95%

de nivel de confianza un amplio abánico de masas del bosón de Higgs en los dos intervalos

de masas, de 155 GeV a 190 GeV y de 295 GeV a 450 GeV [15]. El experimento CMS,

ha exclúıdo el bosón de Higgs del SM al 95% de nivel de confianza en los dos intervalos

149-206 GeV y 300-440 GeV [16]. De hecho, los ĺımites a la masa del bosón de Higgs están

mejorando a gran velocidad en el LHC. Cuando esta tesis estaba a punto de ser finalizada,
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se ha realizado un estudio conjunto ATLAS y CMS muy reciente, donde excluyen, al 95%

de nivel de confianza, un bosón de Higgs como el del SM con una masa comprendida en

el intervalo 144-476 GeV. Este análisis, combinado con la cota inferior de LEP a la masa

del bosón de Higgs, deja una estrecha ventana de valores posibles para el bosón de Higgs

del SM: 114 < mh < 141 GeV al 95% C.L. [17].

Por otra parte, en el SM la masa del bosón de Higgs es inestable frente a correcciones

radiativas, conociéndose esta inestabilidad como el problema de las jerarqúıas. Todos

los acoplamientos de baja enerǵıa y las masas de los fermiones son logaŕıtmicamente

sensibles a la escala de nueva f́ısica Λ. Sin embargo, las masas al cuadrado de los escalares

son cuadráticamente sensibles a Λ. Esto implica que el bosón de Higgs puede recibir

correcciones radiativas enormes si la escala de nueva f́ısica es grande. Por lo tanto, para

obtener un bosón de Higgs ligero de O(100) GeV, compatible con las cotas actuales, debe

haber una cancelación entre la masa a nivel árbol y correcciones de órdenes superiores. Si

Λ es considerablemente más grande de 1 TeV, entonces debe tener lugar una cancelación

”no natural”. Esta cancelación es lo que los f́ısicos denominan ajuste fino y, aunque pueda

ser considerado un prejuicio más que un problema real, muchas teoŕıas se han desarrollado

para evitar esa improbable coincidencia.

Un aspecto muy positivo de ir más allá del nivel árbol es que las correcciones cuánticas

tienen la posibilidad de ser sensibles a part́ıculas pesadas, a las que no se puede acceder

cinemáticamente, a través de sus efectos virtuales en loops (lazos). La importancia de

estos efectos virtuales de part́ıculas pesadas a baja enerǵıa depende fuertemente de las

propiedades de desacoplamiento (decoupling) o no desacoplamiento (non decoupling) y

éstas, a su vez, dependen de las caracteŕısticas de la Teoŕıa Cuántica de Campos (QFT)

considerada. Por ejemplo, en QED y QCD la contribución de una par de fermiones pesados

a la polarización del vaćıo está suprimida a bajas enerǵıas por potencias inversas de la

masa del fermión. Por tanto, a bajas enerǵıas, se pierde la información de los fermiones

pesados.

Este desacoplamiento de campos pesados se sabe que ocurre en teoŕıas con acoplamien-

tos vectoriales y con una simetŕıa gauge exacta [18], donde los efectos generados por las

part́ıculas pesadas pueden ser siempre reabsorbidos en la redefinición de los parámetros a

baja enerǵıa. No obstante, el SM posee una simetŕıa gauge quiral que está rota. Este he-

cho tiene como consecuencia interesante que el teorema del decoupling [18] no es aplicable.

Aśı, por ejemplo, las contribuciones a la polarización del vaćıo inducidas por un quark top

pesado generan correcciones a las autoenerǵıas del W± y Z, que crecen cuadráticamente
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con la masa del top [19]. Es por ello, que un top pesado no se desacopla y sus efectos

cuánticos son relevantes incluso a enerǵıas muy bajas comparadas con su masa.

El test más riguroso del SM proviene de las medidas de precisión electrodébiles del

momento magnético anómalo del electrón y del muón, al = (gl − 2)/2, con l = e, µ.

Las correcciones radiativas que contribuyen a estos momentos magnéticos anómalos se

conocen por completo hasta O(α4), y algunas correcciones de O(α5) han sido calculadas.

De hecho, a través de la medida de ae se determina con la mayor precisión la constante de

estructura fina α−1 = 137.035999084±0.000000051 [20]. El momento magnético anómalo

del muón ha sido medido en el Laboratorio Nacional de Brookhaven con una precisión

de 0.54 partes por millón. El promedio actual de los resultados experimentales está dado

por aµ = (1165920.80 ± 0.63) × 10−9, que difiere de la predicción del SM en 2.2 σ a

2.7 σ [21], ∆aµ = aexpµ − aSMµ = (22.4± 10 to 26.1± 9.4)× 10−10 2. La discrepancia entre

la predicción y el experimento parece un indicio de nueva f́ısica, que pudiese contribuir

con signo positivo a aµ, pero también podŕıa ser explicado por correcciones de órdenes

superiores en QCD, que no han sido calculadas todav́ıa. Éste es el poder de las medidas

de precisión, a medida que la precisión experimental aumenta, la precisión que se pide

a la predicción teórica es mayor. Por lo tanto, el cálculo de correcciones cuánticas de

órdenes superiores a un cierto observable es necesario para comprobar si está de acuerdo

con el valor experimental. Si hay una discrepancia, entonces extensiones del SM pueden

intentar explicarla, pero su espacio de parámetros puede verse muy restringido al intentar

justificar una medida tan precisa.

Los procesos que involucran corrientes neutras con cambio de sabor (FCNC), propor-

cionan una oportunidad excelente para buscar evidencia de nueva f́ısica, ya que en el SM

están prohibidos a nivel árbol y sólo pueden llevarse a cabo a través de diagramas de loop

de órdenes superiores. Por ejemplo, la desintegración Bs → µ+µ− tiene un gran potencial

restrictivo sobre el espacio de parámetros de modelos de f́ısica más allá del SM. El ĺımite

superior de esta desintegración, medido por las colaboraciones de CMS y LHCb [22], está

dada por BR(Bs → µ+µ−)exp < 1.1×10−8 al 95% de nivel de confianza. Sin embargo, se

ha calculado que la predicción del SM es BR(Bs → µ+µ−)SM = (3.6±0.4)×10−9 [23]. En

el SM, esta desintegración está dominada por el diagrama de pingüino del Higgs/Z. Por

tanto, es muy sensible a nueva f́ısica con nuevas interacciones escalares o pseudoescalares,

2La mayor fuente de incertidumbre en la predicción del SM proviene de la contribución hadrónica a

la polarización del vaćıo. El resultado citado arriba está determinado directamente por la aniquilación

de e−e+ en hadrones. Si se tiene también en cuenta la desintegración hadrónica del τ , ahadrµ aumenta y

esto reduce la discrepancia a ∼ 1.6 σ.
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en concreto a cualquier modelo con un sector de Higgs extendido.

Actualmente, la señal más evidente de nueva f́ısica más allá del SM la proporcionan,

no obstante, los datos experimentales de neutrinos, que indican que estos son part́ıculas

masivas y que oscilan en sabor, en contraposición a la predicción del SM. Los experimentos

con neutrinos solares, atmosféricos y de reactores [24–36] han proporcionado pruebas

convincentes de la existencia de oscilaciones de neutrinos [37, 38], transiciones en vuelo

entre los distintos sabores de neutrinos νe, νµ, ντ (antineutrinos ν̄e, ν̄µ, ν̄τ ), causadas por

masas y mezclas no nulas de los neutrinos. También se ha obtenido evidencia de las

oscilaciones de neutrinos muónicos en los experimentos de neutrinos en aceleradores long-

baseline K2K [39] and MINOS [40, 41]. Se deduce de los datos existentes que, al menos 3

de los autoestados de masa de los neutrinos νj, digamos ν1, ν2, ν3, tienen que ser ligeros,

m1,2,3 < 1 eV, y deben tener distintas masas.

Puesto que el SM no contiene masas para los neutrinos, las masas y mezclas de los

neutrinos son señales claras de nueva f́ısica y, por tanto, es necesario un mecanismo que

genere las masas y mezclas de los mismos. La opción más sencilla para incluir las masas

de los neutrinos, es ampliar el SM con la introducción de 3 neutrinos dextrógiros (right-

handed), en paralelismo con el resto de fermiones del SM. Entonces, los neutrinos, como

cualquier otro fermión, adquirirán sus masas a través de las interacciones de Yukawa con

el campo de Higgs, concretamente cuando se produce EWSB y el campo de Higgs adquiere

un valor esperado en el vaćıo. Sin embargo, en contraste con el resto de los fermiones

del SM, los neutrinos dextrógiros tienen la caracteŕıstica peculiar de ser singletes bajo

todos los grupos gauge del SM, y eso implica que los neutrinos con una masa definida νj

pueden ser fermiones de Dirac (con part́ıculas y antipart́ıculas diferentes entre si, ν 6= νc)

o part́ıculas de Majorana (con part́ıculas y antipart́ıculas idénticas, ν = νc ). El resto de

fermiones del SM son part́ıculas de Dirac.

En lo que respecta a la descripcción teórica de las oscilaciones de sabor de los neu-

trinos, la mezcla de los mismos puede ser descrita por una matriz unitaria U , que puede

parametrizarse con tres ángulos, y, con 1 o 3 fases de violación de CP dependiendo de si

los neutrinos pesados νj son part́ıculas de Dirac o Majorana, respectivamente [42, 43]. La

única manera de prohibir los términos de masa de Majorana, es decir, términos de masa

expĺıcitos, es imponer la conservación del número leptónico total, que es una simetŕıa

global, que se conserva accidentalmente en el SM. Establecer si los neutrinos con masa

definida son fermiones de Dirac o Majorana es de fundamental importancia para entender

el origen de las masas y mezclas de los neutrinos y la simetŕıa subyacente a las interac-
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ciones entre los mismos.

La naturaleza Majorana de los neutrinos masivos se manifiesta, por ejemplo, en la

existencia de procesos en los que el número leptónico total L cambia en dos unidades. En

la actualidad, los únicos experimentos factibles capaces de establecer si los neutrinos son

part́ıculas de Majorana, son áquellos que buscan la doble desintegración beta con ausencia

de neutrinos (desintegración-(ββ)0ν): (A,Z) → (A,Z + 2) + e− + e−. La observación de

esta desintegración (ββ)0ν y la medida de la correspondiente vida media con suficiente

precisión, no seŕıa sólo una prueba de que el número leptónico total no se conserva, sino

que, además, podŕıa proporcionar información excepcional sobre i) el espectro de masas

de los neutrinos [44], ii) las fases de Majorana de la matriz de mezcla de los neutrinos

U [45, 46] y iii) la escala absoluta de masas de los neutrinos [44, 46–49].

Durante el resto de esta tesis, trabajaremos con la hipótesis de que los neutrinos

son part́ıculas de Majorana. En este contexto, el mecanismo seesaw de generación de

masas [50, 51] proporciona una explicación natural para la pequeñez de las masas de los

neutrinos. Este mecanismo, nombrado usualmente seesaw tipo I, asume la existencia de

neutrinos dextrógiros con masas de Majorana muy grandes mM comparadas con la escala

electrodébil, MEW ∼ O(100) GeV, acoplados a los neutrinos levógiros a través de los

acoplamientos de Yukawa. Además, las masas de los neutrinos dextrógiros son elegidas

de manera que las masas de los tres neutrinos ligeros, mνi (i = 1, 2, 3), y los tres ángulos

de mezcla de los neutrinos, θ12, θ23, θ13, sean compatibles con los datos actuales [20].

Una propiedad interesante de los neutrinos de Majorana, cuya masa es generada a

través del mecanismo de seesaw, es que los acoplamientos de Yukawa generados a través

de dicho mecanismo pueden ser grandes, Yν ∼ O(1), si mM es grande, digamos mM ∼
(1014 − 1015) GeV, a diferencia de los neutrinos de Dirac, con Yν ∼ O(10−12). En el

primer caso, existe la posibilidad de detectar los neutrinos pesados indirectamente a través

de efectos cuánticos inducidos a observables que son medidos con gran precisión. Sin

embargo, en el caso de neutrinos de Dirac, la contribución de los neutrinos dextrógiros es

despreciable.

Otra caracteŕıstica atractiva del mecanismo de seesaw es que los términos de masa de

Majorana proporcionan la violación de número leptónico que podŕıa explicar bariogénesis

v́ıa leptogénesis. Dentro del marco de leptogénesis, la asimetŕıa bariónica observada en

el Universo (BAU) se explica por la desintegración de los neutrinos dextrógiros que tiene

lugar fuera del equilibrio y que viola CP. La simetŕıa leptonica se convierte en asimetŕıa

bariónica debido a los esfalerones que conservan B-L pero violan B+L. Si los neutrinos
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pesados, Nj (j = 1, 2, 3), tienen un espectro jerárquico, mN1 ≪ mN2 ≪ mN3 la asimetŕıa

bariónica observada puede generarse, siempre que la masa del neutrino mas ligero sea tal

que mN1
>∼ 109 GeV [52].

Sin embargo, en el SM extendido con tres neutrinos dextrógiros, la existencia de dos

escalas de masas separadas, la escala electrodébil MEW y la escala de Majorana mM ,

que normalmente se elige en el intervalo, 1010 − 1015 GeV, da lugar a un problema de

las jerarqúıas severo. Por tanto, es necesaria una propuesta de nueva f́ısica más allá del

SM que pueda resolver este conflicto. Una de las soluciones más atractivas al problema

de las jerarqúıas consiste en la introducción de una nueva simetŕıa, denominada super-

simetŕıa (SUSY) [53–55]. Esta simetŕıa relaciona bosones y fermiones de tal manera que

la contribución de las nuevas part́ıculas SUSY cancela las contribuciones cuadráticas a las

masas de los escalares al cuadrado, estabilizando por tanto el valor de la masa del Higgs

a la escala electrodébil. Por otra parte cualquier extensión del SM puede incorporar a su

vez el mecanismo de seesaw para generar las masas de los neutrinos. De esta forma, los

modelos SUSY-seesaw acomodan de forma satisfactoria los datos experimentales de los

neutrinos y, al mismo tiempo, no sufren el problema de las jerarqúıas.

El Modelo Standard Supersimetrico Minimo (MSSM) [56–58] es la version super-

simétrica mı́nima del SM, que incorpora un compañero supersimétrico por cada part́ıcula

del SM con la misma masa y números cuánticos pero con un spin que difiere en un 1/2.

Asi, un nuevo compañero bosónico se asigna a cada fermión del SM y, de la misma forma,

se asigna un nuevo compañero fermiónico SUSY a cada bosón del SM. Este modelo es

llamado mı́nimo, porque tiene el mı́nimo numero de supersimetŕıas posibles (N = 1) y,

por tanto, el mı́nimo contenido de part́ıculas SUSY. Con el fin de implementar el mecan-

ismo de seesaw dentro del MSSM, se introducen, además del espectro usual del MSSM,

tres neutrinos dextrógiros y los tres supercompañeros correspondientes, los sneutrinos.

No obstante, es sabido que la supersimetŕıa no puede ser una simetŕıa exacta del

espectro de part́ıculas observado y, por tanto, debe estar rota en la naturaleza, puesto

que hasta la fecha no se han encontrado part́ıculas SUSY en los experimentos [20]. A

pesar de que el mecanismo de ruptura de SUSY no se conoce todav́ıa, si no queremos

estropear la cancelación de las divergencias cuadráticas, los términos de ruptura de SUSY

deben ser suaves [59]. Adicionalmente tienen que proporcionar masas apropiadas a las

part́ıculas SUSY de manera que sean más pesadas que sus compañeras del SM.

El MSSM y el MSSM-seesaw tiene un sector de Higgs extendido que contiene cinco

bosones de Higgs fisicos: dos part́ıculas cargadas H±, una part́ıcula neutra impar bajo
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CP A0 y dos part́ıculas neutras pares bajo CP , h0 y H0. La masa del bosón de Higgs

más ligero, mh0 , no es un parámetro libre. A diferencia del Higgs del SM, mh0 tiene

una cota superior a nivel árbol dada por MZ , pero recibe correcciones de órdenes supe-

riores provenientes de loops de part́ıculas del SM y sus supercompañeras, que dependen

logaŕıtmicamente de las masas de ruptura de SUSY suave y aumentan el valor a nivel

árbol. Las correcciones principales a mh0 en el MSSM vienen del sector de tops/stops

porque los acoplamientos de Yukawa son proporcionales a las masas de los fermiones cor-

respondientes, y la masa del top es mayor que ninguna otra masa de los fermiones del

SM. La cota superior de mh0 se desplaza entonces por encima de MZ y el ĺımite preciso

depende de la elección espećıfica de los parámetros suaves. Para masas SUSY suaves

≤ 2TeV la cota superior de mh0 es ∼ 135 GeV [60–62].

Como se puede apreciar, el MSSM predice una masa del bosón de Higgs relativamente

ligera, cerca de la escala EW , lo que la convierte en una teoŕıa con interés fenomenológico

porque sus predicciones pueden ser descartadas o corroboradas en los experimentos y, en

concreto, en el LHC. Muchas zonas de la región de masas del Higgs han sido ya exclúıdas,

como se mostró previamente para el caso del bosón de Higgs del SM. En la región del

espacio de parametros donde mA0 ≫MZ y las masas de las part́ıculas SUSY son grandes

(el ĺımite del decoupling), las tasas de desintegración del bosón de Higgs más ligero h0 en

part́ıculas del SM son prácticamente indistinguibles de las del bosón de Higgs del SM y,

por tanto, las áreas de exclusión del hSM pueden aplicarse al h0. No obstante, la zona

de masa ligera del Higgs no ha sido probada todav́ıa en el LHC, porque en esta zona el

canal de desintegración más prometedor es el canal a dos fotones, que necesita mucha

luminosidad ya que su tasa de desintegración es baja comparada con otros canales (bb̄,

τ τ̄ ), que sin embargo, tienen más ruido de fondo y en los que resulta más dif́ıcil, por tanto,

separar la señal del ruido.

Con el fin de reducir el números de parámetros libres introducidos por los términos

de rupturas suave de SUSY normalmente se asumen modelos SUSY restringidos. Por

ejemplo, el conocido modelo estándar supersimétrico restringido (CMSSM) minimiza el

numero de estos parámetros asumiendo valores universales de los mismos a la escala

de unificación gauge, quedando sólo cinco parámetros libres: la masa escalar universal

suave, M0, la masa gaugino universal suave, M1/2, el acoplamiento trilineal universal, A0,

el cociente entre lo valores esperados de los dos Higgses, tanβ, y el signo del término de

masas de Higgsino, sign(µ). s Una interesante desviación del CMSSM se puede obtener

relajando las condiciones de universalidad para las masas de ruptura suave del sector
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de Higgs, MH1 y MH2 , de manera que sean independientes de la masa escalar universal

suave M0. Este MSSM restringido parcialmente tiene siete parámetros libres, MH1 , MH2 ,

M0, M1/2, A0, tan β y sign(µ), y es conocido normalmente como el escenario de Masas

del Higgs No Universales (NUHM) [64]. La versión ampliada del CMSSM y del NUHM

(que incluye neutrinos y sneutrinos dextrógiros) será designada como CMSSM-seesaw y

NUHM-seesaw respectivamente.

Ninguna part́ıcula SUSY ha sido detectada todav́ıa y el LHC al igual que Tevatrón

están poniendo cotas al espacio de parámetros de modelos SUSY restringidos, en partic-

ular el CMSSM. El detector CMS ha exclúıdo masas de squarks y gluinos por debajo de

∼ 1 TeV para un valor común de la masa de los escalares a la escala GUT de M0 < 0.5

TeV y para valores concretos del resto de parámetros del modelo [65, 66]. De manera

complemetaria a la búsqueda directa de part́ıculas SUSY, el estudio de los efectos indi-

rectos de dichas part́ıculas, a través de correcciones radiativas, a observables de precisión,

es una herramienta muy útil para comprobar si SUSY es compatible con los datos y, por

tanto, un buen candidato a nueva f́ısica, o no, y entonces SUSY o alguna región de su

espacio de parametros puede ser descartada.

Esta tesis se ha centrado en el estudio de algunos de los efectos indirectos de los

neutrinos de Majorana y sus compaeros supersimétricos, los sneutrinos, a través de sus

correcciones radiativas a observables de baja enerǵıa que esta previsto sean medidos con

gran precisión y que tienen capacidad de acceder al sector de Higgs. Concretamente, nos

hemos centrado en dos de los efectos de loop más relevantes, a saber: 1) las correcciones

radiativas a la masa del bosón de Higgs más ligero del MSSM-seesaw, debidas a los

neutrinos de Majorana y sus compañeros SUSY, los sneutrinos, y, 2) las contribuciones

inducidas por los neutrinos de Majorana y los sneutrinos a desintegraciones con violación

de sabor leptónico (LFV) mediadas por el Higgs en modelos SUSY-seesaw restringidos.

A continuación introduciremos brevemente ambos trabajos.

En la primera parte de esta tesis estudiamos los efectos indirectos de los neutrinos

de Majorana y sneutrinos en la f́ısica del Higgs, a través de las correcciones radiativas a

las masas de los bosones de Higgs del MSSM. La motivación principal de este estudio es

que esperamos que estos efectos sean relevantes para masas de Majorana suficientemente

grandes, mM ≫ mEW , debido al gran tamaño de los acoplamientos de los neutrinos

involucrados, Yν ∼ O(1). De hecho, en Ref. [67] las correcciones a un loop a la masa del

bosón de Higgs del MSSM más ligero, Mh, fueron calculadas en un escenario diferente,

conocido como split SUSY, haciendo uso de varias aproximaciones, y ya encontraron
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correcciones grandes y negativas provenientes del sector de neutrinos y sneutrinos. Aqúı

nosotros presentaremos un cálculo diagramático completo a un loop de las contribuciones

de neutrinos/sneutrinos a Mh y trabajaremos en escenerios genéricos MSSM-seesaw sin

condiciones de universalidad impuestas al sector de neutrinos y sneutrinos.

Adicionalmente, nos centraremos particularmente en las caracteŕısticas de estas cor-

recciones con respecto al asunto del decoupling o non decoupling de los neutrinos pesados

de Majorana y los sneutrinos en la f́ısica del Higgs. Esto nos permitirá averiguar los val-

ores interesantes de la masa de Majorana donde el tamaño de las correcciones a la masa

del Higgs son susceptibles de ser medidas experimentalmente. Aunque no esté comple-

tamente determinada, la precisión experimental esperada en la medida de Mh constituye

un gran reto. La precisión esperada en el LHC sobre la medida de un bosón de Higgs

como el del SM, es de ∼ 200 MeV [68–71], mientras que la precisión esperada en el ILC

podŕıa alcanzar el nivel de 50 MeV [72–75]. Por otro lado, la precisión actual en el valor

predicho teóricamente de la masa corregida del bosón de Higgs del MSSM, se estima que

sea ∼ 2 − 3 GeV [76]. Cualquier corrección comparable o más grande que la precisión

actual, debeŕıa tenerse en cuenta. En esta tesis mostraremos que las correcciones de los

neutrinos de Majorana y sus compañeros SUSY pueden ser, de hecho, de este orden o

incluso mayor.

La segunda parte de esta tesis está dedicada al estudio de los efectos indirectos de

los neutrinos de Majorana y sneutrinos en procesos con violación de sabor leptónico y

que pueden ser mediados por bosones de Higgs. En el contexto de búsquedas indirectas,

los procesos con violación de sabor leptónico (LFV) proporcionan una de las ventanas

más importantes para probar extensiones superśımetricas del SM y tambien el sector de

neutrinos más allá del SM [77–83]. La razón subyacente es que las interacciones LFV

están prohibidas en el SM y, por tanto, el SM predice tasas nulas para estos observables

LFV. Cuando se extiende el SM para incluir las masas y mezclas de los neutrinos a través

de un mecanismo seesaw tipo I sin SUSY, existen procesos LFV a través de loops de

neutrinos, pero están extremadamente suprimidos debido a las pequeñas masas de los

neutrinos ligeros. Sin embargo, esto puede no ser aśı en otros modelos seesaw (see for

instance [84]).

En el marco teórico del MSSM-seesaw la situación es completamente diferente. Ade-

mas de las contribuciones del SM-seesaw, supersimetŕıa proporciona nuevas fuentes direc-

tas de violación de sabor, a saber, la posible presencia de términos suaves no diagonales en

las matrices de masa de los sleptones y en los acoplamientos trilineales a bajas energias.
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En la práctica, la violación de sabor se origina por el desalineamiento entre las matri-

ces de masa de fermiones y sfermiones, que no pueden diagonalizarse simultaneamente.

Incluso si las masas de los escalares son universales a alta enerǵıa, la mezcla de sabor

en los acoplamientos de Yukawa de los neutrinos de Majorana induce, mediante efectos

de renormalización, mezcla se sabor en las masas de los sleptones a baja enerǵıa y estos

sleptones, a su vez, cuando se propagan en loops pueden, por ello, generar grandes tasas

en procesos LFV [77–81].

El proceso LFV que es más sensible a los acoplamientos de Yukawa del neutrino,

en un contexto SUSY-seesaw, es µ → eγ, donde la sensibilidad experimental actual es

2.4 × 10−12 [85]. Tambien la conversión µ − e en nucleos pesados, con cotas actuales

de CR(µ − e,Ti) < 4.3 × 10−12 [86] y CR(µ − e,Au) < 7 × 10−13) [87], y µ → 3e con

BR(µ→ 3e) < 1.0× 10−12 [88], son bastantes sensibles a LFV en el sector µ− e.

En el sector τ − µ el ĺımite superior de la desintegración τ → µγ es ahora fijado a

4.4 × 10−8 dado por la colaboración de BABAR [89]. Adicionalmente, la sensibilidad a

LFV in τ → 3µ ha mejorado notablemente en los últimos años. Las cotas superiores

actuales de las colaboraciones de BELLE y BABAR son 2.1× 10−8 [90] y 3.3× 10−8 [89],

respectivamente. En los últimos años las desintegraciones semileptónicas del τ han llegado

a ser competitivas con las desintegraciones leptónicas puras [91, 92].

En esta tesis hemos llevado a cabo un estudio comparativo de las desintegraciones

semileptónicas τ → µf0(980) y τ → µη. Ambos canales tienen cotas superiores com-

petitivas BR( τ → µη) < 2.3 × 10−8 [93] y BR( τ → µf0(980)) < 3.4 × 10−8 [94]. La

ventaja del canal τ → µη [95–97] y τ → µf0(980) [98] sobre el canal τ → µγ es su po-

tencial sensibilidad al sector de Higgs. Es sabido que dentro de los modelos SUSY-seeaw

τ → µγ no es sensible al sector de Higgs a nivel de un loop. Por otro lado τ → 3µ es

sensible al sector de Higgs a través de diagramas de pinguino a un loop [99]. Sin em-

bargo, la contribución mediada por el Higgs en este canal τ → 3µ es superada por la

contribución de los diagramas de pingüinos del γ en la mayoŕıa de los escenarios MSSM-

seesaw restringidos. Por tanto para conseguir cierta sensibilidad al sector de Higgs se

deben considerar desintegraciones semileptónicas τ [97]. Los dos canales semileptónicos

τ → µη y τ → µf0(980) no tienen contribucion mediada por γ y, por tanto, tienen ac-

ceso directo al sector de Higgs. Mientras el canal τ → µη puede ser mediado por un

bosón Z y un boson de Higgs impar bajo CP A0, y está dominado por el A0 solo a gran

tanβ & 20 [97, 100], la desintegración τ → µf0(980) está mediada exclusivamente por el

intercambio de los bosones de Higgs neutros pares bajo CP H0 an h0. En consecuencia
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mediante el canal τ → µf0(980) se está probando directamente el sector de Higgs neu-

tro par bajo CP para cualquier valor de tan β. Nuestro cálculo del BR(τ → µf0(980))

mejora la estimación de [98] en distintos aspectos. En primer lugar, nosotros exigimos

compatibilidad con los datos actuales de las masas y mezclas de los neutrinos ligeros. En

segundo lugar, no usamos la aproximación de la inserción de masa, tenemos en cuenta el

conjunto completo de diagramas a un loop de SUSY en el vértice LFV τµH (H = h0, H0),

e incluimos las dos contribuciones mediadas h0 y H0, respectivamente. De este modo, ex-

ploramos todo el intervalo 5 ≤ tan β ≤ 60. Además, la hadronización de los bilineales

de quarks en el mesón f0(980), se realiza aqúı de forma diferente que en [98], donde se

usa un esquema simplificado de sabor de quark para expresar estos bilineales en términos

de constantes de desintegración del mesón fenomenológicas. Nosotros al contrario cen-

tramos nuestra atención en las restriciones quirales, siguiendo la Teoria de Perturbaciones

Quiral (χPT) [101–103] estándar y la Teoria de Resonancias Quiral (RχT) [104–108] para

incorporar las resonancias. Concretamente seguimos la descripción de f0(980) de [107],

donde se define a través de la mezcla de las componentes singlete y octete del nonete de

resonancias escalares que están inclúıdas en RχT.

En nuestro cálculo, nos centramos en dos escenarios SUSY-seesaw restringidos de-

scritos previamente, a saber, CMSSM-seesaw y MSSM-seesaw. En el último caso las

masas f́ısicas de los bosones de Higgs mh0 y mH0 , pueden ser ligeras, ∼ 100 − 250 GeV,

de hecho cerca de los ĺımites inferiores experimentales y, por tanto, la correspondiente

contribución mediada por el Higgs a los procesos LFV previos puede ser relevante, incluso

para masas SUSY suaves grandes ∼ O(1 TeV). Éste es precisamente el interés principal

del canal τ → µf0(980), a saber, el hecho de que las tasas de desintegracion pueden ser

considerables incluso para masas SUSY grandes, MSUSY ∼ O(1 TeV), en contraste con

otros canales LFV competitivos, como τ → µγ, cuyas tasas de desintegración decrecen

como 1/M2
SUSY y se encuentran por debajo de la cota experimental actual para un espec-

tro SUSY tan pesado. En esta tesis mostraremos que estos dos canales semileptónicos

τ → µf0(980) y τ → µη son, de hecho, muy competitivos para testar los tres sectores

relevantes: SUSY, Higgs y el sector neu/sneu.

Esta tesis esta organizada como sigue. En el Caṕıtulo 1 los aspectos principales del

MSSM son revisados poniendo especial atención en el sector de Higgs de este modelo.

Se muestra la relevancia de las correcciones radiativas a la masa del bosón de Higgs más

ligero en el MSSM, tanto anaĺıtica como numéricamente. A continuación se describen

las caracteŕısticas principales de dos modelos SUSY restringidos que serán relevantes
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para nuestro trabajo: CMSSM/mSUGRA y NUHM. Finalmente comentamos la situación

experimental del MSSM.

En el Caṕıtulo 2 repasamos la necesidad de ampliar el espectro del MSSM para aco-

modar las masas de los neutrinos. Los beneficios del mecanismos de seesaw para generar

las masas de los neutrinos son remarcados. Los nuevos ingredientes del MSSM-seesaw

con respecto al MSSM, que son originales de esta tesis, son presentados. En particular el

espectro de masas de neutrinos y sneutrinos y sus interaciones con los bosones de Higgs

neutros del MSSM y el bosón gauge Z serán derivados, ya que son los relevantes para los

calculos del Caṕıtulo 3 de los efectos radiativos de neutrinos de Majorana y sneutrinos en

las masas de los bosones de Higgs neutros pares bajo CP . Las reglas de Feynman tambien

seran mostradas.

Los siguientes Caṕıtulos contienen el trabajo central de esta tesis.

En el Caṕıtulo 3 presentamos el cálculo de las correciones radiativas a un loop a la masa

del bosón de Higgs CP más ligero provenientes del sector de neutrinos y sneutrinos den-

tro del marco del MSSM-seesaw. Trabajamos en escenarios MSSM-seesaw genéricos sin

condiciones de universalidad impuestas, y exploramos el espacio de parámetros completo

del sector neutrino/sneutrino. Restringimos nuestro cálculo al caso de una generacion

de neutrinos/sneutrinos por simplicidad y para entender en profundidad el efecto de una

única escala de Majorana, aunque sabemos que al menos dos neutrinos dextrógiros son

necesarios para acomodar los datos de los neutrinos. El conjunto completo de diagra-

mas a un loop de neutrinos/sneutrinos serán tenidos en cuenta con los acoplamientos

de Yukawa y gauge activos. Tambien analizamos los resultados en distintos esquemas

de renormalización, que mostraran grandes diferencias. Adicionalmente a los resultados

exactos presentamos algunos resultados anaĺıticos y numéricos en el ĺımite de mM en com-

paración con el resto de escalas involucradas. Finalmente, discutiremos hasta que punto

las correciones radiativas calculadas aqúı entran en el rango que puede ser medido.

En el Caṕıtulo 4 realizamos un estudio comparativo de las desintegraciones LFV

semileptonicas τ → µη [95–97] y τ → µf0(980) en escenarios MSSM-seesaw restringidos.

En primer lugar la generación de mezcla de sabor en el sector leptónico de los mode-

los SUSY-seesaw es explicada. A continuación el marco teórico utilizado para nuestro

cálculo de las mencionadas desintegraciones es introducido, a saber, el CMSSM-seesaw y

el NUHM-seesaw. Las prediciones numéricas de las masas de los bosones de Higgs neutros

con respecto al resto de parámetros SUSY son presentadas. Por otra parte, la conexión

entre la f́ısica de neutrinos y LFV es ilustrada en diferentes diagramas de contorno. El
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cálculo completo a un loop del vértice τµHi es explicado. La hadronización de bilineales

de quarks es realizada dentro del marco teórico Quiral. Adicionalmente, presentamos una

fórmula aproximada de las desintegraciones, que proporcionará muy buenos resultados

como se mostrará en las estimaciones numéricas de las tasas de desintegración. Final-

mente se realizará una comparación entre las predicciones con los ĺımites experimentales.

Esta tesis está basada en los resultados publicados en los art́ıculos, [109], [110] and [111]

y en las presentaciones de las conferencias [112], [100], [113], y [114].



Chapter 1

SUSY models

In this chapter some of the main features of the Minimal Supersymmetric Standard Model

(MSSM) are briefly reviewed. Moreover, the interactions and the particle content of the

MSSM are described paying special attention to the Higgs sector of this model. The

relevance of radiative corrections to the lightest Higgs boson mass in the MSSM is shown,

both analytically and numerically. Afterwards, we describe the main features of two

constrained SUSY models of relevance for our work: CMSSM/mSUGRA and NUHM.

Finally, we comment about the experimental status of the MSSM.

1.1 The Minimal Supersymmetric Standard Model

Supersymmetry (SUSY) is a symmetry that relates boson and fermion fiels and it is

generated by charges transforming like spinors under the Lorentz group:

Q|fermion〉 = |boson〉 Q|boson〉 = |fermion〉 (1.1)

These spinorial charges give rise to a closed system of commutation-anticommutation

relations, which may be called a ”pseudo Lie algebra”. It turns out that the energy-

momentum operators appear among the elements of this pseudo Lie algebra, so that in

some sense a fusion between internal and geometric symmetries occurs. The possible

forms for such symmetries in an interacting quantum field theory are highly restricted

by the Haag-Lopuszanski-Sohnius extension of the Coleman-Mandula theorem [115]. As

a conclusion from these works [115], Supersymmetry is the only possible symmetry in a

29
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non trivial interacting quantum field theory that relates a spacetime symmetry (Lorentz

symmetry) with an internal symmetry. In theories that contain chiral fermions, like the

Standard Model (SM), this theorem implies that the generators Q and Q† must satisfy

the followig algebra of anticommutation and commutation relations with the schematic

form:

{Q,Q†} = P µ (1.2)

{Q,Q} = {Q†, Q†} = 0 (1.3)

{P µ, Q} = {P µ, Q†} = 0 (1.4)

where P µ is the four-momentum generator of spacetime translations. The single-particle

states of a supersymmetric theory fall into irreducible representations of the supersym-

metry algebra, called supermultiplets. Each supermultiplet contains both fermion and

boson states, which are commonly known as superpartners of each other. Each of the

partners of the supermultiplet have the same eigenvalues of the momentum and therefore

equal masses. Moreover, the number of bosonic and fermionic degrees of freedom is the

same in each supermultiplet.

nB = nF (1.5)

The simplest possible supermultiplet consistent with Eq. (1.5) contains a fermion with

two degrees of freedom and two scalar particles, with one degree of freedom each or,

equivalently, one complex scalar particle. The next simplest supermultiplet contains a

spin-1 vector boson and its superpartners are fermions of spin 1/2 because if they had spin

3/2 the theory would not be renormalizable. Gauge bosons as well as their superpartners,

called gauginos, must transform as the adjoint representation of the gauge group.

The Minimal Supersymmetric Standard Model (MSSM) [56–58] is the minimal super-

symmetric extension of the Standard Model, where minimal means that it contains the

minimum number of supersymmetry generators Q and Q† and it contains the minimum

number of superfields. In principle, one could introduce extra copies of SUSY generators

but it has been proven that four-dimensional field theories cannot allow for chiral fermions

or parity violation as observed in the Standard Model. Therefore, the MSSM is the most

realistic SUSY extension of the SM.

In order to supersymmetrize the SM one needs to introduce a superpartner for each

of the particles of the SM, that has the same quantum numbers and mass but with a spin

differing in 1/2. Each fermion has its corresponding scalar partner, the sfermion, one for

the left-handed fermion and another one for the right-handed fermion, each gauge boson
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has its fermionic partner, the gaugino, and each scalar Higgs particle has its fermionic

partner, the Higgsino. One doubles the particle content of the SM. Moreover, one needs

to extend the Higgs sector of the SM. An extra supermultiplet with its scalar Higgs and

the corresponding Higgsino superpartner is needed for two reasons:

• In the supersymmmetrized version of the SM, the introduction of an extra chiral

fermion, the Higgsino, contributes to the SU(2) × U(1) gauge anomaly making it

inconsistent as a quantum theory. All the fermions of the theory contribute to

the anomaly through the fermion triangle vertex. The conditions for cancellation

of gauge anomalies include Tr[T 2
3 Y ] = Tr[Y 3] = 0, where Y and T3 are the weak

hypercharge and the third component of the weak isospin, respectively, in a normal-

ization where the ordinary electric charge is Q = T3+Y . The traces run over all of

the left-handed Weyl fermionic degrees of freedom in the theory . In the SM these

anomalies cancel by the known quarks and leptons. However, the introduction of

the extra chiral fermion, the Higgsino, contributes to the anomaly and, in order to

cancel it, we need another Higgs superfield with opposite hypercharge [116].

• Supersymmetry requires that the superpotential be an analytic function of the su-

perfields. Therefore it cannot contain the hermitian conjugate of a Higgs superfield

and it is then not possible to give masses to both up and down-type quarks without

introducing a second Higgs doublet superfield. Here Ĥ1 will be responsible for the

masses of the down-type fermions and Ĥ2 the corresponding one for the up-type

fermions.

As a consequence of SUSY implying pairs of bosons and fermions with the same

mass, their couplings to the Higgs boson are related and their corresponding radiative

corrections to the Higgs mass cancel at all orders in perturbation theory. Consequently,

the hierarchy problem disappears. As explained in the introduction, the SM suffers of

a hierarchy problem related to the fact that the Higgs mass is sensitive to the scale of

the new physics introduced. At one loop order in perturbation theory, the radiative

corrections of fermions, with mass mF and coupling to the Higgs boson with a term in the

Lagrangian −δFHf̄f , to the self-energy of the Higgs have a quadratic and a logarithmic

dependence on the cutoff Λ:

δm2
H =

|δF |2
16π2

(

−2Λ2 + 6m2
F log

Λ

mF

)

+ .... (1.6)

If this scale Λ is replaced by the Planck mass MP , the resulting correction to the Higgs

mass is 30 orders of magnitude larger than the tree level SM Higgs mass, which leads to
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the required fine tuning to fulfill the upper bound of around 1 TeV on the Higgs mass in

order to preserve unitarity and to be in agreement with the SM precision measurements.

