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hermano Pepe, la única persona en el mundo capaz de unir dos cables con una
servilleta de papel.

A mi hermano Nacho, cuyo camino ha marcado siempre el mı́o. Supongo que
esta tesis supone una divergencia en nuestros caminos. Tengo que reconocer que
a veces me he llegado a plantear si esta tesis no era más que una forma de dife-
renciarme de él o incluso un intento (sano) de superarle, lo cual, por fin he com-
prendido, es imposible.

Para toda mi familia, que son muchos y no tengo espacio suficiente para todos.
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Introducción

Presentación

A principios de los años ochenta, L. van den Dries, A. Pillay y C. Steinhorn,
entre otros, observaron que, dada una expansión de un cuerpo realmente
cerrado, pod́ıan ser deducidas propiedades similares a las de los conjuntos
y aplicaciones semialgebraicas tan sólo exigiendo a dicha expansión que los
conjuntos definibles en dimensión uno fuesen una unión finita de intervalos
y puntos. A tales estructuras se las conoceŕıa más tarde como estructuras o-
minimales, una apasionante área de investigación donde confluyen la teoŕıa
de modelos y la geometŕıa algebraica real. Existen dos ĺıneas fundamentales
de investigación sobre estructuras o-minimales: una se centra en la búsqueda
de nuevos ejemplos de estructuras o-minimales, la otra se ocupa del estudio
de los conjuntos y estructuras definibles. El trabajo de A. Wilkie ha inspi-
rado un gran número de resultados en la primera ĺınea, siendo de especial
importancia [37] donde el autor prueba que el cuerpo de los reales expandido
con la función exponencial es o-minimal. También caben destacar en esta
dirección los resultados de van den Dries, Macintyre y Marker en [16] y los
de Rolin, Speissegger y Wilkie en [34].

Esta memoria está dedicada a la segunda ĺınea de investigación. Re-
sultados básicos en esta ĺınea son el Teorema de descomposición celular y
el Teorema de triangulación, probados por van den Dries, Pillay, Steinhorn
y Knight. Más recientemente se ha llevado a cabo un profundo estudio
de las propiedades topológicas de conjuntos definibles, como la existencia
de teoŕıas de homoloǵıa y cohomoloǵıa en el contexto o-minimal. El desa-
rrollo de estas herramientas de topoloǵıa algebraica en un cuerpo realmente
cerrado no arquimediano no es inmediato: recuérdese que ya incluso para
la definición clásica de aplicación inducida en homoloǵıa por una función
continua es necesario usar el lema de Lebesgue (véase la introducción de la
Sección 1.6). El tema principal de esta tesis es la homotoṕıa o-minimal. H.
Delfs y M. Knebusch desarrollaron en [13] una teoŕıa de homotoṕıa semialge-
braica. Recordemos brevemente los principales resultados de dicho trabajo.
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Dado un conjunto semialgebraico punteado (X,x) sobre un cuerpo realmente
cerrado R, definimos de forma natural el n-ésimo grupo de homotoṕıa semi-
algebraica πn(X,x)sa al igual que en el caso clásico pero usando tan sólo
aplicaciones semialgebraicas y homotoṕıas semialgebraicas. Al contrario de
lo que ocurre en el desarrollo de la homoloǵıa, con la definición anterior
no surge ningún problema a la hora de definir la aplicación inducida en
homotoṕıa por una aplicación semialgebraica continua. Sin embargo, en
esta ocasión aparecen otras cuestiones muy naturales: ¿tienen estos grupos
de homotoṕıa semialgebraica alguna relación con los clásicos?, ¿tienen un
buen comportamiento bajo extensiones de cuerpos realmente cerrados? Los
autores responden afirmativamente ambas preguntas con los siguientes dos
interesantes resultados (véanse los enunciados generales en 2.1.1 y 2.1.2).
En el primero de ellos, prueban que dado un cuerpo realmente cerrado S
extendiendo a R, la aplicación πn(X,x)sa → πn(X(S), x)sa : [f ] 7→ [f(S)]
es un isomorfismo, donde X(S) y f(S) denotan la realización en S de X
y f respectivamente. En el segundo resultado, muestran que si R = R
entonces la aplicación πn(X,x)sa → πn(X,x) : [f ] 7→ [f ] es un isomor-
fismo. Para probar estos teoremas Delfs y Knebusch hacen uso tanto de la
modelo completitud de la teoŕıa de cuerpos realmente cerrados (o principio
de Tarski-Seidenberg) como del número de Lebesgue, los cuales no están
disponibles en el contexto o-minimal. Por tanto, no podemos aplicar estos
métodos para desarrollar una teoŕıa de homotoṕıa o-minimal. De hecho, tan
sólo el grupo fundamental o-minimal pudo ser considerado en [20] y [7], eso
śı, con fuertes consecuencias en el estudio de grupos definibles como veremos
en el siguiente párrafo.

El estudio de grupos definibles se enmarca también en la segunda ĺınea
de investigación antes mencionada. En [32], A. Pillay prueba que todo grupo
definible G en una estructura o-minimal está dotado de una estructura de
variedad definible que convierte a G en un grupo topológico. Por tanto, si el
cuerpo de nuestra estructura o-minimal es el cuerpo de los reales, entonces
obtenemos un grupo de Lie. Este resultado supuso el punto de partida del
estudio de los grupos definibles y, en particular, del estudio de sus analoǵıas
con los grupos de Lie. Para este propósito, las herramientas de topoloǵıa
algebraica han resultado ser muy útiles. Por ejemplo, el siguiente resul-
tado de M. Otero y M. Edmundo en [20] es uno de los primeros mostrando
la mencionada analoǵıa. Sea G un grupo definible abeliano definiblemente
compacto y definible conexo de dimensión n en una estructura o-minimal.
Entonces tanto el álgebra de cohomoloǵıa sobre Q y el grupo fundamental
o-minimal de G son isomorfos respectivamente al álgebra de cohomoloǵıa
sobre Q y al grupo fundamental de un toro de dimensión n. A partir de
estos isomorfismos deducen que la torsión de G es isomorfa a la torsión de
un toro de dimensión n. Actualmente, las conjeturas de Pillay, formuladas
en [33] y resueltas positivamente en [9] y [23] (basándose en el trabajo de
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diversos autores), han conseguido estrechar aún más la relación existente
entre los grupos de Lie y los grupos definibles. En particular, se conoce que
todo grupo definible definiblemente compacto es una extensión de un grupo
de Lie compacto por un subgrupo normal divisible y sin torsión. Además la
dimensión o-minimal del grupo definible coincide con la dimensión del grupo
de Lie.

Por otro lado, en [13], H. Delfs y M. Knebusch introducen una nueva ca-
tegoŕıa que extiende a la semialgebraica y lo suficientemente general como
para trabajar con objetos naturales como pueden ser los recubrimentos de
“grado infinito“. Intuitivamente, los autores definen los espacios locamente
semialgebraicos como aquellos que se obtienen pegando adecuadamente in-
finitos conjuntos semialgebraicos. En el contexto o-minimal tenemos la
situación correspondiente, es decir, la categoŕıa definible no es lo suficien-
temente grande como para trabajar con objetos naturales como ocurre con
los recubrimentos de grado infinito. Sin embargo, la teoŕıa de espacios lo-
calmente semialgebraicos no ha sido extendida formalmente al ambiente o-
minimal, aunque a lo largo del estudio de grupos definibles han surgido
algunas nociones relacionadas. Este es el caso de los grupos

∨
-definibles,

usados por Y. Peterzil, A. Pillay y S. Starchenko en [31] y [30] como una
herramienta para el estudio de problemas de interpretabilidad. Después, M.
Edmundo introduce en [17] una noción restringida de grupo

∨
-definible, los

grupos “localmente definibles”, y desarrolla toda una teoŕıa sobre ellos. Sin
embargo, para trabajar con conceptos topológicos, la noción de grupo

∨
-

definible es demasiado ŕıgida, como prueba la existencia de tres definiciones
no equivalentes de conexión (véase la Sección 3.6 más abajo) establecidas
para estos grupos en la literatura (véanse [17],[27] y [31]).

Conclusiones

Los principales resultados de esta memoria se centran en el Teorema de las
triangulaciones normales y sus aplicaciones, y la homotoṕıa o-minimal de
conjuntos definibles y su generalización a los espacios locamente definibles.
Pasemos ahora a describirlos brevemente. Fijemos una expansión o-minimal
R de un cuerpo realmente cerrado R y denotemos por R0 la estructura de
cuerpo ordenado de R. Cuando escribimos definible queremos decir definible
enR con parámetros. Todas las aplicaciones definibles se suponen continuas.

En el Caṕıtulo 1 probaremos el siguiente refinamiento del Teorema de
triangulación, el cual es nuevo también en el contexto semialgebraico (véase
el Teorema 1.1.5).

Teorema (Teorema de las triangulaciones normales). Sea K un com-
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plejo simplicial y sean S1, . . . , Sl subconjuntos definibles de su realización
|K|. Entonces, existen una subdivisión K ′ de K y un homeomorfismo de-
finible φ′ : |K ′| → |K| tales que
(i) (K ′, φ′) parte todos los subconjuntos S1, . . . , Sl y cada σ ∈ K,
(ii) para todo τ ∈ K ′ y σ ∈ K, si τ ⊂ σ entonces φ′(τ) ⊂ σ.

Independientemente del papel esencial que desempeña este resultado en el
desarrollo de la homotoṕıa o-minimal en el Caṕıtulo 2, el Teorema de trian-
gulaciones normales puede ser de interés por śı mismo como muestra la si-
guiente situación. Como ya sabemos, una herramienta básica para el estudio
de conjuntos definibles es el Teorema de triangulación: dado un conjuntos
definible S y dados algunos subconjuntos definibles S1, . . . , Sl de S, existe
un complejo simplical K y un homeomorfismo definible φ : |K| → S que
parte S1, . . . , Sl. Un análisis más profundo de S podŕıa llevarnos a con-
siderar nuevos subconjuntos definibles S′1, . . . , S

′
l′ de S. En esta situación,

nos gustaŕıa preservar de alguna forma la triangulación ya obtenida y par-
tir al mismo tiempo los nuevos subconjuntos. Sin embargo, un nuevo uso
del Teorema de triangulación no puede ayudarnos en este caso. Es más,
técnicas como la repetición de subdivisiones baricéntricas no funcionan en
nuestro contexto ya que, ni disponemos de un número de Lebesgue, ni los
subconjuntos Si tienen por qué ser abiertos. Obviamente, el Teorema de la
triangulaciones normales resuelve este problema. Observamos también que
el Teorema de las triangulaciones normales puede darnos nueva información
incluso en el caso de que el cuerpo base de la estructura o-minimal sea R.

Aplicaremos primero el Teorema de las triangulaciones normales para
probar el siguiente resultado (véase el Teorema 1.5.5).

Corolario (Hauptvermutung semialgebraico). Sean K y L dos com-
plejos simpliciales cerrados en R y sea f : |K| → |L| un homeomorfismo
semialgebraico. Entonces f es semialgebraicamente homótopo a un isomor-
fismo simplicial g : |K ′| → |L′| entre subdivisiones K ′ y L′ de K y L,
respectivamente.

Como segunda aplicación del Teorema de las triangulaciones normales
mostraremos una prueba alternativa a aquella de A. Woerheide de la exis-
tencia de un funtor de homoloǵıa simplicial o-minimal (véase la Sección 1.6).

El resultado principal del Caṕıtulo 2 establece una relación entre los con-
juntos de homotoṕıa o-minimal y los conjuntos de homotoṕıa semialgebraica
(véase el Teorema 2.3.4). Para evitar un exceso de notación, mostramos aqúı
tan sólo una versión débil que, esperamos, dé una idea clara del resultado.

Teorema. Sean X e Y conjuntos semialgebraicos. Entonces,
(i) toda aplicación definible f : X → Y es definiblemente homotópica a una
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aplicación semialgebraica g : X → Y , y
(ii) cualesquiera aplicaciones semialgebraicas g1 : X → Y y g2 : X → Y
que son definiblemente homotópicas son también semialgebraicamente ho-
motópicas.

Como primera aplicación de este teorema estudiaremos la categoŕıa de
Lusternik-Schnirelmann (MSC 2000: 55M30) de conjuntos definibles. Por
lo que sabemos, esta es la primera vez que se estudia la LS-categoŕıa en
los contextos o-minimal y semialgebraico. La LS-categoŕıa de un conjunto
definible X, cat(X)R, es el menor entero m tal que X tiene un recubrimiento
de m+1 abiertos definibles, cada uno de ellos definiblemente contractible en
X a un punto. Probaremos el siguiente resultado (véase el Corolario 2.6.9).

Corolario 1. Sea X un conjunto semialgebraico definido sin parámetros.
Entonces cat(X)R = cat(X(R)), donde cat(X(R)) denota la LS-categoŕıa
clásica.

Como segunda aplicación del Teorema 2.3.4 (mencionado más arriba),
probamos que los grupos de homotoṕıa semialgebraica πn(X,x)R0 y los
grupos de homotoṕıa o-minimal πn(X,x)R de un conjunto semialgebraico
punteado (X,x) son isomorfos. Es decir, la aplicación ρ : πn(X,x)R0 →
πn(X,x)R : [f ] 7→ [f ] es un isomorfismo natural (véase el Teorema 2.4.1).
Usando este último resultado y aquellos de H. Delfs y M. Knebusch so-
bre homotoṕıa semialgebraica obtendremos lo siguiente (véase el Corolario
2.4.4).

Corolario 2. Sea (X,x) un conjunto punteado semialgebraico definido sin
parámetros. Entonces existe un isomorfismo natural entre el grupo de homo-
toṕıa clásico πn(X(R), x) y el grupo de homotoṕıa o-minimal πn(X(R), x)R

para todo n ≥ 1.

Las hipótesis del corolario anterior no suponen ningún impedimento ya
que, recuérdese, gracias al Teorema de triangulación cualquier conjunto
definible punteado es definiblemente homeomorfo a un conjunto semialge-
braico definido sin parámetros.

Otras aplicaciones del Teorema 2.3.4 son las siguientes (véanse los teo-
remas 2.5.3 y 2.5.7).

Corolario 3 (Los teoremas o-minimales de Hurewicz). Sea (X,x) un
conjunto definible punteado y sea n ≥ 2. Supongamos que πr(X,x)R = 0
para todo 0 ≤ r ≤ n−1. Entonces el homomorfismo de Hurewicz o-minimal

hn,R : πn(X,x0)R → Hn(X)R

es un isomorfismo.
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Corolario 4 (El Teorema o-minimal de Whitehead). Sean X e Y dos
conjuntos definiblemente conexos. Sea ψ : X → Y una aplicación definible
tal que para algún x0 ∈ X, ψ∗ : πn(X,x0)R → πn(Y, ψ(x0))R es un iso-
morfismo para todo n ≥ 1. Entonces ψ es una equivalencia de homotoṕıa
definible.

Dentro del estudio de homotoṕıa o-minimal, probaremos las siguientes ver-
siones o-minimales de los correspondientes resultados clásicos (véanse la
Proposición 2.4.10 y el Corolario 2.4.11), los cuales son nuevos también en
el caso semialgebraico.

Teorema. Sean E y B dos conjuntos definibles. Entonces todo recubrimento
definible p : E → B es una fibración definible.

Teorema. Sea p : E → B un recubrimento definible y sea p(e0) = b0.
Entonces p∗ : πn(E, e0)R → πn(B, b0)R es inyectiva para n = 1 y un iso-
morfismo para todo n > 1.

Las demostraciones de estos dos últimos resultados son independientes del
Teorema 2.3.4. Efectivamente, nótese que el hecho de ser una fibración
definible es una propiedad que no se preserva bajo homotoṕıas definibles y
por tanto no podemos utilizar el Teorema 2.3.4 en esta ocasión.

Finalmente, en el Caṕıtulo 3 introduciremos los espacios localmente
definibles (abreviado ld-espacios). Los espacios localmente definibles de es-
pecial interés son los regulares y paracompactos (abreviado LD-espacios).
Recogeremos aquellos hechos relevantes de [13] necesarios para el desarrollo
de la homotoṕıa localmente definible. En particular, probaremos el Teorema
de triangulación para LD-espacios. Con todas estas herramientas a mano,
mostraremos las generalizaciones para los LD-espacios de los resultados so-
bre homotoṕıa del Caṕıtulo 2, en particular, los Teoremas de Hurewicz y el
Teorema de Whitehead. Las demostraciones de estos resultados en [13] están
basadas en propiedades de los conjuntos semialgebraicos que comparten los
conjuntos definibles y por tanto pueden ser adaptadas directamente a nues-
tro contexto. Por lo tanto, hemos nombrado todos estos resultados con el
apelativo Hecho. Sin embargo, hacemos notar que todos ellos son nuevos
en el contexto o-minimal. También mostraremos la existencia de una teoŕıa
de homoloǵıa para LD-espacios por medio de un acercamiento alternativo al
de [13] para espacios localmente semialgebraicos (el cual se desarrolla, este
último, a través de una cohomoloǵıa de haces).

Como mostramos en el siguiente resultado, los grupos
∨

-definibles como
en [31, Def.2.1] y los grupos “localmente definibles“ como en [17, Def.2.1],
son ejemplos de espacios localmente definibles (véanse los Teoremas 3.4.9 y
3.4.10).
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Teorema. Todo grupo
∨

-definible es un ld-espacio. Es más, todo grupo
“locamente definible” es un LD-espacio.

Una vez que hayamos puesto los grupos
∨

-definibles en su categoŕıa correcta,
tendremos una noción natural de conexión para ellos. Con respecto a las tres
nociones de conexión para grupos

∨
-definibles existentes en la literatura, E-

conexión en [17], PS-conexión en [31] y OP-conexión en [27], probamos lo
siguiente (véase la Sección 3.6).

Teorema. Para todo grupo
∨

-definible tenemos que

Conexo ⇔ OP-conexo ⇒ PS-conexo ⇒ E-conexo,

donde la segunda y la tercera implicaciones son estrictas.

Por otro lado, nos gustaŕıa remarcar que los resultados de esta tesis ya
han sido aplicados al estudio de grupos definibles. Efectivamente, usan-
do distintos resultados de esta memoria, en [6] se prueba que todo grupo
definible abeliano, definiblemente conexo y definiblemente compacto de di-
mensión d es definible homotópicamente equivalente a un toro de dimensión
d. Este último resultado nos permite, a su vez, mostrar lo siguiente (véase
el Corolario 2.6.11).

Teorema. Sea G un grupo definible abeliano, definiblemente conexo, defini-
blemente compacto de dimensión d. Entonces cat(G)R = d.

Esta tesis ha dado lugar a los siguientes art́ıculos de investigación,

[1] E. Baro, Normal triangulations in o-minimal structures, aparecerá en J. Symb. Log.

[2] E. Baro and M.J. Edmundo, Corrigendum to Locally definable groups in o-minimal
structures, J. Algebra 320 (7) (2008), 3079–3080.

[3] E. Baro and M. Otero, Locally definable homotopy, aparecerá en Ann. Pure Appl.
Logic., 31pp.

[4] E. Baro and M. Otero, On o-minimal homotopy groups, aparecerá en Quart. J. Math.,

18pp.

Terminamos con algunos comentarios referentes a un posible trabajo fu-
turo derivado de esta memoria. Primero, señalamos una conexión entre el
Teorema de las triangulaciones normales y el Hauptvermutung o-minimal.
El Hauptvermutung o-minimal sobre el cuerpo de los reales fue probado
por M. Shiota y M. Yokoi en [35], pero sobre cuerpos realmente cerrados
en general sigue aún abierto. Recordemos brevemente una de las situa-
ciones motivadoras del Teorema de las triangulaciones normales. Sea (K,φ)
una triangulación de un conjunto definible S partiendo ciertos subconjuntos
definibles S1, . . . , Sl de S. Dados nuevos subconjuntos definibles S′1, . . . , S

′
l′

de S, nos gustaŕıa preservar la triangulación ya obtenida y partir al mismo
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tiempo estos nuevos subconjuntos. Como ya dijimos, el Teorema de las
triangulaciones normales puede resolver este problema. Lo que observamos
ahora es que si el Hauptvermung o-minimal fuese cierto entonces también
podŕıamos resolver fácilmente la anterior situación. Efectivamente, por el
Teorema de triangulación, existe una triangulación (L,ψ) de |K| partiendo
los subconjuntos definibles φ−1(S′1), . . . , φ−1(S′l′) y cada śımplice σ ∈ K.
Como ψ : |L| → |K| es un homeomorphismo definible, por el Hauptvermu-
tung o-minimal existiŕıan subdivisiones L′ y K ′ de L y K respectivamente
y un isomorfismo simplicial g : |L′| → |K ′| tal que ψ ∼ g. Por tanto,
(K ′, φ ◦ ψ ◦ g−1) es una triangulación de S partiendo S1, . . . , Sl, S

′
1, . . . , S

′
l′

y tal que φ ◦ ψ ◦ g−1 ∼ φ ◦ g ◦ g−1 ∼ φ. Por otro lado, parece que el
argumento anterior podŕıa ser modificado para probar el Teorema de las
triangulaciones normales a partir del Hauptvermutung o-minimal, no obs-
tante obsérvese que dif́ıcilmente podŕıamos recuperar la propiedad (iii) de
las triangulaciones normales (Definición 1.1.1). Por tanto, el Teorema de
las triangulaciones normales no es, al menos de forma obvia, más débil que
el Hauptvermutung o-minimal. Es más, en el contexto semialgebraico, nos
ayudó a probar el Hauptvermutung semialgebraico. Aśı pués, parece natu-
ral pensar que el Teorema de las triangulaciones normales es equivalente al
Hauptvermutung o-minimal, aunque, por supuesto, estamos interesados en
la implicación de izquierda a derecha.

En segundo lugar, el siguiente paso natural es intentar aplicar los re-
sultados de esta tesis al estudio de los grupos definibles. De hecho, como
comentamos anteriormente, dicho estudio ya ha comenzado en [6], donde se
prueba que

πn(G)R ∼= πn(G/G00)

para todo n ≥ 1 y para cualquier grupo definible definiblemente compacto
G. Ahora bien, dado un grupo definible definiblemente compacto G, por
el Teorema de triangulación, podemos suponer que G = |K| para cierto
complejo simplicial cerrado K cuyos vértices viven en Q. Por tanto, por
el Corolario 2.4.4 y el resultado en [6] anterior, sabemos que πn(|K|(R)) ∼=
πn(G)R ∼= πn(G/G00). Aśı pues, seŕıa razonable esperar que |K|(R) fuese
homotópicamente equivalente a G/G00; de hecho, por el Teorema de White-
head, tan sólo necesitamos una aplicación adecuada entre |K|(R) y G/G00.
En particular, nótese que esto implicaŕıa que cat(G)R = cat(G/G00) para
todo grupo definible definiblemente compacto, lo cual extendeŕıa los resul-
tados de la Sección 2.6.



Introduction

Background

In the 1980s, L. van den Dries, A. Pillay, C. Steinhorn and others showed
that given an expansion of a real closed field, many properties of semialge-
braic sets and maps could be derived from the fact that the one dimensional
definable sets are a finite union of intervals and points. These structures
would be known as o-minimal structures, a fascinating research area where
model theory and real algebraic geometry come together. Roughly, there
are two fundamental research lines in o-minimal structures: one is focused
in the construction of new o-minimal structures, the other one on the study
of definable sets and structures. The work of A. Wilkie has inspired a large
body of results in the first line, most notably [37], where he proves that the
real field expanded by the exponential function is o-minimal. Of particular
note in this line are also the results of van den Dries, Macintyre and Marker
in [16] and of Rolin, Speissegger and Wilkie in [34]. This dissertation is in-
cluded in the second research area. The basic results in this line are the Cell
decomposition theorem and the Triangulation theorem proved by van den
Dries, Pillay, Steinhorn and Knight. Recently, there has been a profound
study of topological properties of definable sets, including the existence of
both homology and cohomology theories in the o-minimal setting. The de-
velopment of these tools from algebraic topology in a non-archimedean real
closed field is not obvious: recall that in the classical setting we have to use
the Lebesgue lemma even in the definition of the induced map in homology
by a continuous map (see also the introduction to Section 1.6). The main
theme of this thesis is o-minimal homotopy. H. Delfs and M. Knebusch
developed semialgebraic homotopy in [13]. We next mention some of their
results. Given a semialgebraic pointed set (X,x) over a real closed fieldR, we
define naturally the nth semialgebraic homotopy group πn(X,x)sa as in the
classical case but using semialgebraic maps and semialgebraic homotopies.
Contrary to the development of semialgebraic homology, with this definition
there is no problem to define the induced map in homotopy by a continuous
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semialgebraic map. Now, natural questions arise: have these semialgebraic
homotopy groups any relation with the classical ones in the relevant cases?,
have they a good behaviour under real closed field extensions? The authors
answer positively both questions with the following two interesting results
(see Facts 2.1.1 and 2.1.2 below for the general statements). In the first
one, they prove that given a real closed field extension S of R, the map
πn(X,x)sa → πn(X(S), x)sa : [f ] 7→ [f(S)] is an isomorphism, where X(S)
and f(S) denotes the realization in S of X and f respectively. In the second
one, they show that if R = R then the map πn(X,x)sa → πn(X,x) : [f ] 7→ [f ]
is an isomorphism. To prove these results Delfs and Knebusch make use of
both the model completeness of the theory of real closed fields (or Tarski-
Seidenberg principle) and the Lebesgue number, which are not available in
the o-minimal setting. Hence, we cannot apply their methods to develop
an o-minimal homotopy theory. Actually, only the o-minimal fundamental
group was considered in [20] and [7] (with strong consequences in the study
of definable groups as we will see next).

The study of definable groups lies within this second line of research we
are talking about. In [32], A. Pillay proves that every definable group G in
an o-minimal structure can be equipped with a definable manifold structure
makingG a topological group. Hence, if the underlying field of the o-minimal
structure is the real field, we then obtain a Lie group. This result is the
starting point of the study of definable groups and, in particular, the study of
their analogies with Lie groups. In this sense, algebraic topology tools have
been proved to be useful. For instance, the following result of M. Otero and
M. Edmundo in [20] is one of the first in showing the mentioned analogy. Let
G be a definably connected definably compact n-dimensional abelian group
in an o-minimal structure. Then both the o-minimal cohomology algebra
over Q and the o-minimal fundamental group of G are isomorphic to the
cohomology algebra over Q and the fundamental group of an n-dimensional
torus respectively. From these isomorphisms they deduce that the torsion
of G is isomorphic to the torsion of an n-dimensional torus. Nowadays,
Pillay’s conjectures stated in [33] and positively solved in [9] and [23] based
on the work of several authors, have joined even more the Lie groups and
the definable ones. In particular, it is known that every definably compact
definable group is an extension of a Lie group by a divisible torsion-free
normal subgroup. Moreover, the o-minimal dimension of the definable group
equals the one of the Lie group.

On the other hand, in [13], H. Delfs and M. Knebusch introduce a new
category extending the semialgebraic one and large enough to be able to
deal with objects such as covering maps of “infinite degree“. The authors
define locally semialgebraic spaces, roughly, as those obtained by glueing
infinitely many affine semialgebraic sets. In the o-minimal setting we have
the corresponding situation, the definable category is not large enough to
deal with certain natural objects. Even though the theory of locally semial-
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gebraic spaces had not been formally extended to the o-minimal framework,
some related notions have already appeared (always carrying a group struc-
ture). This is the case of

∨
-definable groups which were used by Y. Peterzil,

A. Pillay and S. Starchenko in [31] and [30] as a tool for the study of in-
terpretability problems. Later, M. Edmundo introduces in [17] a restricted
notion of

∨
-definable groups, the “locally definable” groups, and he develops

a whole theory around them. However, to deal with topological concepts, the
notion of

∨
-definable group is too rigid as it shows the three non-equivalent

definitions of connectedness (see Section 3.6 below) established for these
groups which appear in the literature (see [17],[27] and [31]).

Main results

The main results of this thesis are focused on the Normal triangulation
theorem and its applications, as well as the o-minimal homotopy of definable
sets and its generalization to locally definable spaces. We now are going to
briefly describe them. We fix an o-minimal expansion R of a real closed field
R. We denote byR0 the field structure of R. By definable we mean definable
in R with parameters. All definable maps are assumed to be continuous.

In Chapter 1 we will prove the following refinement of the triangulation
theorem, which is also new in the semialgebraic context (see Theorem 1.1.5).

Theorem (Normal triangulation theorem). Let K be a simplicial com-
plex and let S1, . . . , Sl be definable subsets of its realization |K|. Then, there
is a subdivision K ′ of K and a definable homeomorphism φ′ : |K ′| → |K|
such that
(i) (K ′, φ′) partitions all S1, . . . , Sl and each σ ∈ K,
(ii) for every τ ∈ K ′ and σ ∈ K, if τ ⊂ σ then φ′(τ) ⊂ σ.

Independently of the essential role of this result in the development of o-
minimal homotopy in Chapter 2, the Normal triangulation theorem may
be of interest by itself as it shows the following situation. As we know,
a basic tool to study definable sets is the Triangulation Theorem: given a
definable set S and some definable subsets S1, . . . , Sl of S, there exists a
simplicial complex K and a definable homeomorphism φ : |K| → S parti-
tioning S1, . . . , Sl. Further study of S may lead to consider new definable
subsets S′1, . . . , S

′
l′ of S. In this situation, we would like to both preserve

the already obtained triangulation and partition the new sets. However, a
further application of the Triangulation Theorem cannot help us in this case.
Moreover, techniques as repeated barycentric subdivisions are not available
in this context because of the lack of Lebesgue number or just because the
sets Si’s may not be open. Clearly, the Normal triangulation solves this
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problem. We also point out that the Normal triangulation theorem give us
new information even if the base field is R.

We will first apply the Normal triangulation theorem to prove the fol-
lowing (see Theorem 1.5.5).

Corollary (Semialgebraic Hauptvermutung). Let K and L be two
closed simplicial complexes in R and let f : |K| → |L| be a semialgebraic
homeomorphism. Then f is semialgebraically homotopic to a simplicial iso-
morphism g : |K ′| → |L′| between subdivisions K ′ and L′ of K and L,
respectively.

As a second application of the Normal triangulation theorem, we will
show an alternative proof to that of A. Woerheide of the existence of a
functor for o-minimal simplicial homology (see Section 1.6).

The main result of Chapter 2 establishes a relation between the o-
minimal and semialgebraic homotopy sets (see Theorem 2.3.4). In order
to avoid the introduction of cumbersome notation, we mention here a weak
version of this result which gives an idea of it.

Theorem. Let X and Y be semialgebraic sets. Then,
(i) every definable map f : X → Y is definably homotopic to a semialgebraic
map g : X → Y , and
(ii) any two semialgebraic maps g1 : X → Y and g2 : X → Y which are
definably homotopic are also semialgebraically homotopic.

As a first application of this theorem, we will study the Lusternik-
Schnirelmann category (MSC 2000: 55M30) of definable sets. As far as
we know, this is the first time that LS-category is studied in both the o-
minimal and semialgebraic setting. The LS-category of a definable set X,
cat(X)R, is the least integer m such that X has a definable open cover of
m + 1 elements with each of them definably contractible to a point in X.
We prove the following (see Corollary 2.6.9).

Corollary 1. Let X be a semialgebraic set defined without parameters.
Then cat(X)R = cat(X(R)), where cat(X(R)) denotes the classical LS-
category.

As a second application of Theorem 2.3.4 (mentioned above) we prove
that (the semialgebraic homotopy group) πn(X,x)R0 and (the o-minimal
homotopy group) πn(X,x)R of a semialgebraic pointed set (X,x) are iso-
morphic. Namely, ρ : πn(X,x)R0 → πn(X,x)R : [f ] 7→ [f ] is a natural
isomorphism (see Theorem 2.4.1). Now using the latter result and those of
H. Delfs and M. Knebusch we obtain (see Corollary 2.4.4).
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Corollary 2. Let (X,x) be a semialgebraic pointed set defined without pa-
rameters. Then there exists a natural isomorphism between the classical ho-
motopy group πn(X(R), x) and the o-minimal homotopy group
πn(X(R), x)R for every n ≥ 1.

Note that thanks to the Triangulation theorem any definable pointed set is
definably homeomorphic to a semialgebraic one defined without parameters.

Further applications of Theorem 2.3.4 are the following (see Theorem
2.5.3 and Theorem 2.5.7).

Corollary 3 (The o-minimal Hurewicz theorems). Let (X,x) be a
definable pointed set and n ≥ 2. Suppose that πr(X,x)R = 0 for every
0 ≤ r ≤ n− 1. Then the o-minimal Hurewicz homomorphism

hn,R : πn(X,x0)R → Hn(X)R

is an isomorphism for n ≥ 2.

Corollary 4 (The o-minimal Whitehead theorem). Let X and Y be
two definably connected sets. Let ψ : X → Y be a definable map such that
for some x0 ∈ X, ψ∗ : πn(X,x0)R → πn(Y, ψ(x0))R is an isomorphism for
all n ≥ 1. Then ψ is a definable homotopy equivalence.

Within the study of o-minimal homotopy, we will prove the following o-
minimal versions of the corresponding classical results (see Proposition 2.4.10
and Corollary 2.4.11) which are also new in the semialgebraic context.

Theorem. Let E and B definable sets. Then every definable covering p :
E → B is a definable fibration.

Theorem. Let p : E → B be a definable covering and let p(e0) = b0.
Then p∗ : πn(E, e0)R → πn(B, b0)R is an isomorphism for every n > 1 and
injective for n = 1.

The proofs of these latter results are independent of Theorem 2.3.4. Indeed,
to be a definable fibration is a property that is not invariant under definably
homotopies and hence Theorem 2.3.4 cannot be applied here.

Finally, in Chapter 3 we will introduce the locally definable spaces (in
short ld-spaces). Locally definable spaces of special interest are the regular
paracompact ones (in short LD-spaces). We collect the relevant facts from
[13] needed for the development of locally definable homotopy. In particular,
we prove the Triangulation theorem for LD-spaces. With all these tools at
hand, we prove the generalizations to LD-spaces of the homotopy results in
Chapter 2, in particular the Hurewicz theorems and the Whitehead theorem.
The proofs of these results in [13] are based on properties of semialgebraic
sets which are shared by definable sets and hence can be directly adapted
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to our context. Therefore, we have labelled all these results with Fact.
However, we point out that all of them are new in the o-minimal setting. We
also show the existence of a homology theory for LD-spaces via an alternative
approach to that of [13] for locally semialgebraic spaces.

As we have already mentioned in the background section the
∨

-definable
groups in the sense of [31, Def.2.1] and the “locally definable“ groups in the
sense of [17, Def.2.1], are examples of locally definable spaces as we show in
the following result (see Theorem 3.4.9 and Theorem 3.4.10).

Theorem. Every
∨

-definable group is an ld-space. Moreover, every “locally
definable” group is an LD-space.

Once we have put the
∨

-definable groups in their natural category, we
have a natural concept of connectedness for them. With respect to the
three different notions of connected

∨
-definable group which appear in the

literature, E-connected in [17], PS-connected in [31] and OP-connected [27],
we prove the following (see Section 3.6).

Theorem. For every
∨

-definable group we have that

Connected ⇔ OP-connected ⇒ PS-connected ⇒ E-connected,

where the second and third implications are strict.

We finish this outline of the main results by pointing out that the results
in this thesis has already been applied to the study of definable groups.
Indeed, using several results of this dissertation, it is proved in [6] that
every definably connected definably compact d-dimensional abelian group
is definably homotopy equivalent to the d-dimensional torus over R. The
latter, in turn, will allow us to show the following (see Corollary 2.6.11).

Theorem. Let G be a definably connected definably compact d-dimensional
abelian group. Then cat(G)R = d.

This dissertation has led to the following research papers,

[1] E. Baro, Normal triangulations in o-minimal structures, to appear in J. Symb. Log.

[2] E. Baro and M.J. Edmundo, Corrigendum to Locally definable groups in o-minimal
structures, J. Algebra 320 (7) (2008), 3079–3080.

[3] E. Baro and M. Otero, Locally definable homotopy, to appear in Ann. Pure Appl.
Logic., 31pp.

[4] E. Baro and M. Otero, On o-minimal homotopy groups, to appear in Quart. J. Math.,

18pp.
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Notation and Prerequisites

For the rest of the paper we fix an o-minimal expansion R of a real closed
field R. For definitions and basic results on o-minimal structures, we refer to
[15]. We always take ’definable’ to mean ’definable in R with parameters’.
We take the order topology on R and the product topology on Rn for n > 1.
All definable maps are assumed to be continuous except otherwise stated.

In general, given a real closed field S we will denote by S0 its ordered
field structure. The only exception will be R, whose ordered field structure
we denote by R. We denote by Q the real algebraic numbers.

If a set X is definable with parameters in some structure M we denote
by X(M) the realization of X in M.

Recall that given a definable set S the frontier of S is the set ∂S = S\S
and the boundary of S is the set bd(S) = S \ int(S). We use the standard
notation I := [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}. In Chapter 3, we will also denote
by I a set of indexes, hopefully without confusion. We denote the graph of
a definable map f : X → Y by Γ(f) := {(x, f(x)) : x ∈ X}.

If X is a definable set and A1, . . . , Ak are definable subsets of X then
(X,A1, . . . , Ak) is called a system (or pair, if k = 1) of definable sets. A
definable map f : (X,A1, . . . , Ak)→ (Y,B1, . . . , Bk) between systems of de-
finable sets is a definable map f : X → Y such that f(Ai) ⊂ Bi for each
i = 1, . . . , k.

