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Abstract

This thesis explores the emergence of spatially localized information

in Attractor Neural Networks with metric connectivity. The spatial

information examined is arranged in blocks of opposite correlations,

that is, distributed in regions of pattern and anti-pattern. This block

information is also characterized in relation with the retrieval of the

spatial structure known as bumps, which is a distribution of localized

regions that are correlated with the pattern along with uncorrelated

regions.

In order to characterize the retrieval of spatially distributed informa-

tion, the model of Attractor Neural Network on the small-world topol-

ogy (local to random connectivity) is investigated. Different memory

models are used. From a simple model of magnetic interactions to

learning a sequence of sparse-coding correlated patterns. The mod-

els are rigorously defined and the results obtained by simulation are

checked, and contrasted with a theoretical analysis when possible.

The transition between local and global information is evaluated for

the network storage capacity and the network topological parameters.

It is also explored the competition between the different types of local-

ized information, that is, block and bump structures, according to the

sparseness of the neural coding. As an extension of this spatial struc-

tures as attractor states of the neural network, and approaching real

world applications with spatially organized data, it is characterized

the learning and retrieval of patterns structured in regions (objects)

with different levels of activity. Finally, it is proposed an application

for storing and retrieving automotive traffic video that uses a coding

structured in variable-activity objets.





Resumen

Esta tesis explora el surgimiento de información espacialmente local-

izada en Redes Neuronales Atractoras con conectividad métrica. La

información espacial estudiada se organiza en bloques con correlación

opuesta, es decir, distribuidas en regiones de patrón y anti-patrón.

También es caracterizada la información en bloque respecto a la recu-

peración de otra estructura espacial conocida como “bumps”, que es

una distribución localizda de regiones que están correlacionadas con

el patrón junto con regiones no correlacionadas.

Con el fin de caracterizar la recuperación de la información espacial-

mente distribuida, se investiga el modelo de Red Neuronal Atractora

usando la topoloǵıa “small-world”, variando de la conectividad local

a la aleatoria. Además, se utilizan diferentes modelos de memoria,

desde un modelo simple de interacciones magnéticas hasta el apren-

dizaje de una secuencia de patrones correlacionados de baja actividad

(sparse-coding patterns). Los modelos son rigurosamente definidos

y los resultados obtenidos por simulación son contrastados con un

análisis teórico cuando es posible.

Se investiga la recuperación de las estructuras espaciales mencionadas,

y la transición entre la información local y global se evalúa en relación

a la capacidad de almacenamiento y los parámetros topológicos de la

red. También se explora la competencia entre los diferentes tipos

de información localizada, es decir, las estructuras de bloques y de

“bumps”, de acuerdo al nivel de actividad del código neuronal (sparse-

ness). Como una extensión de estas estructuras espaciales como es-

tados atractores de la red neuronal, y acercándose a las aplicaciones

del mundo real con información espacial organizada, se caracteriza



el aprendizaje y recuperación de patrones estructurados en regiones

(objetos) con diferentes niveles de actividad. Finalmente, se propone

una aplicación para el alamcenamiento y recuperación de videos de

tráfico automoviĺıstico que usa una codificación con objetos de activi-

dad variable.
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Chapter 1

Introduction

An Attractor Neural Network (ANN) is an arrangement of nodes (neurons), of-

ten recurrently connected, whose time dynamics relaxes to a stable pattern. For

computational neuroscientists is important to determine which attractors are rel-

evant in order to understand the principles behind the information processing

in biological systems. Stable, persistent activity has been thought to be impor-

tant for neural computation at least since Hebb (1949). In the work of Amit

(1989) on attractors neural networks, was suggested that persistent neural ac-

tivity in biological networks comes as results of dynamical attractors. Different

kinds of attractors have been associated with different functions, such as memory

(Wills et al., 2005), motor behavior (Stringer et al., 2003), and for recall and

recognition (Ruppin and Yeshurun, 1991), to mention a few. Many works deal

with different levels of abstraction with varying degrees of biological plausibility,

for instances relying largely on spiking models (Izhikevich, 2003; Lago-Fernández

et al., 2000). However, there is increasing evidence that many brain areas act as

attractor networks as pointed by Wills et al. (2005). The neural assembling is

also crucial in biological organisms, and one can argue that the comprehension of

complex networks helps to understand the development, organization and emer-

gence abilities of nervous systems (Bullmore and Sporns, 2009). In particular,

the study of spatially localized structures using attractor networks has been the

subject of this thesis. Sustaining or retrieving spatially localized information in

the network is relevant for computational neuroscience conjectures as well as for

1



1. INTRODUCTION

technical implementations. For example, localized profiles of activity are of in-

terest in computational neuroscience when considering an explanation of working

memory capacity (Edin et al., 2009). Also for real-world applications, where pat-

terns are usually represented by spatially organized data, that is, they present an

inner structure (González et al., 2011).

1.1 Attractor neural networks as computational

memory models

The artificial neural network as a soft computing paradigm, is gaining impor-

tance. Soft computing, is an emerging approach to computing, which parallels

the remarkable ability of the human brain to reason and learn in an flexible way,

and provides answers to the practical situations where heuristic-type algorithms

have proved to be valuable tools capable of providing solutions where exact algo-

rithms are not able to. The influence of the neural network learning paradigm on

Artificial Intelligence is profound. Computation by artificial neural networks is

parallel and can deal with probabilistic or noisy data, is robust and fault tolerant

and is capable of flexible learning.

An attractor neural network is a dynamic system. When a pattern is pre-

sented as a stimulus to the network, the system will settle to a memory state

(attractor), that most closely resembles the input. If this initial state belongs

to the attraction basin of an attractor, the network will converge to the corre-

sponding stored pattern. The basin of attraction is the set of initial conditions

that will evolve under the neural updating to the imprinted pattern (Eliasmith,

2007). ANN structures have been considered a plausible model for memory pro-

cessing in the brain, specifically for auto-associative memory (Griniasty et al.,

1993; Hopfield, 1982; Uezu et al., 2004).

From an implementation perspective and as pointed by Knoblauch et al.

(2010), associative memories are computing architectures in which computation

and data storage are not separated, in opposition to the classical von Neumann

computing architecture, where there are of two separate modules: a central pro-

cessing unit (CPU) for computation, and the random-access memory (RAM),

2



1.1 Attractor neural networks as computational memory models

for data storage. Associative memory includes the random-access task as well

as content-addressable memory tasks such as, pattern completion and denoising.

ANNs have been effectively applied in a wide range of situations, for example,

shape recognition (Amit and Mascaro, 1999), visual field data classification (Fink,

2004), automotive traffic video analysis (González et al., 2011).

Just as a remark, ANNs as associative memories, can be viewed for tractabil-

ity, as an extension of the Ising model (Brush, 1967). In this sense neural networks

have received lots of attention, equilibrium properties of fully connected Hopfield

neural networks (Hopfield, 1982) have been well studied using spin-glass theory,

especially the replica method (Amit et al., 1985a,b), as well as using signal-to-

noise analysis for studying their dynamics (Amari and Maginu, 1988; Bollé et al.,

2004; Okada, 1995).

1.1.1 Associative memory and Hebbian learning

Associations are stored in a set of synaptic weights between neurons using a

local Hebbian learning rule. The basic associative memory problem is to store

a set of independent patterns {~ξµ, µ = 1, . . . , P}, and retrieve a pattern (say,

~ξ ≡ ~ξµ) when the network starts from a neuron state ~σ0 which is close to it.

The simplest way to achieve this in an ANN, is just to make the weights of the

network a superposition of terms for each pattern: Wij =
∑P

µ ξµi ξ
µ
j (Amit, 1989;

Hertz et al., 1991).

This is known as the Hebb learning rule. According to Hebb (1949): The

general idea is that any two neurons or systems of neurons that are repeatedly

active at the same time will tend to become ’associated’, so that activity in one

facilitates activity in the other. An associative memory model using the Hebb rule

for all possible pairs ij, with binary units, is usually called a Hopfield model (Hertz

et al., 1991). Associative networks are closely related to Hebbian cell assemblies

and play an important role in neuroscience as models of neural computation for

various brain structures, for example, neocortex, hippocampus, cerebellum, and

mushroom body (Rolls and Treves, 1998).

Here one can remark, that the state of a Hebbian network evolves in two times

scales. Slow time scale for the connection weights update and fast time scale for
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the nodes activities update.

1.2 Global information in uniform networks

Associative networks often deal with global overlapping (similarity) between pat-

terns and neural states, employing uniform, either full or random diluted connec-

tivity to perform retrieval tasks. In fully connected and random diluted networks

the connections between nodes are uniformly distributed with independence of

the distance between nodes. The original Hopfield model (Hopfield, 1982), is a

fully connected single layer associative network, with each neuron connected to

every other neuron. Random dilution in the network connectivity implies that

an edge or link can be present with probability p or not present with probability

1 − p. In a random graph edges are chosen uniformly at random between each

pair of nodes. A model for generating random graphs can be found in the classic

article of Erdös and Rényi (1959). The uniform distributed connectivity allows

the network to retrieve global information in an optimal and robust way when

the patterns are uniformly distributed because pattern learning is resistant to

damage of parts of the network (Amit, 1989; Hertz et al., 1991).

1.2.1 Fully connected neural networks

The fully connected ANN is deeply understood due to its basis in the Ising model

of a ferromagnet. The network requires complete and symmetric connectivity, also

no self-interactions (Amit, 1989; Hopfield, 1982). Given the fully connectivity, a

spatial relationship between the units in the network can not be characterized.

However, when ANNs are restricted only to near neighbors of neurons, the range

over which the fluctuations in the states of one set of neurons are correlated

with or affected by those of a set of neurons in another region is too small, and

the system dynamics may be trapped in states that are not memories (spurious

attractor) (Coolen and Sherrington, 1993). While full connectivity is not very re-

alistic biologically, it simplifies the ANN model given the symmetry nature of the

connections (Amit, 1989). It is also known to be the most efficient arrangement

for (global) information storage and retrieval (Amit, 1989; Hertz et al., 1991). In
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order to simulate a more biological genuine model rather than the fully connected

networks, various random diluted models have been studied.

1.2.2 Random-diluted neural networks

In biological networks the synapses are known to be asymmetric and a neuron,

in average, is connected only to a fraction of all neurons. Given the huge number

of neurons, there is only a small number of interconnections in the human brain

cortex (∼ 1011 neurons and ∼ 1014 synapses). A considerable effort in the mod-

eling of neural networks has been devoted to improving the storage and retrieval

properties of the networks and to making them biologically plausible. Various

random diluted models have been studied, weak diluted model (Zhang and Chen,

2007; Zillmer et al., 2006), finite connection model (Castillo and Skantzos, 2004;

Wemmenhove and Coolen, 2003), and extremely diluted model (Derrida et al.,

1987; Tamarit et al., 1991). It has also been shown that reliable simulations

can be performed in strongly diluted systems that are comparable to analytical

results, without using exponentially large networks (Arenzon and Lemke, 1994).

However, connectivity in neural systems is suggested to be far more complex

than a random diluted or finite connected network (Ahn et al., 2008; Cherniak,

1994). Many numerical studies have focused on the performance of the Hopfield

model using networks with spatially organized connectivity (Davey et al., 2004;

Li and Chen, 2003; McGraw and Menzinger, 2003; Stauffer et al., 2003; Torres

et al., 2004).

1.3 Structured information in metric networks

Metric is a function which defines a distance between elements in a set. In a uni-

form random network the connectivity does not depend on the distance between

the nodes. Since any node can be connected by an edge to any other node in the

network with equal probability, the connections have no spatial organization. On

the contrary, in a regular network, for instance a ring, a k-nearest neighbor or a d-

dimensional lattice, the connections are metrically organized. Furthermore, when

a random network is embedded into a regular lattice substrate a spatial structured
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can still be observed, which is called metric topology. Metric organized connec-

tivity is relevant since this type of arrangement is more plausible from a biological

point of view (Bullmore and Sporns, 2009), as well as, for optimizing technical

applications. During the last few years it has become increasingly clear that

understanding the behavior of many different systems passes through the com-

prehension of the dynamics of complex networks (Albert and Barabasi, 2002).

Recent works have employed metric topologies such as small-world (Dominguez

et al., 2007; Li and Chen, 2003; McGraw and Menzinger, 2003), scale-free (Stauffer

et al., 2003; Torres et al., 2004), and modular networks (Johansson and Lansner,

2007; Levy et al., 1999; Roudi and Treves, 2008).

1.3.1 Small-world topology

Biologically plausible associative memories must have diluted and spatially orga-

nized connectivity, reflecting the situation in the cortex and hippocampus (Rolls

and Treves, 1998). Small-world networks (Watts and Strogatz, 1998) provide a

practical approach to this issue featuring dense internal connections and sparse

inter-modular connections. As a result small-world networks have some areas

(sub-networks) with highly connected nodes, with a few shortcuts between the

different areas. This mimics a lot of networks found in biology including the brain,

in which the majority of connections appear to occur between nearby regions and

the pathways between different areas are to some degree diffuse (Damasio, 1994;

Levy et al., 1999).

As described by Watts and Strogatz (1998) the small-world network starts in

a regular lattice where each node is connected to its K/2 nearest neighbors on

either side. A fraction ω of these connections are then re-wired to other randomly

selected nodes. Self connections and repeated connections are not allowed. The

result is a network that interpolates between a regular lattice and a completely

random graph. A schematic representation of a small-world topology is presented

in Fig. 1.1. For surprisingly low ω the network is in the small-world regime with

primarily local connectivity and a few random long-range connections (short-

cuts). The network remains highly clustered like a regular lattice, with a small

characteristic path length, like a random graph. For any connected graph the
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Figure 1.1: Schematic representation of a small-world topology (Watts-Strogatz

model).

“characteristic path length” is the average distance between pairs of nodes. It is

needed to remark that usually, the small-world regime is defined for the strong

diluted model with static connections and nodes and mono valued as presented

in Newman and Watts (1999). Defining the small-world regime for the dynamic

nodes with strong feedback, highly connected nodes and variable weights in the

connections, as used in the present work, are difficult to calculate and are out of

the scope of this study. In this thesis the reference to small-world appeals to the

topology employed to organize the network connectivity.

Attractor Neural Networks with metric connectivity have been studied re-

cently, specially small-world topologies (Dominguez et al., 2007; Li and Chen,

2003; McGraw and Menzinger, 2003). Scale-free topologies have also gained in-

creasing interest (McGraw and Menzinger, 2003; Stauffer et al., 2003; Torres et al.,

2004). The retrieval ability of such networks is commonly measured by the over-

lap (m) between neuron states and memorized patterns and the load parameter

α, which is expressed as the ratio between stored patterns and connections per

node. Above a critical value of the load parameter α, no retrieval is possible and

the overlap goes to zero (Hertz et al., 1991).

In addition, the mutual information between the stored patterns and the neu-

ral states has been proposed to compare the performance of different topologies in

terms of memory retrieval (Dominguez and Bollé, 1998; Dominguez et al., 2007;

Okada, 1996). Fig. 1.2 shows a comparison between the global overlap m and the

mutual information im to measure the retrieval abilities for different levels of the

7
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network randomness connectivity. Although the critical load increases monotoni-

cally with dilution and randomness, the information is a non-monotonic function

of the load and reaches a maximum that corresponds to a nontrivial optimal

topology (Dominguez et al., 2007). See Chapter 3 for a detailed examination of

mutual information as a performance measure of the network retrieval abilities.

0 0.2 0.4 0.6
α

0

0.2

0.4

0.6

0.8

1

m

ω=0.0
ω=0.2
ω=0.4
ω=0.5
ω=1.0

0 0.2 0.4 0.6
α

0

0.05

0.1

0.15

0.2
i m

Figure 1.2: Overlap and mutual information as a measure of the network global

retrieval performance for different values of the randomness parameter ω. Left:

Overlap m(α). Right: Information ratio i(α). Network with N = 105 neurons,

and K = 102 neighbors.

Small-world networks with a moderate number of shortcuts can be almost

as computationally efficient as a random network, retrieving global information

while saving considerably on wiring costs (Bohland and Minai, 2001; McGraw

and Menzinger, 2003; Morelli et al., 2004). This wiring cost constraint is an

important factor in technical implementation, and is also a factor that affects

the development and organization of biological neural networks such as of C.

elegans (Ahn et al., 2008; Cherniak, 1994). This cost is also an important issue in

the human brain, where the connectivity in the cortex and other brain regions is

mainly local, with relatively sparse long-distances projections (Rolls and Treves,

1998).

Most works into associative memory networks with spatial structure (Hatchett

et al., 2005a; Masuda and Aihara, 2004; McGraw and Menzinger, 2003; Morelli

8
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et al., 2004; Nikoletopoulos et al., 2004) focus on the global retrieval of a pattern,

without considering the possibility of spatially localized states. In general, these

studies deal with the relation between the storage capacity and the degree of

randomness in the network, considering only distributed information (overlap)

along the network. However, for metric connectivity one can measure spatially

structured information, distributed in local overlaps inside regions of contiguous

neurons.

1.3.2 Bumps

The existence of spatially localized activity patterns, or bumps, has been inves-

tigated in a variety of neural network models with spatially distributed topol-

ogy (Roudi and Treves, 2004, 2006; Rubin and Bose, 2004). In particular, sus-

tained patterns of activity that are localized in space, have been recorded in

several experimental settings. These patterns, often referred to as bumps of ac-

tivity, have been correlated with neural circuits that encode directional or spatial

information, e.g. working memory tasks (Brunel, 2003; Edin et al., 2009; Wang,

2001).

Bumps have been also measured as a localized retrieval state which has a

region with high correlation (overlap) with the same region in the original stored

pattern, and a region not correlated at all. In Koroutchev and Koroutcheva

(2006) and Dominguez et al. (2012) have been shown that the sparsity of the

code enhances the bump effects in memory networks.

Sparse coding is the representation of items by the activation of a relatively

small set of neurons. Sparse-coding gives the model a biological plausibility since

the brain suggests a general sparse-coding strategy, Experimental evidence for

sparse coding has been found in several different sensory modalities in a variety

of animals (Olshausen and Field, 2004). Sparse coding also improves the storage

capacity of associative memory models in terms of the number of patterns that

can be learned (Amit et al., 1987; Okada, 1996; Stroffek et al., 2007).

However, if information is to arise in the network using sparse coding repre-

sentation, spatial information included; a reinforcement mechanism is required

to sustain the levels of activity and to keep it localized (Dominguez et al., 2012;

9



1. INTRODUCTION

0 1x
-1

0

1

m
x

0 1x
-1

0

1

m
x

0 1x
-1

0

1

m
x

Figure 1.3: Top panels: Global original pattern (left), 2-blocks structure in

a pattern/antipattern arrangement (middle), and bump structure arrangement

(right). Bottom panels: Positive global overlap configuration mx ∼ 1 (left), Pos-

itive/negative overlaps configuration with mx ∼ ±1 respectively (middle), Bump

configuration of overlaps with mx ∼ 1 for the positive correlated region and

mx ∼ 0 for the uncorrelated region (right), x ≡ i/N .

Koroutchev and Koroutcheva, 2006). Some works use a rigid constraint so that

bumps of activity can be sustained by the network (Roudi and Treves, 2008).

In Fig. 1.3 is presented a schematic representation of global (left panels) and

structured information (middle and right panels). In the left panels a global

pattern is depicted with a global positive overlap configuration (bottom-left). In

the top-middle panel a 2-blocks structured pattern is presented, that is a config-

uration of pattern/antipattern with regions of positive/negative overlap respec-

tively (bottom-middle panel). Finally, in the top-right panel the same pattern

is presented in a bump configuration, with a region of positive overlap and an

uncorrelated region with null overlap (bottom-right panel).

1.3.3 Blocks

Another type of spatial information is a block structure of opposite overlaps

in localized regions of pattern/anti-pattern, as the one studied in Dominguez

et al. (2009). Block regions of opposite activity have also also been reported
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in González et al. (2009). Suppose a case where sequential blocks of pixels of a

binary image are flipped, the overall pattern is probably still recognizable. For

instance, Fig. 1.3 shows a binary image in black-and-white pixels in the top-left

panel, which is considered as a global pattern. In the top-middle panel the same

pattern is reassembled in two blocks of information. The configuration of such

block states has vanishing global overlap with the original pattern. However,

structured information can be measured, given that local regions carry some

spatial order in blocks oscillating between negative and positive overlaps (bottom-

middle panel). This is called block retrieval, to distinguish it from the usual global

retrieval of the full pattern.