Supersymmetry solves this problem because the quadratic and logarithmic dependences

in the cutoff Λ, are canceled due to the fact that one introduces scalar partners of the

SM fermions with the same quantum numbers and mass and equal number of degrees of

freedom. The contribution of each scalar partner S with mass mS which couples to the

Higgs boson with a Lagrangian term −δS |H|2|S|2 is given by:

δm2
H =

δS
16π2

(

Λ2 − 2m2
S log

Λ

mS

)

+ ... . (1.7)

The cancellation is then produced due to relation implied by SUSY, δS = |δF |2, so that

the fermions and their superpartners have the same masses. This cancellation of radiative

corrections happens at all orders of perturbation theory.

As no SUSY particles have been observed so far, it is clear that supersymmetry must

be broken. Nevertheless, if we want supersymmetry to continue being a good candidate

to solve the hierarchy problem, the SUSY breaking part of the Lagrangian must be soft.

With this requirement the cancellation of quadratic divergences is not spoiled but the

cancellation of logarithmic divergences is no longer achieved. These logarithmic correc-

tions to the Higgs mass grow with the masses of the sfermions. This is one of the most

convincing arguments in favor of low energy superparticles, with masses MS ≤ O(1 TeV)

such that they do not lead to too large logarithmic radiative corrections to the Higgs mass.

Although the SUSY breaking mechanism is not known, this mechanism must give masses

to the superpartners of the SM particles, as well as allowing the electroweak symmetry

breaking, that is not achieved in an exact SUSY version of the SM because the minimum

of the Higgs potential occurs at H1 = H2 = 0.

There is one additional property of the MSSM which makes it be less constraint than

the SM. In the SM the most general, invariant under SU(3)C × SU(2)L × U(1)Y gauge

symmetry and renormalizable Lagrangian, preserves accidentally global baryon (B) and

lepton number (L). However, this is not the case in the MSSM and, a priori, terms that

violate lepton and baryon number in one unit are allowed. The possible existence of such

terms is very constraint since, up to date, the corresponding B and L violating processes

have not been seen experimentally. The most obvious experimental constraint comes from

the non-observation of proton decay, which would violate both B and L by 1 unit. The

decay time of the proton into lepton+meson final states is known experimentally to be in

excess of 1032 years. Nevertheless, squarks could mediate disastrously rapid proton decay
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if ∆B = 1 and ∆L = 1 interactions were allowed, for instance in the decay p → e+π0.

The usual method to preserve these global symmetries is the, ad hoc, introduction of

a discrete symmetry called R-parity. The R-parity is a multiplicative quantum number

defined in terms of the Baryonic and Leptonic numbers, B and L, and the Spin, S, as

R= (−1)3(B−L)+2S . This leads to R = 1 for SM and Higgs particles and R= −1 for their

SUSY partners. Besides, the fact that R-parity must be conserved implies that SUSY

particles can only be produced in pairs from SM particles and also that the lightest SUSY

particle must be stable. This stable particle is a suitable candidate for dark matter (DM)

and gives SUSY the possibility of explaining the particle content of this non-baryonic DM.

1.2 Interactions and particle content of the MSSM

The following part of this MSSM section will be devoted to the description of the MSSM

particle content and interactions, both the SUSY preserving and the soft SUSY breaking

ones. For the later ones, we will assume a generic form without inquiring into its origins.

Special interest will be devoted to parameters of the Higgs sector, both at tree level and

at higher orders.

The SUSY preserving interactions, and in particular the Yukawa interactions between

Higgs particles and fermions are described by the superpotencial W . The superpotential

is an holomorphic function of the scalar fields and the SUSY preserving interaction La-

grangian is derived from it. Therefore, it contains all the information about the SUSY

interactions. If one assumes that R symmetry is preserved the superpotential is given by

W = ǫij

(

Y ab
u Ĥi

2 Q̂
a
j Û

b − Y ab
d Ĥi

1 Q̂
a
j D̂

b − Y ab
l Ĥi

1 L̂
a
j R̂

b + µĤi
1Ĥj

2

)

, (1.8)

where Yu, Yd and Yl are generically 3×3 Yukawa matrices in flavor space. The indices a, b

represent generation indices and ǫ21 = −ǫ12 = 1. The superfield Q̂ contains the SU(2)

quark doublet, (uL, dL) and its superpartner, the SU(2) doublet of squarks, (ũL, d̃L).

The superfield L̂ represents the SU(2) lepton doublet, (νL, lL), and the corresponding

slepton doublet, (ν̃L, l̃L). On the other hand, the superfields Û , D̂ and R̂ contain the

SU(2) fermion singlets and sfermion singlets, {ũ∗R, (uR)c}, {d̃∗R, (dR)c} and {l̃∗R, (lR)c},
respectively. Here and in the following, f c denotes the particle-antiparticle conjugate (c-

conjugate in short) of a fermion f
(

f c = C f̄
T
)

and f̃ ∗ denotes the complex conjugate of

the sfermion f̃ . Ĥ1 and Ĥ2 represent the two Higgs superfields that are needed to give
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masses to both, down-type fermions/sfermions and up-type fermions/sfermions, respec-

tively. The µ term is the supersymmetric version of the Higgs boson mass in the Standard

Model. The scalar components of the doublet fields H1 and H2 are decomposed in the

following way:

H1 =

(

H0
1

H−
1

)

=

(

v1 +
1√
2
(φ0

1 − iχ0
1)

−φ−
1

)

,

H2 =

(

H+
2

H0
2

)

=

(

φ+
2

v2 +
1√
2
(φ0

2 + iχ0
2)

)

. (1.9)

After the electroweak symmetry breaking, the Yukawa couplings are related to the

physical masses. For instance, in the one generation case these relations are

Yu =
gmu√

2MW sin β
=
mu

v2
,

Yd =
gmd√

2MW cos β
=
md

v1
,

Yl =
gml√

2MW cos β
=
ml

v1
, (1.10)

where

tan β ≡ v2
v1
, (1.11)

〈H0
1〉 = v1 = v cos β, 〈H0

2〉 = v2 = v sin β , (1.12)

and v is set by the MW and MZ values as in the SM

v2 =
2M2

Z

g2 + g′2
=

2M2
W

g2
. (1.13)

The fact that there are two doublets, instead of one, introduces the extra parameter tanβ.

The SUSY preserving part of the scalar potential contains two terms, the F and the

D terms:

V (φ, φ∗) = VF + VD . (1.14)

The F-terms are fixed by the Yukawa interactions and by the fermion masses, and they

are derived from the superpotential using:

VF = F ∗
i Fi =

∑

i

(

∂W

∂φi

)∗(
∂W

∂φi

)

=
∑

i

∣

∣

∣

∣

∂W

∂φi

∣

∣

∣

∣

2

, (1.15)



Interactions and particle content of the MSSM 35

where φ are the scalar components of the corresponding superfield. On the other hand,

the D-terms are fixed by the gauge interactions according to

VD =
1

2

∑

a

DaDa =
1

2

∑

a

g2a (φ
∗T aφ)2 , (1.16)

where ga accounts for the different gauge couplings and T a for the generator of the cor-

responding gauge group. Since V (φ, φ∗) is a sum of squares, it is always greater than

or equal to zero for every field configuration. It is an interesting and unique feature of

supersymmetric theories that the scalar potential is completely determined by the other

interactions in the theory.

By examining the Higgs boson contributions to the scalar potential we can check that

V Higgs
SUSY ≥ 0 which implies that the minimum of the potential is at H1 = H2 = 0 and the

SU(2)×U(1) gauge symmetry remains unbroken.

V Higgs
SUSY = |µ|2

(

|H1|2 + |H2|2
)

+
1

8
(g2 + g′

2
)
(

|H1|2 − |H2|2
)2

+
1

2
g2|H∗

1H2|2 , (1.17)

In order to complete the description of the MSSM model we have to add all possible

explicit soft-supersymmetry breaking terms to the model. The allowable terms have been

derived in [59]. The relevant terms for the scalar potential fall into two classes. The first

class consists of all possible dimension-two terms consistent with gauge invariance. The

second class consists of those gauge invariant dimension-three terms which do not mix

the scalar fields with their complex conjugates. These terms correspond in form precisely

to the cubic terms of the superpotential plus their hermitian conjugates. Following these

rules, we enumerate all possible soft terms below that respect R-parity:

Vsoft = m2
1|H1|2 +m2

2|H2|2 −m2
12

(

ǫijHi
1Hj

2 + h.c.
)

+ m2
Q̃,q

[q̃∗Lq̃L] +m2
L̃, l

[

l̃∗Ll̃L

]

+ m2
Ũ ,u
ũ∗RũR +m2

Ũ ,c
c̃∗Rc̃R +m2

Ũ ,t
t̃∗Rt̃R

+ m2
D̃,d
d̃∗Rd̃R +m2

D̃,s
s̃∗Rs̃R +m2

D̃,b
b̃∗Rb̃R

+ m2
Ẽ, e
ẽ∗RẽR +m2

Ẽ, µ
µ̃∗
Rµ̃R +m2

Ẽ, τ
τ̃ ∗Rτ̃R

− g√
2MW

ǫij

[

meAe

cos β
Hi

1l̃
j
Lẽ

∗
R +

mµAµ

cos β
Hi

1 l̃
j
Lµ̃

∗
R +

mτAτ

cos β
Hi

1 l̃
j
Lτ̃

∗
R

+
mdAd

cos β
Hi

1q̃
j
Ld̃

∗
R − muAu

sin β
Hi

2q̃
j
Lũ

∗
R +

msAs

cos β
Hi

1q̃
j
Ls̃

∗
R − mcAc

sin β
Hi

2q̃
j
Lc̃

∗
R

+
mbAb

cos β
Hi

1q̃
j
Lb̃

∗
R − mtAt

sin β
Hi

2q̃
j
Lt̃

∗
R + h.c.

]
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+
1

2

[

M3
¯̃gαg̃α +M2

¯̃W aW̃ a +M1
¯̃BB̃
]

, (1.18)

where,

q̃L =

(

ũL

d̃L

)

,

(

c̃L

s̃L

)

,

(

t̃L

b̃L

)

, (1.19)

and

l̃L =

(

ν̃L, e

ẽL

)

,

(

ν̃L, µ

µ̃L

)

,

(

ν̃L, τ

τ̃L

)

, (1.20)

for the first, second and third generation terms, respectively; m2
Q̃,u

= m2
Q̃,d

, m2
Q̃,c

= m2
Q̃,s

,

m2
Q̃,t

= m2
Q̃,b

, m2
L̃,νe

= m2
L̃,e

, m2
L̃,νµ

= m2
L̃,µ

, m2
L̃,ντ

= m2
L̃,τ

due to SU(2)L invariance; mf

are the fermion masses, and, ǫ12 = −ǫ21 = −1, ǫii = 0. Notice that the trilinear terms

for sneutrinos are absent since we are assuming in this section the generic MSSM without

right-handed neutrinos and, therefore, vanishing neutrino Yukawa and trilinear couplings

and neutrino masses. We will extend this simplest MSSM model to a modified version

that includes three right-handed neutrinos, their corresponding superpartners and the

associated interactions in the next section. To summarize the new terms introduced by

the soft SUSY breaking potential:

• Soft masses for the scalar Higgs doublets, m2
1,2, and a bilinear term, m2

12 between

both Higgs doublets, H1 and H2.

• Soft masses for the squarks and sleptons, m2
Q̃
, m2

Ũ
, m2

D̃
, m2

L̃
, m2

Ẽ
.

• Trilinear interactions between scalars respecting the gauge symmetries driven by

the Af couplings.

• Majorana mass terms for the gluino, M3, wino, M2, and bino, M1 respectively.

With the complete set of SUSY preserving and soft SUSY breaking terms of the scalar

potential we can analyze the Higgs potential to check if electroweak symmetry breaking

can be achieved by the inclusion of these breaking terms:

VHiggs = m2
H1
|H1|2 +m2

H2
|H2|2 −m2

12

(

ǫijHi
1Hj

2 + h.c.
)

+
1

8
(g2 + g′

2
)
(

|H1|2 − |H2|2
)2

+
1

2
g2|H∗

1H2|2 , (1.21)

where m2
Hi

≡ |µ|2+m2
i (i = 1, 2), and m2

i can be either positive or negative, thus allowing

for a non-trivial minimum of the Higgs potential.
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In order for the MSSM scalar potential to be viable, we must first make sure that the

potential is bounded from below for arbitrarily large values of the scalar fields, so that

V will really have a minimum. The scalar quartic interactions in VHiggs will stabilize the

potential for almost all arbitrarily large values of H1 and H2. However, for the special

directions in field space |H1| = |H2|, the quartic contributions to VHiggs are identically

zero. In order for the potential to be bounded from below, we need the quadratic part of

the scalar potential to be positive along those directions with the following requirement:

2|m2
12| < 2|µ|2 +m2

1 +m2
2 . (1.22)

On the other hand, by requiring that the potential has a non-trivial minimum the following

condition is obtained

|m2
12|2 > (|µ|2 +m2

1)× (|µ|2 +m2
2) . (1.23)

Notice that if m2
1 = m2

2 both conditions cannot be satisfied simultaneously and, therefore,

electroweak symmetry breaking would not be realized.

This issue is particularly problematic for models that impose universal conditions for

the soft parameters. Actually, in these models electroweak symmetry breaking is driven

by quantum corrections. The input condition, m2
1 = m2

2, is valid at a certain scale

but the Renormalization Group Equations (RGEs) will correct m1 and m2 values at the

electroweak scale, MEW , such that m2
2(MEW ) < 0. The mechanism is therefore known as

radiative electroweak symmetry breaking (EWSB). The large negative contributions to

m2
2 from the RG equation are an important factor in ensuring that electroweak symmetry

breaking can occur in models with universal boundary conditions for the soft terms. In

fact, it was proven in Ref. [117] that the running of a large top Yukawa coupling generates

negative contributions to m2
2 in the required amount for being responsible of EWSB.

By imposing the minimization conditions, i.e.
∂V

∂H0
1

=
∂V

∂H0
2

= 0, and by requiring that

the VEVs of H0
1 , H

0
2 are related to the known mass of the Z boson and the electroweak

gauge couplings as shown in Eq. (1.13), Eq. (1.12), Eq. (1.11), Eq. (1.11) one obtains the

conditions under which the Higgs potential Eq. (1.21) will have a minimum

|m2
12| =

(m2
1 −m2

2) tan 2β +M2
Z sin 2β

2
,

M2
Z

2
= −|µ|2 + m2

1 −m2
2 tan

2 β

tan2 β − 1
. (1.24)
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Notice that in the large tan β limit, this leads to the simple relation:

M2
Z

2
≈ −|µ|2 −m2

2 . (1.25)

As we can observe in Eq. (1.25) in order to obtain the correct measured mass of the Z

gauge boson there will have to be a cancellation between the soft Higgs mass parameter

m2
2, which has to be negative, and the Higgsino mass parameter |µ|2. Therefore, parame-

ters with very different origins have to be of the same order. There is no explanation for

this puzzle and it is known as the µ problem. It is believed that there must be an under-

lying mechanism that relates the SUSY preserving parameter, that could have any value,

to the SUSY breaking scale. The equations shown above establish a relation between the

soft SUSY masses and B to µ, tanβ and MZ . This means that not all the parameters

in the Higgs potential are independent because many of these parameters are fixed by

supersymmetry and by imposing electroweak symmetry breaking.

We have now assembled all the pieces of the MSSM. The summary of the MSSM

spectrum is collected in Table 1.1. It contains the SM particle content, extended with

two Higgs doublets, and all their corresponding SUSY partners. There are the SUSY

partners of the quarks, called squarks, the ones of the charged leptons and neutrinos,

called charged sleptons and sneutrinos respectively, the gluinos being the superpartners

of the gluons, and the SUSY partners of the electroweak gauge bosons, called gauginos,

that after mixing with the SUSY partners of the Higgs bosons, called Higgsinos, give

rise to the mass eigenstates named charginos and neutralinos. As a next step, we will

proceed to the diagonalization of the mass matrices to obtain the mass eigenstates and

their corresponding mass eigenvalues. We will study in detail only those sectors of the

spectrum that are interesting for our work. Namely, the slepton sector, the squark sector,

the chargino and neutralino sectors and the Higgs sector.

1.2.1 Squark sector

In this thesis we work under the hypothesis that there is not intergenerational mixing in

the squark sector. Therefore, the tree-level 6×6 squark squared-mass matrices for the up

and the down type squarks, referred to the (ũL, ũR, c̃L, c̃R, t̃L, t̃R) and (d̃L, d̃R, s̃L, s̃R, b̃L, b̃R)
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SUSY particles

Extended Standard SU(3)C × SU(2)L × U(1)Y Mass eigenstates

Model spectrum interaction eigenstates

Notation Name Notation Name

q = u, d, s, c, b, t q̃L, q̃R squarks q̃1, q̃2 squarks

l = e, µ, τ l̃L, l̃R sleptons l̃1, l̃2 sleptons

ν = νe, νµ, ντ ν̃ sneutrino ν̃ sneutrino

g g̃ gluino g̃ gluino

W± W̃± wino

H+
1 ⊃ H+ H̃+

1 higgsino χ̃±
i (i=1,2) charginos

H−
2 ⊃ H− H̃−

2 higgsino

γ γ̃ photino

Z Z̃ zino

Ho
1 ⊃ h0, H0, A0 H̃o

1 higgsino χ̃o
j (j=1,...,4) neutralinos

Ho
2 ⊃ h0, H0, A0 H̃o

2 higgsino

W 3 W̃ 3 wino

B B̃ bino

Table 1.1: Summary of the MSSM spectrum.

basis respectively, can be written as

M2
ũ =

















































Muu 2
LL Muu 2

LR 0 0 0 0

Muu 2
RL Muu 2

RR 0 0 0 0

0 0 M cc 2
LL M cc 2

LR 0 0

0 0 M cc 2
RL M cc 2

RR 0 0

0 0 0 0 M tt 2
LL M tt 2

LR

0 0 0 0 M tt 2
RL M tt 2

RR

















































, (1.26)
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M2
d̃
=

















































Mdd 2
LL Mdd 2

LR 0 0 0 0

Mdd 2
RL Mdd 2

RR 0 0 0 0

0 0 Mss 2
LL Mss 2

LR 0 0

0 0 Mss 2
RL Mss 2

RR 0 0

0 0 0 0 M bb 2
LL M bb 2

LR

0 0 0 0 M bb 2
RL M bb 2

RR

















































, (1.27)

where

M qq 2
LL = m2

Q̃,q
+m2

q +M2
Z cos 2β(T q

3 −Qq sin
2 θW ) , (1.28)

M qq 2
RR =















m2
Ũ ,q

+m2
q +M2

Z cos 2βQq sin
2 θW , if q = u, c, t,

m2
D̃,q

+m2
q +M2

Z cos 2βQq sin
2 θW , if q = d, s, b,

(1.29)

M qq 2
LR =M qq 2∗

RL =















mq(Aq − µ cotβ) , if q = u, c, t,

mq(Aq − µ tanβ) , if q = d, s, b .

(1.30)

Here,mq, T
q
3 andQq are the mass, weak isospin and electric charge of the corresponding

quark (T q
3 = 1

2
, Qq = 2

3
for q=u, c, t and T q

3 = −1
2
, Qq = −1

3
for q=d, s, b), MZ is the

Z gauge boson mass and θW is the weak mixing angle. The parameters mQ̃,q, mD̃,q and

mŨ ,q are the soft-SUSY-breaking masses for the squarks introduced in Eq. (1.18), Aq are

the trilinear couplings, given also in Eq. (1.18). The rest of parameters are common with

the slepton sector that will be introduced next. The diagonalization of the previous 6× 6

squark squared-mass matrices is completely analog to the one of the slepton sector, so

the corresponding mass eigenstates and physical masses have the corresponding analogous

expresions to Eqs. (1.38) and (1.39), respectively.
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1.2.2 Slepton sector

The tree-level 6 × 6 slepton squared-mass matrix can be written, for the case without

intergenerational mixing in the slepton sector, in a three-box-submatrices form as follows

M2
l̃

=





















Mee 2
LL Mee 2

LR 0 0 0 0

Mee 2
RL Mee 2

RR 0 0 0 0

0 0 Mµµ 2
LL Mµµ 2

LR 0 0

0 0 Mµµ 2
RL Mµµ 2

RR 0 0

0 0 0 0 M ττ 2
LL M ττ 2

LR

0 0 0 0 M ττ 2
RL M ττ 2

RR





















, (1.31)

where

M ll 2
LL = m2

L̃,l
+m2

l +M2
Z cos 2β

(

−1

2
+ sin2 θW

)

,

M ll 2
RR = m2

Ẽ,l
+m2

l −M2
Z cos 2β sin2 θW ,

M ll 2
LR = M ll 2∗

RL = ml(Al − µ tanβ) . (1.32)

Here, MZ is again the Z boson mass, θW is the weak mixing angle, ml is the charged

lepton mass, the parametersmL̃,l, mẼ,l are the soft-SUSY-breaking masses for the sleptons

introduced in Eq. (1.18) and Al is the corresponding trilinear coupling also given in

Eq. (1.18). One can appreciate that the l̃L − l̃R mixing is unimportant for mf << MSUSY

where MSUSY characterizes the scale of the SUSY breaking terms.

The diagonalization of this 6 × 6 mass matrices above gives the six slepton mass

eigenstates, l̃α , (α = 1, .., 6), in terms of the interaction eigenstates l̃′α,

l̃′α =





















ẽL

ẽR

µ̃L

µ̃R

τ̃L

τ̃R





















, l̃α =





















l̃1

l̃2

l̃3

l̃4

l̃5

l̃6





















. (1.33)

The rotation matrix, R(l), between these two basis,

l̃′α =
∑

R
(l)
αβ l̃β , (1.34)

therefore leads to the physical slepton masses:

M2
l̃diag

= R(l)M2
l̃
R(l) † = diag (m2

l̃1
, .., m2

l̃6
) . (1.35)
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The fact that there is not any intergenerational mixing yet allows us to diagonalize

separately each box submatrix per flavor in Eqs. (1.31), via a 2 × 2 rotation matrix as

follows
(

l̃1

l̃2

)

= (r(l))−1

(

l̃L

l̃R

)

, (1.36)

where l here can be any of the three charged leptons l = e, µ, τ and the corresponding

rotation matrix is

r(l) =

(

cos θl̃ − sin θl̃
sin θl̃ cos θl̃

)

. (1.37)

Notice that this is the usual notation in the MSSM and these ẽ1, ẽ2, µ̃1, µ̃2 and τ̃1, τ̃2

correspond to l̃1, l̃2, l̃3, l̃4 and l̃5, l̃6 respectively of our alternative notation introduced in

Eq. (1.33).

The mass eigenvalues in the usual notation are1

m2
l̃1,2

=
1

2

[

M ll 2
LL +M ll 2

RR ±
√

(M ll 2
LL −M ll 2

RR)
2 + 4M ll 4

LR

]

, (1.38)

where l = e, µ, τ and the corresponding mixing angle θl̃ is given by

cos 2θl̃ =
M ll 2

LL −M ll 2
RR

m2
l̃1
−m2

l̃2

, sin 2θl̃ =
2M ll 2

LR

m2
l̃1
−m2

l̃2

. (1.39)

The sneutrino sector is an exception, since within the MSSM the neutrinos are mass-

less, there are no right-handed neutrinos, νR, nor their corresponding SUSY partners ν̃R,

and consequently there is not LR mixing. The physical sneutrino states, ν̃L, are the SUSY

partners of the left handed neutrinos νL and their squared masses for the three generations

are given by

m2
ν̃l
= m2

L̃ l
+

1

2
M2

Z cos 2β , (1.40)

where l = e, µ, τ , correspondingly.

1.2.3 Chargino sector

The charginos are four-components Dirac fermions that result from the mixture of charged

gauginos, W̃±, i.e., the SUSY partners of the charged gauge bosons W±, and charged

higgsinos, H̃−
1 and H̃+

2 , i.e. the SUSY partners of the charged components of the two

Higgs doublets, H1 and H2, respectively.

1Note that for the case without intergenerational mixing the convention is ml̃1
> ml̃2
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In the W̃+ − H̃+ basis, the chargino mass matrix at the tree-level is

X =

(

M2

√
2MW sin β√

2MW cos β µ

)

. (1.41)

Due to the two independent mixings, (W̃−, H̃−
1 ) and (W̃+, H̃+

2 ), one needs to define two

unitary mixing matrices, U and V , in order to obtain the mass eigenstates. The squared

mass matrix of the charginos is diagonalised by

M2
χ̃+ = diag(m2

χ̃+
1
, m2

χ̃+
2
) = V X†XV −1 = U∗XX†(U∗)−1 , (1.42)

where the two mass eigenstates are denoted by χ̃+
1 and χ̃+

2 and the corresponding eigen-

values are given by

m2
χ̃+
1,2

=
1

2

{

M2
2 + µ2 + 2m2

W ∓
[

(M2
2 − µ2)2 + 4m4

W cos2 2β

+ 4m2
W (M2

2 + µ2 + 2M2µ sin 2β)
]1/2
}

, (1.43)

where by convention, mχ̃+
1
≤ mχ̃+

2
.

1.2.4 Neutralino sector

Finally, the neutralinos, χ̃0
j with j = 1, ...4, are mixtures among the photino, the zino and

the SUSY partners of the neutral components of the two Higgs doublets, i.e. the neutral

higgsinos. In the B̃ − W̃ 3 − H̃0
1 − H̃0

2 basis, the neutralino mass matrix is

Y =











M1 0 −MZsW cos β MZsW sin β

0 M2 MZcW cos β −MZcW sin β

−MZsW cos β MZcW cos β 0 −µ
MZsW sin β −MZcW sin β −µ 0











. (1.44)

This is in general a complex symmetric matrix, and this symmetry is due to the Majorana

nature of the neutralinos. As a consequence, only one unitary matrix, N , is required

to diagonalise the neutralino sector, in contrast with the chargino one. The diagonal

neutralino mass matrix is given by

Mχ̃0 = diag(mχ̃0
1
, ..., mχ̃0

4
) = N∗Y N−1 . (1.45)

The matrix N can be chosen in such a way that the elements of the diagonal matrix are

real and non-negative. Our convention for the neutralino masses here is mχ̃0
1
≤ ... ≤ mχ̃0

4
.

The full expressions for mχ̃0
1
, ..., mχ̃0

4
in terms ofM1, M2, µ,MZ , θW and tan β are lengthy

and are omitted here for brevity.
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1.2.5 The Higgs boson sector at tree-level

In this subsection we summarize the Higgs-boson sector of our model at tree-level. Con-

trary to the SM, in the MSSM two Higgs doublets are required. The two Higgs doublets

H1 and H2 are given in Eq. (1.9) in terms of their components. The Higgs potential is

given in Eq. (1.21). Notice that contrary to the SM, the quartic couplings of the MSSM

Higgs potential are determined by the gauge couplings.

The potential of Eq. (1.21) can be described with the help of two independent param-

eters (besides g and g′):

tanβ =
v2
v1
, M2

A = −m2
12(tan β + cot β) , (1.46)

where MA is the mass of the CP-odd Higgs boson A.

The diagonalization of the bilinear part of the Higgs potential, i.e. of the Higgs mass

matrices, is performed via the orthogonal transformations

(

H

h

)

=

(

cosα sinα

− sinα cosα

)(

φ0
1

φ0
2

)

, (1.47)

(

G

A

)

=

(

cos β sin β

− sin β cos β

)(

χ0
1

χ0
2

)

, (1.48)

(

G±

H±

)

=

(

cos β sin β

− sin β cos β

)(

φ±
1

φ±
2

)

. (1.49)

The mixing angle α is determined through

α = arctan

[ −(M2
A +M2

Z) sin β cos β

M2
Z cos2 β +M2

A sin2 β −m2
h tree

]

, − π

2
< α < 0 . (1.50)

In the convention where tanβ is positive, i.e. 0 ≤ β ≤ π/2, the angle α lies in the range

−π/2 ≤ α ≤ 0.

One gets the following Higgs spectrum:

2 neutral bosons, CP = +1 : h,H

1 neutral boson, CP = −1 : A

2 charged bosons : H+, H−

3 unphysical Goldstone bosons : G,G+, G−. (1.51)
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The 3 Goldstone bosons, which result from the spontaneous breaking of the electroweak

symmetry, are absorbed and become the longitudinal components of the gauge bosons

W± and Z, in analogy with the SM:

M2
W =

1

2
g2(v21 + v22); M2

Z =
1

2
(g2 + g′

2

)(v21 + v22); Mγ = 0 . (1.52)

Nevertheless, in the MSSM there are 5 physical Higgs bosons due to the extra degrees of

freedom coming from the new Higgs doublet. At tree level the mass matrix of the neutral

CP-even Higgs bosons is given in the φ1-φ2-basis in terms of MZ , MA, and tan β by

M2
Higgs =

(

m2
φ1

m2
φ1φ2

m2
φ1φ2

m2
φ2

)

=

(

M2
A sin2 β +M2

Z cos2 β −(M2
A +M2

Z) sin β cos β

−(M2
A +M2

Z) sin β cos β M2
A cos2 β +M2

Z sin2 β

)

, (1.53)

which by diagonalization according to Eq. (1.47) yields the tree-level Higgs boson masses

m2
H,h =

1

2

[

M2
A +M2

Z ±
√

(M2
A +M2

Z)
2 − 4M2

ZM
2
A cos2 2β

]

. (1.54)

An important consequence of Eq. (1.54) is that the mass of the lightest CP-even Higgs

boson is bounded from above:

mh ≤MZ | cos 2β| ≤ MZ (1.55)

This contrasts sharply with the SM, where the Higgs boson mass is not constrained at

tree level. In the SM the Higgs boson mass at tree level, m2
h = 1

2
v2λ2, is proportional to

the Higgs self coupling λ, which is a free parameter of the model. However, in the MSSM

all the Higgs self coupling parameters are determined by the electroweak gauge couplings.

The charged Higgs boson mass is given by

m2
H± =M2

A +M2
W . (1.56)

Notice that in the limit of large MA, i.e. MA >> MZ , then mH± ≃ mH ≃ MA and

α → β − π/2, up to corrections of O(M2
Z/MA). This limit is known as the decoupling

limit [118] because whenMA is large, there exists an effective low-energy theory below the

scale of MA in which the effective Higgs sector consists only of one CP-even Higgs boson,

h, with precisely the same couplings as those of the Standard Model Higgs boson. There
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is a significant region of the MSSM Higgs sector parameter space in which the decoupling

limit applies, already for values of MA larger than about 200 GeV. As a result, over a

significant region of the MSSM parameter space, the search for the lightest CP-even Higgs

boson of the MSSM is equivalent to the search for the SM Higgs boson.

1.2.6 Radiative corrections to the lightest Higgs boson in the

MSSM

The allowed range of the tree level lightest Higgs mass shown in Eq. (1.55) was already

excluded by LEP [20], so, if the MSSM has not been ruled out yet is due to the impor-

tance of quantum corrections to the Higgs potential and, in particular, to mh. The main

corrections to mh in the MSSM come from the tops/stops sector because the top mass

is bigger than any of the other particles of the SM and, therefore, its coupling to the

Higgs boson is stronger. The status of radiative corrections to mh in the MSSM, can be

summarized as follows. Full one-loop calculations [62] have been supplemented by the

leading and subleading two-loop corrections, see [76] and references therein. Together

with leading three-loop corrections [119] the current precision in the value of the Higgs

corrected mass Mh is estimated to be ∼ 2− 3 GeV [76].

We show below the main one loop corrections ∼ O(m4
t ) which take into account the

important mixing θt̃ in the stop sector [120–122]:

m2
H,h1−loop =

1

2

(

M2
A +M2

Z + ωt + σt
)

±
{

1

4

(

(M2
A +M2

Z)
2 + (ωt − σt)

2
)

−M2
AM

2
Z cos2 2β

+
1

2
(ωt − σt) 2 cos 2β

(

M2
A −M2

Z

)

− λt sin 2β
(

M2
A +M2

Z

)

+ λ2t

}1/2

, (1.57)

with

ωt =
3GFm

4
t√

2π2 sin2 β

[

log
mt̃1mt̃2

m2
t

+
At sin 2θt̃

2mt
log

m2
t̃1

mt̃2

+
A2

t sin
2 2θt̃

2mt

(

1−
m2

t̃1
+m2

t̃2

m2
t̃1
−m2

t̃2

log
m2

t̃1

m2
t̃2

)]

,

λt =
3GFm

4
t√

2π2 sin2 β

[

µ sin 2θt̃
2mt

log
m2

t̃1

mt̃2

+
µAt sin

2 2θt̃
mt

(

1−
m2

t̃1
+m2

t̃2

m2
t̃1
−m2

t̃2

log
m2

t̃1

m2
t̃2

)]

,

σt =
3GFm

4
t√

2π2 sin2 β

[

µ2 sin2 2θt̃
2mt

(

1−
m2

t̃1
+m2

t̃2

m2
t̃1
−m2

t̃2

log
m2

t̃1

m2
t̃2

)]

, (1.58)
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where m2
t̃2
and m2

t̃1
are the eigenvalues of the stops squared mass matrix:

m2
t̃1,2

=
1

2

[

M2
LL +M2

RR ±
√

(M2
LL −M2

RR)
2 + 4M4

LR

]

, (1.59)

with

M2
LL =M tt2

LL, M2
RR =M tt2

RR, M2
LR =M tt2

LR = mtXt . (1.60)

The corresponding expressions of M tt2

LL,M
tt2

RR and M tt2

LR are given in Eq. (1.28), Eq. (1.29)

and Eq. (1.30), respectively. Moreover, θt̃ is the mixing angle that diagonalizes the stops

squared mass matrix:

sin 2θt̃ =
2mt(At − µ cotβ)

m2
t̃1
−m2

t̃2

. (1.61)

Figure 1.1: The radiatively corrected light CP-even Higgs mass is plotted (a = left panel) as

a function of Xt, where Xt ≡ At − µ cot β, for Mt = 174.3 GeV and two choices of tan β = 3

and 30, and (b = right panel) as a function of tan β , for the maximal mixing [upper band]

and minimal mixing [lower band] benchmark cases. In (b), the central value of the shaded

bands corresponds to Mt = 175 GeV, while the upper [lower] edge of the bands correspond to

increasing [decreasing] Mt by 5 GeV. In both (a) and (b), MA = 1 TeV and the diagonal soft

squark squared-masses are assumed to be degenerate: MSUSY ≡ mQ̃ = mŨ = mD̃ = 1 TeV.

As noted above, the largest contribution to the one-loop radiative corrections is en-

hanced by a factor of m4
t and grows logarithmically with the top squark mass. In fact,

the precise upper bound on the light Higgs mass depends on the specific choice of the

top-squark masses. The dependence of the light Higgs mass on the LR mixing parameter
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Xt = (At − µ cotβ), implies that for a given value of M2
S , being M2

S =
1

2
(m2

t̃1
+ m2

t̃2
)

the upper bound of the light Higgs mass initially increases with Xt and reaches its max-

imal value for XOS
t = 2MS, X

M̄S
t =

√
6MS . This point is referred to as the maximal

mixing case, whereas XOS
t = XM̄S

t = 0 corresponds to the minimal mixing case. One

finds for MS <∼ 2 TeV, MA >> MZ , the following bounds in the light Higgs boson mass

mh < mmax
h ≡ mmax

h (tanβ >> 1), [123]:

mmax
h ≃ 122 GeV, if top-squark mixing is minimal,

mmax
h ≃ 135 GeV, if top-squark mixing is maximal. (1.62)

Typical results for the radiatively corrected value of mh as a function of the relevant

Figure 1.2: Lightest CP-even Higgs mass (mh), heaviest CP-even Higgs mass (mH) and charged

Higgs mass (mH±) as a function of MA for two choices of tan β = 3 and tan β = 30. Here,

we have taken Mt = 174.3 GeV, and have assumed that the diagonal soft squark squared-

masses are degenerate: MSUSY ≡ mQ̃ = mŨ = mD̃ = 1 TeV. In addition, we choose the other

supersymmetric parameters corresponding to the maximal mixing scenario. The slight increase

in the charged Higgs mass as tan β is increased from 3 to 30 is a consequence of the radiative

corrections.

supersymmetric parameters are shown in Figures 1.1, 1.2 and 1.3, taken from Ref. [123].

The supersymmetric parameters in the maximal and minimal mixing cases have been

chosen according to the first two benchmark scenarios of Ref. [60]. The numerical results
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Figure 1.3: The radiatively corrected light CP-even Higgs mass is plotted as a function of

MSUSY ≡ mQ̃ = mŨ = mD̃, for Mt = 174.3 GeV, MA = 1 TeV and two choices of tan β = 3

and tan β = 30. Maximal mixing and minimal mixing are defined according to the value of Xt

that yields the maximal and minimal Higgs mass as shown in Figure 1.1(a).

displayed in Figures 1.1, 1.2 and 1.3, are based on the calculations of Ref. [124] and

Ref. [125], with improvements as described in Ref. [126] and Ref. [127].

In Figure 1.1(a) the dependence of the lightest Higgs boson mass is shown as a function

of the mixing parameter Xt for two different values of tanβ, tan β = 3 and tanβ = 30. We

clearly see that the maximum value ofmh is obtained for Xt = 2 TeV = 2MSUSY . It shows

an asymmetry under Xt → −Xt. Moreover, the Higgs mass prediction increases with

tanβ as we can appreciate in Figure 1.1(b). The green bands represent the dependence

of the prediction of mh on the top mass precision measurement. The value of mt is varied

from 169 to 179 GeV with a central value at 175 GeV. We can observe that a higher

precision in the top mass measurement is extremely relevant to reduce the uncertainty

in the prediction of mh. At present, the mass of the top has been measured with the

following uncertainty mt = 172.9± 1.5 [20].

In Figure 1.2 the masses of the neutral CP even Higgs bosons and the charged Higgs

bosons are shown as a function of MA for a common soft SUSY mass, MSUSY = 1 TeV,

in a maximal mixing scenario, and for two different values of tan β, 3 and 30. We can

appreciate from this plot, that the so-called decoupling limit (MA ≫ MZ), where the

lightest CP even MSSM Higgs is barely distinguishable from the SM Higgs and the rest of

Higgs bosons become degenerate and heavy, applies already for values of MA >∼ 200 GeV
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as it was anticipated in Subsect. 1.2.5.

The dominant corrections tomh have a logarithmic sensitivity to the top-squark masses

as it was shown in Eq. (1.58). Therefore, the precise upper bound on the light Higgs

mass depends on the specific choice for the upper limit of the top-squark masses. The

dependence of the light Higgs mass obtained by a complete computation as a function of

MSUSY is shown in Figure 1.3. The flattening of the curves in Figure 1.3 as a function

of MSUSY in the maximal mixing scenario is due to the squark-mixing contributions at

two-loops which partially cancel the contributions that grow logarithmically withMSUSY .

Higher order radiative corrections can be non-negligible for large top squark masses, in

which case the large logarithms should be resumed.