Since this dissertation uses (and develops) in an essential way simplicial
complexes and triangulations, we have included here a brief summary of the
basic notions:

The k-simplex spanned by the affine independent points v0, . . . , vk ∈ Rp
is the set (v0, . . . , vk) := {

∑
tivi : all ti > 0,

∑
ti = 1}, we call v0, . . . , vk

the vertices of (v0, . . . , vk). A face of (v0, . . . , vk) is a simplex spanned by
a nonempty subset of {v0, . . . , vk}. A simplicial complex K is a finite
collection of simplices in Rp such that for all σ1, σ2 ∈ K, either cl(σ1) ∩
cl(σ2) = ∅ or cl(σ1) ∩ cl(σ2) = cl(τ) for some common face τ of σ1 and
σ2. We denote the realization of a simplicial complex K in Rp by |K| :=
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⋃
σ∈K σ ⊂ Rp. We say that K is closed if it contains with each simplex all

its faces. Note that K is closed if and only if |K| is a closed set. We will
denote by K the simplicial complex which is the set of all faces of simplices
of K, so that |K| = |K|. We denote by Vert(K) the set of all vertices of
simplices in K. Note that given v ∈ Vert(K), {v} might not be a simplex
of K. On the other hand, if v ∈ Vert(K) ∩ |K| then {v} is a simplex of K.
Recall that given a subset A of |K|, the star of A in K, denoted by StK(A),
is the union of all the simplices σ ∈ K such that σ ∩ A 6= ∅. We say that
a simplicial complex K ′ is a subdivision of a simplicial complex K if each
simplex of K ′ is contained in a simplex of K and each simplex of K equals
the union of finitely many simplices of K ′. We will use the standard notion
of barycentric subdivision of a simplicial complex (see [15, Ch.8, §1.8]).

Given two simplicial complexes K and L we say that g : |K| → |L| is
a simplicial map if it is the restriction to |K| of a map g̃ : |K| → |L|
which sends each simplex of K to a simplex of L by a linear map taking
vertices to vertices and each simplex in K to a simplex in L. Alternatively,
we can say that g : |K| → |L| is a simplicial map if it is piecewise-linearly
induced by a map gv : Vert(K)→ Vert(L) such that if (v0, . . . , vk) ∈ K then
(gv(v0), . . . , gv(vk)) ∈ L.

Given a definable set S and some definable subsets S1, . . . , Sl of S we say
that (K,φ) is a triangulation of S partitioning S1, . . . , Sl, and denoted
by (K,φ) ∈ ∆(S;S1, . . . , Sl), if K is a simplicial complex and φ : |K| → S is
a definable homeomorphism such that each Si is the union of the images by
φ of some simplices of K. Note that for a triangulation (K,φ) of S we will
use the classical notation φ : |K| → S instead of the notation φ : S → |K|
used in [15].

Without mention we will use the following fact: given a definable set S
and some definable subsets of S, a triangulation of S which partitions this
subsets also partitions their closures and their frontiers both in S.
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Chapter 1
Normal Triangulations

1.1 Introduction

In this chapter we introduce and study the following notion.

Definition 1.1.1. Let K be a simplicial complex in Rm and S1, . . . , Sl defin-
able subsets of |K|. A triangulation (K ′, φ′) ∈ ∆(|K|;S1, . . . , Sl) is a nor-
mal triangulation of the complex K partitioning S1, . . . , Sl, denoted
by (K ′, φ′) ∈ ∆NT (|K|;S1, . . . , Sl), if it satisfies the following conditions:
(i) (K ′, φ′) ∈ ∆(|K|;S1, . . . , Sl, σ)σ∈K
(ii) K ′ is a subdivision of K, and
(iii) for every τ ∈ K ′ and σ ∈ K, if τ ⊂ σ then φ′(τ) ⊂ σ.

Note that the definition depends not only on |K| but also on K and that
the interesting case is when the subsets of |K| are nonempty (otherwise
(K, id|K|) is a normal triangulation).

Remark 1.1.2. (i) It is easy to prove that given a normal triangulation
(K ′, φ′) as in Definition 1.1.1, φ′(|L|) = |L| for any subcomplex L of K.
Indeed, we fix σ ∈ K and we show that φ′(σ) = σ. Since K ′ is a subdivision
of K, there are τ1, . . . , τk ∈ K ′ such that σ = τ1 ∪ · · · ∪ τk. By normality
of (K ′, φ′) we have that φ′(σ) = φ′(τ1) ∪ · · · ∪ φ′(τk) ⊂ σ. Suppose there is
x ∈ σ such that x /∈ φ′(σ). Take τ̃ ∈ K ′ and σ̃ ∈ K such that x ∈ φ′(τ̃)
and τ̃ ⊂ σ̃. Since x ∈ φ′(τ̃) ∩ σ and (K ′, φ′) partitions the simplices of K,
we deduce that φ′(τ̃) ⊂ σ. On the other hand, by normality of (K ′, φ′),
we have that φ′(τ̃) ⊂ σ̃. Therefore φ′(τ̃) ⊂ σ ∩ σ̃, that is, σ = σ̃. Hence
x ∈ φ′(τ̃) ⊂ σ̃ = σ, which is a contradiction.
(ii) Let (K ′, φ′) ∈ ∆NT (|K|;S1, . . . , Sl). Then φ′ is definably homotopic to
id|K| via the canonical definable homotopy H : |K ′| × I :→ |K| : (x, t) →
(1−t)φ′(x)+tx. The map H is well-defined because, by normality of (K ′, φ′),
we have that φ′(x) ∈ σ for each x ∈ σ ∈ K. Note also that H is indeed
continuous. Therefore H is a definable homotopy from φ′ to id|K|.

1
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Example 1.1.3. We show a normal triangulation in dimension 2. Let K be
the closed simplicial complex on the right hand of the figure (with continuous
lines) and let S1 be the curve drawn inside. Then (K ′, φ′) is a normal
triangulation of K partitioning S1, where K ′ is the simplicial complex on
the left hand of the figure.
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Example 1.1.4. In Definition 1.1.1, condition (iii) cannot be deduced from
(i) and (ii), as the following example shows;
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φ(v2)
φ

-

where K ′ = K and φ is a symmetry.

Our aim is to prove the existence of normal triangulations.

Theorem 1.1.5 (Normal Triangulation Theorem). Let K be a simpli-
cial complex and let S1, . . . , Sl be definable subsets of |K|. Then there exists
a triangulation (K ′, φ′) ∈ ∆NT (|K|;S1, . . . , Sl).

The chapter is organized as follows. Section 1.2 contains some definitions
and results from [15] that we will need in the following section. Section 1.3
is devoted to prove the existence of independent triangulations (see Defini-
tion 1.3.1 and Theorem 1.3.2). The existence of independent triangulations
allows us to prove the Normal Triangulation Theorem in Section 1.4, where
we also prove an extension lemma for this kind of triangulations (see Theo-
rem 1.4.3). The reader may skip Sections 1.2 and 1.3 at a first reading, only
the statement of Theorem 1.3.2 is used later. In Section 1.5 and 1.6 we give
the applications described in the Main results section of the Introduction.
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1.2 Preliminaries and Notation

We will make extensively use of the following notions and results from Chap-
ter 8 of [15]. We include them here to both make this chapter readable and
be able to change slightly the notation.

We recall that a triangulated set is a pair (S, φ(K)), where S is a definable
set, (K,φ) ∈ ∆(S) and φ(K) = {φ(σ) : σ ∈ K}. Given a triangulated set
(S,P) and C,D ∈ P we call D a face of C if D ⊂ cl(C), a proper face of C
if D ⊂ cl(C) \ C and a vertex of C if it has dimension 0.

A multivalued function F on a triangulated set (S,P) is a finite collection
of functions, F = {fC,i : C ∈ P, 1 ≤ i ≤ k(C)}, k(C) ≥ 0, each function
fC,i : C → R definable and fC,1 < . . . < fC,k(C). We set

F |C = {fC,i : 1 ≤ i ≤ k(C)}, for C ∈ P,
PF = {Γ(f) : f ∈ F} ∪ {(fC,i, fC,i+1) : C ∈ P, 1 ≤ i < k(C)},
SF = the union of the sets in PF .

Given fC,i ∈ F |C we shall omit the subscript C of fC,i and we will denote it
just by fi if there is no ambiguity. Such a multivalued function F is called
closed if for each pair C,D ∈ P with D a proper face of C and each f ∈ F |C
there is g ∈ F |D such that g(y) = limx→y f(x) for all y ∈ D. Note that
then each f ∈ F , say f ∈ F |C , extends continuously to a definable function
cl(f) : cl(C)∩ S → R such that the restrictions of cl(f) to the faces of C in
P belong to F .

Fact 1.2.1. [15, Ch.8,Lem.2.6] Let F be a multivalued function on the tri-
angulated set (S,P) such that Γ(F ) is closed in S ×R, and there is M > 0
such that Γ(F ) ⊂ S × [−M,M ]. Then F is closed.

Definition 1.2.2. Let (S,P) be a triangulated set such that each C ∈ P
has a vertex. We call a multivalued function F on (S,P) superfull if it is
closed, k(C) ≥ 1 for all C ∈ P, and it satisfies the following two conditions:
(A) for each pair C,D ∈ P with D a proper face of C and each g ∈ F |D we

have g = cl(f)|D for some f ∈ F |C , where cl(f) is the continuous extension
of f to cl(C) ∩ S, and
(B) if f1, f2 ∈ F |C , f1 6= f2, then there exists at least one vertex of C where
cl(f1) and cl(f2) take different values.

Note that our definition of superfull is stronger of that of full in [15]
(where only condition (A) is required –see Definition VIII.2.5–). In general,
we can convert a full multivalued function in a superfull one by taking the
first barycentric subdivision. However, the properties of triangulations we
want to consider are not preserved by taking barycentric subdivisions (see
Example 1.3.4).

Recall that given a triangulation (K,φ) in Rn of a definable set S ⊂ Rm
and given a definable set S′ ⊂ S×R, a triangulation (L,ψ) ∈ ∆(S′) in Rn+1
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is said to be a lifting of (K,φ) if K = {πn(σ) : σ ∈ L} and the diagram

|L| ψ //

πn
��

S′

πm

��
|K|

φ
// S

commutes where πm and πn are the projections maps on the first m and n
coordinates, respectively.

For the proof of the following technical fact see [15, Ch.8,Lem.1.10].
We will show in Lemma 1.3.7 how to lift a triangulation via a superfull
multivalued function using this fact.

Fact 1.2.3. Let (a0, . . . , an) be an n-simplex in Rp and let rj , sj ∈ R, rj 6
sj, for j = 0, . . . , n. Write bj = (aj , rj), cj = (aj , sj) ∈ Rp+1. Then
(b0, . . . , bj , cj , . . . , cn) is an (n+ 1)-simplex in Rp+1 for any 0 6 j 6 n such
that bj 6= cj (so rj < sj). Moreover, the collection of all (n + 1)-simplices
(b0, . . . , bj , cj , . . . , cn) with bj 6= cj and all their faces is a closed simplicial
complex.

1.3 Independent Triangulations

In order to prove the existence of normal triangulations, we now introduce
triangulations satisfying an independence property which may be of interest
by itself.

Definition 1.3.1. Let (K,φ) ∈ ∆(S), where S is a closed and bounded de-
finable set in Rm. We say that (K,φ) is an independent triangulation if
(i) for every n-simplex τ = (v0, . . . , vn) ∈ K we have that φ(v0), . . . , φ(vn) ∈
Rm are affinely independent, that is, they span an n-simplex
τφ := (φ(v0), . . . , φ(vn)) in Rm, and
(ii) if τ1 and τ2 are different simplices of K then τφ1 and τφ2 are disjoint.

Note that an independent triangulation induces in Rm –via the images by
φ of the vertices of K– a copy of K. The aim of this section is to prove the
following.

Theorem 1.3.2 (Independent Triangulation Theorem). Let S ⊂ Rm

be a closed and bounded definable set and let S1, . . . , Sl be definable subsets of
S. Then there exists an independent triangulation (K,φ) ∈ ∆(S;S1, . . . , Sl).

We will show that any closed and bounded definable set has an independent
triangulation by an induction argument and following closely the scheme
of the proof of the Triangulation Theorem in [15]. In the induction step
we will need the existence of triangulations with the following technical
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property: a triangulation (K,φ) ∈ ∆(S;S1, . . . , Sl) of a closed and bounded
definable set S and some definable subsets S1, . . . , Sl of S is said to be
small with respect to S1, . . . , Sl if for every τ = (v0, . . . , vn) ∈ K with
φ(v0), . . . , φ(vn) ∈ Sj we have that φ(τ) ⊂ Sj .

Example 1.3.3. All the examples are in dimension 2.
(1) Example of a triangulation (K,φ) of a closed and bounded definable set
S which is not independent because (i) fails.
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φ(v1)
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φ
-

Moreover, if we denote by S1 = φ((v0, v2)) then (K,φ) is small w.r.t. S1.
For, the only simplex which has all its vertices in S1 is (v0, v2). On the
other hand, φ((v0, v2)) = S1 ⊂ S1, as required. This shows that there is no
relation between the independence and smallness properties.

(2) Example of a triangulation (K,φ) of a closed and bounded definable set
S which is not independent because (ii) fails. However, note that it satisfies
(i).
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φ(v2)
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-

(3) Our last example shows an independent triangulation (K,φ) of a closed
and bounded definable set S which is not small w.r.t. bd(S).
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Example 1.3.4. This example shows that the independence property of
triangulations is not preserved by taking barycentric subdivisions.
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Remark 1.3.5. Let S be a closed and bounded definable set. Let S1, . . . , Sl
be definable subsets of S. Let (K,φ) ∈ ∆(S;S1, . . . , Sl) and let (K̃, φ̃) ∈
∆(S;φ(σ))σ∈K small w.r.t. ∂φ(σ), σ ∈ K. Then,
(a) if τ ∈ K̃ and σ ∈ K are such that φ̃(τ) ⊂ φ(σ) then there exists a
vertex v ∈ Vert(τ) with φ̃(v) ∈ φ(σ) (in particular if σ is not a vertex then
φ̃(τ) 6= φ(σ)), and
(b) (K̃, φ̃) ∈ ∆(S;S1, . . . , Sl) and is small w.r.t. S1, . . . , Sl.

Proof. (a) Let τ ∈ K̃ and σ ∈ K. Suppose that φ̃(τ) ⊂ φ(σ). Exclude the
trivial case of τ being a vertex and assume for all v ∈ Vert(τ) we have that
φ̃(v) /∈ φ(σ) , i.e., φ̃(v) ∈ ∂φ(σ). By smallness φ̃(τ) ⊂ ∂φ(σ) = ∂φ(σ), a
contradiction.
(b) It is clear that (K̃, φ̃) ∈ ∆(S;S1, . . . , Sl). To show smallness w.r.t.
S1, . . . , Sl, let τ = (v0, . . . , vn) ∈ K̃ and j ∈ {1, . . . , l} be such that φ̃(vi) ∈
Sj , for all i = 0, . . . , n. Let σ ∈ K be such that φ̃(τ) ⊂ φ(σ). By (a) there
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exists a vertex vi0 ∈ Vert(τ) with φ̃(vi0) ∈ φ(σ). Hence, since (K,φ) also
partitions Sj and φ̃(vi0) ∈ φ(σ) ∩ Sj , we deduce that φ(σ) ⊂ Sj . Therefore
φ̃(τ) ⊂ Sj .

Lemma 1.3.6. Let (K,φ) ∈ ∆(S;S1, . . . , Sl) be a triangulation of a closed
and bounded definable set S ⊂ Rn and some definable subsets S1, . . . , Sl ⊂ S.
(i) If (K,φ) is small w.r.t. S1, . . . , Sl and f : Rn → Rn is a definable
homeomorphism then (K, f ◦ φ) ∈ ∆(f(S); f(S1), . . . , f(Sl)) is small w.r.t.
f(S1), . . . , f(Sl).
(ii) If (K,φ) is independent and f : Rn → Rn is a linear automorphism,
then (K, f ◦ φ) ∈ ∆(f(S); f(S1), . . . , f(Sl)) is independent.

Proof. (i) Let σ = (v0, . . . , vm) ∈ K such that f ◦ φ(v0), . . . , f ◦ φ(vm) ∈
f(Sj) for some fixed 1 ≤ j ≤ l. Since f is a definable homeomorphism,
f(Sj) = f(Sj) and therefore φ(v0), . . . , φ(vm) ∈ Sj . Hence φ(σ) ⊂ Sj be-
cause (K,φ) is small w.r.t. S1, . . . , Sl. Finally, f(φ(σ)) ⊂ f(Sj) = f(Sj), as
required.
(ii) Consider a simplex σ = (v0, . . . , vm) ∈ K. Since (K,φ) is indepen-
dent, φ(v0), . . . , φ(vm) are affinely independent. Hence, since f is linear,
f ◦ φ(v0), . . . , f ◦ φ(vm) are also affinely independent. Now, take σ1, σ2 ∈ K
such that σf◦φ1 ∩ σf◦φ2 6= ∅. Again, since f is linear, σφ1 ∩ σ

φ
2 6= ∅ and hence,

by the independence property of (K,φ), σ1 = σ2.

The following lemma will be useful in the induction step. Its proof is an
adaptation –taking care of independence– of that of [15, Ch.8,Lem.2.8].

Lemma 1.3.7. Let A ⊂ Rm be a closed and bounded definable set and let
(K,φ) ∈ ∆(A) be an independent triangulation in Rp. Let F be a superfull
multivalued function on (A, φ(K)). Then (K,φ) can be lifted to an indepen-
dent triangulation (L,ψ) ∈ ∆(AF ;D)D∈φ(K)F in Rp+1.

Proof. Firstly, note that since A is closed and bounded and F is super-
full, AF is also closed and bounded. The construction of (L,ψ) is that of
[15, Ch.8,Lem.2.8]. Unfortunately we will need to introduce the notation
to check that (L,ψ) is independent. We construct L and ψ above each
C ∈ φ(K). Let C ∈ φ(K) and let a0, . . . , an be the vertices of φ−1(C) listed
in some prefixed order on Vert(K). Let f < g be two successive members
of F |C . Put rj = cl(f)(φ(aj)), sj = cl(g)(φ(aj)), bj = (aj , rj), cj = (aj , sj).
Let L(f, g) be the complex inRp+1 constructed in Fact 1.2.3 (since F satisfies
condition (B) of superfullness we do not need to take a barycentric subdivi-
sion as in [15]). Define the homeomorphism ψ−1

f,g : [cl(f), cl(g)] → |L(f, g)|
by ψ−1

f,g(x, t · cl(f)(x) + (1 − t)cl(g)(x)) = tΦb(x) + (1 − t)Φc(x), 0 ≤ t ≤ 1,
where Φb(x) and Φc(x) are the points of (b0, . . . , bn) and (c0, . . . , cn) with the
same affine coordinates with respect to b0, . . . , bn and c0, . . . , cn as φ−1(x)
has with respect to a0, . . . , an. Note that it follows from the superfullness
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that ψ−1
f,g is injective: if cl(f)(x) and cl(g)(x) are distinct, then so are Φb(x)

and Φc(x). We also define for each f ∈ F |C the simplicial complex L(f) in
Rp+1 as the n-simplex (b0, . . . , bn) with bj = (aj , cl(f)(φ(aj))), and all its
faces. Then ψ−1

f : Γ(cl(f)) → |L(f)| is by definition the homeomorphism
given by ψ−1

f (x, cl(f)(x)) = Φb(x), where Φb(x) is defined as before. Finally
we consider the simplicial complex L which is the union of all simplicial com-
plexes L(f, g) and L(f) and the definable homeomorphism ψ : |L| → AF

such that ψ|L(f,g) = ψf,g and ψ|L(f) = ψf .
Let us show that the triangulation (L,ψ) is independent. Let C ∈

φ(K) and two successive functions f, g ∈ F |C . Consider the triangulation
(L(f, g), ψf,g) constructed at the beginning of the proof (and with the same
notation). Given v ∈ Vert(L(f, g)) then either v = bj or v = cj for some
j. Hence either ψf,g(v) = ψf,g(bj) = (φ(aj), rj) or ψf,g(v) = ψf,g(cj) =
(φ(aj), sj). Denote (φ(aj), rj) by b̃j and (φ(aj), sj) by c̃j . Observe that
by independence of (K,φ) we have that φ(a0), . . . , φ(an) are affinely inde-
pendent and therefore, by Fact 1.2.3, (̃b0, . . . , b̃j , c̃j , . . . , c̃n) are also affinely
independent for any j such that cj 6= bj . Moreover, also by Fact 1.2.3, the
(n + 1)-simplices (̃b0, . . . , b̃j , c̃j , . . . , c̃n) with b̃j 6= c̃j and all their faces is a
closed simplicial complex which we will denote by L(f, g)ψf,g . In a similar
way, we construct a closed simplicial complex L(f)ψf for each f ∈ F |C ,
C ∈ φ(K). Since (K,φ) is independent, a routine argument shows that the
collection Lψ of all simplices of all closed simplicial complexes L(f, g)ψf,g
and L(f)ψf is a closed simplicial complex. To finish the proof it is enough
to observe, using the notation of Definition 1.3.1, that σψ is a simplex of Lψ

for every σ ∈ L.

From the proof of Lemma 1.3.7 we get the following.

Corollary 1.3.8. There is a lifting (L,ψ) as in the conclusion of Lemma
1.3.7 satisfying the following: For any τ ∈ L with ψ(τ) ⊂ D for some
D ∈ φ(K)F , C = π(D) ∈ φ(K), and φ−1(C) = (a0, . . . , an) ∈ K, we have
(i) π(ψ(τ)) = C,
(ii) if D = (f, g)C for some successive f, g ∈ F |C , f < g, then τ is ei-
ther an (n + 1)-simplex (b0, . . . , bj , cj , . . . , cn), bj 6= cj, or is an n-simplex
(b0, . . . , bj−1, cj , . . . , cn), bj 6= cj, j 6= 0, where bi = (ai, cl(f)(φ(ai))) and
ci = (aj , cl(g)(φ(ai))), i = 0, . . . , n, and
(iii) if D = Γ(f) for some f ∈ F |C , then τ is an n-simplex (b0, . . . , bn),
where bi = (ai, cl(f)(φ(ai))), i = 0, . . . , n. Moreover, ψ(τ) = Γ(f) = D.

Proof. Let (L,ψ) be the lifting constructed in the proof of Lemma 1.3.7.
Then (i) and (iii) are clear by construction. Let us prove (ii). Firstly, note
that the dimension of τ is either n + 1 or n (otherwise we get a contra-
diction to (i)). If τ is an (n + 1)-simplex then the statement is clear by
construction. So suppose that τ is an n-simplex, say, τ = (v0, . . . , vn). Since
π(ψ(τ)) = C we have that {π(v0), . . . , π(vn)} = {a0, . . . , an}. Without loss
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of generality, π(vi) = ai for all i = 0, . . . , n. Since ψ(τ) ⊂ D, τ is a face
of some (n + 1)-simplex of the form (b0, . . . , bj , cj , . . . , cn) with bj 6= cj .
Hence, either τ = (b0, . . . , bj−1, cj , . . . , cn) for some j 6= 0 with bj 6= cj , or
τ = (b0, . . . , bj , cj+1, . . . , cn) for some j 6= n with bj 6= cj . In the first case,
the statement (ii) clearly holds. So assume that τ = (b0, . . . , bj , cj+1, . . . , cn)
for some j 6= n with bj 6= cj . If bj+1 6= cj+1 then τ = (b0, . . . , bj , cj+1, . . . , cn)
with bj+1 6= cj+1, as required. Otherwise, let i0 > j + 1 be the maxi-
mum such that bi = ci for all j + 1 ≤ i ≤ i0. If i0 < n then we are
done, since τ = (b0, . . . , bi0 , ci0+1, . . . , cn) with bi0+1 6= ci0+1. If i0 = n,
then τ = (b0, . . . , bj , cj+1, . . . , cn) = (b0, . . . , bn), which is a contradiction to
ψ(τ) ⊂ D.

In the next lemma we apply the smallness condition to get a superfull
multivalued function. We will apply this lemma in the induction step.

Lemma 1.3.9. Let A be a closed and bounded definable set, let (K,φ) ∈
∆(A) and F be a closed multivalued function on the triangulated set (A, φ(K))
satisfying condition (A) of superfull. Let (K0, φ0) ∈ ∆(A;φ(σ))σ∈K small
w.r.t. ∂φ(σ), σ ∈ K. Then, the multivalued function F0 on (A, φ0(K0)),
obtained by the restrictions of the functions in F to the sets of φ0(K0), is
superfull.

Proof. By Fact 1.2.1, the multivalued function F0 is closed. Let us show
that F0 satisfies (A) of superfullness. Consider a pair D0, C0 ∈ φ0(K0) with
D0 a proper face of C0 and consider also g0 ∈ F0|D0 . Since (K0, φ0) ∈
∆(A;φ(σ))σ∈K , there are C,D ∈ φ(K), D a face of C, such that C0 ⊂ C
and D0 ⊂ D. On the other hand, F0 is by definition the restriction of F to
φ0(K0) and therefore there exists g ∈ F |D such that g|D0 = g0. If C = D
then obviously g|C0 ∈ F0 and g0 = cl(g|C0)|D0 . If D is a proper face of C
then, since F satisfies (A) of superfullness, there exists f ∈ F |C such that
g = cl(f)|D. Hence g0 = cl(f0)|D0 , where f0 := f |C0 ∈ F0.

Now, let us check that F0 satisfies (B) of superfullness. Let C = φ0(τ),
where τ ∈ K0, and let f1, f2 ∈ F0|C be two different functions. By construc-
tion, there exist σ ∈ K and two different f̃1, f̃2 ∈ F |φ(σ) such that C ⊂ φ(σ)
and f̃i|C = fi, i = 1, 2. By Remark 1.3.5(a), there exists a vertex φ0(v) of
C such that φ0(v) ∈ φ(σ). Then cl(fi)(φ0(v)) = f̃i(φ0(v)), i = 1, 2, so cl(f1)
and cl(f2) take different values on φ0(v).

We are now ready to prove the main result of this section.

Proof of Theorem 1.3.2. In fact, we will prove by induction on m a stronger
result: Given a closed and bounded definable set S ⊂ Rm and some definable
subsets S1, . . . , Sl of S, there exists a triangulation (K,φ) ∈ ∆(S;S1, . . . , Sl)
which is both independent and small w.r.t. S1, . . . , Sl.

The case m = 0 is trivial. Suppose that the theorem holds for a certain
m and let us prove it for m+ 1. Consider the closed and bounded definable
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sets T = bd(S) ∪ bd(S1) ∪ · · · ∪ bd(Sl) and A = π(T ), where π denotes the
projection on the first m coordinates. Note that by [15, Ch.4, Cor.1.10], T
has dimension less than m+ 1.

Claim 1. We can assume that:
(a) for every a ∈ A the fiber Ta = {x ∈ R : (a, x) ∈ T} is finite, and
(b) there exist an independent triangulation (K,φ) ∈ ∆(A;π(S1), . . . , π(Sl))
and a closed multivalued function F on the triangulated set (A, φ(K)) satis-
fying condition (A) of superfullness and such that S, Si, Si and S are finite
unions of sets in φ(K)F .

The proof of this claim, which has been included below for completeness,
is just an adaptation of the proof of the Triangulation Theorem in [15]. In
our case –aiming for independence– we now first modify the multivalued
function (see M1 below) to obtain a superfull one and hence being able to
apply our lifting Lemma 1.3.7. Unfortunately, to be able to execute M1 we
make essential use of the smallness property of the induction hypothesis. A
trivial second modification (see M2 below) will allows us to prove smallness
(see Example 1.3.11 for a justification of this modification).
M1. By induction hypothesis there exists an independent triangulation
(K1, φ1) ∈ ∆(A;φ(σ))σ∈K small w.r.t. ∂φ(σ), σ ∈ K. Let F1 be the multi-
valued function on (A, φ1(K1)) obtained by the restrictions of the functions
in F to the sets of φ1(K1). By Lemma 1.3.9 the multivalued function F1 is
superfull.
M2. Given C ∈ φ1(K1) and two successive functions f, g ∈ F1|C with f < g,
we consider the function f+g

2 on C. Let F2 be the multivalued function
obtained by adding to F1 the new functions f+g

2 for each pair of successive
functions f, g ∈ F1|C , C ∈ φ1(K1), f < g. The new multivalued function F2

on φ1(K1) is also superfull.
By Lemma 1.3.7, we can lift (K1, φ1) to an independent triangulation

(L0, ψ0) ∈ ∆(AF2 ;D)D∈φ1(K1)F2 . Finally, let L = {σ ∈ L0 : ψ0(σ) ⊂ S}.
Clearly (L,ψ) ∈ ∆(S;S1, . . . , Sl) is independent, where ψ = ψ0||L|.

It remains to prove that (L,ψ) is small w.r.t. S1, . . . , Sl. Let τ =
(v0, . . . , vn) ∈ L and i ∈ {1, . . . , l} be such that ψ(vr) ∈ Si for all r =
0, . . . , n. We show that ψ(τ) ⊂ Si. Let D ∈ φ1(K1)F2 be such that
ψ(τ) ⊂ D and denote by C = π(D) ∈ φ1(K1). Note that by Corollary
1.3.8(i), π(ψ(τ)) = π(D) = C ∈ φ1(K1). We first consider the case that
D is the graph of a function of F2. By Corollary 1.3.8(iii), we have that
D = ψ(τ).

Claim 2. For any C ∈ φ1(K1), f ∈ F2|C and i ∈ {1, . . . , l} if
(w, cl(f)(w)) ∈ Si for every vertex w of C then Γ(f) ⊂ Si.

Then D ⊂ Si modulo Claim 1. Now consider the case that D = (f, g)C
for two successive functions f, g ∈ F2|D, f < g, and suppose that D * Si.
Then D ⊂ Si

c. By definition of F2 we can assume that there exist two
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successive functions f1, g1 ∈ F1|C , f1 < g1, such that f = f1 and g =
f1|C+g1|C

2 . Therefore D ⊂ D̃ := (f1, g1)C . Since D ⊂ Si
c then D̃ ⊂ Si

c. At
this point we claim that

Claim 3. The set
D̃cil = {(x, y) : x ∈ C \ C, cl(f1)(x) 6= cl(g1)(x), cl(f1)(x) < y < cl(g1)(x)}

is contained in Si
c
.

Assume also that we have proved Claim 2. Then by Corollary 1.3.8(ii),
and following its notation, we have two cases: either τ is an n-simplex
(b0, . . . , bj−1, cj , . . . , cn) with bj 6= cj and φ−1

1 (C) = (a0, . . . , an), or τ is an
n-simplex (b0, . . . , bj , cj , . . . , cn−1) with bj 6= cj and φ−1

1 (C) = (a0, . . . , an−1).
In both cases, since bj 6= cj , we have that cl(f)(φ1(aj)) 6= cl(g)(φ1(aj)) and
therefore cl(f1)(φ1(aj)) 6= cl(g1)(φ1(aj)). Since

cl(g)(φ1(aj)) =
cl(f1)|C + cl(g1)|C

2
(φ1(aj)),

we deduce that cl(f1)(φ1(aj)) < cl(g)(φ1(aj)) < cl(g1)(φ1(aj)) and hence
ψ(cj) = (φ1(aj), cl(g)(φ1(aj))) ∈ D̃cil. By Claim 2, ψ(cj) /∈ Si, a contradic-
tion. We conclude that ψ(τ) ⊂ D ⊂ Si as required.

It remains to prove the three claims.

Proof of Claim 1. By the good directions lemma (see [15, Ch.7,Thm.4.2])
there is a linear automorphism of Rm+1 such that the image of T by this
automorphism satisfies (a). Hence, since independence and smallness prop-
erties are preserved by linear automorphisms (see Lemma 1.3.6), we can
assume that condition (a) holds. By the Cell decomposition theorem (see
[15, Ch.3,Thm.2.11]), T is the disjoint union of Γ(f)’s for finitely many de-
finable functions f on cells Ah that form a finite partition of A. By inductive
hypothesis there exists an independent triangulation (K1, φ1) partitioning
the subsets Ah. The restrictions of the functions f to the sets of φ(K1) form
a multivalued function F1 on (A, φ(K1)) such that Γ(F1) = T . Since T is
closed and bounded, by Fact 1.2.1 the multivalued function F1 is closed.
However, F1 may not satisfy condition (A) of superfullness. We achieve it
with a modification of the multivalued function F1. Since F1 is closed, each
function f ∈ F1 extends definably and continuously to the closure of its do-
main and then, by [15, Ch.8,Lem.2.2], it extends definably and continuously
to a function f̃ : A→ R. Let T̃ be the union of the graphs Γ(f̃) for f ∈ F1.
By inductive hypothesis there exists an independent triangulation

(K,φ) ∈ ∆(A;φ(σ), π(S ∩ Γ(f̃)), π(Si ∩ Γ(f̃)))σ∈K1,f∈F1,i=1,...,k

such that the restrictions of the f̃ ’s to the sets of φ(K) form a multivalued
function F on (A, φ(K)). Since Γ(F ) = T̃ and T̃ is closed and bounded
then, by Lemma 1.2.1, F is closed. Moreover, since every function f ∈ F1
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has been extended, F clearly satisfies (A) of superfullness. Finally, (K,φ)
partitions π(S ∩ Γ(f̃)), π(Si ∩ Γ(f̃)), for all f ∈ F and i = 1, . . . , k, and
therefore φ(K)F partitions the sets S, S, Si and Si, for all i = 1, . . . , k.
That is, S, S, Si and Si are finite disjoint unions of sets of φ(K)F .

Proof of Claim 2. Let f ∈ F2|C , C ∈ φ1(K1) and i ∈ {1, . . . , l} be such that
(w, cl(f)(w)) ∈ Si for every vertex w of C. Suppose first that f ∈ F1|C and
Γ(f) * Si. Since F1 is the restrictions of the functions of F to the sets of
φ1(K1), there exists f̃ ∈ F | eC , C̃ ∈ φ(K), C ⊂ C̃, such that f̃ |C = f . Since
Γ(f) * Si, we have that Γ(f̃) * Si. Therefore Γ(f̃) ⊂ Si

c. Since (K1, φ1)
is small w.r.t. ∂φ(σ), σ ∈ K, by Remark 1.3.5(a) there exists one vertex
w0 of C such that w0 ∈ C̃. Therefore (w0, cl(f)(w0)) = (w0, f̃(w0)) ∈ Γ(f̃)
does not lie in Si, a contradiction. Suppose now that f = f0+g0

2 , for two
successive functions f0, g0 ∈ F1|C , f0 < g0. Then Γ(f) ⊂ (f0, g0)C . Since
F1 is the restrictions of the functions of F to the sets of φ1(K1), there exist
f̃0, g̃0 ∈ F | eC , C̃ ∈ φ(K), C ⊂ C̃, such that f̃0|C = f0 and g̃0|C = g0.
Suppose Γ(f) * Si. Then (f0, g0)C * Si and therefore (f̃0, g̃0) eC * Si.
Hence (f̃0, g̃0) eC ⊂ Si

c. By Remark 1.3.5(a), there exists one vertex w0 of
C such that w0 ∈ C̃. Therefore (w0, cl(f)(w0)) = (w0,

cl(f0)+cl(g0)
2 (w0)) =

(w0,
ef0+eg0

2 (w0)) ∈ (f̃0, g̃0) eC does not lie in Si, a contradiction.

Proof of Claim 3. Suppose there is (x0, y0) ∈ D̃cil such that (x0, y0) ∈ Si.
Since φ1(K1)F2 partitions Si, for all y ∈ (cl(f1)(x0), cl(g1)(x0)) we have
that (x0, y) ∈ Si. Moreover, we will show that (x0, y) ∈ bd(Si) for every
y ∈ (cl(f1)(x0), cl(g1)(x0)). Fix y ∈ (cl(f1)(x0), cl(g1)(x0)). Since x0 ∈
C \ C, by the Curve Selection Lemma (see [15, Ch.6,Lem.1.5]), there exists
a definable curve γ(t), t ∈ (0, 1), such that limt→1 γ(t) = x0 and γ(t) ∈ C,
for all t ∈ (0, 1). Consider the curve

γy(t) = (γ(t), f1(γ(t)) + (g1(γ(t))− f1(γ(t)))
(

y − cl(f1)(x0)
cl(g1)(x0)− cl(f1)(x0)

)
), t ∈ (0, 1).

Note that γy(t) ∈ D̃ for all t ∈ (0, 1) and limt→1 γy(t) = (x0, y). Therefore

(x0, y) ∈ D̃ ⊂ Si
c ⊂ int(Si)c = int(Si)c. We conclude that (x0, y) ∈ bd(Si).

We have shown that (x0, y) ∈ bd(Si) for all y ∈ (cl(f1)(x0), cl(g1)(x0)),
which is a contradiction because the fiber of T in x0 is finite (see (a) at the
beginning of the proof).

We have the following corollary to the proof of Theorem 1.3.2.

Corollary 1.3.10. Let S ⊂ Rm be a closed and bounded definable set and
let S1, . . . , Sl be definable subsets of S. Then there exists a triangulation
(K,φ) ∈ ∆(S;S1, . . . , Sl) which is both independent and small with respect
to S1, . . . , Sl.
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Example 1.3.11. Let S be the closed and bounded 2-dimensional definable
set of Figure 1, where the union of the curves in its interior is the subset
S1. If we follow the proof of the Independent Triangulation Theorem and
we make the modification M1 but we do not make the modification M2 (see
Figure 2) then we obtain the following triangulation.
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Figure 1 Figure 2

Figure 2 represents a triangulation in which there is a vertical line with
both extremes in S1 but not included in the closure of S1, witnessing the
non-smallness.

1.4 Proof of the Normal Triangulation Theorem

We begin this section with a key lemma for the proof of the Normal Triangu-
lation Theorem. It can be easily proved making use of o-minimal homology.
However, we only use the Open Mapping Theorem which has been proved
(independently of o-minimal homology) by J. Johns in [24].

Lemma 1.4.1. Let σ ⊂ Rn be an n-simplex and let f : σ → σ be an injective
definable map. If f(∂σ) ⊂ ∂σ then f(σ) = σ (and hence f(∂σ) = ∂σ).

