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“We can do that in some philosophy seminar, but in the real world there’re real cases

that ought to concern us”

Noam Chomsky





Abstract

The increasing volume of data during last years together with the emergence of classifi-

cation systems requiring real-time responses have given rise to a new school of thought in

machine learning owing to the impossibility of applying many of the classification meth-

ods that, traditionally, had been successful. This impossibility can be due to hardware

limitations, the data cannot be completely stored in memory as required by many of the

existing algorithms, or requirements concerning the training and/or classification times

that traditional classifiers are not able to fulfill. In any case, it is mandatory to adapt

the current machine learning solutions to the new scenario which, inevitably, leads to the

design of simple and easily scalable algorithms. In particular, this thesis proposes two

complementary solutions that make it possible to face up those classification problems

requiring real-time predictions.

The first of these contributions is a new feature selection algorithm independent of the

classifier and capable of reducing its computational cost in the classification and training

phases. The proposed method can be categorized into the multivariate filters group and

it yields similar classification rates that its state-of-the-art counterparts while reducing

their computational complexity. In addition, the new algorithm is reformulated in a

higher dimensional space induced by a kernel turning out to be equivalent to the well-

known Kernel Fisher Discriminant Analysis (KFDA). This equivalence is theoretically

proven providing new insights into the KFDA.

The second contribution of this work is focused on the design of an algorithm capable of

classifying patterns in few milliseconds. Motivated by the difficulty of applying nonlinear

Support Vector Machines (SVMs) to real-time classification domains, the new method

attempts to approximate the nonlinear decision boundaries by means of piecewise linear

functions while locally preserving the maximum margin criteria. The results presented

in this thesis show how the proposed algorithm can bridge the gap between the simplicity

but low accuracy of linear SVMs and the effectiveness but sophistication of nonlinear

SVMs in real-time classification systems.

In conclusion, the large amount of data makes it sometimes necessary to leave aside

the precision of the most complex models in favor of approximate solutions fulfilling the

requirements of the classification system.



Resumen

El incremento del volumen de datos durante los últimos años junto con la aparición

de sistemas de clasificación que requieren respuestas en tiempo real han provocado una

nueva corriente dentro del campo del aprendizaje automático debido a la imposibilidad

de aplicar muchos de los métodos de clasificación tradicionalmente exitosos. Esta im-

posibilidad puede venir dada por limitaciones en el hardware (los datos no pueden ser

almacenados completamente en la memoria tal y como requeŕıan la mayoŕıa de los algo-

ritmos existentes), o por requerimientos sobre el tiempo de aprendizaje y/o clasificación

que los clasificadores tradicionales no son capaces de satisfacer. En cualquiera de los

casos, es necesario adaptar las soluciones del aprendizaje automático a este nuevo es-

cenario lo que conduce, inevitablemente, al diseño de algoritmos relativamente sencillos

y fácilmente escalables. En particular, esta tesis plantea dos soluciones complemen-

tarias que permiten abordar satisfactoriamente aquellos problemas de clasificación que

requieran predicciones en tiempo real.

La primera de estas contribuciones consiste en un nuevo método de selección de variables

independiente del clasificador y capaz de reducir la carga computacional de las fases de

predicción y aprendizaje. El algoritmo propuesto se enmarca dentro de las técnicas de

filtro multivariable y es capaz de igualar las tasas de acierto de los métodos del estado

del arte reduciendo, a la vez, su complejidad. Adicionalmente, este nuevo método se

reformula en un espacio inducido por un núcleo y se demuestra su equivalencia con el

popular discriminante de Fisher para núcleos, dando lugar a nuevas interpretaciones

sobre el mismo.

La segunda de las contribuciones se centra en el diseño de un algoritmo capaz de emitir

predicciones en pocos milisegundos. Motivado por la dif́ıcil aplicación de las Máquinas de

Vectores Soporte no lineales a problemas de predicción en tiempo real, el nuevo algoritmo

trata de aproximar las fronteras de decisión no lineales mediante funciones lineales a

trozos manteniendo localmente el criterio de máximo margen. Los resultados presentados

en esta tesis muestran como el algoritmo propuesto permite salvar las diferencias entre

la simplicidad pero bajo acierto de los modelos lineales y la efectividad pero sofisticación

de los modelos no lineales en sistemas de clasificación en tiempo real.

En conclusión, la gran cantidad de datos hace necesario, en ocasiones, prescindir de la

exactitud de los modelos más complejos en favor de soluciones aproximadas que garan-

ticen el cumplimiento de los requisitos del sistema de clasificación.
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Chapter 1
Introduction

This thesis is about machine learning, a discipline of artificial intelligence based on

the discovery of relationships between objects without needing a lot of expert knowledge.

As the name suggests, the aim of machine learning is to learn a solution of a problem

instead of understanding the underlying model which can be, in most of the cases,

extremely complex. For example, in a fraud detection system the machine learning

approach would try to answer the question Is this transaction fraud or not? leaving

aside the explanation of what is the cause of the verdict. From this point of view,

machine learning can solve problems from different areas because their solutions are not

focused on the specific domain in which they are going to be applied. The challenge

is to make a machine learn a solution from past data. The adoption of a machine

learning solution can indeed improve the expert knowledge by finding out relationships

that the experts, even knowing them, are not able to explain or describe. In addition,

the machine can handle with volumes of data unmanageable by the experts and it also

learns faster.