1.3 Constrained MSSM scenarios and experimental

bounds

1.3.1 Constrained SUSY models

Unlike the supersymmetry-preserving part of the Lagrangian, the soft breaking terms of

the Lagrangian Eq. (1.18) introduce many new parameters that were not present in the

ordinary Standard Model. In fact, there are 105 masses, phases and mixing angles in

the MSSM Lagrangian that cannot be rotated away by redefining the phases and flavor

basis for the quark and lepton supermultiplets, and that have no counterpart in the

ordinary Standard Model. Thus, the MSSM has too many free parameters, making it

very unpredictive.

On the other hand, the MSSM is not a phenomenologically-viable theory over most of

its parameter space. This conclusion follows from the observation that a generic point in

the MSSM parameter space exhibits:

• No conservation of the separate lepton numbers, Le, Lµ and Lτ

• Flavour mixing in the squark and slepton sector give rise to unsuppressed flavor-

changing neutral currents (FCNC’s)

• New sources of CP violation that are inconsistent with the experimental bounds.

These phenomenological problems imply that the arbitrariness of the soft parameters
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must be reduced. For example, the non-observation of FCNCs places strong constraints

on the off-diagonal matrix elements of the squark and slepton soft supersymmetry- break-

ing squared masses and trilinear parameters. All of these potentially dangerous flavor-

changing and CP-violating effects in the MSSM can be evaded if one assumes, adhoc, that

supersymmetry breaking has universal soft parameters. One can consider, for instance,

an idealized limit in which the squark and slepton squared-mass matrices are flavor-blind,

each proportional to the 3×3 identity matrix in family space. More generically, it is usu-

ally assumed that the only source of flavor violation is coming from the Yukawa matrices

and that the trilinear couplings do not introduce extra sources of flavor violation. More-

over, one assumes that the only source of flavour violation is coming from the Yukawa

matrices and the trilinears don’t introduced extra sources of flavour violation. Finally,

one can avoid disastrously large CP-violating effects by assuming that the soft parameters

do not introduce new complex phases so that the only CP-violating phase in the theory

will be the usual CKM phase found in the ordinary Yukawa couplings.

These soft-breaking universality relations can be presumed to be the result of some

specific model for the origin of supersymmetry breaking, although there is considerable

disagreement among theorists as to what the specific model should actually be. In any

case, they are indicative of an assumed underlying simplicity or symmetry of the La-

grangian at some very high energy scale Q. Therefore, the universal conditions should

be interpreted as boundary conditions on the running soft parameters at the scale Q.

We must then evolve with the RGEs all the soft parameters, the superpotential param-

eters, and the gauge couplings down to the electroweak scale. At the electroweak scale,

these universal conditions will no longer hold, even if they were exactly true at the input

scale Q. However, to a good approximation, key flavor- and CP-conserving properties

remain because RGE corrections due to gauge interactions will respect the form in flavor

space of the parameters imposed at the large scale, while RGE corrections due to Yukawa

interactions are the only source of flavor violation.

The MSSM has the interesting property of unification of the gauge couplings at the

GUT scale. Therefore the scale Q where the input soft parameters are universal is nor-

mally chosen at this scale MX = 2× 1016 GeV.
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1.3.2 CMSSM/mSUGRA model

The well known constrained supersymmetric standard model (CMSSM/mSUGRA) [63]

minimizes the number of universal parameters at the GUT scale, leaving only 5 free

parameters, a soft mass for the scalar particles M0, a common mass for the gauginos

M1/2, an universal trilinear coupling for all the scalars A0 and the pure SUSY preserving

parameters tan β and sign(µ) The universal conditions at the GUT scale are explicitly,
(

mQ̃

)2

ij
= (mŨ )

2
ij = (mD̃)

2
ij = (mL̃)

2
ij = (mẼ)

2
ij = M2

0 δij ,

(Au)ij = A0 (Yu)ij , (Ad)ij = A0 (Yd)ij , (Al)ij = A0 (Yl)ij ,

m2
H1

= m2
H2

=M2
0

M1 =M2 =M3 =M1/2 , (1.63)

In summary, the CMSSM scenarios are defined by the following (unknown) input

parameters:

• SUSY parameters: M0, M1/2, A0, sign (µ) and tanβ.

1.3.3 NUHM scenarios

An interesting departure from the previous CMSSM scenarios can be obtained by relaxing

the universality hypothesis for the soft SUSY breaking masses of the Higgs sector. This

partially constrained MSSM is commonly referred to as the Non Universal Higgs Mass

(NUHM) scenario [64]. The universality conditions at the high energy scale MX in these

NUHM scenarios are,
(

mQ̃

)2

ij
= (mŨ )

2
ij = (mD̃)

2
ij = (mL̃)

2
ij = (mẼ)

2
ij = M2

0 δij ,

(Au)ij = A0 (Yu)ij , (Ad)ij = A0 (Yd)ij , (Al)ij = A0 (Yl)ij ,

M1 =M2 =M3 =M1/2 , (1.64)

Notice that now the soft Higgs mases mH1 and mH2 are not universal. The departure

from universality in the soft Higgs masses of the NUHM scenarios is parametrised here in

terms of two non-vanishing parameters, δ1 and δ2, defined as:

m2
H1

=M2
0 (1 + δ1), m

2
H2

=M2
0 (1 + δ2) . (1.65)

.

In summary, the NUHM are specified by the following (unknown) input parameters:
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• SUSY parameters: M0, M1/2, A0, sign (µ) and tanβ.

• NUHM parameters: δ1 and δ2.

1.3.4 Experimental status of the MSSM

Prior to the LHC, the lower experimental bounds (95% C.L.) from direct searches at LEP

and Tevatron for the MSSM particle masses in GeV, were the following [20]:

mh0 > 114.4, mA0 > 93.4, mH± > 79.3, mb̃ > 89, mt̃ > 95.7, mq̃ > 379, mg̃ > 308,

mẽ > 107, mµ̃ > 94, mτ̃ > 81.9, mν̃ > 94,mχ̃0
1
> 46, mχ̃±

1
> 94

The best direct information on the mass of the Standard Model Higgs boson was a lower

limit of 114.4 GeV at the 95% confidence level, set using the combined results of the

four LEP experiments [12] and an excluded band of 158 GeV to 173 GeV [13] from the

combined Tevatron experiments [13, 14]. During the year 2011, the LHC has improved

quite substantially the previous bounds. The ATLAS experiment has excluded at 95%

CL a very wide range of Higgs boson mass in the two mass ranges from 155 GeV to 190

GeV and 295 GeV to 450 GeV. No significant evidence of a signal has yet been observed,

although an excess corresponding to a 2.8σ fluctuation of the background occurs in the

Higgs boson mass range between 130 GeV and 150 GeV [15]. The CMS experiment, has

excluded the SM Higgs boson at 95% C.L. in the two mass ranges 149-206 and 300-440

GeV [16]. The Higgs boson mass limits are indeed improving very rapidly at the LHC. At

the time this thesis is coming to an end, a very recent ATLAS and CMS combined analysis

has been performed, where a Higgs boson like mass in the range from 144 to 476 GeV is

excluded at at 95% C.L.. This analysis, combined with the LEP lower bound on the SM

Higgs mass, leaves a quite narrow window left for the SM Higgs mass: 114 < mh < 141

GeV at 95% C.L. [17].

As an illustrive example, we show in Figs. 1.4 the exluded Higgs boson mass regions

published by the ATLAS collaboration [15].

This limits apply only for the SM Higgs boson but as it was already mentioned in

the decoupling limit, i.e. MA ≫ MZ , there is only one light Higgs and the couplings of

this light MSSM Higgs to the SM particles are approximately the same as the couplings

of the SM Higss. Therefore the mentioned exclusion bounds apply also for the light

MSSM Higgs, in the decoupling limit. However, in the MSSM the lightest Higgs boson



54 SUSY models

 [GeV]Hm
110 120 130 140 150 160 170 180 190 200

S
M

/
95

%
 C

L 
Li

m
it 

on
 

1

10

Observed
Expected
 1 ±
 2 ±

ATLAS Preliminary

-1 Ldt = 1.0-1.2 fb∫
 = 7 TeV

CLs Limits

a
a
a

a
a

 [GeV]Hm
200 300 400 500 600

S
M

/
95

%
 C

L 
Li

m
it 

on
 

1

10

Observed
Expected
 1 ±
 2 ±

ATLAS Preliminary

-1 Ldt = 1.0-1.2 fb∫
 = 7 TeV

CLs Limits

a
a
a

a
a

Figure 1.4: The combined upper limit on the Standard Model Higgs boson production cross

section divided by the Standard Model expectation as a function of mh is indicated by the

solid line. This is a 95% CL limit using the CLs method in the lower mass range for the upper

plot and in the entire mass range in the lower plot. The dotted line shows the median expected

limit in the absence of a signal and the green and yellow bands reflect the corresponding 68%

and 95% expected regions.

mass is predicted and from higher order corrections a bound of ∼ 135 GeV is obtained.

Therefore, the information that we have gotten from the CDF, DO, ATLAS and CMS

collaborations has not excluded any of the values of the lightest Higgs mass region allowed
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by the theoretical upper bound and by the lower bound set by LEP:

114.4 GeV < mhMSSM
<∼ 135 GeV (1.66)

There are also bounds to the SUSY masses but mainly in contrained supersymmetric

models. CMS has excluded squark and gluino masses below 1.1 TeV for a common value

of the scalar mass at the GUT scale of M0 < 0.5 TeV and for certain fixed values of the

model parameters [65, 66]. The ATLAS detector has excluded squarks and gluinos of equal

mass with masses below 950 GeV [128]. This analysis has been done in the CMSSM with

tanβ = 10, A0 = 0 and sign(µ) > 0. In Figure 1.5, we can see the combined exclusion

limits in the (M0;M1/2) plane of mSUGRA for the choice of parameters tanβ = 10,

A0 = 0 and µ > 0 [128].
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Figure 1.5: Combined exclusion limits in the (M0;M1/2) plane of mSUGRA/CMSSM for which

tan β = 10, A0 = 0 and µ > 0 taking the signal region with the best expected limit per

point. The dashed-blue line corresponds to the expected 95%C.L. limit and the red line is the

equivalent observed limit. The dotted green line and the dash-dotted green line correspond

respectively to the expected and observed limits calculated with the CLs method. Dot-dashed

grey contours of constant gluino and squark mass are displayed at 200 GeV intervals. The

observed ATLAS limit from 2010 is shown by the solid black line. The star indicates the

position of the mSUGRA reference point with M0 = 660 GeV, M1/2 = 240 GeV, A0 = 0,

tan β = 10 and µ > 0. Notice that ATLAS limits from 2010 are for tan β = 3. Tevatron limits

are taken from [129], [130], CMS limits are from [131], and LEP limits from [132].



Chapter 2

Majorana neutrinos, their SUSY

partners and their interactions

In this chapter we will briefly review the need of enlarging the SM or any supersymmetric

extension of it, such as the MSSM, to accomodate neutrino masses. The benefits of the

the well-known seesaw mechanism [50] for generating neutrino mass will be pointed out.

The new ingredients of the MSSM-seesaw with respect to the MSSM will be presented.

In particular, the mass spectrum of neutrinos and sneutrinos and their interactions with

the neutral Higgs bosons of the MSSM and the Z gauge boson will be derived, being

the relevant ones for the calculation in the next chapter of the radiative effects of heavy

Majorana neutrinos in the neutral CP even Higgs boson masses. The corresponding

Feynman rules will also be presented. The complete set of new mass eigenvalues in the

ν/ν̃ sector, new interactions with the Higgs and Z bosons and the new Feynman rules are

original work of this thesis and have been published in Ref. [110]

2.1 Majorana neutrinos

The evidence of lepton flavour changing neutrino oscillations [24–36] in solar and atmo-

spheric neutrinos, as well as in reactor experiments, implies that neutrinos are massive

and that they mix in analogy with the quark sector. However, the absolute neutrino mass

scale is so far not measured because only mass squared differences are relevant for neutrino

oscillations. The direct limit on neutrino masses comes from the precise measurement of

the end-point of the lepton energy spectrum in weak decays, which gets modified if neu-

57
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trinos are massive. In particular the most stringent limit is obtained from tritium β-decay

for the electron neutrino. The best limit to neutrino masses has been obtained by the

Mainz and Troitsk experiments [133],

mνe < 2.2 eV (Mainz) mνe < 2.1 eV (Troitsk) (2.1)

both at 95% C.L. The direct limits on the other two neutrino masses are much weaker.

The Standard Model in its simplest version does not allow neutrino masses for three

independent reasons:

• There are no right handed neutrinos in its particle content.

• There are only Higgs doublets.

• It is a renormalizable theory.

Therefore, neutrino masses are a clear signal of physics beyond the SM and there is a

need for a mechanism that explains neutrino masses and their small size.

The simplest way to generate neutrino masses consists in the introduction of right

handed neutrinos. In this way, neutrinos can acquire their masses through their Yukawa

interaction with the Higgs boson in parallelism with all the other fermions of the SM.

However, due to the special properties of these right handed neutrinos, that are singlets

under all the gauge groups of the SM, they can have explicit mass terms called Majorana

mass terms. Moreover, these Majorana terms violate the global lepton number symmetry.

There are two possibilities at this point:

• One can forbid those Majorana terms from the Lagrangian by imposing lepton

number as a fundamental symmetry, although in the SM the conservation of lepton

number and baryon number are accidental. In this case neutrinos would be Dirac

particles and they would get their mass only through their Yukawa interaction with

the Higgs. Due to the smallness of the neutrino masses one has to explain why

neutrinos are much lighter than all the other particles in the SM, even those of the

same family. The mass of the electron, the next to lightest particles of the SM, is

106 times bigger than the heaviest neutrino.

• One can allow for Majorana mass terms that are compatible with the gauge and

Lorentz symmetries of the SM. Then, neutrinos would be their own antiparticles,
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i.e they would be Majorana particles, in contrast with the other fermions of the

SM, that are Dirac particles. Notice that only electrically neutral particles can be

Majorana particles. If neutrinos are Majorana fermions it is very appealing the

introduction of heavy Majorana mass terms for various reasons:

– One can explain naturally the smallness of neutrino masses through the well

known seesaw mechanism [50]. In this model, the smallness of the light neutrino

masses, mν ∼ m2
D/mM , appears naturally due to the induced large suppression

by the ratio of the two very distant mass scales. Namely, the Majorana mass

mM , that represents the new physics scale, and the Dirac mass mD, which is

related to the electroweak scale via the neutrino Yukawa couplings.

– One can generate satisfactorily baryogenesis via leptogenesis [134].

– They can produce an interesting and singular phenomenology due to their

potentially large Yukawa couplings to the Higgs sector of the theory.

However, the disadvantage of introducing these heavy neutrinos is that they can induce

a huge hierarchy problem. An interesting solution to avoid this new hierarchy problem

of the SM is considering the minimal supersymmetric version of the SM-seesaw. From

now on we will focus on this SUSY model with the seesaw mechanism implemented and

it will be referred to as the MSSM-seesaw. This model has the same particle content as

the MSSM plus right handed neutrinos and their corresponding superpartners.

Among the most striking phenomenological implications of these MSSM-seesaw sce-

narios [135], it is worth mentioning: 1) the prediction of sizeable rates for lepton flavor

violating (LFV) processes, indeed within the present experimental reach for specific areas

of the model parameters [77–79, 82, 99], 2) non-negligible contributions to electric dipole

moments of charged leptons [136–138], and 3) the occurrence of sneutrino-antisneutrino

oscillations [139] and sneutrino flavor-oscillations [140].

In this thesis we will be mainly devoted to the implications of radiative corrections on

the Higgs boson masses and on LFV processes.

2.2 The MSSM-seesaw: the three generations case

The MSSM-seesaw with three generation of neutrinos and its superpartners is described

in terms of the well known MSSM superpotential of Eq. (1.8) and by new terms due to
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the new superfields containing the right handed neutrinos. The new relevant terms are

contained in [110, 139, 140]:

W = ǫij

[

Y ab
ν Ĥ i

2 L̂
j
aN̂b − Y ab

l Ĥ i
1 L̂

j
a R̂b + µĤ i

1H
j
2

]

+
1

2
mab

M N̂a N̂b , (2.2)

where Yν is a 3×3 complex matrices andmM is a complex symmetric 3×3 mass matrix. Yl

and µ have already been introduced in Eq. (1.8). The a, b indexes refer to generations and

i, j indexes refer to SU(2) doublets components and we use again the convention ǫ12 = −1.

The additional superfield with respect to the MSSM content, i.e N̂ = {ν̃∗R, (νR)c}, contains
the right-handed neutrino νR and its scalar partner ν̃R. The other superfields, L̂ containing

the lepton (νL, eL) and slepton (ν̃L, ẽL) SU(2) doublets, R̂ containing the lepton (eR)
c and

slepton ẽ∗R SU(2) singlets, and Ĥ1,2 containing the Higgs boson SU(2) doublets and their

SUSY partners, are as in the MSSM. We follow here the notation of [141].

One can always redefine the superfields L̂, N̂ and R̂ such that Yl and mM are real

non-negative diagonal matrices and Yν is a general complex 3× 3 matrix.

There are also new relevant terms in the soft SUSY breaking potential due to the

additional sneutrinos ν̃R [110, 139, 140]:

V ν̃
soft =

(

m2
L̃

)ab
ν̃∗aLν̃bL +

(

m2
R̃

)ab
ν̃aRν̃

∗
bR + (Aab

ν H
2
2 ν̃Laν̃

∗
Rb +

(

m2
B

)ab
ν̃∗Raν̃

∗
Rb + h.c.) , (2.3)

where m2
L̃
, m2

R̃
are 3 × 3 hermitian matrices, m2

B is a complex symmetric matrix and

Aν is a 3 × 3 generic complex matrix. In the basis where Yl and mM are diagonal, the

soft-SUSY masses and couplings, i.e m2
L̃
, m2

R̃
, m2

B and Aν , do not present, in general,

a simple diagonal form. After electro-weak (EW) symmetry breaking, the Higgs fields

acquire a vacuum expectation value and the charged lepton and Dirac neutrino mass

matrix elements can be written as:

mab
l = Y ab

l v1 , mab
D = Y ab

ν v2 , (2.4)

where vi are the vacuum expectation values (vevs) of the neutral Higgs scalars, with

v1(2) = v cos(sin)β and v = 174 GeV.

The scalar potential of our MSSM-seesaw contains the usual F -terms, D-terms and

soft SUSY-breaking terms [116]

V = VF + VD + Vsoft , (2.5)

where the F -terms are fixed by the Yukawa interactions and fermion masses and they are

derived from the superpotential using:

VF = F ∗
i Fi =

∑

i

(

∂W

∂φi

)∗(
∂W

∂φi

)

=
∑

i

∣

∣

∣

∣

∂W

∂φi

∣

∣

∣

∣

2

, (2.6)



The MSSM-seesaw: the three generations case 61

where φ are the scalar components of the corresponding superfield. On the other hand,

the D-terms are fixed by the gauge interactions according to

VD =
1

2

∑

a

DaDa =
1

2

∑

a

g2a (φ
∗T aφ)2 , (2.7)

where ga accounts for the different gauge couplings and T a for the generator of the cor-

responding gauge group. The index a here runs over the adjoint representation of the

gauge group (a = 1, ..., 8 for SU(3)C color gluons and gluinos; a = 1, 2, 3 for SU(2)L weak

isospin; a = 1 for U(1)Y weak hypercharge) The generators satisfy the relation:

[

T a, T b
]

= ifabcT c , (2.8)

where fabc are the totally antisymmetric structure constants that define the gauge group.

For example, if the gauge group is SU(2)L × U(1)Y then the D-terms would be:

VDSU(2)×U1
=

1

2
g22
(

φ∗
iσ

a
ijφj

)2
+

1

2
g21 (Yiφ

∗
iφi)

2 . (2.9)

The Yukawa couplings of the neutrinos and their corresponding mass terms can then be

derived from the superpotential in Eq. (2.2):

−Lmass −LYukawa =
1

2

∑

ij

[

∂2W (φ)

∂φi∂φj

ψiψj + h.c.

]

, (2.10)

where the ψi are the two component fermion field superpartners of the corresponding φi

and W (φ) is the superpotential of Eq. (2.2), where the superfields have been substituted

by their scalar components.

We present the resulting mass and relevant interaction terms in the following.

2.2.1 The neutrino mass Lagrangian

After electroweak symmetry breaking the mass lagrangian of neutrinos in the MSSM-

seesaw model with 3 generations of νL and νR is given by:

−Lν
mass = νRi

m†
Dij
νLj

+ νLi
mDij

νRj
+

1

2
(νRi

)c mMij
νRj

+
1

2
νRi

m†
Mij

(

νRj

)c
, (2.11)

where i, j = 1, 2, 3 and mD and mM are the 3 × 3 Dirac and Majorana mass matrices,

respectively. Notice that mD is complex and is given in Eq. (2.4) in terms of the 3 × 3

neutrino Yukawa coupling matrix and the Higgs vev v2. mM is a real, non singular and

symmetric matrix and, without loss of generality, can be considered diagonal and positive.
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The electroweak eigenstates are the left and right components of the neutrino field,

νL and νR. The c-conjugate fields are defined by:

Ĉ : ν → νc = CνT , (2.12)

being Ĉ the particle-antiparticle conjugation operator and C the charge conjugation op-

erator. The particle-antiparticle conjugation operator flips the chirality of a particle and

changes all the quantum numbers of it. It converts a left handed neutrino into a right

handed antineutrino and a right handed neutrino into a left handed antineutrino:

Ĉ : νL → (νL)
c = (νc)R ,

Ĉ : νR → (νR)
c = (νc)L . (2.13)

In contrast, the charge conjugation operator changes all the charged-like (electric charge,

baryon number...) quantum numbers of a field but preserves the others, such as chirality.

Under charge conjugation a left handed neutrino transforms in a left-handed antineutrino.

If a neutrino is a Dirac fermion then it has four degrees of freedom, two independent Weyl

fields νL, νR plus their Ĉ conjugates (νL)
c and (νR)

c. On the contrary, if a neutrino is a

Majorana fermion it is invariant under Ĉ, so that ν = νc, and it has only two independent

degrees of freedom [142].

One can express Lν
mass of Eq. (2.11) in a more compact form in terms of new Majorana

fields, defined as:

f = νL + (νL)
c ,

F = νR + (νR)
c , (2.14)

as follows:

−Lν
mass =

1

2
(fL, FL)iM

ν
ij

(

fR

FR

)

j

+ h.c. =
1

2
(νL, (νR)ciM

ν
ij

(

(νL)
c

νR

)

j

+ h.c , (2.15)

where

Mν =

(

0 mD

mT
D mM

)

(2.16)

is a 6 × 6 complex symmetric matrix. In order to diagonalize this symmetric matrix by

an unitary transformation we will make use of the singular value decomposition of an

arbitrary matrix A ∈ Cn×n:

V †AU = diag(λ1, ....λn) , (2.17)
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with V and U being two unitary matrices belonging to Cn×n and λi ≥ 0. If the complex

A matrix is symmetric then U = V ∗ and therefore :

UTAU = diag(λ1, ....λn) with λi ≥ 0 . (2.18)

Notice that this is not the eigenvalue decomposition of matrix A, because UT 6= U−1

Therefore, one can diagonalize the neutrino mass matrix through the unitary matrix U:

UTMνU = M̂ν = diag(mn1 , mn2 , mn3, mn4 , mn5, mn6) , (2.19)

where the diagonal elements of M̂ν are the non negative square roots of the eigenvalues

of MνMν† .

The interaction eigenstates are related to the mass eigenstates in the following way:
(

(νL)
c

νR

)

i

=

(

Ui,j

Ui+3,j

)

PR nj ,

(

νL

(νR)
c

)

i

=

(

U∗
i,j

U∗
i+3,j

)

PL nj , (2.20)

where i, j = 1, 2, 3.

In general, the diagonalization of the Mν matrix, cannot be performed analytically,

but if Mν is of a seesaw type, i.e. if ||mD|| << ||mM || 1, then an analytic perturbative

diagonalization in blocks can be performed in the dimensionless parameter ξ = mDm
−1
M ,

that allows us to separate the light sector from the heavy sector by the introduction of a

6× 6 (approximate) unitary matrix:

Ûν =

(

(1− 1
2
ξ∗ξT ) ξ∗(1− 1

2
ξT ξ∗)

−ξT (1− 1
2
ξ∗ξT ) (1− 1

2
ξT ξ∗)

)

+O(ξ4) . (2.21)

By inserting this Ûν matrix in Eq. (2.19) one obtains two independent blocks of 3× 3

neutrino mass matrices:

mν = −mDξ
T +O(mDξ

3) ≃ −mDm
−1
M mT

D , (2.22)

mN = mM +O(mDξ) ≃ mM . (2.23)

We can see that one of the matrices, mN , is already diagonal and its elements are heavy,

given by the Majorana masses, mM1 , mM2 , mM3. The other matrix,mν , is not yet diagonal,

1The euclidean matrix norm is defined by ||A|| =
[

tr
(

A†A
)]1/2

=
[

∑

i,j |aij |2
]1/2

for a matrix A

whose elements are given by aij
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but its elements are small since they are suppressed by the heavy Majorana masses. As

we already pointed out, this is the characteristic of the seesaw mechanism, it gives rise to

3 light neutrinos and 3 heavy neutrinos as a consequence of the two distant scales mM and

mD. Finally, the diagonalization of the mν matrix will be performed by the well-known

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) unitary matrix [37, 38], UPMNS given by:

UPMNS =







c12 c13 s12 c13 s13 e
−iδ

−s12 c23 − c12 s23 s13 e
iδ c12 c23 − s12 s23 s13 e

iδ s23 c13

s12 s23 − c12 c23 s13 e
iδ −c12 s23 − s12 c23 s13 e

iδ c23 c13






× V , (2.24)

with

V = diag (e−i
φ1
2 , e−i

φ2
2 , 1) , (2.25)

and cij ≡ cos θij , sij ≡ sin θij . θij are the light neutrino flavor mixing angles, δ is the

Dirac phase and φ1,2 are the Majorana phases. In summary, the mass eigenvalues mnj
,

corresponding to light (ν) and heavy (N) Majorana neutrinos are given respectively by:

mdiag
ν = UT

PMNSmνUPMNS = diag (mν1, mν2 , mν3) , (2.26)

mdiag
N = mN = diag (mN1 , mN2 , mN3) . (2.27)

Parametrization of the seesaw and the contact with neutrino data

In order to make contact with the experimental data, we use the method proposed in [143].

It provides a simple way to reconstruct the Dirac mass matrix by using as inputs the

physical light mνi and heavy mNi
neutrino masses, the UPMNS matrix, and a general

complex and orthogonal matrix R. To get this parametrization, valid in the seesaw limit,

one simply solves Eq. (2.22) and Eq. (2.23) and express mD in terms ofmνi and mNi
using

Eq. (2.26) and Eq. (2.27). Finally one gets:

mD = i

√

mdiag
N R

√

mdiag
ν U †

PMNS , (2.28)

where RTR = RRT = 1.
Thus, instead of proposing directly possible textures formD (i.e. for Y ν), one proposes

possible values for mN1 , mN2 , mN3 and R, and sets mν1 , mν2 , mν3 and UPMNS to their

suggested values from the experimental data. Notice that for R = 1, the lepton flavor

mixing in UPMNS is the unique source of lepton flavor mixing in mD. Correspondingly,

any hypothesis for R different from the unit matrix will lead to an additional lepton
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flavor mixing in mD. Notice also that the previous Eq. (2.28) is established at the right-

handed neutrino mass scale mM , so that the quantities appearing in it are indeed the

renormalized ones, namely, mdiag
ν (mM) and UPMNS (mM). These latter are obtained here

by means of the renormalization group equations (RGEs) and by starting the running

from their corresponding renormalized values at MZ , m
diag
ν (MZ) and UPMNS (MZ) which

are identified respectively with the physical mdiag
ν and UPMNS from neutrino data. In this

thesis we will consider the following plausible scenarios, for the neutrino sector, being all

compatible with present data.

• Light neutrino sector:

Hierarchical case (normal hierarchy) mν1 ≪ mν2 , mν2 =
√

∆m2
sol , mν3 =

√

∆m2
atm

. (2.29)

• Heavy neutrino sector:

Degenerate case: mN1 = mN2 = mN3 = mN ,

Hierarchical case: mN1 ≪ mN2 ≪ mN3 . (2.30)

This hierarchical case in the heavy neutrino sector is well known to provide a plausible

scenario for the Baryon Asymmetry of the Universe (BAU) via leptogenesis.

For the numerical estimates in this thesis we will use the following input values for

the light neutrino mass squared differences and the angles in the UPMNS matrix:

∆m2
sol = 8 × 10−5 eV2 , ∆m2

atm = 2.5 × 10−3 eV2 ,

θ12 = 30◦ , θ23 = 45◦ , θ13 . 10◦ , δ = φ1 = φ2 = 0 , (2.31)

which are compatible with present experimental data [20]:

∆m2
sol = (7.59± 0.21)× 10−5 eV2 , |∆m2

atm| = (2.43± 0.13)× 10−3 eV2 ,

sin2 (2θ12) = 0.861+0.026
−0.022 , sin2 (2θ23) > 0.92 , sin2 (2θ13) < 0.15 . (2.32)

Regarding the R matrix, we will consider the following parameterization:

R =







c2c3 −c1s3 − s1s2c3 s1s3 − c1s2c3

c2s3 c1c3 − s1s2s3 −s1c3 − c1s2s3

s2 s1c2 c1c2






, (2.33)
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where ci ≡ cos θi, si ≡ sin θi and θ1, θ2 and θ3 are arbitrary complex angles. This

parametrisation was proposed in [143] for the study of µ→ eγ decays and represents the

most general parameterisation of an orthogonal complex matrix in terms of three complex

angles.

2.2.2 The sneutrino mass Lagrangian

We present here our results for the mass terms of the sneutrinos first in the electroweak

basis, {ν̃L, ν̃R} and then in the physical basis {ñi}. For simplicity, we use matricial

notation and omit the generation indexes. For instance, (ν̃L)
T = (ν̃L1 , ν̃L2 , ν̃L3) etc.. For

the mass terms coming from the F -terms we get the following:

−LF−terms
mass ν̃ = − cot β

[

µ∗ ν̃TLmDν̃
∗
R + µ ν̃∗TL m∗

Dν̃R
]

+ ν̃TRm
†
DmDν̃

∗
R

+ ν̃TLmDm
†
Dν̃

∗
L + ν̃TRm

†
MmM ν̃

∗
R + ν̃∗TL m∗

DmM ν̃
∗
R + ν̃TLmDm

∗
M ν̃R .

(2.34)

The D-terms give rise to the following sneutrinos mass terms:

−LD−terms
mass ν̃ =

1

2
M2

Z cos 2β ν̃∗TL ν̃L . (2.35)

As we can see, the D-mass terms are ’pure gauge’ terms and they do not depend at all

on the neutrino mass matrices mD or mM . These terms are also present in the ordinary

MSSM without neutrino masses.

Finally, the following mass terms come from the soft SUSY breaking terms in Eq. (2.3):

−Lsoft−terms
mass ν̃ = ν̃∗TL m2

L̃
ν̃L + ν̃TRm

2
R̃
ν̃∗R + ν̃∗TR m2

B ν̃
∗
R

+ν̃TRm
2∗
B ν̃R +

√
2MW sin β

g

[

ν̃TLAν ν̃
∗
R + ν̃∗TL A∗

ν ν̃R
]

, (2.36)

where, as already said, m2
L̃
and m2

R̃
are 3× 3 hermitian matrices, m2

B is a 3× 3 complex

symmetric matrix (bilinear term) and Aν is a 3 × 3 complex matrix. In principle, these

four matrices are free parameters and they are not diagonal in general. Following [140],

we will express the sneutrino mass terms in a more compact 6 × 6 matrix form. In

order to do that we define the φL and φN six-dimensional vectors as φL = (ν̃L, ν̃
∗
L)

T and

φN = (Ñ, Ñ∗)T = (ν̃∗R, ν̃R)
T . In this basis, the mass Lagrangian of the sneutrinos has the

following expression:

−Lmass =
1

2

(

φ†
L φ†

N

)

(

M2
LL M2

LN

(M2
LN )

†
M2

NN

)(

φL

φN

)
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=
1

2

(

ν̃∗TL ν̃TL ν̃TR ν̃∗TR

)

M2
ν̃Lν̃R











ν̃L

ν̃∗L
ν̃∗R
ν̃R











, (2.37)

where M2
LL and M2

NN are 6 × 6 hermitian matrices and M2
LN is a 6 × 6 complex matrix.

These, in turn, can be expressed in blocks of 3× 3 matrices with the form:

M2
AB =

(

M2
A†B M2∗

ATB

M2
ATB M2∗

A†B

)

, (2.38)

where the subscripts A,B stand for L or N . The M2
A†A are 3 × 3 hermitian matrices,

whereas M2
ATA are 3× 3 complex symmetric matrices, for A = L,N . The matrices M2

A†B

and M2
ATB for A 6= B are general complex matrices with no restrictions.

Finally, the expression of the different blocks of matrices that compose the complete

12× 12 sneutrino mass matrix M2
ν̃L,ν̃R

is the following:

M2
LL =

(

M2
L†L M2∗

LTL

M2
LTL M2∗

L†L

)

=

(

m2
L̃
+m∗

Dm
T
D + 1

2
M2

Z cos 2β 0

0 m2∗
L̃
+mDm

†
D + 1

2
M2

Z cos 2β

)

,

(2.39)

M2
NN =

(

M2
N†N M2∗

NTN

M2
NTN M2∗

N†N

)

=

(

m2
R̃
+m†

DmD +m†
MmM 2B∗

νm
∗
M

2BνmM m2∗
R̃
+mT

Dm
∗
D +mT

Mm
∗
M

)

, (2.40)

M2
LN =

(

M2
L†N

M2∗
LTN

M2
LTN M2∗

L†N

)

=

(

m∗
DmM m∗

D (A∗
0 − µ∗ cot β)

mD (A0 − µ cotβ) mDm
∗
M

)

, (2.41)

where we have used:

m2
B = Bν mM , (2.42)

Aν = A0Yν , (2.43)

with Yν =
gmD√
2MW sβ

. (2.44)

In order to obtain the mass eigenstates we have to diagonalize the mass matrix in

Eq. (2.37). As this matrix is hermitian, it can be diagonalized by an 12 × 12 unitary

matrix Ũ :
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Ũ †M2
ν̃Lν̃R

Ũ =M2
ñi

= diag(ñ2
1, ...., ñ

2
12) (2.45)

Finally, the relation between the interaction eigenstates and the mass eigenstates is

the following:










ν̃L

ν̃∗L
ν̃∗R
ν̃R











i

=











Ũi,j

Ũi+3,j

Ũi+6,j

Ũi+9,j











ñj (2.46)

where i runs from 1 to 3 and j from 1 to 12. Notice that in Eq. (2.46) we have not made

an ’a priori’ distinction between light and heavy sneutrinos.

2.2.3 The neutrinos interaction Lagrangian

The interaction Lagrangian of the MSSM neutral Higgs bosons with the three νL and

three νR neutrinos, introduced in Sect.2.2.1, reads:

−LνLνRhi =
g

2MW sin β

(

νRm
†
DνL + νLmDνR

)

(H sinα + h cosα)

+
ig

2MW sin β

(

νRm
†
DνL − νLmDνR

)

A cos β . (2.47)

Notice that mM does not enter here because, contrary to mD, the origin of mM does not

rely on electroweak symmetry breaking.

In order to express the Lagrangian in terms of the mass eigenstates ni we use the

following relations:

νLmDνR = νLi (mD)im νRm
= U∗

ijPLnj (mD)im Um+3,lPRnl = njUij (mD)im Um+3,lPRnl ,

νRm
†
DνL = νRi

(

m†
D

)

im
νLm

= Ui+3,jPRnj

(

m†
D

)

im
U∗
mlPLnl = njU

∗
i+3,j

(

m†
D

)

im
U∗
mlPLnl .

Consequently, the interaction Lagrangian of the neutrinos with the MSSM neutral Higgs

boson in the physical neutrino basis ni = (n1, ......, n6), where the neutrino mass matrix

is diagonal reads:

−Lnjnlh =
g

2MW sin β

[

njU
∗
i+3,j

(

m†
D

)

im
U∗
mlPLnl + njUij (mD)im Um+3,lPRnl

]

(H sinα + h cosα)

+
ig

2MW sin β

[

njU
∗
i+3,j

(

m†
D

)

im
U∗
mlPLnl − njUij (mD)im Um+3,lPRnl

]

A cos β , (2.48)
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where j and l indexes run from 1 to 6 and i and m indexes run from 1 to 3.

We are also interested in the gauge interactions of νL and νR with the neutral gauge

boson Z. Since νR are not charged under SU(2)L × U(1)Y they do not interact with the

Z gauge boson and only interactions with the νL appear:

LνLi
νLi

Z =
g

2cW
(νLi γ

µνLi
)Zµ . (2.49)

When expressed in terms of the physical neutrino basis it gives:

LnjnmZ =
g

2cW
(njUijU

∗
imγ

µPLnm)Zµ (2.50)

where the indexes m and j run from 1 to 6 and i runs from 1 to 3.

2.2.4 The sneutrinos interaction Lagrangian

Finally, we will present here the interactions of the sneutrinos with the MSSM neutral

Higgs bosons in the same way as we presented the sneutrino mass terms, i.e. separating

the contributions from the F -terms, the D-terms and the soft SUSY breaking terms:

−LF−terms
int−ν̃−h = − g

2MW sβ
(H cosα− h sinα)

[

µ∗ ν̃TLmDν̃
∗
R + µ ν̃∗TL m∗

Dν̃R
]

+ i
g

2MW
A
[

µ∗ ν̃TLmDν̃
∗
R − µ ν̃∗TL m∗

Dν̃R
]

+
g

MW sβ
(H sinα + h cosα)

[

ν̃TRm
†
DmDν̃

∗
R + ν̃TLmDm

†
Dν̃

∗
L

]

+
g2

4M2
Ws

2
β

(

H2 sinα2 + h2 cosα2 + 2Hh sinα cosα+ A2c2β
)

×
[

ν̃TRm
†
DmDν̃

∗
R + ν̃TLmDm

†
Dν̃

∗
L

]

+
g

2MWsβ
(H sinα + h cosα)

[

ν̃∗TL m∗
DmM ν̃

∗
R + ν̃TLmDm

∗
M ν̃R

]

− i
g cos β

2MW sβ
A
[

ν̃∗TL m∗
DmM ν̃

∗
R − ν̃TLmDm

∗
M ν̃R

]

, (2.51)

−LD−terms
int−ν̃−h =

gMZ

2cw
(H cos(α + β)− h sin(α + β)) ν̃∗TL ν̃L

+
g2

8c2w

(

H2 cos 2α− h2 cos 2α− 2Hh sin 2α−A2 cos 2β
)

ν̃∗TL ν̃L ,

(2.52)
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−Lsoft−terms
int−ν̃−h =

1√
2
(H sinα+ h cosα)

[

ν̃TLAν ν̃
∗
R + ν̃∗TL A∗

ν ν̃R
]

+ i
cos β√

2
A
[

ν̃TLAν ν̃
∗
R − ν̃∗TL A∗

ν ν̃R
]

. (2.53)

The final Lagrangian expressed in terms of the physical sneutrino basis ñj , (j =

1, .., 12) is obtained by using Eq. (2.46) in the previous Eqs. (2.51), (2.52) and (2.53).

We omit to write the final formula here for brevity.