Proof. Since σ is closed and bounded, f(σ) is closed. By the Open Mapping
Theorem, f(σ) is open in Rn. This implies that σ ∩ f(σ), which is closed
in σ since σ ∩ f(σ) = σ ∩ f(σ), is also open in σ. On the other hand σ is
definably connected and, since f is injective, dim(f(σ)) = n, so f(σ) cannot
be included in ∂σ which has smaller dimension. Hence σ ∩ f(σ) = σ. Since
f(σ) ⊂ int(f(σ)) ⊂ σ, we conclude that f(σ) = σ. Finally, let us show that
f(∂σ) = ∂σ. Given x ∈ ∂σ, since f is injective, if f(x) ∈ f(σ) then x ∈ σ,
which is a contradiction. Hence f(x) /∈ f(σ) = σ, that is, f(x) ∈ ∂σ. On
the other hand, σ = f(σ) ⊂ f(σ) and therefore ∂σ ⊂ f(∂σ).

Remark 1.4.2. It is enough to prove the Normal Triangulation Theorem for
closed simplicial complexes. For, letK be a simplicial complex and S1, . . . , Sl
some definable subsets of |K|. Let (K0, φ0) ∈ ∆NT (|K|;S1, . . . , Sl), where
K denotes the closed simplicial complex which is the collection of all faces
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of simplices of K. Then (K ′, φ′) ∈ ∆NT (|K|;S1, . . . , Sl), where K ′ = {σ ∈
K0 : σ ⊂ |K|} and φ′ = φ0||K′|.

Proof of Theorem 1.1.5. By Remark 1.4.2 we can assume that K is closed.
We first apply Theorem 1.3.2 to get an independent triangulation (K0, φ0) ∈
∆(|K|;S1, . . . , Sl, σ)σ∈K . Now consider the collection of simplices K ′ =
{τφ0 : τ ∈ K0} (with the notation of Definition 1.3.1). By definition of
independent triangulation, K ′ is a closed simplicial complex. Moreover, the
map between the set of vertices gvert : Vert(K0) → Vert(K ′) : v 7→ φ0(v)
induce a simplicial isomorphism g : |K0| → |K ′|. Note that g(τ) = τφ0 for
τ ∈ K0. We also observe that given τ ∈ K0 if φ0(τ) ⊂ σ ∈ K then the images
by φ0 of the vertices of τ lie in σ and therefore g(τ) = τφ0 ⊂ σ. Hence, given
σ ∈ K take τ1, . . . , τm ∈ K0 be such that σ = φ0(τ1)∪̇ · · · ∪̇φ0(τm) and then
we get g(τ1)∪̇ · · · ∪̇g(τm) ⊂ σ.

Claim. g(τ1)∪̇ · · · ∪̇g(τm) = σ.

Once we have proved the Claim, we can assure that (a) K ′ is clearly a
subdivision of K, and (b) for every τ ∈ K0 and every σ ∈ K we have that
φ0(τ) ⊂ σ if and only if g(τ) ⊂ σ. Indeed, to prove (b), let τ ∈ K0 and
σ ∈ K. By the Claim, if φ0(τ) ⊂ σ then clearly g(τ) ⊂ σ. On the other
hand, assume that g(τ) ⊂ σ and φ0(τ) * σ. Then there is σ̃ ∈ K, σ 6= σ̃,
such that φ0(τ) ⊂ σ̃. By the Claim, g(τ) ⊂ σ̃ and therefore g(τ) ⊂ σ̃∩σ = ∅,
which is a contradiction.

Now, we consider the following map

φ′ := φ0 ◦ g−1 : |K ′| → |K|.

Finally we are ready to show that (K ′, φ′) ∈ ∆NT (|K|;S1, . . . , Sl) as re-
quired. We have to check the three conditions of Definition 1.1.1. The fact
that g is a simplicial isomorphism and that the triangulation (K0, φ0) ∈
∆(|K|, S1, . . . , Sl, σ)σ∈K give us (i); by (a) above we get (ii), and to check
(iii), given a simplex τφ0 ∈ K ′ such that τφ0 ⊂ σ ∈ K we have that
φ′(τφ0) = φ0 ◦ g−1(τφ0) = φ0(τ) ⊂ σ by (b). It remains to prove the Claim.
Proof of the Claim. By induction on the dimension n of the simplex σ ∈ K,
the case n = 0 being trivial. Let σ ∈ K be an (n + 1)-simplex. Let
τ1, . . . , τm ∈ K0 be such that σ = φ0(τ1)∪̇ · · · ∪̇φ0(τm). We may assume
σ ⊂ Rn+1. Now consider the injective definable map (g ◦ φ−1

0 )|σ : σ →
σ. Applying the induction hypothesis to each simplex in ∂σ we get (g ◦
φ−1

0 )(∂σ) = ∂σ. Therefore by Lemma 1.4.1 we have that (g ◦ φ−1
0 )(σ) = σ,

i.e., σ = g(τ1)∪̇ · · · ∪̇g(τm).

Extending a given triangulation is a technical tool used in the construc-
tion of triangulations (see Lemma II.4.3 in [13]). We next prove that the
extension process can be done preserving normality. We will make use of
this tool in the proof of Theorem 2.3.1.
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Lemma 1.4.3. Let K be a closed simplicial complex and KZ a closed simpli-
cial subcomplex of K. Let (K0, φ0) be a normal triangulation of KZ . Then
there exists a normal triangulation (K ′, φ′) of K such that K0 ⊂ K ′ and
φ′||K0| = φ0.

Proof. Note that |K0| = |KZ |, since K0 is a subdivision of KZ . For every
m ≥ 0 we denote by SKm the closed complex which is the union of KZ

and all the simplices of K of dimension ≤ m. We will show that there
exists a normal triangulation (Km, φm) of SKm such that K0 ⊂ Km and
φm||K0| = φ0. Hence for m = dim(K) we will obtain the required normal
triangulation.

For m = 0 let K0 be the union of K0 and all vertices of K. Let φ0 be
equal to φ0 on |K0| and the identity on the vertices of K that does not lie
in |K0|. Clearly (K0, φ0) is a normal triangulation of SK0, K0 ⊂ K0 and
φ0||K0| = φ0.

Suppose we have constructed (Km, φm). Let Σm+1 be the collection of
simplices in K \ K0 of dimension m + 1. Hence, for every σ ∈ Σm+1, ∂σ
is contained in SKm. On the other hand, Km is a subdivision of SKm

and so, for each σ ∈ Σm+1, there exists a finite collection of indices Jσ and
simplices τσj of Km, j ∈ Jσ, such that ∂σ =

⋃̇
j∈Jστ

σ
j . For each j ∈ Jσ

denote by [τσj , σ̂] the cone over τσj with vertex the barycentre σ̂ of σ, that is,
[τσj , σ̂] = {(1− t)u+ tσ̂ : u ∈ τσj , t ∈ [0, 1]}. For each σ ∈ Σm+1 and j ∈ Jσ
we define

hσj : [τσj , σ̂] → σ

(1− t)u+ tσ̂ → (1− t)φm(u) + tσ̂.

Note that hσj is well-defined because given u ∈ τσj there exists a proper
face σ0 ∈ K of σ such that τσj ⊂ σ0 and therefore, since σ0 ∈ SKm and
(Km, φm) is a normal triangulation, we have that φm(u) ∈ φm(τσj ) ⊂ σ0 ⊂
∂σ. Hence hσj ((1 − t)u + tσ̂) ∈ σ for all t ∈ [0, 1] and u ∈ τσj . Note
that the map hσj is injective and it is indeed continuous. Let Km+1 be
the collection of simplices in Km together with the collection of simplices
(τσj , σ̂) = {(1− t)u+ tσ̂ : u ∈ τσj , t ∈ (0, 1)} and all their faces for σ ∈ Σm+1

and τσj as described above. Finally, let φm+1 be the extension of φm to
Km+1 such that φm+1|[τσj ,σ̂] = hσj . We show that φm+1 is well-defined.
It is enough to prove that for a fixed σ ∈ Σm+1, the sets hσj ((τσj , σ̂)) ,
j ∈ Jσ, are pairwise disjoint. Indeed, hσj ((τσj , σ̂)) = (φm(τσj ), σ̂), where
(φm(τσj ), σ̂) = {(1 − t)x + tσ̂ : x ∈ φm(τσj ), t ∈ (0, 1)} and since the sets
φm(τσj ) are pairwise disjoint, the sets (φm(τσj ), σ̂) are also pairwise disjoint.
Note that φm+1 is continuous.

We now show that (Km+1, φm+1) is a normal triangulation of SKm+1.
To prove that (Km+1, φm+1) partitions the simplices of SKm+1 it is enough
to consider each σ ∈ Σm+1 (since Km ⊂ Km+1, φm+1||Km| = φm, and
(Km, φm) is normal). Now, for each of these σ ∈ Σm+1, the image of
hσj is contained in σ and, since ∂σ =

⋃
j∈Jσ φ

m(τσj ), we have that σ =
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⋃
j∈Jσ(φm(τσj ), σ̂) ∪ {σ̂}. Clearly Km+1 is a subdivision of SKm+1 because

for the relevant simplices of SKm+1, i.e, those σ ∈ Σm+1, the cones (τσj , σ̂)
and their faces form a triangulation of σ. Since we have always worked
inside each simplex σ ∈ Σm+1, property (iii) of normality also holds.

1.5 Applications I: the semialgebraic Hauptvermutung
and other topics

In this section we will give applications of the Normal Triangulation Theo-
rem.

Corollary 1.5.1. Let S be a definable set and let S1, . . . , Sl be some defin-
able subsets of S. Let (K,φ) be a definable triangulation of S partitioning
S1, . . . , Sl. Then for any S′1, . . . , S

′
l′ definable subsets of S there exist a sub-

division K ′ of K and a definable triangulation φ′ : |K ′| → S partitioning
S1, . . . , Sl, S

′
1, . . . , S

′
l′ such that φ′ is definably homotopic to φ.

Proof. By the Normal Triangulation Theorem there exists a triangulation
(K ′, ψ) ∈ ∆NT (|K|;φ−1(S′1), . . . , φ−1(S′l′)). By Remark 1.1.2.(ii), ψ is de-
finably homotopic to id|K|. We define φ′ = φ ◦ ψ. Clearly (K ′, φ′) ∈
∆(S;S1, . . . , Sl, S

′
1, . . . , S

′
l′) and φ′ is definably homotopic to φ.

Corollary 1.5.2. Let K be a simplicial complex and S1, . . . , Sl definable
subsets of |K|. Then there exists (K ′, φ′) ∈ ∆(|K|;S1, . . . , Sl, σ)σ∈K such
that K ′ is a subdivision of K and φ′ is definably homotopic to id|K|.

Proof. By the Normal Triangulation Theorem there exists a triangulation
(K ′, φ′) ∈ ∆NT (|K|;S1, . . . , Sl). By Remark 1.1.2.(ii), φ′ and id|K| are de-
finably homotopic.

Recall that given a definable map f : |K| → |L| between the realizations
of two simplicial complexes K and L we say that f is compatible if for
every σ ∈ K there is τ ∈ L such that f(σ) ⊂ τ .

Corollary 1.5.3. Let K and L be two simplicial complexes and let f :
|K| → |L| be a definable map. Then there exist a subdivision K ′ of K and a
definable homeomorphism φ : |K ′| → |K| definably homotopic to id|K| such
that both φ and f ◦ φ are compatible.

Proof. By the Normal Triangulation Theorem there exists a triangulation
(K ′, φ) ∈ ∆NT (|K|, f−1(τ))τ∈L. The definable map φ is clearly compatible
since (K ′, φ) partitions the simplices of K. Let us show that f ◦ φ is also
compatible. Consider a simplex σ′ ∈ K ′. Since (K ′, φ) partitions f−1(τ)
for each τ ∈ L and |K| =

⋃
τ∈L f

−1(τ), there exists τ0 ∈ L such that
φ(σ′) ⊂ f−1(τ0) and therefore f ◦ φ(σ′) ⊂ τ0.
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Theorem 1.5.4. Let R be a real closed field. Let X ⊂ Rn and Y ⊂ Rm be
two semialgebraic sets defined without parameters. Then any semialgebraic
map (homeomorphism) f : X → Y is semialgebraically homotopic to a
semialgebraic map (resp. homeomorphism) g : X → Y defined without
parameters.

Proof. We denote by Q the real algebraic numbers. We can assume that X
and Y are the realization of two simplicial complexes K and L respectively,
whose vertices lie in Q.

Claim. We can also assume that for each σ ∈ K there exists τσ ∈ L such
that f(σ) ⊂ τσ.

Now, we denote f by fc to stress the fact that c is a tuple of param-
eters in R such that f is defined over. Consider the first order formula
ψ(y) defined without parameters which says that fy is a map (resp. home-
omorphism) between |K| and |L| and for each σ ∈ K, fy(σ) ⊂ τσ. By
completeness of the theory of real closed fields, since R satisfies ∃yψ(y),
then Q satisfies ∃yψ(y). Therefore there exists a tuple of parameters a
in Q such that fa : |K| → |L| is a semialgebraic map (resp. homeomor-
phism) and for each σ ∈ K, fa(σ) ⊂ τσ. Denote fa by g. Finally the map
H : |K| × I → |L| : (x, t) 7→ (1− t)fc(x) + tg(x) is well-defined because for
each σ ∈ K we have that both g(σ) and fc(σ) are contained in τσ. Hence
H is a semialgebraic homotopy between f and g.
Proof of the Claim. We first apply Corollary 1.5.2 to get a semialgebraic
triangulation (K ′, φ′) ∈ ∆(|K|; f−1(τ), σ)σ∈K,τ∈L such that K ′ is a subdivi-
sion of K and φ′ is semialgebraically homotopic to id|K|. Note that the map
f ′ = f ◦ φ′ is semialgebraically homotopic to f and that for each σ′ ∈ K ′
there exists τσ′ ∈ L such that f ′(σ′) ⊂ τσ′ . Unfortunately, the vertices of
K ′ may not lie in Q. However, by completeness of the theory of real closed
fields, there exists a subdivision K ′′ of K whose vertices lie in Q and such
that there is a simplicial isomorphism φ : |K ′′| → |K ′| with φ(σ) = σ for all
σ ∈ K. The semialgebraic map F : |K| × I → |K| : (x, t) 7→ (1− t)x+ tφ(x)
is well-defined because φ(σ) = σ for all σ ∈ K. Hence, since F is clearly
continuous, φ is semialgebraically homotopic to id|K|. Finally, it suffices to
consider the map f ′′ = f ′ ◦ φ : |K ′′| → |L|. Clearly f ′′ is semialgebraically
homotopic to f ′ (and therefore to f) and for each σ′′ ∈ K ′′ there exists
τσ′′ ∈ L with f ′′(σ′′) ⊂ τσ′′ , as required.

Theorem 1.5.5 (Semialgebraic Hauptvermutung). Let R be a real
closed field. Let K and L be two closed simplicial complexes in R and let f :
|K| → |L| be a semialgebraic homeomorphism. Then f is semialgebraically
homotopic to a simplicial isomorphism g : |K ′| → |L′| between subdivisions
K ′ and L′ of K and L, respectively.

This last result is proved for the real field by M.Shiota and M.Yokoi in [36].
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In [11] M. Coste proves a weaker version of the semialgebraic Hauptver-
mutung, but strong enough to prove the unicity and strong effectiveness of
semialgebraic triangulations. Namely, he proves that under the hypotheses
of Theorem 1.5.5 there exists a simplicial isomorphism g between two sub-
divisions of K and L. However no relation between f and g is established.

Proof of Theorem 1.5.5. We can assume that the vertices of K and L lie in
Q (the real algebraic numbers). By Theorem 1.5.4 we can also assume that f
is defined without parameters. We now show that, since f is defined without
parameters, the theorem follows from the real Semialgebraic Hauptvermu-
tung. Indeed, by Theorem 4.1 in [36] there exists a simplicial isomorphism
g̃ : |K ′|(R) → |L′|(R) between the realizations in R of two subdivision K ′

and L′ of K and L respectively, such that g̃ is semialgebraically homotopic
to the map fR : |K|(R) → |L|(R) induced by f . Note that we can express
with a first order sentence ψ defined without parameters the existence of
some parameters and some points in K and L which are the vertices of
two simplicially isomorphic subdivisions of K and L and that the simplicial
isomorphism is semialgebraically homotopic to f . By completeness of the
theory of real closed fields, since R satisfies ψ, then Q also satisfies ψ.

1.6 Applications II: a new approach to o-minimal sim-
plicial homology

We finish this chapter with another application of the Normal Triangulation
Theorem. In both the semialgebraic and o-minimal setting it is possible
to develop a homology theory over real closed fields as it was proved by
M. Knebusch–H. Delfs and A. Woerheide respectively (see e.g. [13] and
[38]). When adapting the classical development to the o-minimal setting,
the lack of the Simplicial Approximation Theorem lead us to the problem
of verifying the excision axiom in the singular case and to construct a well-
defined functor in the simplicial one. M. Knebusch and H. Delfs avoid this
problem developing their semialgebraic homology theory via cohomology of
sheaves. In his PhD dissertation A. Woerheide returns to the classical line
solving the problem of constructing a well-defined o-minimal simplicial ho-
mology functor applying the Triangulation Theorem and the Acyclic Models
Theorem. Then he uses this o-minimal simplicial homology theory to ver-
ify the excision axiom of the o-minimal singular homology. On the other
hand, our Normal Triangulation Theorem fills the gap left by the lack of the
Simplicial Approximation Theorem, which allows us to follow the classical
proof. Therefore it gives an alternative proof of the existence of a functor
for o-minimal simplicial homology.

Given a closed simplicial complex K in R, we define the nth o-minimal
(simplicial) homology group Hn(K) as the nth (simplicial) homology group



Chapter 1. Normal Triangulations 19

of K as an abstract simplicial complex (see [25, Ch.1,§5]). We fix two closed
simplicial complexes K and L. We also fix a definable map f : |K| →
|L|. Our purpose is to define (naturally) an induced homomorphism f∗ :
H∗(K) → H∗(L). We will use the machinery of simplicial approximations
developed in Section 2.2 below. We first suppose that f is compatible (recall
the definition of a compatible definable map given before Corollary 1.5.3 and
the star condition in Definition 2.2.5). We have labelled some of the following
results with Fact because they are adaptations of classical results.

Fact 1.6.1. Every compatible definable map h : |K| → |L| satisfies the star
condition.

Proof. Fix a vertex v ∈ K. We have to show that there is a vertex w ∈ L
such that h(StK(v)) ⊂ StL(w). Since h is compatible, there is a simplex
τ̃ ∈ L such that h(v) ∈ τ̃ . We check that for any vertex w of τ̃ , h(StK(v)) ⊂
StL(w). Indeed, let σ ∈ StK(v), i.e., v ∈ σ. Since h is compatible, there is
τ ∈ L such that h(σ) ⊂ τ . Therefore, h(v) ∈ h(σ) ⊂ h(σ) ⊂ τ . Since h(v) ∈
τ̃ , we have that τ̃ ∩τ 6= ∅ and hence w ∈ τ̃ ⊂ τ . That is, h(σ) ⊂ τ ⊂ StL(w),
as required.

Since f is compatible, by Fact 1.6.1 it satisfies the star condition and there-
fore f has a simplicial approximation (see Proposition 2.2.6).

Fact 1.6.2. Let h : |K| → |L| be a definable map. If F, F ′ : |K| → |L| are
simplicial approximations to h then F and F ′ are contiguous, i.e, for each
simplex σ = (v0, . . . , vn) ∈ K the points F (v0), . . . , F (vn), F ′(v0), . . . , F ′(vn)
span a simplex of L.

Proof. We use the notation of the statement. Since F and F ′ are simpli-
cial approximations to h, we have that h(σ) ⊂

⋂n
i=0 StLF (vi) and h(σ) ⊂⋂n

i=0 StLF ′(vi). Let τ ∈ L be such that h(σ)∩τ 6= ∅. Then τ ⊂
⋂n
i=0 StLF (vi)

and τ ⊂
⋂n
i=0 StLF ′(vi). Therefore F (v0), . . . , F (vn), F ′(v0), . . . , F ′(vn) ∈ τ ,

so that they span a face of τ . Since L is closed, this face lies in L.

As in the classical setting, a simplicial map F : |K| → |L| induces naturally
a homomorphism F∗ : H∗(K) → H∗(L) (see [25, Ch.1,§12]). Hence we can
and do define f∗ : H∗(K) → H∗(L) as the homomorphism induced by a
simplicial approximation to f . Moreover, we can adapt (or even transfer)
easily the proof of the following fact: two contiguous simplicial maps induce
the same homomorphism in homology (see [25, Thm.12.5]). Hence, by Fact
1.6.2 the definition of f∗ does not depend on the choice of the simplicial
approximation.

Remark 1.6.3. Given a closed simplicial complex M , if g : |L| → |M |
is a compatible definable map then g ◦ f is clearly compatible. Moreover,
(g ◦ f)∗ = g∗ ◦ f∗. Indeed, if F and G are simplicial approximations to
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f and g respectively, then G ◦ F is a simplicial approximation to g ◦ f .
Indeed, for every v ∈ K, f(StK(v)) ⊂ StLF (v), and hence g(f(StK(v))) ⊂
g(StLF (v)) ⊂ StMG(F (v)).

Now, let us define f∗ in the general case. By Corollary 1.5.3, there exist
a subdivision K ′ of K and a definable homeomorphism φ : |K ′| → |K| defin-
ably homotopic to id|K| such that both φ and f ◦ φ are compatible. We will
call such a triangulation (K ′, φ) a compatible triangulation of f . Since
f ◦ φ and φ are compatible, by the previous case there are homomorphisms
(f ◦ φ)∗ : H∗(K ′) → H∗(L) and φ∗ : H∗(K ′) → H∗(K). Moreover, let us
prove that φ∗ is an isomorphism. Firstly, we show that the compatible map
idK′ : |K ′| → |K| : x 7→ x induces an isomorphism in homology. This is
natural since |K ′| = |K| and the map idK′ is just the identity. However,
note that it is not obvious because idK′ is not a simplicial isomorphism (not
even a simplicial map).

Fact 1.6.4 (The algebraic subdivision theorem). The homomorphism
(idK′)∗ : H∗(K ′)→ H∗(K) induced by the identity map idK′ : |K ′| → |K| is
an isomorphism.

Proof. Let K0 and K ′0 be closed simplicial complexes, with K ′0 a subdivi-
sion of K0, whose vertices lie in the real algebraic numbers Q and such that
there exist simplicial isomorphisms F1 : |K| → |K0| and F2 : |K ′| → |K ′0|.
Both K0 and K ′0 exists because of the Tarski-Seidenberg principle. We show
that (idK′0)∗ : H∗(K ′0) → H∗(K0) induced by idK′0 : |K ′0| → |K0| is an iso-
morphism. By the classical analogue of Fact 1.6.4 (see [25, Thm. 17.2]),
(idK′0(R))∗ : H∗(K ′0) → H∗(K0) induced by idK′0(R) : |K ′0|(R) → |K0|(R)
is an isomorphism. On the other hand, (idK′0(R))∗ is exactly (idK′0)∗, so
that (idK′0)∗ is an isomorphism. Finally, since both F1 and F2 are simpli-
cial isomorphisms, (F1)∗ and (F2)∗ are isomorphisms and hence (idK′)∗ =
(F1)−1

∗ ◦ (idK′0)∗ ◦ (F2)∗ is an isomorphism.

Since (K ′, φ) is a compatible triangulation of f , we have that φ(σ′) ⊂ σ for
each pair of simplexes σ′ ∈ K ′ and σ ∈ K with σ′ ⊂ σ, and therefore any
simplicial approximation to φ is a simplicial approximation to idK′ : |K ′| →
|K|, so that φ∗ = (idK′)∗. Hence, by Fact 1.6.4, φ∗ is an isomorphism, as
required. Now, we can and do define the homomorphism

fφ∗ : H∗(K)→ H∗(L)

by fφ∗ = (f ◦ φ)∗ ◦ φ−1
∗ . A priori, and as it stress the notation, fφ∗ depends

on the choice of (K ′, φ). The following lemma and proposition show that
this is not the case.

Lemma 1.6.5. Let K1,K2 and K3 be closed simplicial complexes and let
h : |K1| → |K2| and g : |K2| → |K3| be definable maps. Let (K ′2, φ2) be a
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compatible triangulation of g and let (K ′1, φ1) be a compatible triangulation
of both h and φ−1

2 ◦ h. Then (K ′1, φ1) is a compatible triangulation of g ◦ h
and moreover (g ◦ h)φ1

∗ = gφ2
∗ ◦ hφ1

∗ .

Proof. Firstly, let us check that (K ′1, φ1) is a compatible triangulation of g◦h.
Let σ′ ∈ K ′1. Since (K ′1, φ1) is a compatible triangulation of φ−1

2 ◦ h, there
is τ ′ ∈ K ′2 such that φ−1

2 (h(φ1(σ′))) ⊂ τ ′. Therefore h(φ1(σ′)) ⊂ φ2(τ ′).
Since (K2, φ2) is a compatible triangulation of g, there is γ ∈ K3 such
that g(φ2(τ ′)) ⊂ γ and hence g(h(φ1(σ′))) ⊂ g(φ2(τ ′)) ⊂ γ, as required.
Now, since (K ′1, φ1) is a compatible triangulation of both φ−1

2 ◦ h and h, by
Remark 1.6.3 we have that φ2∗ ◦ (φ−1

2 ◦ h ◦ φ1)∗ = (h ◦ φ1)∗ and therefore
(φ−1

2 ◦ h ◦ φ1)∗ = (φ2)−1
∗ ◦ (h ◦ φ1)∗. Hence, again using Remark 1.6.3,

gφ2
∗ ◦hφ1

∗ = (g ◦φ2)∗ ◦ (φ2)−1
∗ ◦ (h ◦φ1)∗ ◦ (φ1)−1

∗ = (g ◦φ2)∗ ◦ (φ−1
2 ◦h ◦φ1)∗ ◦

(φ1)−1
∗ = (g ◦ h ◦ φ1)∗ ◦ (φ1)−1

∗ = (g ◦ h)φ1
∗ .

Proposition 1.6.6. Let K1 and K2 be closed simplicial complexes. Let
h, g : |K1| → |K2| be definably homotopic definable maps and let (K ′1, φ) and
(K ′′1 , ψ) be compatible triangulations of h and g respectively. Then,
(i) if h is compatible, we have that h∗ = hφ∗ , and
(ii) hφ∗ = gψ∗ .

Proof. (i) By Remark 1.6.3, hφ∗ = (h ◦ φ)∗ ◦ φ−1
∗ = h∗ ◦ φ∗ ◦ φ−1

∗ = h∗.
(ii) Without loss of generality, we can assume that K ′1 = K ′′1 . Indeed,
take a subdivision K ′′′1 of both K ′1 and K ′′1 . We prove that we can replace
(K ′1, φ) by (K ′′′1 , φ ◦ i), where i : |K ′′′1 | → |K ′1| is the identity map. Clearly,
(K ′′′1 , φ ◦ i) is also a compatible triangulation of h. By Remark 1.6.3 we
have that (φ ◦ i)∗ = φ∗ ◦ i∗ and (h ◦ φ ◦ i)∗ = (h ◦ φ)∗ ◦ i∗. Hence, hφ◦i∗ =
(h◦φ◦ i)∗ ◦(φ◦ i)−1

∗ = (h◦φ)∗ ◦ i∗ ◦ i−1
∗ ◦φ−1

∗ = (h◦φ)∗ ◦φ−1
∗ = hφ∗ . Similarly,

we prove that we can replace (K ′′1 , ψ) by (K ′′′1 , ψ ◦ ĩ), where ĩ : |K ′′′1 | → |K ′′1 |
is the identity map, as required.

Now, it follows from a straightforward adaptation of [25, Lem. 19.1]
that there is a closed simplicial complex M such that |M | = |K ′1| × I and
for each σ ∈ K ′1, both σ × {0} and σ × {1} are simplices of M , and σ × I
is the realization of a subcomplex of M (we could also transfer [25, Lem.
19.1] via the Tarski-Seidenberg principle). Since both φ and ψ are definably
homotopic to id|K1| and since h and g are definably homotopic, h ◦ φ and
g ◦ ψ are also definably homotopic. Let F : |K ′1| × I → |K2| be a homotopy
from h ◦ φ to g ◦ ψ. Let j0, j1 : |K ′1| → |K ′1| × I be the maps j0(x) = (x, 0)
and j1(x) = (x, 1) for all x ∈ |K ′1|. Clearly, j0 and j1 are simplicial maps
from K ′1 into M . Furthermore, F ◦ j0 = h ◦ φ and F ◦ j1 = g ◦ ψ. It is
easy to prove that (j0)∗ = (j1)∗. Indeed, we can transfer the classical result
in [25, Lem. 19.1] as we did in the proof of Fact 1.6.4. By Corollary 1.5.3
there exists a compatible triangulation (M ′, ρ) of F . Consider the simplicial
complexes K10 = {π(σ′ × {0}) : σ′ × {0} ∈ M ′} and K11 = {π(σ′ × {1}) :
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σ′ × {1} ∈ M ′}, where π : |K ′1| × I → |K ′1| : (x, t) 7→ x. Both K10 and
K11 are subdivisions of K ′1. Consider also the definable homeomorphism
ρi : |K1i| → |K ′1| : x 7→ π(ρ(x, i)) for each i = 0, 1. Note that (K1i, ρi) is a
compatible triangulation of both ji and ρ−1 ◦ ji for each i = 0, 1. Hence, by
(i) and Lemma 1.6.5,

(h ◦ φ)∗ = (F ◦ j0)∗ = (F ◦ j0)ρ0∗ = F ρ∗ ◦ (j0)ρ0∗ = F ρ∗ ◦ (j0)∗ =
= F ρ∗ ◦ (j1)∗ = F ρ∗ ◦ (j1)ρ1∗ = (F ◦ j1)ρ1∗ = (F ◦ j1)∗ = (g ◦ ψ)∗.

On the other hand, as we showed after Remark 1.6.4, φ∗ = ψ∗ = (id|K1|)∗.
Finally, hφ∗ = (h ◦ φ)∗ ◦ φ−1

∗ = (g ◦ ψ)∗ ◦ ψ−1
∗ = gψ∗ , as required.

Hence, given two compatible triangulations (K ′, φ) and (K ′′, ψ) of f , by
Proposition 1.6.6 we have that fφ∗ = fψ∗ . Finally, we define f∗ := fφ∗ for some
(any) compatible triangulation (K ′, φ) of f . Note that from Lemma 1.6.5 it
is easy to deduce the functorial properties of these induced homomorphisms.
Moreover, from Proposition 1.6.6 it is easy to deduce the homotopy axiom.

A similar approach allow us to define the o-minimal simplicial functor in
the relative case and, adapting the classical techniques, it is easy to verify
the o-minimal Eilenberg-Steenrod homology axioms. Since the subject of
this PhD dissertation is not o-minimal homology but o-minimal homotopy,
we have avoided the details. Our purpose in this section was just to propose
an alternative, and in some sense, more natural definition of induced ho-
momorphism in o-minimal simplicial homology. Furthermore, note that our
definition of induced homomorphisms is, a posteriori, that of A. Woerheide
and therefore we know that the Eilenberg-Steenrod axioms are fulfilled.



Chapter 2
o-minimal homotopy

2.1 Introduction

In [13], H. Delfs and M. Knebusch study semialgebraic homotopy. The
following comparison theorems are the main results of their work (recall the
definition of semialgebraic homotopy set in Section 2.3).

Fact 2.1.1. [13, Thm.III.4.1] Let (X,A) and (Y,B) be two pairs of semial-
gebraic sets over a real closed field R. Let S be a real closed field extension
of R. Let C be a closed semialgebraic subset of X and let h : C → Y be a
semialgebraic map such that h(A ∩ C) ⊂ B. Then, if A is closed in X, the
map

ρ : [(X,A), (Y,B)]R0
h → [(X(S), A(S)), (Y (S), B(S))]S0h
[f ] 7→ [f(S)]

is a bijection.

Fact 2.1.2. [13, Thm III.5.1] Let (X,A) and (Y,B) be two pairs of semi-
algebraic sets of R. Let C be a closed semialgebraic subset of X and let
h : C → Y be a semialgebraic map such that h(A ∩ C) ⊂ B. Then, if A is
closed in X, the map

ρ : [(X,A), (Y,B)]Rh → [(X,A), (Y,B)]h
[f ] 7→ [f ]

is a bijection, where [(X,A), (Y,B)]h denotes the classical homotopy set.

Semialgebraic versions of Hurewicz and Whitehead theorems are also de-
duced from the classical ones via the above comparison results.

In Section 2.3 we will prove a comparison theorem concerning o-minimal
and semialgebraic homotopy (see Theorem 2.3.1 and 2.3.4). To do this,

23
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we will follow the scheme of the proofs of the results in [13], however the
core of their proofs cannot be adapted to our context since they make use
of both the Lebesgue number and the Tarski-Seidenberg principle via the
polynomial description of semialgebraic sets, which are not available in the
o-minimal setting. Instead, we use the results on normal triangulations ob-
tained in Chapter 1. In Section 2.4 we restrict our attention to the study
of the o-minimal homotopy groups. In particular, we will show o-minimal
versions of some classical results, such as the o-minimal fibration property or
the fact that every definable covering is a definable fibration (see Theorem
2.4.9 and Proposition 2.4.10). In Section 2.5, we will deduce o-minimal ver-
sions of Hurewicz and Whitehead theorems from the semialgebraic ones (see
Theorem 2.5.3 and Theorem 2.5.7). Finally, we will introduce the Lusternik-
Schnirelmann category of a definable set in Section 2.6 and we will show its
relation with the classical one and its invariance under elementary extensions
and o-minimal expansions.

2.2 Preliminaries

We start this section with a basic result for the study of homotopy.

Lemma 2.2.1 (o-minimal homotopy extension lemma). Let X, Z and
A be definable sets with A ⊂ X closed in X. Let f : X → Z be a definable
map and H : A × I → Z a definable homotopy such that H(x, 0) = f(x),
x ∈ A. Then there exists a definable homotopy G : X × I → Z such that
G(x, 0) = f(x), x ∈ X, and G|A×I = H.

Proof. Let (K,φ) be a triangulation of X partitioning A and let KA = {σ ∈
K : φ(σ) ⊂ A}. Note that |KA| is closed in |K|. By [14, Thm.5.1], there
exists a semialgebraic retract r : |K| × I → (|KA| × I) ∪ (|K| × {0}). This
retract naturally induces a definable retract r′ : X×I → (A×I)∪(X×{0}).
Let H ′ : (A× I) ∪ (X × {0})→ Z be the following definable map

H ′(x, t) =
{
H(x, t) for all (x, t) ∈ A× I,
f(x) for all (x, 0) ∈ X × {0}.

Then G = H ′ ◦ r′ is the required definable homotopy.

Now, we briefly develop the approximation simplicial machinery in the
o-minimal context.

Definition 2.2.2. Let K and L be simplicial complexes with K closed. Let
f : |K| → |L| be a definable map. We say that a simplicial map g : |K| → |L|
is a simplicial approximation to f if f(StK(w)) ⊂ StL(g(w)) for each
w ∈ Vert(K).
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Fact 2.2.3. Let K and L be simplicial complexes with K closed. Let f :
|K| → |L| be a definable map and let g : |K| → |L| be a simplicial approxi-
mation to f . Then,
(i) for every x ∈ |K| and ρ ∈ L with f(x) ∈ ρ, we have that g(x) ∈ ρ, and
(ii) f and g are canonically definably homotopic via the map (x, s) 7→ (1 −
s)f(x) + sg(x) for all (x, s) ∈ |K| × I.

Proof. (i) Let x ∈ |K| and ρ ∈ L with f(x) ∈ ρ. Let σ = (v0, . . . , vn) ∈ K
such that x ∈ σ. Since σ ⊂

⋂n
i=0 StK(vi) then f(x) ∈ f(

⋂n
i=0 StK(vi)) ⊂⋂n

i=0 StL(g(vi)) = StL(τ), where τ = (g(v0), . . . , g(vn)). Therefore f(x) ∈
StL(τ). As the star of a set is the smallest open subcomplex containing it,
we deduce that StL(f(x)) ⊂ StL(τ). Hence, since f(x) ∈ ρ, we have that
ρ ⊂ StL(f(x)) ⊂ StL(τ). In particular, ρ ∩ τ 6= ∅. As τ is an open simplex,
τ ⊂ ρ. Therefore g(x) ∈ τ ⊂ ρ.
(ii) Clearly H : |K| × I → |L| : (x, s) 7→ f(x) + s(g(x) − f(x)) is a de-
finable map. Let us show that H is well-defined. By the previous lemma
for every x ∈ |K| and ρ ∈ L such that f(x) ∈ ρ ∈ L, g(x) ∈ ρ. There-
fore [f(x), g(x)) ⊂ ρ, as required. Finally, note that H(x, 0) = f(x) and
H(x, 1) = g(x) for all x ∈ |K|.

Fact 2.2.4. [13, Ch.III, Rmk.1.5] Let L be a simplicial complex. Consider
the first barycentric subdivision L′ of L. Then,
(i) for every simplex σ of L′ at least one vertex of σ lies in L′,
(ii) if every vertex of σ ∈ L′ is a vertex of L′ then σ ∈ L′.

Definition 2.2.5. Let K and L be simplicial complexes with K closed. We
say that a definable map f : |K| → |L| satisfies the star condition if there
is a map ϕ : Vert(K)→ Vert(L) ∩ |L| such that f(StK(v)) ⊂ StL(ϕ(v)) for
every vertex v ∈ Vert(K).

Fact 2.2.6. Let K and L be simplicial complexes with K closed. Let f :
|K| → |L| be a definable map and let ϕ : Vert(K)→ Vert(L)∩ |L| be a map
such that f(StK(v)) ⊂ StL(ϕ(v)) for every vertex v ∈ Vert(K) (so f satisfy
the star condition). Then, if either L is the first barycentric subdivision of
some simplicial complex or L is closed, the map ϕ induces a simplicial map
which is a simplicial approximation to f .