This negative overlap distribution could be thought as the Inverted Tuning

Curves of activity, recorded in some cells in the Prefrontal Cortex of monkeys

performing spatial working memory tasks (Wang et al., 2004). These neurons

have a lower firing rate after some cue is presented than during spontaneous

activity. This local order can emerge if the stimulus has some neighborhood

structure and the network topology preserves some complexity, with stronger

connectivity between nearest neurons than between neurons far from each other

(Dominguez et al., 2012, 2009; González et al., 2009). This characteristic may

allow the network to retrieve global information where local stimulus is relevant

or only block information is at disposal for the network. It is also of interest

to have networks capable to extract local information from structured stimuli

allowing block retrieval of information.

1.4 Pattern correlation

Modeling neural systems with ANNs implies, from a physiological point of view,

using metric topologies and sparse coding representation. The correlation be-

tween the input patterns has also to be considered. For example, the visual

patterns on the retina are correlated across space and time (Liu et al., 2010).

Also, in real-world applications, patterns usually present high correlation.

Correlations between the input patterns worsen the performance of the net-

work since the storage of strongly correlated inputs may lead to ambiguity in

memory retrieval due to interference. It can be argued that the brain has its

11
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own mechanisms for the orthogonalization of the sensory inputs (Vinje and Gal-

lant, 2000), thus using uncorrelated patterns is allowed for tractability reasons.

However, for technical implementation purpose alternative solutions are needed.

A well known approach is the pseudo-inverse learning rule to yield orthogonal

patterns (Hertz et al., 1991) as well as expansion coding strategies (Trappenberg,

2002).

1.5 Contributions of this thesis

This thesis investigates the effects of the small-world topology upon the retrieval

of spatially structured information. In Roudi and Treves (2008) is discussed

the possibility of retrieving multiple patterns, in the form of multiple bumps of

activity in different parts of the network. On the contrary this thesis considers the

possibility of the coexistence of multiple local retrieval states of a unique pattern

distributed in regions of positive/negative overlap along the network. While the

local field arising from different patterns makes possible to retrieve all of them, the

local field induced by a positive/negative pattern configuration cancels both out

and the blocks are only stable for networks with local connectivity (Dominguez

et al., 2009).

The existence of locally organized memories in blocks of positive/negative

overlaps rises some questions that have been addressed in this work. Can stable

block states emerge spontaneously in an associative network? How can be mea-

sured the information hidden in these blocks? Which neural architectures are

able to convert this local information into global information? How is the block

structure affected by the sparse representation of the coding? The proposal of

a block-like structure could be closely related to biological brain systems, where

different patterns of activity (blocks) arising from several cortical structures may

be independently retrieved (Rolls and Treves, 1998). Blocks may also represent

incomplete pieces of information which can be used to codify any kind of signals

(images, voice, fingerprints, genetic code, etc). For network topologies with a

majority of short range connections, the storage capacity of global information is

severely disrupted (McGraw and Menzinger, 2003). However, local information

emerges in the form of blocks of opposite activity/overlap. The local information

12
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corresponds to configuration states which carry information in blocks of neigh-

boring neurons, and are attractors of the network dynamics.

In Chapter 2, a modified Sherrington-Kirkpatrick model with a ferromagnetic

bias plus random interactions is presented using the small-world topology. Blocks

of opposite activity can be sustained in the network and the stability of the

blocks depends on the network parameters of dilution and the number of random

shortcuts. The block state is stable with a large basin of attraction. This stability

depends on both the number of blocks and the network dilution (Dominguez et al.,

2009; González et al., 2009).

In Chapter 3, a classic attractor network with Hebbian learning is consid-

ered. Nonuniform metric networks can retrieve fragments of patterns, in blocks

of opposite overlaps without performing global retrieval, when a stimulus in such

configuration is presented. A new measure related to the fluctuation of the local

overlaps is introduced in order to characterize the block structured information,

which proved to depend on the metric parameters of the network dilution and

randomness connectivity.

In Chapter 4, an additional parameter is introduced and the structured infor-

mation is characterized taking into account the sparseness of the coding. There

is a competition of both types of structured information studied, Bumps and

Blocks, according to the sparseness parameter. Whenever the connections are

mainly local and the code is sparse (low level of neural activation), retrieving

different blocks of pattern/anti-pattern implies sustaining different regions of ac-

tivity along the network. Thus, a threshold strategy is introduced so that the

network dynamics stabilizes a spatial configuration of blocks with opposite over-

laps and different levels of activity. This threshold strategy depends mainly on

the level of activity of the patterns and the global activity of the network, as well

as the local activity of the neighborhood of each neuron. This translates into

a self-control mechanism of the network dynamics (Dominguez and Bollé, 1998)

according to the initial spatial stimulus (Dominguez et al., 2012). Sparse code

benefits the bump effect and a competition arises with the block structure when

the network level of activity increases. Both types of structured information are

satisfied by the clustering behavior of the small-world topology, allied with the

attractor properties of the network threshold dynamics.
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In Chapters 2 to 4 the output of the network has been characterized according

to the initial conditions of blocks and bumps spatial structures. Chapter 5, on

the contrary, focuses on the input learned by the network, which is a pattern

structured in localized objects with low and high activity. The learning and

retrieval properties of the network with metric connectivity is characterized for

this type of coding. Given the nature of the neural coding, an adequate threshold

is needed in order to control the distinct activity of different regions in the pattern

(Dominguez et al., 2012). One also has to deal with the pattern correlation due

to the overlap between objects with same levels of activity. The results presented

in this Chapter are preliminary and need to be contrasted with more extensive

simulations and a theoretical analysis. However, it is worth studying this type

of coding which is relevant for real world implementations, where information is

represented by spatially organized data, distributed in regions with distinct levels

of nodes activation as, illustrated in Chapter 6. Also, for theoretical neuroscience

conjectures of information processing.

In Chapter 6, a real life application is addressed using patterns with some

type of spatial structure: an automotive traffic video. A sparse-coding ANN with

a small-world topology is used to learn/retrieve the video sequence. Given the

nature of the data, the patterns are highly correlated and cyclic, a variant of the

pseudo-inverse learning rule with a row-shifting schema is introduced to approach

this issue (González et al., 2011). The proposed model avoids the segmentation

and tracking of the involved targets and also some closely related difficulties.

For instances from realistic traffic situations, e.g. public web-cams, where is

not possible to control the variability of weather and/or illumination conditions,

the feasibility of this technique for the storage and retrieval of traffic videos has

proved to be valuable.

Finally in Chapter 7.2, the concluding remarks from this thesis are presented,

as well as, the open issues and future research that can be done as result of this

work.

1.5.1 Thesis articles

This thesis is based on the following articles:
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Chapter 2

Block activity in a magnetic

interaction model

2.1 Introduction

Attractor Neural Networks (ANNs) as models for associative memory usually

use broad connectivity, either completely connected networks or diluted net-

works with random connectivity (Amit, 1989; Evans, 1989; Hertz et al., 1991;

Treves, 1990). However from a neurobiological and an implementation perspec-

tive, it is logical to minimize the length of inter-node connections and consider

networks whose connectivity is predominantly local. Biologically plausible asso-

ciative memories must have sparse connectivity, reflecting the situation in the

cortex and hippocampus (Johansson and Lansner, 2007; Levy et al., 1999; Rolls

and Treves, 1998). ANNs with metric connectivity have been recently studied

(Bohland and Minai, 2001; Dominguez et al., 2007; Johansson et al., 2006; Li and

Chen, 2003; Lu et al., 2006; McGraw and Menzinger, 2003; Morelli et al., 2004;

Torres et al., 2004), specially on the small-world topology (Watts and Strogatz,

1998). The underlying spatial organization of the network connectivity allows to

retrieve interesting combinations of localized patterns of activity, and this raises

the issue of their competitive interactions (Roudi and Treves, 2004).

ANNs usually deal with global correlation (overlap) between patterns and

neural states, the response of a network to a given input stimulus leads to a par-

ticular configuration of the neural activity. However, a local order can emerge
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if the stimulus has some neighborhood structure and the network topology pre-

serves some complexity, with stronger connectivity between nearest neurons than

between neurons far from each other (Koroutchev and Koroutcheva, 2006) al-

lowing the block retrieval of information. For instance the image in Fig. 2.1-left,

may be regarded as a global pattern, while the one in Fig. 2.1-center and right is

the same pattern reassembled in two and four blocks of information respectively.

These block states have null correlation with the original pattern, however they

still carry information about the mandrill image (USC-SIPI, 2011).

Figure 2.1: Left: the mandrill (original pattern). Center: the mandrill 2-blocks.

Right: the mandrill 4-blocks.

For a spatially structured topology, local information inside blocks can be

measured. A structured distribution of localized states, can carry some spatially

ordered information, with blocks oscillating between negative and positive over-

laps, corresponding to the pattern and anti-pattern, respectively. This is called

block retrieval (B), to distinguish from the usual global retrieval (R).

In the present Chapter 2, a model of sparsely connected attractor neural

network (Amit, 1989) on the small-world topology is presented. In this Chapter,

a simplified network model, with random weights competing with a signal term,

is used. First, an ordered macroscopic neural state is induced by a bias in the

network random weight connections, and the network evolution into a global

or block activity ordering is studied according to the initial conditions. The

block-like attractor is explored to determine in which conditions (parameters),

the network dynamics allows such a configuration. The dependence between the

block structure and the network dilution, and the dynamical behavior of the
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block and global attractors are characterized with a flow diagram. The transition

between phases B and R is also evaluated.

2.2 The model

2.2.1 Topology and dynamics

A neuron i can be in one of two states, firing/quiescent, described by binary

variables σi ∈ {±1}. The state of a neuron σi is updated in time t according to

the sigmoidal activation function:

σt
i = sign

(

ht−1
i − θ

)

, ht
i ≡

∑

j

Jijσ
t
j , (2.1)

where ht
i is the postsynaptic field arriving at neuron σi. Here sign is defined

as: sign(z) = 1 if z ≥ 0, and sign(z) = −1 if z < 0. The variable θ is the firing

threshold which is considered to be zero. A synchronous update is used.

The synaptic couplings between neurons i, j are Jij ≡ CijWij , where C =

{Cij} is the topology matrix and W = {Wij} are the synaptic weights. The

topology matrix, usually referred to as adjacency matrix in the complex network

literature, with Cij ∈ {0, 1} splits in local and random links. The local links

connect each neuron to its KL nearest neighbors, in a closed ring. The random

links connect each neuron to KR others uniformly distributed along the network

(Hatchett et al., 2005b). Hence, the network degree isK = KL+KR. The network

topology is then characterized by two parameters: the connectivity ratio, and the

randomness ratio, defined respectively by:

γ = K/N, ω = KR/K. (2.2)

Here ω plays the role of the rewiring probability in the slightly different original

Watts-Strogatz small-world model (Watts and Strogatz, 1998). The connectivity

and the weights are considered to be asymmetrical, Cij 6= Cji, and Wij 6= Wji.
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2.2.2 Block activity

The weights Wij , of the connections between neurons i and j, are composed of

two terms (González et al., 2008a):

Wij = cW r
ij + (1− c)W, (2.3)

where W r
ij are generated randomly to be either +1 or −1 with equal probability,

representing either an excitatory or an inhibitory synapse, respectively. This

term is multiplied by a parameter c ∈ (0, 1), and the bias term W is multiplied

by (1 − c). W = 1 is used for all synapses. According to the strength of c, the

network is induced into a ferromagnetic state (Amit, 1989) (driven by the bias

interaction), competing with a disordered state (driven by the random term).

The evolution of the network when initialized in b blocks (sets of neurons of

type l+ and l−) is studied . The blocks are defined as the groups of neighbor

neurons initialized as σi = +1, i ∈ l+, and σi = −1, i ∈ l−. A mesoscopic variable

al(t) is used to describe the neural activity of block l, with size L = N/b, as the

fraction of neurons firing at time t,

atl =
1

L

∑

i∈l

σt
i . (2.4)

The macroscopic parameters are:

a = 〈al〉b, v = 〈a2l 〉b − a2. (2.5)

where a is the usual global activity (Amit, 1989; Paula et al., 2006), and d ≡
√
v stands for the block activity. The time index t is dropped for simplicity.

One defines the activity of the positive and negative blocks (of type l±) as a+

and a− respectively. For the case of uniform blocks, it can also be defined the

global activity of the network as a = (a+ + a−)/2 and the block activity as

d = (a+ − a−)/2.

The network can be in the following representative phases: global activity (R,

with a 6= 0, d = 0), block activity (B, with a = 0, d 6= 0) and zero activity (Z,

with a = 0, d = 0).
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2.3 Simulation results

2.3.1 Block evolution

The dynamics in Eq. (2.1) was simulated for a network with N = 105, and

connectivity γ = 10−3. The network started in b = 10 contiguous blocks of

positive/negative activity with at=0
l ∼ ±0.2. For a fixed value of c = 0.8, the

evolution in time of the block activities for different values of the randomness

ratio is depicted in Fig. 2.2. In each panel the activities are smooth averaged

over windows of Nw = 2× 102, and x = i/N is defined.

In Fig. 2.2, left panels, the probability of random connections is ω = 0.1. After

t = 10 time steps, the blocks have been almost completed, and reach a stationary

state in which the block structure is maintained, where a+ ∼ 1 and a− ∼ −1. In

the right panels of Fig. 2.2 with ω = 0.3, the block structure (at=10
l ∼ ±0.85) is

reached after t ∼ 10 time steps. At t = 60 the active blocks were approximately

filled with a+ ∼ 1, while the inactive blocks were destructed a− ∼ 0. In the next

steps, the inactive blocks become attracted by the active ones, and the global

phase is achieved, where an active ordering is accomplished.

In Fig. 2.3, both global and block activity order parameters are plotted against

time evolution for the same values of the variables in Fig. 2.2. Fig. 2.3-left, shows

that for a value of ω = 0.1, a stable block activity is reached, a ∼ 0, d ∼ 0.93.

It is seen that up to 106 time steps, the blocks don’t change into global ordering.

The behavior of the activity during the network evolution corresponds to the

left panels in Fig. 2.2. In Fig. 2.3-right is seen that, for a larger value of the

randomness parameter ω = 0.3, after an initial retrieval of the full block ordering,

the network almost suddenly (in a logarithmic time scale) switches from the block

(B) phase to the global (R) phase. An active order is settled, a ∼ 1, d ∼ 0. This

behavior corresponds to the right panels in Fig. 2.2.

2.3.2 Multi-blocks and dilution

Fig. 2.4 depicts the evolution of a network with N = 104, starting in b = 10

blocks chosen in a symmetric successive structure of large and small blocks, with

at=0
l ∼ ±0.3. The activities are smooth averaged over windows of Nw = 50. The
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Figure 2.2: Network with N= 105, γ = 10−3 and c = 0.8. Initial condition:

at=0
l ∼ ±0.2. Left panels: Evolution of the network into a block activity ordering,

ω = 0.1. Right panels: Evolution of the network into a global activity ordering,

ω = 0.3. x ≡ i/N .
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Figure 2.3: Network evolution in time, N= 105, γ = 10−3 and c = 0.8. Left:

Block phase, ω = 0.1. Right: Global phase, ω = 0.3. (Color on-line).

values of ω = 0.1, c = 0.4 are fixed to achieve the block phase. The connectivity

ratio γ is varied and its effect over the block structure is studied.

The block structure is sensitive to both, the number of blocks and the network

connectivity γ. The block structure is stable when the network degree K is small,

(γ decreases), as shown in the left panels of Fig. 2.4. Increasing K, some of the

blocks may loose their stability and they are caught by blocks of larger size. Thus,

a stable structure with a few blocks emerges, as seen in the middle panels. Further

increasing the number of connections per node, will lead the network to the global

state (right panels). In this case the border effect is strong, and the interaction

between the positive and negative blocks is such that, their arrangement is no

longer stable and one of them will finally attract the other to achieve a global

state of positive or negative activity according to the winner blocks. A similar

behavior would be observed if the number of blocks are varied for a fixed value of

the network connectivity γ. Increasing the number of blocks will lead to a block

phase with a narrow attractor basin.

Fig. 2.4 also shows that the block phase activity is robust for different spatial

configurations of the initial block structure, and for a large amount of noise. This
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Figure 2.4: Evolution of the network into block or global phase according to

the network connectivity K = γN . The network starts in b = 10 non contiguous

blocks of positive/negative activity (at=0
l ∼ ±0.3). Network with N = 104,

ω = 0.1, c = 0.4. x ≡ i/N .
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phase is also robust to an initial biased distribution with more positive blocks l+

than negative blocks l− or vice versa (Dominguez et al., 2009).

2.3.3 Phase diagram

The phase diagram for a network with N = 105, K = 102 is presented in Fig. 2.5.

The diagram describes the regions of block (BA, BF ) activity phase, with sta-

tionary states a∗ = 0, d∗ > 0, global (R) activity phase, with a∗ 6= 0, d∗ = 0,

and zero (Z) activity phase, with a∗ = 0, d∗ = 0. It is useful to define these two

regions for the block attractor according to the initial condition and to the basin

of attraction, although they are the same phase. BF (dt=0 = 1) is stable with a

small attraction basin, BA (dt=0 = 0.2) is stable with a large attraction basin.

0 0.2 0.4 0.6 0.8 1
ω

0

0.2

0.4

0.6

0.8

1

c

Theory

Z

R

BF

BA

Figure 2.5: Phase diagram. B (BA, BF ): block activity region. R: global

activity region, Z: zero activity region. Network with N= 105 and γ = 10−3.

It can be concluded from this figure that both, global and block activity appear

for values of c less than approximately 0.88, which is the ordering saturation.

The block activity BF appears below the solid curve which is the block ordering

saturation, and for ω not greater than approximately 0.78. For a larger ω, the

stable phase is the R, for a smaller ω, B is the stable phase. A phase transition

from the block to the global activity ordering is observed, when the randomness
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2. BLOCK ACTIVITY IN A MAGNETIC INTERACTION MODEL

(ω) or the c parameter of the network increases. The dotted curve corresponds to

the BF phase obtained analytically, according to the next section 2.4-Theory.

The transition value of randomness with c = 0 slowly approaches ωBR = 1

when the network size increases. It was obtained ωBR = 0.69, 0.78, 0.82, 0.86

for K = 50, 100, 200, 400, respectively. Below the dashed curve the block phase

BA is stable.

2.3.4 Flow diagram

The flow diagram in Fig. 2.6 was constructed for two points in the regions of

block (ω = 0.2, c = 0.7) and global (ω = 0.5, c = 0.7) phases presented in

the Fig. 2.5. Different initial conditions were considered varying the values of

at=0, dt=0, and letting the system evolve. The stable fixed points are represented

by filled circles, whereas the hollow circle corresponds to a metastable saddle

point. Arrows indicate directions of the dynamic system flow.

Figure 2.6: Flow diagram. Network with N= 105, γ = 10−3, and c = 0.7. Left:

ω = 0.2, right: ω = 0.5. Filled circles: stable fixed-point attractors. Hollow circle:

saddle point. Red: global attractor, Black: block attractor. (Color on-line).

In the left panel the block activity phase is stable for a wide range of initial
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conditions, except for very noisy block structures. The point a = 0, d = 1 can

be considered a stable attractor and corresponds to the block phase. The block

attractor basin is depicted by the region enclosed by the solid line, and the region

outside represents the global attractor basin. The basin of attraction of the block

attractor will shrink around the d-axis towards the point a = 0, d ≈ 1 as one

moves away from the block regions shown in the phase diagram of Fig. 2.5, being

larger for BA than for BF . The points a = ±1, d = 0 are also stable attractors

and correspond to the global phase.

In the right panel of Fig. 2.6, the global phase is stable for almost every initial

condition of the system. The point a = 0, d ≈ 0.9 is a saddle point. First,

the network evolves to a block structure and then the trajectory describing the

evolution of the system jumps to the global phase attractor, indicating that the

neural stationary state corresponds to the global state with a positive or negative

ordering.

Figure 2.7: Left: Noisy mandrill. Center: Block retrieval of the mandrill, ω =

0.3, c = 0.7. Right: Global retrieval of the mandrill (negative), ω = 0.3, c = 0.8.

2.3.5 An illustration

An application of the model to pattern retrieval is proposed, with a slight mod-

ification of the rule for the synaptic weights. A gauge transformation of the

dynamics in Eq. (2.1) is applied, with σ → σξ and the Eq. (2.3) becomes

Wij = cW r
ij + (1− c)ξiξj. (2.6)
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2. BLOCK ACTIVITY IN A MAGNETIC INTERACTION MODEL

where {ξi ∈ ±1}Ni represents a pattern with mean 〈ξ〉 ≡
∑

i ξi/N = 0. A natural

image is presented to the network as a learning pattern (González et al., 2008b).

The random term W r
ij is multiplied by a factor c ∈ (0, 1) which accounts

for all the previous synaptic processing, including both short-term and long-term

memory of the network. The parameter c is called the load ratio, which resembles

the amount of learned patterns by the network. The second term describes the

Hebbian learning of the pattern multiplied by 1 − c. For a given c, there is a

competition between the learning pattern ~ξ ≡ {ξi}Ni and the noise played by the

random term.