All the corresponding Feynman rules, for the previously reported couplings between

the physical neutrinos ni, (i = 1, ..., 6), and sneutrinos ñj , (j = 1, ..., 12) with the neutral

Higgs bosons, h,H,A and the Z gauge boson are collected in the Appendix A and have

been implemented into a new FeynArts [144] model file which is available upon request.

2.3 The MSSM-seesaw: the one generation case

In this subsection we will particularize our previous study of masses, Yukawa and gauge

interactions of neutrinos and sneutrinos, to the one generation case. A systematic and

detailed study of the one generation case is very convenient to fully understand the role

played by the new Majorana scale introduced into the model. We will obtain here simple

and compact analytical formulas for the mass eigenvalues of the neutrinos/sneutrinos,

which will be used in our posterior calculation of the radiative corrections to the Higgs

boson masses of the MSSM.

The superpotential and soft Lagrangian in the one generation case are the same ones

as in the three generation case, given in Eq. (2.2) and Eq. (2.3), but obviously without

generation indexes.

In the one generation case the mass matrix of neutrinos is a 2 × 2 given in terms of

mD and mM by:

Mν =

(

0 mD

mD mM

)

. (2.54)

Diagonalization of Mν leads to two mass eigenstates, ni (i = 1, 2), which are Majorana

fermions:

n1 ≡ ν = cos θ(νL + (νL)
c)− sin θ(νR + (νR)

c) ,

n2 ≡ N = sin θ(νL + (νL)
c) + cos θ(νR + (νR)

c) (2.55)
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with the respective mass eigenvalues given by:

mν,N =
1

2

(

mM ∓
√

m2
M + 4m2

D

)

. (2.56)

It should be noticed that we have introduced an alternative notation that makes it easier

to identify the specific neutrino by its mass: ν is the lighter one and N is the heavier

one. It should also be kept in mind that with this convention mν < 0 and mN > 0, but

the physical Majorana neutrino states have the proper positive masses. These physical

neutrinos can be reached by an additional rotation, ν → ν ′ = eiγ5π/2ν = −iγ5ν, leading to

mν′ = |mν |. However, we prefer to work instead with the mass eigenstates in Eq. (2.55)

to avoid extra i and γ5 factors in the computation. Of course the final results for the

predictions of any observable in which they are involved are not sensitive to this choice.

The mixing angle that defines the mass eigenstates is given by,

tan θ = −mν

mD

=
mD

mN

. (2.57)

Other useful relations between the model parameters mD, mM and the physical neutrino

parameters, mν , mN and θ are the following:

sin2 θ =
−mν

mN −mν
=

1

2

(

1− mM
√

m2
M + 4m2

D

)

, (2.58)

cos2 θ =
mN

mN −mν
=

1

2

(

1 +
mM

√

m2
M + 4m2

D

)

, (2.59)

mD =
1

2

√

(mN −mν)2 − (mN +mν)2 , (2.60)

m2
D = −mνmN , (2.61)

mM = mν +mN (2.62)

It is worth mentioning that in the present MSSM-seesaw model with Majorana neu-

trinos m2
D is obtained singularly from the product of two quantities, one very small mν

and one very large mN . This is in contrast with the case of Dirac neutrinos where mD is

directly the tiny neutrino mass.

Regarding the sneutrino sector, the sneutrino mass matrices for the CP-even, M̃+, and

the CP-odd, M̃−, subsectors are given respectively by [139]:

M̃2
± =

(

m2
L̃
+m2

D + 1
2
M2

Z cos 2β mD(Aν − µ cotβ ±mM)

mD(Aν − µ cotβ ±mM) m2
R̃
+m2

D +m2
M ± 2BνmM

)

. (2.63)
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The diagonalization of these two matrices, M̃2
±, leads to four sneutrino mass eigenstates,

ñi (i = 1, 2, 3, 4) with respective CP parities CP(ñ1,2) = +1 and CP(ñ3,4) = −1:

ñ1 ≡ ν̃+ =
√
2(cos θ+ Re ν̃L − sin θ+ Re ν̃R) ,

ñ2 ≡ Ñ+ =
√
2(sin θ+ Re ν̃L + cos θ+ Re ν̃R) ,

ñ3 ≡ ν̃− =
√
2(cos θ− Im ν̃L − sin θ− Im ν̃R) ,

ñ4 ≡ Ñ− =
√
2(sin θ− Im ν̃L + cos θ− Im ν̃R) . (2.64)

It should again be noted that we have introduced an alternative notation that makes it

easier to identify the specific sneutrino by its parity and mass: ν̃+, Ñ+ are respectively the

lighter and the heavier ones with CP = +1, and ν̃−, Ñ− are the lighter and the heavier

ones with CP = −1. The corresponding mass eigenvalues are:

m2
ν̃+,Ñ+

=
1

2
(m2

M +m2
L̃
+m2

R̃
+ 2m2

D +
1

2
M2

Z cos 2β + 2BνmM ) (2.65)

∓ 1

2

√

4m2
D(Aν − µ cotβ +mM )2 + (m2

M +m2
R̃
−m2

L̃
− 1

2
M2

Z cos 2β + 2BνmM)2 ,

m2
ν̃−,Ñ−

=
1

2
(m2

M +m2
L̃
+m2

R̃
+ 2m2

D +
1

2
M2

Z cos 2β − 2BνmM) (2.66)

∓ 1

2

√

4m2
D(Aν − µ cotβ −mM)2 + (m2

M +m2
R̃
−m2

L̃
− 1

2
M2

Z cos 2β − 2BνmM)2 .

The mixing angles in the two subsectors are given respectively by:

sin 2θ± =
2mD(Aν − µ cotβ ±mM)

√

4m2
D(Aν − µ cotβ ±mM )2 + (m2

M +m2
R̃
−m2

L̃
− 1

2
M2

Z cos 2β ± 2BνmM)2
.

(2.67)

2.3.1 The neutrinos and sneutrinos interaction Lagrangian

Finally the interaction Lagrangian that is relevant for the present work, expressed in the

(νL, νR), (ν̃L, ν̃R) electroweak interaction basis, is given by:

Lint = Lν H + Lν Z + Lν̃ H + Lν̃ Z . (2.68)

Here Lν H and Lν̃ H contain the interactions of the neutrinos and sneutrinos with the

Higgs bosons respectively; and Lν Z and Lν̃ Z those of the neutrinos and sneutrinos with

the Z boson respectively.



The MSSM-seesaw: the one generation case 73

For the various terms in Eq. (2.68) we find the following expressions:

Lν H = − gmD

2MW sin β
((νLνR + νRνL)(H sinα + h cosα)− i(νLνR − νRνL)A cos β) ,

(2.69)

Lν Z =
g

2 cos θW
[(νLγ

µνL)Zµ] , (2.70)

Lν̃ H = − gmD

2MW sin β
µ [(ν̃∗Lν̃R + ν̃Lν̃

∗
R)(−H cosα + h sinα)]

− gm2
D

MW sin β
[(ν̃∗Rν̃R + ν̃∗Lν̃L)(H sinα+ h cosα)]

+
igmD

2MW
µ [(ν̃∗Lν̃R − ν̃Lν̃

∗
R)A]

− gMZ

2cosθW
[(ν̃∗Lν̃L)(H cos(α + β)− h sin(α+ β))]

− gmD

2MW sin β
Aν [(ν̃

∗
Lν̃R + ν̃Lν̃

∗
R)(H sinα+ h cosα)]

+
igmD

2MW sin β
Aν [(ν̃

∗
Lν̃R − ν̃Lν̃

∗
R)A cos β]

− gmDmM

2MW sin β
[(ν̃Lν̃R + ν̃∗Lν̃

∗
R)(H sinα + h cosα)]

− i
gmDmM

2MW sin β
[(ν̃Lν̃R − ν̃∗Lν̃

∗
R)A cos β]

− g2m2
D

4M2
W sin2 β

[

(ν̃∗Lν̃L)(H
2 sin2 α + h2 cos2 α + A2 cos2 β + hH sin 2α)

]

− g2

8 cos2 θW

[

(ν̃∗Lν̃L)(H
2 cos 2α− h2 cos 2α− A2 cos 2β − 2hH sin 2α)

]

− g2m2
D

4M2
W sin2 β

[

(ν̃∗Rν̃R)(H
2 sin2 α + h2 cos2 α + A2 cos2 β + hH sin 2α)

]

, (2.71)

Lν̃ Z = − ig

2 cos θW

[

(ν̃∗L∂̄
µν̃L)Zµ

]

+
g2

4 cos2 θW
[(ν̃∗Lν̃L)(ZµZ

µ)] . (2.72)

The corresponding Feynman rules, expressed in the mass eigenstate basis, are collected

in the Appendix A. Notice that this complete set of Feynman rules is, to our knowledge,

not available in the literature so far.

Some comments are in order. In the previous interaction Lagrangian, and conse-

quently in the Feynman rules, there are terms already present in the MSSM. These are

the pure gauge interactions between the left-handed neutrinos and the Z boson, given

in Eq. (2.70), those between the ’left-handed’ sneutrinos and the Higgs bosons, given in

Eq. (2.71), and those between the ’left-handed’ sneutrinos and the Z bosons, given in
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Eq. (2.72). In addition, in this MSSM-seesaw scenario, there are interactions driven by

the neutrino Yukawa couplings (or equivalently mD since Yν = (gmD)/(
√
2MW sin β)),

and new interactions due to the Majorana nature driven by mM . These genuine Majo-

rana terms are those in the seventh and eight lines of Eq. (2.71) and are not present in

the case of Dirac fermions.

2.3.2 Relevant parameters and limits

Regarding the size of the new parameters that have been introduced in this model, in

addition to those of the MSSM, i.e., mM , mD, mR̃, Aν and Bν , there are no significant

constraints. In the literature it is often assumed that mM has a very large value, mM ∼
O(1014−15) GeV, in order to get small physical neutrino masses |mν | ∼ 0.1 - 1 eV with

large Yukawa couplings Yν ∼ O(1). This is an interesting possibility since it can lead to

important phenomenological implications due to the large size of the radiative corrections

driven by these large Yukawa couplings. In this paper we will explore, however, not only

these extreme values but the full range for mM from the electroweak scale ∼ 102 GeV up

to ∼ 1015 GeV.

On the other hand, the new soft SUSY-breaking parameters introduced in the sneu-

trino sector could be unrelated to those of the MSSM, or could be related, for instance,

in the case one imposes (by hand) some kind of universality conditions. Whereas the

non-singlet soft mass parameter mL̃, being common to the charged ’left handed’ slepton,

is constrained by the solution to the hierarchy problem to lie below a few TeV, the singlet

soft mass mR̃ is not, because it is not connected to the electroweak symmetry breaking

at tree level. The other sneutrino soft mass parameters, Bν and Aν are not connected ei-

ther. However, they can generate a mass-splitting between sneutrinos and antisneutrinos

which in turn and via loop corrections can generate neutrino mass splittings [140] that

are experimentally constrained. Then, if mSUSY represents a generic low SUSY breaking

scale, with mSUSY <∼ O(103) GeV one expects that |Aν |, |Bν| <∼ mSUSY [145]. According

to these constraints, we will explore in this work values of these soft parameters ranging

from the electroweak scale up to a few TeV. Besides, and due to the peculiarity of the

behavior with mR̃ and Bν , as will be shown later, we will explore in addition the less

conservative but interesting possibility where mR̃ or Bν are close to mM .

For illustrative purposes and a clear understanding of our full one-loop results, three

interesting limiting cases will also be considered in this work.
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(1) The seesaw limit:

This assumes a large separation between the two neutrino mass scales involved,

the Majorana mass and the Dirac mass, mM ≫ mD. Notice that both masses are

different from zero, mM 6= 0 and mD 6= 0, in this seesaw limit and, as we have

said above, Yν can be large. The predictions are then given in power series of a

dimensionless parameter defined as,

ξ ≡ mD

mM
≪ 1 . (2.73)

The light and heavy neutrino masses, as well as the mixing angle, are given in this

limit by:

mν = −mDξ +O(mDξ
3) ≃ −m2

D

mM

, (2.74)

mN = mM +O(mDξ) ≃ mM ,

sin θ = ξ +O(ξ3) ≃ mD

mM

cos θ = 1−O(ξ2) ≃ 1 (2.75)

Consequently, the neutrino mass eigenstates are given by:

n1 ≡ ν ≃ (νL + (νL)
c)− mD

mM
(νR + (νR)

c) ,

n2 ≡ N ≃ mD

mM
(νL + (νL)

c) + (νR + (νR)
c) (2.76)

Therefore, in the seesaw limit ν is made predominantly of νL and its c-conjugate,

(νL)
c, whereas N is made predominantly of νR and its c-conjugate, (νR)

c.

In the sneutrino sector several mass scales are involved. Consequently, one has to

set as an extra input their relative size to mM . The simplest assumption is to set

the value of mM to be much larger than all the other mass scales involved, i.e.,

mM ≫ mD,MZ , µ,mL̃, mR̃, Bν , Aν . In this limit the sneutrino masses are given by:

m2
ν̃+,ν̃−

= m2
L̃
+

1

2
M2

Z cos 2β ∓ 2mD(Aν − µ cotβ −Bν)ξ ,

m2
Ñ+,Ñ−

= m2
M ± 2BνmM +m2

R̃
+ 2m2

D . (2.77)

Moreover, the mixing angles in this limit are given by:

sin 2θ± = ±2mD

mM
(2.78)
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As we can appreciate in Eq. (2.78) the mixing angles θ± are small in this limit and,

therefore, ν̃+ and ν̃− are made predominantly of ν̃L and its c-conjugate, ν̃∗L, whereas

Ñ+ and Ñ− are made predominantly of ν̃R and its c-conjugate, ν̃∗R.

(2) The Dirac limit:

In this limit one sets mM = 0 (and mD 6= 0) and one recovers the neutrinos as any

other fermion of the MSSM, i.e., as Dirac fermions. In the basis that we have used

in Eq. (2.55) this is manifested by the fact that when mM = 0, the two Majorana

neutrinos ν and N are degenerate with mν = −mD and mN = +mD, and they

combine maximally, i.e. with θ = π/4, to form a four component Dirac neutrino

with mass mD. On the other hand, the sneutrino sector in this Dirac limit simplifies

as well. When mM = 0, the real scalar fields get degenerate in pairs,

m2
ν̃+

= m2
ν̃−

=
1

2
(m2

L̃
+m2

R̃
+ 2m2

D +
1

2
M2

Z cos 2β) (2.79)

− 1

2

√

4m2
D(Aν − µ cotβ)2 + (m2

R̃
−m2

L̃
− 1

2
M2

Z cos 2β)2 ,

m2
Ñ+

= m2
Ñ−

=
1

2
(m2

L̃
+m2

R̃
+ 2m2

D +
1

2
M2

Z cos 2β) (2.80)

+
1

2

√

4m2
D(Aν − µ cotβ)2 + (m2

R̃
−m2

L̃
− 1

2
M2

Z cos 2β)2 ,

and they combine to form two complex scalar fields,

ν̃1 =
1√
2
(ν̃+ + iν̃−) = cos θ̃ ν̃L − sin θ̃ ν̃R , (2.81)

ν̃2 =
1√
2
(Ñ+ + iÑ−) = sin θ̃ ν̃L + cos θ̃ ν̃R (2.82)

with mν̃1 = mν̃±, mν̃2 = mÑ±
, θ̃ = θ+ = θ−, and

sin 2θ̃ =
2mD(Aν − µ cotβ)

√

4m2
D(Aν − µ cotβ)2 + (m2

R̃
−m2

L̃
− 1

2
M2

Z cos 2β)2
. (2.83)

Notice that these two sneutrino states, ν̃1,2, are equivalent to the usual sfermion

mass eigenstates within the MSSM.

In this Dirac limit it is interesting to study the similarities in the analytical behavior

of the neutrino/sneutrino radiative corrections and the other MSSM fermion/sfermion

radiative corrections. In particular we are interested in the comparison with the

top/stop radiative corrections. As for the phenomenological implications, this limit
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is not expected to lead to relevant numerical results, since to get compatibility

with the experimentally tested small neutrino masses, |mν | ∼ 0.1− 1 eV one needs

Yukawa couplings extremely small, Yν ∼ 10−12 − 10−13.

(3) The MSSM limit:

This limit is reached when one sets mD = 0 (the value of mM is not relevant since

once the Yukawa couplings are set to zero the predictions are absolutely independent

of this mass scale) and one is left with a neutrino/sneutrino sector with just pure

gauge couplings. Concretely, there are just interactions of the left-handed neutrinos

and the ’left-handed’ sneutrinos to the Z boson, exactly as in the MSSM. We are

interested in this limit, because we want to compare the radiative corrections from

the neutrino/sneutrino sector within the MSSM-seesaw with those within the MSSM

and to find the interesting regions in the new parameters of the MSSM-seesaw where

the deviation from the MSSM result could be sizeable.





Chapter 3

Radiative corrections to mh in the

MSSM-seesaw model

In this chapter we study the indirect effects of Majorana neutrinos via their radiative

corrections to the MSSM Higgs boson masses. Concretely, we present a calculation of

the 1-loop radiative corrections to the lightest CP even Higgs boson mass from the neu-

trino/sneutrino sector within the MSSM-seesaw framework. We work here in general

MSSM-seesaw scenarios with no universality conditions imposed, and explore the full pa-

rameter space of the neutrino/sneutrino sector. We restrict our computation to the one

generation case of neutrinos/sneutrinos for simplicity and to fully understand the effect of

just a single Majorana scale. The complete set of one-loop neutrino/sneutrino contribut-

ing diagrams will be taken into account, with both Yukawa and gauge couplings switched

on. We also analyze the results in different renormalization schemes, which will be shown

to provide remarkable differences. In addition to the exact results, we present some ana-

lytical and numerical results in the interesting limit of very large mM as compared to all

other scales involved, which will help us in the understanding of the important issue of

the decoupling/non-decoupling of the heavy Majorana scale. Finally, we will discuss to

what extent the radiative corrections computed here enter into the measurable range. The

results presented in this chapter are original work of this thesis and have been published

in [110, 114].

79
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3.1 Higher-order corrections to mh

3.1.1 Regularization and renormalization

Higher order corrections to an n point Green function are related to loop diagrams, which

involve integrals over momentum that are in general divergent for large momentum (UV

Divergent). For this reason a regularization procedure is needed to redefine the integrals

in such a way that they become finite and mathematically well defined obejects. The

broadly used regularization procedure for gauge theories is dimensional regularization

(DREG), that conserves Lorentz and gauge invariance. In this method integrals in four

dimensions are substituted by integrals in lower D dimensions where the integrals are

convergent :
∫

d4k

(2π)4
→ µD−4

∫

dDk

2πD
(3.1)

An arbitrary mass parameter µ is introduced to mantain the couplings independent of D.

After renormalization the result for physical quantities is finite in the limit D → 4.

However, in SUSY, dimensional regularization cannot be used, because although it

respects the gauge and Lorentz symmetry it breaks supersymmetry, due to the fact that

by going to D dimensions the number of bosonic and fermionic degrees of freedom change.

In order to avoid this problem the Dimensional Reduction procedure was proposed [146].

In this method all the fields and the corresponding γµ matrices are defined in 4 dimensions

and only the integrals and the momentum are treated in D dimensions. Therefore, as

regularization scheme for our calculation of 1-loop corrections to the Higgs 2 point function

we will use dimensional reduction [146], thus preserving SUSY [147, 148].

The tree-level Higgs potential of the MSSM-seesaw shown in Eq. (1.21) contains a set of

free parameters that are not fixed by theory. The definition of these parameters and their

dependence on physical observables changes in higher orders of perturbation theory with

respect to the definitions at tree level. In fact, the definitions of these parameters depend

on the renormalization scheme. Here we have used a multiplicative renormalization to

replace the bare parameters and fields of the initial Higgs potential by the renormalized

ones. Generically:

g0 → Zgg = g + δg

m2
0 → Zmm

2 = m2 + δm2

φ0 → Z
1/2
φ φ =

(

1 +
1

2
δZφ

)

φ (3.2)
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After expanding Zi = 1 + δZi, the bare couplings, masses and fields are replaced

by the renormalized ones plus the corresponding counterterms δg, δm and δZφ . These

counterterms absorb the infinites, but unobservable shifts, between the bare parameters

and the renormalized ones. With these substitutions the bare Higgs potential is splited

into two pieces, the renormalized one plus the counterterm part:

V (g0, m0, φ0) = V (g,m, φ) + δV (g,m, φ, δg, δm, δZφ) (3.3)

The decomposition in Eq. (3.2) is to a large extent arbitrary. Only the divergent parts

of the counterterms are determined directly by the structure of the divergences of the one-

loop amplitudes. The finite parts depend on the choice of the explicit renormalization

conditions [149].

In our work, of the radiative corrections to the lightest Higgs mass of the MSSM we

have used the Feynman Diagrammatic approach.

3.1.2 The concept of higher order corrections in the

Feynman-diagrammatic approach

Among the three main approaches to calculate 1-loop corrections to the MSSM Higgs

boson masses, i.e the Effective Potential Approach (EPA) [121, 150], the method of

Renormalization Group Equations (RGE) [151–153], the Feynman Diagrammatic calcu-

lation [154–157], we have made use of the diagrammatic method. Although this method

is technically involved, it is the most accurate one at the 1-loop level and can be used as

a reference frame for simpler approximations.

In the Feynman diagrammatic (FD) approach the higher-order corrected CP-even

Higgs boson masses in the MSSM are derived by finding the poles of the (h,H)-propagator

matrix. The inverse of this matrix is given by

(∆Higgs)
−1 = −i

(

p2 −m2
H,tree + Σ̂HH(p

2) Σ̂hH(p
2)

Σ̂hH(p
2) p2 −m2

h,tree + Σ̂hh(p
2)

)

. (3.4)

Determining the poles of the matrix ∆Higgs in Eq. (3.4) is equivalent to solving the equation

[

p2 −m2
h tree + Σ̂hh(p

2)
] [

p2 −m2
H tree + Σ̂HH(p

2)
]

−
[

Σ̂hH(p
2)
]2

= 0 . (3.5)

In perturbation theory, a (renormalized) self-energy is expanded as follows

Σ̂(p2) = Σ̂(1)(p2) + Σ̂(2)(p2) + . . . ,
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Σ(p2) = Σ(1)(p2) + Σ(2)(p2) + . . . , (3.6)

in terms of the ith-order contributions Σ̂(i),Σ(i). In the following sections we concentrate

on the one-loop corrections and drop the order index, i.e. Σ̂ ≡ Σ̂(1) in the following.

3.1.3 One-loop renormalization

In order to calculate one-loop corrections to the Higgs boson masses, the renormalized

Higgs boson self-energies are needed. Following the procedure used in [62, 160], the pa-

rameters appearing in the Higgs potential, (1.21), are renormalized as follows:

M2
Z →M2

Z + δM2
Z , Th → Th + δTh, (3.7)

M2
W →M2

W + δM2
W , TH → TH + δTH ,

M2
Higgs →M2

Higgs + δM2
Higgs, tanβ → tanβ (1 + δtanβ ).

M2
Higgs denotes the tree-level Higgs boson mass matrix given in Eq. (1.53). Th and TH are

the tree-level tadpoles, i.e. the terms linear in h and H in the Higgs potential.

The field renormalization matrices of both Higgs multiplets can be set up symmetri-

cally,





h

H



→





1 + 1
2
δZhh

1
2
δZhH

1
2
δZhH 1 + 1

2
δZHH



 ·





h

H



 . (3.8)

For the mass counter term matrices we use the definitions

δM2
Higgs =





δm2
h δm2

hH

δm2
hH δm2

H



 . (3.9)

The renormalized self-energies, Σ̂(p2), can now be expressed through the unrenormalized

self-energies, Σ(p2), the field renormalization constants and the mass counter terms. This

reads for the CP-even part,

Σ̂hh(p
2) = Σhh(p

2) + δZhh(p
2 −m2

h,tree)− δm2
h, (3.10a)

Σ̂hH(p
2) = ΣhH(p

2) + δZhH(p
2 − 1

2
(m2

h,tree +m2
H,tree))− δm2

hH , (3.10b)

Σ̂HH(p
2) = ΣHH(p

2) + δZHH(p
2 −m2

H,tree)− δm2
H . (3.10c)
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Inserting the renormalization transformation into the Higgs mass terms leads to ex-

pressions for their counter terms which consequently depend on the other counter terms

introduced in Eq. (3.7).

For the CP-even part of the Higgs sectors, these counter terms are:

δm2
h = δM2

A cos2(α− β) + δM2
Z sin2(α+ β) (3.11a)

+ e
2MZswcw

(δTH cos(α− β) sin2(α− β) + δTh sin(α− β)(1 + cos2(α− β)))

+ δtanβ sin β cos β (M2
A sin 2(α− β) +M2

Z sin 2(α+ β)),

δm2
hH = 1

2
(δM2

A sin 2(α− β)− δM2
Z sin 2(α+ β)) (3.11b)

+ e
2MZswcw

(δTH sin3(α− β)− δTh cos
3(α− β))

− δtanβ sin β cos β (M2
A cos 2(α− β) +M2

Z cos 2(α + β)),

δm2
H = δM2

A sin2(α− β) + δM2
Z cos2(α+ β) (3.11c)

− e
2MZswcw

(δTH cos(α− β)(1 + sin2(α− β)) + δTh sin(α− β) cos2(α− β))

− δtanβ sin β cos β (M2
A sin 2(α− β) +M2

Z sin 2(α + β)) .

For the field renormalization we choose to give each Higgs doublet one renormalization

constant,

H1 → (1 + 1
2
δZH1)H1, H2 → (1 + 1

2
δZH2)H2 . (3.12)

This leads to the following expressions for the various field renormalization constants in

Eq. (3.8):

δZhh = sin2α δZH1 + cos2α δZH2 , (3.13a)

δZhH = sinα cosα (δZH2 − δZH1), (3.13b)

δZHH = cos2α δZH1 + sin2α δZH2 . (3.13c)

The counter term for tan β can be expressed in terms of the vacuum expectation values

as

δ tan β =
1

2
(δZH2 − δZH1) +

δv2
v2

− δv1
v1

, (3.14)

where the δvi are the renormalization constants of the vi:

v1 → (1 + δZH1) (v1 + δv1) , v2 → (1 + δZH2) (v2 + δv2) . (3.15)
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It can be shown that the divergent parts of δv1/v1 and δv2/v2 are equal [62]. Consequently,

one can set δv2/v2 − δv1/v1 to zero.

By setting δv2/v2 − δv1/v1 to zero, δ tan β is just a combination of field counterterms:

δ tanβ =
1

2
(δZH2 − δZH1) (3.16)

3.1.4 Renormalization schemes

With respect to the renormalization scheme, the on-shell (OS) is particularly appropriate

when the parameters of the theory can be determined through precise experiments because

in this scheme the renormalized masses and coupling constants are identified with the

physical masses and coupling constants (cross sections and decay widths). Two conditions

characterize the usual OS scheme:

• The mass that appears in the φ propagator represents the φ physical mass.

Re Σ̂φφ(p
2 = m2

φ) = 0 ⇒ ReΣφφ(p
2 = m2

φ) = Re δm2
φ (3.17)

• The residue of the φ renormalized propagator at the φ pole mass is fixed to one.

Σ̂′
φφ(p

2 = m2
φ) = 0 ⇒ δZφφ = −Σ′

φφ(p
2 = m2

φ) (3.18)

1) Renormalization scheme for the boson masses

In our work we will use on-shell renormalization conditions for the mass counterterms

of the pseudoscalar A boson, the Z and the W gauge bosons, because they are physical

observables, leading to:

δM2
Z = ReΣZZ(M

2
Z), δM2

W = ReΣWW (M2
W ), δM2

A = ReΣAA(M
2
A). (3.19)

Here ΣZZ,WW denotes the transverse part of the self-energies. Since the tadpole coefficients

are chosen to vanish in all orders, their counter terms follow from T{h,H} + δT{h,H} = 0:

δTh = −Th, δTH = −TH . (3.20)
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2) Renormalization schemes for the Higgs boson wave function

On the other hand, tan β is just a Lagrangian parameter, and it is not a directly mea-

surable quantity. There is no obvious and unique way to relate tan β to an observable.

The actual definition of tan β, its physical meaning and its relation to observables is given

by the choice of a renormalization scheme. This ambiguity in the definition of tanβ is

similar to the ambiguity in the definition of the weak mixing angle θW .

Therefore, for the remaining renormalization constants, δ tan β, δZH1 and δZH2 various

renormalization schemes are possible [158–160]. The different renormalization schemes for

δ tan β, δZH1 and δZH2 that we have used for our calculation are the following:

On-shell renormalization

One possible choice is an on-shell (OS) renormalization. There is not an unique way

of renormalizing OS δ tanβ, δZH1 and δZH2 [161]. Among the various possibilities we

have chosen the following renormalization conditions for the renormalized Higgs-boson

self-energies:

Σ̂′
hh(m

2
h,tree) = 0 , (3.21)

Σ̂′
HH(m

2
H,tree) = 0 . (3.22)

This yields

δZOS
hh = −ReΣ′

hh(m
2
h,tree) , (3.23)

δZOS
HH = −ReΣ′

HH(m
2
H,tree) , (3.24)

equivalently to

δZOS
H1

=
1

cos 2α

(

sin2α ReΣ′
hh(m

2
h,tree)− cos2α ReΣ′

HH(m
2
H,tree)

)

, (3.25)

δZOS
H2

=
1

cos 2α

(

− cos2α ReΣ′
hh(m

2
h,tree) + sin2α ReΣ′

HH(m
2
H,tree)

)

. (3.26)

For δ tanβOS a convenient choice is

δ tanβOS =
1

2

(

δZOS
H2

− δZOS
H1

)

=
−1

2 cos 2α

(

ReΣ′
hh(m

2
h,tree)− ReΣ′

HH(m
2
H,tree)

)

. (3.27)

It should be kept in mind that this scheme can lead to large corrections to mh in the

MSSM [158, 161], hence worsening the convergence of the perturbative expansion. Fur-

thermore, it is known to provide gauge dependent corrections at the one-loop level [159].
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DR renormalization

A convenient choice which avoids the previously commented large corrections to mh in the

MSSM and is (linear) gauge independent at the one-loop level is a DR renormalization of

δ tan β, δZH1 and δZH2,

δZDR
H1

= −
[

ReΣ′
HH |α=0

]div
, (3.28a)

δZDR
H2

= −
[

ReΣ′
hh |α=0

]div
, (3.28b)

δtanβ DR =
1

2

(

δZDR
H2

− δZDR
H1

)

. (3.28c)

The [ ]div terms are the ones proportional to ∆ = 2/ε− γE + log(4π), when using dimen-

sional regularization/reduction in d = 4 − ε dimensions; γE is the Euler constant. The

corresponding renormalization scale, µDR, has to be fixed to a certain mass scale that will

be discussed below.

Modified DR renormalization (mDR)

The µDR dependence introduced in the DR scheme can lead in the present context to

large logarithmic corrections ∝ log(m2
M/µ

2
DR

) for large values of the Majorana mass mM

(as will be discussed below). These large corrections could again worsen the convergence

of the perturbative expansion. One possible way out is to replace [ ]div by [ ]mdiv, where

the latter means to select not only the terms ∝ ∆ as in Eqs. 3.28, but the terms ∝
∆m ≡ ∆− log(m2

M/µ
2
DR

). This prescription for the counterterms defines the modified DR

renormalization scheme, which will be named in this work in short as mDR,

δZmDR
H1

= −
[

ReΣ′
HH |α=0

]mdiv
, (3.29a)

δZmDR
H2

= −
[

ReΣ′
hh |α=0

]mdiv
, (3.29b)

δtanβ mDR =
1

2

(

δZmDR
H2

− δZmDR
H1

)

. (3.29c)

As will be shown below, effectively this corresponds to the particular choice of µDR = mM .

In this way the potentially large logarithms vanish, what makes it a convenient choice.

Usually this choice is referred to in the literature as ’decoupling the large mass scale by

hand’ (see e.g. [162, 163] and references therein).
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It should be kept in mind that in the mDR scheme the parameter tan β = tan βmDR

has a different meaning than the “conventional” parameter tan β = tan βDR. However,

we have checked that this shift is numerically insignificant.

3.2 Results

In this section we first present the results of the one-loop corrections from neutrino/sneutrino

contributions to the neutral Higgs boson renormalized self-energies within the MSSM-

seesaw and then we discuss the derived results for the Higgs mass corrections.

3.2.1 One-loop calculation of the renormalized self-energies

The full one-loop neutrino/sneutrino corrections to the self-energies, Σ̂
ν/ν̃
hh , Σ̂

ν/ν̃
HH and Σ̂

ν/ν̃
hH ,

entering Eq. (3.5) have been evaluated with the help of FeynArts [144] and FormCalc [164].

For shortness, in this and the next subsection these self-energies will be named simply

as Σ̂hh, Σ̂HH , and Σ̂hH , respectively. The new Feynman rules for the neutrino/sneutrino

sector, derived in this work and collected in the Appendix A, have been inserted into a

new model file1.

The generic one-loop Feynman-diagrams contributing to the renormalized self-energies

are depicted in Figure 3.1. They include the two-point and one-point diagrams in the

Higgs self-energies, tadpole diagrams, and the two-point and one-point diagrams in the

Z boson self-energy. Here the notation is: φ refers generically to all neutral Higgs bosons,

h,H,A; F refers to all neutrinos ni (i = 1, 2); S refers to all sneutrinos ñi (i = 1, ..4), and

Z refers to the Z boson.

The analytical results for the unrenormalized self-energies and tadpoles are collected

in the Appendix B. The final analytical results for the renormalized self-energies are easily

obtained by inserting these results into Eq. (3.10).

We have checked that all the divergences involved in the computation cancel and the

renormalized self-energies, Σ̂hh(p
2), Σ̂HH(p

2) and Σ̂hH(p
2) in the three schemes OS, DR,

and mDR are all finite, as expected. We have also checked that the renormalized self-

energies in the OS scheme, are independent of the regularization scale µDR, as they must

be. The renormalized self-energies in the DR are µDR dependent whereas the ones in

1This model file is available upon request.
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φ
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φ φ
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F
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Z Z

S

Z Z

S

S

Figure 3.1: Generic one-loop Feynman-diagrams contributing to the neutral Higgs bosons

renormalized self-energies (see text)

the mDR scheme are µDR independent by construction. Analytically they are related by

Σ̂mDR(p2) = Σ̂DR(p2)|µDR =mM
.

3.2.2 Analysis of the renormalized self-energies

In the following we discuss the numerical results for the renormalized self-energies. They

are collected in Figs. 3.2 through 3.10. First we compare the predictions of the one-loop

renormalized self-energies in the three schemes for the full interval 103 GeV <∼ mM <∼ 1015 GeV,

and next we analyze these exact results at large mM with the help of the simple analyt-

ical formulas that are obtained in the seesaw limit. Then we choose the mDR scheme

and show the exact numerical results of the renormalized self-energies as functions of all

the neutrino/sneutrino parameters involved. Finally we conclude on the subset of most

relevant parameters (specifically, mM , mR̃, Bν and mν) which will be the selected ones to

study the corrections to Mh in the next subsection. For the final estimate of these cor-
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rections, and to localize the regions of the parameter space where they can reach sizeable

values, we will vary these relevant parameters within some selected plausible intervals.

For the parameters which do not exhibit a relevant numerical effect on Mh (specifically,

tanβ,MA, µ, mL̃ and Aν) we choose representative values. For completeness, we will also

comment shortly at the end of this subsection on the Dirac case.

In order to compare systematically our predictions of the neutrino/sneutrino sector

in the MSSM-seesaw with those in the MSSM, we have split the full one-loop neu-

trino/sneutrino result into two parts:

Σ̂(p2)|full = Σ̂(p2)|gauge + Σ̂(p2)|Yukawa , (3.30)

where Σ̂(p2)|gauge means the contributions from pure gauge interactions and they are

obtained by switching off the Yukawa interactions, i.e. by setting Yν = 0 (or equivalently

mD = 0). The remaining part is named here Σ̂(p2)|Yukawa and refers to the contributions

that are only present if Yν 6= 0. In other words, this separation splits the full result

into the common part with the MSSM, given by Σ̂(p2)|gauge, and the new contributions

due to the presence of Majorana neutrinos with non vanishing Yukawa interactions, given

by Σ̂(p2)|Yukawa. Thus, by comparing the size of these two parts, within the allowed

parameter space region, we will localize the areas where Σ̂(p2)|Yukawa ≫ Σ̂(p2)|gauge, which
will therefore indicate a significant departure from the MSSM result.

Dependence on mM

We show in Figure 3.2 the predictions for Σ̂hh(p
2) as a function of mM in the three

schemes: DR (upper left plot), OS (upper right plot), and mDR (lower left plot). In these

plots we have considered an extremely wide range for the mM values, from 103 GeV up to

1015 GeV, and fixed the physical light neutrino mass to |mν | = 0.5 eV. Consequently, mD

is derived from mM and mν by using Eq. (2.61) and Eq. (2.62). The other parameters

are fixed as indicated in the figure. In this and in the following figures we have fixed

p2 in the self-energies to a particular value, corresponding to an approximation of the

higher-order corrected value of Mh for the input MSSM parameters set in each figure, see

below. The numerical values used here and in the following for the SUSY parameters are

representative values (as will also be shown below). Therefore, despite choosing only a

few values for the parameters, the results obtained can be considered as more general.

In the three mentioned plots in Figure 3.2 one can see that the numerical value of

the full result is nearly constant with mM in the three schemes from mM = 103 GeV
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Figure 3.2: Renormalized Higgs boson self-energies as a function of mM and comparison be-

tween the three considered schemes. Upper left panel: Σ̂DR
hh (p2). Upper right panel: Σ̂OS

hh (p
2).

Lower left panel: Σ̂mDR
hh (p2). Lower right panel: Σ̂mDR

hh (p2), Σ̂mDR
HH (p2) and Σ̂mDR

hH (p2). All

self-energies are evaluated at p2 = (116 GeV)2.

up to mM ∼ 1012 GeV. Furthermore, this constant value is approximately the same in

the three schemes (the differences are below ∼ 10−2 GeV2), and is totally dominated by

the ’pure gauge contributions’. Thus, for 103 GeV <∼ mM <∼ 1012 GeV the result in the

MSSM-seesaw nearly coincides with the result in the MSSM, irrespectively of the scheme.

For the choice of input parameters in this plot, we get Σ̂hh|full ≃ Σ̂hh|gauge ≃ −23.67 GeV2.

For larger values of mM in the range 1012 GeV < mM < 1015 GeV, there are,

however, remarkable differences between the three considered schemes, and the main
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differences come clearly from the ’Yukawa contributions’. Whereas Σ̂OS
hh |full is apparently

constant with mM , also for mM > 1012 GeV, |Σ̂DR
hh |full| and |Σ̂mDR

hh |full| grow noticeably

with mM at these large mM values. The numerical value of Σ̂DR
hh |full is negative for mM >

1012 GeV and gets large values in this range, where they are totally dominated by the

’Yukawa contributions’. For instance, formM = 1013 GeV, we get Σ̂DR
hh |full ≃ Σ̂DR

hh |Yukawa ≃
−250 GeV2, and for mM = 1014 GeV, we get Σ̂DR

hh |full ≃ Σ̂DR
hh |Yukawa ≃ −3000 GeV2. In

the mDR scheme, the result is negative up to 5 × 1013 GeV and then becomes positive

and large for mM > 5× 1013 GeV. Notice that, the absolute value in the mDR scheme at

large mM is always smaller than in the DR scheme, due to the commented cancellation

of the large logarithms log(mM/µDR) corresponding to the choice µDR = mM . Notice

also that, in spite of this cancellation, the size of the corrections in mDR, are still large

for large enough mM values. For instance, for mM = 1015 GeV, we get dominance of

the ’Yukawa contributions’ Σ̂mDR
hh |full ≃ Σ̂mDR

hh |Yukawa ≃ 500 GeV2. In contrast, for mM =

1014 GeV, the ’Yukawa contributions’ and the ’pure gauge contributions’, compete since

Σ̂mDR
hh |Yukawa ≃ 60 GeV2 and Σ̂mDR

hh |gauge ≃ −24 GeV2 leading to Σ̂mDR
hh |full ≃ 36 GeV2.