Proof. Let us show that ϕ induce a simplicial map. It is enough to show
that (ϕ(v0), . . . , ϕ(vr)) ∈ L for every σ = (v0, . . . , vr) ∈ K. It follows from
σ ⊂

⋂r
i=1 StK(vi) that

∅ 6= f(
r⋂
i=1

StK(vi)) ⊂
r⋂
i=1

f(StK(vi)) ⊂
r⋂
i=1

StL(ϕ(vi)).

Hence there is τ ∈ L such that τ ⊂
⋂r
i=1 StL(ϕ(vi)). We deduce that

ϕ(v0), . . . , ϕ(vr) are vertices of τ and therefore (ϕ(v0), . . . , ϕ(vr)) is a simplex
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of L. If L is the first barycentric subdivision of some simplicial complex
then, by Lemma 2.2.4, (ϕ(v0), . . . , ϕ(vr)) is a simplex of L. If L is closed
then obviously (ϕ(v0), . . . , ϕ(vr)) ∈ L = L. Finally, it follows immediately
from the hypotheses that the simplicial map induced by ϕ is a simplicial
approximation.

Definition 2.2.7. The core of a simplicial complex K is the subcomplex
co(K) of K consisting of all simplices σ ∈ K such that cl|K|(σ) ⊂ |K|. The
core of a system of complexes (K,K1, . . . ,Kn) is the system of complexes
co(K,K1, . . . ,Kn) = (co(K),K1 ∩ co(K), . . . ,Kn ∩ co(K)).

Remark 2.2.8. (i) Given a simplicial complex K, co(K) is the maximal
subcomplex of K which is a closed simplicial complex.
(ii) By Fact 2.2.4, if K is the first barycentric subdivision of some simplicial
complex then co(K) is non-empty.

Fact 2.2.9. [13, Ch.III, Prop.1.6, 1.8] Let K and K1 be simplicial complexes
with K1 a subcomplex of K. Suppose that K is the first barycentric subdivi-
sion of some simplicial complex. Then
(a) there exist a semialgebraic retraction rK : |K| → |co(K)| such that
(1− t)x+ t · rK (x) ∈ |K| for all (x, t) ∈ |K| × I and hence HK : |K| × I →
|K| : (x, t) 7→ (1− t)x+ t · rK (x) is a canonical semialgebraic strong defor-
mation retraction, and
(b) if |K1| is closed in |K|, the retraction rK1

: |K1| → |co(K1)| is the
restriction of rK to |K1| and hence HK ||K1|×I = HK1

.

2.3 The o-minimal homotopy sets

Let (X,A) and (Y,B) be two pairs of definable sets. Let C be a relatively
closed definable subset of X and let h : C → Y be a definable map such
that h(A ∩ C) ⊂ B. We say that two definable maps f, g : (X,A)→ (Y,B)
with f |C = g|C = h, are definably homotopic relative to h, denoted by
f ∼h g, if there exists a definable map H : (X × I, A × I) → (Y,B) such
that H(x, 0) = f(x), H(x, 1) = g(x) for all x ∈ X and H(x, t) = h(x) for
all x ∈ C and t ∈ I. The o-minimal homotopy set of (X,A) and (Y,B)
relative to h is the set

[(X,A), (Y,B)]Rh = {f : f : (X,A)→ (Y,B) definable in R, f |C = h}/ ∼h .

If C = ∅ we omit all references to h. Recall that we denote by R0 the field
structure of the real closed field R of our o-minimal structure R. Note that
if we take R to be R0 above, then we obtain the definition of a semialgebraic
homotopy set (see Section 2 of Chapter 3 in [13]).

Our main result is the following theorem (see also Theorem 2.3.4).
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Theorem 2.3.1. Let (X,A) and (Y,B) be two pairs of semialgebraic sets
with X closed and bounded. Let C be a closed semialgebraic subset of X and
h : C → Y a semialgebraic map such that h(A ∩ C) ⊂ B. Then, if A is
closed in X, the map

ρ : [(X,A), (Y,B)]R0
h → [(X,A), (Y,B)]Rh
[f ] 7→ [f ]

is a bijection.

We are specially interested in the case C = ∅. However, in order to
reduce Theorem 2.3.1 to the following proposition, we will need to consider
the general case.

Proposition 2.3.2. Let K, KC and L be simplicial complexes with K closed
and KC a closed subcomplex of K. Let h : |KC | → |L| be a semialgebraic
map. Then the map

ρ : [|K|, |L|]R0
h → [|K|, |L|]Rh

is surjective.

Fact 2.3.3. [13, Thm.III.4.2] Theorem 2.3.1 can be reduced to Proposition
2.3.2.

Proof. We will denote ρ by ρS , where S := (X,A, Y,B, h), to stress the fact
that it depends on (X,A), (Y,B) and h. Granted the Proposition 2.3.2,
Theorem 2.3.1 is deduced from the following three reductions.
Reduction 1. It is enough to prove that ρS is surjective for every tuple
S satisfying the hypotheses of Theorem 2.3.1. Indeed, fix a tuple S :=
(X,A, Y,B, h) satisfying the hypotheses of Theorem 2.3.1. We have to show
that ρS is injective. Let f, g : (X,A) → (Y,B), f |C , g|C = h, be semial-
gebraic maps such that ρS([f ]) = ρS([g]). Then there exists a definable
homotopy F1 : (X× I, A× I)→ (Y,B) such that F1(x, 0) = f , F1(x, 1) = g,
for all x ∈ X, and F1(x, t) = h(x) for all x ∈ C and all t ∈ I. Consider the
closed semialgebraic set C̃ = (C × I)∪ (X × ∂I) and the semialgebraic map
H1 : C̃ → Y ,

H1(x, t) =


h(x) for all (x, t) ∈ C × I,
f(x) for all x ∈ X, t = 0,
g(x) for all x ∈ X, t = 1.

By hypothesis, for S1 := (X × I, A× I, Y,B,H1) the map

ρS1 : [(X × I, A× I), (Y,B)]R0
H1
→ [(X × I, A× I), (Y,B)]RH1

is surjective. Hence, there exists a semialgebraic map G1 : (X × I, A× I)→
(Y,B) such that G1| eC = H1 and ρS1([G1]) = [F1]. In particular, G1 is
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a semialgebraic homotopy of f to g relative to h. Therefore [f ] = [g] in
[(X,A), (Y,B)]R0

h .

Reduction 2. It is enough to prove that ρS is surjective for every tuple
S = (X, ∅, Y, ∅, h) satisfying the hypotheses of Theorem 2.3.1. Indeed, fix
a tuple S = (X,A, Y,B, h) satisfying the hypotheses of Theorem 2.3.1. By
Reduction 1, it suffices to show that ρS is surjective. Let f : (X,A)→ (Y,B)
be a definable map with f |C = h. Consider the restriction f |A : A→ B. By
hypothesis, for S2 = (A, ∅, B, ∅, h|A∩C) the map

ρS2 : [A,B]R0

h|A∩C → [A,B]Rh|A∩C

is surjective. Hence, there is a definable map G2 : A× I → B such that

G2(x, t) =
{
h(x) for all (x, t) ∈ (A ∩ C)× I,
f(x) for all x ∈ A and t = 0,

and such that the map k = G2(x, 1) : A→ B is semialgebraic. Consider the
closed semialgebraic set C2 = C∪A and the semialgebraic map h2 : C2 → Y ,

h2(x) =
{
h(x) for all x ∈ C,
k(x) for all x ∈ A.

Note that indeed the map h2 is continuous because h and k are continuous
and are equal on A∩C. Now, consider the definable map H2 : C2× I → Y ,

H2(x, t) =
{
G2(x, t) for all (x, t) ∈ A× I,
h(x) for all (x, t) ∈ C × I.

Note that indeed H is continuous because both G2 and h are continuous and
G2(x, t) = h(x) for all (x, t) ∈ (A∩C)× I. Furthermore, H2(x, 0) = f |C2(x)
and H2(x, 1) = h2(x) for all x ∈ C2. Since C2 is closed in X, by Lemma
2.2.1 there exists a definable extension F2 : X × I → Y of H2 such that
F2(x, 0) = f(x) for all x ∈ X. Since F2 extends H2,{

F2(x, t) = H2(x, t) = h(x) for all (x, t) ∈ C × I,
F2(a, t) = G2(a, t) ∈ B for all (a, t) ∈ A× I,

and the definable map F2(x, 1) : X → Y is such that F2(x, 1) = h2(x) for
all x ∈ C2. By hypothesis, for S3 = (X, ∅, Y, ∅, h2) the map

ρS3 : [X,Y ]R0
h2
→ [X,Y ]Rh2

is surjective. Hence there is a definable map F3 : X × I → Y such that

F3(x, t) =
{
F3(x, 0) = F2(x, 1) for all x ∈ X,
F3(x, t) = h2(x) for all (x, t) ∈ C2 × I.
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and the map F3(x, 1) is semialgebraic. Therefore, [f ] = [F2(x, 1)] = [F3(x, 1)]
in [(X,A), (Y,B)]Rh , as required.

Reduction 3. It is enough to prove Proposition 2.3.2. By Reduction 1 and 2,
it suffices to prove that ρS is surjective for a tuple S = (X, ∅, Y, ∅, h), X and
Y semialgebraic sets with X closed and bounded, C a closed semialgebraic
subset of X and h : C → Y a semialgebraic map. Since X, Y and C are semi-
algebraic, by the Triangulation theorem there exist triangulations (K,φ1)
and (L, φ2) of X and Y respectively such that φ1 partitions C and both φ1

and φ2 are semialgebraic. In particular, since X is closed and bounded, K is
a closed simplicial complex. Denote by KC the closed subcomplex of K such
that φ−1(C) = |KC |. Consider the semialgebraic map h′ = φ−1

2 ◦ h ◦ φ1||KC |
and the natural bijections κ1 : [X,Y ]R0

h → [|K|, |L|]R0
h′ : [f ] 7→ [φ−1

2 ◦ f ◦ φ1]
and κ2 : [X,Y ]Rh → [|K|, |L|]Rh′ : [f ] 7→ [φ−1

2 ◦ f ◦ φ1]. Clearly, the following
diagram

[X,Y ]R0
h

ρS //

κ1

��

[X,Y ]Rh

κ2

��
[|K|, |L|]R0

h′ ρS′
// [|K|, |L|]Rh′

commutes, where S ′ := (|K|, ∅, |L|, ∅, h′). Hence, since ρS′ is surjective
because of Proposition 2.3.2, ρS is also surjective.

Proof of Proposition 2.3.2. Without loss of generality we can assume that
L is the first barycentric subdivision of some simplicial complex. Let [f ] ∈
[|K|, |L|]Rh . We will find a semialgebraic map definably homotopic to f rel-
ative to h.

Claim. We can assume that

(a) there exist two closed subcomplexes KD of K and KE of KD such that

|KC | ⊂ int|K|(|KE |) ⊂ |KE | ⊂ int|K|(|KD|), and

(b) the map f satisfies f ||KD| = h̃, where h̃ : |KD| → |L| is a semialgebraic

map such that h̃||KC | = h and for each simplex σ ∈ KD there is a simplex

of L containing h̃(σ).

These assumptions allow us to protect |KC | with two successives ”bar-
riers”, |KD| and |KE |. We shall use these barriers in two different places in
the following proof to transform the map f without modifying it on |KC |.

We divide the proof in two steps. In Step 1 we will make use of the
Normal triangulation theorem (see Theorem 1.1.5) to show that there exists
a definable map g satisfying the star condition such that f ∼h g. In Step 2
we will use a simplicial approximation to g (whose existence is ensured by
the star condition) to find a semialgebraic map definably homotopic to f
relative to h.
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Step 1: Let KZ be the closed subcomplex of K whose polyhedron is
|KZ | = |K| \ int|K|(|KD|). By the Normal Triangulation Theorem (see
Theorem 1.1.5) there exists a normal triangulation (K0, φ0) of KZ ∪ KE

partitioning f−1(σ) ∩ |KZ |, σ ∈ L. Moreover, since |KE | ∩ |KZ | = ∅ and
(KE , id) is a normal triangulation of KE , we can assume that φ0||KE | = id.
Next we extend (K0, φ0) to a triangulation of the whole of |K|. By Lemma
1.4.3 there exists a normal triangulation (K ′, φ′) of K such that K0 ⊂ K ′

and φ′||K0| = φ0. In particular, φ′||KE | = id. Note that (K ′, φ′) partitions the
sets f−1(σ), σ ∈ L. Indeed, it suffices to show that for each σ′ ∈ K ′, φ′(σ′)
is contained in the preimage by f of some simplex of L. If σ′ ⊂ |KZ | this is
clear since φ′ extends φ0, which in turn partitions the subsets f−1(σ)∩ |KZ |
for σ ∈ L. On the other hand, if σ′ ⊂ |K| \ |KZ | ⊂ |KD| then φ′(σ′) is
contained in some simplex of KD because (K ′, φ′) partitions the simplices
of K and, by (b), each simplex of KD is contained in the preimage by f of
some simplex of L.

By Remark 1.1.2.(ii), φ′ and id|K′| are definably homotopic via the canon-
ical homotopy H1 : |K ′| × I → |K| : (x, s) 7→ (1 − s)x + sφ′(x). The map
H2 := f ◦ H1 is clearly a definable homotopy of f to g := f ◦ φ′ relative
to h̃||KE |. Note also that since (K ′, φ′) partitions f−1(τ) for τ ∈ L we have
that for every σ ∈ K ′ there exists τ ∈ L such that g(σ) ⊂ τ . Therefore,
for every v ∈ Vert(K ′) there exist w ∈ Vert(L) with w ∈ L such that
g(StK′(v)) ⊂ StL(w). Indeed, take v ∈ Vert(K ′) and τ ∈ L such that
g(v) ∈ τ . Since L is the first barycentric subdivision of some simplicial
complex, there exists a vertex w of τ with w ∈ L. Since g−1(StL(w)) is the
realization of a subcomplex of K ′, it is open in |K ′| and contains the vertex
v, we deduce that StK′(v) ⊂ g−1(StL(w)).

Step 2: Consider the map µvert : Vert(K ′) → Vert(L) : v 7→ µvert(v),
where (as in Step 1) µvert(v) is such that µvert(v) ∈ L and g(StK′(v)) ⊂
StL(µvert(v)). By Fact 2.2.6 the map µvert induces a simplicial approxi-
mation µ to g. However neither µ nor the canonical homotopy between
µ and g (see Fact 2.2.3(ii)) are good enough for us since we need a map
definably homotopic to f relative to h. We do as follows. Since |KC | and
|K| \ int|K|(|KE |) are closed and disjoint, by Theorem 1.6 in [14], there ex-
ists a semialgebraic function λ : |K| → [0, 1] such that λ−1(0) = |KC | and
λ−1(1) = |K| \ int|K|(|KE |). Consider the map H : |K| × I → |L| : (x, s) 7→
(1−sλ(x))g(x)+sλ(x)µ(x). The definable map H is indeed continuous and
is well-defined. Note that{

H(x, 0) = g(x) for all x ∈ |K|,
H(x, s) = g(x) = h(x) for all x ∈ |KC | and s ∈ I.

Furthermore, observe that

H(x, 1) =
{
µ(x) for all x ∈ |K| \ int|K|(|KE |),
(1− λ(x))h̃(x) + λ(x)µ(x) for all x ∈ |KE |,
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is semialgebraic. Hence f ∼h g ∼h H(x, 1), as required.

Proof of the Claim. By [14, Thm 2.7], |KC | is a semialgebraic strong deforma-
tion retract of StK′′(|KC |), where K ′′ is the second barycentric subdivision.
Without loss of generality, we replace K by K ′′ and hence we can assume
that there is a closed subcomplex KD of K such that |KC | ⊂ int(|KD|) and
|KC | is a semialgebraic strong deformation retract of |KD|, i.e., there is a
semialgebraic map H2 : |KD| × I → |KD| such that

H2(x, 0) = x for all x ∈ |KD|,
H2(x, 1) ∈ |KC | for all x ∈ |KD|,
H2(x, t) = x for all (x, t) ∈ |KC | × I.

In particular, h̃ : |KD| → |L| : x 7→ h̃(x) = h(H2(x, 1)) is a semialgebraic
extension of h. Moreover, the map G : |KD| × I → |L| : (x, t) 7→ f(H2(x, t))
is a definable homotopy such that

G(x, 0) = f(x) for all x ∈ |KD|,
G(x, 1) = f(H2(x, 1)) = h(H2(x, 1)) = h̃(x) for all x ∈ |KD|,
G(x, t) = h(x) for all x ∈ |KC | × I.

By Lemma 2.2.1, there is a definable homotopy F : |K| × I → |L| such that
F (x, 0) = f(x) for all x ∈ |K| and F ||KD|×I = G. Consider the definable
map f ′(x) := F (x, 1), which satisfies f ′(x) = h̃(x) for all x ∈ |KD|. Clearly,
[f ] = [f ′] in [|K|, |L|]Rh . Without loss of generality, we replace f by f ′

and hence we can assume that the map f satisfies f ||KD| = h̃, where h̃ :
|KD| → |L| is a semialgebraic map such that h̃||KC | = h. By using the first
barycentric subdivision of K, which we may denote again by K, we can
assume that the closed subcomplex KE of K with |KE | = StK(KC) satisfies
|KC | ⊂ int(|KE |) and |KE | ⊂ int(|KD|).

Now, we show that we can assume that for every σ ∈ KD, h̃(σ) is
contained in a simplex of L. Let (K̂, φ̂) be a semialgebraic triangulation of
|K| partitioning the simplices of K and the semialgebraic subsets h̃−1(τ),
for all τ ∈ L. Consider the subcomplexes K̂D := {φ̂−1(σ) : σ ∈ KD},
K̂E := {φ̂−1(σ) : σ ∈ KE} and K̂C = {φ̂−1(σ) : σ ∈ KC}. Consider
also the semialgebraic map ĥ := h ◦ φ̂|| bKC | : |K̂C | → |L|. Note that K̂D,

K̂E and K̂C are closed subcomplexes of K̂ such that |K̂C | ⊂ int(|K̂E |) and
|K̂E | ⊂ int(|K̂D|). Moreover, the map f̂ := f ◦ φ̂ satisfies f̂ ||KD| = h̃◦ φ̂|| bKD|,
where h̃◦φ̂|| bKD| : |K̂D| → |L| is a semialgebraic map such that h̃◦φ̂|| bKC | = ĥ.

Finally, note that since φ̂ is semialgebraic, to prove that f is definably
homotopic to a semialgebraic map relative to h it is enough to prove that f̂
is definably homotopic to a semialgebraic map relative to ĥ, as required.

Proof of Theorem 2.3.1. By Fact 2.3.2 and Proposition 2.3.2.
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As an immediate consequence of Theorem 2.3.1 we prove a more general
result.

Theorem 2.3.4. Let (X,A1, . . . , Ak) and (Y,B1, . . . , Bk) be two systems of
semialgebraic sets. Let C be a relatively closed semialgebraic subset of X
and h : C → Y a semialgebraic map such that h(C ∩Ai) ⊂ Bi, i = 1, . . . , k.
Then, if the subsets A1, . . . , Ak are relatively closed in X, the map

ρ : [(X,A1, . . . , Ak), (Y,B1, . . . , Bk)]R0
h → [(X,A1, . . . , Ak), (Y,B1, . . . , Bk)]Rh
[f ] 7→ [f ]

is a bijection.

Proof. Firstly, note that the hypotheses of Lemma 2.2.1 do not include X
closed. Therefore, the reductions in Fact 2.3.3 apply to this setting. Hence,
it suffices to show that ρ : [|K|, Y ]R0

h → [|K|, Y ]Rh : [f ] 7→ [f ] is surjective,
where K is a simplicial complex, KC is a relatively closed subcomplex of
K and h : |KC | → Y is a semialgebraic map. Without loss of generality
we can assume that K is the first barycentric subdivision of a simplicial
complex. Let f : |K| → Y be a definable map. Denote by K0 := co(K) and
K0
C := co(KC) (see Definition 2.2.7 and Remark 2.2.8). Since K0 is closed,

by Theorem 2.3.1 there is a definable homotopy F ′1 : |K0| × I → Y such
that F ′1(−, 0) = f ||K0|, g′ := F ′1(−, 1) is semialgebraic and F ′1(x, t) = h(x)
for all (x, t) ∈ |K0

C | × I. Let r : |K| → |K0| be the semialgebraic retract
of Fact 2.2.9(a). We define the semialgebraic map F ′2 : |KC | × I → Y :
(x, t) 7→ h((1− t)r(x) + tx) (see Fact 2.2.9(b)). By the homotopy extension
lemma 2.2.1 there is a semialgebraic homotopy F2 : |K| × I → Y such
that F2||KC |×I = F ′2 and F2(x, 0) = g′ ◦ r(x) for all x ∈ |K|. Note that
g := F2(−, 1) is a semialgebraic map with g||KC | = h. We show that f
is definably homotopic to g relative to h. The maps f ◦ r and g′ ◦ r are
definably homotopic via F1 : |K| × I → Y : (x, t) 7→ F ′1(r(x), t). Note that
by Fact 2.2.9(b), F1(x, t) = h ◦ r(x) for all (x, t) ∈ |KC | × I. Consider the
closed definable subset A := |K|× {0}∪ |K|× {1}∪ |KC |× I of |K|× I. We
consider also the definable homotopy H ′ : A× I → Y such that

H ′(x, t, s) =


f((1− s)r(x) + sx) for all (x, t, s) ∈ |K| × {0} × I,
F2(x, s) for all (x, t, s) ∈ |K| × {1} × I,
h((1− s)r(x) + sx) for all (x, t, s) ∈ |KC | × I × I.

By the homotopy extension lemma 2.2.1 there is a definable homotopy H :
|K| × I × I → Y such that H|A×I = H ′ and H(x, t, 0) = F1(x, t) for all
(x, t) ∈ |K| × I. In particular, F (x, t) := H(x, t, 1) : |K| × I → Y is a
definable homotopy of f to g relative to h.

Corollary 2.3.5. Let X and Y be two pairs of semialgebraic sets defined
without parameters. Then there exist a bijection

ρ : [X(R), Y (R)]→ [X,Y ]R,
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where [X(R), Y (R)] denotes the classical homotopy set. Moreover, if the real
closed field R is a field extension of R, then the result remains true allowing
parameters from R.

Proof. By Facts 2.1.1 and 2.1.2, there exits a canonical bijection between
[X(R), Y (R)] and the semialgebraic homotopy set over the real algebraic
numbers [X(Q), Y (Q)]Q. By Fact 2.1.1, there exists a canonical bijection
between [X(Q), Y (Q)]Q and [(X,A), (Y,B)]R0 . The result then follows by
Theorem 2.3.1. The proof of the second part is similar.

Remark 2.3.6. This corollary remains true for systems of semialgebraic
sets satisfying the hypotheses of Theorem 2.3.4.

Corollary 2.3.7. Let X and Y be two definable sets defined without pa-
rameters. Then any definable map f : X → Y is definably homotopic to a
definable map g : X → Y defined without parameters. If moreover X and Y
are semialgebraic then g can also be taken semialgebraic.

Proof. By the Triangulation Theorem there are triangulations of X and Y
defined without parameters and therefore it suffices to prove the case in
which both X and Y are semialgebraic. By Theorem 2.3.1, f is definably
homotopic to a semialgebraic map g1. Finally, it follows from Fact 2.1.1 ap-
plied to R0 and Q that g1 is semialgebraically homotopic to a semialgebraic
map g defined without parameters.

2.4 The o-minimal homotopy groups

We begin this section with a general discussion of homotopy groups in the
o-minimal setting. Then we will relate the semialgebraic and the o-minimal
homotopy groups via Theorem 2.3.1. Finally, we will prove the usual prop-
erties related to homotopy in the o-minimal framework.

We will work with the category whose objects are the definable pointed
sets, i.e., (X,x0), where X is a definable set with x0 ∈ X, and whose
morphisms are the definable continuous maps between definable pointed
sets. In a similar way, we define the categories of definable pointed pairs,
i.e., (X,A, x0), where X is a definable set, A is a definable subset of X and
x0 ∈ A.

Let (X,x0) be a definable pointed set. The o-minimal homotopy
group of dimension n, n ≥ 1, is the set πn(X,x0)R = [(In, ∂In), (X,x0)]R.
We define π0(X,x0) as the set of definably connected components of X.
The o-minimal relative homotopy group of dimension n, n ≥ 1, of
a definable pointed pair (X,A, x0) is the homotopy set πn(X,A, x0)R =
[(In, In−1, Jn−1), (X,A, x0)]R, where In−1 = {(t1, . . . , tn) ∈ In : tn = 0}
and Jn−1 = ∂In \ In−1.
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As in the classical case, we can define a group operation in the o-minimal
homotopy groups πn(X,x0)R and πm(X,A, x0)R via the usual concatenation
of maps for n ≥ 1 and m ≥ 2. Specifically, given [f ], [g] ∈ πn(X,x0)R, n ≥ 1,
we define the operation [f ][g] = [f · g], where

f · g =
{
f(2t1, t2, . . . , tn) for all t1 ∈ [0, 1

2 ],
g(2t1 − 1, t2, . . . , tn) for all t1 ∈ [1

2 , 1].

Likewise, given [f ], [g] ∈ πn(X,A, x0)R, n ≥ 2, we define the operation
[f ][g] = [f · g]. Moreover, these groups are abelian for n ≥ 2 and m ≥ 3
(see pp. 340 and pp. 343 in [21]). Also, given a definable map between
definable pointed sets (or pairs), we define the induced map in homotopy by
the usual composing, which will be a homomorphism in the case we have a
group structure. It is easy to check that with these definitions of o-minimal
homotopy group and induced map, both the absolute and relative o-minimal
homotopy groups πn(−) are covariant functors (see pp. 342 in [21]).

As a consequence of Theorem 2.3.1, we deduce the following relation
between the semialgebraic and the o-minimal homotopy groups.

Theorem 2.4.1. Let (X,x0) be a semialgebraic pointed set and let n ≥ 1.
Then the map ρ : πn(X,x0)R0 → πn(X,x0)R : [f ] 7→ [f ], is a natural
isomorphism.

Proof. By Theorem 2.3.1 ρ is a bijection and its clearly a homomorphism.
For the naturality condition, just observe that by definition the following
diagram

πn(X,x0)R0
ψ∗ //

ρ

��

πn(Y, y0)R0

ρ

��
πn(X,x0)R

ψ∗
// πn(Y, y0)R

commutes, for every semialgebraic map ψ : (X,x0)→ (Y, y0).

Remark 2.4.2. This last result remains true in the relative case and its
proof is similar.

Corollary 2.4.3. The o-minimal homotopy groups are invariants under
elementary extensions and o-minimal expansions.

Proof. The invariance under o-minimal expansions follows from the Trian-
gulation Theorem and Theorem 2.4.1. The invariance under elementary
extensions follows from the Triangulation Theorem, Theorem 2.4.1 and the
invariance of the semialgebraic homotopy sets under real closed field exten-
sions (see Theorem III.6.3 in [13]).

The following result gives us a relation between the classical and the
o-minimal homotopy groups (the case n = 1 was already treated in [7]).
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Corollary 2.4.4. Let (X,x0) be a semialgebraic pointed set defined without
parameters. Then there exists a natural isomorphism between the classical
homotopy group πn(X(R), x0) and the o-minimal homotopy group
πn(X(R), x0)R for every n ≥ 1.

Proof. Either by Corollary 2.4.3 and Theorem III.6.4 in [13] or by Theorem
2.3.4 noting that the bijections involved are isomorphisms.

Remark 2.4.5. These last results remain true in the relative case and their
proofs are similar. Moreover, the analogue of Corollary 2.4.3 is true for
homotopy sets of definable systems satisfying the hypotheses of Theorem
2.3.4.

Properties 2.4.6. We now list some characteristic properties of the homo-
topy groups that remain true in the o-minimal setting.

(1) The homotopy property: It is immediate that given two definably ho-
motopic maps ψ, φ : (X,A, x0)→ (Y,B, y0), their induced homomorphisms
ψ∗, φ∗ : πn(X,A, x0)R → πn(Y,B, y0)R are equal for every n ≥ 1. Note that
for A = {x0} and B = {y0} we have the absolute case.

(2) The exactness property: Let (X,A, x0) be a pointed pair. For every
n ≥ 2 we define the boundary operator

∂ : πn(X,A, x0)R → πn−1(A, x0)R

[f ] 7→ [f |In−1 ].

For n = 1, we define ∂([u]), [u] ∈ π1(X,A, x0)R, as the definably connected
component of A which contains u(0). It is easy to prove that the boundary
operator is a natural well-defined homomorphism for n > 1. Moreover, if we
denote by i : (A, x0)→ (X,x0) and j : (X,x0, x0)→ (X,A, x0) the inclusion
maps, then the following sequence is exact

· · · → πn(A, x0) i∗→ πn(X,x0)
j∗→ πn(X,A, x0) ∂→ πn−1(A, x0)→ · · · → π0(A, x0),

where the superscript R has been omitted. Indeed, by the triangulation the-
orem we can assume that (X,A, x0) is the realization of a simplicial complex
with vertices in the real algebraic numbers. Then the exactness property
follows from Corollary 2.4.4, the obvious fact that ∂ commutes with the
isomorphism defined there and the classical exactness property.

(3) The action of π1 on πn: Given a definable pointed set (X,x0) we can de-
fine the usual action β : π1(X,x0)R×πn(X,x0)R → πn(X,x0)R. Given [u] ∈
π1(X,x0)R, we denote by β[u] the isomorphism πn(X,x0)R → πn(X,x0)R :
[f ] 7→ β([u], [f ]). In a similar way, given a definable pointed pair (X,A, x0)
there is an action β : π1(A, x0)R×πn(X,A, x0)R → πn(X,A, x0)R. The exis-
tence of both actions can be proved just adapting what is done in pp. 268 in
[13] to the o-minimal setting. We briefly recall the construction of this action
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in the absolute case. Given [f ] ∈ πn(X,x0)R, by the o-minimal homotopy
extension lemma 2.2.1 there is a definable homotopy H : In × I → X such
that H(x, 1) = f(x) for all x ∈ In and H(x, t) = u(t) for all (x, t) ∈ ∂In× I.
We define β[u]([f ]) := [H(−, 0)]. Let us check that β[u] is well-defined.
Firstly, given a definable curve v : I → X with v(0) = v(1) = x0 and such
that [u] = [v], we show that β[u] = β[v]. Let F : I × I → X be a definable
homotopy from u to v with F (0, s) = F (1, s) = x0 for all s ∈ I. Given
[f ] ∈ πn(X,x0)R, let H and H ′ be definable homotopies as before such that
β[u]([f ]) = [H(−, 0)] and β[v]([f ]) = [H ′(−, 0)]. By the o-minimal homotopy
extension lemma 2.2.1 there is a definable homotopy G : In × I × I → X
such that

G(x, t, s) =


f(x) for all (x, t, s) ∈ In × I × {1},
H(x, s) for all (x, t, s) ∈ In × {0} × I,
H ′(x, s) for all (x, t, s) ∈ In × {1} × I,
F (s, t) for all (x, t, s) ∈ ∂In × I × I.

Hence, G(x, t, 0) is a definable homotopy from H(−, 0) to H ′(−, 0) relative
to ∂In, as required. In particular, the latter also proves that the definition
of β[u]([f ]) above does not depend on the choice of H as well as that β[u]([f ])
depends only on the homotopy class of f . Let us check that β[u] is a homo-
morphism. Given [f ], [g] ∈ πn(X,x0), we consider the definable homotopy
H : In×I → X such that H(x1, . . . , xn, t) = β[u]([f ][0])((2−t)x1, . . . , xn) for
all (x1, . . . , xn, t) ∈ [0, 1

2 ]×In and H(x1, . . . , xn, t) = β[u]([0][g])((2−t)x1+t−
1, . . . , xn) for all (x1, . . . , xn, t) ∈ [1

2 , 1] × In. Using this homotopy we have
β[u]([f ][g]) = β[u]([f ][0])β[u]([0][g]) = β[u]([f ])β[u]([g]). Finally, the remain
properties
β[cx0 ] = id, for cx0 the constant curve, and β[u][v] = β[u] ◦ β[v] for all
[u], [v] ∈ π1(X,x0)R, are obvious.

We will need the following technical lemma in the proof of the o-minimal
Hurewicz theorem (see Section 2.5).

Lemma 2.4.7. Let ψ : (X,x0)→ (Y, y0) be a definable map between defin-
able pointed sets and let [u] ∈ π1(X,x0)R. Then for all [f ] ∈ πn(X,x0)R,
ψ∗(β[u]([f ])) = βψ∗([u])(ψ∗([f ])).

Proof. It is enough to observe that if H : In×I → X is a definable homotopy
such that H(t, 1) = f(t) for all t ∈ In and H(t, s) = u(s) for all t ∈ ∂In
and s ∈ I, then ψ ◦ H : In × I → Y is a definable homotopy such that
ψ ◦H(t, 1) = ψ ◦ f(t) for all t ∈ In and ψ ◦H(t, s) = ψ ◦ u(s) for all t ∈ ∂In
and s ∈ I.

(4) The fibration property: We say that a definable map p : E → B is a
definable (Serre) fibration if it has the definable homotopy lifting prop-
erty for every (resp. closed and bounded) definable set X, i.e., if for each
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definable homotopy H : X × I → B and each definable map f̃ : X → E
with p ◦ f̃(x) = H(x, 0) for all x ∈ X, there exists a definable homotopy
H̃ : X × I → E with p ◦ H̃ = H and H̃(x, 0) = f̃(x) for all x ∈ X.

Remark 2.4.8. We say that a definable map p : E → B has the definable
homotopy lifting property for a definable set X relative to a definable subset
A of X if for each definable homotopy H : X × I → B, each definable
map f̃ : X → E with p ◦ f̃(x) = H(x, 0) for all x ∈ X, and each definable
homotopy F : A × I → E with p ◦ F = H|A×I there exists a definable
homotopy H̃ : X × I → E with p ◦ H̃ = H, H̃|A×I = F and H̃(x, 0) = f̃(x)
for all x ∈ X. As in the classical setting, the definable homotopy lifting
property for a closed simplex σ is equivalent to the definable homotopy
lifting property for σ relative to ∂σ. Indeed, it suffices to show that there is
a semialgebraic homeomorphism of σ × I onto itself which carries σ × {0}
homeomorphically onto (σ×{0})∪(∂σ×I). We adapt [22, Ch.III,Thm.3.1].
Without loss of generality, we can assume that σ is the standard simplex ∆ ⊂
Rm for some m ∈ N. Firstly, consider the semialgebraic homeomorphism
h0 : (∆ × {0}) ∪ (∂∆ × I) → ∆ × {0} : (x0, . . . , xm, t) 7→ (y0, . . . , ym, 0),
where

yi =
{ 1

2(xi + 1
m+1) for all (x0, . . . , xm, t) ∈ ∆× {0},

1
2(xi + 1

m+1) + 1
2(xi − 1

m+1)t for all (x0, . . . , xm, t) ∈ ∂∆× I.

Note that h0(x0, . . . , xm, 1) = (x0, . . . , xm, 0) for each (x0, . . . , xm) ∈ ∂∆.
Similarly, we can define a semialgebraic homeomorphism h1 : (∆ × {1}) ∪
(∂∆ × I) → ∆ × {1} such that h1(x0, . . . , xm, 0) = (x0, . . . , xm, 1) for each
(x0, . . . , xm) ∈ ∂∆. Next, consider the semialgebraic homeomorphism h2 :
∂(∆×I)→ ∂(∆×I) such that h2(w) = h0(w) for all w ∈ (∆×{0})∪(∂∆×I)
and h2(w) = h−1

1 (w) for all w ∈ ∆×{1}. Finally, the semialgebraic homeo-
morphism h2 of ∂(∆×I) can be extended to a semialgebraic homeomorphism
h of ∆×I by radial extension from the point (c, 1

2) of ∆×I, where c denotes
the barycentre of ∆.

Furthermore, the homotopy lifting property for closed simplices is equiv-
alent to the homotopy lifting property for closed and bounded definable sets
X relative to closed subsets A of X. For, by the triangulation theorem we
can assume that X is the realization of a closed simplicial complex and A is
the realization of a closed subcomplex of X. By induction over the skeleta of
X it suffices to construct a lifting over the closure of each open simplex con-
tained in X \A at a time (and relative to the lifting constructed previously
over its frontier).

With the above remark it is easy to adapt to the o-minimal setting the
corresponding classical proof of the following fact (see Theorem 4.41 in [21]).

Theorem 2.4.9 (The fibration property). Let E and B definable sets
and let p : E → B be a definable Serre fibration. Then the induced map
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p∗ : πn(E,F, e0) → πn(B, b0) is a bijection for n = 1 and an isomorphism
for all n ≥ 2, where e0 ∈ F = p−1(b0).

Proof. Firstly, we show that p∗ is onto. Let f : (In, ∂In) → (B, b0) be
a definable map. By Remark 2.4.8, there is a definable homotopy H̃ :
In−1× I → E such that H̃(x, t) = e0 for all (x, t) ∈ ∂In−1× I, H̃(x, 0) = e0

for all x ∈ In−1 and p ◦ H̃(x1, . . . , xn−1, t) = f(x1, . . . , xn−1, 1 − t) for all
(x1, . . . , xn−1, t) ∈ In. Consider the definable map f̃ : (In, In−1, Jn−1) →
(E,F, e0) : (x1, . . . , xn−1, t) 7→ H̃(x1, . . . , xn−1, 1 − t). Clearly, p∗([f̃ ]) =
[p ◦ f̃ ] = [f ]. Now, we show that p∗ is injective. Given definable maps
f̃ , g̃ : (In, In−1, Jn−1) → (E,F, e0) such that p∗([f̃ ]) = p∗([g̃]), let H :
(In × I, ∂In × I) → (B, b0) be a definable homotopy from p ◦ f̃ to p ◦
g̃. By Remark 2.4.8, there is a definable homotopy G̃ : In × I → E
such that G̃(0, x2, . . . , xn, t) = f̃(x2, . . . , xn, 1 − t) for all (x2, . . . , xn, t) ∈
In, G̃(1, x2, . . . , xn, t) = g̃(x2, . . . , xn, 1 − t) for all (x2, . . . , xn, t) ∈ In,
G̃(x1, . . . , xn, t) = e0 for all (x1, x2, . . . , xn, 1 − t) ∈ I × Jn−1 and p ◦
G̃(x1, . . . , xn, t) = G(x2, . . . , xn, 1 − t, x1) for all (x1, . . . , xn, t) ∈ In × I.
In particular, the map H̃ : (In, , In−1, Jn−1)→ (E,F, e0) : (x1, . . . , xn, t) 7→
G̃(t, x1, . . . , xn−1, 1− xn) is a definable homotopy from f̃ to g̃.