Fig. 2.1-left shows the original pattern learned by the network which is the

picture of the mandrill (USC-SIPI, 2011), a standard test image used in digital

image processing. The picture is a 256×256 array of black/white pixels, properly

formatted to be either ±1. The stability and the attractor properties of the block

state of the network are studied. The stimulus is characterized by a spatial

partition of the pattern in a correct zone and an inverted zone. The correct zone

has the neural states identical to the learned pattern, while the inverted zone has

the neural states in opposition to the pattern: each neuron positioned at the same

site as the pattern is switched over, i.e. the active neurons become inactive and the

other way around. This is represented in Fig. 2.1-center. This state has vanishing

overlap with the original pattern, however it still carries information about the

picture of the mandrill. To study the stability of the block states, the network

evolution should start precisely with the blocks, so that at=0 = 0 but dt=0 = 1.

Then, if the network stays at this block state, or if it goes close to it, it means that

there is a block phase which is stable. However, this could be a marginal stability,

with a very narrow attractor basin. To check for the size of the attractor basin,

different initial conditions must be verified. Thus, the network (N = 216, K = 26)

starts in a noisy 2-blocks mandrill (at=0 ∼ 0, dt=0 ∼ 0.2), as presented in Fig. 2.7-

left, and the neural dynamics leads to a stationary state. Two cases are depicted

in Fig. 2.7. The attractor for equivalent topology (ω = 0.3), with a load ratio of

c = 0.7 is the block state and the recovered pattern correspond to Fig. 2.7-center.

For a larger value of the load ratio c = 0.8, the attractor is the global state or

the negative of it, as in Fig. 2.7-right.
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2.4 Theory

The simulation results presented in the previous section can be supported by a

straightforward theory based in a signal to noise ratio approximation (Amit, 1989;

Hertz et al., 1991). The macroscopic equations for the bias model are obtained.

A similar analysis can be done for the learning network.

2.4.1 Local field

Let the neurons be distributed within b blocks l, successively with positive and

negative activities, al = a±. Then, following Equations (2.5), the block activities

can be written as

al = a+ yld, (2.7)

where yl
.
= ±1 (according to the block) is a random variable.

The local field, Equation (2.1), with the Equation (2.3) for the synapses, can

be separated in a signal and a noise terms,

hi = (1− c)WKai + cΩi (2.8)

where ai ≡ 1
K

∑

j∈{i} σj , Ωi ≡
∑

j∈{i}W
r
ijσj are the activity restricted to the

neighbors {i}, and the synaptic noise, respectively.

There are local and random neighbors for each neuron, hence the signal term

itself splits in localized and randomized terms, namely

ai =
KL

K
aLi +

KR

K
aRi , (2.9)

with aL,Ri ≡ 1
KL,R

∑

j∈L,R σj for each of the fractions, where L and R are the local

and random sets of neighbors, respectively, of the neuron σi.

From Eq. (2.4), whenever the neighbors belong to a block, the localized field

depends on its block activity, al. On the other hand, the randomized field is a

sample of a global field, which does not depend on the block. Using the definitions

in Eqs. (2.2) and (2.7), one gets ai = ωa+(1−ω)(a+ yld) for the neurons in the

bulk of a block. Finally one arrives to an approximation in the limit K → ∞ for

the local field of neurons in the block l,

hl ≡ (1− c)WK[ωa + (1− ω)(a + yld)(1− γb)] + cΩ (2.10)
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where the correction term (1− γb) accounts for the boundary effects between a±

blocks.

The equation for the block-activity is then, according to Eq. (2.1)

at+1
l = 〈sign(ht)〉Ω, (2.11)

where the average in the angular brackets are over the noise Ω which is site

independent. The average over Ω stands for the noise distribution.

This noise is Gaussian distributed, Ω
.
= N(0,∆2) (Amit, 1989). Its variance is

given by the sum of random and local terms, ∆2 = V ar(Ωi) = ω∆2
r + (1− ω)∆2

l .

Neglecting the feedback terms, one has ∆2 = K. This approximation is valid in

the limit of strongly diluted networks (K ≪ N) (Dominguez et al., 2004). For

local connections, extreme dilution eliminates the feedback, because the weights

Wij are uncorrelated.

2.4.2 Macrodynamics

According to the Eq. (2.11), the equations for the global and block activity, after

averaging over the y are given by:

at+1 = 〈sign(ht)〉y,Ω
dt+1 = 〈y sign(ht)〉y,Ω. (2.12)

The averages are over the noise distribution, Ω ∼ N(0, K), and over the block

distribution, y. The local field is:

ht ≡ (1− c)WK[ωat + (1− ω)(at + ydt)(1− γb)] + cΩ. (2.13)

The continuous transition from R to Z phase may be analyzed by taking first

d = 0 in the Eqs. (2.12), which gives a = 〈sign((1−c)WKa+cΩ)〉. Then expand-

ing around a ∼ 0, it gives the constant line: c = [1 +
√

π
2K

]−1, which coincides

with border R-Z plotted in Fig. 2.5. The transition between B and R phases is

not continuous, so no expansion around d ∼ 0 is possible. However, assuming the

distribution of blocks is binary, the equation: d = 〈sign((1−c)WK(1−ω)d+cΩ)〉,
is similar to the previous equation for a except that it depends on ω. The finite
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solution d > 0 is stable only if c < [(1 − ω) +
√

π
2K

]−1(1 − ω). There are quan-

titative differences between theory and simulations for the solid curve B-R in

Fig. 2.5. In Eq. (2.10) K ≫ 1 is used for theory, whereas for simulation K = 100.

An additional noise to be added to Ω is neglected, due to the finiteness of the

sum in the signal term aRi in Eq. (2.9). The finite size dependence of ∆ needs

more precise calculations, which is outside the scope of the present Chapter, but

is clear that such noise increases with ω and with 1− c. It has been checked with

extensive simulations that the B region becomes wider as the connectivity K is

increased.

2.5 Conclusions

The block activity/retrieval phase (B) was studied here with two simple models.

When a bias in the synaptic weights is added to random weights, the network

becomes ordered in a global activity phase (R), which resembles the ferromagnetic

state in a spin system. The B phase, however, is spatially structured: within each

(mesoscopic) block, the neurons are ordered. If the connections between each

block are less relevant than inside the blocks, as is the case of small-world networks

with few long-range shortcuts, the B phase is stable. If there are enough random

long-range connections, the R phase attracts almost all space of configurations:

even an initial condition close to a block structure leads to a final state where all

neurons are ordered.

This physics model approach is also extensible to memory networks, as shown

with an illustrative example, see Fig. 2.7. Also, in the next Chapter 3 a exhaustive

analysis of a Hebbian memory network is presented. When the connections are

preferentially local, there are spatial correlations between neurons which allow for

states retrieving localized blocks of a pattern. It was observed that these block

states are stable, with a large basin of attraction. The blocks’ stability depends on

both the number of blocks and the network dilution. The more blocks, less stable

is the block structure. When the network degree K (γ) increases, the blocks lose

stability emerging a structure with less blocks of larger size, eventually leading

to a global state.
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The proposal of a block-like structure could be closely related to biological

brain systems, on the one hand, where different sensory blocks of patterns (arising

from several cortical structures) may be independently retrieved. On the other

hand, there could be a relation with the cortical mechanism of binding that allows

information previously stored in different regions to be shared between pathways

to accomplish a structured and unified representation. Blocks may also represent

incomplete pieces of information which can be used to codify images (as shown

here) or other kind of signals (voice, fingerprints, genetic code, etc). Implementing

ANN models to deal with this type of structured data is also of interest.
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Chapter 3

Structured information in a

Hebbian learning attractor

network

3.1 Introduction

Attractor Neural Networks (ANNs) often deal with global overlapping between

patterns and neural states, employing uniform connectivity to perform retrieval

tasks. They are useful when the information involved is spatially distributed

because pattern learning is resistant to damage of parts of the network (Amit,

1989). When these networks start from only local stimuli, however, no global in-

formation can be achieved. The retrieval ability of such networks are commonly

measured by the overlap between neuron states and memorized patterns and the

load parameter expressed as the ratio between stored patterns and links per node

(synaptic connections per node) (Hertz et al., 1991). Indeed, above a critical value

of the load parameter no retrieval is possible and the overlap goes to zero. In ad-

dition, the mutual information between the stored patterns and the neural states

has been proposed to compare the performance of different topologies in terms of

memory retrieval (Dominguez and Bollé, 1998; Dominguez et al., 2007; Okada,

1996). Although the critical load increases monotonically with dilution and ran-

domness, the information is a non-monotonic function of the load and reaches a
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maximum that corresponds to a nontrivial optimal topology (Dominguez et al.,

2007).

Most studies into associative memory networks with spatial structure (Hatch-

ett et al., 2005a; Masuda and Aihara, 2004; McGraw and Menzinger, 2003; Morelli

et al., 2004; Nikoletopoulos et al., 2004) focus on the global retrieval of a pat-

tern, without considering the possibility of spatially localized states. In general,

these papers deal with the relation between the storage capacity and the degree

of randomness in the network. The only source of information in a long-range

connected ANN (either fully connected or random), is the standard uniformly dis-

tributed overlap along the network. However, for spatially structured topologies

one might measure local overlaps inside blocks of contiguous neurons. Although

the information about a pattern is invariant under the reverse transformation

of the global overlap, it vanishes if only half of the neuron states are flipped.

Suppose a case where sequential blocks of pixels of a binary image are flipped,

the overall pattern is probably still recognizable. Similar to the example in the

previous Chapter, Fig. 3.1 shows a natural image in black/white pixels in the left

panel, while the central panel has 2-blocks of information and the right panel has

4-blocks. The configuration of such block states has vanishing average (global)

overlap with the original pattern. However, the structured distribution of local

overlaps carries some spatially ordered information, the blocks oscillating between

negative and positive overlaps. In other words, is possible to recognize the image

even if the information about the original pattern is zero. This is called a local

retrieval, to distinguish it from the usual global retrieval of the full pattern.

Unlike previous studies about structured information (bumps) in ANNs (Ko-

routchev and Koroutcheva, 2006; Roudi and Treves, 2006), The simplest model

of binary uniform neurons has been considered, with small-world connectivity

and without any reinforcement mechanism. In this way one can single out the

effect of topology on the structure of the retrieval attractor. Besides this issue,

one has considered non-trivial block structures. Blocks of memories can appear

spontaneously as a consequence of neural dynamics combined with the network

topology. The topological conditions, for the synaptic connectivity, in which lo-

cal overlaps are either stable or unstable are studied. In addition, a method to
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Figure 3.1: Image with different spatial distributions of overlaps. Left: Original

picture. Center: 2-Blocks. Right: 4-Blocks. Both spatial distributions, 2-Blocks

and 4-Blocks, have null global overlap with the original picture.

measure local information and compare it with the global information has been

proposed.

3.2 The model

3.2.1 Topology and dynamics

At any given time t, the network state is defined by a set of binary neurons

~σt = {σt
i ∈ ±1, i = 1, . . . , N}. The purpose of the network is to recover a set

of independent patterns {~ξµ, µ = 1, . . . , P} that have been stored by a learning

process. Each pattern, ~ξµ = {ξµi ∈ ±1, i = 1, . . . , N}, is a set of site-independent

unbiased binary random variables, p(ξµi = ±1) = 1/2.

The synaptic couplings between the neurons i and j are given by the adjacency

matrix Jij ≡ CijWij, where the topology matrix C = {Cij} describes the connec-

tion structure of the neural network and in W = {Wij} are the learning weights.

The topology matrix is split into local and random links. The local links connect

each neuron to its Kl nearest neighbors in a closed ring, while the random links

connect each neuron to Kr others uniformly distributed in the network. Hence,

the network degree is K = Kl +Kr. The network topology is then characterized

by two parameters, the connectivity ratio and the randomness ratio, respectively
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defined by:

γ = K/N, ω = Kr/K, (3.1)

where ω plays the role of a rewiring probability in the small-world model (Watts

and Strogatz, 1998). An extremely diluted network is obtained as γ → 0, and

the storage cost of this network is |J| = N ×K if the matrix J is implemented

as an adjacency list of K neighbors.

The task of the network is to retrieve a pattern (say, ~ξ ≡ ~ξµ) starting from a

neuron state ~σ0 which is close to it. This is achieved through the neuron dynamics

σt+1
i = sign(ht

i), (3.2)

ht
i ≡ 1

K

∑

j

Jijσ
t
j , i = 1, . . . , N, (3.3)

where ht
i denotes the local field of neuron i at time t. A stochastic asynchronous

updating is used in the present Chapter, except in section III-D and Fig. 3.6,

where parallel dynamics were used to compare simulations with theory. Stochastic

macro-dynamics take place due to the extensive learning of P = αK patterns,

where α is the load ratio. The weight matrix W is updated according to the

Hebb’s rule,

W µ
ij = W µ−1

ij + ξµi ξ
µ
j . (3.4)

Weights start at W 0
ij = 0 and after P learning steps, they reach the value Wij =

∑P
µ ξµi ξ

µ
j . The learning stage displays slow dynamics, being stationary within the

time scale of the faster retrieval stage Eq. (3.2).

3.2.2 The information measures

Previous studies have only dealt with global measures of information, which are

adequate to describe networks with no local connectivity. For small-world con-

nectivity is useful to define blocks as the structured pieces of information that

emerge in the network. If the contiguous neurons are distributed within b blocks,

for simplicity each of size L = N/b, then the block’s overlap between the neural

states and one individual pattern restricted to the lth block (l = 1, . . . , b) is:

ml ≡
1

L

∑

i∈l

ξiσi, (3.5)
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at an unspecified time step. One can consider ml as a random variable and

estimate the average of this variable across the blocks as: 〈fl〉b ≡ 1
b

∑b
l=1 fl.

The relevant order parameters measuring quality of retrieval are the mean

(m) and the variance (v) of the block overlap distribution, defined as

m ≡ 〈ml〉b, v ≡ 〈m2
l 〉b −m2. (3.6)

Note that m is the usual global overlap, also written as m ≡ 1
N

∑

i ξiσi. When the

global overlap is zero and the size of the blocks is taken as L = 1, the network

carries no macroscopic order. On the other hand, if there is only one block,

b = 1, the variance is zero and no local information is carried. However, if the

size is large but 1 ≪ L < N , the variance is finite and the blocks convey only

local information. The standard deviation, which is named the local overlap,

is δ =
√
v. It is worth mentioning that the blocks are macroscopically scaled

and hence the parameter δ is not related to a spin-glass, which is a microscopic

ordering.

Together with the overlap, the load ratio α ≡ P/K, that accounts for the

storage capacity, is needed. As the number of stored patterns grows the network

is not able to retrieve them and the overlap goes to zero. To fully describe the

performance of a structured network with a unique measure, it is useful to apply

tools from information theory (Dominguez et al., 2007). One first calculates

the global mutual information, M, a quantity used to measure the information

that an observer can receive at the output of a channel. The recall process

of stored patterns that is being considering here can be regarded as a channel,

with the pattern as the input and the neuron states as the output. The mutual

information can be defined in terms of the order parameter m = 〈σξ〉σ,ξ, in the

limits K,N → ∞. The brackets represent an average over the joint distribution

p(σ, ξ) for a single neuron, which is understood as an ensemble distribution for

the neuron states {σi} and patterns {ξµi }. This will give M[σ; ξ] = S[σ]− S[σ|ξ],
with the entropy of the output channel S[σ] = 1[bit] and the conditional entropy

obeying (Dominguez and Bollé, 1998):

S[σ|ξ] = −1 +m

2
log2

1 +m

2
− 1−m

2
log2

1−m

2
. (3.7)
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Hence one defines the global information ratio as

im(α,m) ≡ αM[σ; ξ], (3.8)

for independent neurons and uncorrelated patterns. The global information ra-

tio is useful to evaluate the network performance when there is a global stimu-

lus (Dominguez et al., 2007). Below, the local information due the distribution

of blocks is estimated when the global overlap is m = 0.

One considers a sample of b independent blocks of pattern overlaps, their dis-

tribution being described by their mean m and variance v. The local information

can be estimated from a Gaussian channel with the output state comprised of a

signal term ml with variance v and a noise term z, whose variance is assumed

to be vz ∼ 1 (maximal for the signal). Thus, the mutual information satisfies

M[~σ, {~ξµ}] ∼ S[ml + z] − S[z] and the local information ratio is roughly (Cover

and Thomas, 1991)

iv(α,ml) ≃ α log2(1 + v). (3.9)

It should be noted that the underlying block distribution is unknown, except its

first and second moments. The approximation in Eq. (3.9) supposes that the block

distribution is Gaussian, and therefore it provides an upper bound estimation of

the local information. The estimation for iv is not as exact as the expression for

the global information im. Nevertheless, it works well when v = 0 (all blocks

have same overlap), such that iv = 0 and there is only global information im ≥ 0.

Moreover, it also scales well with v in the case of perfect blocks (v = 1), since

the information regarding the blocks corresponds to iv = α bits. Note that if

no spatial correlation emerges, ml provides no information at all and it can be

regarded as pure noise (both im = 0 and iv = 0). Eq. (3.9) holds as long as

the block is sufficiently large, L ≫ 1. Both global and local information are

not manipulated jointly in a unified formula, and therefore, they are analyzed

separately.

The validity range for each expression in Eqs. (3.8,3.9), for the global and local

information, are either the global (δ = 0) or the local retrieval regime (m = 0),

respectively. Finally, note that the global and local overlaps evolve with time

according to the neuron dynamics Eq. (3.2), such that at each step they have a

time index mt and δt.
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Figure 3.2: Evolution of blocks with m0
l = ±0.3, from t = 0 (bottom) to

t = 20 (top), for γ = 10−4, with N = 106. Left: ω = 0.1, α = 0.05. Right:

ω = 0.5, α = 0.20. x ≡ i/N .

3.3.1 Simulations: the retrieval evolution

The dynamical neuron equations (3.2-3.4) are simulated with the topology pa-

rameters defined according the Eq. (3.1). The block overlaps time evolution is

illustrated in Fig. 3.2 for a network of N = 106 neurons distributed in b = 10

blocks and with connectivity γ = 10−4. The initial block overlaps were chosen

at random from a discrete uniform distribution mt=0
l = ±0.3. In the left panel

α = 0.05 and ω = 0.1, in the right panel α = 0.20 and ω = 0.5. To improve the

clarity of the figures, the neuron overlaps mi have been smooth averaged across
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Figure 3.3: Network evolution, with N = 106, γ = 10−4, ω = 0.3. Left: B phase,

α = 0.1. Right: R phase, α = 0.2. (Color on-line)

uniform windows (of size δL = 103) inside the blocks (of size L = 105). Hence the

plotted curves, mx, x = i/N , are smoother than the actual mi, although some

of the structure can still be appreciated in ml. In these plots time evolves from

t = 0 (bottom) to t = 20 (top), which is close to the stationary state. The left

panels show that the network retains its initial block configuration: the blocks

are retrieved as independent patterns increasing their overlaps to the fixed point

m∗
l ∼ ±1.0. In the right panel, the blocks lose their starting signals and the

full pattern is completed, m∗ ∼ 1.0. While for local topology (ω = 0.1) the

block structure persists, for random topology (ω = 0.5) the local information is

converted into global information.

The time evolution of a network starting in blocks with mt=0
l ≃ ±0.3 is de-

picted in Fig. 3.3. The randomness is ω = 0.3. For a low load ratio, α = 0.1,

the network maintains its block configuration and the local overlap fluctuates

slightly around the fixed point δ∗ ∼ 0.95, as seen in the left panel. For a larger

load, α = 0.2, the network evolves to the global attractor in a more complex

way, as seen in Fig. 3.3 right. Initially the network approaches the local state,

improving the blocks’ overlap (mt ∼ 0, δt ∼ 0.9). After t = 400 time steps, the
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network quickly loses its block structure, and evolves into a global state with

the completion of the learned pattern, m ≈ 1. The stability in both cases has

been checked, by running the simulation for up to t = 106 time steps. Although

there may be microscopic cycles, the macroscopic state converges to either the

local or the global retrieval phase (Paula et al., 2006). Just as a remark, the

models of magnetic interaction and Hebbian learning correspond to an almost

perfect “gauge” transformation from each other, perhaps with the exception that

the Hebbian weights have triangular correlations, while the magnetic weights are

independent. So, the dynamical results are approximately identical as depicted

in Fig. 2.3, although the meaning of the parameters is not the same.

3.3.2 Simulations: the learning capacity

The stationary states of the network are studied as a function of the load ratio

α for different values of the topological parameter ω. A sample of the simulation

results is shown in Fig. 3.4. The stationary global and local overlaps, m∗ an δ∗

respectively, are plotted in the top panels for γ = 10−3 and randomness ranging

from ω = 0.0 to ω = 1.0. The network starts in a block configuration with

b = 10, m0 = 0 and δ0 = 1. It was observed that the global overlap remains

close to m∗ ∼ 1 for random networks, while for local networks the local overlap

increases to δ∗ ∼ 1, up to the respective global and local critical capacities.