In the lower right plot of Figure 3.2 we compare Σ̂mDR
hh |full to the other two renormalized

self-energies, Σ̂mDR
HH |full and Σ̂mDR

hH |full. One can observe that the three self-energies behave

qualitatively very similarly with mM , being approximately constant for mM < 1012 GeV

and growing (in modulus) with mM for 1012 GeV < mM < 1015 GeV. For the choice of

parameters in this plot, |Σ̂mDR
hh |full| is larger than the others in the full explored mM range.

This will be relevant for the forthcoming estimate of the one-loop radiative corrections

to Mh.

The previously commented growing behavior of the renormalized self-energies with

mM is a consequence of the corresponding growing behavior of the neutrino Yukawa

interactions with mM , see Eq. (2.61) and Eq. (2.62). This is a well known feature of

the seesaw models that, in order to get the light neutrino masses mν in agreement with

data, one must impose for each input mM value the proper Yν (and therefore mD) to

precisely match the experimentally inspired input mν . Yν is therefore not an input but an

output in this approach, and according to Eq. (2.61) and Eq. (2.62) Yν grows with mM

as Yν ∝
√
mM . The behavior of the renormalized self-energies with mM is, consequently,

the result of the two competing facts, the increase of Yν with mM and the decreasing with

mM from the neutrino and sneutrino propagators in the loops.



92 Radiative corrections to mh in the MSSM-seesaw model

Dependence on mM in the seesaw limit

In order to illustrate more clearly the behavior with mM , we have analyzed in more

detail the renormalized self-energies in the seesaw limit, as defined in chapter 2. As the

increase with mM starts at very large mM > 1012 GeV values (i.e. much larger than the

other scales, mM ≫ mD,MZ ,MA, µ,mL̃, mR̃, Bν , Aν), one expects that this limit should

approximate pretty well the full result and show its same main features.

For the computation of the renormalized self-energies in this seesaw limit, we have

performed a systematic expansion of the exact result in powers of the seesaw parameter

ξ = mD/mM . In order to reduce the number of parameters, and for a clearer interpretation

of the results, we have set in this expansion, Aν = µ = Bν = 0 (which is justified, see

below) and we have assumed universal soft SUSY breaking masses, i.e., mL̃ = mR̃ =

mSUSY.

The analytical expressions for these expanded renormalized self-energies are of the

generic form:

Σ̂(p2) =
(

Σ̂(p2)
)

m0
D

+
(

Σ̂(p2)
)

m2
D

+
(

Σ̂(p2)
)

m4
D

+ . . . . (3.31)

where,
(

Σ̂(p2)
)

m0
D

is the first term in the expansion, i.e. O(ξ0),
(

Σ̂(p2)
)

m2
D

is the next

term, i.e.O(ξ2),
(

Σ̂(p2)
)

m4
D

is the term of O(ξ4), etc. It should be noticed that there are

no terms with odd powers of ξ. The first term in this expansion is precisely the pure

gauge contribution,
(

Σ̂(p2)
)

m0
D

= Σ̂(p2)|gauge. Therefore, it approximates the result in

the MSSM and the rest approximates the Yukawa part,

(

Σ̂(p2)
)

MSSM
≃
(

Σ̂(p2)
)

m0
D

,

(

Σ̂(p2)
)

Yukawa
≃
(

Σ̂(p2)
)

m2
D

+
(

Σ̂(p2)
)

m4
D

+ . . . . (3.32)

In order to get simple formulas, we have expanded in addition each term in the series

in Eq. (3.31) in powers of the other small dimensionless parameters, namely, MZ/mM ,

MA/mM , p/mM and mSUSY/mM .

The result of the previous seesaw expansion (we just show the leading terms; terms

suppressed by factors 1/m2
M respect to these leading ones are not relevant and, therefore,

are not included) for each of the three considered renormalization schemes is as follows.
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O(m0

D
)

(

Σ̂DR
hh (p

2)
)

m0
D

=
g2M2

Z sin2(α + β)

1152c2wm
2
SUSYπ

2

[

− 20m2
SUSY + 3p2 + 12m2

SUSY log
M2

Z

m2
SUSY

]

(3.33a)

(

Σ̂mDR
hh (p2)

)

m0
D

=
(

Σ̂DR
hh (p

2)
)

m0
D

(3.33b)

(

Σ̂OS
hh (p

2)
)

m0
D

=
(

Σ̂DR
hh (p

2)
)

m0
D

+
g2M2

Z

3072c2wm
2
SUSYπ

2

[

4
(

p2 −m2
h

)

(cos 2α cos 2β − 1)

+ sec 2α sin 2β
(

M2
A (sin 4β − sin 4α)−M2

Z sin 4(α + β)
)

]

(3.33c)

O(m2

D
)

(

Σ̂DR
hh (p

2)
)

m2
D

=
g2m2

D

64π2M2
W sin2 β

[

1− log
m2

M

µ2
DR

]

[

−2M2
A cos2(α− β) cos2 β

+2p2 cos2 α−M2
Z sin β sin(α + β)

(

2
(

1 + cos2 β
)

cosα− sin 2β sinα
)]

(3.34a)
(

Σ̂mDR
hh (p2)

)

m2
D

=
(

Σ̂DR
hh (p

2)
)

m2
D

∣

∣

∣
µDR=mM

(3.34b)

(

Σ̂OS
hh (p

2)
)

m2
D

=
gm2

D

768π2M2
Wp

2m2
M

[

12m2
SUSY

[

M2
Ap

2
(

2 cos2(α− β) cot2 β − cot β sin 2(α− β)
)

− 2m2
hp

2 cos2 α csc2 β − 4M2
Zp

2 cosα csc β sin(α + β) + 4M4
Z sin2(α + β)

+ 2M2
Zp

2 sin2(α + β)−M2
Zp

2 cot β sin 2(α+ β)− 4M2
Zp

2 sin2(α+ β) log
M2

Z

m2
M

+ 4M4
Z sin2(α + β) log

p2

m2
M

− log
m2

SUSY

m2
M

[

2m2
hp

2 cos2 α csc2 β + 4M4
Z sin2(α + β)

−M2
Zp

2
(

2 sin2(α + β)− cot β sin 2(α+ β) + 4 cosα csc β sin(α + β)
)

+M2
Ap

2
(

cot β sin 2(α− β)− 2 cot2 β cos2(α− β)
)

]]

+ p2
[

8M4
A cos2(α− β) cot2 β + 8 cos2 α

(

3M2
Z

(

m2
h − p2

)

+ p2 csc2 β
(

3m2
h − p2

))

+ 24M2
Zp

2 cosα csc β sin(α + β) + 12M2
AM

2
Z cos2 β cos 2β sec 2α

+ 12M4
Z sin2(α+ β)(−1 + 2 log

M2
Z

p2
) + 3 cotβ

[

− 2M2
AM

2
Z sin 2α

+ 2 sec 2α
[

−M2
A sin 2(α− β)

(

−M2
A + 2m2

h −M2
Z +M2

A cos 2α
)
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+M2
Z sin 2(α + β)

(

M2
A − 2m2

h +M2
Z −M2

A cos 2α−M2
Z cos 2(α+ β)

) ]

]]]

(3.34c)

O(m4

D
)

(

Σ̂DR
hh (p

2)
)

m4
D

=
g2m4

D

128π2M2
Wm

2
Mp

4

[

4M2
Zp

2
(

p2 −M2
Z

)

log
m2

SUSY

m2
M

sin2(α + β)

+ 8M2
Ap

4 cos2(α− β) cot2 β log
M2

A

m2
M

+ 4
(

2m2
SUSY − 3M2

Z

)

p4 sin2(α+ β) log
M2

Z

m2
M

+ 8p4 csc2 β
[

M2
A cos2 β cos2(α− β)− p2 cos2 α

]

+ 8M2
Z sin(α + β)p4

[

2 cosα csc β − sin(α + β)
]

+ 4m2
SUSY log

m2
SUSY

m2
M

[

p4
(

−1 + cos 2(α+ β)− 4 cos2 α csc2 β
)

+ 8M2
Zp

2 cosα csc β sin(α + β)− 2M4
Z sin2(α + β)

]

− 4 log
p2

m2
M

[

2p6 cos2 α csc2 β + 4M2
Zp

2
(

2m2
SUSY − p2

)

cosα csc β sin(α+ β)

−M4
Z sin2(α + β)

(

2m2
SUSY + p2

) ]

− 8m2
SUSY

[

2p4 cos2 α csc2 β

+ 4M2
Zp

2 cosα csc β sin(α + β) + sin2(α + β)
(

M4
Z − p4

) ]

]

(3.35a)
(

Σ̂mDR
hh (p2)

)

m4
D

=
(

Σ̂DR
hh (p

2)
)

m4
D

(3.35b)

(

Σ̂OS
hh (p

2)
)

m4
D

=
(

Σ̂DR
hh (p

2)
)

m4
D

+
g2m4

D

32π2M2
Wm

2
M

[

cot β sec 2α sin2 α
[

M2
A sin 2(α− β)

+M2
Z sin 2(α + β)

]

[

2 + log
m2

H

m2
M

]

− cos2 α
[

2 + log
m2

h

m2
M

]

[

2(m2
h − p2) csc2 β

+ cot β sec 2α
[

M2
A sin 2(α− β) +M2

Z sin 2(α + β)
]]

]

(3.35c)

From these formulas the qualitatively different behavior of the renormalized Higgs-

boson self-energies on the Majorana mass scale mM can be understood. The main dif-

ference between the OS scheme and the DR/mDR schemes appears in the Yukawa part,

especially in the term of O(m2
D). At the various orders the comparison of the three

schemes is given as follows.

At the leading order in the seesaw expansion, O(m0
D) in Eq. (3.33), the results in the

DR and mDR schemes coincide. This is indeed a consequence of the fact that, at this order,

Σ̂DR
hh (p

2) turns out to be µDR independent. The result in the OS scheme differs from these
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Figure 3.3: Comparison between the predictions from the seesaw expansion and the exact

results for the Yukawa part. Left panel: mDR scheme. Right panel: OS scheme. In both

panels, p2 = (116 GeV)2.

later by a term of order g2M2
ZM

2
EW/m

2
SUSY, where M

2
EW refers generically to the involved

masses of the order of the electroweak scale, i.e., M2
A, p

2, M2
Z , m

2
h tree. Furthermore, this

difference turns out to be numerically extremely small. This explains why, for low values

of the Majorana scale, where the O(m0
D) term of the expansion dominates, the predictions

from the three schemes are nearly indistinguishable.

At the next order in the seesaw expansion, O(m2
D) in Eq. (3.34), the OS result differs

substantially from the DR and mDR schemes. First, the OS result is extremely suppressed

with respect to the DR and mDR results at large mM . This is due to the fact that the

leading contribution, i.e. of the order of g2m2
DM

2
EW/M

2
Z , vanishes in the OS whereas it

is present in the other schemes. As can be seen in Eq. (3.34), the first non vanishing

contribution contains an extra factor ∼ m2
SUSY/m

2
M which can be extremely small for

mM ≫ mSUSY. This remarkable difference of the OS result has its origin in the different

values of the δZhh and δ tanβ counterterms. More specifically, by computing their finite

parts in the OS scheme and in the seesaw limit, we get

δOSZhh|finite = − g2m2
D cos2α

32c2wM
2
Zπ

2 sin2 β

[

1− log
m2

M

µ2
DR

]

+O
(

M2
EW, m

2
SUSY

m2
M

)

, (3.36)

δOS tan β|finite = − g2m2
D

64c2wM
2
Zπ

2 sin2 β

[

1− log
m2

M

µ2
DR

]

+O
(

M2
EW, m

2
SUSY

m2
M

)

. (3.37)
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These finite contributions lead to the cancellation of the above commented leading con-

tributions.

In the DR scheme, we get an explicit logarithmic dependence on mM , concretely as

− log(m2
M/µ

2
DR

). By construction this term is absent in the mDR result. Therefore, the

main difference between these two schemes DR and mDR is this logarithmic contribution

that can be sizeable for mM ≫ µDR.

The results at the next to next order in the seesaw expansion, O(m4
D) in Eq. (3.35),

show that they all go (leaving apart the logarithms) as g2m4
D(M

2
EW, m

2
SUSY)/(M

2
Zm

2
M).

Therefore the O(m4
D) terms are extremely suppressed in the three schemes, and conse-

quently they are not relevant in the large mM regime.

All the above commented analytical features of the seesaw expansion have also been

checked numerically, as it is illustrated in Figure 3.3. In this figure we show separately

the O(m2
D) and O(m4

D) contributions and the exact Yukawa prediction in both the mDR

(left plot) and OS scheme (right plot).2 One clearly observes the dominance of the O(m2
D)

over the O(m4
D) in the mDR scheme by many orders of magnitude in the full explored mM

range. One also sees that theO(m2
D) result approximates extremely well the exact Yukawa

result for mM >∼ 104 GeV. In contrast, in the OS scheme, the O(m2
D) term dominates just

up to about mM = 1010 GeV, but then for larger values the O(m4
D) dominates. In this

plot it is also manifested that the exact Yukawa result in the OS is well approximated

by the O(m2
D) term in the interval 103 GeV < mM < 1011 GeV and by the O(m4

D)

term for mM > 1012 GeV. At this large values, however, the size of the correction is

extremely small (below 10−17 GeV2), hence, irrelevant. It is also clear from this plot that

the numerical results for the O(m4
D) contributions are similar in the three schemes.

From the definition of the three renormalization schemes, see Sect. 3.1.3, and our

analytical and numerical analysis in this section we conclude that the mDR scheme is

best suited for higher-order calculations in MSSM-seesaw model. The other two schemes

can lead to unphysically large corrections at the one-loop level. We will focus in the

following on this scheme, and the numerical evaluation of M
ν/ν̃
h , see Sect. 3.2.3, will be

performed solely in this “preferred” scheme.

Finally, in this context, we discuss the decoupling or non-decoupling behavior of the

2It should be kept in mind that due to the different renormalization of tanβ the meaning of this input

parameter is different in OS and in the mDR scheme. In order to perform a real numerical comparison

a transition from tanβ ≡ tanβmDR → tanβOS would have to be performed. However, here we are

interested in the qualitative behavior and we do not consider this shift.
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Figure 3.4: Left panel: Decoupling/Non-decoupling behavior of the one-loop neu-

trino/sneutrino corrections to the renormalized lightest Higgs boson self-energy at large mM

in the mDR scheme. Right panel: Dependence of the neutrino Yukawa coupling (and mD)

with mM .

neutrino/sneutrino one-loop radiative corrections with the Majorana scale. According to

Figs. 3.2 and 3.3, the Yukawa part of the renormalized self-energy in the mDR scheme

grows with mM . However, this does not constitute by itself a proof of non-decoupling of

mM in the radiative corrections to Σ̂mDR
hh for asymptotically large mM . To analyze this

question, we have to investigate separately the behaviors of Σ̂mDR
hh and mD with mM , since

in the way the seesaw mechanism is implemented here, as we have mentioned before, mD

(or equivalently Yν) is not an input but an output and it grows proportional to
√
mM .

To analyze these two behaviors separately we show in the left plot of Figure 3.4 the ratio

(Σ̂mDR
hh )Yukawa/m

2
D versus mM (and mD), and in the right plot we show the predictions

of the Yukawa coupling (and mD) as a function of mM . The latter one exhibits the

(trivial) result of Yν ∝
√
mM as expected. In the left plot a constant behavior of the ratio

(Σ̂mDR
hh )Yukawa/m

2
D is clearly manifested, which means that the growing of (Σ̂mDR

hh )Yukawa

withmM is exclusively due to the growing of Yν (ormD) withmM . However, still this ratio

turns out to be non-vanishing for asymptotically large mM , and constant with mD, as can

be seen in Figure 3.4. Therefore, a non-decoupling constant behavior must be concluded

in the Majorana case from all this discussion. This constant, on the other hand, is very

well approximated by the coefficient multiplying the factor m2
D in the Σ̂mDR

hh (p2)m2
D
result

of Eq. (3.34).
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In order to understand this issue better, we compare this analytical result, showing

a constant behaviour of the renormalized Higgs boson self-energy in the mM → ∞ limit

when Yν is kept fixed, with the corresponding result in the Dirac case. For simplification in

this analytical comparison we focus just on the O(p2m2
D) terms and use the electroweak

basis for neutrinos and sneutrinos3. The results at O(p2m2
D) for the renormalized self-

energies in the DR scheme for the Majorana and Dirac cases are:

Σ̂Majorana,DR
hh (p2) =

g2m2
Dp

2 cos2 α

32π2M2
W sin2 β

(
1

2
− log

m2
M

µ2
DR

)

+
g2m2

Dp
2 cos2 α

64π2M2
W sin2 β

(3.38)

Σ̂Dirac,DR
hh (p2) =

g2m2
Dp

2 cos2 α

32π2M2
W sin2 β

(2− log
p2

µ2
DR

) (3.39)

where the first and second lines in Σ̂Majorana,DR
hh (p2) are the contributions from neutrinos

and sneutrinos respectively. It should be noticed that the O(p2m2
D) sneutrino contribu-

tions come exclussively from the new couplings g′hν̃Lν̃R = − igmDmM cosα
2MW sinβ

, which are not

present in the Dirac case. It should also be noticed that this result in the Majorana case

translates into our O(p2m2
D) term in (3.34a). The comparison of the two formulas shows

that the result of the Majorana case for low momenta, p2 ≪ m2
M , does not coincide with

the result of the Dirac case.

From the right plot in Figure 3.4 we can also conclude on the range of mM values

where the neutrino Yukawa couplings get too large and potential non-perturbative. The

concrete crossing line to set the perturbativity region is not uniquely defined, but it should

be considered around Yν ∼ O(1). For instance, by setting the crossing at Y 2
ν /(4π) = 1.5

(Yν = 4.34) we get perturbativity for mM < 1015 GeV, and by setting it at Yν = 1.5 it

is got for mM < 1014 GeV. In the following of this subsection we set mM = 1014 GeV as

our reference value.

Dependence on tan β, MA, µ, mL̃
, m

R̃
, Aν, mν, Bν and p

The behavior of the renormalized self-energy in the mDR scheme with the other parame-

ters entering in this computation are shown in Figs. 3.5 - 3.10. In all these plots we have

included separately the gauge, Yukawa and total results for comparison.

3The computation in this case reduces to just the evaluation of one type of loop diagrams, the sunset

diagrams, 2nd and 5th in Figure 3.1.
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First, the behavior with tanβ is analyzed in the left plot of Figure 3.5. It exhibits

basically the expected features that can be inferred from the loop corrections of an up-

type fermion/sfermion. The neutrino/sneutrino one-loop radiative corrections reach their

maximum value at the lowest considered value of tanβ, tanβ = 2 in this plot. For

tanβ > 5 the dependence is nearly flat. There are no relevant differences between the

behaviors with tan β of the Yukawa and the gauge parts. From now on, we will set

tanβ = 5 as our reference value.
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Figure 3.5: Left panel: Σ̂mDR
hh (p2) as a function of tan β. Right panel: Σ̂mDR

hh (p2) as a function

of MA. In the left (right) panel, p2 = (116 GeV)2 (p2 = (105 GeV)2).

The behavior with MA is displayed in the right panel of Fig.3.5. Again we see no

relevant differences with respect to the well known behavior in the MSSM. ForMA larger

that 150 GeV the total contribution from the neutrino/sneutrino sector to the renormal-

ized self-energy is nearly flat with MA. In the following we will take MA = 200 GeV as

our reference value.

The dependence with the soft SUSY breaking mass of the ‘left handed’ SU(2) doublet,

mL̃, is shown in Figure 3.6. We see that the gauge contribution is negative and increases

in modulus with increasing mL̃, whereas the Yukawa contribution is positive and nearly

insensitive to changes of mL̃ in the investigated interval, 102 GeV < mL̃ < 104 GeV. The

total neutrino/sneutrino corrections, at these selected values of the model parameters,

are positive and decreasing with mL̃ for 102 GeV < mL̃ < 2× 103 GeV and then become

negative and increasing in modulus with mL̃ for 2× 103 GeV < mL̃ < 104 GeV.

The behavior with the soft SUSY breaking parameter of the ‘right handed’ sector mR̃
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Figure 3.6: Σ̂mDR
hh (p2) as a function of mL̃; we have set p2 = (105 GeV)2.

is shown in Figure 3.7. In the left plot a mass scale similar to the other soft SUSY-

breaking parameters is investigated, whereas in the right plot values of mR̃ closer to

mM are explored. It should be reminded that these values are not constrained by data.

An interesting feature can be observed at large values of mR̃. The contributions to the

renormalized self-energy stay flat up to about mR̃ ∼ 1013 GeV. Above this mass scale

the Yukawa part grows rapidly, reaching very large values at mR̃ ∼ 1014 GeV of around

Σ̂mDR
hh ∼ 7000 GeV2.

The behavior with the new soft SUSY-breaking trilinear coupling Aν is shown in the

left plot of Figure 3.8. The full result, the gauge, and Yukawa parts are nearly independent

on this parameter in the studied interval, −1000 GeV < Aν < 1000 GeV. Although not

shown explicitly, we have also studied the behavior with µ and got the same ‘flat’ behavior

for −1000 GeV < µ < 1000 GeV. This justifies our choice Aν = µ = 0 in our seesaw

expansion above.

The behavior with the lightest neutrino mass, mν , is demonstrated in the right plot

of Figure 3.8. One can see that the Yukawa part is quite sensitive to this mass that we

have varied in a plausible and compatible with data range. The growing of the result with

|mν |, for fixed mM , is the consequence of the growing of Yν (or mD) with |mν | since in

this model they are correlated, as shown in (2.61) and (2.62).

The behavior with Bν is analyzed in Figure 3.9. We have found a flat result with

this new soft parameter for most of the explored range, except at very large values,
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Bν > 1012 GeV, as shown in the right plot. For these large values the Yukawa part grows

noticeably with Bν and dominates largely the total result, leading to large radiative

corrections. For instance, for the parameters chosen in this figure and Bν = 1013 GeV,

we found Σ̂mDR
hh ∼ 2400 GeV2. The question whether such large values of Bν are realistic

depends on the particular models and universality conditions. However, such an analysis
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is beyond the scope of our work. On the other hand, if we apply the bounds that are

imposed in order to avoid destabilizing the electroweak symmetry breaking [145], leading

to BνY
2
ν /(8π

2) < mSUSY/ tanβ, one gets an upper limit on Bν . For Yν ∼ 1, mSUSY ∼
1000 GeV and tanβ ∼ 5 one finds Bν < 1.6× 104 GeV. For this range the renormalized

Higgs-boson self-energy is nearly independent of Bν . From now on, we will choose Bν =

500 GeV as our reference value.

Finally, we show in Figure 3.10 the behavior with p2, the square of the external mo-

mentum of the Higgs boson self-energies, which is a relevant issue for the discussion of

the radiative corrections to the Higgs-boson masses (see the next subsection). The three

renormalized self-energies, Σ̂hh, Σ̂HH and Σ̂hH , are clearly dependent on p2, but the most

sensitive one is Σ̂hh. It is clear from this figure that setting p2 = 0 in the renormalized

self-energies does not provide a good approximation for the estimate of the radiative cor-

rections to the Higgs boson mass from the neutrino/sneutrino sector in the present case

of Majorana neutrinos. One can also see that mainly the Yukawa part is responsible for

this sensitivity to p2. Setting the proper p2 in order to estimate realistically the Higgs

mass corrections will be discussed in the next subsection.
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result are shown separately.

The Dirac case

Finally, we perform a comparison between the case of massive Majorana neutrinos (as

analyzed so far) and the case of Dirac neutrinos. In order to analyze the Dirac case, we

have computed the one-loop neutrino/sneutrino contributions to the renormalized lightest

Higgs boson self-energy formM = 0. The analytical results for this Dirac case are collected

in Appendix C. We have chosen here the DR scheme, since due to the absence of mM no

large logarithmic corrections are expected, and a comparison to existing calculations can

readily be performed. First, we have checked the finiteness of the result. Second, we have

also checked that the obtained formulas agree with the well known result of the one-loop

radiative corrections from other massive fermion/sfermion sectors of the MSSM, with the

obvious corresponding changes of fermion/sfermion parameters and quantum numbers.

In particular, it can be seen that the formulas in Appendix C coincide with the one-loop

corrections from the MSSM top/stop sector by replacing, correspondingly, the neutrino

SU(2)×U(1) quantum numbers by the top quark ones, mD by mt, mν̃± (= mν̃1) by mt̃1 ,

mÑ±
(= mν̃2) by mt̃2 , θ± (= θ̃) by θ̃t and by adding the proper color factor, NC = 3.

As for the numerical estimate, we present in Fig.3.11 the result of the Yukawa con-

tributions from the one-loop neutrino/sneutrino radiative corrections to the renormalized

self-energy, (Σ̂Yukawa
hh )Dirac, as a function of the physical neutrino mass, |mν | = mD. The
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Figure 3.11: One-loop corrections to the Yukawa part of the lightest Higgs boson renormalized

self-energy from the neutrino/sneutrino sector in the case of massive Dirac neutrinos

regularization scale has been fixed here to µDR = 100 GeV and the external momentum

to p = 116 GeV. As in the Majorana case, we consider an interval for the neutrino mass

inspired by experimental data, 0.01 eV <∼ |mν | <∼ 1 eV. In this plot we see clearly that,

as expected, these Yukawa contributions are extremely small (below 10−20 GeV2) and are

fully dominated by the gauge part which we have also estimated, for the chosen param-

eters in this plot, leading to (Σ̂gauge
hh )Dirac = −18.5GeV2. Notice that this gauge part is

similar in both Majorana and Dirac cases, as can be seen in the right plot of Fig.3.8. In

summary, the radiative corrections from the massive neutrinos/sneutrinos in the Dirac

case are phenomenologically irrelevant and therefore this case is totally indistinguishable

from the MSSM with massless neutrinos.

3.2.3 Estimate of the one-loop corrections from neutrino/sneutrino

sector to Mh within the MSSM-seesaw

Our final aim is to find out to what extent the radiative corrections computed here enter

into the measurable range. The experimental perspectives for the Higgs mass measure-

ments with precision enough to be sensitive to such sizeable radiative corrections, as the

ones found here, are indeed quite promising. The LHC has good prospects to discover

at least one neutral Higgs boson over the full MSSM parameter space and a precision on

the mass of a Standard Model (SM)-like Higgs boson of ∼ 200 MeV are expected [68–71]



Results 105

(see e.g. [165, 166] for reviews). At the ILC a determination of the Higgs boson properties

(within the kinematic reach) will be possible, and an accuracy on the mass could reach the

50 MeV level [72–75]. The interplay of the LHC and the ILC in the neutral MSSM Higgs

sector will improve certainly these measurements [167, 168].These experimental precisions

set the goal for the theoretical accuracies. For the estimates of the total corrections to

Mh in the MSSM-seesaw, obviously, the one-loop corrections from the neutrino/sneutrino

sector that we have calculated have to be added to the existing MSSM corrections.

As outlined in Sect. 3.1.2 the higher-order corrected light MSSM Higgs-boson mass

is obtained as a pole from Eq. (3.5), i.e. where p2 = M2
h . A realistic evaluation requires

to take into account all known higher-order corrections to the renormalized Higgs-boson

self-energies [169]. In order to simplify our analysis, but to maintain the high accuracy we

follow a slightly different strategy. For a given set of SUSY parameters we first calculate

Mh and MH in the MSSM with the help of FeynHiggs [76, 160, 170, 171]. In this way all

relevant known higher-order corrections are included, but no ν/ν̃ contributions are taken

into account yet. This corresponds to a ‘diagonalization’ of the CP-even Higgs sector in

the MSSM without heavy Majorana (s)neutrinos. In a second step we search for the poles

of
[

p2 −M2
h + Σ̂

ν/ν̃
hh (M2

h)
] [

p2 −M2
H + Σ̂

ν/ν̃
HH(M

2
h)
]

−
[

Σ̂
ν/ν̃
hH (M2

h)
]2

= 0 , (3.40)

where, Σ̂
ν/ν̃
hh,HH,hH denote the full corrections to the renormalized Higgs-boson self-energies

from the ν/ν̃ sector, obtained in the mDR scheme as described in the present work. The

pole, the light Higgs mass including the ν/ν̃ corrections (i.e. in the MSSM-seesaw model),

is denoted by M
ν/ν̃
h . This ‘re-diagonalization’ now effectively takes into account the full

result of the MSSM-seesaw. The momentum in the self-energies is fixed to the value Mh

as obtained with FeynHiggs, since it is expected that the new contributions only give

a relatively small correction to this Mh. In a more elaborate analysis the renormalized

self-energies should be evaluated with free p2. However, we expect only a very minor

effect from fixing the external momentum to this value. In the near future the results of

the new neutrino/sneutrino corrections will be implemented into the code FeynHiggs.

The numerical results for ∆mmDR
h :=M

ν/ν̃
h −Mh are summarized in Figs. 3.12 through 3.15.

We have chosen here to explore the Higgs mass predictions as a function of just the most

relevant model parameters which, according to our previous exhaustive analysis of the

renormalized Higgs-boson self-energies, are going to provide the most interesting/sizeable

corrections. These are: the Majorana mass mM (or, equivalently, the heaviest physical

Majorana neutrino mass mN ), the soft SUSY breaking parameters mR̃ and Bν and the
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Figure 3.12: One-loop corrections to the lightest Higgs boson mass from the neutrino/sneutrino

sector as a function of the heavy Majorana mass for various choices of the soft mass mR̃. Left

panel: mR̃ < 1013 GeV. Right panel:1013 GeV < mR̃ < 1014 GeV.

lightest physical Majorana neutrino mass mν . As for the numerical values of these rele-

vant parameters, we focus here in the following intervals: 1013 GeV ≤ mM ≤ 1015 GeV,

0.1 eV ≤ |mν | ≤ 1 eV, 103 GeV ≤ mR̃ ≤ mM and 103 GeV ≤ Bν ≤ 4×1012 GeV. For the

remaining model parameters, tanβ, MA, µ, mL̃ and Aν , we choose here the same refer-

ence values as in the previous subsection. The corresponding predictions for other choices

of the parameters can be easily inferred from our previous results of the renormalized

self-energies.

In Fig. 3.12 we show the predictions for ∆mmDR
h as a function of the Majorana mass

mM , for several input mR̃ values. As a general feature, the Higgs mass corrections for the

reference parameter values in the left plot are positive and below 0.1 GeV if mM <∼ 5 ×
1013 GeV and mR̃ < 1012 GeV. For larger Majorana mass values, the corrections get

negative and grow up to a few GeV. For instance, ∆mmDR
h = −2.15 GeV for mM =

1015 GeV. The results in the right plot show that for larger values of the soft mass,

mR̃
>∼ 1013 GeV the Higgs mass corrections are negative and can be sizeable, a few tens

of GeV, reaching their maximum values at mR̃ ≃ mM . For instance, for mR̃ = mM =

1014 GeV we get a very large correction, ∆mmDR
h = −50 GeV. This last large negative

value is in agreement with the prediction in Ref. [67] for the same corresponding input

values of the parameters in their split SUSY scenario. It should be noticed that, in the

case of such large corrections our approximation of Eq. (3.40) is not accurate enough to



Results 107

−12

−10

−8

−6

−4

−2

 0

 1013  1014  1015

∆m
m

D_ R_

h 
   

   
(G

eV
)

mM (GeV)

 Aν = mL
~ = mR

~ = 103 GeV

tanβ= 5, MA=200 GeV

µ=200 GeV, |mν|= 0.5 eV

Bν=103  GeV 

Bν =106  GeV 

Bν =109  GeV

Bν =1012  GeV

Bν =2*1012  GeV

Bν =3*1012  GeV

Bν =4*1012  GeV

−0.4

−0.3

−0.2

−0.1

 0

 0.1

 0.1  1

∆m
m

D_ R_

h 
   

  (
G

eV
)

|mν| (eV)

 Aν=Bν= mL
~= mR

~ = 103 GeV

tanβ = 5, MA = 200 GeV

µ = 200 GeV, mM = 1014 GeV

Figure 3.13: Left panel: One-loop corrections to the lightest Higgs boson mass from the

neutrino/sneutrino sector as a function of the heavy Majorana mass, mM , for various choices

of the soft B-parameter, 103 GeV < Bν < 4 × 1012 GeV. Right panel: Dependence of the

Higgs mass corrections with the lightest neutrino mass, |mν |.

obtain a precise result for M
ν/ν̃
h . However, our method still yields an indication of the

size of the corrections from the ν/ν̃ sector to Mh.

The behavior of the Higgs mass corrections as a function of the Bν parameter is

displayed in the left plot of Fig. 3.13. Again, ∆mmDR
h gets negative and large for large Bν ,

reaching the maximum size at Bν ≃ mM . For instance, for the input model parameters

in this plot, and Bν = 4× 1012 GeV, mM = 1013 GeV, we find ∆mmDR
h = −21 GeV.

The dependence of the mass corrections with the light Majorana neutrino mass is

illustrated in the right panel of Fig. 3.13. The size of the corrections grow with |mν |, as
expected, and can be either positive in the low region, close to |mν | ∼ 0.1 eV, or negative

in the high region, close to |mν | ∼ 1 eV.

These same interesting features of the Higgs mass corrections in terms of the two

relevant physical Majorana neutrino masses, mN and mν , are summarized in the contour-

plot in Figure 3.14. Here we have fixed all the soft parameters, including mR̃, to be at 1

TeV. The contour-lines for fixed ∆mmDR
h range from positive values around 0.1 GeV in the

left lower corner of the plot, corresponding to neutrino mass values of |mν | = 0.1−0.3 eV

and mN = 3× 1013 GeV, up to negative values around −5 GeV in the right upper corner

of the plot, corresponding to, for instance, |mν | = 1 eV and mN = 1015 GeV. It should
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Figure 3.14: Contour-lines for the Higgs mass corrections from the neutrino/sneutrino sector

as a function of the physical Majorana neutrino masses, light |mν | and heavy mN . The other

parameters are fixed to: Aν = Bν = mL̃ = mR̃ = 103 GeV, tan β = 5, MA = 200 GeV and

µ = 200 GeV.

be noticed that the contour-line with fixed ∆mmDR
h = 0.09 (drawn with a wider black line

in this plot) coincides with the prediction for the case where just the gauge part in the

self-energies have been included. This means that ’the distance’ of any other contour-line

respect to this line represents the difference in the radiative corrections respect to the

MSSM prediction.

We plot in Fig. 3.15, the contour-lines for fixed ∆mmDR
h in the less conservative case

where mR̃ is close tomM . These are displayed as a function of |mν | and the ratiomR̃/mM .

mM is fixed here to the reference value, mM = 1014 GeV. For the interval studied here,

we see again that the radiative corrections can be negative and as large as tens of GeV

in the upper right corner of the plot. For instance, ∆mmDR
h = −30 GeV for mM = 1014

GeV, |mν | = 0.6 eV and mR̃/mM = 0.7.

Finally, given our previous simple analytical results of the renormalized self-energies
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Figure 3.15: Contour-lines for the Higgs mass corrections from the neutrino/sneutrino sector

as a function of the ratio mR̃/mM and the lightest Majorana neutrino mass |mν |. The other

parameters are fixed to: mM = 1014 GeV, Aν = Bν = mL̃ = 103 GeV, tan β = 5, MA =

200 GeV and µ = 200 GeV

in the seesaw limit, see Eqs. 3.33, (3.34), it is interesting to derive a simple analytical

expression for the contribution of the heavy neutrino-sneutrino sector to the one-loop

radiatively corrected Higgs mass in the limit of large mM . Neglecting in Eq. (3.40) the

contributions from Σ̂
ν/ν̃
HH and Σ̂

ν/ν̃
hH one finds,

∆mmDR
h ≃ −Σ̂

ν/ν̃
hh (M2

h)

2Mh
(3.41)

where Σ̂
ν/ν̃
hh denotes the full corrections to the renormalized Higgs-boson self-energy from

the ν/ν̃ sector and obtained in the mDR scheme as described in the present work. We

have found that this yields a very good approximation to the full result, i.e. the pole

obtained from Eq. (3.40). In a next step in the above expression Σ̂
ν/ν̃
hh has to be replaced

by our simplified results in the large mM limit, namely, those in Eqs. 3.33b and (3.34b),

providing the leading O(m0
D) and O(m2

D) contributions. We have compared numerically
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this approximate ∆mmDR
h with our full numerical results for large mM in Figure 3.12, and

found very good agreement, whenever the soft SUSY masses are well below mM . In fact,

the behaviour with mM of this approximate formula is indistinguisible from the lower line

in the left plot of Figure 3.12.

We therefore conclude that the use of the previous Eq. (3.41) with

Σ̂
ν/ν̃
hh (M2

h) ≃
(

Σ̂mDR
hh (M2

h)
)

m0
D

+
(

Σ̂mDR
hh (M2

h)
)

m2
D

(3.42)

as given in Eqs. 3.33b and (3.34b), respectively, provides an excellent approximation to the

full result for large Majorana mass values, 1013 GeV < mM < 1015 GeV and soft masses

well below mM , mSUSY <∼ 104 GeV. Furthermore, the above simple approximation can

also be used for estimates of the differences in the mass correction when applied to the

DR scheme versus the mDR scheme for different choices of the µDR scale. For instance, for

mM = 1014 GeV and the other parameters set to our reference values as defined in section

3.2.2, we got small differences of |(∆mDR
h −∆mmDR

h )/Mh| < 1% for 0.1 < µDR/mM < 1.

Finally, we shortly comment about the similarities or differences of our work with

earlier works in the literature where the effects of the neu/sneu sector in the Higgs mass

parameters were also studied. In fact, previous studies in particular SUSY scenarios and

under specific assumptions on the model parameters [67, 97, 109, 145, 172–174] already

indicated that the size of these radiative corrections to the Higgs mass parameters in the

case of extremely heavy Majorana neutrinos can be sizeable due to the large size of Yν .

In Ref. [67] the one-loop corrections to Mh were estimated within a split SUSY sce-

nario where the soft-SUSY-breaking mass associated to the right handed neutrino, mR̃,

was chosen to be very large, of the order of the Majorana scale mM . They made several

approximations that we did not make in our calculation. They worked in the zero ex-

ternal momentum approximation and switching off the SU(2)× U(1) gauge interactions.

Besides, they used the mass insertion approximation for the other soft-breaking sneu-

trino parameters, Aν and Bν , associated to the trilinear coupling and neutrino B-term

respectively. Moreover, in their calculations of mh 1-loop corrections they have not taken

into account the well known relevant MSSM contribution but only the loops of neutri-

nos/sneutrinos. They obtain a large and negative correction from the neutrino/sneutrino

sector of the order of a few tens of GeV for mM = 1014 GeV and mR̃ ∼ O(mM). Our

results in the same limit, shown in Figure 3.15, are in agreement with their result for a

similar choice of parameters.