As a consequence of the fibration property and the following proposition,
we can extend Corollary 2.8 in [20], concerning coverings and the fundamen-
tal group, to all the homotopy groups (see Corollary 2.4.11 below). Recall
that given two definable sets E and B, a definable map p : E → B is a de-
finable covering map if p is onto and there is a finite family {Ul : l ∈ L} of
definably connected open definable subsets of B such that B =

⋃
l∈L Ul, and

for each l ∈ L and for each definably connected component V of p−1(Ul),
the map p|V : V → Ul is a definable homeomorphism (see also Section 2 in
[20].

Proposition 2.4.10. Let E and B definable sets. Then every definable
covering p : E → B is a definable fibration.

Proof. Let X be a definable set. Let H : X × I → B a definable ho-
motopy and f̃ a definable map f̃ : X → E with p ◦ f̃(x) = H(x, 0) for
all x ∈ X. Consider the definable family of paths {Hx : x ∈ X}, where
Hx : I → B : t 7→ H(x, t). Since p has the path lifting property (see Propo-
sition 2.6 in [20]), for each x ∈ X there is a (unique) lifting H̃x : I → E of
Hx such that H̃x(0) = f̃(x). Moreover, an easy modification of the proof
of Proposition 2.6 in [20] shows that the family of paths {H̃x : x ∈ X} is
definable. Therefore, the map H̃ : X × I → E : (x, t) 7→ H̃x(t) is definable,
p ◦ H̃ = H and H̃(x, 0) = f̃(x) for all x ∈ X. It remains to prove that
H̃ is indeed continuous. Fix (x0, s0) ∈ X × I. It is enough to prove that
for each definable path u : I → X × I with u(1) = (x0, s0) we have that
H̃(u(t))→ H̃(x0, s0) when t→ 1. We will prove it for s0 = 1, but the same
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proof works for every s0 ∈ I.

Claim. We can assume that u(0) = (x0, 0), that u is definably homotopic to
the canonical path I → X × I : t 7→ (x0, t) and that H̃ ◦ u : [0, 1) → E is
continuous.

Granted the Claim, the path homotopy lifting property of p (see Proposi-
tion 2.7 in [20]) implies that the respective liftings H̃ ◦ u and H̃x0 of H ◦ u
and Hx0 starting at f̃(x0), satisfy H̃ ◦ u(1) = H̃x0(1). On the other hand,
by the unicity of liftings of paths of p, we have that for every ε ∈ [0, 1),
H̃(u(t)) = H̃ ◦ u(t) for all t ∈ [0, ε]. Therefore, H̃(u(t)) = H̃ ◦ u(t) for all
t ∈ [0, 1). Hence, H̃(u(t)) → H̃ ◦ u(1) = H̃x0(1) = H̃(x0, 1) when t → 1, as
required.
Proof of the Claim. Since X is definable, there exist a definably connected
neighbourhood U of x0 which is definably contractible. Since H̃ ◦u is defin-
able, without loss of generality, H̃ ◦u is continuous in [2

3 , 1) and u(t) ∈ U×I
for all t ∈ [2

3 , 1). Let (x1, s1) = u(2
3). Take a definable path w : [0, 1

3 ] → U
such that w(0) = x0 and w(1

3) = x1. We define the path û(t) : I → X × I
such that û(t) := (w(t), 0) for all t ∈ [0, 1

3 ], û(t) := (x1, 3s1(t − 1
3)) for all

t ∈ [1
3 ,

2
3 ] and û(t) := u(t) for all t ∈ [2

3 , 1]. The definable path H̃(û(t))
is continuous for all t ∈ [0, 1) because f̃ is continuous and because of the
construction of H̃. Since U is definably contractible, {x0}× I is a definable
deformation retract of U × I and therefore û is definably homotopic to the
canonical path I → X × I : t 7→ (x0, t). Finally, since we are just interested
in the behaviour of the definable path u when t is near 1, we can replace u
by û.

Corollary 2.4.11. Let p : E → B be a definable covering and let p(e0) = b0.
Then p∗ : πn(E, e0)R → πn(B, b0)R is an isomorphism for every n > 1 and
injective for n = 1.

Proof. Since p−1(b0) is finite, we have that πn(p−1(b0), e0) = 0 for every n ≥
1. Then the result follows from Proposition 2.4.10 and both the exactness
and the fibration properties.

2.5 The o-minimal Hurewicz and Whitehead theorems

Next we will prove both the absolute and relative Hurewicz theorems in
the o-minimal setting by transferring from the semialgrebraic setting via
Theorem 2.3.1.

First let us define the o-minimal Hurewicz homomorphism. Recall that
there exists an o-minimal singular homology theory H∗(−)R on the category
of definable sets (see [38]). Moreover, by Proposition 3.2 in [7] there exists
a natural isomorphism θ between the functors H∗(−)R0 and H∗(−)R on
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the category of (pairs of) semialgebraic sets (note that the notation used
in the above paper is different from ours, where H∗(−)R0 = Hsa

∗ (−) and
H∗(−)R = Hdef

∗ (−) ). Fix n ≥ 1. By Proposition 3.2 in [7],

Hn(In, ∂In)R0 ∼= Hn(In(R), ∂In(R)) ∼= Z.

We fix a generator zR0
n of Hn(In, ∂In)R0 and we define zRn := θ(zR0

n ). Now,
given a definable pointed set (X,x0), the o-minimal Hurewicz homo-
morphism, for n ≥ 1, is the map hn,R : πn(X,x0)R → Hn(X)R : [f ] 7→
hn,R([f ]) = f∗(zRn ), where f∗ : Hn(In, ∂I)R → Hn(X)R denotes the map
in o-minimal singular homology induced by f . Note that by the homotopy
axiom of o-minimal singular homology if f ∼ g then f∗ = g∗, hence hn,R
is well-defined. We define the relative Hurewicz homomorphism adapting
in the obvious way what was done in the absolute case. Now, following
the classical proof, it is easy to check that hn,R is a natural transformation
between the functors πn(−)R and Hn(−)R (see [22, Ch.V,Prop.4.1]). This
fact can also be deduced from the semialgebraic setting (see Remark 2.5.2).

The following result give us a relation between the semialgebraic and the
o-minimal Hurewicz homomorphisms.

Proposition 2.5.1. Let (X,x0) be a semialgebraic pointed set. Then the
following diagram commutes

πn(X,x0)R0
hn,R0 //

ρ

��

Hn(X)R0

θ
��

πn(X,x0)R
hn,R

// Hn(X)R

for all n ≥ 1.

Proof. Let [f ] ∈ πn(X,x0)R0 . By definition zRn = θ(zR0
n ) and by the natu-

rality of θ we have that θ(f∗(zR0
n )) = f∗(θ(zR0

n )). Therefore θ(hn,R0([f ])) =
θ(f∗(zR0

n )) = f∗(θ(zR0
n )) = f∗(zRn ) = hn,R(ρ([f ])).

Remark 2.5.2. (1) This last result remains true in the relative case and
its proof is similar.
(2) Since hn,R0 is a homomorphism for n ≥ 1 (see [13, Ch.III,Thm.7.3]), it
follows from Proposition 2.5.1 and the Triangulation theorem that hn,R is
also a homomorphism for n ≥ 1.

Recall the definition of the action of π1 on πn defined in Properties 2.4.6.

Theorem 2.5.3 (The o-minimal Hurewicz theorems). Let (X,x0) be
a definable pointed set and n ≥ 1. Suppose that πr(X,x0)R = 0 for every
0 ≤ r ≤ n− 1. Then the o-minimal Hurewicz homomorphism

hn,R : πn(X,x0)R → Hn(X)R
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is surjective and its kernel is the subgroup generated by {β[u]([f ])[f ]−1 : [u] ∈
π1(X,x0)R, [f ] ∈ πn(X,x0)R}. In particular, hn,R is an isomorphism for
n ≥ 2.

Proof. Note that X is definably connected since π0(X,x0)R = 0. Let (K,φ)
be a definable triangulation of X and y0 = φ−1(x0). Since πr(−)R is a
covariant functor, πr(|K|, y0)R = 0 for 0 ≤ r ≤ n − 1. Moreover, as ρ is a
natural isomorphism, πr(|K|, y0)R0 ∼= πr(|K|, y0)R = 0 for 0 ≤ r ≤ n − 1.
Since hn,R is a natural transformation, the following diagram

πn(|K|, y0)R
hn,R //

φ∗
��

Hn(|K|)R

φ∗
��

πn(X,x0)R
hn,R

// Hn(X)R

commutes. Furthermore, since φ is a homeomorphism, the induced map
φ∗ in both homology and homotopy are isomorphism. Hence, by Lemma
2.4.7, it is enough to prove that hn,R : πn(|K|, y0)R → Hn(|K|)R is sur-
jective and that its kernel is the subgroup generated by {β[u]([f ])[f ]−1 :
[u] ∈ π1(|K|, y0)R, [f ] ∈ πn(|K|, y0)R}. By Proposition 2.5.1, the following
diagram

πn(|K|, y0)R0
hn,R0 //

ρ

��

Hn(|K|)R0

θ
��

πn(|K|, y0)R
hn,R

// Hn(|K|)R

commutes. Since ρ and θ are natural isomorphisms, it is enough to prove
that hn,R0 : πn(|K|, y0)R0 → Hn(|K|)R0 is surjective and that its kernel
is the subgroup generated by {β[u]([f ])[f ]−1 : [u] ∈ π1(|K|, y0)R0 , [f ] ∈
πn(|K|, y0)}R0 . But this fact follows from the semialgebraic Hurewicz theo-
rems (see [13, Ch.III,Thm.7.4]). Finally, the second part of the theorem
follows immediately from the first one since for n ≥ 2, by hypothesis,
π1(X,x0)R = 0.

Theorem 2.5.4 (The o-minimal relative Hurewicz theorems). Let
(X,A, x0) be a definable pointed pair and let n ≥ 2 such that πr(X,A, x0)R =
0 for every 1 ≤ r ≤ n − 1. Then the o-minimal Hurewicz homomorphism
hn,R : πn(X,A, x0)R → Hn(X,A)R is surjective and its kernel is the sub-
group generated by {β[u]([f ])[f ]−1 : [u] ∈ π1(A, x0)R, [f ] ∈ πn(X,A, x0)R}.
In particular, hn,R is an isomorphism for n ≥ 3.

Proof. It is enough to adapt the proof of the o-minimal absolute Hurewicz
theorems to the relative case. Note that at some point, we need the relative
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version of Lemma 2.4.7 (whose proof is similar), i.e., that given a defin-
able map ψ : (X,A, x0) → (Y,B, y0) and [u] ∈ π1(A, x0)R, we have that
ψ∗(β[u]([f ])) = βψ∗([u])(ψ∗([f ])) for all [f ] ∈ πn(X,A, x0)R.

Remark 2.5.5. (1) With the hypotheses of Theorem 2.5.3, for n = 1, we
have that Ker(h1,R) is the subgroup generated by {β[u]([v])[v]−1 : [u] ∈
π1(X,x0)R, [v] ∈ π1(X,x0)R}. On the other hand, using the definable ho-
motopy H(t, s) = u(ts)v(t)u(s − ts), we can prove that β[u]([v])[v]−1 =
[u][v][u]−1[v]−1. Hence, Ker(h1,R) is the commutator of π1(X,x0)R. In par-
ticular, if π1(X,x0)R is abelian then h1,R is an isomorphism. This result
was already proved in [20, Thm.5.1].
(2) With the hypotheses of Theorem 2.5.4, π2(X,A, x0)R/Ker(h2,R)
∼= H2(X,A)R is abelian and therefore Ker(h2,R) contains the commuta-
tor subgroup of π2(X,A, x0)R. This fact can also be shown directly by
proving that for every [f ], [g] ∈ π2(X,A, x0)R, [g][f ][g]−1 = β[u]([f ]), where
u(t) = g(t, 0) for t ∈ I.

We finish this section with the proof of the o-minimal Whitehead the-
orem. We say that a definable map ψ : X → Y is a definable homo-
topy equivalence if there exists a definable map ψ′ : Y → X such that
ψ ◦ ψ′ ∼ idY and ψ′ ◦ ψ ∼ idX .

Remark 2.5.6. If a definable map ψ is a definable homotopy equivalence
then it is a definable homotopy equivalence relative to a point. Indeed, by
the Triangulation Theorem we can assume that both (X,x0) and (Y, ψ(x0))
are semialgebraic pairs defined without parameters. Then, by Theorem
2.3.1 and Fact 2.1.2, there exists a semialgebraic map ψ′ defined without
parameters such that [ψ] = [ψ′] in [(X,x0), (Y, ψ(x0))]. Finally, by the
classical version of the present remark (see [21, Prop. 0.19]), Fact 2.1.1 and
Fact 2.1.2, ψ′ is a semialgebraic homotopy equivalence relative to a point
and hence so is ψ.

Theorem 2.5.7 (The o-minimal Whitehead theorem). Let X and Y
be two definably connected sets. Let ψ : X → Y be a definable map such that
for some x0 ∈ X, ψ∗ : πn(X,x0)R → πn(Y, ψ(x0))R is an isomorphism for
all n ≥ 1. Then ψ is a definable homotopy equivalence.

Proof. Let (K,φ1) and (L, φ2) be definable triangulations of X and Y , re-
spectively. Consider the points x1 = φ−1

1 (x0) and y1 = φ−1
2 (ψ(x0)). It

suffices to prove that the definable map ψ̃ = φ−1
2 ◦ψ ◦φ1 : |K| → |L| is a de-

finable homotopy equivalence provided ψ̃∗ : πn(|K|, x1)R → πn(|L|, y1)R is
an isomorphism for all n ≥ 1. By Theorem 2.3.1 there exists a semialgebraic
map ϕ : (|K|, x1)→ (|L|, y1) such that ϕ ∼ ψ̃. By the homotopy property it
follows that ϕ∗ = ψ̃∗ : πn(|K|, x1)R → πn(|L|, y1)R is an isomorphism for all
n ≥ 1. Therefore by Theorem 2.4.1, ϕ∗ : πn(|K|, x1)R0 → πn(|L|, y1)R0 is an
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isomorphism for all n ≥ 1. Hence, by the semialgebraic Whitehead theorem
(see [13, Ch.III,Thm.6.6]), ϕ is a semialgebraic homotopy equivalence, that
is, there exists a semialgebraic map ϕ′ : |L| → |K| such that id|K| ∼0 ϕ

′ ◦ ϕ
and id|L| ∼0 ϕ ◦ ϕ′, where ∼0 means “semialgebraically homotopic”. Hence
id|K| ∼0 ϕ

′ ◦ ϕ ∼ ϕ′ ◦ ψ̃ and so id|K| ∼ ϕ′ ◦ ψ̃. In a similar way we prove
that id|L| ∼ ψ̃ ◦ ϕ′. Therefore ψ̃ is a definable homotopy equivalence, as
required.

Corollary 2.5.8. Let X be a definable set and let x0 ∈ X. If πn(X,x0)R =
0 for all n ≥ 0 then X is definably contractible.

Proof. This follows from Theorem 2.5.7 applied to a constant map.

Next result follows the transfer approach developed in [8].

Corollary 2.5.9. Let X be a semialgebraic set defined without parameters.
Then X is definably contractible if and only if X(R) is contractible in the
classical sense.

Proof. This follows from Corollary 2.4.4 and Corollary 2.5.8.

2.6 Lusternik-Schnirelmann category of definable sets

In this section we introduce the Lusternik-Schnirelmann category (in short
LS-category) for definable sets. We apply the results of Section 2.3 and
the Normal triangulation theorem to prove some comparison theorems con-
cerning the LS-category. For a general reference on the classical Lusternik-
Schnirelmann category see [10].

Definition 2.6.1. Let X be a definable set. We say that a definable subset A
of X is definably categorical in X if A is definably contractible in X. We
say that a definable cover {Vi}mi=1 of X is a definable categorical cover
of X if each Vi is definably categorical in X.

Fact 2.6.2. [10, Lem.1.29] Let X and Y be definable sets. Let f : X → Y
and g : Y → X be definable maps such that f ◦ g ∼ idY . Then g−1(U) is
a definable categorical subset of Y for each definable categorical subset U of
X.

Proof. Let F : Y × I → Y be a definable homotopy from idY to f ◦ g. Let
H : U × I → X be a definable homotopy and x0 ∈ X such that H(x, 0) = x
for all x ∈ U and H(x, 1) = x0 for all x ∈ U . Let V = g−1(U) and consider
the definable map G : V × I → Y defined by G(y, t) = F (y, 2t) for all
(y, t) ∈ V × [0, 1

2 ] and G(y, t) = f(H(g(y), 2t− 1)) for all (x, t) ∈ V × [1
2 , 1].

Note that G(y, 0) = y and G(y, 1) = f(x0) for all y ∈ V , i.e., V is a definable
categorical subset of X.
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Note that every definable set X has a definable categorical open cover.
Indeed, by the Triangulation theorem and Fact 2.6.2 we can assume that
X = |K| for a simplicial complex K. We denote by K ′′ the second barycen-
tric subdivision of K. By [14, Prop 2.2], the open definable subset StK′′(v)
of |K| is definably categorical in |K| for each v ∈ Vert(K). Therefore,
{StK′′(v) : v ∈ Vert(K)} is a definable categorical open cover of |K|.

Definition 2.6.3. The definable LS-category of a definable set X, de-
noted by cat(X)R, is the least integer m such that X has a definable cate-
gorical open cover of m+ 1 elements.

For example, by definition we have that a definable set X is definably
contractible if and only if cat(X)R = 0. Now, we prove that the definable
LS-category is homotopy invariant.

Fact 2.6.4. [10, Lem.1.30] Let X and Y be definably homotopy equivalent
definable sets. Then cat(X)R = cat(Y )R.

Proof. Let f : X → Y and g : Y → X be definable maps such that f ◦ g ∼
idY and g◦f ∼ idX . We show that cat(Y )R ≤ cat(X)R, the other inequality
by symmetry. Let {Ui}m+1

i=1 be a definable categorical open cover of X. By
Fact 2.6.2, g−1(Ui) is definably categorical in Y for each i = 1, . . . ,m + 1.
Hence {g−1(Ui)}m+1

i=1 is a categorical open cover of Y .

Theorem 2.6.5. Let X be a semialgebraic set. Then cat(X)R0 = cat(X)R.

Proof. Clearly, cat(X)R0 ≥ cat(X)R. We show that cat(X)R0 ≤ cat(X)R.
By the Triangulation theorem we can assume that X = |K| for some
simplicial complex K. Let m = cat(X)R and let U1, . . . , Um+1 be a de-
finable categorical open cover of |K|. By the Normal triangulation theo-
rem 1.1.5 there is a subdivision K ′ of K and a definable homeomorphism
φ : |K ′| → |K| such that (K ′, φ) partitions U1, . . . , Um+1. Therefore the
open subsets Vi := φ−1(Ui) of X are semialgebraic for each i = 1, . . . ,m+ 1.
Since φ is a definable homeomorphism, Vi is a definably categorical subset
of |K| for all i = 1, . . . ,m + 1 (see Fact 2.6.2). Now, by Theorem 2.3.4 if
a semialgebraic subset A of a semialgebraic set B is definably contractible
in B, then it is semialgebraically contractible in B. Hence, Vi is a semialge-
braic categorical subset of |K| for all i = 1, . . . ,m + 1. Then {Vi}m+1

i=1 is a
semialgebraic categorical open cover of |K| and hence cat(X)R0 ≤ m.

Theorem 2.6.6. Let X ⊂ Rn be a semialgebraic set. Let S be a real closed
field extension of R. Then cat(X)R0 = cat(X(S))S0.

Proof. It is immediate that cat(X)R0 ≥ cat(X(S))S0 . For, given a semi-
algebraic categorical open cover {Ui}m+1

i=1 of X, {Ui(S)}m+1
i=1 is clearly a

semialgebraic categorical open cover of X(S). We show that cat(X)R0 ≤
cat(X(S))S0 . Let {Vi}m+1

i=1 be a semialgebraic categorical open cover of
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X(S). Let Hi : Vi × I → X(S) be a semialgebraic homotopy such that
Hi(x, 0) = x for all x ∈ Vi and Hi(x, 1) = xi ∈ X(S) for all x ∈ Vi for each
i = 1, . . . ,m+1. Without loss of generality we can assume that xi ∈ Rn. In-
deed, let x′i ∈ X(S)∩Rn be a point which lies in the same semialgebraically
connected component of xi. Consider a semialgebraic curve αi : I → X(S)
such that αi(0) = xi and αi(1) = x′i. Then, we can replace Hi by the
semialgebraic homotopy H ′i : Vi × I → X(S) with H ′i(x, t) = Hi(x, 2t) for
all (x, t) ∈ Vi × [0, 1

2 ] and H ′i(x, t) = αi(2t − 1) for all (x, t) ∈ Vi × [1
2 , 1].

We denote Vi and Hi by Vi,c and Hi,c respectively to stress the fact that c
is a tuple of parameters of S such that Vi and Hi are defined over, for all
i = 1, . . . ,m+1. Consider the first order formula ψ(y) with parameters over
R which says that {Vi,y}m+1

i=1 is a semialgebraic open cover of X and each
Hi,y : Vi,y × I → X is a semialgebraic map such that Hi,y(x, 0) = x and
Hi,y(x, 1) = xi for all x ∈ Vi,y. By completeness of the theory of real closed
fields, since S0 satisfies ∃yψ(y), R0 satisfies ∃yψ(y). Hence, there is a tuple
b in R such that {Vi,b(R)}m+1

i=1 is a semialgebraic categorical open cover of
X. Hence, cat(X)R0 ≤ cat(X(S))S0 , as required.

Theorem 2.6.7. Let X be a semialgebraic set of R. Then cat(X)R =
cat(X), where cat(X) denotes the classical LS-category of X.

Proof. Clearly, cat(X)R ≥ cat(X). We show that cat(X)R ≤ cat(X). By
the Triangulation theorem we can assume that X = |K| for some simplicial
complex K. Moreover, by Fact 2.2.9 and Fact 2.6.4, we can assume that
K is closed. Let {Ui}m+1

i=1 be a categorical open cover of |K|. We will
construct a semialgebraic categorical open cover {Vi}m+1

i=1 of |K|. Firstly,
by the Shrinking lemma (see [26, §36, Ex.4]) we can assume that each Ui is
contractible in |K|. Furthermore, by the Lebesgue’s number lemma (see the
proof of [25, Ch.2, Thm.16.1]) we can also assume that for each σ ∈ K there
is i ∈ {1, . . . ,m + 1} such that σ ⊂ Ui. We define Ai :=

⋃
σ∈Fi σ for each

i = 1, . . . ,m + 1, where Fi = {σ ∈ K : σ ⊂ Ui}. Note that (i) |K| = A1 ∪
· · · ∪Am+1 and (ii) each Ai is contractible in |K|. On the other hand, each
Ai is a semialgebraic strong deformation retract of the open semialgebraic
set Vi := StK′′(Ai), where K ′′ is the second barycentric subdivision of K (see
[14, Prop 2.2]). Therefore, by (ii), Vi is (not necessarily semialgebraically)
contractible in |K|. Now, by Theorem 2.1.2 if a semialgebraic subset A
of a semialgebraic set B is contractible in B, then it is semialgebraically
contractible in B. Hence, each Vi is semialgebraically contractible in |K|
and hence, by (i), {Vi}m+1

i=1 is a semialgebraic categorical open cover of |K|.
We deduce that cat(X)R ≤ cat(X), as required.

Corollary 2.6.8. The definable LS-category is invariant under elementary
extensions and o-minimal expansions.

Proof. This follows from Theorem 2.6.5 and 2.6.6.
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Corollary 2.6.9. Let X be a semialgebraic set defined without parameters.
Then cat(X)R = cat(X(R)), where cat(X(R)) denotes the classical LS-
category.

Proof. It follows from Corollary 2.6.8 and Theorem 2.6.7 that cat(X)R =
cat(X)R0 = cat(X(Q))Q = cat(X(R)R = cat(X(R)).

Using the above comparison theorems 2.6.5, 2.6.6 and 2.6.7 we can trans-
fer some results concerning the classical LS-category to the o-minimal set-
ting.

Corollary 2.6.10. Let X be a definably connected definable set. Then

cat(X)R ≤ dim(X).

Proof. By the Triangulation theorem, Fact 2.2.9 and 2.6.4, we can assume
that X = |K| for a closed simplicial complex K whose vertices lie in Q. Now,
it follows from Theorem 2.6.5, 2.6.6 and 2.6.7 that cat(X)R = cat(|K|(R)).
By the classical version of Corollary 2.6.10 (see [10, Thm. 1.7]),

cat(|K|(R)) ≤ dim(|K|(R))top,

where dim(|K|(R))top denotes the covering dimension of |K|(R). On the
other hand, since K is a simplicial complex, dim(|K|(R))top is exactly the
dimension of K as a simplicial complex, i.e., dim(|K|(R))top = dim(|K|),
the latter being the o-minimal dimension, as required.

We conclude this section by applying the above results to the study of
definable groups. We assume that our o-minimal structure R is sufficiently
saturated. A group G is definable if both the set and the graph of the group
operation are definable sets. The following essential fact is well-known: ev-
ery definable group G can be equipped with a definable manifold structure
making G a topological group (see [32]). Since topological groups are regu-
lar spaces, we can assume that the manifold topology is induced by that of
the ambient space (see the o-minimal version of Robson’s embedding theo-
rem [15, Ch.10,Thm.1.8]). By the work of several authors on the so called
“Pillay’s conjecture”, every definably compact group G has a canonical type-
definable divisible subgroup G00 such that G/G00 with the “logic topology”
is a compact Lie group (see [28]). For instance, if G is a definably compact
definable abelian group, then G/G00 is a torus of dimension dim(G). Our
purpose is to compare the definable LS-category of a definable group G and
the classical LS-category of G/G00. We say that a definable group G has
a very good reduction if and only if it is definably isomorphic in R to
a group G1 which can be defined over R in the following sense: there is a
sublanguage L0 of the language L of R which contains +, · and there is an
elementary substructure R0 of R|L0 of the form 〈R,+, ·, ...〉 such that G is
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defined over R0. Every definably connected centreless semisimple group has
a very good reduction by [29, Thm.2.37] (furthermore, in [18, Thm.3.1] the
centreless condition is not needed).

Corollary 2.6.11. Let G be a definably connected definably compact group.
Then
(i) if G is abelian then cat(G)R = cat(G/G00) = dim(G), and
(ii)if G has a very good reduction then cat(G)R = cat(G/G00).

Proof. (i) We denote by d the dimension of G. Then G is a definably homo-
topy equivalent to the d-dimensional torus Td(R). This last result is proved
in [6, Thm.3.4] using some results of this dissertation. Hence, by Fact 2.6.4
and Corollary 2.6.9, cat(G)R = cat(Td(R))R = cat(Td). On the other hand,
by [10, Ex.1.8] we have cat(Td) = d, as required.
(ii) Let G1 be a very good reduction of G. By Theorem 1.6 and Proposition
5.1 in [5], G1(R) ∼= G1/G

00
1 and G/G00 ∼= G1/G

00
1 as Lie groups. Therefore,

by Theorem 2.6.5, 2.6.6 and 2.6.7,

cat(G)R = cat(G1)R = cat(G1(R)) = cat(G1/G
00
1 ) = cat(G/G00).





Chapter 3
Locally definable homotopy

3.1 Introduction

Once the bases of o-minimal homotopy have been established in Chapter 2,
we now extend them to the locally definable setting.

As already mentioned in the introduction of this memory, the locally
definable category needs to be developed which is the aim of Section 3.2. We
first introduce the category of locally definable spaces (in short ld-spaces).
We have avoided the presentation style of Delfs and Knebusch in [13] with
“sheaf” flavour, using instead the natural generalization of definable spaces
of L. van den Dries in [15]. Locally definable spaces of special interest are the
regular paracompact ones (in short LD-spaces). In Section 3.3 we prove the
Triangulation theorem for LD-spaces. The proof uses certain glueing results
as well as locally definable versions of well-known results such as partition of
unity and shrinking of coverings. Since the latter may be skipped at a first
reading, we have decided to include them in Appendix 3.8. The proofs of all
these results in [13] are based on properties of semialgebraic sets which are
shared by definable sets and hence can be directly adapted to our context.
Therefore, we have labelled all these results with Fact, however we point
out that all of them are new in the o-minimal setting. We also point out
that new results concerning o-minimal expansions (which were obviously not
treated in [13]) appear along these sections.

In Section 3.5 we develop a homology theory for LD-spaces via an alter-
native approach to that of [13] for locally semialgebraic spaces (the latter
going through sheaf cohomology). With all these tools at hand, we prove
in Section 3.7 the generalizations to LD-spaces of the homotopy results in
Chapter 2, in particular the Hurewicz theorems and the Whitehead theorem,
as well as the locally definable versions of the results concerning fibrations.

On the other hand, in Sections 3.4 and 3.6 we use the locally definable
category to unify and clarify existing notions in the o-minimal literature. In

49



50 3.2. Locally definable spaces

particular, in Section 3.4 we have tried to unify the related notions of
∨

-
definable groups and “locally definable” groups via the theory of locally de-
finable spaces. We show that

∨
-definable groups are examples of ld-spaces,

the “locally definable” groups are moreover LD-spaces. In Section 3.6 we
clarify the relation among the different notions of connectedness used for

∨
-

definable groups which appear in the literature, pointing out the inadequacy
of some of them.

3.2 Locally definable spaces

We shall briefly discuss the category of locally definable spaces.

Definition 3.2.1. Let M be a set. An atlas on M is a family of charts
{(Mi, φi)}i∈I , where Mi is a subset of M and φi : Mi → Zi is a bijection
between Mi and a definable set Zi of Rn(i) for all i ∈ I, such that M =⋃
i∈IMi and for each pair i, j ∈ I the set φi(Mi ∩Mj) is a relatively open

definable subset of Zi and the map

φij := φj ◦ φ−1
i : φi(Mi ∩Mj)→Mi ∩Mj → φj(Mi ∩Mj)

is definable. We say that (M,Mi, φi)i∈I is a locally definable space. The
dimension of M is dim(M) := sup{dim(Zi) : i ∈ I}. If Zi and φij are
defined over A for all i, j ∈ I, A ⊂ R, we say that M is a locally definable
space over A.

We say that two atlases (M,Mi, φi)i∈I and (M,M ′j , ψj)j∈J on a set M
are equivalent if and only if for all i ∈ I and j ∈ J we have that (i)
φi(Mi∩M ′j) and ψj(Mi∩M ′j) are relatively open definable subsets of φi(Mi)
and ψj(M ′j) respectively, (ii) the map ψj◦φ−1

i |φi(Mi∩M ′j) : φi(Mi∩M ′j)→Mi∩
M ′j → ψj(Mi ∩M ′j) and its inverse are definable and (iii) Mi ⊂

⋃
k∈J0

M ′k
and M ′j ⊂

⋃
s∈I0 Ms for some finite subsets J0 and I0 of J and I respectively.

Note that in the above definition if we take I to be finite then M is just a
definable space in the sense of [15]. In fact, some of the notions that we are
going to introduce in this section are generalizations of the corresponding
ones in the category of definable spaces.

Even though the above definition seems different from its semialgebraic
analogue (see [13, Def.I.3]), they are actually equivalent. In [13] it is (implic-
itly) proved that Definition I.3 is equivalent to the semialgebraic analogue of
our definition here (see [13, Lem.I.2.2] and the remark after [13, Lem.I.2.1]).
The same proofs can be adapted to the o-minimal setting.

Given a locally definable space (M,Mi, φi), there is a unique topology
in M for which Mi is open and φi is a homeomorphism for all i ∈ I. For
the rest of the paper any topological property of locally definable spaces
refers to this topology. We are mainly interested in Hausdorff topologies.
Henceforth, an ld-space means a Hausdorff locally definable space.
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We now introduce the subsets of interest in the category of ld-spaces.

Definition 3.2.2. Let (M,Mi, φi)i∈I be an ld-space. We say that a subset
X of M is a definable subspace of M (over A) if there is a finite J ⊂ I
such that X ⊂

⋃
j∈JMj and φj(Mj ∩ X) is definable (resp. over A) for

all j ∈ J . A subset Y ⊂ M is an admissible subspace of M (over A) if
φi(Y ∩Mi) is definable (resp. over A) for all i ∈ I, or equivalently, Y ∩X
is a definable subspace of M (resp. over A) for every definable subspace X
of M (resp. over A).

The admissible subspaces of an ld-space are closed under complements,
finite unions and finite intersections. Moreover, the interior and the closure
of an admissible subspace is an admissible subspace.

Every definable subspace of an ld-space is admissible. The definable sub-
spaces of an ld-space are closed under finite unions and finite intersections,
but not under complements. The interior of a definable subspace is a defin-
able subspace. However, the closure of a definable subspace might not be a
definable subspace (see Example 3.4.2).

Remark 3.2.3. Given an ld-space (M,Mi, φi)i∈I we have that every admis-
sible subspace Y of M inherits in a natural way a structure of an ld-space,
whose atlas is (Y, Yi, ψi)i∈I , where Yi := Mi ∩ Y and ψi := φi|Yi . In particu-
lar, if Y is a definable subspace then it inherits the structure of a definable
space.

Now, we introduce the maps that we will use in the locally definable
category. First, note that given two ld-spaces M and N , with their atlas
(Mi, φi)i∈I and (Nj , ψj)j∈J , respectively, the atlas (Mi×Nj , (φi, ψj))i∈I,j∈J
makes M × N into an ld-space. In particular, if M and N are definable
spaces, then M×N is a definable space. Recall that a map f from a definable
space M into a definable space N is a definable map over A, A ⊂ R, if its
graph is a definable subset of M ×N over A.

Definition 3.2.4. Let (M,Mi, φi)i∈I and (N,Nj , φj)j∈J be ld-spaces. A
map f : M → N is an ld-map over A, A ⊂ R, if f(Mi) is a definable
subspace of N and the map f |Mi : Mi → f(Mi) is definable over A for all
i ∈ I.

The behaviour of admissible subspaces and ld-maps in the locally defin-
able category is different from that of definable subsets and definable maps
in the definable category. For, even though the preimage of an admissible
subspace by an ld-map is an admissible subspace, the image of an admissible
subspace by an ld-map might not be an admissible subspace (see comments
after Example 3.4.1). Nevertheless, the image of a definable subspace by an
ld-map is a definable subspace. In particular, let us note that every ld-map
between definable spaces is a definable map and therefore the category of de-
finable spaces is a full subcategory of the category of ld-spaces. On the other
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hand, given two ld-spaces M and N , the graph of an ld-map f : M → N is
an admissible subspace of M×N . However, as the following example shows,
not every continuous map f : M → N whose graph is admissible in M ×N
is an ld-map.

Example 3.2.5. Let R = R. We denote by R̃ the ld-space whose underlying
set is R and its atlas is {(−, n, n), id|(−n,n)}n≥1 (see Example 3.4.1). If we
consider R as definable space, then the identity map id : R → R̃ is not an
ld-map because id(R) is not a definable subspace of R̃. However, the graph
of id is clearly an admissible subspace of R× R̃ since Γ(id)∩ (R× (−n, n)) =
{(x, x) ∈ R× R̃ : −n < x < n} is a definable subspace of R× R̃ for all n > 0.

The notion of connectedness in the locally definable category which we
now introduce is a subtle issue. It extends the natural concept of “definably
connected” for definable spaces. In Section 3.6 below we will analyze this
concept and we will compare it with other definitions introduced by different
authors in the study of

∨
-definable groups.

Definition 3.2.6. Let M be an ld-space and X an admissible subspace of
M . We say that X is connected if there is no admissible subspace U of M
such that X ∩ U is both open and closed in X.

We now introduce ld-spaces with some special properties. As we will
see below, in the ld-spaces with these properties there is a good relation
between the topological and the definable settings. Moreover, they form an
adequate framework to develop a homotopy theory.

Definition 3.2.7. We say that an ld-space (M,Mi, φi) is regular if every
x ∈M has a fundamental system of closed (definable) neighbourhoods, i.e.,
for every open U of M with x ∈ U there is a closed (definable) subspace C of
M such that C ⊂ U and x ∈ int(C). Equivalently, an ld-space M is regular
if for every closed subset C of M and every point x ∈M \C there are open
(admissible) disjoint subsets U1 and U2 with C ⊂ U1 and x ∈ U2.

Remark 3.2.8. If M is a regular ld-space then every definable subspace
of M can be considered as an affine set, i.e, as a definable set of Rn for
some n ∈ N. For, suppose that X is a definable subspace of M . Then, X
inherits a structure of definable space from M (see Remark 3.2.3). Since
M is regular then X is also regular. Finally, by the o-minimal version of
Robson’s embedding theorem, X is affine (see [15, Ch.10,Thm. 1.8]).

Let (M,Mi, φi)i∈I be an ld-space. A family {Xj}j∈J of admissible sub-
spaces of M is an admissible covering of X :=

⋃
j∈J Xj if for all i ∈ I,

Mi∩X = Mi∩ (Xj1 ∪· · ·∪Xjl) for some j1, . . . , jl ∈ J (note that in particu-
lar X is an admissible subspace). A family {Yj}j∈J of admissible subspaces
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of M is locally finite if for all i ∈ I we have that Mi ∩ Yj 6= ∅ for only a
finite number of j ∈ J (note that in particular it is an admissible covering of
their union). In general, not every admissible covering is locally finite (see
Example 3.4.2).