One reason for this behavior is that randomness decreases the mean-path-

length between neurons, facilitating the propagation of the information around

the network and yielding a global ordering. On the other hand, locality increases

the clustering of neurons, slowing down the transmission of information across the

network and stabilizing the formation of the blocks. It is worth noting that the

network can retrieve the full pattern achieving m∗ ∼ 1 even starting at m0 = 0,

thanks to the role of the topology and the ± block overlaps,.

There is also a critical load for the global and local overlaps, αR and αB

respectively. For instance, in the middle panel (ω = 0.5) the local overlap decays

sharply to δ∗ = 0 at αB ∼ 0.05, coinciding with an increase of the global overlap

to m∗ ∼ 1. Later in the learning process (increasing further on the load ratio),
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Figure 3.4: Global and local overlaps m, δ (top) and information im, iv (bottom),

vs α, for b = 10, γ = 10−3, and ω from 0.0 (left) to 1.0 (right). Networks with

N = 3× 105 and initial states m0 = 0, δ0 = 1. (Color on-line)
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at αR ∼ 0.11, it establishes a second transition for the global overlap close to

m = 0.

Fig. 3.4 (bottom) displays the global and the local information as function of

the load ratio. The panels show that both local and global are a non-monotonic

function of the load ratio. It can be seen that the maximal local (global) infor-

mation iv (im) decreases (increases) with the values of ω. Indeed, the maximum

of the local information, iv ∼ 0.17 for a local topology, ω = 0.0, is compara-

ble to the maximum of the global information im ∼ 0.22 for a random topology

ω = 1.0. Intermediate randomness (middle panels) led to competition between

blocks and global structures. Indeed, above some load critical ratio αB, the blocks

lose stability and the neurons shift to the global information mode.

3.3.3 Phase diagram

According to the definitions of the order parameters, and following the results

presented in the previous sections, the stationary states of this small-world ANN

can be defined. The network may exhibit either a global retrieval (R) phase, with

m 6= 0, δ = 0, or a local retrieval (B) phase, with m = 0, δ > 0, which carries

non-vanishing information. Furthermore, there is a zero (Z) phase, with m = 0

and δ = 0, without any information. When the network starts in the vicinity

of a pattern, it will move closer to that pattern if the load ratio is lower than

that of the global retrieval saturation, αR(ω). When the blocks of a network

start successively near to a pattern or the inverse of that pattern, the block

configuration will persist if the load is lower than the local retrieval saturation,

αB(ω). For large ω, the stable phase is the R whereas for small ω, B is the stable

phase.

In order to study these phases, extensive Monte Carlo simulations of the

system were performed, with K = 100 and N = 106 neurons (γ = 10−4). The

phase diagram is shown in Fig. 3.5, for a network with b = 2 blocks. The initial

condition for the B phase is m0 = 0 and δ0 = 1. The separation between the

R1 and R0 phases (the thin dashed line) is justified by their distinct dynamical

character: while R1 is the usual retrieval attractor for initial conditions m0 6=
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0, δ0 = 0, the R0 is the retrieval attractor when the network starts with no initial

global overlap, m0 = 0, δ0 6= 0.

There is a transition from the Z to R phases at a αR(ω), represented by the

thick dashed line, below which the global retrieval information is always stable.

The local information appears at the line αB(ω) (solid line), below which the B

phase coexists with R. One could see that the B region holds steady at a larger

α for local networks than for random networks. Note that mixed states, with

both m 6= 0, δ 6= 0, emerged from no pure R or B-like initial conditions, as seen

in Fig. 3.2. It has been checked through extensive simulations that the local

solution is robust for a wide range of numbers of blocks, and it was found that

the transition αB(ω) in the phase diagram of Fig. 3.5 shrinks to zero for b > 103.

The R region also collapses to the α = 0 axis and only the Z phase survives.

0 0.2 0.4 0.6 0.8 1
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R1

Figure 3.5: Phase diagram (ω×α) for N = 106, γ = 10−4 and b = 2. B ≡ Local

phase. R0(R1) ≡ Retrieval phase with m0 = 0, δ0 = 1 (m0 = 1, δ0 = 0). Z ≡ no

information.

3.3.4 Theory

In this section a strongly-diluted network is considered and theoretical equations

are proposed for the macroscopic order parameters. The sketch of a proof that
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Figure 3.6: Global (solid lines and circles, im) and local (dashed lines and ×, iv)

information, vs α, for b = 2. Randomness runs from ω from 0 (left) to 1 (right),

γ = 10−2. Top: theory. Bottom: simulation with N = 105, K = 103 and parallel

dynamics. Initial states: m0 = 0.04; δ0 = 1. (Color on-line)
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is valid for stationary equations can be found in the appendix. Here empirical

dynamical equations whose fixed points coincide with the stationary solutions

are added . This extrapolation is justified for parallel dynamics, for which all

neurons are updated once at each time step. It is supposed that the neurons are

distributed within b blocks, with positive and negative overlaps, ml ≡ m±. Hence

the global overlap is m = (m+ + m−)/2 and the fluctuation between blocks is

δ = (m+ −m−)/2.

An approximation for the local field of neurons at block ml at time step t

gives

ξht
l ≡ ωmt + (1− ω)(mt + ylδ

t)(1− γb) + Ωt (3.10)

where ξ is the pattern being retrieved. The pattern-interference noise follows

a Gaussian distribution, Ω
.
= N(0, αr), where r = ωrr + (1 − ω)rl is the sum

of the random and local feedback terms, r = ωrr + (1 − ω)rl, with rr = 1 and

rl = (1− χ)−2. The susceptibility χ arises from the local connections,

χt =
1√
αrl

〈z sign(ξht)〉y,z. (3.11)

With the field in Eq. (3.10), the macro-dynamics for the global and local

overlap are

mt+1 = 〈sign(ξht)〉y,z
δt+1 = 〈y sign(ξht)〉y,z. (3.12)

The averages are over the binary distribution of y ∈ ±1 and a Gaussian z
.
=

N(0, 1). There are two types of stationary states: (1) m 6= 0, δ = 0, with m =

erf(m/
√
2αrl) and (2)m = 0, δ > 0, with δ = erf(δ(1−ω)/

√
2αrl). The first is the

usual Amit’s solution (Amit, 1989), while the second is the local solution, which

is stable if (1 − ω) ≥
√

παr/2. Adjusting the solid curve αB in the Fig. 3.5 to

(1− ω) ≈ A0α
A1 , gives A1 = 0.51, which fits well with this theoretical prediction

if one assumes r is constant in the transition.

A comparison between the theoretical results (upper panels) and the simula-

tion (bottom panels) for parallel dynamics is shown in Fig. 3.6. Qualitatively, the

behaviors predicted by theory, of local retrieval with small ω and global retrieval
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with large ω, agree quite well with that checked by simulations. The transi-

tion from local to global retrieval at a given α(ω) (for intermediate randomness

0.3 ≤ ω ≤ 0.7), as well as the maximal local and global information, are also in

agreement. Moreover, Eq. (3.10) explains why local retrieval fails for L ∼ K, for

which γb ∼ 1 and the boundary effects between blocks are relevant when com-

pared to the bulk of the connected neurons. The degree of dilution plays the role

of a resolution scale for the boundary effects. Therefore, only diluted networks

are able to stabilize blocks.

Finally note that, both the theoretical results and the simulations start with

m0 = 0.04, because m∗ 6= 0 would never be achieved if the initial global overlap

is zero, as observed in the simulation for asynchronous update (see Fig. 3.4). The

theoretical equations for the asynchronous dynamics are more involved than the

parallel macro-dynamics and they lead to differential equations, the calculation

of which is beyond the scope of this Chapter.

Except for this different dynamical behavior, both parallel and asynchronous

updating produce similar attractors. It is worth comparing the simulation results

of the lower panels of Fig. 3.6 with those of Fig. 3.4. First, it should be noted that

they were calculated for different values of the network parameters (see the figure

legends). For instance in Fig. 3.6 the connectivity is K = 103 while in Fig. 3.4

it is K = 300. The pattern storage capacity is related to K, hence the Fig. 3.6

displays more points for each learned pattern. In Fig. 3.4 the networks are also

more diluted (γ = 10−3) than in Fig. 3.6 (γ = 10−2), which should lead to a larger

storage capacity for the global overlap in Fig. 3.4 than in Fig. 3.6 (Dominguez

et al., 2007). However, with a ω = 0.5 and ω = 0.7 in both panels, the more

diluted network (Fig. 3.4) reaches a smaller critical load αR. In fact, there are

many holes in the curve that represent failures in the recovery of the pattern.

The reason for this disagreement with the expected result is that the network has

only b = 2 blocks in Fig. 3.6, in contrast with the b = 10 blocks in Fig. 3.4. The

more blocks the network is initialized with, the more difficult it is to complete

the pattern. This occurs because the borders between each block make them less

stable.
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3.4 Conclusions and discussion

In this Chapter was studied a new type of solution for an attractor neural network:

the local retrieval phase (B) with overlaps structured in blocks. The dependence

of the stability of the local B and the global retrieval (R) phases on the topological

parameters of connectivity (γ) and randomness (ω) was analyzed. Although the

storage capacity is severely disrupted when the long-range nature of the connec-

tions is lost, it was found that local information emerges when the network has

a more local topology. The local information corresponds to configuration states

which carry information in blocks of neighboring neurons, and are attractors of

the network dynamics. A block structure might resemble the metastable mixed

states studied in the seminal work of Amit (1989). These spurious states, where

the network only recognizes mixture of patterns, may provide useful information,

as might the B phase, because the blocks are spatially ordered. However, while

the local field arising from different patterns can cooperate to retrieve both of

them, the local field induced by negative/positive patterns cancels each of these

out, and the blocks are unstable in networks without the type of topology studied

here.

Both in biology and in hardware implementations of neural systems, mainly

neighboring neurons are connected in networks. Such short-range architectures

are much cheaper in terms of the wiring cost than long-range ones, but the down-

side is that the network loses most of its global retrieval capacity. In this Chapter

was shown that such a structure induces another information retrieval capacity:

that of local retrieval. Another novel situation that arises from this memory

structure is that the information from blocks may be transferred to a global re-

trieval if the range of links is long enough, or if more patterns are stored. Hence,

the topology complexity improves the retrieval attractor basin. It was found that

the transition from R → B takes place for α ≤ αB ≈ (1 − ω)2, and a theory

for strongly diluted networks was proposed, which fits well with the simulations.

The information entropies were also estimated, for both R and B phases.

The blocks behave as independent pieces of information. Thus, instead of

the small number P of patterns of size N that a diluted network can store, this

phase is able to retrieve b × P patterns, each with size N/b. The existence of
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an information phase with no global overlap may play a relevant role in natural

neural networks, for instance, to manage a successful response to stimuli activat-

ing separated cortical areas (Roudi and Treves, 2004). Also in many applications

of pattern classification, such as image recognition, by carrying local spatial in-

formation the overlaps may have opposite signals in separate blocks, although

overall information might be generated. Minor changes in the topology C, for

instance that suppress symmetry constraints, will lead to complex dynamics for

the blocks, including cycles and chaos, which could model higher functions of the

brain.

3.5 Appendix: Macro-dynamic equations

Let the neurons be randomly distributed within b blocks and for simplicity, each

of size L = N/b, with positive and negative overlaps, ml = m±. The blocks

l = 1, . . . , b are built as the sets λl = {i = (l − 1)L + k; k = 1, . . . , L}. Then,

according to Eq. (3.6) the global overlap is m =
∑b

l ml/b and the fluctuation

between blocks is δ =
√
v, with v ≡

∑b

l m
2
l /b −m2. The block’s overlap can be

written as

ml = m+ ylδ, (3.13)

where yl
.
= ±1 (according to the block) is a random variable.

The local field of the neuron σi, Eq. (3.3), applying Eq. (3.4) for the weights,

can be separated into a signal and a noise term, if a given pattern is being

retrieved, say ξ ≡ ξµ=1:

hi ≡ ξimi + Ωi (3.14)

where

mµ
i ≡ 1

K

∑

j∈C

ξµj σj , Ωi ≡
∑

µ>1

ξµi m
µ
i (3.15)

are the overlap restricted to the neighbors C of neuron σi, and the cross-talk

noise, respectively.

There are local and random neighbors for each neuron, hence the signal term

itself splits into localized and randomized terms, namely

mi =
Kr

K
mr

i +
Kl

K
ml

i, (3.16)
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with mx
i ≡ 1

Kx

∑

j∈Cx
ξjσj , (x ≡ l, r) where Ki

l and Ki
r are the local and random

sets of neighbors of the neuron σi, respectively.

From Eq. (3.5), whenever the neighbors belong to a block the local field de-

pends on its block’s overlap, ml. On the other hand, the randomized field is a

sample of a global field that does not depend on a block. Using the definition

in Eq. (3.1), one arrives at an approximation for the local field of neurons in the

block λl

ξhl ≡ ωm + (1− ω)(m + ylδ)(1− γb) + Ω (3.17)

where ξ is the pattern being retrieved. The correction term (1− γb) accounts for

the boundary effects between m± blocks.

The equation for the block’s overlap is then ml = 〈sign(ξh)〉Ω, where the

average in the angular brackets are over the noise Ω. But from Eq. (3.13) ml =

m + ylδ, and thus, after averaging over yl one gets

m = 〈ml〉y = 〈sign(ξh)〉y,z
δ = 〈yml〉y = 〈y sign(ξh)〉y,z. (3.18)

The average over z stands for the noise distribution, Ω.

This noise is a large sum of almost-independent terms, which converges to a

Gaussian distribution, Ω
.
= N(0,∆) (Hertz et al., 1991). Its variance ∆ = αr

is given by the sum of random and local feedback terms, r = V ar(mµ
i ) = ωrr +

(1 − ω)rl. To deal with them, one can consider the residual overlaps (µ > 1) as

stochastic variables. If one expands the residual overlaps around hµ
j ≡ hj − ξµi m

µ
i

it holds:

mµ
i ∼ 1

K

∑

j∈C

ξjsign(h
µ
j ) +mµ

i χi, (3.19)

χi ≡ 1

K

∑

j∈C

d

dhµ
j

sign(hµ
j ) (3.20)

here χi is the susceptibility. The first term in the r.h.s of Eq. (3.19) is not

correlated with the second term, and its variance is α. So, the stochastic equation

reads mµ
i (1− χ) ≃ N(0, α), and the feedback term is

rx = (1− χx)
−2; x = l, r. (3.21)
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One now supposes only strongly diluted networks (K ≪ N). For random

connections, χr can be neglected since there is no feedback in the dynamics

and rr = 1 (Dominguez and Bollé, 1998). However, for local connections, even

extreme dilution does not eliminate the feedback and thus, susceptibility can also

be written as

χl =
1√
αrl

〈z sign(ξh)〉y,z. (3.22)
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Chapter 4

Structured information in sparse

coding networks

4.1 Introduction

Attractor Neural Networks (ANNs) with metric connections are being investi-

gated through several approaches like pruning couplings (Zheng et al., 2010),

scale-free networks (McGraw and Menzinger, 2003), small-world networks with

binary neurons (Dominguez et al., 2007; Morelli et al., 2004; Nikoletopoulos et al.,

2004), continuous neurons (Li and Chen, 2003) and integrate-and-fire neurons

(Masuda and Aihara, 2004). Main attention has been attached to the global over-

lap which implies that the learning capacity, in general, is drastically disrupted for

short-range neural networks. This is a counterpart for the considerable amount

of wiring that can be saved by using metric architecture. Recently, attempts have

been made to explore distinct types of spatially structured stable neural states,

with localized overlaps and no meaning for networks with uniform couplings.

Among them, one can distinguish two classes of structures: a bump (Koroutchev

and Koroutcheva, 2006; Roudi and Treves, 2004, 2006) and a block (Dominguez

et al., 2009; González et al., 2009) structure of overlaps. As an illustrative exam-

ple, Fig. 4.1-left shows a natural image in black/white pixels which is a biased

pattern with more active (black) than inactive (white) neurons. Global retrieval

should recover this pattern in the same shape. In Fig. 4.1-center a 2-blocks struc-

ture of the same pattern is displayed: the left half has a positive overlap, while
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the right half has a negative overlap with the original pattern. This negative

overlap distribution could be thought as the Inverted Tuning Curves of activity,

recorded in some cells in the Prefrontal Cortex of monkeys performing spatial

working memory tasks (Wang et al., 2004). These neurons have a lower firing

rate after some cue is presented than during spontaneous activity. In Fig. 4.1-

right, a bump structure is presented. A bump is a localized retrieval state which

has a region with high correlation with the original pattern (the left half), and

another region which has no correlation at all (the right half). Spatially localized

bumps of activity are relevant in attractor neural networks when trying to give a

computational explanation of working memory capacity (Edin et al., 2009; Roudi

and Treves, 2008).

Sparse coding is the representation of items by the activation of a relatively

small set of neurons. Sparse-coding gives the model a biological plausibility since

the brain suggests a general sparse-coding strategy (Foldiak and Endres, 2008).

Sparse-coding is also favorable to increase the network capacity, because the cross-

talk term between stored patterns decreases. However, to sustain a low rate of

activity in associative memory networks is very difficult and a control mechanism

becomes necessary (Dominguez and Bollé, 1998). In the present Chapter is used a

dynamical threshold that depends on the global activity of the network, the local

activity of the neuron’s neighborhood, and the sparseness of the pattern coding.

This threshold strategy is a reinforcement mechanism instead of a rigid constraint

used in previous studies about bumps (Koroutchev and Koroutcheva, 2006; Roudi

and Treves, 2006, 2008), allowing for the manifold of retrieval solutions for the

network dynamics. Increasing the short-range nature of the connections, the

network undergoes a transition from a global to a spatially structured retrieval

phase. Furthermore, the different types of structures (block or bump) have been

characterized, according to their dependence on the neural activity level. It is

also shown which conditions favors the emergence of these localized states, and

the regions in a phase diagram α× a where they either coexist or dominate.
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Figure 4.1: Left: Goya’s Dog - original. Center: 2-blocks Dog. Right: Bump

Dog, a = 0.2.

4.2 The model

4.2.1 Topology and dynamics

At any given discrete time t, the network state is defined by a set ofN independent

binary neuron variables τ t = {τ ti ∈ 0, 1; i = 1, . . . , N}, where 1 and 0 represent,

respectively, active and inactive states. The network aims to recover a set of

independent patterns {ηµ, µ = 1, . . . , P} that have been stored by a learning

process. That means, a stable retrieval state satisfies τ t = ηµ, for large enough

time t. Each pattern, ηµ = {ηµi ∈ 0, 1; i = 1, . . . , N}, is a set of site-independent

low-activity binary random variables distributed according the probability

p(ηµi = 1) = a, p(ηµi = 0) = 1− a. (4.1)

A uniform neural model is a particular case of the present low-activity model

with a = 1/2 in Eq. (4.1). The later case was studied in the previous Chapter

about block structured information.

The synaptic couplings between the neurons i and j are given by the adjacency

matrix

Jij ≡ CijWij , (4.2)
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where the topology matrix C = {Cij} describes the connectivity structure of the

neural network and W = {Wij} is the matrix with the learning weights. The

topology matrix is split into local and random links. Local links connect a given

neuron to its Kl neighbors, with periodic boundary conditions. Random links

connect each neuron to Kr other neurons, uniformly distributed in the network.

Hence the total number of connections, per neuron, is K = Kl + Kr. Given

neurons i and j, the corresponding matrix element Cij = 1 if |i − j| ≤ Kl/2. If

|i− j| > Kl/2, Cij = 1 with probability Kr/N , and Cij = 0 otherwise. This way,

the network topology is characterized by two parameters: the connectivity ratio

and the randomness ratio, respectively defined by

γ = K/N , ω = Kr/K . (4.3)

Here, Kl, Kr and N are assumed to be large. As in the small-world model (Watts

and Strogatz, 1998), the parameter ω plays the role of a rewiring probability. The

storage cost of this network is |J | = N × K if the matrix J is implemented as

an adjacency list of K neighbors, and one would like to find out the behavior of

the network in terms of these two parameters. An extremely diluted network is

obtained as γ → 0 and one restricts to this case.

The retrieval of a pattern is achieved through the noiseless neuron dynamics

τ t+1
i = Θ(ht

i − θti) , i = 1, . . . , N , (4.4)

where

ht
i ≡

1

K

∑

j

Jij

τ tj − qtj
√

Qt
j

(4.5)

denotes the local field at neuron i and time t and θi is its threshold of firing.