In appendix B of Ref. [140] they calculate the corrections to the Higgs mass in the



Results 111

MSSM-seesaw type I in the limit where mR̃ ∼ mM using the effective potential approach.

Therefore, their result is not comparable to ours because in the effective potential ap-

proach one neglects the external momentum and with this approximation one would

never recover our result as one could appreciate in Figure 3.10, where the dependence of

the renormalized energies with the momentum were shown and we have seen that this

fact plays a relevant role in the estimate of the size of the mass corrections.

In Ref. [140, 145, 173–176], the impact of a big Bν parameter, via a RGEs analysis, was

shown to be relevant in different contexts, increasing the LFV rates, generating EDM,

inducing a large oscillation in the sneutrino sector that contributes to the 1-loop neu-

trino masses, modifying the Higgs mass parameters and affecting the relic abundance of

neutralino dark matter. In this thesis, we also observed relevant effects of a large Bν

parameter to the lightest MSSM Higgs mass as shown in left panel of Figure 3.13 but

we did not pay much attention to the effects in this limit Bν ∼ O(mM) because Bν

contributes to observables that are highly constrained, as mentioned before. In partic-

ular, in Ref. [145] they concluded with an upper bound in an mSUGRA framework of

BνY
2
ν /(8π

2) < mSUSY/ tanβ, from the requirement that electroweak symmetry breaking

occurs. Large corrections to the Higgs soft mass parameters within a SUSY-seesaw frame-

work with total or partial universality conditions have also been found by a similar RGEs

analysis in [97, 109, 172–174]. In [97, 109, 172] it was concluded that these corrections in-

duce a considerable decrease in the physical Higgs boson masses which in turn enhance the

rates of the Higgs-mediated LFV processes. However it should be noticed that an analysis

with RGE’s is not comparable to our full 1-loop diagrammatic computation. The RGE’s

only provide a good truck to the logarithmic dependence on the Majorana mass but they

do not provide the full result, which contains, as we have said, the most relevant O(m2
D)

contributions in Eq. (3.34a) and Eq. (3.34b).





Chapter 4

LFV processes mediated by Higgs

bosons within constrained

MSSM-seesaw scenarios

The SM in its simplest version does not allow for Lepton Flavor Violating processes.

When one extends the SM in order to include the neutrino masses and mixings observed

in atmospheric and solar neutrino experiments, the lepton flavor violation in the neutrino

sector can be transmitted to the charged lepton sector, giving rise to charged lepton flavor

violating processes. However, with the inclusion of Dirac neutrino masses and mixings,

these processes are allowed but are extremely suppressed due to the small masses of the

neutrinos (leptonic version of the GIM suppression mechanism). For instance, the decay

rate of the radiative LFV decay µ → eγ for massive Dirac neutrinos is given by [177–179]:

BR(µ → eγ) =
3α

32π

∣

∣

∣

∣

∣

∑

k

(U∗
MNS)ek (UMNS)µk ×

m2
νk

M2
W

∣

∣

∣

∣

∣

2

BR(µ→ eν̄eνµ) (4.1)

Even if a 1 eV neutrino mass with maximal mixing is considered, Eq. (4.1) only gives

a branching ratio of the order of 10−47 [81], far below the present sensitivities shown in

Table 4.1.

When Dirac plus Majorana mass terms are introduced in the SM, generating neutrino

masses and mixings via a seesaw type I mechanism, the suppression factor of
m2

νk

M2
W

is

substituted byO
(

mνk

mM

)

[178], wheremM is the Majorana mass scale. Then the branching

113
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ratio is still O(10−40) or less for mν = 1 eV and mM = 1010 GeV [81]. We conclude that it

is therefore difficult to expect observable LFV effects from the ordinary neutrino masses

and mixing indicated by the atmospheric and solar neutrinos.

In a MSSM seesaw framework the situation is completely different. Besides the previ-

ous contributions, supersymmetry provides new direct sources of flavor violation, namely

the possible presence of off-diagonal soft terms in the slepton mass matrices and in the

trilinear couplings at low energies. In practice, flavor violation originates from the mis-

alignment between fermion and sfermion mass matrices, that cannot be diagonalized

simultaneously. Even if the scalar masses are universal at high energy, flavor changing

entries in the neutrino Yukawa coupling matrices induce, through renormalization effects,

flavor mixing in the slepton masses at low energies, and these sleptons, in turn, when

propagating in loops can, therefore, generate large rates in LFV processes, like lj → liγ

(i, j = 1, 2, 3), and others.

We are interested here, mainly in the LFV processes that can be mediated by the

MSSM Higgs bosons, since these ones can provide interesting information on all the

sectors involved, namely: SUSY, the Higgs sector and our main subject: the Majorana

neutrinos. We will first shortly review the basic ingredients and status of LFV within

SUSY-seesaw models and then present our results for the specific channels considered

in this thesis, τ → µη and τ → µf0. The results presented in this chapter have been

published in [100], [109] and [111].

4.1 Flavor mixing in the slepton sector within the

MSSM-seesaw

The most general squared mass matrix for the case of charged sleptons is given by a 6×6

matrix, with all entries being now non-vanishing. Therefore, the corresponding matrix,

referred to the (ẽL, ẽR, µ̃L, µ̃R, τ̃L, τ̃R) basis, can be written as follows

M2
l̃

=





















Mee 2
LL Mee 2

LR Meµ 2
LL Meµ 2

LR Meτ 2
LL Meτ 2

LR

Mee 2
RL Mee 2

RR Meµ 2
RL Meµ 2

RR Meτ 2
RL Meτ 2

RR

Mµe 2
LL Mµe 2

LR Mµµ 2
LL Mµµ 2

LR Mµτ 2
LL Mµτ 2

LR

Mµe 2
LR Mµe 2

RR Mµµ 2
RL Mµµ 2

RR Mµτ 2
RL Mµτ 2

RR

M τe 2
LL M τe 2

LR M τµ 2
LL M τµ 2

LR M ττ 2
LL M ττ 2

LR

M τe 2
RL M τe 2

RR M τµ 2
RL M τµ 2

RR M ττ 2
RL M ττ 2

RR





















, (4.2)
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where

M ij 2
LL = m2

L̃,ij
+ v21

(

Y †
l Yl

)

ij
+ m2

Z cos 2β

(

−1

2
+ sin2 θW

)

δij ,

M ij 2
RR = m2

Ẽ,ij
+ v21

(

Y †
l Yl

)

ij
− m2

Z cos 2β sin2 θW δij ,

M ij 2
LR = v1

(

Aij
l

)∗ − µ Y ij
l v2 ,

M ij 2
RL =

(

M ji 2
LR

)∗
. (4.3)

The off-diagonal entries in flavor space are originated from the soft-SUSY breaking masses

and trilinear couplings, i.e. mL̃,ij, mẼ,ij and A
ij
l , with i, j = e , µ , τ , which here refer to

their corresponding values at the electroweak scale. The key point is that Majorana

neutrinos (and sneutrinos) quantum effects in the LFV rates do appear when the running

effects from the high energyMX to the EW scale are included. Namely, the heavy νRi
, ν̃Ri

effects are induced via the running in the soft SUSY breaking parameters and by means

of the Yukawa neutrino couplings.

Regarding the sneutrino sector, there is a 12× 12 squared mass matrix, already given

in Eq. (2.37). But for the purpose of computing LFV rates, it is a very good approximation

to keep in the mass matrix at low energies, i.e. at the EW scale, just the light sneutrino

states which are made mainly of ν̃L’s. Thus, the diagonalization procedure becomes

simpler than in the charged slepton case since the sneutrino squared mass matrix is 3× 3

type. This 3 × 3 matrix, referred to the ν̃ ′ = (ν̃e, L, ν̃µ, L, ν̃τ, L) basis can be written as

follows

M2
ν̃ =









m2
L̃,e

+ 1
2
m2

Z cos 2β m2
L̃,eµ

m2
L̃,eτ

m2
L̃,µe

m2
L̃,µ

+ 1
2
m2

Z cos 2β m2
L̃,µτ

m2
L̃,τe

m2
L̃,τµ

m2
L̃,τ

+ 1
2
m2

Z cos 2β









, (4.4)

where m2
L̃,ij

are the same as in the previous charged slepton and sneutrino squared mass

matrix.

The physical masses and states are obtained by diagonalizing the previous squared

mass matrices, leading to

M2
l̃

diag
= RlM2

l̃
Rl † = diag (m2

l̃1
, .., m2

l̃6
) ,

M2
ν̃
diag

= Rν M2
ν̃ R

ν † = diag (m2
ν̃1, m

2
ν̃2, m

2
ν̃3) , (4.5)

where Rl and Rν are unitary rotation matrices.
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Notice that when working in the physical mass eigenstate basis, all the information of

flavor mixing is encoded in the previous values of the physical masses ml̃i
and mν̃i and the

rotation matrices Rl and Rν . In particular, these physical parameters will transmit the

flavor mixing to the relevant couplings for the forthcoming computation of LFV rates.

For illustration, we show here the 1-loop renormalization group equation for m2
L̃
that

is given by [79]:

dm2
L̃ij

d logµ
=

(

dm2
L̃ij

d logµ

)

MSSM

+
1

16π2

(

(

m2
L̃
Y †
ν Yν
)

ij
+
(

Y †
ν Yνm

2
L̃

)

ij

+2
(

m2
H2
Y †
ν Yν
)

ij
+ 2

(

Y †
νm

2
R̃
Yν
)

ij
+ 2

(

A†
νAν

)

ij

)

(4.6)

where

(

dm2
L̃

d logµ

)

MSSM

is the corresponding RGE in the MSSM and the terms explicitly

written are additional contributions by the right-handed neutrino Yukawa couplings. Since

we will work in constrained SUSY-seesaw scenarios with universal conditions on the mass

matrices at MX and where the unique possible source of flavor mixing at MX is the

Yukawa matrix, all slepton flavor mixing at low energies will solely come from the RGE

generated radiative corrections involving Yν , as we can appreciate in Eq. (4.6).

In order to obtain the slepton mass matrix at the EW scale the running of the RGE is

performed in two steps. The first step is running the parameters from MX to mM using

the full one-loop RGE’s with extended neutrino and sneutrino sectors [79]. In the second

step, from mM to the EW scale, the Majorana neutrinos are assumed to decouple in the

RGE’s and the running is performed using the RGE’s of the MSSM. The most important

flavor mixing in the slepton and sneutrino soft terms is produced in the first step of this

running.

The clearest way to illustrate this RGE-induced intergenerational mixing is by working

in the one loop leading-log approximation where the approximate solution for the off-

diagonal terms (i 6= j, i, j = 1, 2, 3) can be written as [79]:

(∆m2
L̃
)ij = − 1

8 π2
(3M2

0 + A2
0) (Y

†
ν LYν)ij , (4.7a)

(∆Al)ij = − 3

16 π2
A0 Yli (Y

†
ν LYν)ij , (4.7b)

(∆m2
Ẽ
)ij = 0 ; Lkl ≡ log

(

MX

mMk

)

δkl . (4.7c)

We can see that within the LLog approximation, the dominant flavor off-diagonal matrix

elements are those of the LL sector since they become enhanced with factors given by
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squared soft-breaking parameters. The next dominant elements are those of the LR sector

(which are suppressed by the small lepton mass) and the smallest ones are those of the

RR sector. For the present thesis we will not use this Llog approximation, but we will

solve, instead, the full one-loop RGE’s.

In practice, LFV processes, like li → ljγ (i 6= j), arise at one loop level through

the exchange of sleptons and sneutrinos that carry in their propagation the off-diagonal

flavor entries. The expected magnitudes of the LFV effects depend on the strength of

the neutrino Yukawa coupling and the flavor mixing in the neutrino sector. The neutrino

Yukawa couplings which can be Yν ∼ O(1) or even larger for heavy mM ∼ 1014−1015 GeV

give rise to sizable LFV rates that are in some cases [77–81, 95–100, 143, 172, 180–188], at

the reach of the present experimental sensitivity [20].

In order to illustrate the size of the flavor mixing in slepton and sneutrino sectors, the

following flavor changing dimensionless parameters are usually defined:

δijLL =
M ij2

LL

M2
SUSY

,

δijLR =
M ij2

LR

M2
SUSY

,

δijRR =
M ij2

RR

M2
SUSY

, (4.8)

where i, j = 1, 2, 3, i 6= j and MSUSY is an average slepton squared mass, which is usually

set in terms of the physical sleptons masses.

One can estimate the previous dimensionless parameters of Eq. (4.8) by using the

LLog approximation which leads to the following simple results:

δijLL
∣

∣

LLog
=

(∆m2
L̃
)ij

M2
SUSY

, (4.9a)

δijLR
∣

∣

LLog
=
v1(∆Al)ij
M2

SUSY

, (4.9b)

δijRR

∣

∣

LLog
=

(∆m2
Ẽ
)ij

M2
SUSY

, (4.9c)

where (∆m2
L̃
)ij, (∆Al)ij and (∆m2

Ẽ
)ij are given in Eq. (4.7). Notice that the results in

Eq (4.7) imply the following hierarchy in the size of these parameters:

δijLL
∣

∣

LLog
≫ δijLR

∣

∣

LLog
≫ δijRR

∣

∣

LLog
. (4.10)
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For the present work we have not used the Llog approximation nor the MIA [189].

We have instead solved the full one-loop RGE’s with the extended neutrino and sneutrino

sectors, in two steps, as explained above, and for that we have used the public code

SPheno [190]. The code is also used for the exact diagonalization of the slepton mass

matrices.

4.2 LFV in Higgs mediated processes

It is well known that Higgs bosons within MSSM-seesaw scenarios, can mediate, at the one-

loop level, interesting LFV processes, like τ → 3µ [99] and µ-e conversion in nuclei [172].

In addition, some semileptonic decays like τ → µη have been proven to be sensitive to

the Higgs sector within this same context [97].

The different LFV decays are classified in pure leptonic decays and semileptonic ones.

The first ones include the following type of decays, li → ljγ and li → ljlk l̄k, where i, j, k

are family indices. In Table 4.1 the present experimental bounds on the branching ratios

of relevant leptonic processes are shown. The semileptonic decays contain, among others,

li → ljP and li → ljS where P and S refer to a pseudoscalar and a scalar meson,

respectively.In Table 4.2 the present experimental bounds on the branching ratios of few

semileptonic processes are shown. We are interested here, in particular, in τ → µη and

τ → µf0 because they turn out to be the most sensitive to the Higgs sector.

By comparing both tables, it is clear that the channel with the strongest experimental

bound is µ → eγ with an upper bound of 2.4 × 10−12, given by the MEG collaboration

this year. The rest of the channels have bounds much less restrictive than µ → eγ, at

O(10−8), but it is worth mentioning that semileptonic decays have as stringent bounds as

the rest of the leptonic decays, being also able to set strong constraints in the parameter

space of the new physics responsible of these flavor violating decays.

In order to roughly compare the predicted LFV decay rates of different channels in the

τ−µ sector, within SUSY-seesaw scenarios, it is more convenient to use here the simplified

expressions of some of the decays rates in the Llog and mass insertion approximations

and work in the large tan β regime. These simple formulas are written in terms of tanβ,

the largest insertion δ32LL = δ32 and the relevant mass.
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The approximate formula for the τ → µγ decay is given by [80, 185]:

BR(τ → µγ)approx = 1.5× 10−2 |δ32|2
(

100

MSUSY(GeV)

)4(
tanβ

60

)2

, (4.11)

where MSUSY represents generically the relevant SUSY particle mass in the loop. The

amplitude of the decay τ → 3µ is the sum of various contributions [99],

T (τ → 3µ) = Tγ−penguin + TZ−penguin + TH−penguin + Tboxes . (4.12)

In particular, the branching ratio coming just from the Higgs mediated amplitude (ne-

glecting interferences between the channels) reads [99, 180]:

BR(τ → 3µ)Happrox = 1.2× 10−7 |δ32|2
(

100

mA0(GeV)

)4(
tanβ

60

)6

.

However, this channel is known to be dominated, within the present constrained SUSY-

seesaw scenarios, by the photon contribution. The approximate formula for this contri-

bution is [99]:

BR(τ → 3µ)γapprox = 3.4× 10−5 |δ32|2
(

100

MSUSY(GeV)

)4(
tan β

60

)2

,

For low MSUSY ∼ 100 GeV, it is clear from the above expresions that τ → µγ is by

far the dominant channel. However, the latest LHC results point to larger SUSY masses,

>∼ O(1TeV) and, in that case, the other channels not suppressed by 1/M4
SUSY may be

competitive.

We can also observe from the previous formulas that the photon mediated channels,

besides being suppressed by 1/M4
SUSY they grow just quadratically with tan β, in contrast

with H0 and A0 mediated channels that are suppressed by the mass of the Higgs that

mediates the decay as 1/M4
H and grow with tan β as (tan β)6. Therefore, the Higgs

mediated channels will be particularly interesting in the large tanβ and MSUSY regime

with light mH0 and/or mA0 . However, in constrained SUSY-seesaw models, such as the

CMSSM-seesaw, these Higgs boson masses are highly correlated with the universal soft

masses and, therefore, with MSUSY, so that it is not possible to get light mH0 , mA0 for

large SUSY masses, say MSUSY >∼ 1 TeV. This situation can be improved by relaxing the

universality conditions of the CMSSM, in such a way that the soft Higgs masses are not

universal, as it happens in the NUHM-seesaw. In the NUHM-seesaw light Higgs masses

can be obtained ever for large SUSY masses, for specific choices of δ1 and δ2 parameters.
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Regarding the LFV semileptonic τ decays [97], some particular channels have also been

proven to offer new windows for Higgs boson searches. For instance, the channels τ → µππ

and τ → µKK̄ can be mediated by a Higgs boson, similarly to τ → 3µ. However, these

τ → µPP semileptonic channels are also dominated by the photon contribution, as it

happens in τ → 3µ. The most interesting channel that manifests a clear sensitivity to the

Higgs sector considered so far in the literature, is the semileptonic channel τ → µη [95, 97].

This channel can be mediated by a Z boson and an A0 Higgs boson, but at large tanβ,

the later dominates. In this case the predicted branching ratio is also proportional to

(tanβ)6 and 1/M4
A0 and is relevant for sufficiently large tanβ and light mA0 .

Here we will study, in addition, a new LFV semileptonic τ decay that is also sensitive

to the Higgs sector, concretely the channel τ → µf0. This channel offers an unique window

for searches of the CP-even Higgs bosons, h0 and H0, and it is expected to be dominated

at large tan β by the interchange of the H0 boson. We will present here, the study of

this τ → µf0 channel, together with τ → µη, because they can be complementary in

that the first one has access to the CP-even Higgs sector, h0 and H0, whereas the second

one has access to the CP-odd A0. Besides, as will be shown in the following, these two

channels have important branching ratios because the exchanged Higgs bosons interact

with sizeable couplings to the strange quark components of both η and f0. The inherited

couplings of the A0 and H0 to the η and f0, respectively, will be consequently also sizeable.

The corresponding branching ratios estimates will be performed here by means of Chiral

Perturbation Theory χPT and Resonance Chiral Theory RχT.

To sum up, we have seen that some semileptonic channels have the advantage of being

sensitive to the Higgs, while in leptonic decays the Higgs contribution is, in general, not

the dominant one. As we are interested in the interplay between LFV and Higgs physics,

from now on, we will focus our attention in the two semileptonic decays τ → µf0(980)

and τ → µη.

4.3 Framework for the LFV decays

For the present study of the τ → µf0(980) and τ → µη decays, we choose a SUSY-

seesaw framework where the SUSY spectrum is enlarged by three right-handed neutrinos,

νRi
(i = 1, 2, 3), and their SUSY partners, ν̃Ri

(i = 1, 2, 3). We assume again a seesaw

mechanism for neutrino mass generation and, in order to make contact with neutrino

data, we use the parametrization of Eq. (2.28) that was already introduced at the end of
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decay mode Experiment References Upper limit 90% C.L

µ+ → e+γ MEG [85] 2.4× 10−12

τ− → µ−γ Babar [89] 4.4× 10−8

τ− → e−γ Babar [89] 3.3× 10−8

τ− → µ−γ Babar [89] 4.4× 10−8

τ− → e−e+e− Belle [90] 2.7× 10−8

τ− → µ−e+e− Belle [90] 1.8× 10−8

τ− → e−µ+µ− Belle [90] 2.7× 10−8

τ− → µ−µ+µ− Belle [90] 2.1× 10−8

τ− → e−µ+e− Belle [90] 1.5× 10−8

τ− → µ−e+µ− Belle [90] 1.7× 10−8

Table 4.1: Present bounds on LFV leptonic decays

decay mode Experiment References Upper limit 90% C.L

τ− → e−η Belle [93] 4.4× 10−8

τ− → µ−η Belle [93] 2.3× 10−8

τ− → e−f 0(980) Belle [94] 3.2× 10−8(incl.Br(f 0 → π+π−))

τ− → µ−f 0(980) Belle [94] 3.4× 10−8(incl.Br(f 0 → π+π−))

Table 4.2: Present bounds for the LFV semileptonic decays of interest here
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Sect. 2.2.1 .

For the light and heavy neutrino sector different plausible scenarios, shown in Eq. (2.29)

and Eq. (2.30), have been considered. For the numerical predictions in this chapter we

will use the input values for the light neutrino mass squared differences and the angles

in the UPMNS matrix given by Eq. (2.31) which are compatible with present neutrino

data [20]. Finally, the free neutrino input parameters, not constrained by data, are the

heavy neutrino masses mN1 , mN2 , mN3 and the complex angles θ1, θ2, θ3 of the R matrix

defined in Eq. (2.33).

Regarding the SUSY parameters we will work within two different constrained MSSM-

seesaw scenarios, the CMSSM with universal soft SUSY breaking parameters, defined

in Sect. 1.3.2, and the NUHM model with non-universal Higgs soft masses, defined in

Subsect. 1.3.3. Thus, in addition to the previous neutrino parameters, mNi
and θi, the

input parameters of these two models are, as already introduced in Subsect. 1.3, respec-

tively,

CMSSM : M0 ,M1/2 , A0 , tan β , sign(µ) .

NUHM : M0 ,M1/2 , A0 , tan β , sign(µ) ,M
2
H1

= M2
0 (1 + δ1),M

2
H2

= M2
0 (1 + δ2).

(4.13)

Notice, that the departure from universality in the soft Higgs masses of the NUHM is

parameterized here in terms of the two dimensionless parameters δ1 and δ2. Consequently,

by taking δ1 = δ2 = 0 in the NUHM one recovers the CMSSM case. Finally, in order to

evaluate the previous SUSY parameters and the physical masses at low energies (taken

here as the Z gauge boson mass mZ), we solve the full one-loop Renormalization Group

Equations (RGEs) including the extended neutrino and sneutrino sectors. For this and

the computation of the full spectra at the low energy we use here the public FORTRAN

code SPheno [190]. In the numerical estimates of the LFV rates, we will set M0 = M1/2,

A0 = 0 and sign(µ) = +1, for simplicity.

For the purpose of the present analysis the most relevant difference between the two

previous constrained SUSY-seesaw scenarios is the spectrum of the Higgs sector as it was

announced in the previous section. In particular, we want to explore the possibility of

having light neutral Higgs bosons mediating the τ → µf0(980) and τ → µη channels,

while keeping the SUSY spectra heavy enough so that other relevant LFV τ − µ decays

are suppressed. This is clearly possible within the NUHM-seesaw scenario, as illustrated

in Figure 4.1. We see in this figure that, by properly adjusting the input δ1 and δ2

parameters, the heavy Higgs boson H0 can get masses as low as 100-250 GeV even for a
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Figure 4.1: CP-even Higgs boson masses in the NUHM-Seesaw scenario: 1) mH0 as a function

of MSUSY = M0 = M1/2 for several input δ1,2 (left panel). The predictions in the CMSSM-

Seesaw scenario (δ1 = δ2 = 0) are included for comparison; 2) mH0 and mh0 as functions of

tan β for MSUSY = 250 GeV and 750 GeV (right panel).

very heavy SUSY spectrum. For instance, for δ1 = −2.4, δ2 = 0, tan β = 50, MSUSY =

M0 = M1/2 = 750 GeV and the other input parameter values as specified in this figure,

we get mH0 = 249 GeV and mh0 = 122 GeV, to be compared with mH0 = 998 GeV

and mh0 = 122 GeV of the CMSSM-Seesaw case. With choices for δ2 6= 0 one gets even

lower values of mH0 . For the following numerical analysis and, for simplicity, we will set,

however, δ2 = 0 and play just with δ1. It is worth also mentioning that the predictions

for mA0 (not shown in this figure) are practically indistinguishable from those of mH0 .

Although for the forthcoming evaluation of the LFV branching ratios we will perform a

full one-loop computation with an exact diagonalization of the 6×6 slepton mass matrix, it

is however, very illustrative to estimate previously the size of the relevant flavor changing

deltas δijXY within the simple Llog approximation. The flavor violation in the τ −µ sector

is encoded in the flavor mixing parameter δ32XY (XY = LL, LR,RR), with δ32LL being the

dominant one in the constrained scenarios that we are considering. The expression of

δ32LL ≡ δ32 in the LLog approximation is given by (see Eq. (4.7a) and Eq. (4.9a)):

δ32 = − 1

8 π2

(3M2
0 + A2

0)

M2
SUSY

(Y †
ν LYν)32 , Lkl ≡ log

(

MX

mNk

)

δkl , k, l = 1, 2, 3, (4.14)

where againMSUSY is an average SUSY mass. The connection of δ32 , with the low energy
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neutrino parameters is given in the following expression:

v22
(

Y †
ν LYν

)

32
=

L33mN3

[(√
mν3 c1 c2 c13 s23 +

√
mν2 s1 c2 (c12 c23 − s12 s13 s23) − √

mν1 s2 (s12 c23 + c12 s13 s23)
)

(√
mν3 c

∗
1 c

∗
2 c13 c23 − √

mν2 s
∗
1 c

∗
2 (c12 s23 + s12 s13 c23) +

√
mν1 s

∗
2 (s12 s23 − c12 s13 c23)

)]

L22mN2

[(

−√
mν3 c13 s23 (s1 c3 + c1 s2 s3) − √

mν1 c2 s3 (s12 c23 + c12 s13 s23) +
√
mν2 (c12 c13 − s12 s13 s23) (c1 c3 − s1 s2 s3)

)

(

−√
mν3 c13 c23 (s

∗
1 c

∗
3 + c∗1 s

∗
2 s

∗
3) +

√
mν1 c

∗
2 s

∗
3 (s12 s23 − c12 s13 c23)−

√
mν2 (c12 s23 + s12 s13 c23) (c

∗
1 c

∗
3 − s∗1 s

∗
2 s

∗
3)
)]

L11mN1

[(√
mν3 c13 s23 (s1 s3 − c1 s2 c3) − √

mν1 c2 c3 (s12 c23 + c12 s13 s23)−
√
mν2 (c12 c23 − s12 s13 s23) (s1 s2 c3 + c1 s3)

)

(√
mν3 c13 c23 (s

∗
1 s

∗
3 − c∗1 s

∗
2 c

∗
3) +

√
mν1 c

∗
2 c

∗
3 (s12 s23 − c12 s13 c23) +

√
mν2 (c12 s23 + s12 s13 c23) (c

∗
1 s

∗
3 + s∗1 s

∗
2 c

∗
3)
)]

. (4.15)

where the parametrization of Eq. (2.28) for the Yν matrix elements has been used and we

have used a short notation for the cosines and sines: sij ≡ sin θij , cij ≡ cos θij , where θij

are the light neutrino flavor mixing angles of the UPMNS matrix defined in Eq. (2.24) and

si ≡ sin θi, ci ≡ cos θi, where θi are the arbitrary complex angles of the orthogonal matrix

R defined in Eq. (2.33).

Notice that the most relevant parameters to get large intergenerational mixings are

mN3 in the case of hierarchical neutrinos (mN in the degenerate case) and the complex

angles θ1 and θ2 (all θi for the degenerate case). The size of |δ32| can be indeed quite

large. For instance, for mass values of the heavy neutrinos mN3 (or mN) in the range

1014−1015 GeV and θi (i= 1 or/and 2) with large modulus in the range 3−5 or/and large

argument in the range [±π/4,±π/2] one can get values of |δ32| as large as 0.5-10. This

is clearly illustrated in the contour plots of Figure 4.2, where we have considered both

scenarios with either degenerate or hierarchical heavy neutrinos and we have explored in

the (mNi
, θi) parameter space. In the hierarchical case the relevant mass is the heaviest

one mN3 and the predictions for |δ32| do not vary appreciably with mN1,2 . In addition,

we have checked that |δ32| is nearly constant with θ3. The contour plots for θ1 (not

shown) are very similar to those of θ2. We have also found that the largest values of

|δ32| are obtained for the degenerate case with both θ1 and θ2 being large. This is also

clearly illustrated in the lower right panel of Fig. 4.2. For instance, we get |δ32| ≃ 5 for
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mN = 1014 GeV and θ1 = θ2 = 3 exp (iπ/4). Notice also that values of |δ32| larger than
∼ 0.5 correspond in our parameterization of the Yukawa coupling matrices in Eq. (2.28)

to values of |Yν |2/(4π) that are above the threshold where the SPheno code [190], that

will be used later, sets the limit of perturbativity, which is at |Yν |2/(4π) ∼ 1.5. It means

that, in the following, we will be able to provide full predictions for the decay rates with

the SPheno code only for those model parameters producing Yν values that are within

the perturbativity region or, equivalently, leading to |δ32| < 0.5. The implications for the

τ → µf0(980) and τ → µη decays of values |δ32| ≥ 0.5 will be explored later, not with

our full computation implemented by us in SPheno, but using approximate formulas that

will also be presented here and that turn out to work reasonably well.

Finally, one more comment is in order here regarding the use of the parametrization

of Eq. (2.28) for the neutrino Yukawa couplings. Whenever we use this parametrization

in this chapter, for the numerical evaluation of the full one-loop LFV rates, the input

values that we use in this formula for the light neutrino masses mνi (i = 1, 2, 3) are not

their experimental values at the low energies, but their corresponding values, after the

one-loop running from these low energies to the high energy, given by the Majorana scale.

This is the scale at which the parametrization of the seesaw formula of Eq. (2.28) really

holds.
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Figure 4.2: Contours of |δ32| in the CMSSM-seesaw scenario: 1) For hierarchical heavy neu-

trinos. Upper left panel: in the (|θ2|,mN3) plane for arg θ2 = π/4. Lower left panel: in the

(arg θ2,mN3) plane for |θ2| = 3. The other heavy neutrino parameters are set to θ1 = θ3 = 0,

mN1 = 1010 GeV, mN2 = 1011 GeV; 2) For degenerate heavy neutrinos. Upper right panel: in

the (|θ2|,mN ) plane for arg θ2 = π/4 and θ1 = θ3 = 0. Lower right panel: in the (|θ1| = |θ2|,mN )

plane for arg θ1 = arg θ2 = π/4, and θ3 = 0. In all plots we have set: MSUSY = M0 = M1/2,

A0 = 0, tan β = 50, and the θi are expressed in radians.
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4.4 Hadronisation of quark bilinears

Semileptonic decays of the tau lepton, like the ones we are studying here, are a relatively

clean scenario from the strong interaction point of view. Hadrons in the final state result

from the hadronization of quark bilinears, namely ψ Γψ, where ψ is a vector in the SU(3)F

flavor space and Γ is, in general, a matrix both in the spinor and the flavor space.

A suitable framework to handle the procedure of hadronization is provided by the

large-NC expansion of SU(NC) QCD [191], with NC being the number of colors. In short

it states that in the NC → ∞ limit any Green function is given by meromorphic functions

provided by the tree level diagrams of a Lagrangian theory with an infinite spectrum of

zero-width states. Though we do not know how to implement fully this limit, an useful

[192] although debatable [193] approach lies in cutting the spectrum, keeping only the

lightest multiplets of resonances. We will attach to this tenet as a guiding principle.

A suitable tool to realize the 1/NC expansion is provided by chiral Lagrangians. More

specifically we consider Lagrangians that are invariant under the SU(3)L×SU(3)R chiral

symmetry. In those processes where hadron resonances do not play a dynamical role,

Chiral Perturbation Theory (χPT) [101–103] is the appropriate scheme to describe the

strong interaction of Goldstone bosons (π, K and η). This is the case, for instance, of

τ → µP (being P short for a pseudoscalar meson). However, when resonances participate

in the dynamics of the process it is necessary to include them as active degrees of freedom

in the Lagrangian as it is properly done in the Resonance Chiral Theory (RχT) frame [105].

Hence we will make use of both RχT and χPT, to hadronise the relevant currents that

appear in the processes under study here.

We consider bilinear light quark operators coupled to external sources and added to

the massless QCD Lagrangian:

LQCD = L0
QCD + q [γµ (vµ + γ5 a

µ) − ( s − i p γ5)] q , (4.16)

where the vector (vµ = vµi λ
i/2), axial-vector (aµ = aµi λ

i/2), scalar (s = siλ
i) and pseu-

doscalar (p = piλ
i) external fields are 3×3 hermitian matrices in flavor space, and L0

QCD is

the massless QCD Lagrangian1. The Lagrangian in Eq. (4.16) exhibits a SU(3)L×SU(3)R
chiral symmetry, remaining invariant under the following transformations:

q → gR PR q + gL PL q ,

1The Gell-Mann matrices λi are normalized as 〈λiλj〉 = 2δij and the gluons are denoted here by Gµ.
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(vµ ± aµ) → gR,L (vµ ± aµ) g
†
R,L + igR,L ∂µ g

†
R,L ,

(s+ i p) → gR (s+ i p) g†L , (4.17)

with gR,L ǫ SU(3)L,R.

This Lagrangian density gives the QCD generating functional ZQCD [v, a, s, p] as fol-

lows,

eiZQCD[v,a,s,p] =

∫

[DGµ ][Dq ][Dq ] e
i
∫
d4xLQCD[q,q,G,v,a,s,p] . (4.18)

This generating functional admits an expression in powers of the external momenta and

of the quark masses. Approximating it by a given order in this expansion defines the

usual χPT.

In order to construct the corresponding Lagrangian theory in terms of the lightest

hadron modes we need first to specify them. The lightest U(3) nonet of pseudoscalar

mesons is given by,

Φ(x) =

8
∑

a=0

λa√
2
ϕa (4.19)

=















1√
2
π0 +

1√
6
η8 +

1√
3
η0 π+ K+

π− − 1√
2
π0 +

1√
6
η8 +

1√
3
η0 K0

K− K̄0 − 2√
6
η8 +

1√
3
η0















,

and it is realized nonlinearly into the unitary matrix in the flavor space,

u(ϕ) = exp

[

i
Φ√
2F

]

. (4.20)

As a consequence of SU(3)L × SU(3)R chiral symmetry and its spontaneous breakdown,

the generating functional ZQCD coincides in the meson sector at leading order in χPT,

O(p2), with the classical action:

ZQCD =

∫

d4x LχPT
2 (4.21)

where

LχPT
2 =

F 2

4
〈uµ uµ + χ+〉 , (4.22)

with

uµ = i[u†(∂µ − irµ)u− u(∂µ − iℓµ)u
†] ,



Hadronisation of quark bilinears 129

χ+ = u†χu† + uχ†u , χ = 2B0(s+ ip) , (4.23)

and 〈. . .〉 stands for the trace in the flavor space. Interactions with electroweak bosons can

be accommodated as usual in χPT through the vector vµ = (rµ + ℓµ)/2 and axial-vector

aµ = (rµ − ℓµ)/2 external fields. The scalar field s incorporates explicit chiral symmetry

breaking through the quark masses s = M+ ..., where M = diag(mu, md, ms) and finally,

F ≃ Fπ ≃ 92.4 MeV is the pion decay constant and B0F
2 = −〈0|ψψ|0〉0 is the chiral

condensate in the chiral limit. The chiral tensor χ provides masses to the Goldstone

bosons through the external scalar field s, as can be seen in Eq. (4.23). Indeed in the

isospin limit we have

χ = 2B0M + ... =







m2
π

m2
π

2m2
K −m2

π






+ .... . (4.24)

Hence we identify (in the isospin limit)

B0mu = B0md =
1

2
m2

π ,

B0ms = m2
K − 1

2
m2

π , (4.25)

that will be used when considering the Higgs contributions to the LFV decays.

The mass eigenstates η and η′ are defined from the octet η8 and singlet η0 states

through the rotation

(

η

η′

)

=

(

cos θ − sin θ

sin θ cos θ

) (

η8

η0

)

, (4.26)

and we input2 a value of θ ≃ −18◦.

Next, we specify our framework for the hadronization of the quark bilinears into the

f0(980) meson. We use here the chiral Lagrangian of RχT that is a suitable tool to realise

the 1/NC expansion of SU(NC) QCD and includes both the Goldstone bosons Φ(π, K and

η) and the resonances as active degrees of freedom, and their interactions. For the present

work, it is sufficient to consider the lightest nonet of scalar resonances R(0+) in RχT. By

demanding the chiral symmetry invariance this resonance Lagrangian reads [105, 108, ?]

LRχT = LχPT
2 + LR

kin + LR
(2) , (4.27)

2The values of θ in the literature range between θ ∼ −12◦ up to θ ∼ −20◦ [194].
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where LχPT
2 is the chiral Lagrangian given in Eq. (4.22) and

LR
kin =

1

2
〈∇µR∇µR−M2

RR
2〉 ,

LR
(2) = cd 〈Ruµuµ 〉 + cm 〈Rχ+ 〉 , (4.28)

with:

∇µR = ∂µR + [Γµ, R] , Γµ =
1

2
[ u†(∂µ − irµ)u+ u(∂µ − iℓµ)u

† ], (4.29)

and MR is the resonance mass. Short-distance dynamics [106] constrains the couplings

of RχT by imposing the QCD ruled behaviour of Green functions and associated form

factors. For the couplings in LR
(2) one gets3 :

2 cm = 2 cd = F . (4.30)

The connection between the low energy lagrangian LRχT and QCD comes via the contri-

bution of the low energy modes to the QCD functional which is formally given by:

eiZQCD[v,a,s,p]

∣

∣

∣

∣

∣

low modes

=

∫

[Du][DR] ei
∫
d4xLRχT[u,R,v,a,s,p] . (4.31)

With this identification we can already carry out the hadronization of the bilinear quark

currents included in Eq. (4.16) by taking the appropriate partial derivatives, with respect

to the external auxiliary fields, of the functional action,

V i
µ = q γµ

λi

2
q =

∂ LRχT

∂ vµi

∣

∣

∣

∣

∣

j=0

, Ai
µ = q γµ γ5

λi

2
q =

∂ LRχT

∂ aµi

∣

∣

∣

∣

∣

j=0

,

Si = − q λi q =
∂ LRχT

∂ si

∣

∣

∣

∣

∣

j=0

, P i = q iγ5λ
i q =

∂ LRχT

∂ pi

∣

∣

∣

∣

∣

j=0

, (4.32)

where j = 0 indicates that all external currents are set to zero. This gives

V i
µ =

F 2

4
〈 λi

(

u uµ u
† − u† uµ u

)

〉 − FV

2
√
2
〈 λi ∂ν

(

u† Vνµ u + u Vνµ u
† ) 〉 ,

3Short-distance constraints on the RχT couplings depend on the operators included. The result

in Eq. (4.30) is obtained when only linear operators in the resonances are considered [105]. A weaker

constraint, though compatible with that result, arises if non-linear couplings in the resonances are included

[108].
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Ai
µ =

F 2

4
〈 λi

(

u uµ u
† + u† uµ u

)

〉 ,

Si =
1

2
B0F

2 〈 λi
(

u†u† + uu
)

〉 ,

P i =
i

2
B0F

2 〈 λi
(

u†u† − uu
)

〉 . (4.33)

In particular, using Eq. (4.33), Eq. (4.32) and Eq. (4.26) we can find a compact ex-

pression of the hadronization of the the pseudo-Goldstone boson η in terms of quark

bilinears:

η(548) =
−i

2B0F

{(

−1√
3
cos θ +

√
2√
3
sin θ

)

(

ūγ5u+ d̄γ5d
)

+

(

2√
3
cos θ +

√
2√
3
sin θ

)

s̄γ5s

}

(4.34)

From this expression we can already expect a relevant contribution to the decay τ → µη

coming from the A0 mediated channel due to the contribution of bilinears of strange quarks

in the hadronization of the η meson. The strength of the coupling of the A0 to the strange

quarks is given by gA0s̄s =
g

2MW
ms tanβ, and as we could appreciate in Eq. (4.25) in the

isospin limit ms ∝ m2
K . Therefore, the coupling of A0 to the η meson is proportional to

m2
K and to tanβ and it is expected to be large in the large tanβ regime.