Definition 3.2.9. We say that an ld-space M is paracompact if there
exists a locally finite covering of M by open definable subspaces. We say
that an ld-space M is Lindelöf if there exist an admissible covering of M
by countably many open definable subspaces.

Remark 3.2.10. (1) Note that the above notion of paracompactness is
“weaker” than the classical one.
(2)[13, Prop.I.4.5] If M is paracompact ld-space then every admissible cov-
ering of M has a locally finite refinement. Indeed, let {Ui}i∈I be a locally
finite covering of M by open definable subspaces. We fix an admissible cov-
ering {Yj}j∈J of M . Since Ui is a definable subspace of M , there is a finite
subset of indexes J(i) ⊂ J such that Ui ⊂

⋃
j∈J(i) Yj , for each i ∈ I. Then

{Ui ∩ Yj}i∈I,j∈J(i) is a locally finite covering of M by definable subspaces
which refines {Yj}j∈J . In particular, given a paracompact ld-space M , we
can assume that its atlas is locally finite.

Paracompactness provides us with a good relation between the topolog-
ical and definable setting.

Fact 3.2.11. Let M be an ld-space.
(1) [13, Prop. I.4.6] If M is paracompact then for every definable subspace
X, the closure X is also a definable subspace of M .
(2) [13, Thm. I.4.17] If M is connected and paracompact then M is Lindelöf.
(3) [13, Prop. I.4.18] If M is Lindelöf and for every definable subspace X
its closure X is also a definable subspace, then M is paracompact.
(4) [13, Prop. I.4.7] If M is paracompact and every open definable subspace
of M is regular then M is regular.

Proof. We denote by {(Mi, φi)}i∈I an atlas of M .
(1) It is enough to proof that each Mj is contained in the union of a finite
number of charts Mi. Since M is paracompact, we can assume that {Mi}i∈I
is locally finite. We define the set of indexes Γ(j) = {i ∈ I : Mi ∩Mj 6= ∅}.
Since the atlas is locally finite, Γ(j) is finite. On the other hand, it is easy
to check that Mj ⊂

⋃
i∈Γ(j)Mi, as required.

(2) Since M is paracompact, we can assume that {(Mi, φi)}i∈I is locally
finite. Let us show that I must be countable. For each j ∈ I we define
by induction the following sets of indexes Γ0(i) = {i}, Γn+1(i) := {j ∈
I : Mk ∩Mj 6= ∅ for some k ∈ Γn(i)} for n ∈ N. Since {Mi}i∈I is locally
finite, Γn(i) is finite for all i ∈ I and n ∈ N. Let Γ(i) =

⋃∞
n=0 Γn(i) and

Ni =
⋃
j∈Γ(i)Mj . Note that (a) if Mj∩Ni 6= ∅ then Mj ⊂ Ni and Γ(i) = Γ(j)

(in particular Ni = Nj) and (b) if Mj ∩ Ni = ∅ then Γ(i) ∩ Γ(j) = ∅.
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Moreover, from (a) and (b) we deduce that each Ni is an open and closed
admissible subspace. Since M is connected, Ni = M for all i ∈ I. Hence,
Γ(i) = I for all i ∈ I, i.e., I is countable.
(3) Since M is Lindelöf, we can assume that I = N. Furthermore, we can
assume that Mn ⊂ Mn+1 for all n ∈ N. By (1) Mn is a definable subspace
for each n ∈ N. Therefore we can also assume that Mn ⊂ Mn ⊂ Mn+1 for
all n ∈ N. Consider the family U0 = M0, U1 = M1, Un = Mn \Mn−2 for
each n ≥ 2. Then, {Un : n ∈ N} is a locally finite covering of M by open
definable subspaces.
(4) Let x ∈ M and let V be an open definable subspace of M with x ∈ V .
Since M is paracompact, by (1) above, there are finite subsets J and K of
I such that V ⊂

⋃
i∈JMi ⊂

⋃
i∈JMi ⊂

⋃
i∈KMi. By hypothesis, N :=⋃

i∈KMi is regular and hence there exist an open definable subspace W of
N such that x ∈ W and W ∩N ⊂ V . Then W ⊂ W ∩N ⊂ V ⊂

⋃
i∈JMi,

so that W ⊂
⋃
i∈JMi ⊂ N . Therefore, W is an open definable subspace of

M such that x ∈W ⊂W ⊂ V , as required.

The fact that definable subspaces are affine together with paracompact-
ness permits to establish a Triangulation Theorem for regular and paracom-
pact ld-spaces (which will be essential for the proof of the Hurewicz and
Whitehead theorems below). Fix a cardinal κ. We denote by Rκ the R-
vector space generated by a fixed basis of cardinality κ. A generalized
simplicial complex K in Rκ is a usual simplicial complex except that we
may have infinitely many (open) simplices. The locally finite generalized
simplicial complexes are those ones for which the star of each simplex is a
finite subcomplex. On the latter we can define in an obvious way an ld-space
structure. Indeed, given a locally finite generalized simplicial complex K,
for each σ ∈ K we have that StK (σ) is a finite subcomplex and therefore
StK (σ) ⊂ Rnσ ⊂ Rκ for some nσ ∈ N. Now, giving each StK (σ) the topology
it inherits from Rnσ , it suffices to consider the atlas {(StK (σ), id|St

K
(σ)}σ∈K .

With this ld-space structure, a locally finite generalized simplicial complex
is regular and paracompact (see Fact 3.2.11.(4)). Henceforth, all the locally
definable concepts about locally finite generalized simplicial complexes refer
to the regular and paracompact ld-space structure we mention above. As in
the definable setting, it is easy to prove that a locally finite generalized sim-
plicial complex K is connected if and only if there is no proper subcomplex
L of K such that |L| (which is clearly an admissible subspace) is both open
and closed in |K|.

The next result is a sort of converse of the fact that locally finite gener-
alized simplicial complexes are regular and paracompact ld-spaces.

Fact 3.2.12 (Triangulation Theorem). [13, Thm. II.4.4] Let M be a reg-
ular and paracompact ld-space and let {Aj : j ∈ J} be a locally finite family
of admissible subspaces of M . Then, there exists an ld-triangulation of
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M partitioning {Aj : j ∈ J}, i.e., there is a locally finite generalized sim-
plicial complex K and a ld-homeomorphism ψ : |K| → M , where |K| is the
realization of K, such that ψ−1(Aj) is the realization of a subcomplex of K
for every j ∈ J .

We will prove the Triangulation Theorem in Section 3.3.

Remark 3.2.13. In the Triangulation theorem above, and as in the defin-
able case, we can find the generalized simplicial complex K with its vertices
tuples of real algebraic numbers. For, as in the classical theory, if we con-
sider K as an abstract complex and we denote by κ the cardinal of the set
of vertices of K, then we obtain a “canonical realization” of K in Rκ whose
vertices are the standard basis of Rκ. Moreover, if the ld-space M is defined
over A, A ⊂ R, then we can find the locally definable homeomorphism ψ
defined over A.

Henceforth, we denote a regular and paracompact ld-space by LD-
space. Note that by Fact 3.2.11.(2) a connected LD-space is Lindelöf.

We finish this section studying the behaviour of ld-spaces with respect
to model theoretic operators. Firstly, let us show that given an elementary
extension R1 of an o-minimal structure R and given an ld-space M in R,
there is a natural realization M(R1) of M over R1 as an ld-space. For,
denote by {φi : Mi → Zi}i∈I the atlas of M and consider the set Z =⋃
i∈I Zi/ ∼, where x ∼ y for x ∈ Zi and y ∈ Zj if and only if φij(x) = y.

Note that we can define an ld-space structure on Z in a natural way and
that Z with this ld-space structure is isomorphic to M (see Definition 3.2.4).
Now, we define the realization Z(R1) as the ld-space whose underlying set
is
⋃
i∈I Zi(R1) modulo the relation ∼R1 , where x ∼R1 y for x ∈ Zi(R1)

and y ∈ Zj(R1) if and only if φij(R1)(x) = y, and with the obvious atlas.
If X is a (admissible) definable subspace of M then X(R1) is clearly a
(resp. admissible) definable subspace of M in R1. The following result
concerning the behaviour of several properties under elementary extensions
is an adaptation of those from [13].

Fact 3.2.14. Let R1 be an elementary extension of R and let M be an ld-
space in R. Then,
(i) M is connected if and only if M(R1) is connected,
(ii) M is Lindelöf if and only if M(R1) is Lindelöf,
(iii) M is paracompact if and only if M(R1) is paracompact,
(iv) M is regular and paracompact if and only if M(R1) is regular and
paracompact.

Proof. Let (Mi, φi)i∈I be an atlas of M . (i) For the nontrivial part, note
that the connected components (see section 3.6) of the ld-space M(R1) are
actually defined over R. (ii) It is enough to note that a Lindelöf ld-space
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is covered by a countable subcovering of its atlas. (iii) For the nontrivial
part, by (i), (ii) and Fact 3.2.11, it suffices to prove that for all definable
subspace X of M the closure X is also a definable subspace of M , i.e., X is
contained in a finite union of Mi’s. Indeed, given a definable subspace X of
M , the latter follows from the fact that X(R1) = X(R1) is contained in a
finite union of Mi(R1)’s by Fact 3.2.11.(1). (iv) By (iii) and Fact 3.2.11.(4),
this follows from the fact that every finite union of Mi’s is regular if and
only if every finite union of Mi(R1)’s is regular.

On the other hand, note that given an o-minimal expansion R′ of R and
an ld-space M in R, we can consider M as an ld-space in R′. Clearly, if X is
a (admissible) definable subspace of M in R then X is a (resp. admissible)
definable subspace of M in R′.

Proposition 3.2.15. Let R′ be an o-minimal expansion of R and let M be
an ld-space in R. Then,
(i) M is regular in R if and only if it is regular in R′,
(ii) M is connected in R if and only if it is connected in R′,
(iii) M is Lindelöf in R if and only if it is Lindelöf in R′,
(iv) M is paracompact in R if and only if it is paracompact in R′.

Proof. (i) This follows from the fact that an ld-space is regular if and only
if each point has a fundamental system of closed neighbourhoods.
(ii) If M is connected in R′ then it is clearly connected in R. On the other
hand, if M is connected inR then by Fact 3.6.1 any two points are connected
by an ld-path definable in R. In particular, any two points are connected by
an ld-path definable in R′ and hence, again by Fact 3.6.1, M is connected
in R′.
(iii) Let us show that if M is Lindelöf in R′ then M is Lindelöf in R (the
converse is trivial). Indeed, let (Mi, φi)i∈I be an atlas of M in R and let
{Un : n ∈ N} be a countable admissible covering of M by open definable
subspaces in R′ of M . Since each Un is a definable subspace, it is contained
in a finite union of chartsMi. Therefore, there exists a countable subcovering
of {Mi : i ∈ I} which already covers M and hence M is Lindelöf in R.
(iv) Let us show that if M is paracompact in R′ then M is paracompact in
R (the converse is trivial). Without loss of generality we can assume that
M is connected. Therefore, by the above equivalences and Fact 3.2.11.(2),
M is Lindelöf in R. Then, by Fact 3.2.11.(3), it suffices to prove that for
every definable subspace X of M in R, its closure X is also a definable
subspace of M in R. Since M is paracompact in R′, the latter is clear by
Fact 3.2.11.(1).
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3.3 Triangulation of LD-spaces

This section is devoted to the Triangulation theorem for LD-spaces (see
Fact 3.2.12). The hardest part of this proof, which may be of interest by
itself, is to show that we can embed an LD-space in another one with good
properties.

Definition 3.3.1. We say that an ld-space M is partially complete if
every closed definable subspace X of M is definably compact, i.e., every
definable curve in X is completable in X.

Fact 3.3.2. [13, Thm. II.2.1] Let M be an LD-space. Then, there exist an
embedding of M into a partially complete LD-space, i.e, there is partially
complete ld-space N and a ld-map i : M → N such that i(M) is an admissi-
ble subspace of N and i : M → i(M) is an ld-homeomorphism (where i(M)
has the LD-space structure inherited from M).

The proof of Fact 3.3.2 will be given at the end of the current section.
The advantage of working with a partially complete LD-space M is that
given a triangulation of a closed definable subspace X of M , we know that
the corresponding simplicial complex must be closed. This allow us to prove
the following “glueing” principle of triangulations for partially complete LD-
spaces. Firstly, recall that given two ld-triangulations (K,φ) and (L,ψ) of
an LD-space M , we say that (K,φ) refines (L,ψ) if for every τ ∈ L there
is σ ∈ K such that φ(σ) ⊂ ψ(τ). We say that (K,φ) is a equivalent
ld-triangulation to (L,ψ) if each ld-triangulation is a refinement of the
other.

Fact 3.3.3. [13, Thm. II.4.1] Let M be a partially complete LD-space and
{Cj : j ∈ J} a locally finite covering of M by closed definable subspaces. Let
(Kj , φj) be a triangulation of Cj for each j ∈ J . Moreover, assume that φi
and φj are equivalent ld-triangulations on Ci ∩ Cj for every i, j ∈ J with
Ci ∩ Cj 6= ∅. Then, there is a ld-triangulation (K,φ) of M such that φ is
equivalent to φj on Cj for each j ∈ J .

Proof. Since M is partially complete and each Cj is closed, we have that
Kj is a closed simplicial complex for each j ∈ J . Denote by E the quotient
of the disjoint union of the sets Vert(Kj) of vertices of each Kj by the
equivalence relation such that v ∈ Vert(Ki) and w ∈ Vert(Kj) are related if
and only if φi(v) = φj(w). Clearly, for each j ∈ J we have an injective map
Ij : Vert(Kj) → E. Let S := {{Ij(v0), . . . , Ij(vn)} : (v0, . . . , vn) ∈ Kj , j ∈
J}. It is easy to check that (E,S) is an abstract simplicial complex. In
fact, since the covering {Cj : j ∈ J} is locally finite, the complex (E,S) is
locally finite. Consider a realization |K| of (E,S) and for each j ∈ J denote
by |Ij | : |Kj | → |K| the simplicial map generated by Ij . Finally, consider
the map φ : |K| →M such that φ|Yj = φj ◦ |Ij |−1. Since the triangulations
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(Kj , φj) are equivalent on the intersections, φ is a well-defined ld-map. It is
not difficult to check that (K,φ) is the required ld-triangulation of M .

Proof of the Triangulation theorem 3.2.12. By Fact 3.3.2 we can assume that
M is partially complete. We can also assume that M is connected. There-
fore, since M is paracompact, M is Lindelöf (see Fact 3.2.11). Hence, there
is a covering {Cn : n ∈ N} of M by closed definable subspaces such that
Cn∩Cm = ∅ if |n−m| > 1. Indeed, it suffices to apply the shrinking of cov-
erings (see Fact 3.8.6) to the locally finite covering constructed in the proof
of Fact 3.2.11.(3). Note that for each n ∈ N there is only a finite number of
j ∈ J such that Aj ∩Cn 6= ∅. Therefore, by the (affine) Triangulation theo-
rem and applying an iteration process, there are triangulations (Kn, φn) of
Cn partitioning Cn ∩Mn+1, {Cn ∩Aj}j∈J and {φn−1(σ)∩Cn}σ∈Kn−1 . Note
that (Kn, φn) refines (Kn−1, φn−1) on Cn ∩ Cn−1. Now, since Cn ∩ Cn−1

and Cn ∩ Cn+1 are disjoint, it follows from the o-minimal version of [13,
Lem.II.4.3] (see Remark below) that there is a triangulation (Ln, ψn) of Cn
refining (Kn, φn) and equivalent to (Kn, φn) and (Kn+1, φn+1) on Cn∩Cn−1

and Cn∩Cn+1 respectively. Finally, by Fact 3.3.3, there is an ld-triangulation
(L,ψ) of M partitioning {Aj : j ∈ J}.

Remark. We do not include the proof of the o-minimal version of [13,
Lem.II.4.3] because it is a straightforward adaptation of the semialgebraic
one. Moreover, to prove Lemma 1.4.3 we used the ideas involved in the
proof of [13, Lem.II.4.3] .

Now, we prove Fact 3.3.2. We will need some results concerning glueing
of definable spaces with closed intersections whose proofs have been included
in Appendix 3.8. We will also need the following easy embedding result.

Fact 3.3.4. Let M be an LD-space and let U be an open definable subspace
of M . Then there exist an ld-map f : M → Sn such that f |U is an embedding
and f−1(p) = M \U , where Sn = {x ∈ Rn+1 : |x| = 1} and p = (0, . . . , 0, 1).

Proof. It is enough to prove the fact in the case that M is a definable
space. Indeed, by Fact 3.2.11, U is a definable subspace of M and hence we
can replace M by any open definable subspace V of M such that U ⊂ V .
Moreover, since M is regular, we can assume that M is a definable set
of Rn for some n ∈ N. Consider the definable function d : M → R :
x 7→ d(x) = inf{|x − y| : y ∈ M \ U}. Note that d−1(0) = M \ U . Let
F : Rn+1 → Sn+1 \ {p} be the inverse of the stereographic projection with
center p. Finally, we take the definable map f : M → Sn+1 such that
f(x) = F (x, 1

d(x)) for all x ∈ U and f(x) = p for all x ∈M \ U .

Proof of Fact 3.3.2. Let {Mi : i ∈ I} be a locally finite covering of M by
open definable subspaces. By Fact 3.3.4, there is an sphere Si := Sni ,
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ni ∈ N, and an ld-map gi : M → Si for each i ∈ I with g−1
i (pi) = M \Mi,

pi the north pole of Sni , and such that gi|Mi is an embedding. On the other
hand, we define the finite subsets of indexes Γ1(i) := {j ∈ I : Mi ∩Mj 6= ∅},
Γ2(i) :=

⋃
j∈Γ1(i) Γ1(j) and Γ∗2(i) = Γ2(i) \ {i} for each i ∈ I. Consider the

set Z :=
∏
i∈I(Si × [0, 1]) and the family of subsets Ni :=

∏
j∈I Ni,j ⊂ Z,

where Ni,i := Si × {1}, Ni,j := (pj , 0) if j ∈ I \ Γ2(i) and Ni,j := Sj × [0, 1]
if j ∈ Γ∗2(i). We regard each Ni in the obvious way as a definably compact
definable space isomorphic to the product (Si×{1})×

∏
j∈Γ∗2(i)(Sj × [0, 1]).

Now, the family {Ni : i ∈ I} satisfies the hypotheses of Fact 3.8.5. Indeed,
it suffices to check that given i ∈ I, there are only a finite number of j ∈ I
with Ni∩Nj 6= ∅ and, in this case, Ni∩Nj is closed in both Ni and Nj with
the inherited definable space structures equivalent. Clearly, Ni ∩ Nj 6= ∅
if and only if i ∈ Γ2(j) and in this case Ni ∩ Nj =

∏
k∈I Ni,j,k, where

Ni,j,k := Sk × {1} if k = i or k = j, Ni,j,k := Sk × [0, 1] if k ∈ Γ∗2(i) ∩ Γ∗2(j)
and Ni,j,k := (pk, 0) in other case, as required. Hence, by Fact 3.8.5, we
have an LD-space structure on

N :=
⋃
i∈I

Ni

such that each Ni is closed in N (with the inherited structure of definable
space from N equal to the original one) and such that {Ni : i ∈ I} is a locally
finite covering of N . Moreover, N is partially complete because given a
closed definable subspace X of N we have that X = (X∩Ni1)∪· · ·∪(X∩Nim)
for some i1, . . . , im ∈ I and each X ∩Ni1 ,. . . ,X ∩Nim is a definably compact
definable space because it is a closed subspace of a definably compact one.

Next, we construct the embedding of M in N . Consider the open defin-
able subspace Wi :=

⋃
j∈Γ1(i)Mj of M for each i ∈ I. Note that Mi ⊂ Wi

for each i ∈ I. By Fact 3.8.8, there is an ld-function fi : M → [0, 1] for each
i ∈ I such that f−1

i (1) = Mi and f−1
i (0) = M \Wi. We consider the map

ψ : M → N : x 7→ (gi(x), fi(x))i∈I .

Now, we prove that ψ is a locally definable embedding.

(A) ψ is a well-defined: Indeed, given x ∈M , take i ∈ I such that x ∈Mi ⊂
Mi. Then (gi(x), fi(x)) ∈ Si × {1}. On the other hand, if j /∈ Γ2(i) then
x /∈Wj , so that (gj(x), fj(x)) = (pj , 0). Hence ψ(x) ∈ Ni ⊂ N , as required.
(B) ψ is injective: Let x, y ∈ M be such that ψ(x) = ψ(y). If x ∈ Mi and
y /∈ Mi then (ψ(x))i = (gi(x), 1) with gi(x) 6= pi and (ψ(y))i = (pi, fi(y)),
i.e., ψ(x) 6= ψ(y), which is a contradiction. If x, y ∈ Mi then (ψ(x))i =
(ψ(y))i and hence gi(x) = gi(y), so that x = y.
(C) ψ is an ld-map: By Fact 3.8.4, it suffices to prove that ψ|Mi is defin-
able for all i ∈ I. Firstly, note that it follows from (A) that ψ(Mi) ⊂ Ni

and hence ψ(Mi) is definable. We regard Ni as the affine definable set
(Si × {1})×

∏
j∈Γ∗2(i)(Sj × [0, 1]). Now, the map ψ|Mi : Mi → (Si × {1})×
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∏
j∈Γ∗2(i)(Sj × [0, 1]) : x 7→ (gj |Mi , fj |Mi)j∈Γ2(i) is clearly definable.

(D) ψ is an sld-map (see Definition 3.8.9): Firstly, note that ψ(M) ∩Ni =
ψ(Mi) for all i ∈ I. Clearly, ψ(Mi) ⊂ ψ(M) ∩ ψ(Mi) ⊂ ψ(M) ∩ Ni =
ψ(M) ∩Ni. On the other hand, given x ∈M such that ψ(x) ∈ Ni, we have
fi(x) = 1, so that x ∈ Mi, as required. Hence, by Fact 3.8.11 and (C), ψ
is an sld-map. In particular, it follows from Fact 3.8.10 that ψ(M) is an
admissible subspace of N .
(E) The map ψi := ψ|Mi

: Mi → Ni is a homeomorphism from Mi to
ψ(M) ∩ Ni: It is enough to prove that for every closed definable sub-
space A of Mi, ψi(A) is a closed definable subspace of ψ(M) ∩ Ni. We
regard Ni as the affine definable set (Si×{1})×

∏
j∈Γ∗2(i)(Sj × [0, 1]). Then

ψi = (gj |Mi , fj |Mi)j∈Γ2(i). Let x ∈ Mi such that ψi(x) ∈ ψi(A). We have
to prove that x ∈ A. Let k ∈ I such that x ∈ Mk. Firstly, we show that
gk(x) ∈ clgk(Mk)(gk(A ∩Mk)). We denote by | · | Euclidean distance. Since
x ∈Mi, we have k ∈ Γ2(i). By definition, gk(x) 6= pk. Therefore, there exist
ε̃ > 0 such that if |gk(x) − z| < ε̃ then z 6= pk. On the other hand, since
ψi(x) ∈ ψi(A), for all ε ∈ (0, ε̃) there is y ∈ A such that |gj(x) − gj(y)| < ε
for all j ∈ Γ2(i). In particular, since |gk(x) − gk(y)| < ε < ε̃ we have that
gk(y) 6= pk, so that y ∈ Mk. Hence, for all ε ∈ (0, ε̃) there is y ∈ A ∩Mk

such that |gk(x) − gk(y)| < ε, as required. Finally, by definition gk|Mk
is a

homeomorphism and A∩Mk is a closed definable subspace of Mk and hence
gk(x) ∈ gk(A ∩Mk), i.e., x ∈ A ∩Mk ⊂ A.

It follows from the claims (A)-(E) that ψ : M → N is an ld-homeomorphism
from M to ψ(M) with the structure of LD-space inherited from N , as re-
quired.

3.4 Examples of locally definable spaces

We begin this section discussing some natural examples of subsets of Rn car-
rying a special ld-space structure. In the second subsection we will consider∨

-definable groups as ld-spaces. Another important class of examples will
be shown in Section 3.4.3, where we prove the existence of covering maps
for LD-spaces.

3.4.1 Subsets of Rn as ld-spaces

Example 3.4.1. Fix an n ∈ N and a collection {Mi}i∈I of definable subsets
of Rn such that Mi∩Mj is open in both Mi and Mj (with the topology they
inherit from Rn) for all i, j ∈ I. Then, clearly (Mi, id|Mi)i∈I is an atlas for
M :=

⋃
i∈IMi and hence M is an ld-space.

Let M ⊂ Rn be an ld-space as in Example 3.4.1. Then it is easy to
prove that a definable subspace of M is a definable subset of Rn. However,
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consider the particular example where Mi := (−i, i) ⊂ R for i ∈ N, so that
M =

⋃
i∈NMi = Fin(R). Note that if R = R then R is not a definable

subspace of Fin(R) (= R). This also shows that the structures of R as
ld-space and definable set are different. The latter example can be used
also to show that the image of an admissible subspace of an ld-space by an
ld-map might not be admissible. For, take R a non-archimedean real closed
field and the ld-map id : Fin(R) → R : x 7→ x. Clearly, Fin(R) is not an
admissible subspace of R since the admissible subspaces of R are exactly the
definable ones.

Nevertheless, we point out that if M ⊂ Rn is as in Example 3.4.1 with
each Mi defined over A, A ⊂ R, |A| < κ, and R is κ-saturated, then a
definable subset of Rn contained in M is a definable subspace of M . For,
if X ⊂ M is a definable subset, to prove that it is a definable subspace it
suffices to show that it is contained in a finite union of charts Mi, which is
clear by saturation.

In general, the topology of an ld-space M ⊂ Rn as in Example 3.4.1 does
not coincide with the topology it inherits from Rn. Consider the following
example in R. Take M0 := {0} and Mi := {1

i } for i ∈ N\{0}. M0 is open in
the topology of M as ld-space but it is non-open with the topology that M
inherits from R. It is well known that this also happen at the definable space
level (see Robson’s example of a non-regular semialgebraic space –Chapter
10 in [15]–). Moreover, Robson’s example shows that even in the presence
of saturation the topologies might not coincide.

Finally, let M ⊂ Rn is as in Example 3.4.1 with each Mi defined over
A, A ⊂ R, |A| < κ. Furthermore, assume that R is κ-saturated and that
the topology of M as ld-space coincides with the topology it inherits from
Rn. Then let us note that in this case a definable subspace of M (which as
we have seen is also a definable subset of Rn) is definably connected if and
only if it is connected as an ld-space (see Definition 3.2.6).

Next, we show that an ld-space M as in Example 3.4.1 might not be
paracompact.

Example 3.4.2. Let M be as in Example 3.4.1 with Mi = {(x, y) ∈ R2 :
y < 0} ∪ {(x, y) ∈ R2 : x = i} for each i ∈ N. The set X = {(x, y) ∈
R2 : y < 0} is a definable subspace of M =

⋃
i∈NMi ⊂ R2. However,

X = X ∪ {(i, 0) ∈ R2 : i ∈ N} is not a definable subspace of M . In
particular, M is not paracompact (see Fact 3.2.11.(1)).

We finish by showing that another class of subsets that classically has
been considered as “locally semialgebraic subsets” (for example, by S. Lo-
jasiewicz) can be treated inside the theory of ld-spaces.

Example 3.4.3. Let M be a subset of Rn such that for every x ∈M there
is an open definable neighbourhood Ux of x in Rn with Ux ∩M definable
subset. Let Mx := Ux ∩M for each x ∈M . Then M is an ld-space with the
atlas (Mx, id|Mx)x∈M .
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Using the notation of Example 3.4.3, it is clear that Mx∩My is definable
and open in both Mx and My for all x, y ∈M and therefore M is an ld-space
as in Example 3.4.1. Moreover, the topology of M as ld-space equals the
one it inherits from Rn.

3.4.2
∨

-definable groups

Throughout this subsection we will assume R is ℵ1-saturated. The
∨

-
definable groups have been considered by several authors as a tool for
the study of definable groups in o-minimal structures. Y. Peterzil and
S. Starchenko give the following definition in [31]. A group (G, ·) is a∨

-definable group over A, A ⊂ R, if |A| < ℵ1 and there is a collection
{Xi : i ∈ I} of definable subsets of Rn over A such that G =

⋃
i∈I Xi and

for every i, j ∈ I there is k ∈ I such that Xi ∪Xj ⊂ Xk and the restriction
of the group multiplication to Xi ×Xj is a (not necessarily continuous) de-
finable map into Rn. M. Edmundo introduces in [17] a notion of restricted∨

-definable group which he calls “locally definable” group. Our purpose in
this section is to include both notions within the theory of ld-spaces.

In [31], some (topological) topics of
∨

-definable groups are discussed to
study the definable homomorphisms of abelian groups in o-minimal struc-
tures and, in particular, they prove the following result.

Fact 3.4.4. [31, Prop. 2.2] Let G ⊂ Rn be a
∨

-definable group. Then, there
is a uniformly definable family {Va : a ∈ S} of subsets of G containing the
identity element e and a topology τ on G such that {Va : a ∈ S} is a basis
for the τ -open neighbourhoods of e and G is a topological group. Moreover,
every generic h ∈ G has an open neighbourhood U ⊂ Nn such that U ∩ G
is τ -open and the topology which U ∩ G inherits from τ agrees with the
topology it inherits from R, and the topology τ is the unique one with the
above properties.

Because of the above fact is natural to introduce the following concept.

Definition 3.4.5. We say that a group (G, ·) is an ld-group if G is an
ld-space and both · : G × G → G and −1 : G → G are ld-maps. If G is
moreover paracompact as ld-space we say that G is an LD-group.

Remark 3.4.6. (i) Every ld-group G is regular because it is a topological
group. We recall the standard proof. Let g ∈ G and let U be an open
neighbourhood of g in G. We show that there is an open neighbourhood V
of g such that V ⊂ U . Firstly, since G→ G : x 7→ g−1x is a homeomorphism,
without loss of generality we can assume that g = e, where e is the identity
element of G. Now, since · : G×G→ G is continuous and ee−1 = e, there is
an open neighbourhood V of e such that V V −1 ⊂ U . We prove that V ⊂ U .
Let y ∈ Y . Since yV is an open neighbourhood of y in G, we have that
yV ∩ V 6= ∅. Therefore, y ∈ V V −1 ⊂ U , as required.
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(ii) We show that the dimension of an ld-group G is finite. Given g ∈ G, we
define dimG(g) as the least integer n such that there is an open definable
subspace U of G of dimension n with g ∈ U . Clearly, dimG(g) ≤ dim(G)
for every g ∈ G and dim(G) = sup{dimG(g) : g ∈ G}. We show that
dimG(g) = dimG(h) for all g, h ∈ G. Fix g, h ∈ G. By symmetry, it
suffices to show that dimG(g) ≤ dimG(h). Let U be an open definable
subspace of G such that h ∈ U and dim(U) = dimG(h). Since the map
G → G : x 7→ gh−1x is an ld-isomorphism, we have that gh−1U is an open
definable subspace of G with g ∈ gh−1U and dim(gh−1U) = dim(U). We
deduce that dimG(g) ≤ dim(gh−1U) = dim(U) = dimG(h), as required.
Finally, we have that dim(G) = sup{dimG(g) : g ∈ G} = dimG(h) for some
(any) h ∈ G, so that dim(G) is finite.

We will see that every
∨

-definable group (with its group topology) is an
ld-group. We begin with the following result.

Lemma 3.4.7. Let G ⊂ Rn be a
∨

-definable group over A and let τ be the
topology of Fact 3.4.4. Then, for every generic g ∈ G there is a definable
OVER A subset Ug ⊂ G which is τ -open and such that the topology which Ug
inherits from τ agrees with the topology it inherits from Rn.

Proof. By Fact 3.4.4 it suffices to prove that the parameter set A is pre-
served. Write G =

⋃
i∈I Xi. The dimension of G is defined as max{dim(Xi) :

i ∈ I}. Fix an Xi of maximal dimension and a generic g ∈ Xi. We can as-
sume that X−1

i = Xi. Let Xj be such that XiXiXi ⊂ Xj . All the definable
sets we shall consider in the proof are definable subsets of Xj . For each
a ∈ Xi we consider the definable set

Wa = {x ∈ Xi : ∀δ > 0∃ε > 0 B(x, ε) ⊂ xa−1B(a, δ)∧
∀ε > 0∃δ > 0 xa−1B(a, δ) ⊂ B(x, ε)},

where B(x, ε) = {y ∈ Xi : |y − x| < ε}. We also consider the definable set

V = {y ∈ Xi : Wy is large in Xi}.

By Claim 2.3 of [31, Prop. 2.2], for every h ∈ Xi generic over A, g we have
that h ∈Wg and therefore g ∈ V . Moreover, since g is generic, we have that
g ∈ U := intXi (V ) (the interior with respect to the topology of the ambient
space Rn), which is a definable over A subset of Xi. Fix a ∈ U . We shall
prove that

(i) for every ε > 0 there is δ > 0 such that ag−1B(g, δ) ⊂ B(a, ε), and
(ii) for every ε > 0 there is δ > 0 such that ga−1B(a, δ) ⊂ B(g, ε).

Granted (i) and (ii), note that Ug := U is the desired neighbourhood of g.
Let us show (i). Consider a generic h ∈ Xi over A, a. Since h ∈ Wa, there
is δ̃ > 0 such that ah−1B(h, δ̃) ⊂ B(a, ε). By Claim 2.3 of [31, Prop. 2.2],
there is δ > 0 such that g−1B(g, δ) ⊂ h−1B(h, δ̃). Hence ag−1B(g, δ) ⊂
ah−1B(h, δ̃) ⊂ B(a, ε). The proof of (ii) is similar.
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The following technical fact can be easily deduced from the proof of [17,
Prop 2.11]. We include its proof for completeness.

Fact 3.4.8. Let G =
⋃
i∈I Xi be an

∨
-definable group over A. Let V =⋃

k∈Λ Vk (directed union) be a subset of G such that each Vk is definable
over A and V is large in G over A, i.e, every generic point of G over A is
contained in V . Then there is a collection of elements {bj ∈ G : j ∈ J} with
each bj definable over A, such that each Xi is contained in a finite union of
subsets of the form bjVk. In particular, G =

⋃
j∈J bjV .

Proof. We fix i ∈ I. Let K be the prime model of ThA(R). It is enough
to show that given a ∈ Xi and a generic point c ∈ Xi of G over K with
tp(c|K, a) finitely satisfiable in K, there is k ∈ Λ such that a ∈ c−1Vk.
Indeed, since tp(c|K, a) is finitely satisfiable over K, there is b ∈ Xi(K)
such that a ∈ b−1Vk for some k ∈ Λ. Therefore, by saturation, for each
i ∈ I, there are b1, . . . , bri ∈ Xi(K) and k1, . . . , kri ∈ Λ such that Xi ⊂⋃ri
j=1 b

−1
j Vkj , as required. Now, if c ∈ Xi is a generic point of G over K with

tp(c|K, a) finitely satisfiable in K then c is a generic point of G over K, a
(see the proof of [32, Lem.2.4]). Since the directed union V is large in G
over A, the directed union V a−1 is large in G over A, a. Then, by genericity,
c ∈ V a−1 and hence a ∈ c−1Vk for some k ∈ Λ. This finishes the proof.

As it was pointed out by Y. Peterzil to us, a stronger version of the above
fact can be proved. In particular, and using the notation of Fact 3.4.8, there
exist b0, . . . , bn ∈ G, n = dim(G), such that G =

⋃n
i=0 bnV (it is enough to

adapt the proof of [28, Fact. 4.2]). However, in this case we do not know
if b0, . . . , bn are definable over A. Since we are interested in preserving the
parameter set we will use the above Fact 3.4.8.

Theorem 3.4.9. Let G ⊂ Rn be a
∨

-definable group over A. Let A ⊂ C ⊂
R. Then
(i) G with its group topology (from Fact 3.4.4) is an ld-group over A,
(ii) a subset X of G is a definable subset of Rn over C if and only if it is a
definable subspace of G over C, and
(iii) given a definable subspace X of G over C, its closure X (with respect
to the group topology) is a definable subspace of G over C.

Proof. (i) Let G be the collection of all generics points of G. For each g ∈ G,
let Ug be the definable over A subset of G of Lemma 3.4.7. Consider the
subset V =

⋃
g∈G Ug of G, which is large in G. By Fact 3.4.8, there is

a collection {bj ∈ G : j ∈ J}, with each bj definable over A, such that
G =

⋃
j∈J bjV . For each j ∈ J and g ∈ G, consider the definable set

Vj,g := bjUg and the bijection ψj,g : Vj,g → Ug : y 7→ b−1
j y. Finally, it is

easy to check that {(Vj,g, ψj,g)}j∈J,g∈G is an atlas of G and therefore G is an
ld-group over A.
(ii) It is clear that if X ⊂ G is a definable subspace over C then it is a
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definable subset of Rn over C. So, let X be a definable subset of Rn over C
and consider the atlas {(Vj,g, ψj,g)}j∈J,g∈G of G constructed in the proof of
(i). Since X is definable over C we have that ψj,g(X ∩ Vj,g) = b−1

j X ∩ Ug is
also definable over C for every j ∈ J and g ∈ G. Hence, it is enough to show
that X is contained in a finite union of the sets Vj,g (which are defined over
A) and, since they cover G, this is clear by saturation.
(iii) Let X be a definable subspace of G over C and write G =

⋃
i∈I Xi. By

(ii) X is a definable subset of Rn over C. We will show that X is a definable
subset of Rn over C (this is enough also by (ii)). Fix a generic point g of G
and let Ug as in Lemma 3.4.7. Firstly, let us show that X ⊂ Xj for some
j ∈ I. Since {Xi}i∈I is a directed family and X and Ug are definable, there
is j ∈ I such that XU−1

g g ⊂ Xj . Now, if y ∈ X then yg−1Ug ∩X 6= ∅ and
hence y ∈ XU−1

g g ⊂ Xj . Finally, X = {y ∈ Xj : g ∈ clUg (gy−1X ∩ Ug)} is
clearly a definable subset of Rn over C, where clUg (−) denotes the closure in
Ug with respect to the inherited topology from the ambient space Rn.