In Eq. (4.5) is introduced the average activity of the neighborhood of neuron i,

qti = 〈τ t〉i, and its corresponding variance, Qt
i = V ar(τ t)i = 〈(τ t)2〉i − 〈τ t〉2i . The

neighborhood average is defined as 〈f t〉i ≡
∑

j Cijf
t
j/K. In Eq. (4.4) is used the

step function:

Θ(x) =

{

1, x ≥ 0

0, x < 0.
(4.6)

The uniform binary neural model is recovered when a = 1/2 (Dominguez et al.,

2009). Although the normalization in Eq. (4.5) is not usual in the literature, it is
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appropriate in order to consider the complete symmetry between the representa-

tion of a pattern and its anti-pattern, despite their opposite mean activity. Also,

the local dependence in this normalization takes into account the structure in the

neural states that are being studied in the present Chapter.

For convenience, in the sequel one uses the normalized variables, the site and

time dependence being implicit:

σ ≡ τ − q√
Q

, q ≡ 〈τ〉 , Q ≡ V ar(τ) = q(1− q) (4.7)

ξ ≡ η − a√
A

, a ≡ 〈η〉 , A ≡ V ar(η) = a(1− a), (4.8)

where a and q are the pattern and neural activities, respectively. The averages

done in this Chapter run over different ensembles, and are indicated in each case.

These variables can be directly translated to those used in most works found in

the literature for uniform (non-biased) neurons, in the case of a = 1/2.

In terms of these normalized variables, the neuron dynamics reads

σt+1
i = g(ht

i − θti, q
t
i), (4.9)

ht
i ≡ 1

K

∑

j

Jijσ
t
j , i = 1, . . . , N, (4.10)

where the gain function is given by

g(x, y) ≡ [Θ(x)− y]/
√

y(1− y). (4.11)

The weight matrix W is updated according to the Hebb’s rule,

W µ
ij = W µ−1

ij + ξµi ξ
µ
j . (4.12)

Weights start at W 0
ij = 0 and after P learning steps, they reach the value Wij =

∑P
µ ξµi ξ

µ
j . The learning stage displays slow dynamics, being stationary within the

time scale of the faster retrieval stage, Eq. (4.5). A stochastic macro-dynamics

take place due to the extensive learning of P = αK patterns, where α is the load

ratio.
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4.2.2 The information measures

In order to characterize the retrieval ability, one needs to define appropriate

information measures. Previous studies have usually dealt with global measures of

information, which are adequate to describe networks with no local connectivity.

In these cases the overlap and neural activity,

m ≡ 1

N

N
∑

i

ξiσi, q ≡ 1

N

N
∑

i

τi, (4.13)

which are the statistical correlation between the learned pattern ξi and the neural

state σi, and the mean activity of the network, respectively, are enough to evaluate

the network ability to retrieve a given pattern. When the pattern is successfully

retrieved, τi = ηi, i = 1, ..., N , one has m ∼ 1 and q ∼ a. For metric connectivity,

it is useful to define blocks as the structured pieces of information that emerge

in the network. If the contiguous neurons are distributed within b blocks, for

simplicity each of size L = N/b, then one may define mesoscopic parameters

restricted to the λth block (λ = 1, . . . , b).

The block’s overlap between the neural states and one individual pattern and

the block’s activity are

mλ ≡ 1

L

∑

i∈λ

ξiσi and qλ ≡ 1

L

∑

i∈λ

τi, (4.14)

at an unspecified time step, respectively. One can consider mλ as a random

variable and estimate the average of this variable across the blocks as 〈fλ〉b ≡
1
b

∑b
λ=1 fλ. For example, a network with b = 2 blocks can be characterized

by the block parameters mλ, qλ, where λ = ± are labels for the two distinct

regions. The following states are typical: global retrieval state (R, with m+ ∼
m− ∼ 1, q+ ∼ q− ∼ a), which carries non-vanishing uniform information; block

retrieval state (B, with m+ ∼ 1, m− ∼ −1, q+ ∼ a, q− ∼ 1 − a), which carries

structured information distributed in positive and negative overlaps with the

target pattern; bump retrieval state (U, with m+ ∼ 1, m− ∼ 0, q+ ∼ q− ∼ a

which carries localized information distributed in a positive overlap region and

a disordered region, respectively. Furthermore, there is a zero state (Z, with

m+ ∼ m− ∼ 0, q+ ∼ q− ∼ a), without any information.
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In the general case of b blocks, it is worth to define macroscopic parameters

instead of the mesoscopic measures mλ, qλ. The relevant order parameters mea-

suring the quality of retrieval are the mean (m) and the variance (v) of the block

overlap distribution, defined as

m ≡ 〈mλ〉b and v ≡ 〈m2
λ〉b −m2. (4.15)

Thus, m is the usual global overlap, given in Eq. (4.13). When the global overlap

is zero and the size of the blocks is taken as L = 1, the network carries no

macroscopic order. On the other hand, if there is only one block, L = N , the

variance is zero and the network carries no local information. However, if the

size is mesoscopic, 1 ≪ L < N , the variance is finite and the blocks convey only

local information. The standard deviation, which is named the block overlap,

is δ =
√
v. It is worth mentioning that the blocks are macroscopically scaled

and hence the parameter δ is not related to a spin-glass, which is a microscopic

ordering (Amit, 1989; Hertz et al., 1991). Similarly, the mean and variance of the

block’s activity are defined as

q ≡ 〈qλ〉b and vq ≡ 〈q2λ〉b − q2. (4.16)

Hence q is the global activity, and the standard deviation, δq =
√
vq is the block

neural activity.

Together with the overlap, one is interested in the load ratio α ≡ P/K, that

accounts for the storage capacity of the network. As the number of stored patterns

grows the network is not able to retrieve them and the overlap goes to zero.

4.2.3 Threshold strategies

In order to retrieve patterns with low activity, it is necessary to use an adequate

threshold for firing. If firing is not controlled, the neural activity could be higher

(lower) than the pattern activity, whenever the threshold is too small (large).

The more sparse is the code, more sensible is the interval where the threshold

can move on. On the one hand, one could use an optimal threshold where, for

each learned pattern and initial condition, a threshold is chosen by hand, such

that the retrieval is maximized (Roudi and Treves, 2008). This is not a realistic
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strategy, since the neural network is not supposed to know the target during the

retrieval process. Thus, it is convenient to use a fixed value for the threshold.

Indeed, one can search for a threshold which is a function of the load rate, the

pattern activity, the randomness and the connectivity parameters.

In particular, one could think about a dynamical threshold, which is updated

each retrieval time step. A self-control threshold that works for very low activities

was proposed in the sparse-coding literature(Dominguez and Bollé, 1998). An

efficient strategy would be even more important in the case of block retrieval.

For such a solution, the threshold should vary according to the neighborhood of

the neurons. Here, the following simple strategy is proposed:

θti =

{

θt0, q
t
i < 0.5

−θt0, q
t
i > 0.5 .

(4.17)

More sophisticated strategies can consider a soft function θti(q
t
i), as well as de-

pendences on the noise and the other network and learning parameters, ω, γ, α

and a.

The value of the θ0 can be easily estimated as a function of the sparseness

by taking a look at the local field. For the global solution, according to the

Eqs. (4.10) and (4.12),

ht
i =

1

K

∑

µ

ξµi
∑

j∈Ci

ξµj σ
t
j . (4.18)

For simplicity, considering a single pattern P = 1 and a global retrieval state for

a given time step, σt
j = ξµj , the last expression becomes ht

i = ξµi .

On the other hand, the overlap is m = 〈ξσ〉σ,ξ, where the brackets represent

an average over the joint distribution p(σ, ξ) for a single neuron, which is under-

stood as an ensemble distribution for the neuron states {σi} and patterns {ξµi }.
Averaging over ξ using Eq. (4.1) and Eq. (4.8) one gets

m = aξ+σ+ + (1− a)ξ−σ−, where ξ+ ≡ 1− a√
A

and ξ− ≡ −a√
A

. (4.19)

Here, σ± is the neuron state for the active and inactive pattern nodes, ξ± respec-

tively. That means: σ± ≡ g(h±−θ0), where h
+ = (1−a)/

√
A and h− = −a/

√
A.
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So, in order that σt
j = ξµj (hence mt = 1) persists for every time t, the threshold

must satisfy: h− < θ0 < h+, one could choose

θ0(a) =
1− 2a

2
√
A

. (4.20)

This expression is used for the threshold as a function of the pattern activity.

For instance, θ0(a = 0.1) ∼ 1.33, which is the middle of the interval between the

active signal and inactive one. Adding a dependency on the global activity of the

network, q, one could obtain a useful threshold for the block and bump phases,

as follows:

θt0 =











ρθ0, q
t >

a + 0.5

2
1

ρ
θ0, q

t <
a+ 0.5

2
.

(4.21)

The empirical value of ρ = 0.7 is used. For a = 0.1, one has θt0 = 0.7×1.33 ≈ 0.93

for the block solution (q ∼ 0.5), and θt0 ≈ 1.9 for the bump and global solution

(q ∼ a).

4.3 Results

4.3.1 Simulations: the retrieval evolution

The neural dynamics, Eqs. (4.4-4.5), was simulated with the topology defined

according Eq. (4.3) and the learning rule given by Eq. (4.12). The results reveal

that the network can be found in the following representative stationary states:

global retrieval phase (R, with m 6= 0, δ = 0), which carries non-vanishing uni-

form information; block retrieval phase (B, with m = 0, δ > 0) which carries

structured information retrieving pattern and anti-pattern spatially distributed

over the network; bump retrieval phase (U, with m ∼ 0.5, δ ∼ 0.5) which car-

ries spatially distributed information retrieving a correlated part of the pattern

besides an uncorrelated one. Furthermore, there is a zero phase (Z, with m = 0,

δ = 0), without any information. Representing the different phases, the typical

evolution of a network for N = 105, with topological parameter γ = 10−2, ran-

domness ω = 0.1 and pattern activity a = 0.1 is shown in Fig. 4.2. In each panel

the site overlaps ξiσi are smooth averaged over windows of size ∆N = 103 for
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Figure 4.2: Time evolution of the microscopic overlaps. The parameters are

a = 0.1, N = 105, K = 103 (γ = 10−2), ω = 0.1. Left panels: Block initial

conditions with α = 0.01; right panels: Bump initial conditions with α = 0.1.

Top panels: θt0 = 1.6; bottom panels: θt0 = 1.0.
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every time t. Hence the plotted surfaces, mt(x), x = i/N , are softer than the

actual site overlaps, although some structure can still be appreciated.

In the left panels, for α = 0.01, the network starts in a noisy two-blocks

spatial distribution (m0 ∼ 0, δ0 = 0.4). In the upper-left panel one sees that

for a threshold value θt0 = 1.6 the network evolves to a block structure that

oscillates with period ∆t = 200 at the borders of the positive and negative blocks.

This is due to the fact that frontier effects on the local field of the neuron’s

neighborhood are amplified for large threshold values. Nevertheless, although

the small fluctuations of the spatial structure for a large enough time, the block

phase is a stationary stable state. In the lower-left panel, for a threshold value

θt0 = 1.0, It can be appreciated, in a logarithmic scale, how starting in a noisy

two-blocks distribution the network evolves to an almost perfect block structure.

That is, an optimized value of the threshold was translated into a more stable

block phase. In this case, frontier effects are negligible, as compared to the upper-

left panel.

In the right panels, the network starts in a noisy bump spatial distribution

(m0, δ0 ∼ 0.17). The upper-right panel shows that, for a threshold value of

θ = 1.6, the network evolves to a bump phase. The part where the initial stimulus

was correlated with a pattern, the pattern was completely retrieved (the errors

were corrected), while the uncorrelated part remained quite stationary. This

means that the bump phase is stationary in time. In the lower-right panel, for

θ = 1.0, the network evolves to a stationary global phase. On the contrary to

the block structure seen in the left panels, a larger value of the threshold favors

the stability of the bumps, because of the local field cannot reach large values

for the uncorrelated region to surpass the threshold. For small threshold values,

the signal part of the bump stimulus brings the whole network to a global phase,

being unable to keep a spatially localized structure.

4.3.2 Simulations: the learning capacity

The stationary states of the network were studied in function of the load ratio α,

for different values of the topological parameter ω. A sample of the simulation

results is shown in Fig. 4.3, represented with symbols (circles and crosses). The

63



4. STRUCTURED INFORMATION IN SPARSE CODING
NETWORKS

ω=0.0

0.0

0.2

0.4

0.6

0.8

1.0

m
, δ

 

m,Si
δ,Si
m,Th
δ,Th

ω=0.2 ω=1.0

0.0

0.2

0.4

0.6

0.8

m
, δ

 

0.0 0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

m
, δ

 

0.0 0.2 0.4 0.6
α

0.0 0.2 0.4 0.6 0.8

Figure 4.3: Global and Block overlaps, as a function of α for Theory and

Simulation, with a = 0.1, ω = 0, 0.2, 1.0, θ0 = 1.3. The network has N = 106,

K = 400. Initial conditions: Global state (R, top panels), Block (B, middle

panels), Bump (U, bottom panels). (Color on-line).
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stationary global and local overlaps, m∗ an δ∗, respectively, are plotted for N =

106 with connectivity γ = 4 · 10−4 and randomness values of ω = 0, ω = 0.2 and

ω = 1.0. The results from theory are plotted in the same figure, represented with

lines (dashed and solid) and will be discussed later in section 4.3.4. For the top

panels the network starts in a global configuration withm0 = 1 and δ0 = 0. There

is a clear distinction in which concerns the transitions from the global retrieval

phase to the zero phase: they are smooth for the local networks (ω = 0), while

they are sharp for random networks (ω = 1.0). The following criterion was used

for the transition of the global to the zero phase: the network is in the zero phase

either if m < 0.8 or the time of convergence exceeds t = 200 steps in the parallel

neural updating, Eqs. (4.4-4.5). Similarly, the network is in the block phase if

δ < 0.8 and in the bump phase if m ∼ δ < 0.4.

It is observed that the critical load goes to α ∼ 0.45 for local networks. For

an intermediate value ω = 0.2, the critical load increases to α ∼ 0.5, while for

random networks the critical load goes to a larger value of α ∼ 0.7. That is, when

the information is spatially distributed (i.e. global phase) the optimal topology

is a random network.

In the middle panels, the network starts in a two-blocks configuration with

m0 = 0 and δ0 = 1. For local networks (ω = 0) the local overlap stays close to

δ∗ ∼ 1, up to the critical load α ∼ 0.45. For intermediate values of the random

parameter, ω = 0.2, is possible to sustain the blocks, although with a smaller

critical load: α ∼ 0.25. Finally, for random networks, ω = 1.0, is not possible to

obtain a spatial configuration of blocks, and the network converges to a Z phase.

Thus, one can see that the local character of the network allows the formation of

spatially distributed structures, the shorter are the range of the connections, the

more stable is the block phase.

In the bottom panels, the network starts in a single-bump configuration with

m0 = 0.5 and δ0 = 0.5. For local networks (ω = 0) the bump is the only stable

phase and the critical load goes to α ∼ 0.35. However, as the randomness network

increases (ω = 0.2), a re-entrance transition from bump to the more ordered global

phase can be observed. Into the uncorrelated region, when the noise is small, the

local field on each neuron is not sufficiently large to surpass the threshold value

and, in consequence, the bump is stable. As the load increases, the noise becomes
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Figure 4.4: Phase diagram (a×α) for Simulation with N = 2 · 105, K = 2 · 103.
The parameters are ω = 0.1, and b = 2. R ≡ Retrieval phase (m ∼ 1, δ ∼ 0).

B ≡ Block phase (m ∼ 0, δ ∼ 1). U ≡ Bump phase (m ≈ 0.5, δ ≈ 0.5). Z ≡
Zero phase (m ∼ 0, δ ∼ 0).

larger. The local field fluctuates between the pattern and the anti-pattern, but the

only effect is to attract the uncorrelated region to a global order stable state. For

random networks (ω = 1.0), there is no sense for structured neural configurations

because no spatial preference is generated by uniform connectivity.

4.3.3 Phase diagram

The phase diagram shown in Fig. 4.4 was obtained by simulation of a network

with N = 2·105, K = 2·103 and randomness parameter ω = 0.1. The results were

obtained by computer simulations of the dynamics defined by Eqs. (4.4-4.5), with

the topology defined in Eq. (4.3) and the learning rule given by Eq. (4.12). The

dashed curves are simply guide for the eyes. The diagram displays the different

regions of retrieval: Bump phase (U), Block phase (B) and Global phase (R).

The non retrieval Zero phase (Z) is also shown. The regions are represented for
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different values of the load ratio of learned patterns, α, against the sparseness, a.

The criterion used to estimate the phase transitions are described in the previous

section.

When the network starts in a bump configuration with m0 = 0.5 and δ0 =

0.5, the bump phase survives for a load ratio that is lower than that of the

bump retrieval saturation, αU(ω) curve. When the network starts in a block

configuration with m0 = 0 and δ0 = 1, this block phase survives if the load is

lower than that of the block retrieval saturation, the αB(ω) curve. Finally, if the

network starts in a global configuration with m0 = 1 and δ0 = 0, it remains there

if the load ratio is lower than that of the global retrieval saturation, the αR(ω)

curve. Above the αR(ω) curve, no information is retrieved and the only achievable

phase is Z, which carries no information. Below the diamond symbol curve αU(ω),

and for sparseness values smaller than a = 0.3, the phases U, B, R coexist. What

the phase will be effectively reached through the network dynamics depends on

the initial conditions. Increasing the sparseness value, the Bump phase ceases,

with the B and R phases coexisting below the squared symbol curve αU(ω).

Increasing the value of the load ratio, the B phase is no longer stable above the

curve αB(ω). Above this curve, the only phase supporting information is the

global retrieval R. A further increase of the load ratio yields a transition to the

zero information phase Z, at the circle symbol curve αR(ω).

The robustness of this behavior was checked by using different threshold

strategies than that expressed in Eqs. (4.17,4.20,4.21). It was found that the

corresponding phase diagrams are qualitatively similar to that shown in Fig. 4.4,

whenever a reinforcement mechanism for the threshold depending on the local

activity is employed.

4.3.4 Theory

In this section, a strongly-diluted network is considered and, consequently, theo-

retical equations for the macroscopic order parameters are proposed. The sketch

of a proof that is valid for stationary equations can be found in the appendix.

In order to carry out the theoretical calculations, mesoscopic and macroscopic

order parameters were defined. The mesoscopic order parameters are the block
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Figure 4.5: Phase diagram (ω × α) for Theory (Lines) with γ = 4 · 10−4 and

for Simulation (Symbols) with N = 106, K = 400. The parameters are a = 0.1,

θ = 1.6 and b = 2). R ≡ Retrieval phase (m ∼ 1, δ ∼ 0). B ≡ Block phase

(m ∼ 0, δ ∼ 1). U ≡ Bump phase (m ≈ 0.5, δ ≈ 0.5). Z ≡ Zero phase

(m ∼ 0, δ ∼ 0).
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overlap mλ and the block activity qλ. They are described in Eq. (4.29), where

the average is over the sites inside the blocks, according to Eq. (4.30). After

successively separating in terms of signal/noise, local/random connections and

global/block overlaps, one arrived at Eqs. (4.41-4.42) for the local field and the

local activity, hi, qi respectively. The macroscopic parameters are the global over-

lap and the block overlap, m, δ respectively, defined by the ansatz in Eq. (4.31).