The QCD spectrum of scalar resonance states is far from being settled and constitutes,

at present, a highly debated issue. It is not our goal in this thesis to enter in the details

of the discussion and, therefore, we will attach to the scheme put forward in [107] for the

description of the isosinglet f0(980) state. The later is defined as a rotation of the octet

R8 and the singlet R0 components of the R(0+) nonet,

(

f0(1500)

f0(980)

)

=

(

cos θS − sin θS

sin θS cos θS

)(

R8

R0

)

. (4.35)

The value of the θS mixing angle is uncertain. In the analysis carried out in [107] consid-

ering nonet breaking (i.e. subleading effects in the large-NC expansion) a possible dual

scenario is favored :

A) The candidates for the nonet are: f0(980), K
∗
0(1430), a0(1450) and f0(1500). In this

framework the a0(980) is dynamically generated (through loops). The mixing angle,

around θS ≃ 30◦, provides a dominant non-strange component for the lightest I = 0

state and, consequently, justifies their dominant decay into two pions.
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B) The nonet would be composed by: f0(980), a0(980), K
∗
0 (1430) and f0(1500). Hence

a0(980) is a pre-existing state in the NC → ∞ limit. The mixing angle in this case

is around θS ≃ 7◦, that gives a noticeable strange component.

Given the uncertainty provided by the large corrections due to 1/NC subleading effects

we will consider the two previous scenarios for the f0(980) as plausible and will present

estimates of the τ → µf0(980) decay rates for the two mixing angles, θS ≃ 7◦ and θS ≃ 30◦.

The dispersion between these two results can be considered as part of the theoretical error

in our estimates.

Finally, the hadronization of the relevant scalar quark bilinears into the f0(980) is

implemented by replacing the following expressions in the results for the decay rates at

the quark level,

uu = −
[

1

2
S3 +

1

2
√
3
S8 +

1√
6
S0

]

,

d d = −
[

−1

2
S3 +

1

2
√
3
S8 +

1√
6
S0

]

,

s s = −
[

− 1√
3
S8 +

1√
6
S0

]

, (4.36)

with

Si =
8√
2
B0 cmRi , i = 0, 3, 8 , (4.37)

and, according to Eq. (4.30), cm = F/2. As R3 does not contain information on f0(980)

(in the isospin limit) we will discard the S3 contribution.

Using Eq. (4.35), Eq. (4.36) and Eq. (4.37) one gets the following expression of the

f0(980) scalar mesons in terms of quark bilinears:

f0(980) =
−1

2
√
2B0F

{(√
2√
3
cos θS +

1√
3
sin θS

)

(

ūu+ d̄d
)

+

(√
2√
3
cos θS − 2√

3
sin θS

)

s̄s

}

(4.38)

As we can observe the scalar f0(980) meson has also an important contribution of

strange quark bilinears. Since the strength of the coupling of H0 to the strange quarks is

given by gH0s̄s =
gms cosα

2MW cos β
, and since ms ∝ m2

K , one expects large couplings of H0 to

the f0 meson, mainly at large tan β. In contrast, the coupling of h0 to the f0 meson, given
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by gh0s̄s =
gms sinα

2MW cos β
, is not enhanced at large tanβ. Hence, τ → µf0(980) is expected

to be dominated by the exchange of a H0, rather than a h0, at large tan β.

Before proceeding, a word of caution is necessary when dealing with processes with

resonances as initial or final states. A resonance is not an asymptotic state as it decays

strongly. Hence from a quantum field theory point of view RχT only describes the cre-

ation, propagation and destruction of resonances and the later should not appear as “in“

or “out” states. For instance, in our case the physical process should be τ → µππ medi-

ated by a f0(980) state, and not τ → µf0(980). However the description of scalars, as has

been pointed out, is far from clear and therefore considering the f0(980) as an asymptotic

state should not increase effectively the already rather large uncertainty.

4.5 Results for BR(τ → µη)

The semileptonic τ → µη decay can be mediated by the CP odd A0 Higgs boson and

by the Z gauge boson. The contributing diagrams are shown in Figure 4.3. In these

diagrams the LFV vertex is represented by a black circle and the hadronic vertex by a

white box. The one loop diagrams contributing to the LFV vertex, τµA0, are those shown

in Figure 4.7 with Hp = A0. The full calculation of the ratio of this semileptonic decay

was performed in [97]. For the numerical evaluation of BR(τ → µη) we follow closely the

procedure and formulas of Ref. [97] and use their implementation into the SPheno code

as well. Our main interest here is to evaluate separately the Z and the A0 contributions

to the decay rate of τ → µη for further comparison with the decay rates of the channel

τ → µf0(980). This separation is studied here for the first time.

In Figure 4.6 we have plotted the branching ratio of τ → µη as a function of tanβ,

in a NUHM-seesaw model with the following choice of SUSY parameters δ1 = −2.4, δ2 =

0,M0 = M1/2 = 250 GeV and a spectrum of hierarchical heavy Majorana neutrinos,

being the only non vanishing angle from the R matrix θ2 = 2.9eiπ/4. These values of

δ1,2 and MSUSY have been chosen so that the wanted light A0 boson, mA0 <∼ 200 GeV,

and heavy SUSY spectra are produced (see Figure 4.1). The values of θ2 and mNi
are

set to produce a sizeable τ -µ LFV transition (see Figure 4.2). Different predictions have

been shown, the full result, where both the Z and A0 contributions have been taken

into account, the separated contributions coming from the A0 mediated channel and the

Z mediated channel and, finally, the approximate result of the Higgs mediated channel.
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This approximate result was found in [97] and it is only valid in the Llog and mass

insertion approximation and in the large tanβ regime. We include here their estimate for

completeness and further comparison:

BR(τ → µη)Happrox = 1.2× 10−7 (θ = 18◦) |δ32|2
(

100

mA0(GeV)

)4(
tan β

60

)6

. (4.39)

The main feature of Figure 4.4 is the increase of the BR(τ → µη) with tan β. In fact,

BR(τ → µη)tanβ=50 ∼ 10−9 close to the present experimental bound shown in Table 4.2.

For tanβ ≥ 20, the Higgs contribution dominates the decay and the full result can

be reproduced neglecting the Z boson contribution and using the simplified formula

of Eq. (4.39). Thanks to this formula, one can easily understand the behaviour of the

decay rate with tan β. The reason for this Higgs dominance is because of the large A0

coupling to the strange components of the η meson, which results in a large A0η coupling

proportional to m2
K .

τ

µ

A0

η

τ

µ

Z

η

Figure 4.3: A0 and Z contribution to the LFV semileptonic τ → µη decay

In Figure 4.5 we show the excluded regions in the (mA0 , tanβ) plane for fixed values

of |δ32| = 0.1, 0.5, 1, 5, 10, which are easily reachable in our scenarios (see Figure 4.2). For

completeness, we have included the present experimental bound for the SM Higgs mass at

114.4 GeV. For each |δ32| the excluded areas are the ones above the corresponding contour

line. For generating this contour plot, we have made use of the approximate formula of

the branching ratio of τ → µη shown in Eq. (4.39). By comparing the corresponding
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Figure 4.4: BR(τ → µη) as a function of tan β. The blue points correspond to the predicted

rate of the full result, the green crosses (light blue diamonds) show the contribution coming

from the A0 (Z) mediated channel and the magenta triangles correspond to the approximate

result for the Higgs mediated contribution

predicted BR(τ → µη) for fixed values of the LFV mixing parameter |δ32| with the

present upper experimental bound on the decay, i.e. BR(τ → µη) < 2.3 × 10−8, one

gets regions of the (mA0 , tanβ) plane that fulfill the bound constraints and are allowed

(below the corresponding |δ32| contour line) and other regions that are excluded (above

the corresponding |δ32| contour line), because they lead to too large BR(τ → µη) not

compatible with present data. As one can appreciate, for large values of |δ32| one can

already exclude large regions, for example for |δ32| = 10, one can exclude tan β ≥ 30

and mA0 ≤ 200 . However, one should keep in mind that the wider black contour line

|δ32| ∼ 0.5 sets the limit of perturbativity in the neutrino Yukawa couplings, as already

said in Sect. 4.3. Therefore, for larger values of |δ32|, the predicted decay rates with

Eq. (4.39) are not so reliable because we are beyond the perturbative regime and the MI

approximation is no longer valid.

4.6 Results for BR(τ → µf0(980))

Analytical results
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Figure 4.5: The excluded regions in the (mA0 , tan β) plane are the areas above the contour

lines corresponding to fixed |δ32| = 0.1, 0.5, 1, 5, 10.

The semileptonic τ → µf0(980) decay can be mediated by h0 and H0 Higgs bosons,

as shown in Fig. 4.6. In this figure the LFV vertex is represented by a black circle and

the hadronic vertex by a grey box. The total amplitude for this decay, TH = Th0 + TH0 ,

is first evaluated at the quark level, that is for τ → µqq, and then at the hadron level

by substituting the quark bilinears by the corresponding scalar currents containing the

f0(980) meson as evaluated from LRχT in Eq. (4.27). The amplitude at the quark level can

be computed in terms of the corresponding τµHp one-loop vertex functions, H
(p)
L,R, with

Hp = h0, H0, resulting from the evaluation of the diagrams in Fig. 4.7 with sleptons, l̃X ,

sneutrinos, ν̃X , charginos, χ̃
−
A, and neutralinos, χ̃0

A, in the loops. The resulting amplitude

at the quark level is given by:

TH(τ → µqq) =
∑

h0,H0

1

m2
Hp

{

H
(p)
L S

(p)
L,q [µPLτ ] [qPLq] + H

(p)
R S

(p)
R,q [µPRτ ] [qPRq]

+ H
(p)
L S

(p)
R,q [µPLτ ] [qPRq] + H

(p)
R S

(p)
L,q [µPRτ ] [qPLq]

}

. (4.40)

where PL,R = (1∓ γ5)/2, and
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Figure 4.6: Higgs-mediated contributions to the LFV semileptonic τ → µf0(980) decay
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Figure 4.7: Relevant SUSY one-loop diagrams for the Higgs-mediated contributions to the

τ → µf0(980) decay. Here Hp = h0,H0.

S
(p)
L,q =

g

2MW

(

−σ(p)∗
2

sin β

)

mq , q = u ;

S
(p)
L,q =

g

2MW

(

σ
(p)∗
1

cos β

)

mq , q = d, s ;

S
(p)
R,q = S

(p)∗
L,q (4.41)
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with

σ
(p)
1 =







sinα

− cosα

i sin β






, σ

(p)
2 =







cosα

sinα

−i cos β






. (4.42)

Here again MW is the W gauge boson mass, mq the q-quark mas, α the mixing angle in

the CP-even Higgs sector, tan β the ratio of the two Higgs vevs and g the SU(2) gauge

coupling. The three entries in σ
(p)
1,2 are, in order from top to bottom, for Hp = h0, H0, A0,

respectively.

The results of the LFV vertex functions are taken from [184], and are not written here

explicitely for shortness. Just to mention that it is a full one-loop computation, including

all the contributions with charginos in the loops, H
(p)
L(R),c, and those with neutralinos,

H
(p)
L(R),n. Besides, all these contributions are written in terms of the physical particle

masses. As we have mentioned before, these physical masses are computed here in the

SUSY-seesaw scenario by solving the one-loop RGEs with SPheno and for a given set of

universal (in the CMSSM) or non-universal conditions (for the NUHM) at the unification

scale. Since the three right-handed neutrinos and their SUSY partners are included in

the RGEs, they will affect as well in the predicted physical masses at the low energies.

To get the amplitude for the process τ → µf0(980) we substitute the quark bilinears

of Eq. (4.36) in Eq. (4.40) and use Eq. (4.35) and Eq. (4.37) (or equivalently, Eq. (4.38)).

Notice that it is just the scalar part in [qPL,Rq], and not the pseudoscalar, the one that

contributes in the present case. We obtain:

TH(τ → µf0(980)) =
∑

p=h0,H0

cp µ τ , (4.43)

where

cp =
g

2MW

1

2m2
Hp

(

J
(p)
L + J

(p)
R

)(

H
(p)
R +H

(p)
L

)

, (4.44)

and

J
(p)
L =

cm√
3

{

σ
(p)∗
2

sin β

[

1√
2
sin θS + cos θS

]

m2
π

− σ
(p)∗
1

cos β

[

3√
2
sin θS m

2
π +

(

cos θS −
√
2 sin θS

)

2m2
K

]

}

,

J
(p)
R = J

(p)∗
L . (4.45)
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Notice that due to the mass relations in Eq. (4.25), the couplings of the Higgs bosons, h0

and H0, to the quarks (q = u, d, s ), S
(p)
L,q and S

(p)
L,q in Eq. (4.41), being proportional to the

quark masses, lead to Higgs-f0 couplings that are proportional to m
2
P (P = π,K). This is

seen clearly in the predicted functions J
(p)
L,R of Eq. (4.45). In consequence, the dominant

contributions to BR(τ → µf0(980)) will come clearly from the terms in the amplitude

that are proportional to m2
K .

Finally, the result of the branching ratio for the τ → µf0(980) decay is given by,

BR(τ → µf0(980)) =
1

4π

λ1/2(m2
τ , m

2
µ, m

2
f0
)

m2
τΓτ

1

2

∑

i,f

|TH |2 , (4.46)

where

1

2

∑

i,f

|TH |2 =
(mµ +mτ )

2 −m2
f0

4mτ
|ch0 + cH0 |2 , (4.47)

being Γτ is the total τ width and λ(x, y, z) = (x+ y − z)2 − 4xy.

Approximate formula

Next we derive a simple formula which approximates reasonably well our full one-loop

prediction in Eq. (4.46) and Eq. (4.47). For this, we work within the approximation of

large tan β that is appropriate for LFV tau decays, whose rates grow quite fast with this

parameter. This is especially relevant for channels where the LFV rates are dominated by

the Higgs mediated diagrams, as it is the present case, and where the growth with tan β

is extremely pronounced.

The other approximation which is used frequently in the literature, due to its simplic-

ity, is the use of the mass insertion (MI) method, where the tau-muon LFV is encoded in

the dimensionless parameters δ32XY (XY = LL,RR,LR). In the SUSY models the dom-

inant one is δ32LL and its expression in the LLog approximation, (δ32LL)LLog ≡ δ32, is that

given in Eq. (4.14).

It is known [184] [99] that at large tan β the vertex function HL dominates HR by

about a factor mτ/mµ. In addition HH0

L is by far larger than Hh0

L in this limit, and one

can safely neglect the later one. More specifically, by using the MI approximation, its

chargino and neutralino contributions in the large tanβ and heavy MSUSY limits give,

correspondingly, the following expressions :

H
(H0)
L,c =

g3

16π2

mτ

12MW
δ32 tan2 β ,
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H
(H0)
L,n =

g3

16π2

mτ

24MW

(1− 3 tan2 θW ) δ32 tan2 β . (4.48)

One can further verify that Hc dominates Hn by about a factor 20, so that we will simplify

HL ≃ HL,c.

On the other hand, we also consider the large tan β limit of the functions that define

the H0 couplings to f0(980) , JL and JR in Eq. (4.45). We obtain :

J
(H0)
L = J

(H0)
R =

F

2
√
3
tanβ

[

3√
2
sin θS m

2
π + (cos θS −

√
2 sin θS)2m

2
K

]

. (4.49)

By using the above sequence of approximations and by neglecting the muon mass, we

finally get the following simple result:

BR(τ → µf0(980))approx =
1

16πm3
τ

(

m2
τ −m2

f0

)2

∣

∣

∣

∣

g

2MW

1

m2
H0

J
(H0)
L H

(H0)
L,c

∣

∣

∣

∣

2
1

Γτ
(4.50)

=

(

7.3× 10−8 (θS = 7◦)

4.2× 10−9 (θS = 30◦)

)

|δ32|2
(

100

mH0(GeV)

)4(
tanβ

60

)6

.

In the last line we see explicitly the fast growth with tanβ, as (tan β)6, the expected

dependence with the relevant Higgs mass, as (mH0)−4, and also with the LFV parameter,

as |δ32|2. The two numerical factors correspond to the two assumed values for the mixing

angle that defines the f0(980) state, θS = 7◦ and θS = 30◦. These two numbers differ by

a factor 17, meaning that the predicted rates will carry a theoretical uncertainty of about

this number, due to the uncertainty in the definition of the f0(980) state.

Numerical results

In the following we present the numerical predictions for BR(τ → µf0(980)). We first

show the results from the full computation in Eq. (4.46) and Eq. (4.47) and then compare

with the approximate results in Eq. (4.50) and also with the rates of other LFV tau decay

channels.

In Fig. 4.8 it is shown the BR(τ → µf0(980)) versus the heavy neutrino masses, in both

scenarios with hierarchical and degenerate heavy neutrinos. In the hierarchical case we

display just the dependence with the relevant mass, mN3 . As expected, from the previously

manifested behaviour of |δ32| with mN3 (or with mN , in the degenerate case) in Fig. 4.2,

we find a fast growing of BR(τ → µf0(980)) with this mass. Although not explicitely

shown here, we have also checked in the hierarchical case, the near independence on the
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other masses, mN1 and mN2 . From this figure it is also evident that by choosing properly

the δ1 and δ2 parameters of the NUHM scenario, such that the relevant Higgs boson mass

mH0 gets lower than for δ1 = δ2 = 0, the branching ratios get larger than in the CMSSM

scenario. Finally, by comparing the rates of the two neutrino scenarios, and for the same

input model parameter values, including the same mN and mN3 , we find rates in the

degenerate case that are generally larger than in the hierarchical case. For instance, for

the choice of input parameters in Fig. 4.8 we find larger rates by a factor of about 3. In the

following we will focus more on the hierarchical case since it has the appealing feature of

providing successful baryogenesis, via leptogenesis, for some regions of the heavy neutrino

parameter space.
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Figure 4.8: BR(τ → µf0(980)) in the NUHM-seesaw, for several δ1 values, and in the CMSSM-

seesaw versus the relevant heavy neutrino mass, 1) for hierarchical heavy neutrinos (left panel),

and 2) degenerate heavy neutrinos (right panel).

We present the predictions of the BR(τ → µf0(980)) versus the soft SUSY masses M0

andM1/2 in Fig. 4.9. Here we take againM0 =M1/2 ≡MSUSY and compare the results in

both scenarios, the NUHM with δ1 = −2.4 and δ2 = 0, where the predicted Higgs boson

masses for large tanβ ∼ 50 lay within the interval 100-250 GeV, and the CMSSM. The

most evident feature in this plot is the different behavior of the BR(τ → µf0(980)) with

MSUSY in these two scenarios. Whereas in the CMSSM the rates are found to decrease

with increasing MSUSY, as expected, it clearly does not happen in the NUHM. In fact, the

rates are practically constant for MSUSY > 400 GeV. The reason for this behavior is that

the SUSY particles do not decouple at large MSUSY in this decay. The non-decoupling
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behavior can be checked analytically in that the LFV vertex, described by the dominant

form factor HL, tends to a constant value at asymptotically large MSUSY, as indicated

in Eq. (4.48). Since, on the other hand,mH0 is kept at the low region even for largeMSUSY,

then a constant HL with MSUSY implies approximately constant BR(τ → µf0(980)) as

well.

Another interesting feature of the predicted rates in the NUHM scenario, that is

manifested in Fig. 4.9 as well, is the clear dominance by many orders of magnitude of

the H0 contribution over the h0 one in the whole MSUSY considered interval. This is

due to the fact that at large tanβ the H0 contribution is enhanced by a tan6 β factor,

whereas the h0 one is suppressed in this limit. In fact, we also see in this plot that the

total rates are nearly indistinguishable from the H0 contributions. Thus, to neglect the

h0 contribution is an extremely good approximation.
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Figure 4.9: BR(τ → µf0(980)) in the NUHM-Seesaw scenario: 1) As a function of M0 =

M1/2 = MSUSY (left panel). We show separately the H0 and h0 contributions as well as

the total. The predictions for the total rates within the CMSSM-Seesaw scenario are also

included for comparison; 2) As a function of tan β (right panel). Again, the dominant H0,

the subdominant h0 and the total rates are displayed. We also include here the approximate

predictions given by Eq. (4.50) for comparison with the full rates.

Concerning the Higgs sector parameters, the BR(τ → µf0(980)) is mainly sensitive to

tanβ and mH0 since, as said before, the H0-mediated LFV semileptonic decays grow very

fast with both tan β and 1/mH0 . In fact, in the approximation given in Eq. (4.50), as

already said, BR(τ → µf0(980)) goes as (tan β)
6 and (1/mH0)4, respectively.
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The predictions of BR(τ → µf0(980)) as a function of tan β are shown in the right

panel of Fig.4.9. We show again separately the h0 andH0 contributions and the total rates

which are clearly dominated by the H0 in the full studied interval of tanβ. Besides, it

also displays the fast growing of the total rates with tan β , reaching values at the ∼ 10−9

level for tan β ∼ 50 which are close but still below the present experimental bound. We

also see that the particular shape of the curve for the total rates is a consequence as well

of the mH0 dependence with tanβ in these SUSY scenarios, as illustrated in Fig. 4.1.

The comparison between our predictions for the full result in Eq. (4.46)) and Eq. (4.47))

and the approximate results in Eq. (4.50), which include just the H0 boson contribution,

can be seen as well in Fig. 4.9. The agreement between the full and the approximate

results is quite remarkable, for all the studied values in the 5 . tanβ . 50 range. There-

fore, we conclude that our simple formula Eq. (4.50) provides a very good approximation

to BR(τ → µf0(980)) for all tanβ.

It is interesting to compare τ → µf0(980) to other Higgs-mediated LFV tau decay

channels like τ → µη and τ → 3µ. First, notice that our previous result of the H0

dominance in the τ → µf0(980) channel over the full tanβ interval, is not true for the

correlated channel τ → µη, nor the leptonic τ → 3µ decay. The semileptonic LFV τ → µη

decay can be mediated by a CP-odd A0 Higgs boson and a Z boson, but the contribution

from A0 dominates the full rates only in the large tan β & 20 region [97, 100]. The τ → 3µ

channel can be mediated (apart from the box diagrams, which are negligible) by a photon,

a Z boson and the three neutral Higgs bosons, h0, H0 and A0 [99]. The photon dominates

largely this decay, except at the extreme high values of tan β ≥ 60 and MSUSY ≥ 1 TeV,

where the two type of contributions from the photon and the Higgs bosons, H0 and A0

compete. These features can be seen clearly by comparing the corresponding approximate

formulas, valid at large tanβ, for their respective Higgs boson contributions. That is, one

should compare our result in Eq. (4.50) to the previous results of BR(τ → µη) [96, 97]

and BR(τ → 3µ) [99, 180, 181, 183] for the same input parameters. These are [97],

BR(τ → µη)Happrox =
1

8πm3
τ

(

m2
τ −m2

η

)2

∣

∣

∣

∣

g

2MW

F

m2
A0

B
(A0)
L (η)H

(A0)
L,c

∣

∣

∣

∣

2
1

Γτ

= 1.2× 10−7(θ = −18o) |δ32|2
(

100

mA0(GeV)

)4(
tan β

60

)6

,(4.51)

where,

B
(A0)
L (η) = −i 1

4
√
3
tanβ

[

(3m2
π − 4m2

K) cos θ − 2
√
2m2

K sin θ
]

, H
(A0)
L,c = iH

(H0)
L,c , (4.52)
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and:

BR(τ → 3µ)Happrox =
G2

F

2048π3

m7
τm

2
µ

Γτ

(

1

m4
H0

+
1

m4
A0

+
2

3m2
H0m2

A0

) ∣

∣

∣

∣

g2δ32
96π2

∣

∣

∣

∣

2

(tanβ)6(4.53)

= 1.2× 10−7 |δ32|2
(

100

mA0(GeV)

)4(
tan β

60

)6

. (4.54)

From this comparison, we conclude that, for the same choice of the model parameters,

and for θS = 7◦, the three rates BR(τ → µf0(980)), BR(τ → µη) and BR(τ → 3µ)

are very similar if tan β & 60 and MSUSY & 1 TeV. Concretely, we predict BR(τ →
µf0(980)):BR(τ → 3µ):BR(τ → µη) ∼ 0.6 : 1 : 1, and they are all at the ∼ O(10−7) level

for |δ32| ∼ 1, mH ∼ 100 GeV and tanβ ∼ 60. Therefore, the three are closely competitive

channels at these very large large tan β values.

It should also be mentioned that our estimate of BR(τ → µf0(980)) for θS ≃ 7o and for

the same input parameters, mH , tan β and |δ32|, is about one order of magnitud smaller

than the prediction in [98]. They also predict a different ratio among the three LFV

channels of ∼ 1.3 : 0.5 : 1. We believe that the main differences come from our different

approaches for hadronization which produce, as we have already said, a dispersion in the

results of about this factor.
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Figure 4.10: Sensitivity to the Higgs Sector in τ → µf0(980) within the NUHM-seesaw scenario.

The predicted rates are within the approximation of Eq. (4.50) and are displayed as a function

of mH0 , for various choices of large mN3 and tan β.



Results for BR(τ → µf0(980)) 145

Finally, we summarize the sensitivity to the Higgs sector in the NUHM-seesaw scenario

in Fig.4.10. In this plot we are using the approximate formula in Eq. (4.50) and we are

setting θ2 = 3 ei
π
4 and δ1 = −2.4, δ2 = 0. The soft masses are varied in the range

200GeV ≤ M0 = M1/2 ≡ MSUSY ≤ 750GeV. The explored mH0 values in this plot

correspond precisely to the output Higgs masses for this later MSUSY interval. The main

conclusion from this plot is that for largemN3 ∼ 5×1014−1015 GeV and large tanβ ∼ 50−
60 the predicted rates are already at the present experimental reach and, therefore, there

is indeed Higgs sensitivity in this channel. In this concern, we find interesting to further

explore if with the present experimental bound of BR(τ → µf0(980))× BR(f0(980) →
π+π−) < 3.4× 10−8 one may already exclude some region of the model parameter space.

Our conclusion is that indeed it is possible to exclude the regions in the (mH0 , tan β)

plane as summarized in Fig. 4.11. In this plot we assume, for simplicity, BR(f0(980) →
π+π−) ∼ 1 and choose the specific input values, |δ32| = 0.1, 0.5, 1, 5, 10. For each fixed |δ32|
the excluded region is the area above the corresponding contour line. For completeness,

we have also included in this plot the present experimental lower bound for the SM Higgs

mass at 114.4 GeV. Some words of caution should be said, anyway, about the conclusions

from this plot since there are large uncertainties involved in the theoretical estimate of

BR(τ → µf0(980)). There are two main ones: 1) the uncertainty in the definition of

f0(980) that, as evaluated in Eq. (4.50), can produce a dispersion of more than one order

of magnitude in the predicted rates, and 2) the use of the approximate formula for values

of |δ32| > 0.5 which are out of the region that is allowed by a perturbative approach. The

use of the MI approximation for such large values of |δ32| is also questionable.
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Figure 4.11: The excluded regions in the (mH0 , tan β) plane are the areas above the contour

lines corresponding to fixed |δ32| = 0.1, 0.5, 1, 5, 10.



Conclusions

The so far established Standard Model of Particle Physics has to be extended to explain

some phenomena that cannot be understood within this model. First of all, the mechanism

that generates the masses of all the gauge bosons and fermions in the SM, namely, the

Higgs mechanism, has not been proven yet. It predicts the existence of a scalar particle,

the well-known Higgs boson which has not yet been detected in any of the past or present

colliders. The LHC is actually excluding some significant region for the SM Higgs mass

values and it results are improving very rapidly. Concretely, a very recent ATLAS and

CMS combined analysis has been performed, where a Higgs boson like mass in the range

from 144 to 476 GeV is excluded at at 95% C.L.. This analysis, combined with the LEP

lower bound on the SM Higgs mass, leaves a quite narrow window left for the SM Higgs

mass: 114 < mh < 141 GeV at 95% C.L. [17]. On the other hand, a light Higgs mass is

preferred by electroweak precision data mh ∼ O(100) GeV but the Higgs boson, being a

scalar particle, is quadratically sensitive to the scale of new physics where the SM is no

longer valid, known as the hierarchy problem. If no fine tuning is desired between the

tree level Higgs mass and higher order corrections, then the scale of new physics should

be at or below O(1) TeV. This can be interpreted as a theoretical hint of new physics at

or below the TeV.

Moreover, the SM needs clearly to be enlarged to accommodate neutrino masses be-

cause the SM contains just three left handed neutrinos, which are massless. The simplest

possibility is the introduction of right handed neutrinos, but depending on whether neu-

trinos are Dirac particles, as any of the other fermions, or Majorana particles, being their

own antiparticles, their unique interactions with the Higgs will be either negligible or

might be relevant, respectively. In the later case, the seesaw mechanism is a simple way

of explaining the smallness of neutrino masses, by the ratio of two very different scales,

the Dirac scale, mD ∼ O(100) GeV, and the Majorana scale, mM ∼ O(1013 − 1015) GeV.

Nevertheless, the appearance of new physics at such large scale would worsen the hier-
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archy problem and a huge fine tuning would be needed in order to obtain a light Higgs

boson mass of mh ∼ O(100) GeV.

Furthermore, the existence of neutrino oscillations caused by nonzero neutrino masses

and neutrino mixing implies that lepton flavor violation manifestly occurs in the neutrino

sector. As a consequence, lepton flavor in the charged sector is not conserved either due

to quantum corrections involving neutrinos. However, the decay rate of any charged LFV

process is extremely suppressed in the SM enlarged with 3 right-handed Dirac neutrinos,

due to the smallness of neutrino masses and Yukawa neutrino couplings. Furthermore, in

the SM-seesaw with three right-handed Majorana neutrinos, the charged LFV branching

ratios are also very suppressed, far below the present sensitivities. Therefore, any potential

future measurement of LFV in the charged lepton sector would be a clear signal not only

of physics beyond the SM but also of physics beyond the SM enlarged with three right

handed neutrinos.

A supersymmetric extension of the SM-seesaw, like the MSSM-seesaw, comprises neu-

trino masses and mixing angles and at the same time solves the hierarchy problem of

the SM-seesaw. Moreover, in SUSY-seesaw models a new source of LFV appears in the

off-diagonal elements of the slepton and sneutrino mass matrices, which can be radiatively

generated from the neutrino Yukawa interactions with large Yν ∼ O(1), and, therefore,

the LFV rates in the charged lepton sector may lay within the present experimental

sensitivities.

This thesis has been been devoted to the study of some of the indirect effects of

Majorana neutrinos and their SUSY partners, the sneutrinos, via loop corrections, to

observables that have a potential sensitivity to the Higgs sector. In particular, we have

focused on two main effects: 1) one-loop radiative corrections to the lightest Higgs bo-

son mass of the MSSM-seesaw and, 2) one-loop contributions to lepton flavor violating

processes that are mediated by Higgs bosons within constrained SUSY-seesaw models. In

the following we will sum up the main results and conclusions that can be extracted from

our works.

• A full one-loop computation of the renormalized self energies of the neutral Higgs

bosons of the MSSM-seesaw has been performed using the Feynman diagrammatic

approach. Only the new contributions coming from the neutrino and sneutrino

sector have been considered, because the pure MSSM corrections are well-known

in the literature. We have focused our calculation on the one generation case for

simplicity. The three generations case has been worked out at the Lagrangian level



Conclusions 149

and will be continued at the one-loop level in a forthcoming work. Both Yukawa

interactions and gauge interactions have been taken into account. The relevant

interactions have been derived and presented in terms of all the physical masses and

mixing angles of the particles involved, namely, the CP-even Higgs bosons h and

H , the CP-odd Higgs boson A, the light and heavy Majorana neutrinos ν and N ,

their SUSY partners ν̃±, Ñ± and the neutral gauge boson Z. Three renormalization

schemes, namely, DR, mDR and OS, have been used and compared. We have fully

analyzed the behavior of the neutrino/sneutrino corrections to the renormalized CP-

even Higgs self-energies with all the involved masses and parameters: mM , tanβ,

MA,mL̃,mR̃, Aν ,mν , p andBν and concluded from an exhaustive numerical analysis

that mM , MA, mR̃, mν , p and Bν are by far the most important ones. However, the

soft SUSY breaking parameters mR̃, Bν start being relevant for large values, close

to the Majorana mass scale.

In order to obtain a simple analytical formula of the renormalized self energies we

have performed an expansion valid when mM is much larger than all the other mass

scales involved, and where we have set Aν = Bν = µ = 0 and mR̃ = mL̃ = mSUSY ,

for simplicity. The first term of this expansion is the O (m0
D) which corresponds to

the pure gauge contribution and it approximates the MSSM result with massless

neutrinos. The other terms of the expansion correspond to the pure Yukawa con-

tribution. The main conclusion from this Yukawa part is that in the mDR scheme

and in the DR scheme the O (m2
D) is the leading term, in contrast to the OS scheme

which is dominated by the O (m4
D/m

2
M ).

The differences among those schemes have been explained in terms of the finite

part of tan β and Higgs fields counterterms. We have chosen the mDR as the most

suitable scheme for our calculation because it is a gauge independent scheme at one

loop and it minimizes higher order corrections improving, therefore, the convergence

of the perturbative expansion. In the mDR scheme there is no explicit dependence

on the Majorana scale in the dominant O(m2
D) contribution and the implicit depen-

dence comes via m2
D from imposing the seesaw equation such that m2

D = |mν |mN ,

with mN ≈ mM . Therefore, the renormalized self energies increase linearly with

the Majorana scale and the light neutrino mass. The other relevant parameters in

this leading Yukawa term are the external momentum and the pseudoscalar Higgs

mass MA. Consequently, our results can not be reproduced by using the effective

potential approach because in this method the external momentum is neglected.
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Regarding the numerical computation, we have estimated the extra corrections com-

ing from the neu/sneu sector to the lightest MSSM Higgs boson mass ∆mh to check

if they enter into the measurable range. When mM is much larger than all the other

scales involved, in particular, much larger that any of the soft breaking parameters,

the corrections to the lightest Higgs boson mass depend mainly on Yν, thus on mν

and mM . For 1013 GeV < mM < 1014 GeV and 0.1 eV < |mν | < 0.5 eV the cor-

rections are positive and smaller than 0.1 GeV, because in this region the gauge

corrections still dominate the small Yukawa contributions. But for larger values

of any of the neutrino masses, mν and/or mM , the corrections change to negative

sign and grow in size with these two masses up to values of around −5 GeV for

mM = 1015 GeV and |mν | = 1 eV. It is worth mentioning that for mM = 1014

GeV and |mν | = 0.5 eV, Yν ≈ 1. Consequently, the perturbativity in the neutrino

Yukawa coupling Yν is the constraining condition for not exploring much larger val-

ues of mM and/or mν . Furthermore, when the soft mass associated to the right

handed neutrino sector, mR̃, is of the order of the Majorana mass scale we find very

large negative corrections that can lower the lightest Higgs boson mass by a few tens

of GeV. For instance, the corrections are around −30 GeV , for mM = 1014 GeV,

mR̃/mM = 0.7 and |mν | = 0.6 eV. We have shown that the neutrino/sneutrino

effects have, in general, an opposite sign to the top/stop effects and thus lighten the

lightest Higgs boson. Consequently, the present upper bound within the MSSM of

mh <∼ 135 GeV will be diminished if neutrino/sneutrino loop effects are taken into

account.

In view of the anticipated experimental precisions at the LHC and the ILC we believe

that these new contributions from the Majorana neu/sneu sector should be taken

into account whenever one wants to calculate precisely the Higgs spectrum within

MSSM-seesaw scenarios. If in the future months/years a very light Higgs boson

mass, close to the present experimental lower bound, is detected at the LHC and,

on the other hand, no SUSY particle has yet been detected, with the corresponding

increase of the lower bounds on the SUSY mass spectrum, in particular the stop

and sbottom masses, that might be a hint of some new physics beyond the MSSM

responsible of generating such a light Higgs. In that case, the MSSM-seesaw with

heavy Majorana neutrinos/sneutrinos would be a good candidate for explaining such

a light Higgs.

In summary, we conclude that the one-loop corrections from heavy Majorana neu-

trinos and their SUSY partners to the Higgs boson masses are important in this
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MSSM-seesaw scenario, and overwhelm by many orders of magnitude the corre-

sponding corrections in the case of Dirac massive neutrinos. These have also been

estimated here and are extremely tiny, smaller than 10−22 GeV.

• A comparative study of the LFV semileptonic decays τ → µf0(980) and τ → µη

has been performed within the context of two constrained SUSY-seesaw models,

the CMSSM-seesaw and the NUHM-seesaw which have a very different Higgs sec-

tor spectra. The potential sensitivity to the Higgs sector of these decays has been

explored with special interest. Through all this analysis, we have required com-

patibility with both the present experimental upper bound for these decays and

with neutrino data for masses and oscillations. The present upper bounds for

both decays are BR(τ → µf0(980)) < 3.4 × 10−8(incl. Br(f 0 → π+π−)) and

BR(τ → µη) < 2.3×10−8 at the 90% C.L. given by the BELLE collaboration [93, 94].

These decays bounds are very competitive with respect to other LFV channels in

the τ − µ sector such as the well-known τ → µγ decay, with an upper bound of

BR(τ → µγ) < 4.4× 10−8 at the 90% C.L. given by the BABAR collaboration [89].

We have presented a full computation of BR(τ → µf0(980)) that takes into account

the full set of one-loop SUSY diagrams in the LFV vertex τµH , where H stands

for any of the neutral CP-even Higgs bosons h0 andH0. The hadronization of the

quark bilinears has been performed by means of the standard techniques in χPT

and RχT. Within this chiral approach, the Higgs couplings to the f0(980) and to

the η are dominated by their strange quark components. On the other hand, the

H0 − f0 coupling is dominant over the h0 − f0 coupling since the first one goes as

tan β in the large tanβ limit, similarly to the A0 − η coupling, whereas the second

one is suppressed in this limit.