Theorem 3.4.9.(iii) states that in a
∨

-definable group we have a good
relation between the topological and the definable setting as it happens with
LD-spaces (see Fact 3.2.11(1)). However, as we will see not every

∨
-definable

group is paracompact or Lindelöf as ld-group. Firstly, let R be an ℵ1-satu-
rated elementary extension of the o-minimal structure 〈R, <,+,−, ·, r〉r∈R.
Consider the collection F of finite subsets of R. Then (G,+), where G =⋃
F∈F F ⊂ R and + is the usual addition, is a

∨
-definable group over ∅

which is not Lindelöf as ld-group. However, G is paracompact (note that
the group topology of G as

∨
-definable group is the discrete one). Secondly,

let S be a real closed field such that there is no countable subset C ⊂
S+ := {s ∈ S : s > 0} with S =

⋃
x∈C(−x, x) (e.g. if S is ℵ1-saturated).

Let R be an ℵ1–saturated elementary extension of the o-minimal structure
〈S,<,+,−, ·, s〉s∈S . Consider (G,+), where G =

⋃
s∈S+

(−s, s) ⊂ R and +
is the usual addition. The group (G,+) is a

∨
-definable group over ∅ which

is not Lindelöf as ld-group. Since it is connected, (G,+) is not paracompact
(see Fact 3.2.11.(2)).

In [17], M. Edmundo considers
∨

-definable groups G =
⋃
i∈I Xi over A

with the restriction |I| < ℵ1 (which already implies the restriction |A| < ℵ1),
he calls them “locally definable” groups. This restriction on the cardinality
of I allows Edmundo to prove results using techniques which are not available
in the general setting of

∨
-definable groups. As he notes the main examples

of
∨

-definable groups are of this form: the subgroup of a definable group
generated by a definable subset and the coverings of definable groups. The
restriction on the cardinality of |I| of the “locally definable” groups has also
the following consequences on them as ld-spaces.

Theorem 3.4.10. (i) Every “locally definable” group over A with its group
topology is a Lindelöf LD-group over A.
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(ii) Moreover, every Lindelöf LD-group over A is ld-isomorphic to a “locally
definable” group over A (considered as an LD-group by (i)).

Proof. (i) Let G be a “locally definable” group over A. By Theorem 3.4.9.(i),
G is an ld-group over A. We first show thatG is Lindelöf. Recall the notation
of Theorem 3.4.9.(i). WriteG =

⋃
i∈I Xi, with |I| < ℵ1. Since I is countable,

to prove that G is Lindelöf we can assume that the language is countable
(recall that Lindelöf property is invariant under o-minimal expansions by
Proposition 3.2.15). Now, since for each generic g ∈ G the definable subset
Ug of Lemma 3.4.7 is definable over A, the collection {Ug : g ∈ G generic}
is countable. Hence, the atlas {(Vj,g, ψj,g)}j∈J,g∈G of the proof of Theorem
3.4.9.(i) is also countable and so G is Lindelöf. Having proved the latter,
the paracompacity follows from Theorem 3.4.9.(iii) and Fact 3.2.11.
(ii) Let G be a Lindelöf LD-group over A. Since G is regular and para-
compact, by Fact 3.2.12 and Remark 3.2.13 there is an ld-triangulation
f : |K| → G over A. Moreover, we can assume that K is also a locally
finite generalized simplicial complex (in this case we say that K is a strictly
locally finite generalized simplicial complex). Indeed, the semialgebraic Tri-
angulation theorem [13, Thm. II.4.4] is stronger than the locally definable
version we have proved here: it states that given a regular and paracompact
locally semialgebraic space M there is a locally semialgebraic triangulation
f : |K| →M with K a strictly locally finite generalized simplicial complex.
However, note that we can deduce this stronger version in the locally de-
finable setting from the semialgebraic one. For, given an LD-space M , by
(the weaker) locally definable version of the Triangulation theorem 3.2.12,
there is an ld-triangulation f : |K| →M with K a locally finite generalized
simplicial complex. Now, since |K| is a regular and paracompact locally
semialgebraic space, by [13, Thm. II.4.4] there is a locally semialgebraic
triangulation g : |L| → |K| partitioning all the simplices of K and with L a
strictly locally finite generalized simplicial complex L. Therefore, it suffices
to take the ld-triangulation f ◦ g : |L| →M .

Now, since G is an LD-group, the dimension of K is finite (see Remark
3.4.6). Furthermore, since G is Lindelöf, the admissible covering {St|K|(σ) :
σ ∈ K} of |K| has a countable subcovering of |K|. From this fact we
deduce that K is countable. Then, since K is countable, has finite dimension
and is strictly locally finite, by [13, Prop.II.3.3] we can assume that the
realization |K| lie in R2n+1, n = dim(K), and that the topology it inherits
from R2n+1 coincides with its topology as LD-space. Now, define in |K|
a group operation via the ld-isomorphism ψ and the group operation of
G. With this group operation, |K| is an LD-group which we will denote
by H. Of course, G is ld-isomorphic to H via ψ. On the other hand, we
can consider |K| as a “locally definable” group. For, let F the collection
of all finite simplicial subcomplexes of K. Clearly, |K| =

⋃
L∈F |L| with

the group operation obtained via ψ is a “locally definable” group over A.
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Indeed, since the group operation is an ld-map, its restriction to |L1| × |L2|
is a definable map into R2n+1 for all L1, L2 ∈ F . Finally, since the group
operation is already continuous and the topology of |K| as ld-space coincides
with the one inherited form R2n+1, the “locally definable” group |K| with
the ld-group structure obtained in part (i) is exactly H.

Corollary 3.4.11. Let G be a “locally definable” group over A. Then,
there is an ld-triangulation ψ : |K| → G of G over A with |K| ⊂ R2n+1,
n = dim(G), and such that the topology of |K| as LD-space coincides with the
one inherited from R2n+1. Moreover, |K| with the group operation inherited
from G via ψ is also a “locally definable” group over A whose group topology
equals the one inherited from R2n+1.

Let us point out that there are important examples of
∨

-definable groups
which are not Lindelöf LD-spaces (and hence not “locally definable” groups).
The group of definable homomorphisms between abelian groups were used
in [31] as a tool to study interpretability problems. In particular, given to
abelian definable groups A and B over C, C ⊂ R, it is proved there that the
group of definable homomorphisms H(A,B) from A to B is a

∨
-definable

group over C (see [31, Prop. 2.20]). Note that H(A,B) might not be a
“locally definable” group (see the Examples at the end of Section 3 in [31]).
Nevertheless, we have the following corollary to Theorem 3.4.9.

Corollary 3.4.12. H(A,B) is an LD-group.

Proof. We have already seen in Theorem 3.4.9.(i) that H(A,B) is an ld-
group (and hence regular). To prove paracompactness, consider its con-
nected component H(A,B)0, which is a definable group by [31, Thm. 3.6].
Then, by Theorem 3.4.9.(ii), H(A,B)0 is a definable subspace of H(A,B).
Hence, {gH(A,B)0 : g ∈ H(A,B)} is a locally finite covering of H(A,B)
by open definable subspaces and therefore H(A,B) is paracompact. As we
will see in the next section, the notion of connectedness used in [31] for

∨
-

definable groups differs from the one used here. However, in this particular
case, since H(A,B)0 is definable, both notions coincide.

3.4.3 Covering maps for LD-spaces

In this section we deal with one of the motivations for considering the locally
definable category.

Fact 3.4.13. [14, Thm.5.11] Let B be a connected ld-space, b0 ∈ B and
let L be a subgroup of π1(B, b0)R. Then, there exists connected ld-space E
and a covering p : E → B with p∗(π1(E, e0)R) = L for some e0 ∈ p−1(b0).
Moreover, if B is an LD-space then E is also an LD-space.

We give a proof of the above result just for the case of LD-spaces because
this is enough for our purposes (see Subsection 3.7.2). However, the general
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case can be proved with a straightforward adaptation of the semialgebraic
proof.

Proof of Fact 3.4.13. Consider the collection P of all ld-curves α : I → B
such that α(0) = b0. Let ∼ be the equivalence relation on P such that
α ∼ β if and only if α(1) = β(1) and [α ∗ β−1] ∈ L, where ∗ denotes the
usual concatenation of curves. We will denote by α# the class of α ∈ P.
Let E = P/ ∼ and p : E → B : α# 7→ α(1). Now, we divide the proof in
several steps.
(1) E is an ld-space: Firstly, note that every definable subspace of B has
a finite covering by open connected definable subspaces which are simply
connected (because of Remark 3.2.8, the Triangulation theorem and the
fact that the star of a vertex is definably simply connected). Therefore,
since B is an LD-space, there exist a locally finite covering {Uj : j ∈ J} of
B such that each Uj is a connected and simply connected (i.e, π1(Uj)R =
0) definable open subspace of B. Now, for each j ∈ J and α ∈ P with
α(1) ∈ Uj , we define Wj,α := {(α ∗ δ)# : δ : I → Uj ld-map, δ(0) = α(1)}.
Henceforth, when we write Wj,α, we assume that α(1) ∈ Uj . Consider the
map φj,α : Wj,α → Uj : (α ∗ δ)# 7→ δ(1) for each j ∈ J and α ∈ P.
Since Uj is connected and simply connected, φj,α is a well-defined bijection
for every j ∈ J and α ∈ P. The family (Wj,α, φj,α)j∈J,α∈P is an atlas
of E. Indeed, fix i, j ∈ J and α, β ∈ P with Wi,α ∩ Wj,β 6= ∅. Then,
φi,α(Wi,α ∩ Wj,β) is the union of some connected components of Ui ∩ Uj .
Moreover, φj,β(Wi,α ∩ Wj,β) is the union of exactly the same connected
components of Ui ∩ Uj , i.e., φj,β(Wi,α ∩ Wj,β) = φi,α(Wi,α ∩ Wj,β). This
shows that both φi,α(Wi,α ∩ Wj,β) and φj,β(Wi,α ∩ Wj,β) are open in Ui
and Uj respectively and that each change of charts is the identity, hence
definable.
(2) The map p is an ld-map: since p|Wj,α : Wj,α → Uj ⊂ B is a definable
map of definable spaces, for all Wj,α.
(3) E is paracompact: Fix i ∈ J and α ∈ P. We prove that #{Wj,β :
Wi,α ∩Wj,β 6= ∅, j ∈ J, β ∈ P} is finite. Firstly, note that if Wi,α ∩Wj,β 6= ∅
then Ui ∩Uj 6= ∅. Therefore, since the covering {Uj : j ∈ J} is locally finite,
it suffices to prove that the family {Wj,β : Wi,α∩Wj,β 6= ∅, β ∈ P} is finite for
a fixed j ∈ J . Indeed, we will show that given Wj,β1 and Wj,β2 with Wi,α ∩
Wj,β1 6= ∅ and Wi,α∩Wj,β2 6= ∅, if p(Wi,α∩Wj,β1)∩p(Wi,α∩Wj,β2) 6= ∅ then
Wj,β1 = Wj,β2 . The latter is enough because for each β ∈ P, p(Wi,α ∩Wj,β)
(= φi,α(Wi,α∩Wj,β)) is the union of some connected components of Ui∩Uj ,
which has only a finite number of them. Firstly, since Uj is connected, it
is easy to prove that if γ# ∈ Wj,β1 then Wj,γ = Wj,β1 . The same holds for
Wj,β2 . So, if Wj,β1 ∩Wj,β2 6= ∅ then Wj,β1 = Wj,β2 . On the other hand, since
p|Wi,α = φi,α and φi,α is a bijection, from p(Wi,α∩Wj,β1)∩p(Wi,α∩Wj,β2) 6= ∅
we deduce that ∅ 6= Wi,α ∩Wj,β1 ∩Wj,β2 ⊂Wj,β1 ∩Wj,β2 and hence Wj,β1 =
Wj,β2 .
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(4) The ld-map p : E → B is a covering map: By to proof of (3), we have that
p−1(Uj) =

⋃
· α∈PWj,α for every j ∈ J . On the other hand, p|Wj,α : Wj,α → Uj

is an ld-homeomorphism for every j ∈ J and α ∈ P.
(5) E is an LD-space: Indeed, the regularity of E can be deduced from the
regularity of B and (4).
(6) E is path-connected, hence connected: Let e0 := c#

b0
∈ E for the ld-

curve cb0 : I → B : t 7→ b0 (recall b0 ∈ B is a fixed point). Given α ∈ P,
we will show that there is and ld-map from e0 to α#. Consider the map
α̃ : I → E : s 7→ α#

s , where αs : I → B : t 7→ αs(t) = α(ts) is clearly an
ld-curve. Note that p ◦ α̃(s) = α(s), α̃(0) = e0 and α̃(1) = α#. Let us check
that α̃ is an ld-curve. Since α is an ld-curve, there are s0 = 0 < s1 < · · · <
sm = 1 such that α([sk, sk+1]) ⊂ Uik for every k = 0, . . . ,m − 1. Hence
α̃(I) ⊂

⋃m−1
k=0 Wik,αsk

. On the other hand, φi,αsk ◦ α̃|[sk,sk+1] = α|[sk,sk+1] for
every k = 0, . . . ,m− 1 and therefore α̃ is an ld-curve as required.
(7) Finally, let us show that p∗(π1(E, e0)R) = L. Let α be an ld-loop of B
at b0. By the proof of (6), α̃ : I → E : s 7→ α#

s , where αs : I → B : t 7→
αs(t) = α(ts), is an ld-curve. Now, as in the classical case, we have that
[α] ∈ p∗(π1(E, e0)R) if and only if α̃(1) = α# = e0. Indeed, the latter can
be proved using both the path and homotopy lifting properties of covering
maps (see the proof of Proposition 3.7.10). Hence [α] ∈ p∗(π1(E, e0)R) if
and only if [α] ∈ L.

Note that if B is an LD-group (see Definition 3.4.5), then it is possible to
define a group operation in the covering space E. Using the notation of the
proof of Fact 3.4.13, given α, β ∈ P, we define α#β# := (αβ)#. Note that
with this group operation E becomes an LD-group. This was also proved
in [19] for the particular case of the universal covering map of a definable
group for o-minimal expansions of ordered groups.

3.5 Homology of locally definable spaces

We fix for the rest of this section an LD-space M . We consider the abelian
group Sk(M)R freely generated by the singular locally definable simplices
σ : ∆k → M , where ∆k is the standard k-dimensional simplex in R. Note
that since σ is locally definable and ∆k is definable, the image σ(∆k) is
a definable subspace of M . As we will see, this fact allows us to use the
o-minimal homology developed by A. Woerheide in [38] (see also Section
1.6 for an alternative development of simplicial o-minimal homology). The
boundary operator δ : Sk+1(M)R → Sk(M)R is defined as in the classical
case, making S∗(M)R =

⊕
k Sk(M)R into a chain complex. We similarly

define the chain complex of a pair of locally definable spaces. The graded
group H∗(M)R =

⊕
kHk(M)R is defined as the homology of the complex

S∗(M)R. Locally definable maps induce in a natural way homomorphisms in
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homology. Similarly for relative homology. Note that if M is just a definable
set then we obtain the usual o-minimal homology groups (see e.g. [20]).

It remains to check that the functor we have just defined satisfies the
locally definable version of the Eilenberg-Steenrod axioms. We shall check
them making use of the corresponding axioms for definable sets through an
adaptation of a classical result in homology that (roughly) states that the
homology commutes with direct limits. Note that each definable subspace
Y ⊂ M is a definable regular space and hence affine (see Remark 3.2.8).
Therefore, the o-minimal homology groups of Y as definable set are the
ones we have just defined as (locally) definable space. Denote by DM the
set

{Y ⊂M : Y definable subspace}.

Note that M can be written as the directed union M =
⋃
Y ∈DM Y . Now,

consider the direct limit

lim−→Y ∈DM
Hn(Y )R =

⋃
· Y ∈DMHn(Y )R/ ∼,

where c1 ∼ c2 for c1 ∈ Hn(Y1)R and c2 ∈ Hn(Y2)R, Y1, Y2 ∈ DM , if and only
if there is Y3 ∈ DM with Y1, Y2 ⊂ Y3 such that (i1)∗(c1) = (i2)∗(c2) for (i1)∗ :
Hn(Y1)R → Hn(Y3)R and (i2)∗ : Hn(Y2)R → Hn(Y3)R the homomorphisms
in homology induced by the inclusions. On the other hand, we have a well-
defined homomorphism (iY )∗ : Hn(Y )R → Hn(M)R for each Y ∈ DM ,
where iY : Y → M is the inclusion. Hence, there exists a well-defined
homomorphism

ψ : lim−→Y ∈DM
Hn(Y )R → Hn(M)R,

where ψ(c) = (iY )∗(c) for c ∈ Hn(Y )R. In a similar way, given an admissible
subspace A of M , we have a well-defined homomorphism

ψ̃ : lim−→Y ∈DM
Hn(Y,A ∩ Y )R → Hn(M,A)R,

where ψ̃(c) = i∗(c) for c ∈ Hn(Y,A ∩ Y )R and i : (Y, Y ∩ A) → (M,A) the
inclusion map.

Theorem 3.5.1. (i) ψ : lim−→Y ∈DM
Hn(Y )R → Hn(M)R is an isomorphism.

(ii) Let A be an admissible subspace of M . Then ψ̃ : lim−→Y ∈DM
Hn(Y,A ∩

Y )R → Hn(M,A)R is an isomorphism.

Proof. (i) Firstly, we show that ψ is surjective. Let c ∈ Hn(M)R and α
be a finite sum of singular ld-simplices of M which represents c. Consider
the definable subspace X of M which is the union of the images of the
singular ld-simplices in α. Then [α] ∈ Hn(X)R and therefore it suffices to
consider [α] ∈ lim−→Y ∈DM

Hn(Y )R because ψ([α]) = c. Now, let us show that
ψ is injective. Let c ∈ lim−→Y ∈DM

Hn(Y )R, c ∈ Hn(X)R, X ∈ DM , such that
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ψ(c) = 0. Since ψ(c) = 0, there is a finite sum β of singular ld-simplices of
M such that δβ = α. Consider the definable subspace Z of M which is the
union of X and the images of the singular ld-simplices in β. Then we have
that [α] = 0 in Hn(Z)R and therefore c = 0 in lim−→Y ∈DM

Hn(Y )R. The proof
of (ii) is similar.

Remark 3.5.2. Let M be an LD-space and D a collection of definable
subspaces of M such that for every Y ∈ DM there is X ∈ D with Y ⊂ X.
Then Theorem 3.5.1 remains true if we replace DM by D.

Now, with the above result, we verify the Eilenberg-Steenrod axioms.

Proposition 3.5.3 (Homotopy axiom). Let M and N be LD-spaces and let
A and B be admissible subspaces of M and N respectively. If f : (M,A)→
(N,B) and g : (M,A)→ (N,B) are ld-homotopic ld-maps then f∗ = g∗.

Proof. Let [α] ∈ Hn(M,A)R. Consider the definable subspaceX ofM which
is the union of the images of the singular ld-simplices in α. By Theorem 3.5.1
and the homotopy axiom for definable sets, it is enough to prove that there is
a definable subspace Z ofN such that f(X), g(X) ⊂ Z and that the definable
maps f |X : (X,A∩X)→ (Z,B ∩Z) and g|X : (X,A∩X)→ (Z,B ∩Z) are
definably homotopic. Let F : (M × I, A × I) → (N,B) be a ld-homotopy
from f to g. Then, it suffices to take Z as the definable subspace F (X × I)
of N and the definable homotopy F |X×I : (X × I, A ∩X × I)→ (Z,B ∩Z)
from f |X to g|X .

Proposition 3.5.4 (Exactness axiom). Let A be an admissible subspace of
M and let i : (A, ∅) → (M, ∅) and j : (M, ∅) → (M,A) be the inclusions.
Then the following sequence is exact

· · · → Hn(A)R i∗→ Hn(M)R
j∗→ Hn(M,A)R ∂→ Hn−1(A)R → · · · ,

where ∂ : Hn(M,A)R → Hn−1(A)R is the natural boundary map, i.e, ∂[α]
is the class of the cycle ∂α in Hn−1(A)R.

Proof. It is easy to check that for every Y ∈ DM the following diagram
commutes

· · ·Hn(A ∩ Y )
(i

Y
)∗ //

��

Hn(Y )
(j

Y
)∗//

��

Hn(Y,A ∩ Y )
∂ //

��

Hn−1(A ∩ Y )
(i

Y
)∗ //

��

Hn−1(Y ) · · ·

��
· · ·Hn(A)

i∗ // Hn(M)
j∗ // Hn(M,A)

∂ // Hn−1(A)
i∗ // Hn−1(M) · · ·

where iY : (A∩Y, ∅)→ (Y, ∅) and jY : (Y, ∅)→ (Y,A∩Y ) are the inclusions
(and the superscript R has been omitted). By the o-minimal exactness
axiom the first sequence is exact for every Y ∈ DM . Hence, if we take
the direct limit, the sequence remains exact. The result then follows from
Theorem 3.5.1.
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Proposition 3.5.5 (Excision axiom). Let M be an LD-space and let A be
an admissible subspace of X. Let U be an admissible open subspace of M
such that U ⊂ int(A). Then the inclusion j : (M − U,A − U) → (M,A)
induces an isomorphism j∗ : Hn(M − U,A− U)R → Hn(M,A)R.

Proof. By Theorem 3.5.1.(ii), it is enough to prove that for each definable
subspace Y of M the inclusion jY : (Y − UY , AY − UY ) → (Y,AY ) induces
an isomorphism in homology, where UY = U ∩Y and AY = A∩Y . So let Y
be a definable subspace of M . Since M is regular then we can regard Y as a
definable set. Now, clY (UY ) ⊂ U ∩ Y ∩Y ⊂ U∩Y ⊂ int(A)∩Y ⊂ intY (AY ).
Finally, by the o-minimal excision axiom, jY induces an isomorphism in
homology.

The proof of the dimension axiom is trivial.

Proposition 3.5.6 (Dimension axiom). If M is a one point set, then
Hn(M)R = 0 for all n > 0.

Once we have a well-defined homology functor in the locally definable
category, we now see that this functor has a good behavior with respect to
model theoretic operators. The following result will be used in Section 3.7
in the proof of the Hurewicz theorems for LD-spaces.

Theorem 3.5.7. The homology groups of LD-spaces are invariant under
elementary extension and o-minimal expansions.

Proof. We prove the invariance by o-minimal expansions. So let R′ be an
o-minimal expansion of R and let M be an LD-space in R. Denote by
DM the collection of all definable subspaces of M . Recall that since M
is regular each Y ∈ DM can be regarded as an affine definable space (see
Remark 3.2.8). Now, since the o-minimal homology groups are invariant
under o-minimal expansions (see [7, Prop.3.2]), for each Y ∈ DM there is a
natural isomorphism FY : Hn(Y )R → Hn(Y )R

′
. Hence, there exist a natu-

ral isomorphism F : lim−→Y ∈DM
Hn(Y )R → lim−→Y ∈DM

Hn(Y )R
′
. On the other

hand, by Theorem 3.5.1 and Remark 3.5.2 we have natural isomorphisms
ψ1 : lim−→Y ∈DM

Hn(Y )R → Hn(M)R and ψ2 : lim−→Y ∈DM
Hn(Y )R

′ → Hn(M)R
′
.

Finally, we consider the natural isomorphism ψ2 ◦ F ◦ ψ−1
1 : Hn(M)R →

Hn(M)R
′
. The proof of the invariance by elementary extensions is simi-

lar.

Notation 3.5.8. We will denote by θ the natural isomorphism given by The-
orem 3.5.7 between the semialgebraic and the o-minimal homology groups
of a regular and paracompact locally semialgebraic space. Note that if we
restrict θ above to the definable category then we obtain the natural iso-
morphism of [7, Prop.3.2].
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3.6 Connectedness

Recall that an ld-space M is connected if there is no admissible nonempty
proper clopen subspace U of M . We can also extend the natural concept of
“path connected” for definable spaces to the locally definable ones. Specifi-
cally, we say that an admissible subspace X of an ld-space M is path con-
nected if for every x0, x1 ∈ X there is an ld-path α : [0, 1] → X such that
α(0) = x0 and α(1) = x1. Naturally, the (path) connected components
of an ld-space are the maximal (path) connected subsets.

Fact 3.6.1. [13, Prop. I.3.18] Every path connected component of an ld-
space is a clopen admissible subspace.

Proof. Let M be an ld-space and let C be a path connected component of
M . Let (Mi, φi)i∈I be an atlas of M . It suffices to show that φi(C ∩Mi) is a
clopen definable subset of φi(Mi). The latter is obvious because φi(C ∩Mi)
is the (finite) union of some definably path-connected components of φi(Mi),
which are clopen definable subsets of φi(Mi) (see [15, Ch.3,Prop.2.18] and
[15, Ch.6,Prop.3.2]).

From the above fact we deduce that the connected and path-connected
components of an ld-space are admissible subspaces and coincide. In partic-
ular, every connected ld-space is path connected (the converse is trivial).

Remark 3.6.2. Let M be an ld-space. Then M is connected if and only
if every ld-map from M to a discrete ld-space is constant. Indeed, suppose
M is connected and let f : M → N be an ld-map, where N is a discrete
ld-space. Since N is discrete, {y} is a clopen definable subspace of N for
all y ∈ N . Therefore the admissible subspace f−1(y) of M is clopen for all
y ∈ N . Hence, since M is connected, M = f−1(y0) for some y0 ∈ N . To
prove the right-to-left implication, suppose that M is not connected. Then
there are two proper clopen admissible subspaces U0 and U1 of M such that
U0 ∩ U1 = ∅ and U0 ∪ U1 = M . Finally, it suffices to consider the ld-map
f : M → {0, 1} such that f(x) = i for all x ∈ Ui.

Since
∨

-definable groups were first considered several non equivalent
notions of connectedness have been used. As we will see here some of them
are not really adequate and lead to pathological examples. Fix a

∨
-definable

group G =
⋃
i∈I Xi ⊂ Rn over A, A ⊂ R, |A| < ℵ1, in an ℵ1-saturated

o-minimal expansion R of a real closed field R. Here, we say that G is
connected if it is so as ld-group (see Theorem 3.4.9). In [31], G is said to
be M-connected (PS-connected, for us) if there is no definable set U in Rn

such that U∩G is a nonempty proper clopen subset with the group topology
of G. In [17], G is said to be connected (E-connected, for us) if there is no
definable set U ⊂ G such that U is a nonempty proper clopen subset with
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the group topology of G. Finally, in [27], G is said to be connected (OP-
connected, for us) if all the Xi can be chosen to be definably connected with
respect to the definable subspace structure it inherits from G as ld-group.
Notice that in [27] the situation is simpler because G is a subgroup of a
definable group and hence embedded in some Rn, so each Xi is connected
with respect to the ambient Rn (see Section 3.4.1).

For
∨

-definable groups the relation of the above notions is as follows:

OP-connected ⇔ Connected ⇒ PS-connected ⇒ E-connected.

The second and third implications are clear by definition. Furthermore, the
following examples show that these implications are strict.

Example 3.6.3. Let R be a non archimedean real closed field. Consider
the definable set B = {(t,−t) ∈ R2 : t ∈ [0, 1]} ∪{(t, t−2) ∈ R2 : t ∈ [1, 2]}.
For each n ∈ N, consider the definable set Xn = (

⋃n
i=−n(2i, 0) + B) ∪

(
⋃n
i=−n(2i,−1

2) + B) ⊂ R2. Define a group operation on G =
⋃
n∈NXn

via the natural bijection of G with Fin(R)×Z/2Z, where Fin(R)= {x ∈ R :
|x| < n for some n ∈ N}. Then, G with this group operation is a

∨
-definable

group.

Note that the topology of G inherited from R2 coincides with its group
topology. G is not connected as an ld-space because it has two connected
components. However, G is PS-connected because any definable subset of R2

which contains one of these connected components must have a nonempty
intersection with the other component.

Example 3.6.4. [2] Let R be a non archimedean real closed field and con-
sider the definable sets Xn = (−n,− 1

n) ∪ ( 1
n , n) for n ∈ N, n > 1. Then,

G =
⋃
n>1Xn is a

∨
-definable group with the multiplicative operation of R.

Here, again, the topology G inherits from R2 coincides with its group
topology. The

∨
-definable group G is not PS-connected since it is the dis-

joint union of the clopen subsets {x ∈ R : x > 0}∩G and {x ∈ R : x < 0}∩G.
But neither of these subsets is definable and therefore G is E-connected.

Note that in both examples we can define in an obvious way an ld-map
f : G→ {0, 1} which is not constant and therefore Remark 3.6.2 is not true
if we replace connectedness by PS-connectedness or E-connectedness.

Even though there are pathological examples, the results in [31] are
correct for PS-connectedness. For the results in [17], one should substitute
E-connectedness by connectedness (see [2]).

We now prove the equivalence between OP-connectedness and connect-
edness.

Proposition 3.6.5. Let G be a
∨

-definable group over A. Then, G is
OP-connected if and only if G is connected.
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Proof. Firstly, recall that by Theorem 3.4.9 a subset of G is a definable
subspace if and only if it is a definable subset of Rn. Let G be an OP-
connected

∨
-definable group, i.e, such that G =

⋃
i∈I Xi with Xi definably

connected for all i ∈ I. Consider a nonempty admissible clopen subspace
U of G. Since U is not empty and each Xi is definably connected, there
is i0 ∈ I such that Xi0 ⊂ U . Now, for every i ∈ I there is j ∈ I with
Xi0 ∪Xi ⊂ Xj . Since Xj is definably connected and ∅ 6= Xi0 ⊂ Xj ∩ U we
have that Xj ⊂ U and, in particular, Xi ⊂ U . So we have proved that for
every i ∈ I, Xi ⊂ U . Hence U = G, as required.

Now, let G be a connected
∨

-definable group over A. Let C be the col-
lection of all connected definable subspaces over A of G which are connected
and contain the unit element of G. It is enough to show that G =

⋃
X∈C X.

Note that we just consider the connected definable subspaces of G which
are definable over A because we need to preserve the parameter set. So
let x ∈ G. By Fact 3.6.1, G is also path connected and hence there is an
ld-curve α : I → G such that α(0) = x and α(1) = e. Since α(I) is definable
and G is an ld-group over A, a finite union of charts (which are definable
over A) contains α(I). Hence α(I) is contained in a definable over A subset
X of G. Taking the adequate connected component, we can assume that X
is connected. Hence x ∈ X ∈ C.

Corollary 3.6.6. A
∨

-definable group is OP-connected if and only if is
path-connected.

Proof. By Fact 3.6.1 and Proposition 3.6.5.

3.7 Homotopy theory in LD-spaces

Once we have defined the category of locally definable spaces, in the following
section we will develop a homotopy theory for LD-spaces, that is, regular and
paracompact locally definable spaces. This section is divided in Subsections
3.7.1, 3.7.2 and 3.7.3, which are the locally definable analogues of Sections
2.3, 2.4 and 2.5 respectively.

3.7.1 Homotopy sets of locally definable spaces

The homotopy sets in the locally definable category are defined as in the
definable one just substituting the definable maps by the locally definable
ones (see Section 2.3). Specifically, let (M,A) and (N,B) be two pairs
of LD-spaces, i.e., M and N are LD-spaces and A and B are admissible
subspaces of M and N respectively. Let C be a closed admissible subspace
of M and let h : C → N be an ld-map such that h(A∩C) ⊂ B. We say that
two ld-maps f, g : (M,A)→ (N,B) with f |C = g|C = h, are ld-homotopic
relative to h, denoted by f ∼h g, if there exists an ld-homotopy H :
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(M × I, A × I) → (N,B) such that H(x, 0) = f(x), H(x, 1) = g(x) for all
x ∈ M and H(x, t) = h(x) for all x ∈ C and t ∈ I. The homotopy set of
(M,A) and (N,B) relative to h is the set

[(M,A), (N,B)]Rh = {f : f : (M,A)→ (N,B) ld-map in R, f |C = h}/ ∼h .

If C = ∅ we omit all references to h.
The next theorem is the main result of this section and it establishes a

strong relation between the locally definable and the locally semialgebraic
homotopy. It is the locally definable analogue of Corollary 2.3.4 for pairs of
LD-spaces. Recall the behavior of the ld-spaces under o-minimal expansions
in Proposition 3.2.15.

Theorem 3.7.1. Let (M,A) and (N,B) be two pairs of regular paracom-
pact locally semialgebraic spaces. Let C be a closed admissible semialge-
braic subspace of M and h : C → N a locally semialgebraic map such that
h(A ∩ C) ⊂ B. Suppose A is closed in M . Then, the map

ρ : [(M,A), (N,B)]R0
h → [(M,A), (N,B)]Rh
[f ] 7→ [f ],

which sends the locally semialgebraic homotopic class of a locally semialge-
braic map to its locally definable homotopic class, is a bijection.

An important tool for the proof of the above theorem (and in general, for
the study of homotopy properties of LD-spaces) is the following homotopy
extension lemma. Even though the proof for locally semialgebraic spaces
(see [13, Cor.III.1.4]) can be adapted to the locally definable setting, we
have included here an alternative proof which, in particular, does not make
use of the Triangulation Theorem of LD-spaces (see Fact 3.2.12).

Lemma 3.7.2 (Homotopy extension lemma). Let M,N be two LD-
spaces and let A be a closed admissible subspace of M . Let f : M → N
be an ld-map and H : A × I → N a ld-homotopy such that H(x, 0) = f(x)
for all x ∈ A. Then, there exists a ld-homotopy G : M × I → N such that
G(x, 0) = f(x) for all x ∈M and G|A×I = H.

Proof. Without loss of generality, we can assume that M is connected and
hence, by Fact 3.2.11.(2), that M is Lindelöf. Let (Mk, φk)k∈N be an atlas
of M . Consider Xn :=

⋃n
k=0Mk for each n ∈ N. By Fact 3.2.11.(1) each Xn

is a closed definable subspace of M and hence {Xn : n ∈ N} is an admissible
covering by closed definable subspaces such that Xn ⊂ Xn+1 for all n ∈ N.
Take the restrictions fn := f |Xn and Hn := H|An×I , where An is the closed
definable subspace A∩Xn. Moreover, since M is regular, we can regard each
Xn as an affine definable space (see Remark 3.2.8). Now, by the o-minimal
homotopy extension lemma 2.2.1 and applying an induction process, we
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can find a collection of definable homotopies Gn : Xn × I → N such that
Gn(x, 0) = fn(x) for all x ∈ Xn, Gn|Xn−1×I = Gn−1 and Gn|An×I = Hn.
Finally, we define the map G : M×I → N such that G|Xn×I = Gn for every
n ∈ N. By Fact 3.8.4, the map G is locally definable and, by definition,
G|A×I = H and G(x, 0) = f(x) for all x ∈M .

Proof of Theorem 3.7.1. With the above tools at hand we can follow the
lines of the proof of [13, Thm. III.4.2]. Here are the details. As in the defin-
able case, it suffices to prove that ρ is surjective when A = B = ∅. Indeed,
we can do here similar reductions than the ones we followed in Fact 2.3.3
just applying the homotopy extension lemma 3.7.2 for LD-spaces instead of
its definable version. Now, we divide the proof in two cases.
Case M is a semialgebraic space: Since M is regular, we can assume that
it is affine (see Remark 3.2.8). Let f : M → N be an ld-map such that
f |C = h. Since M is semialgebraic, f(M) is a definable subspace of the
locally semialgebraic space N and therefore it is contained in the union of
a finite number of semialgebraic charts. Hence, there is a semialgebraic
subspace N ′ of N such that f(M) ⊂ N ′. Now, since N is regular, we can
regard N ′ also as an affine definable space and therefore we can see the map
f : M → N ′ as a definable map between semialgebraic sets (see comments
after Definition 3.2.4). By Corollary 2.3.4, there exist a definable homotopy
H ′ : M × I → N ′ such that H ′(x, 0) = f(x) for all x ∈ M , H ′(x, t) = h(x)
for all x ∈ C and t ∈ I and H ′(−, 1) : M → N ′ is semialgebraic. Hence, it
suffices to consider the definable homotopy H = i ◦H ′ where i : N ′ → N is
the inclusion, to get ρ([H(−, 1)]) = [f ].
General Case: Let f : M → N be an ld-map such that f |C = h. We
have to show that f is ld-homotopic relative to h to a locally semialge-
braic map. Without loss of generality, we can assume that M is connected
and hence, by Fact 3.2.11.(2), that M is Lindelöf. Furthermore, by the
shrinking of covering property (see Fact 3.8.6) there is a locally finite cov-
ering {Xn : n ∈ N} of M by closed semialgebraic subspaces. Consider the
closed semialgebraic subspace Yn := X0∪ · · ·∪Xn and the closed admissible
subspace Cn := Yn∪C for each n ∈ N. By the previous case, there exist a de-
finable homotopy H̃0 : Y0× I → N such that H̃0(x, 0) = f(x) for all x ∈ Y0,
H̃0(−, 1) : Y0 → N is a locally semialgebraic map and H̃0(x, t) = h(x) for all
x ∈ C∩Y0 and t ∈ I. Moreover, by Lemma 3.7.2, there exist an ld-homotopy
H0 : M × I → N with H0(x, 0) = f(x) for all x ∈M , H0(x, t) = h(x) for all
x ∈ C and t ∈ I and such that H0|Y0×I = H̃0. In particular, g0 := H0|C0×{1}
is a locally semialgebraic map with g0|C = h. Now, by iteration we obtain
a sequence of ld-homotopies {Hn : M × I → N : n ∈ N} such that

(i) gn := Hn|Cn×{1} is a locally semialgebraic map,
(ii) Hn+1(x, t) = gn(x) for all (x, t) ∈ Cn × I (so gn+1|Cn = gn), and
(iii) Hn+1|M×{0} = Hn|M×{1}.
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Note that in particular Hn(x, t) = g0(x) = h(x) for all (x, t) ∈ C × I and
n ∈ N. By Fact 3.8.4, the map g : M → N such that g|Cn = gn for n ∈ N,
is a locally semialgebraic map. Let us show that f is ld-homotopic to g
relative to h. The idea is to glue all the homotopies Hn in a correct way.
Let tn := 1 − 2−n for each n ∈ N. Consider the map G : M × I → N such
that (a) G(x, t) = Hn(x, t−tn

tn+1−tn ) for all x ∈ M and t ∈ [tn, tn+1] and (b)
G(x, t) = g(x) otherwise. By construction it is clear that G(x, t) = h(x)
for all (x, t) ∈ C × I. It remains to check that G is indeed an ld-map. By
Fact 3.8.4, it suffices to show that the restriction G|Yn×I is definable for
each n ∈ N. So fix n ∈ N. By definition, G|Yn×[0,tn] is clearly definable.
On the other hand, take (x, t) ∈ Yn × [tn, 1]. If t > tm for every m ∈ N,
then G(x, t) = g(x) by definition. If t ∈ [tm, tm+1] for some m ≥ n, then
G(x, t) = Hm(x, t) = gn(x) = g(x). Therefore G|Yn×[tn,1] = g|Yn , which is
also a definable map. Hence G|Yn×I is definable, as required.