Their recursive equations were obtained after averaging mλ over yλ, according

Eqs. (4.43-4.44). Furthermore, one can average explicitly over the distribution of

yλ ∈ ±1 and ξ ∈ {(1− a)/
√
A,−a/

√
A}, obtaining

m = a
1− a

2
√
A
〈g(h+

+ −θ, q+) + g(h+
− − θ, q−)〉z

+(1− a)
−a

2
√
A
〈g(h−

+ − θ, q+) + g(h−
− − θ, q−)〉z (4.22)

and

δ = a
1− a

2
√
A
〈g(h+

+ −θ, q+)− g(h+
− − θ, q−)〉z

+(1− a)
−a

2
√
A
〈g(h−

+ − θ, q+)− g(h−
− − θ, q−)〉z . (4.23)

Similarly, the equations for global and block activities defined in Eq. (4.32) are,

according to Eqs. (4.45-4.46),

q =
a

2
〈g(h+

+ − θ, q+) +g(h+
− − θ, q−)〉z +

1− a

2
〈g(h−

+ − θ, q+) + g(h−
− − θ, q−)〉z (4.24)

and

δq =
a

2
〈g(h+

+ − θ, q+) −g(h+
− − θ, q−)〉z +

1− a

2
〈g(h−

+ − θ, q+)− g(h−
− − θ, q−)〉z . (4.25)

The equations above use the definitions

h+
± ≡ 1− a√

A
[ωm + (1− ω)(m ± δ)(1− γb)] + z

√
αr ,

h−
± ≡ −a√

A
[ωm + (1− ω)(m ± δ)(1− γb)] + z

√
αr . (4.26)
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The angular brackets indicate average over the noise variable z, that follows a

Gaussian distribution: 〈f(z)〉z ≡
∫∞

−∞
(dz/

√
2π) exp(−z2/2)f(z). See ref. Hertz

et al. (1991). The noise variance αr is given by the sum of random and local

feedback terms,

r = ωrr + (1− ω)rl and rx = (1− χx)
−2 , with x = l, r . (4.27)

The susceptibility for random connections is χr = 0. For local connections, after

averaging over both y and ξ, the susceptibility is given by

χl =
a

2
√
αrl

〈z[g(h+
+ −θ, q+) + g(h+

− − θ, q−)]〉z +

1− a

2
√
αrl

〈z[g(h−
+ − θ, q+) + g(h−

− − θ, q−)]〉z . (4.28)

The numerical system of Eqs. (4.22)-(4.28), for the macroscopic parameters, is

solved in function of the load α. The different solutions R, B and U are obtained

through appropriate initial conditions. The results are plotted with solid (δ)

and dashed (m) lines, in Fig. 4.3, together with simulation results represented

by symbols, for randomness ω = 0, ω = 0.2 and ω = 1.0. This procedure

can be extended for several values of ω, in order to obtain the theoretical phase

diagram α × ω. The results were drawn in Fig. 4.5. There, the theoretical

results (solid curves) can be compared to that obtained from numerical simulation

(symbols). Fixed-point solutions which correspond to unstable stationary states

were disregarded. A network with N = 106, K = 400 and sparseness value of

a = 0.1 was used for the simulations. The criterion used to estimate the phase

transitions with the simulation were described in the section 4.3.2.

For small values of ω, all the retrieval R, B and U phases are stable below

αU(ω). Increasing the load ratio above αU(ω), the U phase becomes unstable,

and the phases R and B phases coexist for small value of randomness parameter

ω. For a further increase in ω, the B phase loses stability, and the only stable

retrieval phase is R. Above the line αR(ω), no information is retrieved and Z is

the only possible state.

As plotted in Figs. 4.3 and 4.5, simulation and theory are in qualitatively

agreement for global, block and bump critical loads. There are some quantitative

differences between the shape of the transitions, that will be discussed in the next

section.
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4.4 Conclusions and discussion

The main subject of this Chapter was the retrieval of spatially ordered infor-

mation in an attractor neural network with sparse coding. The retrieval phases

are, namely, Global retrieval (R) with uniform overlaps, Block retrieval (B) with

structured overlaps, and Bump retrieval (U) with localized overlaps. The states

R, B and U have a region of the network that is correlated with a given pattern;

however, the other region is also correlated with the same pattern in the R phase,

correlated with the anti-pattern in the B phase, and uncorrelated at all in the

U phase. The dependence of the stability of these retrieval states was analyzed

according the topological parameters connectivity (γ) and randomness (ω). The

block and bump structures arise as stable solutions of the network dynamics for

local connectivity (ω ≪ 1).

The dependence of these phases on the activity of the patterns (a) was also

investigated. For large values of activity (a > 0.3), bumps are not possible,

because the correlated region of the stimulus (whose neuron states at the initial

time step overlaps with the pattern) attracts the whole network to a global overlap

configuration. On the other hand, for patterns with low levels of activity, the

correlated region is unable to rise the local fields of the uncorrelated region above

the threshold value, and the bump is stable for a small load ratio, see Fig. 4.4.

However, if the load ratio is large enough, the fluctuations in the local field

increase and the neurons can achieve the correct sign (that is, correlated with

the pattern), leading to the global phase R, as can be seen in the bottom-center

panel of Fig. 4.3, for α > 0.25.

A threshold strategy, that benefits the retrieval of both global (R) and spa-

tially structured (B and U) information states, allowing the network dynamics

to stabilize such configurations according to the topological parameters, was in-

troduced. This threshold strategy depends mainly on the level of activity of the

patterns and the global activity of the network, as well as the local activity of

the neighborhood of each neuron. This translates into a self-control mechanism

of the network dynamics according to the initial stimulus (Dominguez and Bollé,

1998).
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It worths to stress that the phase transitions, which are sharp for the theo-

retical results due to the thermodynamic limits N → ∞, Ka → ∞, K ≪ ln(N),

become smooth for the simulation results, because these limits can not be ful-

filled, even with expensive computer memory resources. Simulation and theory

results agree quite well in the regions where the R, B and U phases have a well

defined values of the parameters m, δ. They disagree after the region of the tran-

sition defined for the theory, where the relaxation time is very large, and the

network has not yet reached the convergence for the maximal times we have used

in the simulation (t < 400 parallel steps). The finite size effects introduced in

the simulations correspond, first, to the finiteness N < ∞. Next to the partial

dilution γ > 0. Finally, all the finite size effects are amplified by the effective

network dimension Ka which decreases with the low-activity. For instance, one

used N = 106, K = 400, a = 0.1 in Fig. 4.3, which implies Ka = 40, i.e., far

from the infinite limit. The apparent smooth transition is a reminiscent of a well

known fact for small-world networks, close to the regular lattice behavior, with

finite connectivity K and large dimension N (Newman and Watts, 1999). In this

limit, the typical length scale diverges with vanishing short-cut density ω → 0,

leading to a continuous transition.

4.5 Appendix: Macro-dynamic equations

In the formulation of the theory one restricts to the asymptotic limits N → ∞,

Ka → ∞, with K ≪ ln(N). Let the neurons be randomly distributed within

b blocks and, for simplicity, each of size L = N/b, with positive and negative

overlaps, mλ = m±. The blocks λ = 1, . . . , b are built as the sets Λ = {i =

(λ− 1)L+ k; k = 1, . . . , L}. The order parameters described in Eq. (4.14) are

mλ ≡ 〈ξσ〉λ and qλ ≡ 〈τ 〉λ , (4.29)

where the average is over the sites inside the blocks:

〈f〉λ =
1

L

∑

i∈λ

fi. (4.30)
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Then, according to Eq. (4.15), the global overlap is m =
∑b

λ mλ/b and the fluc-

tuation between blocks is δ =
√
v, with v ≡ ∑b

λ m
2
λ/b−m2. The block’s overlap

can be written as a function of the mean overlap m, and the block overlap δ, as

mλ = m+ yλδ, (4.31)

where yλ
.
= ±1, (according to the block) is a random variable. By analogy,

according to Eq. (4.16), the block’s neural activity can be written as a function

of the mean neural activity q and the block neural activity δq as

qλ = q + yλδq. (4.32)

The dynamics of the order parameters is given by the updating of the neuron

states, Eqs. (4.9)-(4.10). The local field of the neuron τi, applying Eq. (4.12) for

the weights, reads

ht
i =

1

K

∑

µ

ξµi
∑

j∈Ci

ξµj σ
t
j . (4.33)

Now, one proceeds to split the local field in three steps: first the signal/noise sep-

aration; then the signal is separated in terms coming from the local and random

connections; finally the local term is expressed as a function of the global and

block overlaps. The noise term is considered at the end.

4.5.1 Signal/Noise

If a given pattern is being retrieved, say ξ ≡ ξµ=1, the local field can be separated

into a signal term and a noise term,

hi ≡ ξimi + Ωi , (4.34)

where

mµ
i = 〈ξµj σj〉C , with 〈f〉C ≡ 1

K

∑

j∈C

fj , (4.35)

is the graph-overlap, which is the overlap restricted to the neighborhood C of

neuron σi, and

Ωi ≡
∑

µ>1

ξµi m
µ
i (4.36)

is the cross-talk noise due to the extensive number of learned patterns.
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4.5.2 Local/Random

The graph-overlap for the retrieved pattern is the signal term which depends

on the connectivity matrix C. There are local and random neighbors for each

neuron. Hence, the signal term itself splits into localized and randomized terms,

namely mi =
Kr

K
mr

i +
Kl

K
ml

i, with

mx
i ≡ 1

Kx

∑

j∈Cx

ξjσj , (x ≡ l, r) (4.37)

where Ki
l and Ki

r are the local and random sets of neighbors of the neuron σi,

respectively. Using the definitions of the topological parameters in Eq. (4.3), it

can be written as

mi = ωmr
i + (1− ω)ml

i. (4.38)

4.5.3 Global/Block

Taking a close look at the graph-overlap, Eq. (4.37), one rewrites it in function

of the block overlaps. On the one hand, the random neighbors yields an average

over neurons which are a uniform sample along the network. Thus it does not

depend on a block, and results in a global mean mr
i = m, up to fluctuations of

order 1/
√
N . Now, consider the local connections: whenever a neuron is in the

bulk of a given block λ, its neighbors belong to the same block, j ∈ Λλ. So,

for the local interactions, the graph-overlap is the same as the block’s overlap,

ml
i = mλ. Following Eq. (4.31),

ml
i = (m + yλδ)(1− γb), (4.39)

up to fluctuations of order 1/
√
Ka. The correction factor (1 − γb) accounts for

the boundary effects between m± blocks. Finally, one obtain an expression for

the graph-overlap:

mi = ωm + (1− ω)(m + yλδ)(1− γb) . (4.40)

Using these results, together with Eqs. (4.34) and (4.35), one arrives to an ap-

proximation for the local field of neurons in the block λ,

hi ≡ ξ[ωm + (1− ω)(m + yλδ)(1− γb)] + Ω , (4.41)
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where the noise Ω depends on the (p− 1) patterns which are not being retrieved.

It also depends on the topology, and on the neural states. Similarly, one has an

equation for the local neural activity

qi ≡ ωq + (1− ω)(q − yλδq). (4.42)

Note that the sign of yλ for the block’s neural activity is opposite to the block’s

overlap sign, since the convention is that yλ = −1 for the anti-pattern, which

have the larger activity.

The equation for the block’s overlap in Eq. (4.29) can be written as mλ =

〈ξg(hi − θ, qi)〉η,z, where the average in the angular brackets are over the noise

variable z and the pattern distribution η. But from Eq. (4.29) mλ = m+yλδ and

thus, after averaging over yλ, one gets

m = 〈mλ〉y = 〈〈ξg(hi − θ, qi)〉η,y〉z , (4.43)

δ = 〈ymλ〉y = 〈〈yξg(hi − θ, qi)〉η,y〉z . (4.44)

Similarly, the block’s activity can be written as qλ = 〈g(hi − θ, qi)〉η,Ω, and the

equations for the mean and block neural activity reads

q = 〈qλ〉y = 〈〈g(hi − θ, qi)〉η,y〉z , (4.45)

δq = 〈ylλ〉y = 〈〈yg(hi − θ, qi)〉η,y〉z. (4.46)

4.5.4 Noise/Feedback

This noise is a large sum of almost-independent terms, which converges to a

Gaussian distribution,

Ω ∼ z
√
∆ , z

.
= N(0, 1) , ∆ = αr , (4.47)

see Hertz et al. (1991). Its variance ∆ is given by the sum of random and local

feedback terms,

r = KV ar(mµ
i ) = ωrr + (1− ω)rl . (4.48)

To deal with them, one can consider the residual overlaps (µ > 1) as stochastic

variables. For the local interactions the neighbors neurons are in the same block,
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so one can replace lνj∈C ∼ lνi . That means, all residual overlaps have the same

probability distribution. If one expands the residual overlaps around hν
j ≡ hj −

ξνjm
ν
j it holds:

mν
i ∼ 1

K

∑

j∈C

ξνj g(h
ν
j − θ, qj) +mν

i χi , (4.49)

χi ≡ 1

K

∑

j∈C

(ξνj )
2 d

dhν
j

g(hν
j − θ, qj) . (4.50)

Here χi is the susceptibility. The first term in the r.h.s of Eq. (4.31) is not

correlated with the second term, and its variance is

V ar[
1

K

∑

j∈C

ξνj g(h
ν
j − θ, qj)] = α . (4.51)

Thus, the stochastic equation reads mµ
i (1− χ) ≃ N [0, α], and the feedback term

is

rx = (1− χx)
−2 ; x = l, r. (4.52)

Now supposing only strongly diluted networks (K ≪ N). For random con-

nections, χr can be neglected since there is no feedback in the dynamics and

rr = 1 (Dominguez and Bollé, 1998). However, for local connections, even ex-

treme dilution does not eliminate the feedback, thus the susceptibility can also

be written as

χl =
1√
αrl

〈z g(hλ − θ, qλ)〉y,z , (4.53)

where the averages are over the block distribution y and over the normalized

Gaussian variable z.
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Chapter 5

Structured patterns of

variable-activity objects

5.1 Introduction

In the previous Chapters 2 to 4, the possibility of sustaining spatially distributed

information in the network has been studied. That is, the output of the network

was characterized according to the initial conditions of blocks and bumps struc-

tures. However the learned inputs were uniformly distributed. In the present

Chapter one is interested in the input learned by the network, being that this

input is spatially structured in regions of different levels of activity called ob-

jects. The learning and retrieval of patterns arranged in variable-activity objects

is explored, and the impact of the metric connectivity on the performance of the

Attractor Neural Network (ANN). In Fig. 5.1 is depicted a schematic representa-

tion of what one calls structured patterns of variable activity objects (left panels)

in opposition to uniform coding (right panels) with no spatial structure, which

is used in most ANN works. In Fig. 5.1 top-left panel is presented a structured

of ten contiguous objects, one half with high local activity (a+ = 0.9) and the

other half with low local activity (a− = 0.1). In the left-bottom panel the mean

activity of each region is smooth averaged for sub-groups of neurons, thus some of

the structure can be appreciated. In the top-right panel a uniform coding pattern

is presented, where the global mean activity of the pattern is 0.5 as depicted in

the bottom-right panel. Note that for the spatially structured pattern, averaging
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Figure 5.1: Left: Variable-activity structured pattern. Right: Uniform activity

pattern.

over all the objects in the bottom-left panel, one obtains the same value of 0.5

for the global activity of the whole pattern.

A potential implication of this Chapter is the increment of the critical load αc,

that is, the number of patterns the network is able to store, given that the pat-

tern structure resembles that of the sparse-coding pattern (antipattern) where

the critical load is higher, compared with the uniform coding network (Amit,

1989; Hertz et al., 1991). However, considering the nature of the coding used,

the correlation between patterns due to the potential overlap between objects of

similar activity is a factor to take into account (Hertz et al., 1991). Also, an ade-

quate threshold is needed in order to control the distinct levels of activity of the

different objects along the network (Dominguez et al., 2012). Different thresh-

old strategies are proposed, the correlation between the patterns analyzed, and

the topological conditions that sustain the spatial structure of variable activity

objects in the network are identified.

5.2 The Model

5.2.1 Neural coding

At any given discrete time t, the network state is defined by a set of N binary

variables τ t = {τ ti ∈ 0, 1; i = 1, . . . , N}, where 1 and 0 represent, respectively,

active and inactive states. The network aims to recover a set of patterns {ηµ, µ =

1, . . . , P} that have been stored by a learning process. That means, a stable
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retrieval state satisfies τ t = ηµ, for large enough time t. Each pattern, ηµ =

{ηµi ∈ 0, 1; i = 1, . . . , N}, is a set of binary random variables distributed in

objects (λ) of contiguous neurons (Dominguez et al., 2009; González et al., 2009)

according the probability

p(ηµi = 1) = a−, i ∈ λ−

p(ηµi = 1) = a+ ∈ λ+. (5.1)

being λ± the labels for the low and high activity objects respectively, where

a− ∈ (0, 0.5] and a+ = 1− a−, stand for the corresponding average activity ratio

of each object.

Let the contiguous neurons be distributed within β objects, for simplicity

each of size L = N/β, where λ = 1, . . . , β. If the number of high activity and

λ+ low activity λ− objects are equal, the patterns are unbiased (i.e. the activity

of the whole pattern is 1/2), however they are not uniform, but distributed in

objects of distinct activity. The objects are distributed randomly helping to avoid

the overlap between them. For β = N , that is, objects of size L = 1, the model

presented in Chapter 3, with uniform and unbiased patterns with a global activity

a = 1/2, is obtained. For β = 1, the model presented in Chapter 4 with uniform

biased patterns with sparseness a = a−, is obtained .

5.2.2 Topology and dynamics

In this Chapter the same model used in the previous Chapter 4 is employed,

except for the coding of the input patterns learned which is presented in the

previous section 5.2.1. The synaptic couplings between the neurons i and j are

given by

Jij ≡ CijWij , (5.2)

where the topology matrix C = {Cij} describes the connectivity structure of

the neural network and W = {Wij} is the matrix with the learning weights

defined according to the Eq. (4.12). The network topology is characterized by

the usual parameters: the connectivity ratio γ = K/N and the randomness ratio

ω = Kr/K. The total number of connections K = Kl + Kr splits between

local connections to Kl neighbors and Kr random connections to other neurons
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uniformly distributed in the network. The network dynamics, defined by Eqs.

(4.4-4.11), is also valid in this case.

5.2.3 Information measures

The information measures employed in the present Chapter are the same pre-

sented in the previous Chapter in Eqs. (4.13-4.16). In the last Chapters the

important measures were the mean (m) and the variance (v) of the block overlap

distribution, defined in Eq. (4.15). In this Chapter, one is interested in the global

retrieval of the structured input, then the important parameters to measure the

retrieval of the network are the macroscopic global overlap m and global activity

q defined in Eq. (5.6), as well as, the mesoscopic parameters for each object

mλ, qλ in Eq. (4.14) that describe the inner structure sustained in the network.

For convenience are presented here again.

One needs to define the following normalized variable, the site and time de-

pendence being implicit:

σ ≡ τ − q√
Q

, q ≡ 〈τ〉 , Q ≡ V ar(τ) = q(1− q) (5.3)

ξ ≡ η − a√
A

, a ≡ 〈η〉 , A ≡ V ar(η) = a(1− a), (5.4)

where a and q are the pattern and neural activities, respectively.

The mesoscopic order parameters are defined as

mλ ≡ 1

L

∑

i∈λ

ξiσi and qλ ≡ 1

L

∑

i∈λ

τi. (5.5)

The macroscopic order parameters are defined as

m ≡ 〈mλ〉b and q ≡ 〈qλ〉b. (5.6)

5.2.4 Pattern correlation

One can define the correlation gµ between pattern µ and the other P −1 patterns

as
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gµ =
1

P − 1

P
∑

ν=1(ν 6=µ)

gµν , gµ,ν =
1

N

N
∑

i

ξµi ξ
ν
i . (5.7)

A set of P = 100 patterns of size N = 105 was generated, structured in

objects with low activity a− = 0.1 and high activity a+ = 1−a− = 0.9. The mean

correlation gµ was measured between each pattern µ with the other P−1 patterns

for different numbers of β objects. In Fig. 5.2 one can see that the correlation

gµ is approximately zero for random uniform patters β = N . As the number of

objects β decreases, the correlation gµ increases. Thus, one needs to take into

account the correlation that occurs from the overlapped objects with same levels

of activity between patterns, since this correlation worsens the performance of

the network because the cross-talk term is high in this case.
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Figure 5.2: Mean correlation between patterns gµ as the number of objects β

increases. P = 100 patterns of size N = 105 with a− = 0.1.

5.2.5 Threshold strategies

In order to retrieve patterns with objects of low and high activity, an adequate

threshold for firing is necessary. One needs to define average activity qi of the
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neighborhood of neuron i, qti = 〈τ t〉i. The neighborhood average is defined as

〈f t〉i ≡
∑

j Cijf
t
j/K. Here are proposed the following threshold strategies.

• The ρ-strategy (θt,r) as proposed in the last Chapter 4 under section 4.2.3,

Eqs. (4.17-4.21) is tested in this Chapter.

• A simple trigonometric function strategy θt,s:

θt,si = θ0sin(2πqi). (5.8)

• Square-cut function strategy θt,c:

θt,ci =

{

θt0, q
t
i < 0.5

−θt0, q
t
i > 0.5 ,

(5.9)

with θt,ci = 0 for the local activity values qi below a−, as well as for the

values of qi above 1− a−.

• Linear-cut function strategy θt,l:

θt,li = s(qi − a−) + θ0,

s =
2θ0

2a− − 1
. (5.10)

As in the former strategy (Eq. 5.9) one uses θt,li = 0 for the local activity

values qi below the a−, as well as for the values of qi above 1− a−.

The following empirical values are used: θ0(a− = 0.1) = 0.3, θ0(a− = 0.2) ∼
0.3, θ0(a− = 0.3) ∼ 0.2, θ0(a− = 0.4) ∼ 0.1.