In the τ → µη decay we have shown that the Z mediated contribution is the

dominant one for values of tanβ < 20. Only for values of tan β > 20 the A0

mediated contribution dominates, in contrast with the τ → µf0(980) decay which

is sensitive to the Higgs sector in the full tan β interval. Much larger rates have

been found in the NUHM-Seesaw than in the CMSSM-Seesaw scenario, due mainly

to the lighter Higgs masses mH0/mA0 found in the first scheme even for large soft

SUSY masses at ∼ O(1 TeV). This is precisely the main interest of the Higgs

mediated channels such as τ → µη and τ → µf0(980), namely, the fact that the

decay rates can be sizeable even for large SUSY masses, MSUSY ∼ O(1 TeV), in

clear contrast with other competitive tau flavor violating channels like τ → µγ,
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whose rates decrease as 1/M2
SUSY and lay below the present experimental bound

for such a heavy SUSY spectrum. Indeed, it is just in the NUHM-Seesaw case

where the predictions for BR(τ → µf0(980)) can reach the present experimental

sensitivity. We have shown, that in order to get values of BR(τ → µf0(980)) at

the 10−8 − 10−7 level one needs large values for the relevant parameters, namely,

mN3 ∼ 1014 − 1015 GeV, |θ1,2| ∼ 2 − 3, ± arg(θ1,2) ∼ π/4 − 3π/4, tanβ ∼ 50 − 60

and mH0 ∼ 100 − 200 GeV. In addition to the full results, we have provided an

approximate simple formula for BR(τ → µf0(980)) which has been obtained in the

large MSUSY and large tan β limit, and with the MI approximation for the relevant

LFV parameter δ32. Furthermore, we have shown in this work that this approximate

result agrees pretty well with the full result in practically all the explored parameter

space. The main basic features of the full predicted rates are very well reproduced

by the approximate formula, which summarizes the fast growing with tanβ, going

as (tan β)6, with 1/mH0 , going as (1/mH0)4, and being approximately constant with

MSUSY. The dependences with mN3 and θ1,2 go via the δ32 parameter, and the large

mN3 values are what enhance dominantly the rates, growing approximately as BR

∼ |mN3 logmN3 |2. The approximate formula for BR(τ → µη) in the same limit,

shows the same dependence on tan β, the mixing parameter δ32 and on the Higgs

boson mass, but exchanging mH0 by mA0 .

The most important conclusion from this work is that both LFV tau decays τ → µη

τ → µf0(980) are, indeed, sensitive to the Higgs sector of the NUHM-seesaw models.

Concretely, the τ → µη decay is sensitive to the CP-odd Higgs boson A0 while the

τ → µf0(980) channel is mostly sensitive to the CP-even Higgs boson H0, and,

therefore, these two channels complement nicely each other. These two channels are

undoubtedly the most competitive LFV tau decays where to look for indirect Higgs

signals. As a final product of our analysis we have extracted some excluded areas

in the parameter space of these models by using the corresponding approximate

formulas. The sensitivity found here to the Higgs sector will presumably improve

in the future if the experimental reach increases up to 10−9 − 10−10, as it seems to

be the case in the future SuperB and flavor factories [195].

All in all, I hope it became clear from this thesis that heavy Majorana neutrinos

and sneutrinos can leave remarkable imprints in low energy observables sensitive to

the Higgs sector.



Conclusiones

El consolidado Modelo Estándar de F́ısica de Part́ıculas (SM), tiene que ser extendido para

poder explicar algunas observaciones experimentales que no tienen cabida dentro de este

modelo. En primer lugar, el mecanismo que genera las masas de todos los bosones gauge

y fermiones del SM, a saber, el mecanismo de Higgs, no ha sido corroborado todav́ıa

experimentalmente. Este mecanismo predice la existencia de una part́ıcula escalar, el

famoso bosón de Higgs, que no ha sido detectado todav́ıa en ninguno de los aceleradores

pasados o presentes. De hecho, hasta la fecha, el Gran Colisionador de Hadrones (LHC)

ha exclúıdo una región muy amplia de valores posibles de masas del bosón de Higgs del

SM. Concretamente, un reciente análisis conjunto de CMS y ATLAS ha exclúıdo al 95% de

nivel de confianza el intervalo 141 GeV < mh < 476 GeV , dejando una estrecha ventana

donde pueda encontrarse el Higgs del SM, 114.4 GeV < mh < 141 GeV [17]. Por un

lado, los datos de precisión electrodébiles prefieren un Higgs ligero mh ∼ O(100) GeV,

pero, por otro lado, el bosón de Higgs, al ser una part́ıcula escalar, es cuadráticamente

sensible a la escala de nueva f́ısica donde el SM ya no tiene validez, conociéndose esta

inestabilidad frente a nuevas escalas como el problema de las jerarqúıas. Si no queremos

que haya un ajuste fino entre la masa del Higgs a nivel árbol y correcciones radiativas de

órdenes superiores, entonces la escala de nueva f́ısica debe ser <∼ O(1) TeV. Esto puede

ser interpretado como un indicio teórico de nueva f́ısica a la escala del TeV o, incluso, por

debajo del TeV.

Por otra parte, es necesario ampliar el SM para acomodar las masas de los neutrinos

porque el SM contiene sólo tres neutrinos de levógiros (left-handed), que no tienen masa.

La opción más sencilla es la introducción de neutrinos dextrógiros (right-handed), pero

dependiendo de si son neutrinos de Dirac, como el resto de los fermiones del SM, o

neutrinos de Majorana, en cuyo caso seŕıan sus propias antipart́ıculas, su interacción con

el Higgs será despreciable o podrá ser relevante, respectivamente. En caso de tratarse

de neutrinos de Majorana, el mecanismo de seesaw da una explicación sencilla sobre las
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masas tan pequeñas de los neutrinos, a traves del cociente de dos escalas muy dispares, la

escala de Dirac, mD ∼ O(100) GeV, y la escala de Majorana, mM ∼ O(1013− 1015) GeV.

Sin embargo, la existencia de nueva f́ısica a esa escala tan grande empeoraŕıa el problema

de las jerarqúıas y seŕıa necesario un ajuste muy fino para obtener una masa del bosón

de Higgs ligero de mh ∼ O(100) GeV.

Adicionalmente, la existencia de oscilaciones de neutrinos originadas por las masas de

los neutrinos y sus ángulos de mezcla, implica que hay violación de sabor leptónico (LFV)

en el sector de los neutrinos. Consecuentemente, el sabor leptónico en el sector de leptones

cargados no se conserva tampoco debido a correcciones cuánticas en las que intervienen

los neutrinos. Sin embargo, la tasa de desintegración de cualquier proceso de LFV en el

sector cargado está extremadamente suprimida en la versión extendida del SM con tres

neutrinos de Dirac dextrógiros, debido a la pequeñez de las masas de los neutrinos y de

los acoplamientos de Yukawa de los neutrinos. Por otra parte, en el SM-seesaw con tres

neutrinos de Majorana dextrógiros, las tasas de desintegración de leptones cargados con

violación de sabor están también muy suprimidas, muy lejos de poder ser contrastadas

experimentalmente. Por lo tanto, cualquier medida futura que implique violación de sabor

en el sector cargado, seŕıa una clara señal, no sólo de nueva f́ısica más allá del SM (BSM)

sino también de f́ısica más allá del SM extendido con tres neutrinos dextrógiro.

Una extensión supersimétrica del SM-seesaw, por ejemplo el MSSM-seesaw, incluye

las masas y ángulos de mezcla de los neutrinos y, al mismo tiempo, resuelve el gran

problema de las jerarqúıas que tiene el SM-seesaw. Además, en modelos SUSY-seesaw

una nueva fuente de LFV aparece en los elementos no diagonales de las matrices de masa

de los sleptones y los sneutrinos, que puede ser generada radiativamente a través de

las interacciones de Yukawa de los neutrinos cuando estas interacciones son fuertes ,i.e.

Yν ∼ O(1). Es por esta razón, que las tasas de desintegración de leptones cargados con

violación de sabor leptónico pueden hallarse dentro de la precisión experimental actual.

Esta tesis se ha centrado en el estudio de algunos de los efectos indirectos de los

neutrinos de Majorana y de sus compañeros supersimétricos, los sneutrinos, a través de

correcciones radiativas, a observables que son potencialmente sensibles al sector Higgs.

En particular, nos hemos centrado en dos efectos importantes: 1) correcciones radiativas

a un lazo (one-loop) a la masa del bosón de Higgs más ligero del MSSM-seesaw y, 2)

correcciones radiativas a un loop a los procesos LFV que están mediados por bosónes de

Higgs en modelos SUSY-seesaw restringidos. A continuación resumiremos los resultados

más relevantes y las conclusiones que pueden extraerse de nuestro trabajo.
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• Hemos realizado un cálculo diagramático completo a un loop de las autoenerǵıas

renormalizadas de los bosones de Higgs neutros del MSSM-seesaw. Solamente hemos

tenido en cuenta las nuevas contribuciones provenientes del sector de neutrinos y

sneutrinos, porque las correcciones del MSSM ya han sido estudiadas en profundidad

por diversos autores. Hemos restringido nuestro cálculo al caso de una generación

por una cuestión de sencillez. El caso de tres generaciones ha sido desarrollado a

nivel de Lagrangiano y será completado el cálculo a un loop en un trabajo próximo.

En nuestro trabajo, hemos tenido en cuenta tanto las interacciones de Yukawa como

las interacciones gauge. Se han derivado las interacciones relevantes y han sido pre-

sentadas en términos de las masas f́ısicas y de los ángulos de mezcla de las part́ıculas

involucradas, a saber, los bosones de Higgs pares bajo CP , h y H , el bosón de Higgs

impar bajo CP, A, los neutrinos de Majorana ν y N , ligero y pesado respectiva-

mente, sus companẽros supersimétricos ν̃± y Ñ± y el bosón gauge neutro Z. Se han

utilizado tres esquemas de renormalización y comparado los resultados obtenidos en

cada uno de ellos. Hemos analizado en profundidad el comportamiento de las cor-

recciones radiativas de los neutrinos/sneutrinos a las autoenerǵıas renormalizadas

de los bosones de Higgs con CP-par, con todos los parámetros y masas involucradas,

i.e. mM , tan β,MA, mL̃, mR̃, Aν , mν , p y Bν . Tras un análisis numérico exahustivo,

hemos concluido que mM ,MA, mR̃, mν , p y Bν son los parámetros más importantes.

No obstante, los parámetros de ruptura suave de SUSY, mR̃, y Bν , empiezan a ser

relevantes cuando tienen valores muy grandes, cerca de la escala de Majorana.

Con el fin de obtener una fórmula anaĺıtica sencilla de las autoenerǵıas renormal-

izadas, hemos llevado a cabo una expansión válida sólo en el ĺımite en que mM es

mucho más grande que cualquiera de las otras masas involucradas, y donde además,

hemos impuesto Aν = Bν = µ = 0 y mR̃ = mL̃ = mSUSY por simplicidad. El primer

término de esta expansión es el de O (m0
D), que corresponde a la contribución gauge

pura y se asemeja a la contribución de los neutrinos sin masa del MSSM. Los otros

términos de la expansión corresponden a la contribución Yukawa pura. La conclusión

principal de los términos de Yukawa es que, tanto en el esquema de renormalización

mDR como en el DR, el término dominante es el O (m2
D), a diferencia del esquema

de renormalización OS, donde el término dominante es el O (m4
D/m

2
M).

Las diferencias entre los distintos esquemas han sido explicadas en términos de

la parte finita de los contratérminos de tan β y de los campos de Higgs. Hemos

elegido el esquema mDR como el esquema más apropiado para nuestro cálculo,

porque es un esquema con independencia gauge a un loop y porque minimiza las
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correcciones radiativas de órdenes superiores, mejorando, por tanto, la convergencia

de la serie perturbativa. En el esquema mDR, no hay una dependencia expĺıcita en la

escala de Majorana en la contribución dominante O(m2
D) y la dependencia impĺıcita

aparece a través de m2
D cuando imponemos la ecuación del seesaw, de forma que

m2
D = |mν |mN , con mN ≈ mM . Por lo tanto, las autoenerǵıas renormalizadas

crecen linealmente con la escala de Majorana y con la masa del neutrino ligero. Los

otros parámetros relevantes en este término de Yukawa dominante, son el momento

externo y la masa del Higgs pseudoscalar MA. En consecuencia, nuestros resultados

no pueden ser obtenidos utilizando el método del potencial efectivo porque en este

método el momento externo se desprecia.

En lo que respecta a la computación numérica, hemos estimado las correcciones adi-

cionales, provenientes del sector neu/sneu, al bosón de Higgs más ligero del MSSM,

∆mh, para comprobar si son comparables con la precisión experimental y por tanto

susceptibles de ser medidas experimentalmente. Cuando mM es mucho más grande

que el resto de escalas involucradas, en concreto, mucho más grande que cualquiera

de los parámetros de ruptura suave de SUSY, las correcciones a la masa del bosón de

Higgs ligero dependen fundamentalmente de Yν , y por tanto, de mν y mM . Cuando

1013 GeV < mM < 1014 GeV y 0.1 eV < |mν | < 0.5 eV, las correcciones son pos-

itivas y más pequeñas que 0.1 GeV, porque en esta región las correcciones gauge

todav́ıa dominan las pequeñas contribuciones de Yukawa. Sin embargo, para valores

más grandes de cualquiera de las masas de los neutrinos, mν y/o mM , las correc-

ciones cambian de signo y crecen en valor absoluto con estas dos masas hasta valores

alrededor de -5 GeV para mM = 1014 GeV y |mν | = 0.5 eV. Es importante resaltar

que mM = 1014 GeV y |mν | = 0.5 eV, Yν ≈ 1. Por tanto, si no se han explorado

valores mucho más grandes de mM y/o mν , se debe a las restricciones impuestas

por la condición de perturbatividad en el acoplamiento de Yukawa del neutrino Yν .

Adicionalmente, cuando la masa suave asociada al sector del neutrino dextrógiro,

mR̃, es del orden de la escala de masas de Majorana, encontramos correcciones

negativas muy grandes que pueden disminuir la masa del bosón de Higgs más ligero

en unas pocas decenas de GeV. Por ejemplo, se obtienen correcciones alrededor

de −30 GeV, cuando mM = 1014 GeV, mR̃/mM = 0.7 y |mν | = 0.6 eV. Hemos

mostrado que los efectos de los neutrinos/sneutrinos tienen, generalmente, signo

opuesto a los efectos de los tops/stops y, por tanto, reducen la masa del Higgs

más ligero. Consecuentemente, la cota superior de este Higgs en el MSSM, que es

mh <∼ 135 GeV, disminuirá si se tienen en cuenta los efectos de loops de neutrinos
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y sneutrinos.

En vista de la precisión experimental prevista en el LHC y en el ILC, consideramos

que estas nuevas contribuciones, provenientes del sector de neutrinos y sneutrinos

de Majorana, debeŕıan tenerse en cuenta siempre que alguien quiera calcular con

precisión el espectro del Higgs en escenarios MSSM-seesaw. Si en los próximos

meses/años detectan en el LHC un bosón de Higgs muy ligero, cerca de la cota

experimental inferior y, por otro lado, no detectan ninguna part́ıcula supersimétrica

con el correspondiente aumento de las cotas inferiores del espectro de masas su-

persimétrico, en particular, las masas del stop y del sbottom, eso podŕıa ser una

señal de nueva f́ısica más allá del MSSM responsable de la existencia que un Higgs

tan ligero. En ese caso, el MSSM-seesaw con neutrinos y sneutrinos de Majorana

pesados seŕıa un buen candidato para explicar el por qué de un Higgs tan ligero.

En resumen, concluimos que las correcciones a un loop de neutrinos de Majorana

pesados y sus compañeros supersimétricos a las masas de los bosones de Higgs son

relevantes en este escenario MSSM-sesaw, y superan por muchos órdenes de magni-

tud las correcciones correspondientes en el caso de neutrinos de Dirac masivos. Estas

correcciones han sido estimadas aqúı y son extremadamente pequeñas, menores de

10−22 GeV.

• Hemos realizado un estudio comparativo de las desintegraciones semileptónicas LFV

τ → µf0(980) y τ → µη en el contexto de dos modelos SUSY-seesaw restringidos,

el CMSSM-seesaw y el NUHM-seesaw, los cuales tienen un espectro de sector de

Higgs muy distinto. Hemos explorado con especial interés la posible sensibilidad al

sector de Higgs de estos canales de desintegración. En todo el análisis hemos exigido

compatibilidad tanto con la cota superior experimental para ambos canales, como

los datos actuales de las masas y oscilaciones de los neutrinos. Las cotas superiores

actuales para ambas desintegraciones son BR(τ → µf0(980)) < 3.4 × 10−8(incl.

Br(f 0 → π+π−)) y BR(τ → µη) < 2.3 × 10−8 at the 90% C.L., dadas por la

colaboración de BELLE [93, 94]. Estas cotas son muy competitivas con respecto a

los demás canales LFV en el sector τ − µ, como la notable desintegración τ → µγ,

con una cota superior BR(τ → µγ) < 4.4× 10−8 al 90% de nivel de confianza, dado

por la colaboración BABAR [89].

Hemos presentado un cálculo completo de BR(τ → µf0(980)), que tiene en cuenta

el conjunto completo de diagramas SUSY a un loop en el vértice LFV τµH , donde

H representa cualquiera de los bosones de Higgs neutros y pares bajo CP , h0 yH0.
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La hadronización de los bilineales de quarks se ha llevado a cabo usando las técnicas

estándar de χPT y RχT. Dentro del enfoque chiral, los acoplamientos del Higgs al

f0(980) y a η están dominados por sus componentes de quark extraño. Por otro

lado, el acoplamiento H0 − f0 es más fuerte que el acoplamiento h0 − f0, debido a

que el primero es proporcional a tan β en el ĺımite de gran tan β, al igual que ocurre

con el acoplamiento A0 − η, mientras que el segundo está suprimido en ese ĺımite.

En la desintegración τ → µη hemos comprobado que la contribución mediada por

un Z es la dominante para valores de tan β < 20. Por tanto, la contribución del

A0 sólamente domina para valores de tan β > 20, a diferencia de la desintegración

τ → µf0(980) que es sensible al sector de Higgs en todo el intervalo de valores de

tan β. Se han encontrado tasas de desintegración mucho más grandes en el modelo

NUHM-Seesaw que en el CMSSM-Seesaw, debido principalmente a haber hallado

masas de los bosones de Higgs mH0/mA0 más ligeras en el primer caso, incluso para

masas SUSY grandes de ∼ O(1 TeV). Éste es precisamente el mayor interés de los

canales mediados por el Higgs como τ → µη y τ → µf0(980), a saber, el hecho

de que sus tasas de desintegración pueden ser relevantes incluso para masas SUSY

grandes, MSUSY ∼ O(1 TeV), a diferencia de otros canales del τ con violación de

sabor importantes como, τ → µγ, cuyas tasas de desintegración decrecen como

1/M2
SUSY y se encuentran por debajo de la presente cota experimental para un

espectro SUSY tan pesado.

De hecho, es únicamente en el caso NUHM-Seesaw donde las predicciones para

BR(τ → µf0(980)) pueden alcanzar la precisión experimental actual. Hemos mostrado,

que para obtener valores de BR(τ → µf0(980)) al nivel de 10−8 − 10−7, se necesi-

tan valores grandes de los parámetros relevantes, a saber, mN3 ∼ 1014 − 1015 GeV,

|θ1,2| ∼ 2 − 3, ± arg(θ1,2) ∼ π/4 − 3π/4, tan β ∼ 50 − 60 y mH0 ∼ 100 − 200

GeV. Además del resultado exacto de BR(τ → µf0(980)), hemos proporcionado

una fórmula aproximada sencilla de este proceso, que ha sido obtenida en el ĺımite

de granMSUSY y gran tan β, y donde se ha usado la aproximación de la inserción de

masas (MIA) para el parámetro LFV relevante δ32. Hemos comprobado en este tra-

bajo que el resultado aproximado concuerda bastante bien con el resultado exacto

en casi todo el espacio de parámetros que hemos explorado.

La fórmula aproximada de la tasa de desintegración reproduce muy bien las car-

acteŕısticas básicas más importantes de la predicción exacta, y sintetiza el rápido

crecimiento con tanβ, como (tan β)6, con 1/mH0 , como (1/mH0)4, y siendo aprox-
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imadamente constante con MSUSY. La dependencia con mN3 y θ1,2 viene a través

del parámetro δ32, y los valores grandes de mN3 son los que incrementan fun-

damentalmente la tasa de desintegración, que crece aproximadamente como BR

∼ |mN3 logmN3 |2. La fórmula aproximada de BR(τ → µη) en el mismo ĺımite, pre-

senta la misma dependencia con tanβ, el parámetro de mezcla δ32 y con la masa

del bosón de Higgs, pero intercambiando mH0 por mA0 .

La conclusión más importante de este estudio es que las dos desintegraciones LFV

del tau, τ → µη y τ → µf0(980), son sensibles al sector de Higgs de los modelos

NUHM-seesaw. Concretamente, la desintegración τ → µη es sensible al bosón de

Higgs impar bajo CP , A0, mientras que el canal τ → µf0(980) es fundamental-

mente sensible al bosón de Higgs par bajo CP, H0, y ,por tanto, estos dos canales

se complementan muy bien. Entre los distintos canales LFV del tau, los estudiados

aqúı son, sin duda, los más idóneos para buscar señales indirectas del Higgs. Es-

tos dos canales son, sin duda, los más idoneos canales LFV del tau donde buscar

señales indirectas del Higgs . Como colofón de nuestro análisis, hemos extráıdo

algunas áreas exclúıdas del espacio de parámetros de estos modelos, haciendo uso

de las fórmulas aproximadas correspondientes. La sensibilidad al sector de Higgs

que hemos encontrado aqúı mejorará probablemente en el futuro si el alcance ex-

perimental aumenta hasta 10−9 − 10−10, como parece ser el caso del futuro SuperB

y factoŕıas de sabor [195].

Para finalizar, espero que haya quedado claro a partir de esta tesis que los neutrinos

y sneutrinos de Majorana pueden dejar huellas notables en los observables de baja

enerǵıa sensibles al sector de Higgs.





Appendix A

New Feynman rules

In this appendix we collect the Feynman rules within the MSSM-seesaw that are relevant

for the present work. These correspond to the interactions between the neutrinos and

sneutrinos with the MSSM Higgs bosons and between the neutrinos and sneutrinos with

the Z gauge bosons. We write all the Feynman rules here in the physical basis. Here

cw = cos θW .
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h , H , A
ν

ν

|δ12

i g
2MW

mD sin 2θ
(

cosα
sinβ

, sinα
sinβ

,−iγ5 cotβ
)

h , H , A
N

N

|

−i g
2MW

mD sin 2θ
(

cosα
sinβ

, sinα
sinβ

,−iγ5 cot β
)

h , H , A
ν

N

−i g
2MW

mM sin θ cos θ
(

cosα
sinβ

, sinα
sinβ

,−iγ5 cot β
)

Zµ

ν

ν

3e

ig
2cw

cos2 θ γµγ5

Zµ

N

N

(θ3

ig
2cw

sin2 θ γµγ5

Zµ

ν

N

µγ

ig
2cw

sin θ cos θ γµγ5

Table A.1: Three-point couplings of two Majorana neutrinos to one MSSM Higgs boson and

of two Majorana neutrinos to the Z gauge boson.
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h

ν̃+

ν̃+

|δ

i g
4cwMW sinβ

[−4cw cosαm2
D + 2cw cosαmD(Aν +mM + µ tanα ) sin 2θ+

+
M2

W

cw
sin β sin(α+ β) (1 + cos 2θ+) ]

h

Ñ+

Ñ+

|
(GeV)

−i g
4cwMW sinβ

[4cw cosαm2
D + 2cw cosαmD(Aν +mM + µ tanα ) sin 2θ+

−M2
W

cw
sin β sin(α + β) (1− cos 2θ+) ]

h

ν̃+

Ñ+

tan

−i g
2cwMW sinβ

[cw cosαmD(Aν +mM + µ tanα ) cos 2θ+

−M2
W

cw
sin β sin(α + β) cos θ+ sin θ+]

h

ν̃
−

ν̃
−

eγ

i g
4cwMW sinβ

[−4cw cosαm2
D + 2cw cosαmD(Aν −mM + µ tanα ) sin 2θ−

+
M2

W

cw
sin β sin(α+ β) (1 + cos 2θ−) ]

h

Ñ
−

Ñ
−

1/

−i g
4cwMW sinβ

[4cw cosαm2
D + 2cw cosαmD(Aν −mM + µ tanα ) sin 2θ−

−M2
W

cw
sin β sin(α + β) (1− cos 2θ−) ]

h

ν̃
−

Ñ
−

τµ̄

−i g
2cwMW sinβ

[cw cosαmD (Aν −mM + µ tanα ) cos 2θ−

−M2
W

cw
sin β sin(α + β) cos θ− sin θ−]

Table A.2: Three-point couplings of two sneutrinos to the Higgs boson h. The corre-

sponding couplings to the Higgs boson H are obtained from the ones here by replacing

cosα → sinα , sinα → − cosα , sin(α + β) → − cos(α + β). All the couplings not shown

here vanish.
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p

Zµ

p
′

ν̃+

ν̃
−

|

g
2cw

cos θ+ cos θ− (p+ p′)µ

p

Zµ

p
′

Ñ+

Ñ
−

eγ

g
2cw

sin θ+ sin θ− (p+ p′)µ

p

Zµ

p
′

ν̃
−

Ñ+

l̃

g
2cw

sin θ+ cos θ− (p+ p′)µ

p

Zµ

p
′

Ñ
−

ν̃+

M

g
2cw

cos θ+ sin θ− (p+ p′)µ

Table A.3: Three-point couplings of two sneutrinos to the Z gauge boson. All the couplings

not shown here vanish.



165

A

Ñ+

Ñ
−

|θ

i g
2MW

cot β mD[(Aν + µ tanβ) sin(θ− − θ+) +mM sin(θ− + θ+)]

A

ν̃+

Ñ
−

eγ

i g
2MW

cot β mD[−(Aν + µ tanβ) cos(θ− − θ+) +mM cos(θ− + θ+)]

A

ν̃
−

Ñ+

l̃

i g
2MW

cot β mD[(Aν + µ tanβ) cos(θ− − θ+) +mM cos(θ− + θ+)]

A

ν̃+

ν̃
−

1/

i g
2MW

cot β mD[(Aν + µ tanβ) sin(θ− − θ+)−mM sin(θ− + θ+)]

Table A.4: Three-point couplings of two sneutrinos to the Higgs boson A. All the couplings

not shown here vanish.
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h , H

h , H

ν̃+

ν̃+

|

i g2

8c2wM2
W

sin2 β
[4(− cos2 α, sin2 α)c2wm

2
D + cos 2αM2

W sin2 β(1 + cos 2θ+)]

h , H

h , H

Ñ+

Ñ+

|θ13

−i g2

8c2wM2
W

sin2 β
[4(cos2 α, sin2 α)c2wm

2
D(−,+) cos 2αM2

W sin2 β(1− cos 2θ+)]

h , H

h , H

Ñ+

ν̃+

tan

(+,−) i g2

4c2w
cos 2α cos θ+ sin θ+

H

h

ν̃+

ν̃+

3e

i g2

8c2wM2
W

sin2 β
sin 2α [−2c2wm

2
D +M2

W sin2 β (1 + cos 2θ+)]

H

h

Ñ+

Ñ+

−i g2

8c2wM2
W

sin2 β
sin 2α [2c2wm

2
D −M2

W sin2 β (1− cos 2θ+)]

H

h

Ñ+

ν̃+

¯

i g2

4c2w
sin 2α cos θ+ sin θ+

Table A.5: Four-point couplings of two sneutrinos to two P-even Higgs bosons. The corre-

sponding couplings for ν̃− and Ñ− can be obtained from these by replacing θ+ → θ−. All the

couplings not shown here vanish
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A

A

ν̃+

ν̃+

|δ13

i g2

8c2wM2
W

sin2 β
[−4 cos2 β c2wm

2
D + cos 2βM2

W sin2 β (1 + cos 2θ+)]

A

A

Ñ+

Ñ+

|
|θ

−i g2

8c2wM2
W

sin2 β
[4 cos2 β c2wm

2
D − cos 2βM2

W sin2 β (1− cos 2θ+)]

A

A

Ñ+

ν̃+

tan

i g2

4c2w
cos 2β cos θ+ sin θ+

Zν

Zµ

ν̃+

ν̃+

3e

i g2

2cw
cos2 θ+gµν

Zν

Zµ

Ñ+

Ñ+

i g2

2cw
sin2 θ+gµν

Zν

Zµ

Ñ+

ν̃+

τµ̄

i g2

2cw
cos θ+ sin θ+gµν

Table A.6: Four-point couplings of two sneutrinos to two P-odd Higgs bosons and of two

sneutrinos to two Z gauge bosons. The corresponding couplings for ν̃− and Ñ− can be obtained

from these by replacing θ+ → θ−. All the couplings not shown here vanish.





Appendix B

Majorana case. One-loop

neutrino/sneutrino corrections to

the self-energies and tadpoles

In this Appendix we collect all the analytical results for the neutrino and sneutrino one-

loop corrections to the Higgs boson tadpoles and unrenormalized self-energies, and to

the Z self-energies, within the MSSM-seesaw. The contributions from neutrinos (ν) and

sneutrinos (ν̃) are presented separately for clearness. Here cw = cos θW .

T ν
h =

g

16cwMZπ2

cosα sin 2θ

sin β
mD(mνA0[m

2
ν ]−mNA0[m

2
N ]) (B.1)

T ν̃
h = − g

64cwMZπ2

1

sin β
(A0[m

2
ν̃+
](M2

Z cos2 θ+ sin β sin(α+ β)

+mDµ sinα sin 2θ+ +mD cosα(−2mD + (Aν +mM) sin 2θ+))

+ A0[m
2
ν̃−
](M2

Z cos2 θ− sin β sin(α + β)

+mDµ sinα sin 2θ− −mD cosα(2mD − (Aν −mM ) sin 2θ−))

− A0[m
2
Ñ+

](−M2
Z sin β sin(α + β) sin2 θ+

+2mD cosα(mD +
1

2
(Aν +mM) sin 2θ+) +mDµ sinα sin 2θ+)

− A0[m
2
Ñ−

](−M2
Z sin β sin(α + β) sin2 θ−

+2mD cosα(mD +
1

2
(Aν −mM) sin 2θ−) +mDµ sinα sin 2θ−)) (B.2)
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Σν
hh(p

2) = − g2

64c2wM
2
Zπ

2

cos2 α sin2 2θ

sin2 β

[

2m2
DA0[m

2
ν ] + (2m2

D +m2
M)A0[m

2
N ]

+ 4m2
Dm

2
νB0[p

2, m2
ν , m

2
ν ] +m2

M (m2
ν +mνmN)B0[p

2, m2
ν , m

2
N ]

+ 4m2
Dm

2
NB0[p

2, m2
N , m

2
N ]

+ p2(2m2
DB1[p

2, m2
ν , m

2
ν ] +m2

MB1[p
2, m2

ν , m
2
N ] + 2m2

DB1[p
2, m2

N , m
2
N ])
]

(B.3)

Σν̃
hh(p

2) =
g2

512c2wM
2
Zπ

2 sin2 β
[−4A0[m

2
ν̃+ ](−2m2

D cos2 α+M2
Z sin2 β cos 2α cos2 θ+)

− 4A0[m
2
Ñ+

](−2m2
D cos2 α+M2

Z sin2 β cos 2α sin2 θ+)

− 4A0[m
2
ν̃−
](−2m2

D cos2 α+M2
Z sin2 β cos 2α cos2 θ−)

− 4A0[m
2
Ñ−

](−2m2
D cos2 α +M2

Z sin2 β cos 2α sin2 θ−)]

+ 2B0[p
2, m2

Ñ+
, m2

ν̃+](4m
2
D cos2 2θ+ cos2 α (Aν +mM + µ tanα)2

+M2
Z sin β sin(α + β)(M2

Z sin β sin(α + β) sin2 2θ+

−2mD cosα(Aν +mM + µ tanα) sin 4θ+)

+ 2B0[p
2, m2

Ñ−
, m2

ν̃−
](4m2

D cos2 2θ− cos2 α (Aν −mM + µ tanα)2

+M2
Z sin β sin(α + β)(M2

Z sin β sin(α + β) sin2 2θ−

−2mD cosα(Aν −mM + µ tanα) sin 4θ−)

+ 4B0[p
2, m2

Ñ+
, m2

Ñ+
](mD cosα(2mD + sin 2θ+(Aν +mM + µ tanα))

−M2
Z sin β sin(α+ β) sin2 θ+)

2

+ 4B0[p
2, m2

Ñ−
, m2

Ñ−
](mD cosα(2mD + sin 2θ−(Aν −mM + µ tanα))

−M2
Z sin β sin(α+ β) sin2 θ−)

2

+ 4B0[p
2, m2

ν̃+
, m2

ν̃+
](mD cosα(−2mD + sin 2θ+(Aν +mM + µ tanα))

−M2
Z sin β sin(α+ β) cos2 θ+)

2

+ 4B0[p
2, m2

ν̃−
, m2

ν̃−
](mD cosα(−2mD + sin 2θ−(Aν −mM + µ tanα))

−M2
Z sin β sin(α+ β) cos2 θ−)

2] (B.4)

The corresponding results for the tadpole TH , and the unrenormalized self-energy ΣHH

are obtained from the above formulas by replacing cosα → sinα , sinα→ − cosα , sin(α+

β) → − cos(α + β).

Σν
hH(p

2) = − g2

128c2wM
2
Zπ

2

sin 2α sin2 2θ

sin2 β

[

2m2
DA0[m

2
ν ] + (2m2

D +m2
M)A0[m

2
N ]
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+ 4m2
Dm

2
νB0[p

2, m2
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2
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2, m2
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2
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(B.5)
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−M4
Z sin2 β cos4 θ+ sin 2(α + β))
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−M4
Z sin2 β cos4 θ− sin 2(α + β))] (B.6)

Σν
AA(M

2
A) = − g2

64c2wM
2
Zπ

2

cos2 β sin2 2θ

sin2 β
[2m2

DA0[m
2
ν ] + (2m2

D +m2
M)A0[m

2
N ] (B.7)

+ m2
M (m2

ν −mνmN )B0[M
2
A, m

2
ν , m

2
N ]

+ M2
A(2m

2
D(B1[M

2
A, m

2
ν , m

2
ν ] +B1[M

2
A, m

2
N , m

2
N ]) +m2

MB1[M
2
A, m

2
ν , m

2
N ])]

Σν̃
AA(M

2
A) =

g2

256c2wM
2
Zπ

2

1

sin2 β
[A0[m

2
ν̃+
](4m2

D cos2 β − 2M2
Z cos 2β sin2 β cos2 θ+)

+ A0[m
2
Ñ+

](4m2
D cos2 β − 2M2

Z cos 2β sin2 β sin2 θ+)

+ A0[m
2
ν̃−](4m

2
D cos2 β − 2M2

Z cos 2β sin2 β cos2 θ−)

+ A0[m
2
Ñ−

](4m2
D cos2 β − 2M2

Z cos 2β sin2 β sin2 θ−)

+ 4m2
D

[

B0[M
2
A, m

2
ν̃+, m

2
ν̃−](µ sin β sin(θ− − θ+)

+ cos β(Aν sin(θ− − θ+)−mM sin(θ− + θ+)))
2

+ B0[M
2
A, m

2
Ñ+
, m2

Ñ−
](µ sinβ sin(θ− − θ+)

+ cos β(Aν sin(θ− − θ+) +mM sin(θ− + θ+)))
2

+ B0[M
2
A, m

2
Ñ−
, m2

ν̃+
](µ sin β cos(θ− − θ+)

+ cos β(Aν cos(θ− − θ+)−mM cos(θ− + θ+)))
2

+ B0[M
2
A, m

2
Ñ+
, m2

ν̃−](µ sin β cos(θ− − θ+)

+ cos β(Aν cos(θ− − θ+) +mM cos(θ− + θ+)))
2
]

] (B.8)

Σν
ZZ(M

2
Z) = − g2

32c2wπ
2

[

cos4 θA0[m
2
ν ] +

1

2
(3 + cos 2θ) sin2 θA0[m

2
N ]

+ 2 cos4 θ

(

m2
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2
Z , m

2
ν , m

2
ν ]−B00[M

2
Z , m

2
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2
ν ] +

M2
Z

2
B1[M

2
Z , m

2
ν , m

2
ν ]

)

+ 2 sin4 θ

(

m2
NB0[M

2
Z , m

2
N , m

2
N ]− B00[M

2
Z , m

2
N , m

2
N ] +

M2
Z

2
B1[M

2
Z , m

2
N , m

2
N ]

)

+
1

2
sin2 2θ

(

mν(mν +mN )B0[M
2
Z , m

2
ν , m

2
N ]− 2B00[M

2
Z , m

2
ν , m

2
N ]
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+M2
ZB1[M

2
Z , m

2
ν , m

2
N ]
)]

(B.9)

Σν̃
ZZ(M

2
Z) =

g2

64c2wπ
2

[

A0[m
2
ν̃−
] cos2 θ− + A0[m

2
ν̃+
] cos2 θ+

+ A0[m
2
Ñ−

] sin2 θ− + A0[m
2
Ñ+

] sin2 θ+

− 4(B00[M
2
Z , m

2
ν̃+
, m2

ν̃−
] cos2 θ− cos2 θ+ +B00[M

2
Z , m

2
Ñ−
, m2

ν̃+
] cos2 θ+ sin2 θ−

+ B00[M
2
Z , m

2
Ñ+
, m2

ν̃−] cos
2 θ− sin2 θ+ +B00[M

2
Z , m

2
Ñ+
, m2

Ñ−
] sin2 θ− sin2 θ+)

]

(B.10)

The definitions of the loop functions A0, B0, B1 and B00 appearing in this and the

next appendices can be found, for instance, in Ref. [196] (where B00 = B22).





Appendix C

Dirac case. One-loop

neutrino/sneutrino contributions to

the h Higgs boson self-energy

We present here the result for the one-loop corrections from neutrinos (ν) and sneutrinos

(ν̃) to the renormalized hh self-energy in the case of Dirac neutrinos, obtained in the DR

scheme. Here cw = cos θW .

Σ̂ν
hh(p

2)Dirac =
g2

32c2wM
2
Zπ

2

{

A0[m
2
D] (sin

2(α + β)M2
Z

+
1

sin β
(sin(2α− 3β) + 3 sin(2α− β)− 2 sin β))m2

D

+ sin2(α + β)M2
Z(m

2
DB0[M

2
Z , m

2
D, m

2
D]

−2B00[M
2
Z , m

2
D, m

2
D] +M2

ZB1[M
2
Z , m

2
D, m

2
D])

− 2
cos2 α

sin2 β
(2m4

DB0[p
2, m2

D, m
2
D] + p2B1[p

2, m2
D, m

2
D])

+ 2M2
Am

2
D

cos2(α− β) cos2 β

sin2 β
B1[M

2
A, m

2
D, m

2
D]
}

(C.1)

Σ̂ν̃
hh(p

2)Dirac = − g2

256c2wM
2
Zπ

2

{

A0[m
2
ν̃1 ]
[

8M2
Z sin2(α + β) cos2 θ̃ + 2mD

sin(α− β) sin 2θ̃

sin β
×

(µ(3 sinα− sin(α− 2β)) + Aν(3 cosα + cos(α− 2β)))
]

+ A0[m
2
ν̃2 ]
[

8M2
Z sin2(α + β) sin2 θ̃ − 2mD

sin(α− β) sin 2θ̃

sin β
×
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(µ(3 sinα− sin(α− 2β)) + Aν(3 cosα + cos(α− 2β)))
]

− 1

16

1

sin2 β
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D cos2(α− β) cot2 β B0[M

2
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ν̃2
, m2

ν̃1
] (Aν + µ tanβ)2

− 8M2
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(

2 cos4 θ̃B00[M
2
Z , m

2
ν̃1 , m

2
ν̃1] + 2 sin4 θ̃B00[M

2
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2
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