The following corollary is the analogue (and it can be proved adapting
its proof) of Corollary 2.3.5 for LD-spaces. Recall the definition of the
realization of an LD-space in an elementary extension given before Fact
3.2.14.

Corollary 3.7.3. Let M and N be two pairs of regular paracompact lo-
cally semialgebraic spaces defined without parameters. Then, there exist a
bijection

ρ : [M(R), N(R)]→ [M,N ]R,

where [M(R), N(R)] denotes the classical homotopy set. Moreover, if the
real closed field R is a field extension of R, then the result remains true
allowing parameters from R.

Note that both Theorem 3.7.1 and Corollary 3.7.3 remain true for sys-
tems of LD-spaces (see Corollary 2.3.4). Thanks to the Triangulation The-
orem for LD-spaces (see Fact 3.2.12), we have also the following corollary
(see the proof of Corollary 2.3.7, noting that the finiteness of the simplicial
complexes plays an irrelevant role).

Corollary 3.7.4. Let M and N be LD-spaces defined without parameters.
Then, any ld-map f : M → N is ld-homotopic to an ld-map g : M → N
defined without parameters. If moreover M and N are locally semialgebraic
spaces then g can also be taken locally semialgebraic.

3.7.2 Homotopy groups of locally definable spaces

The homotopy groups in the locally definable category are defined as in
the definable setting using ld-maps instead of the definable ones (see Sec-
tion 2.4). Specifically, given a pointed LD-space (M,x0), i.e., M is an
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LD-space and x0 ∈ M , we define the n-homotopy group as the homo-
topy set πn(M,x0)R := [(In, ∂In), (M,x0)]R. We define π0(M,x0) as the
collection of all connected components of M (which coincide with the col-
lection of the path connected ones by Fact 3.6.1). We say that (M,A, x0)
is a pointed pair of LD-spaces if M is an LD-space, A is an admissible
subspace of M and x0 ∈ A. The relative n-homotopy group, n ≥ 1, of a
pointed pair (M,A, x0) of LD-spaces is the homotopy set πn(X,A, x0)R =
[(In, In−1, Jn−1), (X,A, x0)]R, where In−1 = {(t1, . . . , tn) ∈ In : tn = 0}
and Jn−1 = ∂In \ In−1.

As in the definable case, we can see that the homotopy groups πn(M,x0)R

and πm(M,A, x0)R are indeed groups for n ≥ 1 and m ≥ 2, the group opera-
tion is defined via the usual concatenation of maps. Moreover, these groups
are abelian for n ≥ 2 and m ≥ 3. Also, given an ld-map between pointed
LD-spaces (or pointed pairs of LD-spaces), we define the induced map in
homotopy, as usual, by composing. The latter will be a group homomor-
phism in the case we have a group structure. It is easy to check that with
these definitions of homotopy group and induced map, both the absolute
and relative homotopy groups πn(−) are covariant functors.

The following three results (and their relative versions) can be deduced
from Theorem 3.7.1 (see the proofs of Theorem 2.4.1, Corollary 2.4.3 and
Corollary 2.4.4 respectively).

Corollary 3.7.5. Let (M,x0) be a regular and paracompact locally semi-
algebraic pointed space. Then, the map ρ : πn(M,x0)R0 → πn(M,x0)R :
[f ] 7→ [f ], is a natural isomorphism for every n ≥ 1.

Corollary 3.7.6. Let (M,x0) be a regular paracompact locally semialge-
braic pointed space defined without parameters. Then, there exists a natural
isomorphism between the classical homotopy group πn(M(R), x0) and the
homotopy group πn(M(R), x0)R for every n ≥ 1.

Corollary 3.7.7. The homotopy groups are invariants under elementary
extensions and o-minimal expansions.

All the results showed in Properties 2.4.6 remain true in the locally de-
finable setting. We recall here briefly these results.

(1) The homotopy property: If two ld-maps are ld-homotopic then they in-
duce the same homomorphism between the homotopy groups.

(2) The exactness property: Given a pointed pair (M,A, x0) of LD-spaces,
the following sequence is exact,

· · · → πn(A, x0) i∗→ πn(M,x0)
j∗→ πn(M,A, x0) ∂→ πn−1(A, x0)→ · · · → π0(A, x0),

where ∂ is the usual boundary map ∂ : πn(M,A, x0)R → πn−1(A, x0)R :
[f ] 7→ [f |In−1 ] and i : (A, x0)→ (M,x0) and j : (M,x0, x0)→ (M,A, x0) are
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the inclusions (and the superscript R has been omitted).

(3) The action of π1 on πn: Given a pointed LD-space (M,x0), there
is an action β : π1(M,x0)R × πn(M,x0)R → πn(M,x0)R. In a simi-
lar way, given a pointed pair (M,A, x0) of LD-spaces, there is an action
β : π1(A, x0)R × πn(M,A, x0)R → πn(M,A, x0)R. In the absolute (rela-
tive) case, we will denote by β[u] the isomorphism β([u],−) : πn(M,x0)R →
πn(M,x0)R (resp. β([u],−) : πn(M,A, x0)R → πn(M,A, x0)R) for each
[u] ∈ π1(X,x0)R (resp. [u] ∈ π1(A, x0)R).

The homotopy property is clear by definition. The exactness property
can be proved with a straightforward adaptation of the proof of the classical
one. Alternatively, we can also transfer the classical exactness property
using the Triangulation Theorem 3.2.12 and Corollary 3.7.6. Finally, the
existence of the action of π1 on πn is just an application of the homotopy
extension lemma (see Lemma 3.7.2 and Properties 2.4.6.(3)). Furthermore,
the following technical lemma is easy to prove (see the proof of Lemma
2.4.7).

Lemma 3.7.8. Let (M,x0) and (N, y0) two pointed LD-spaces. Let ψ :
(M,x0) → (N, y0) be an ld-map and let [u] ∈ π1(M,x0)R. Then, for all
[f ] ∈ πn(M,x0)R, ψ∗(β[u]([f ])) = βψ∗([u])(ψ∗([f ])).

(4) The fibration property: The only part of Properties 2.4.6 which has not
an obvious extension to LD-spaces is the one concerning fibrations. Natu-
rally, we say that an ld-map p : E → B between LD-spaces is a (Serre)
fibration if it has the homotopy lifting property for each (resp. closed and
bounded) definable sets. As in Remark 2.4.8, the homotopy lifting property
for closed simplices implies the homotopy lifting property for pairs of closed
and bounded definable sets. Note that the restriction of a (Serre) fibration
to the preimage of a definable subspace is not necessarily a definable (resp.
Serre) fibration. Hence, we cannot deduce directly the fibration property
for LD-spaces from the definable one (see Theorem 2.4.9). However, the
fibration property for LD-spaces can be proved just adapting the definable
proof.

Theorem 3.7.9 (The fibration property). Let B and E be LD-spaces
and let p : E → B be a Serre fibration. Then the induced map p∗ :
πn(E,F, e0)R → πn(B, b0)R is a bijection for n = 1 and an isomorphism
for all n ≥ 2, where e0 ∈ F = p−1(b0).

As in the definable setting, the main examples of fibrations are the cover-
ing maps (see Proposition 2.4.10). Given two ld-spaces E and B, a covering
map p : E → B is a surjective ld-map p such that there is an admissible
covering {Ui : i ∈ I} of B by open definable subspaces and for each i ∈ I
and each connected component V of p−1(Ui), the restriction p|V : V → Ui
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is a locally definable homeomorphism (so in particular both V and p|V are
definable).

Proposition 3.7.10. Let B and E be LD-spaces. Then, every covering map
p : E → B is a fibration.

Proof. Firstly, note that coverings satisfy the unicity of liftings as in the
definable case (see [20, Lem.2.5]). Indeed, given a connected LD-space Z
and two ld-maps f̃1, f̃2 : Z → E with p◦f̃1 = p◦f̃2 and f̃1(z) = f̃2(z) for some
z ∈ Z, we have that f̃1 = f̃2. This is so because both {z ∈ Z : f̃1(z) = f̃2(z)}
and {z ∈ Z : f̃1(z) 6= f̃2(z)} are clopen admissible subspaces of Z. The path
lifting and the homotopy lifting properties also remain true for p (see the
definable case in [20, Prop.2.6] and [20, Prop.2.7]). To see this for the path
lifting property take an admissible covering {Uj : j ∈ J} of B as in the
definition of covering map. Let γ : I → B be an ld-curve. Since γ(I) is
a definable subspace of B, we have that γ(I) ⊂

⋃
j∈J0

Uj for some finite
subset J0 of J . Now, by the shrinking covering property of definable sets,
there are 0 = s0 < s1 < · · · < sr = 1 such that for each i = 0, . . . , r − 1 we
have γ([si, si+1]) ⊂ Uj(i) and γ(si+1) ∈ Uj(i) ∩Uj(i+1). Hence, by the unicity
of liftings, it suffices to lift each γ|[si,si+1] step by step using the definable
homeomorphism p|Vj(i) : Vj(i) → Uj(i) for the suitable connected component
Vj(i) of p−1(Uj(i)). The proof of the homotopy lifting property is similar.

Finally, the above properties and the fact that the images of definable
sets by ld-maps are definable subspaces, give us the homotopy lifting prop-
erty for definable sets as in Proposition 2.4.10.

Corollary 3.7.11. Let B and E be LD-spaces. Let p : E → B be a covering
and let p(e0) = b0. Then, p∗ : πn(E, e0)R → πn(B, b0)R is an isomorphism
for every n > 1 and injective for n = 1.

Proof. Since p is a covering, p−1(b0) is discrete. Hence πn(p−1(b0), e0) = 0
for every n ≥ 1. Then, the result follows from Proposition 3.7.10 and both
the exactness and the fibration properties.

3.7.3 The Hurewicz and Whitehead theorems for locally de-
finable spaces

We define the Hurewicz homomorphism in a similar same way as in the defin-
able case but using the homology groups developed in Section 3.5. We fix a
generator zR0

n of Hn(In, ∂In)R0 (recall that Hn(In, ∂In)R0 ∼= Z). Let zRn :=
θ(zR0

n ), where θ is the natural transformation of Notation 3.5.8 between the
(locally) semialgebraic and the (locally) definable homology groups. Given
a pointed LD-space (M,x0), the Hurewicz homomorphism, for n ≥ 1,
is the map hn,R : πn(M,x0)R → Hn(M)R : [f ] 7→ hn,R([f ]) = f∗(zRn ),
where f∗ : Hn(In, ∂I)R → Hn(M)R denotes the map in singular homology
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induced by f . Note that it follows from the homotopy axiom of singular
homology that hn,R is well-defined (see Proposition 3.5.3). We define the
relative Hurewicz homomorphism adapting in the obvious way what was
done in the absolute case. It is easy to check that hn,R is a natural trans-
formation between the functors πn(−)R and Hn(−)R. The following result
can be easily deduced from the naturality of the isomorphisms ρ and θ in-
troduced in Corollary 3.7.5 and Notation 3.5.8 respectively (see the proof of
Proposition 2.5.1).

Proposition 3.7.12. Let (M,x0) be a pointed regular paracompact locally
semialgebraic space. Then, the following diagram commutes

πn(M,x0)R0
hn,R0 //

ρ

��

Hn(M)R0

θ
��

πn(M,x0)R
hn,R

// Hn(M)R

for all n ≥ 1.

Now, the proofs in the definable setting of the Hurewicz and the White-
head theorems (see Theorems 2.5.3 and 2.5.7) apply for LD-spaces just using
(i) the locally definable category instead of the definable one, (ii) the respec-
tive isomorphisms ρ and θ of Theorem 3.7.1 and Notation 3.5.8 instead of the
definable ones and (iii) the Triangulation Theorem for LD-spaces (see Fact
3.2.12). Note that in the proofs of the definable versions of the Hurewicz
and Whitehead theorems, the finiteness of the simplicial complexes plays an
irrelevant role. Specifically, we have the following results (recall the action
β of π1 on πn defined after Corollary 3.7.7).

Theorem 3.7.13 (Hurewicz theorems). Let (M,x0) be a pointed LD-
space and n ≥ 1. Suppose that πr(M,x0)R = 0 for every 0 ≤ r ≤ n − 1.
Then, the Hurewicz homomorphism

hn,R : πn(M,x0)R → Hn(M)R

is surjective and its kernel is the subgroup generated by {β[u]([f ])[f ]−1 : [u] ∈
π1(M,x0)R, [f ] ∈ πn(M,x0)R}. In particular, hn,R is an isomorphism for
n ≥ 2.

Theorem 3.7.14 (Whitehead theorem). Let M and N be two LD-spaces.
Let ψ : M → N be an ld-map such that for some x0 ∈M , ψ∗ : πn(M,x0)R →
πn(N,ψ(x0))R is an isomorphism for all n ≥ 1. Then, ψ is an ld-homotopy
equivalence.

Corollary 3.7.15. Let M be an LD-space and let x0 ∈M . If πn(M,x0)R =
0 for all n ≥ 0 then M is ld-contractible.
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3.8 Appendix

We show now those results needed in the proof of Fact 3.3.2.

Fact 3.8.1. Let M be an ld-space and let {Ci : i ∈ I} be a locally finite
family of closed definable subspaces of M . Then the admissible subspace
C =

⋃
i∈I Ci is closed in M .

Proof. It suffices to prove that for every open definable subspace U of M ,
U ∩ C = U ∩ C. Let U be an open definable subspace of M . Since {Ci}i∈I
is locally finite, U ∩C = U ∩ (Ci1 ∪ · · · ∪Cik) for some i1, . . . , ik ∈ I. Hence
U ∩C = U ∩U ∩ C = U ∩ (Ci1 ∪ · · · ∪Cik) = U ∩ (Ci1 ∪ · · · ∪Cik) = U ∩C,
as required.

Fact 3.8.2. [13, Lem.II.1.1,II.1.2] Let M be an ld-space and let {Ci : i ∈
I} be a locally finite family of closed definable subspaces of M with M =⋃
i∈I Ci. Then,

(i) a subset U of M is an open admissible subspace of M if and only if U∩Ci
is an open definable subspace of Ci for all i ∈ I,
(ii) M is paracompact, and
(iii) if Ci is regular for all i ∈ I, M is also regular.

Proof. (i) Let U ⊂ M such that U ∩ Ci is an open definable subspace of
Ci for all i ∈ I. Then Ci \ U is a closed definable subspace of Ci for all
i ∈ I. Since the family {Ci}i∈I is locally finite, {Ci \U}i∈I is a locally finite
family of closed definable subspaces of M . It follows from Fact 3.8.1 that
M \ U =

⋃
i∈I(Ci \ U) is a closed admissible subspace of M and hence U is

an open admissible subspace of M .
(ii) We consider the finite subset of indexes Γ(i) = {j ∈ I : Ci ∩ Cj 6= ∅}
and the admissible subspace Ui := M \

⋃
j /∈Γ(i)Cj for each i ∈ I. By Fact

3.8.1, Ui is open. Moreover, since Ui ⊂
⋃
j∈Γ(i)Cj , Ui is actually a definable

subspace of M . If j /∈ Γ(i) then Ui ∩Cj = ∅. Hence, since {Ci}i∈I is locally
finite and Ci ⊂ Ui for all i ∈ I, we have that {Ui}i∈I is a locally finite cover
of M by open definable subspaces.
(iii) Firstly, note that since Ci is closed, the closure respect to Ci equals the
one respect to M . Let x ∈ M and let B be a closed admissible subspace
of M with x /∈ B. Since {Ci : i ∈ I} is locally finite, the subset of indexes
I(x) := {i ∈ I : x ∈ Ci} is finite. Moreover, by Lemma 3.8.1, the set
Ax :=

⋃
i∈I\I(x)Ci is a closed admissible subset of M . Replacing B by

B ∪ Ax if necessary, we can assume that Ax ⊂ B. For each i ∈ I(x),
since Ci is regular, there is an open definable subspace Ui of Ci such that
x ∈ Ui and Ui ∩ B = ∅. Since Ui is an open definable subspace of Ci,
there is an open definable subspace Vi of M such that Ci ∩ Vi = Ui for each
i ∈ I(x). Furthermore, we can assume that Vi ⊂ M \ B, otherwise it is
enough to consider the intersection of Vi and the open admissible subspace
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M \ B. Now, consider the open definable subspace V :=
⋂
i∈I(x) Vi of M

and the closed admissible subspace Z :=
⋃
i∈I(x) Ui of M . Clearly, x ∈ V

and B ⊂M \Z. On the other hand, since Ax ⊂ B and V ⊂M \B, we have
V ∩Ax = ∅ and hence

V = V ∩M =
⋃
i∈I

(V ∩Ci) =
⋃

i∈I(x)

(V ∩Ci) ⊂
⋃

i∈I(x)

(Vi ∩Ci) =
⋃

i∈I(x)

Ui ⊂ Z.

Therefore, x and B are separated by V and the open admissible subspace
M \ Z.

Fact 3.8.3. [13, Lem.I.2.2] Let M be a set and let {Mi : i ∈ I} be a directed
system of subsets of M such that M =

⋃
i∈IMi. Suppose that each Mi is

a regular definable space and that for all i, j ∈ I, i < j, Mi is an open
definable subspace of Mj whose definable space structure is equivalent to the
one inherited from Mj. Then there is an ld-space structure in M such that
Mi is an open definable subspace of M for all i ∈ I.

Proof. Let ψi : Mi → Ei be a chart of Mi for each i ∈ I. We show that
{(ψi, Ei)}i∈I is an atlas of M . It suffices to check that both ψi(Mi ∩Mj)
and ψj(Mi ∩Mj) are open definable subsets of Ei and Ej respectively and
the map ψi ◦ ψ−1

j |ψj(Mi∩Mj) is definable for all i, j ∈ I. Let k ∈ I such
that i, j < k. By hypothesis, ψk(Mi) and ψk(Mj) are open definable subsets
of Ek and ψk ◦ ψ−1

i and ψk ◦ ψ−1
j as well as their inverses are definable

maps. Hence, ψi(Mi ∩Mj) = (ψi ◦ ψ−1
k )(ψk(Mi) ∩ ψk(Mj)) and ψj(Mi ∩

Mj) = (ψj ◦ψ−1
k )(ψk(Mi)∩ψk(Mj)) are open definable subsets of Ei and Ej

respectively. Finally, ψj◦ψ−1
i |ψi(Mi∩Mj) = (ψk◦ψ−1

j )−1◦(ψk◦ψ−1
i )|ψi(Mi∩Mj)

and ψi ◦ ψ−1
j |ψj(Mi∩Mj) = (ψk ◦ ψ−1

i )−1 ◦ (ψk ◦ ψ−1
j )|ψj(Mi∩Mj) are definable

maps.

Fact 3.8.4. [13, Prop. I.3.16] Let M be an ld-space and {Cj : j ∈ J} be an
admissible covering of M by closed definable subspaces. Let N be an ld-space
and f : M → N be a map (not necessarily continuous) such that f |Cj is an
ld-map for each j ∈ J . Then, f is an ld-map.

Proof. Let {(Mi, φi)}i∈I be an atlas of M . We have to prove that the con-
ditions of Definition 3.2.4 are satisfied. Firstly, note that since the covering
{Cj}j∈J is admissible, for each i ∈ I there is a finite subset Ji ⊂ J such
that Mi ⊂

⋃
j∈Ji Cj . Therefore, since f |Mi∩Cj is continuous and Mi ∩ Cj is

a closed subset of Mi for all j ∈ Ji, f |Mi is also continuous for every i ∈ I.
Now, to prove that f(Mi) is a definable subspace of N for each i ∈ I, note
that, since each f |Cj is an ld-map and Cj is a definable subspace of M ,
f(Mi ∩ Cj) is a definable subspace of N for all i ∈ I and j ∈ J . Hence,
Ni := f(Mi) =

⋃
j∈Ji f(Mi∩Cj) is a definable subspace of N for each i ∈ I.

Finally, the map f |Mi : Mi → Ni is definable since f |Mi∩Cj : Mi ∩ Cj → Ni

is definable for all j ∈ Ji.
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Fact 3.8.5. [13, Thm.II.1.3] Let M be a set and {Mi}i∈I a family of subsets
of M . Assume that for each i ∈ I, Mi has an affine definable space structure
satisfying that
(i) Mi∩Mj is a closed definable subspace of both Mi and Mj for every i, j ∈ I
and the structure that Mi∩Mj inherits from both Mi and Mj are equivalent
and,
(ii) the family {Mi ∩Mj}j∈I is finite for every i ∈ I.
Then, there is a (unique) LD-space structure in M such that
(a) Mi is a closed definable subspace of M for every i ∈ I;
(b) the structure that Mi inherits from M is equivalent to its affine structure
and,
(c) the family {Mi : i ∈ I} is locally finite.

Proof. Uniqueness, paracompactness and regularity follow clearly from Fact
3.8.2. We divide the proof in two cases.
(1) I is finite: It suffices to prove the case I = {1, 2}. Denote by ψi :
Mi → Ei ⊂ Rn the chart of Mi for i = 1, 2. Let A = M1 ∩ M2. By
Tietze extension theorem (see [15, Ch.8,Cor.3.10]) there is a definable map
χ1 : M1 → Rn such that χ1|A = ψ2. Similarly, there is a definable map
χ2 : M2 → Rn such that χ2|A = ψ1. Consider the map φ1 : M → Rn such
that φ1|M1 = ψ1 and φ1|M2 = χ2. Consider also the map φ2 : M → Rn such
that φ2|M2 = ψ2 and φ2|M1 = χ1. On the other hand, by [15, Ch.6, Lemma
3.8], there are definable functions h1 : M1 → [−1, 0] and h2 : M2 → [0, 1]
such that h−1

1 (0) = h−1
2 (0) = A. Consider the function h : M → [−1, 1] such

that h|M1 = h1 and h|M2 = h2. Note that h−1(0) = A, h−1([−1, 0]) = M1

and h−1([0, 1]) = M2. Finally, consider the map f : M → Rn × Rn × R :
x 7→ (φ1(x), φ2(x), h(x)). Note that the function f is injective and the
map f ◦ ψ−1

i : Ei → R2n+1 is definable for i = 1, 2. Hence N1 := f(M1)
and N2 := f(M2) are definable. In particular, E := f(M) = N1 ∪ N2

is definable. Using the bijection f : M → E, we define a structure of
affine definable space in M . Next, we check that properties (a) and (b)
hold. Firstly, note that N1 = {(x1, . . . , x2n+1) ∈ E : x2n+1 ≤ 0} and
N2 = {(x1, . . . , x2n+1) ∈ E : x2n+1 ≥ 0} and therefore N1 and N2 are closed
subsets of E. Finally, f |Mi : Mi → Ni is an embedding for i = 1, 2. Indeed,
it suffices to observe that f−1|N1 = ψ−1

1 ◦ pr is definable, where pr denotes
the projection over the first n coordinates. Similarly, we prove that f−1|N2

is also definable.
(2) General case: We fix i ∈ I. By (ii), the set of indexes Γ(i) := {j ∈ I :
Mi∩Mj 6= ∅} is finite. Consider the subset Ui := M \

⋃
j /∈Γ(i)Mj of M . Note

that Ui is the union of the finite family {Ui∩Mk : k ∈ Γ(i)}. It follows from
(i) that Ui∩Mk =

⋃
j∈Γ(k)\Γ(i)Mk \Mj is an open definable subset of Mk for

all k ∈ Γ(i). We equip Ui ∩Mk with the definable space structure inherited
from Mk, for each k ∈ Γ(i). Then by (1), Ui has a definable space structure
such that Ui ∩Mk is a closed definable subspace of Ui and the definable
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space structure that Ui ∩Mk inherits from both Ui and Mk are equivalent,
for all k ∈ Γ(i). Now, let L be a finite subset of indexes of I. We define
UL :=

⋃
i∈L Ui. Note that UL∩Mk =

⋃
i∈Γ(k)∩L(Ui∩Mk) is an open definable

subspace of Mk for all k ∈
⋃
i∈L Γ(i). We equip UL ∩Mk with the definable

space structure inherited fromMk for all k ∈
⋃
i∈L Γ(i). Then, by (1), UL has

a definable space structure such that UL∩Mk is a closed definable subspace of
UL and the definable space structure that UL∩Mk inherits from both UL and
Mk are equivalent for all k ∈

⋃
i∈L Γ(i). Given two finite subsets of indexes

L1 and L2 of I with L1 ⊂ L2, we have that UL1 is an open definable subspace
of UL2 . For, by Lemma 3.8.2, it is enough to prove that UL1 ∩ UL2 ∩Mk is
an open definable subspace of UL2 ∩Mk for every k ∈

⋃
i∈L2

Γ(i). Moreover,
since UL1 ⊂ UL2 and UL1 ∩Mk = ∅ for all k /∈

⋃
i∈L1

Γ(i), it suffices to
check that UL1 ∩ Mk is an open definable subspace of UL2 ∩ Mk for all
k ∈

⋃
i∈L1

Γ(i). Indeed, for all k ∈
⋃
i∈L1

Γ(i), we have showed above that
UL1 ∩ Mk and UL2 ∩ Mk are open definable subspaces of Mk and hence
UL1 ∩Mk is an open definable subspace of UL2 ∩Mk, as required. It follows
from this that the directed system {UL : L finite subset of I} satisfies the
hypotheses of Fact 3.8.3 and hence there is an ld-space structure in M such
that each UL is an open definable subspace of M and the definable space
structure of UL and the one it inherits from M are equivalent. Furthermore,
for all i, j ∈ I if Uj ∩ Ui 6= ∅ then j ∈

⋃
k∈Γ(i) Γ(k) , and hence {Ui}i∈I is

a locally finite cover of M by open definable subspaces. To finish the proof
we have to check properties (a),(b) and (c). Note that {j ∈ I : Uj ∩Mi 6= ∅}
is a subset of Γ(i) and therefore is finite for all i ∈ I. Hence, since Mi ∩ Uj
is a closed definable subspace of Uj for every i, j ∈ I, (a) and (b) hold. To
prove (c) is enough to note that the set of indexes {i ∈ I : Mi ∩ Uj 6= ∅} is
also contained in the finite set Γ(j) for all j ∈ I and hence {Mi}i∈I is locally
finite.

Now, we prove some well-known results on o-minimal geometry in the
locally definable setting also needed in the proof of Fact 3.3.2.

Fact 3.8.6 (Shrinking of coverings). [13, Thm.I.4.11] Let M be a regular
ld-space and let {Ui}i∈I be a locally finite cover of M by open definable
subspaces (so in particular M is paracompact). Then there is a covering
{Vi}i∈I of M by open definable subspaces such that Vi ⊂ Ui for all i ∈ I.

Proof. Consider the finite set of indexes Γ1(i) = {j ∈ I : Uj ∩ Ui 6= ∅} and
the open definable subspace Wi =

⋃
j∈Γ1(i) Uj of M for each i ∈ I. Note that

Ui ⊂Wi. Consider also the finite set of indexes Γ2(i) = {j ∈ I : Uj∩Wi 6= ∅}
and the open definable subspace W̃i =

⋃
k∈Γ2(i) Uk of M . Note that Wi ⊂

W̃i and that {W̃i}i∈I is also a locally finite cover of M by open definable
subspaces. We denote by Wik := Uk for each i ∈ I and each k ∈ Γ2(i). Then
{Wik : k ∈ Γ2(i)} is a finite cover of W̃i for all i ∈ I. Since M is regular,
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each W̃i is affine (see Remark 3.2.8) and hence, by the definable shrinking of
coverings (see [15, Ch.6,Lem.3.6]), there is a cover {Vik : k ∈ Γ2(i)} of W̃i by
open definable subspaces of W̃i with Vik ⊂ Vik ∩ W̃i ⊂Wik for all k ∈ Γ2(i).
Now, consider the open definable subspace Vk :=

⋃
i∈Γ1(k) Vik ⊂ Uk for each

k ∈ I (note that if i ∈ Γ1(k) then k ∈ Γ1(i) ⊂ Γ2(i)). We check that
M =

⋃
k∈I Vk. Let x ∈ Ui for some i ∈ I. Then x ∈ W̃i and hence x ∈ Vik

for some k ∈ Γ2(i). Since x ∈ Ui ∩ Vik ⊂ Ui ∩ Uk, we have that i ∈ Γ1(k),
so that x ∈ Vk. Finally, we have to show that Vk ⊂ Uk for all k ∈ I. We fix
k ∈ I. Clearly, Uk ⊂ Wi ⊂ W̃i and therefore Vik ⊂ Wik = Uk ⊂ W̃i for all
i ∈ Γ1(k). Hence,

Vk =
⋃

i∈Γ1(k)

Vik =
⋃

i∈Γ1(k)

Vik ∩ W̃i ⊂
⋃

i∈Γ1(k)

Wik = Uk,

as required.

Fact 3.8.7 (Partition of unity). [13, Thm.I.4.12] Let M be an LD-space
and let {Ui}i∈I be a locally finite cover of M by open definable subspaces.
Then there is a family {gi : M → [0, 1]}i∈I of ld-maps such that sup(gi) :=
{x ∈M : gi(x) 6= 0} ⊂ Ui for all i ∈ I and

∑
i∈I gi(x) = 1 for all x ∈M .

Proof. By Fact 3.8.6, it suffices to find a family {gi : M → [0, 1]} of ld-
maps such that g−1

i ((0, 1]) = Ui for all i ∈ I and
∑

i∈I gi(x) = 1 for all
x ∈ M . Firstly, we construct a definable map hi : Ui → [0, 1] such that
h−1
i (0) = Ui \Ui for each i ∈ I. By Fact 3.2.11, Ui is a definable subspace of
M for all i ∈ I. Furthermore, since M is regular, by the o-minimal version of
Robson’s theorem there is a definable embedding φi : Ui → Rn with φi(Ui)
bounded for each i ∈ I. If Ui 6= Ui, take the definable map

hi : Ui → [0, 1] : x 7→ 1
C

inf{|φi(x)− φi(y)| : y ∈ Ui \ Ui},

where C = supx∈Ui inf{|φi(x) − φi(y)| : y ∈ Ui \ Ui}. If Ui = Ui, take the
definable map hi : Ui → [0, 1] : x 7→ 1. By Fact 3.8.4, the map Hi : M →
[0, 1] such that Hi(x) = hi(x) for all x ∈ Ui and Hi(x) = 0 for all x ∈M \Ui
is an ld-map. Since {Ui}i∈I is locally finite, the map H(x) =

∑
i∈I Hi(x)

is a well-defined ld-map. Moreover, note that H(x) 6= 0 for all x ∈ M .
Finally, the ld-maps gi : M → [0, 1] : x 7→ Hi(x)

H(x) fulfill the requirements of
the fact.

Fact 3.8.8. Let M be an LD-space and let A and B be two closed disjoint
admissible subsets of M . Then there is an ld-map g : M → [0, 1] such that
g−1(0) = A and g−1(1) = B.

Proof. Let {Mi}i∈I be a locally finite cover of M by open definable subsets.
By 3.8.7, there is an ld-partition of unity {hi : M → [0, 1]}i∈I with respect



88 3.8. Appendix

to {Mi}i∈I . On the other hand, it follows from the definable version of Fact
3.8.8 that there is a definable map gi : Mi → [0, 1] for each i ∈ I such that
g−1
i (0) = Mi ∩ A and g−1

i (1) = Mi ∩ B (see [15, Ch.6,Lem.3.8]). Finally, it
is enough to take the ld-map g :=

∑
i∈I higi.

We finish this appendix with a variation of locally definable maps (see
[13, Ch.I,§5]).

Definition 3.8.9. Let M and N be ld-spaces. We say that a map f : M →
N is strongly locally definable, denoted by sld-map, if f is an ld-map and
f−1(X) is a definable subspace of M for every definable subspace X of N .

Fact 3.8.10. [13, Prop.I.5.3] Let M and N be ld-spaces and let f : M →
N be an sld-map. Then f(X) is an admissible subspace of N for every
admissible subspace X of M .

Proof. It is enough to prove that for every open definable subspace U of
N , f(X) ∩ U is also a definable subspace of N . Let U be an open defin-
able subspace of N and let f |f−1(U) : f−1(U) → U be the restriction of f
to f−1(U). Since f is an sld-map, f−1(U) is a definable subspace of M
and hence f |f−1(U) is a definable map. Moreover, since X is an admissible
subspace and f−1(U) is a definable subspace, we have that X ∩ f−1(U) is
a definable subspace of M . Then f |f−1(U)(X ∩ f−1(U)) = f(X) ∩ U is a
definable subspace of U . In particular, f(X) ∩ U is a definable subspace of
N , as required.

Fact 3.8.11. [13, Rmk.I.5.2] Let M and N be ld-spaces and let {Ni}i∈I
be a locally finite cover of N by closed definable subspaces. Then a map
f : M → N is an sld-map if and only if (i) the family {f−1(Ni) : i ∈ I}
is an admissible cover of M by closed definable subspaces and (ii) the map
f |f−1(Ni) : f−1(Ni)→ Ni is definable for all i ∈ I.

Proof. The left-to-right implication is clear. We show the other implication.
It follows from (i), (ii) and Fact 3.8.4 that f is an ld-map. Let X be a
definable subspace of N . Then X = (X ∩ Ni1) ∪ · · · ∪ (X ∩ Nim) for some
i1, . . . , im ∈ I. By (ii), f−1(X ∩Nil) is a definable subspace of f−1(Nil) for
each l = 1, . . . ,m. Hence f−1(X ∩Nil) is a definable subspace of M for each
l = 1, . . . ,m, so that f−1(X) =

⋃m
l=1 f

−1(X ∩ Nil) is a definable subspace
of M , as required.



Conclusions

We now make some comments on possible further developments of the work
in this thesis.

Firstly, we point out a possible connection between the Normal tri-
angulation theorem and the o-minimal Hauptvermutung. The o-minimal
Hauptvermutung over the real field was solved by M. Shiota in [35], but
the general one is still open. We recall one of the motivations of the Nor-
mal triangulation theorem. Let (K,φ) be a triangulation of a definable set
S and some definable subsets S1, . . . , Sl of S. Now, consider new defin-
able subsets S′1, . . . , S

′
l′ of S. We would like to both preserve the already

obtained triangulation and partition the new sets. Thanks to the Normal
triangulation theorem we can solve this problem. Furthermore, we note
that if the o-minimal Hauptvermung is true then we can also solve it pos-
itively in a rather simple way. For, by the Triangulation theorem, there
is a triangulation (L,ψ) ∈ ∆(|K|;φ−1(S′1), . . . , φ−1(S′l′), σ)σ∈K . Now, since
ψ : |L| → |K| is a definable homeomorphism, by the o-minimal Hauptver-
mutung there are subdivisions L′ and K ′ of L and K respectively and
a simplicial isomorphism g : |L′| → |K ′| such that ψ ∼ g. Therefore,
(K ′, φ◦ψ◦g−1) ∈ ∆(S;S1, . . . , Sl, S

′
1, . . . , S

′
l′) and φ◦ψ◦g−1 ∼ φ◦g◦g−1 ∼ φ,

as required. On the other hand, using the argument above, we may be able
to deduce the Normal triangulation theorem from the o-minimal Hauptver-
mutung. However, it does not seem possible to obtain property (iii) of nor-
mal triangulations (see Definition 1.1.1). Then, the Normal triangulation
theorem is not weaker than the o-minimal Hauptvermutung (at least, in an
obvious way). Moreover, in the semialgebraic context, it helped us to prove
the semialgebraic Hauptvermutung. Hence, it is natural to ask if the Normal
triangulation theorem is equivalent to the o-minimal Hauptvermutung. Of
course, we are interested in the left-to-right implication.

Secondly, one obvious direction for further work is applying the results
of this thesis to the study of definable groups. In fact, this study has been

89



already started in [6], where it is proved that

πn(G)R ∼= πn(G/G00)

for all n ≥ 1 and all definably compact group G. Now, let G be a definably
compact group. By the Triangulation theorem and the o-minimal version
of Robson’s embedding theorem, we can assume that G = |K| for a closed
simplicial complex K whose vertices lie in Q. Hence, by Corollary 2.4.4 and
the result [6], we know that πn(|K|(R)) ∼= πn(G)R ∼= πn(G/G00). Hence,
we might expect |K|(R) being homotopic equivalent to G/G00. Actually, by
Whitehead theorem, we only need an adequate map from |K|(R) to G/G00.
Note that this would imply that cat(G)R = cat(G/G00) for every definably
compact group G, extending the results in Section 2.6.
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