5.3 Results

5.3.1 Simulations: retrieval performance and threshold

strategy

The dynamical neurons Eqs. (4.4)-(4.5) were simulated with the topology param-

eters defined according to Eq. (4.3). In Fig. 5.3 is shown the retrieval performance

of the network for the different threshold strategies presented in Section 5.2.5. A
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network with N = 105, K = 102 for a randomness parameter ω = 0.0 was used,

with β = 100 objects with a− = 0.1 and a value of θ0 = 0.3. The performance is

very similar for all threshold strategies, being slightly better for the trigonometric

one θt,c. The system’s sensitivity to the threshold is better carried out using a

smooth function.
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Figure 5.3: Retrieval overlap m as a function of the load ratio α for different

threshold strategies. Network with N = 105, K = 102, ω = 0.0 with a− =

0.1, β = 100.

5.3.2 Simulations: retrieval performance and number of

objects

A network with N = 105, K = 102, ω = 1.0 was simulated, for different number of

β objects with a− = 0.1. the trigonometric threshold strategy θt,s with θ0 = 0.3

was used, see Eq. (5.8). In Fig. 5.4 is shown the retrieval performance as the

number of objects increases. It can be appreciated that when increasing the

number of β objects the performance of the network is improved because the

correlation between patterns decreases. However the network is still far from its
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optimal retrieval performance that corresponds to β = N which is equivalent

to the model presented in Chapter 3. Here the correlation between patterns is

seriously affecting the storage capacity of the network. A usual solution is to use

the pseudo-inverse approach (Hertz et al., 1991) to orthogonalize the correlated

patterns as studied in the next Chapter 6, where automotive traffic video is stored

and retrieved.
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Figure 5.4: Retrieval overlap m as a function of the load ratio α as the number

of objects β increases. Network with N = 105, K = 102, ω = 1.0 with a− = 0.1

and θt,s with θ0 = 0.3.

5.3.3 Retrieval performance and network randomness pa-

rameter

Using a network with N = 105, K = 102 and for β = 100 objects, with a− = 0.1

and threshold strategy θt,s with θ0 = 0.3, the retrieval performance of the network

is compared for different values of the randomness parameter. In Fig. 5.5 can be

appreciated that the network performs better for high values of the parameter

ω. Except for the pathological case of the regular network with ω = 0 where the
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results obtained are similar to the case of the totally random network ω = 1. This

can be due to the fact that in networks with only local connections, the nodes

are highly influenced by their neighborhood activity, trapping the correspond-

ing spatial structure so that the different objects are independently sustained.

When adding some random shortcuts, that is for intermediate values of ω the

network can not sustain the distinct levels of activity as the locality is lost, mak-

ing impossible to sustain the different objects. Increasing the number of random

shortcuts enough the network manage to give an overall response retrieving the

global pattern while sustaining the different regions of activity increasing again

its performance. This results need to be checked with more extensive simulations.
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Figure 5.5: Retrieval overlap m as a function of the load ratio α for different

values of the parameter ω. Network with N = 105, K = 102 with β = 100, a− =

0.1, θt,s, θ0 = 0.3.

5.3.4 Simulations: the retrieval evolution

One lets a network with N = 105, K = 102, evolve as presented in Fig. 5.6, for

a load ratio α = 0.1. The trigonometric threshold strategy of θt,s with θ0 = 0.3

is used. In the top panels the site overlaps ξiσi (top-left) and the site activities
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Figure 5.6: Top panels: evolution of the network microscopic overlaps of the

objects. Network with N = 105, K = 102, ω = 1.0 using β = 20, a− = 0.1, initial

condition m0 = 0.3, α = 0.1, threshold strategy θt,s with θ0 = 0.3, x ≡ i/N .
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τi (top-right) are smooth averaged over windows of size ∆N = 102 for every time

t. Hence the plotted surfaces, mt(x) and qt(x), x = i/N , are softer than the

actual site overlaps and site activities respectively. However, some structure can

still be appreciated. In the top-left panel, the network starts in a noisy spatial

distribution of β = 20 objects with a− = 0.1 and initial condition m0 = 0.3. The

network retrieve the target pattern with a value of m∗ = 0.97 and the objects of

low activity with q− and high activity q+ are sustained along the network, as seen

in the top-right panel. It can be appreciated, in a logarithmic scale, how starting

in a noisy configuration the network evolves to a global state where the target

pattern is almost perfectly retrieved as shown in the bottom-left panel, for the

smoothed site overlaps for the final time step t = 100. The bottom-right panel

shows the smoothed site activities at the final time step, where the structure of

the objects can be better appreciated.

5.4 Conclusions and discussion

In this Chapter is studied a pattern coding structured in objects of variable activ-

ity. It is explored how the topological parameters and a self-control mechanism

presented as a dynamical threshold cooperate to sustain the structure of low and

high activity objects. Further threshold strategies need to be developed, in order

to improve the performance of the network for retrieving this type of variable

activity coding. The threshold strategy has to be able to distinguish local from

global activities in order to properly apply the control mechanism for the network

dynamics. The correlation between patterns is relevant for this type of coding

and needs to be addressed in order to improve the network performance. This has

been considered in the next Chapter 6, where a variation of the pseudo-inverse

approach is used to store and retrieve automotive traffic video using an attractor

network.

The results presented in this Chapter are preliminary and need to be con-

trasted with more extensive simulations and a theoretical analysis. However,

it is worth a further study of this type of structured coding for conjectures of

information processing in biological neural systems, and also for real world im-

plementations (González et al., 2011).
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Chapter 6

An application for learning

automotive video

6.1 Introduction

In the last Chapter 5 was suggested for the input patterns, a coding structured

in objects with different levels of activity. In this Chapter an application of

Attractor Neural Network for storing and retrieving automotive traffic video is

suggested. The input patterns, the frames of the video, are spatially structured

in objects e.g. cars, streets, sidewalks, etc., with different levels of activity. The

information is localized within the frames in a similar way it is in the spatial

structures studied so far in this thesis. In the present Chapter a real world im-

plementation using structured patterns is presented for traffic surveillance. The

application of video-based analysis to traffic surveillance (Kastrinaki et al., 2003)

is an area of growing interest with the aim to detect both global events (i.e. num-

ber of vehicles in a road region) and local events (i.e. detection and tracking of

a specific vehicle). As large amounts of video data are stored for analyzing the

involved events on them, it becomes very important to develop efficient storage

and retrieval techniques for these traffic videos. In general, these videos are se-

quences of frames where the involved patterns (i.e. moving vehicles) are highly

correlated in time, specially in traffic congestion scenes. Most of existing works

for this problem use an approach based on scene segmentation followed by vehicle

tracking (Chan and Vasconcelos, 2005). In it, the vehicles are first detected in
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the dynamic scene using adaptive-background techniques (Jung and Ho, 2001;

Kastrinaki et al., 2003) and specific features like texture, color or shape (Chan

and Vasconcelos, 2007), are extracted from the segmented targets for classifica-

tion. Later, these vehicles are tracked using different techniques like optical flow

(Li and Chellappa, 2002), Kalman filters (Yu et al., 2003) or particle filters (Ris-

tic et al., 2004), among others. Segmentation and tracking tasks become more

difficult on realistic traffic situations like possible vehicle congestions, variability

of weather and/or illumination conditions. Moreover, the vehicle tracking results

along time are highly dependent on a good segmentation of them. To avoid the

need of segmentation and tracking individual vehicles, some holistic representa-

tions for the storage and retrieval of traffic videos have been proposed. Chan

and Vasconcelos (2005) propose a dynamic texture representation to model the

motion flow in the scene. They use the Kullback-Leibler divergence and the Mar-

tin distance to retrieve and classify traffic videos without need of segmentation.

Xie et al. (2004) present another holistic method for traffic video retrieval using

Hierarchical Self-Organizing Maps (HSOM). They extract the motion trajecto-

ries of the vehicles present in the video and these activity patterns are stored

by the neural network, later this learned knowledge is combined with a semantic

indexing stage to retrieve traffic sequences based on queries by keywords.

The aim of this Chapter is to learn and retrieve a sequence of patterns that are

highly correlated over time, obtained from a traffic video sequence. A Hopfield-

type of Attractor Neural Network (ANN) with a small-world connectivity dis-

tribution is used. In order to achieve this objective one must face some typical

problems found in the literature on ANNs (Dominguez et al., 2007; Koroutchev

and Koroutcheva, 2006). First, in real-world applications, such as video com-

pression/retrieval, where patterns present high correlation, one has to deal with

sparse coding patterns. Sparse-coding is the representation of items by the strong

activation of a relatively small set of neurons (Olshausen and Field, 2004). This

is a different subset of all available neurons when the patterns are uncorrelated.

On the one hand, this sparse-coding gives the model a biological plausibility

since the brain suggests a general sparse-coding strategy. Sparse-coding is also

favorable to increase the network capacity, because the cross-talk term between

stored patterns decreases. On the other hand, it is difficult to sustain a low rate
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of activity in ANNs and a control mechanism must be used (Dominguez and

Bollé, 1998). Second, the application suggested requires learning a sequence of

time-correlated patterns. The noise induced by the overlap between patterns is

much larger for correlated patterns than for random patterns (Hertz et al., 1991).

This implies that the network capacity drops down to an asymptotically vanish-

ing value. Correlations between the training patterns, as it happens for a video

sequence, worsens the performance of the network since the cross-talk term can

yield high values in this case (Trappenberg, 2002).

The contribution of this Chapter is twofold. First, a variant of the pseudo-

inverse approach is introduced to learn/retrieve a sequence of correlated cyclic

patterns (as is the case for a video sequence) using a sparse-coding ANN with a

small-world topology. Second, to demonstrate the feasibility of this approach for

the storage and retrieval of traffic videos where the frames are codified as variable-

activity patterns as studied in the previous Chapter. The proposed model for this

problem avoids the segmentation and tracking of the involved targets and also

some closely related difficulties.

6.2 Proposed model

6.2.1 Neural coding

A network with N neurons and a fixed number of K < N synaptic connections

per neuron is considered. At any given discrete time t, the network state is defined

by the set of N independent binary neurons ~τ t = {τ ti ∈ [0, 1] ; i = 0, . . . , N − 1},
each one active or inactive denoted respectively by the state 1 or 0. The aim

of the network is to retrieve a sequence of correlated patterns (in this case, the

consecutive frames of the video sequence) {~ηµ, µ = 1, . . . , P} that have been

stored during a learning process. Each pattern ~ηµ = {ηµi ∈ [0, 1] ; i = 1, . . . , N}
is a set of biased binary variables with sparseness probability:

p(ηµi = 1) = aµ, p(ηµi = 0) = 1− aµ. (6.1)

The mean activity for each pattern µ is aµ =
∑N

i ηµi /N ≡ 〈ηµ〉. The neural

activity for any time t is given by the mean: qt =
∑N

i τ ti /N ≡ 〈τ t〉.
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6.2.2 Network topology

The synaptic couplings between the neurons i and j are given by the adjacency

matrix Jij ≡ CijWij, where the topology matrix C = {Cij ∈ [0, 1]} describes

the connection structure of the neural network and W = {Wij} is the matrix

of learning weights. The topology matrix contains two types of links: the local

and the random ones, respectively. The local links connect each neuron to its Kl

nearest neighbors in a closed ring, while the random links connect each neuron

to Kr others uniformly distributed in the network. Hence, the network degree is

K = Kl+Kr. The network topology is then characterized by two parameters, the

connectivity ratio γ and the randomness ratio ω, which are respectively defined

by:

γ = K/N, ω = Kr/K, (6.2)

where ω plays the role of a rewiring probability in the small-world model (Watts

and Strogatz, 1998).

The storage cost of this network is |J| = N×K if the matrix J is implemented

as an adjacency list, where all neurons have K neighbors.

6.2.3 Retrieval dynamics

The task of the network is to retrieve the whole learned sequence of patterns (i.e.,

the full video sequence) starting from an initial neuron state ~τ 0 which is a given

seed frame or a state close to it. The retrieval is achieved through the noiseless

neuron dynamics:

τ t+1
i = Θ(ht

i − θti), (6.3)

ht
i ≡

1

K

∑

j

Jij

τ tj − qtj
√

Qt
j

, i = 1, . . . , N, (6.4)

where ht
i denotes the local field at neuron i and time t, and θi is its firing threshold.

The local mean neural activity is qti = 〈τ t〉i, and its variance is Qt
i = V ar(τ t)i.

The local mean is given by spatial averaging: 〈f t〉i ≡
∑

j Cijf
t
j/N =

∑

k∈Ci
f t
k/K,
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for any given function f of the neuron sites. Here the step function is used:

Θ(x) =

{

1, x ≥ 0

0, x < 0.
(6.5)

For convenience, in the Chapter the normalized variables are used, where the

site and time dependence are implicit:

σ ≡ τ − q√
Q

, q ≡ 〈τ〉, Q ≡ V ar(τ) = q(1− q) (6.6)

ξ ≡ η − a√
A

, a ≡ 〈η〉, A ≡ V ar(η) = a(1− a), (6.7)

where a and q are the pattern and neural activities, respectively. The averages

computed in this Chapter run over different ensembles, and are indicated in each

case.

6.2.4 Learning dynamics

To state the proposed learning rule for storing cyclic patterns which are highly

correlated, as is the case for a video sequence, one will recall the expression of

the weights for the standard case (static and uncorrelated patterns), and then

two straightforward extensions: static and correlated patterns, and cyclic and

uncorrelated patterns. Cyclic patterns correspond to sequences of patterns of

variable activities, with periodic conditions (C. Molter and Bersini, 2005), that

means, the next to the last pattern is the first one, then ξµ+P = ξµ.

If the network learns a set P = αK of static and uncorrelated patterns,

〈ξµξν〉 = 0, these are stored by the network couplings Wij using the classical

Hebbian rule (Amit, 1989) for the Hopfield model:

Wij =
1

N

P
∑

µ=1

ξµi ξ
µ
j . (6.8)

This rule for learning the weights can be generalized introducing a P ×P matrix

Aµν in the following way:

Wij =
1

N

P
∑

µ,ν=1

ξµi Aµνξ
ν
j . (6.9)
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The standard case, given by Eq. (6.8), is obtained by using an identity matrix

AI
µν = δµν .

For the situation of learning static and correlated patterns, the pseudo-inverse

approach (Hertz et al., 1991) is a standard method to orthogonalize (i.e. to

extract) the correlated patterns, and the matrix Aµν is computed as follows:

AC
µν = O−1

µν , Oµν ≡ 1

N

N
∑

i

ξµi ξ
ν
i , (6.10)

where O is the P × P patterns overlap matrix.

For the case of learning cyclic (sequential with periodic conditions) and uncor-

related patterns the former Hebbian rule, Eq. (6.8), combined with a row-shifting

schema of the identity matrix can be applied (Amit, 1989):

AS
µ+1,ν = δµν , ∀µ ∈ [1, .., P − 1], A1,ν = δP,ν ∀ν ∈ [1, .., P ], (6.11)

In the case of video sequences, one has cycles (or sequences of patterns) where

there is a high temporal correlation between the successive frames. For this

reason, a heuristic is proposed where the learning weights are computed by com-

bining the pseudo-inverse approach with a row-shifting schema, as the one used

for cyclic patterns. The proposed heuristic for this case (i.e. cycles and correlated

patterns) has the following four steps:

1. Obtain the pattern overlap matrix O.

2. Compute its inverse matrix O−1.

3. Rotate forwards cyclically the rows of O−1 to obtain a new matrix M .

4. Substitute matrix A by the new matrix M in Eq. (6.9) to compute the

weights matrix W for the video sequence to be learned.

The previous stages are detailed next. First, the P × P overlap matrix O,

describing the video sequence is computed by Eq. (6.10), and its inverse matrix

O−1 is obtained next. This approach is thought to get fixed point solutions.

However, if one is seeking a limit cycle solution (i.e. retrieving the whole sequence
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of frames cyclically), then one must benefit from the interactions between one

frame and the next one in the video. Therefore, the elements of the O−1 matrix

are shifted as shown schematically in the following equations:

AV
µ+1,ν = O−1

µν , µ ∈ [1, .., P − 1], AV
1,ν = O−1

P,ν, ∀ν ∈ [1, .., P ], (6.12)

obtaining the matrix AV . The previous rule takes into account the dominant

terms in the infra-diagonal positions of the matrix AV . The sub-dominant terms

account for the orthogonalization of the matrix O−1. It is worth to note that

the pseudo-inverse rule is a not local matrix, because the connections between

every two neurons depend on the other neurons; it is also a non iterative rule, all

patterns must be learned at the beginning of the retrieval process.

The learned weight matrix W is now calculated according to the rule in

Eq. (6.9), where Aµν is computed by applying the row-shifting schema given by

Eq. (6.12). The learning stage displays slow dynamics, being stationary within

the time scale of the faster retrieval stage, as shown by Eq. (6.3). A stochastic

macro-dynamics takes place due to the extensive learning of P = αK patterns,

where α is the load ratio.

6.2.5 Threshold strategies

In order to retrieve patterns with low activity, is necessary to use an adequate

threshold of firing. If firing is not controlled, the neural activity could be higher

(lower) than the pattern activity, whenever the threshold is too small (large).

The more sparse the code is, the more sensitive is the interval where the

threshold can move (Dominguez and Bollé, 1998). On the one hand, one could

use an optimal manually-chosen threshold, where for each learned pattern and

initial condition, the retrieval is maximized. This is not a realistic strategy, since

the neural network is not supposed to know the patterns during the retrieval

process. Thus, a simple and convenient solution is to use a fixed value for the

threshold. The value of θi = 1 for the threshold was obtained experimentally for

a sparseness ratio of a ∼ 0.1, which is the mean sparseness of the frames in the

analyzed videos.
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6.2.6 The information measures

In order to evaluate the network retrieval performance, two measures are consid-

ered: the global overlap and the load ratio. The overlap is used as a temporal

measure of information, which is adequate to describe instantaneously the net-

work ability to retrieve each frame of the video. In this case, the overlap mt
µ

between the neural state σt at time t and the frame ξµ is:

mt
µ ≡ 1

N

N
∑

i

ξµi σ
t
i , (6.13)

which is the normalized statistical correlation between the learned frame ηµi and

the neural state τ ti at a given iteration t in the sequence cycle. One lets the net-

work evolve according to Eqs. (6.3) and (6.4), and measures the overlap between

the network states and the video frames running over a whole sequence cycle of

the learned video. The neural states {~τ t, t = 1, . . . , P} are compared cyclically

with the learned frames {~ηµ, µ = 1, . . . , P}. The network starts in an initial

condition close to a given frame, say τ t=1 ∼ ηµ=1, so that the time and frame

label are synchronized, and the overlap for each frame at cycle c = 0, 1, 2... is:

mc
µ ≡ 1

N

N
∑

i

ξµi σ
µ+cP
i . (6.14)

The global overlap is defined as:

mc = 〈mc
µ〉 ≡

1

P

P
∑

µ=1

mc
µ (6.15)

and it measures the network ability to retrieve the whole sequence of patterns.

After a transient period of time, the network dynamics converges to a stationary

regime where the global overlap mc does not change in the next cycles. When this

global overlap between the whole set of patterns (i.e. the video sequence) and

their corresponding neural states ism = 1, the network has retrieved the complete

sequence without noise. In this case, all the network states correspond perfectly

to the frames of the video. When the global overlap m is zero, the network

carries no macroscopic order. In this case, the video can not be retrieved. For

intermediates values of m, where 0 < m < 1, the video can be partially recovered
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with a given level of noise (when m increases, a higher number of frames can be

perfectly retrieved).

One is also interested in the load ratio α ≡ P/K, that accounts for the

storage capacity of the network. This ratio depends on the size of the video,

which is P ×N (i.e. the number of frames by their spatial resolution, where this

resolution coincides with the number of neurons), and the amount of physical

memory necessary to store the video, which is K ×N representing the adjacency

lists sizes (see the network topology subsection).

When the number of stored patterns increases, the noise due to interference

between patterns also increases and the network is not able to retrieve them.

Thus, the overlap m goes to zero. A good trade-off between a negligible noise (i.e

when 1−m ∼ 0) and a large video sequence (i.e. a high value of α) is desirable

for any practical-purpose model.

6.3 Experimental evaluation

The learning times to store the traffic video sequences were very high for the

network considered. In the experiments, this time was highly dependent on the

parameter K, as well as the number of learned patterns P , and it varies between

100 min and near 2000 min depending on the network degree considered. In fact

the learning time is of order O(N ×K ×P 2), according to Eq. (6.12). Two video

sequences for the experiments have been used: the first one, Kiev, corresponds

to a densely transited crossroad zone in Kiev, Ukraine; and the second one,

roundabout, corresponds to a roundabout area in a Spanish city. Different model

parameter configurations were tested for both sequences to get more insight on

how the network behaved during the learning and retrieval of correlated cyclic

frames. The Kiev video sequence was captured by a live camera demo site from

Axis company:

http://www.axis.com/es/solutions/video/gallery.htm.

It was recorded by an Axis Q1755 Network Camera as an AVI video and consisted

of 1835 frames at 25 frames per second, that is 73.4 seconds of recording. The

original roundabout video sequence consisted of about 15 min of video which was
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recorded with a conventional camera at 30 fps with frames and only 650 frames

have been used, that is 21.7 seconds of video for the experiments.

For the two analyzed sequences, the video pre-processing included three stages:

(1) The frames of the initial color video sequence were converted into binary

patterns and stored as PNG images with dimension 384 × 356 black-and-

white pixels for the Kiev sequence and 640× 480 pixels for the roundabout

sequence.

(2) The Kiev frames were resized to 96×89 = 8, 544 pixels and the roundabout

frames to 80× 106 pixels, in order to get a reasonable network size for the

simulations.

(3) A new subsequence of frames was created by uniformly sub-sampling the

sequence obtained in the previous stage using a natural factor f , where

f ≥ 1 (i.e., the video subsequence is built with the original frames: 1,

1+f , 1+2f , ...). The goal is to ensure that the network is able to recover

the whole stored sequence of frames. Consequently, one starts testing with

f=1, then f=2, and so on, until the condition holds.

For the simulations a system with an Intel Core 2 Duo CPU E6750 at 2.66GHz

and with 2GB of physical memory has been used. The Octave image package

(Octave, 2011) was used for processing the image files into text files with the 0/1

binary format as the neuron states required. The network parameters used in the

Kiev simulations were N = 8544, K = 4250, θi = 1.0 for a sparseness a = 0.10.

For this network size, the video sequence has been recovered each f = 5 frames,

that is: 1835
5

= 367 frames. For the roundabout simulations a similar network were

used with N = 8480, K = 4240, θi = 1.0 for a sparseness a = 0.07, recovering

the video sequence each f = 5 frames, that is: 650
5

= 130 frames. The video

output comparing the original with the retrieved frames and the frames in text

format can be found at: http://dl.dropbox.com/u/11890025/video5.zip for the

Kiev sequence and at http://dl.dropbox.com/u/11890025/roundabout.zip for the

roundabout sequence.

Fig. 6.1 and Fig. 6.2 show some sample post-processed frames of the stored

and successfully retrieved video sequences for the Kiev and roundabout sequences,
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Figure 6.1: Some retrieved sample frames (from left to right, frame numbers 1,

21, 41 and 61) of the Kiev crossroad traffic video sequence for f = 5. Initial

overlap m1 = 0.5. Top panels: first cycle. Bottom panels: second cycle.

respectively. In Fig. 6.1 the seed used to start the retrieval was a noisy frame (top-

left panel), with initial overlap mc=0
µ=1 = 0.5. During the first cycle, the network

is correcting the wrong pixels, (frame numbers 1, 21, 41 and 61 are presented in

the top panels) mc=0 ∼ 0.93, see Fig. 6.3-left. After a complete cycle the overlap

reaches the stationary value of mc=1 ∼ 0.99 (the same frames are shown in the

bottom panels for the second cycle).

For the roundabout sequence in Fig. 6.2 the seed was a noisy frame (top-left

panel), with initial overlap mc=0
µ=1 = 0.4. The frame numbers 1, 11, 21 and 31 are

presented in the top panels for mc=0 ∼ 0.97, and bottom panels for the second

cycle with a stationary value of mc=1 ∼ 0.98, see Fig. 6.3-right.

6.3.1 Influence of the topology on the global overlap and

the learning time

Using the previous network parameter setting (N ,K,θi,a), Table 6.1 shows the

dependence of global overlap and processing time on the random connections

parameter ω at the learning stage.

As it can be observed, there is no significant difference between the processing

time for learning the video with different values of ω and m parameters. This
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Figure 6.2: Some retrieved sample frames (from left to right, frame numbers 1,

11, 21 and 31) of the roundabout traffic video sequence for f = 5. Initial overlap

m1 = 0.4. Top panels: first cycle. Bottom panels: second cycle.

Kiev crossroad Roundabout

ω m learning time ω m learning time

0.0 0.32117 499m39s 0.0 0.32060 100m19s

0.3 0.33677 500m08s 0.4 0.20104 101m01s

0.4 0.99751 500m25s 0.6 0.05548 101m43s

0.5 0.99767 501m30s 0.7 0.98344 102m50s

1.0 0.94742 504m27s 1.0 0.99732 104m51s

Table 6.1: Randomness ratio versus global overlap and learning time for the Kiev

crossroad and roundabout video sequences.
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6.3 Experimental evaluation

slight difference is only due to the larger times to construct random networks than

to construct local networks. The retrieval time for all cases was the same, around

5 minutes for the Kiev and 1 minute and a half for the roundabout sequences. In

all cases, the respective memory usages for the learning and retrieval stages are

about 14.3% and 10.4% of the whole computer memory, respectively.

One can conclude that, with a network with a randomness value of ω = 0.4,

the retrieval of the Kiev video sequence is possible and it saved considerably on

wiring costs as the small-world topology suggests. It is also interesting to remark

in Table 6.1 that the transition from confusion state (i.e. m ∼ 0) to the retrieval

state (i.e. m ∼ 1) forKiev traffic video happened around ω = 0.35. This is related

to an effective percolation of the information over all the network. Although the

network is always connected, for smaller values of the randomness parameter, the

synaptic strengths are not strong enough to percolate the information from some

pixels to every region of the neuron states. For the roundabout video sequence,

the randomness value for the transition from the confusion to the retrieval state,

ω = 0.7, is higher than in the Kiev video. This effect could be due to temporal

correlation between frames which is smaller for the roundabout video.

It has also been experimented with a simpler ”shifted-diagonal” Hebbian

learning matrix (C. Molter and Bersini, 2005) replacing the pseudo-inverse rule(see

Eqs. (6.9-6.11)). The maximal number of frames which could be retrieved for the

Kiev video with N = 8544, K = 4250, ω = 0.5 and with m ∼ 1, was about

P = 16. This choice is surely not appropriate for strongly correlated patterns

and other learning rules like covariance rule (Dayan and Willshaw, 1991) or the

Bayesian rule (Knoblauch, 2010) have been proposed to maximize the signal to

noise ratio for a class of associative memories. A comparison with these models

might be studied in a future work.

6.3.2 Robustness of the model with respect to the frame

activity

The robustness of the model was tested (i.e. how overlapped the curves of average

pattern and neural activities are along the frames of the video sequence) for a

given network configuration: N = 8544, K = 4250 and ω = 0.4. Fig. 6.3-left
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Figure 6.3: Left: Kiev crossroad sequence: Plot of overlapped pattern and

neural activities against frames for N = 8544, K = 4250 and ω = 0.4. Initial

overlap mµ=1 = 0.5. Right: Roundabout: Plot of overlapped pattern and neural

activities against frames for N = 8480, K = 4240 and ω = 0.7. Initial overlap

mµ=1 = 0.4. (Color on-line)

shows that the model is robust against a variable frame activity level, where

the normalized activity (i.e. sparseness) of the frames aµ/a varies in the range

0.4 < aµ/a < 1.6). This graphic can be partitioned in three regions according the

numbering of the frames. In a first region, where m (black line) varies from 0.55

to around 0.95 (from first frame to around frame 20), the average pattern (red

line) and the neural (blue line) activities are uncorrelated and pattern activity is

much higher than temporal neural activity. In a second region, where the value of

m remains stable around 0.95 (from frame 21 to frame 225), the average pattern

and neural activities are highly correlated but pattern activity is slightly larger

than temporal neural activity. Finally, in the third region, where m equals to one

from 226 to the end of the video, the pattern and neural activities are exactly

coincident despite the significant changes in frame activity over time. The global

overlap for the cycle is mc = 0.93.

A similar curve for the roundabout sequence is presented in Fig. 6.3-right. for

a network configuration: N = 8480, K = 4240 and ω = 0.4. The overall behavior

is similar to the Kiev sequence.
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6.4 Conclusion

A Hopfield-type of Attractor Neural Network was used with a small-world con-

nectivity distribution to learn and retrieve a sequence of highly correlated pat-

terns. For this network model, a new weight learning heuristic which combines

the pseudo-inverse approach with a row-shifting schema has been presented. The

influence of the random connectivity ratio on the retrieval quality and learning

time has been studied. This approach has been successfully tested for differ-

ent combinations of the involved parameters on a complex traffic video sequence.

Moreover, it was demonstrated to be robust with respect to highly-variable frame

activity.

Another additional conclusion of this Chapter is that the more spatially cor-

related the frames are in average, the smaller is the range of the interaction

(randomness parameter ω) which optimizes the retrieval of the video. The oppo-

site also holds: the less spatially correlated the patterns are, the higher should

be the value of ω. For instance, if there are large regions in the frames with high

activity (i.e., a huge truck or bus in the corner) in a bulk of still background

of the frame, then it is strongly spatially correlated. On the other hand, the

threshold strategy used in the model is fundamental, since the dependency of θ

with the neural activity (as well as with the pattern activity) is set in such a

way that the network dynamics is self-controlled and it does not need from any

human participation. For example, with the typical activity value used a = 0.1 in

the traffic video, θ ∼ 1 was set in the neuron thresholds. For a uniform activity

degree in the frames (i.e. a = 1/2), no threshold is needed (θ ∼ 0). Finally, for

extremely sparse code (where a → 0), the threshold increases to θ ∼ 1/
√
a.

Automatic video-based traffic monitoring systems are an alternative to loop

detectors. Video-based systems provide updated global information on the an-

alyzed traffic scene and also specific informations of the tracked vehicles. An

interesting application of such systems is content-based traffic video retrieval,

where using a query video, it is possible to retrieve another similar video from

a database using some types of extracted features from the videos (i.e. textural

information, motion trajectories of cars, etc). This can be useful for surveil-

lance applications where one is interested in detecting certain events on the video
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(i.e. accidents, congestions, etc). To achieve this goal, most approaches follow

a feature-extraction approach which needs to segment the cars in the video and

to track them individually. In a different way, using a holistic method like the

proposed in this Chapter one can retrieve a complete video from a query frame,

even if this frame represents a noisy scene of the video.

As the presented approach is holistic in the sense that no segmentation and

feature extraction from the vehicles is required, one has to consider other holistic

approaches applied to traffic videos for comparison purposes. The mentioned

papers by Chan and Vasconcelos (2005) and Xie et al. (2004) do not segment the

vehicles in the video, but they extract some global features from it (in particular,

the complete motion information contained in the video), which are used for the

retrieval task. They retrieve instances of traffic patterns using query videos; while

in the proposed model the video can be retrieved using only a unique (possibly

noisy) query frame. Moreover, the two compared papers do not quantitatively

measure the video retrieval quality as one does using the global overlap. The

proposed solution is suitable for the mentioned traffic application since it produces

accurate retrieval results at reasonable time. However, the required learning

times are still very large and the system needs improvement to be competitive

with respect to those classical methods which segment the scene and track the

moving targets. Moreover, the proposal can be now suited only to those traffic

applications where the learning stage can be carried out off-line. Consequently,

the use of complementary more-efficient strategies to compress the amount of

memory required to store the patterns vectors like look-up tables (Knoblauch

et al., 2010) or hashing techniques like LSH (Gionis et al., 1999) will be considered

as future work.
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Chapter 7

Conclusions and Summary

The model of Attractor Neural Network (ANN) on the small-world topology

(local and random connectivity) has been investigated. The metric topology of

network allows sustaining blocks of positive/negative activity in different regions

of the network, and blocks of positive/negative overlaps for the case of memory

networks. This block ordering is stable and compete with the global ordering

according the topological parameters of the network. The proposal of a block-

like structure could be closely related to biological brain systems, on the one hand,

where different sensory blocks of patterns (arising from several cortical structures)

may be independently retrieved. On the other hand, there could be a relation

with the cortical mechanism of binding that allows information previously stored

in different regions to be shared between pathways to accomplish a structured

and unified representation.

In ANNs, the issue of retrieving mixed patterns randomly distributed on the

network, has been discussed in the literature since the work of Amit (Amit, 1989),

for fully connected networks. In the context of spatially organized connectivity,

this problem has been addressed recently (Roudi and Treves, 2008), in a study

which discuss the retrieval of multiple patterns at the same time, each on one

part of the network, with graded response neurons. This thesis has considered

the possibility of the coexistence of multiple local retrieval states of a unique

pattern/antipattern configuration according to the geometric connectivity of the

network. Different sectors of the pattern and anti-pattern can be retrieved in

different portions of a network, whenever the connections are mainly local.
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7.1 Summary of main results

The main results of this work can be summarized by chapter as follows:

Chapter 2 • Regions of opposite activity can be sustained in an Attractor
Neural Network with metric connectivity.

• The change of stability from the block to the global attractors
depends on the long-range character of the network connec-
tivity.

• A larger number of blocks emerges with the network dilution.

Chapter 3 • The Attractor Neural Network with metric connectivity, using
classic Hebbian learning, is able to retrieve patterns in blocks
of opposite overlaps structured in a pattern/antipattern con-
figuration.

• A new way to measure the local retrieval using a parameter
that is related to the fluctuation of the block overlaps has
been introduced.

• A transition from block retrieval to global retrieval occurs
when the storage ratio increases and the topology becomes
more random.

Chapter 4 • The sparse-coding network have retrieval abilities which are
strongly dependent on the firing threshold of the neurons. A
dynamical threshold that depends on the global activity of
the network, the local activity of the neuron’s neighborhood,
and the sparseness of the pattern coding, has been used

• The structured information carried in the network has been
characterized according to the fluctuations of the local over-
laps, differentiating between bump and block phases.

• When the randomness in the network connectivity increases,
the phase-diagram shows a transition from local to global re-
trieval. Furthermore, the local phase splits in a bump phase
for low activity and block phase for high activity.
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7.2 Future research

Chapter 5 • The storage and retrieval abilities of the ANN are studied for
input patterns structured in objects with different levels of
activity.

• For this type of patterns the correlation is relevant and needs
to be addressed in order to improve the network performance.

• In order to properly sustain the different levels of activity
of the object structures along the network, further threshold
strategies have to be developed to enhance the performance
of the network.

Chapter 6 • The feasibility of storing and retrieving automotive traffic
videos using a sparse-coding ANN with a small-world topol-
ogy demonstrated.

• A variant of the pseudo-inverse approach was introduced in
order to learn/retrieve the sequence of correlated cyclic pat-
terns of the video sequence.

• This approach has been successfully tested on a complex pat-
tern, the traffic video sequences, for different combinations of
the involved parameters. The suggested approach has also
demonstrated to be robust with respect to highly-variable
frame activity.

7.2 Future research

The robustness of this block phase for a whole set of topologies (for instance,

scale-free networks) or neural models (for instance, integrate and fire neurons)

worth to be checked. Also a systematic analysis of the probabilistic network

dynamics, with a noise characterized by a temperature, remains to be done.

These are subjects of future research. It is also worth to further improve the

model presented in Chapter 5, for both theoretical neuroscience conjectures of

information processing, as well as for implementation purposes, given that the

variable-activity coding distribution can be found in real world data.
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Conclusiones y sumario

El modelo de Red Neuronal Atractora (RNA) usando la topoloǵıa “small-world”

(conectividad local y aleatoria) ha sido investigado. La topoloǵıa métrica de la red

permite mantener bloques de actividad positiva/negativa en diferentes regiones

de la red. Este ordenamiento en bloques de actividad es estable y compite con el

ordenamiento global, según los parámetros topológicos de la red. La propuesta

de una estructura de “bloques” podŕıa estar estrechamente relacionada con los

sistemas biológicos del cerebro, por un lado, cuando diferentes bloques sensori-

ales (provenientes de diferentes estructuras corticales) pueden ser independiente

mantenidos. Por otro lado, podŕıa haber una relación con el mecanismo de en-

lace (binding problem) que permite que la información previamente almacenada

en diferentes regiones del cerebro sea compartida para lograr una representación

unificada.

En RNAs, el tema de la recuperación de patrones mixtos distribuidos aleato-

riamente en la red, se ha discutido en la literatura desde los trabajos de Amit

(1989), con redes totalmente conectadas. En el contexto de redes con conectivi-

dad espacialmente organizada, este problema ha sido abordado recientemente por

Roudi and Treves (2008) en un estudio que discute la recuperación de múltiples

patrones al mismo tiempo, cada uno en una parte de la red, usando neuronas de

respuesta graduada. En esta tesis se ha considerado la posibilidad de la coex-

istencia de varios estados de recuperación local de acuerdo a una configuración

patrón/anti-patrón de acuerdo con la conectividad geométrica de la red. Difer-

entes sectores del patrón y anti-patrón pueden ser recuperados en diferentes partes

de una red, siempre que las conexiones sean primordialmente locales. Además, se

propuso una forma de medir la recuperación local utilizando un parámetro que

está relacionado con la fluctuación de los solapamientos (overlap) de los bloques.
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7.3 Recapitulación de los resultados

Los principales resultados de cada caṕıtulo se resumen de la siguiente manera:

Caṕıtulo 2 • Regiones de actividad opuesta pueden ser sostenidas en una
Red Neuronal Atractora con conectividad métrica.

• El cambio de estabilidad del attractor en bloque al atractor
global depende del carácter de largo alcance de conectividad
de la red.

• Un mayor número de bloques surge con la dilución de la red.

Caṕıtulo 3 • La Red Neuronal Atractora Hebbiana con conectividad
métrica, es capaz de recuperar patrones en bloques con so-
lapamientos opuestos.

• Se introdujo un nuevo método para medir la recuperación lo-
cal utilizando un parámetro que está relacionado con la fluc-
tuación del solapamiento de los bloques.

• La transición de la recuperación de bloque para la recu-
peración global ocurre cuando aumentan los patrones alma-
cenados y la topoloǵıa se vuelve aleatoria.

Caṕıtulo 4 • La capacidad de recuperación de una red para patrones con
codificación de baja actividad (sparse-coding), depende en
gran medida del umbral de disparo de las neuronas. Se utilizó
un umbral dinámico que depende de la actividad global de la
red, la actividad local del vecindario de las neuronas, y de la
actividad de los patrónes.

• El tipo de estructura de los estados neuronales se ha carac-
terizado utilizando un parámetro que está relacionado con las
fluctuaciones de los solapamientos locales, diferenciando entre
las fases de bloque y de “bumps”.

• Cuando aumenta la aleatoriedad de la red, el diagrama de
fases muestra una transición desde la recuperación local a la
global. Por otra parte, la fase local se divide en una fase
de “bumps” para baja actividad y fase de bloques para alta
actividad.
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Caṕıtulo 5 • Se estudió la capacidad de almacenamiento y recuperación de
la RNA para patrones de entrada estructurados en objetos
con diferentes niveles de actividad.

• Para este tipo de patrones la correlación es relevante y debe
ser tratada con el fin de mejorar el rendimiento de la red.

• Es necesario desarrollar nuevas estrategias de umbral a fin de
mantener correctamente los diferentes niveles de actividad a
lo largo de la red para los diferentes objetos estructurados.

Caṕıtulo 6 • Se demostró la factibilidad de almacenar y recuperar videos de
tráfico automoviĺıstico utilizando una RNA con una topoloǵıa
“small-world” y codificación “sparse”.

• Se introdujo una variante del enfoque pseudo-inverso para
aprender/recuperar la secuencia de patrones ćıclicos correla-
cionados de la secuencia del v́ıdeo.

• Este enfoque ha sido probado con éxito en patrones comple-
jos, como es el caso de las secuencias de v́ıdeo de tráfico,
para diferentes combinaciones de los parámetros involucra-
dos. También ha demostrado ser robusto con respecto a la
actividad altamente variable de los fotogramas del v́ıdeo.

7.4 Trabajo futuro

Vale la pena investigar la robustez de esta fase de bloque para un conjunto de

topoloǵıas (ej., redes libre de escala) o para diferentes modelos neuronales (ej.,

neuronas de integración y disparo). También queda por hacer un análisis sis-

temático de la dinámica de una red probabiĺıstica, caracterizada por una temper-

atura. Estos son temas de investigación futura. También vale la pena mejorar

el modelo presentado en el Caṕıtulo 5, tanto para conjeturar acerca del proce-

samiento neuronal de la información, aśı como para fines de implementacion,

teniendo en cuenta que la codificación de actividad variable se pueden encontrar

en la mayoŕıa de las aplicaciones reales.
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tual information and topology 1: Asymmetric network. In Yin, F., Wang, J.,

and Guo, C., editors, Advances in Neural Networks - ISNN04, volume 3173 of

LNCS, pages 14–19, Berlin. 30

Dominguez, D., Koroutchev, K., Serrano, E., and Rodŕıguez, F. B. (2007). Infor-
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González, M., Dominguez, D., and Rodŕıguez, F. B. (2008a). Block activity in

metric neural networks. WASET Proceedings, 27:56–59. 20
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