The assumption behind any machine learning system is that some general rules about

the relationships between objects can be inferred from the behavior of few examples,

known as training samples (patterns or examples), and thus learning involves

an inductive inference from the particular examples to general rules. These rules can

be understood as functions f , known as classifiers or predictors, transforming input

examples from the data domain X to output objects (predictions) in the space Y:

1



Chapter 1. Introduction 2

f : X −→ Y.

The input and output spaces are determined by the nature of the problem in question;

for example, in the credit card fraud detection system the space of the inputs X would

consist of information about credit card transactions such as temporal information or

the amount of the transaction whereas the output space Y would be formed by a discrete

variable taking two possible values: fraud or not fraud.

The characteristics of the input and output spaces divide machine learning algorithms

into different categories being the most widely applied supervised and unsupervised

learning. Supervised learning can be regarded as learning with teacher in the sense

that the model has a feedback about its learning process. Training samples consist of

pairs formed by the input example and the desired output value and the objective of

the classifier is to predict the output for patterns with unknown label. In turn, the

properties of the output space Y categorize supervised learning as classification, the

possible outputs (labels, targets or classes) are a set of discrete values, or as regres-

sion, the output takes continuous values. By contrast, unsupervised learning (or

clustering) learns without teacher since it does not make use of the labels information

and it attempts to group the training data into subsets (clusters) in such a way that

patterns belonging to the same cluster would be similar according to certain criterion.

Among other approaches, semisupervised learning can be considered as a kind of

supervised learning but not having all the training patterns labeled. Finally, reinforce-

ment learning learns how an agent has to take decisions in an environment in order

to maximize some notion of long-term reward. The main difference with supervised

learning is that the pairs input-output are not presented to the agent beforehand and

hence, the decisions are adopted in an online manner by weighting up the exploration

and the exploitation of the knowledge.

In any of the scenarios, the machine learning approach can be explained as a sequence

of steps, namely: collect the data, choose the features and the classifier and finally, train

and evaluate the classifier as presented in Figure 1.1. Although the election and the

training of the classifier represent the essence of the machine learning task, other phases

such as finding a proper representation of data and performing a fair evaluation of the
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Collect
data

Choose
features

Choose
classifier

Train
classifier

Evaluate
classifier

Prior knowledge

Figure 1.1: Diagram of the design of a machine learning system. Figure adapted from
[1].

classifier should not be pushed into the background since the success of the final model

also depends on them.

The starting point corresponds to the collection of data from one or several sources.

Intuitively, the higher amount of examples available, the easier inference of general rules –

in fact, Chapter 2 will support this idea on the basis of statistical learning theory. In spite

of the apparent benefits of having a large number of training samples, this situation can

burden the applicability of conventional machine learning classifiers as it will be discussed

further down in Section 1.1. On the other hand, those problems with few training

patterns require special attention in order to guarantee reliable models. Unfortunately,

the samples shortage can not be solved immediately by the system designer as the data

collection usually represents an independent step previous to the design process.

Each of the samples gathered consists of a set of attributes (variables or features)

containing information about different aspects of the problem. While some of them might

be uninformative for the learning process, there could exist relevant relationships among

the original features that are not explicitly represented by a single attribute. Therefore,

choosing relevant features from data entails two stages (i) feature construction to

bring out new attributes and (ii) feature selection to keep only those variables which

are relevant to explain the data. Both processes can be conducted by an expert who

introduces some prior knowledge about the problem and/or they can adopt a machine

learning strategy which infers dependences among features from a subset of samples.

Besides the preparation of the inputs for the classification process strictly speaking, di-

mensionality reduction methods can accelerate the training and prediction processes,

they can also reduce the storage requirements and save resources for the next data col-

lection, they may imply a performance improvement especially in those models sensitive
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to noisy data and they can improve the data understanding. The importance of this

phase is reflected in the amount of effort devoted in machine learning to design effective

and efficient algorithms capable of detecting the most relevant attributes as it will be

shown in Section 2.2. Indeed, feature selection constitutes a research field in machine

learning by itself.

Once a good representation of the data has been found, it is time to choose the model

to learn the data which can be regarded as choosing the family of functions which the

classifier f belongs to. The selection of an appropriate model is vital for achieving good

performance as it assumes certain characteristics in the data which, in case of being

wrong, can degrade the classifier’s reliability. At this point, some expert knowledge can

be useful to filter some classifiers among all the possibilities. Furthermore, the evaluation

of the suitability of each candidate might consider different criteria depending on the

final purpose. Despite the most natural choice seems to be selecting that classifier that

better learns the data, other factors such as the time needed to learn and to predict

or the simplicity and understandability of the result can also play an important role.

Moreover, diverse classifiers (hypothesis) might yield similar accuracies in which case,

the known Occam’s Razor establishes that the simplest models are preferred as they

should provide better stability and generalization.

The selection of a family of functions to model the data has stated a set of hypothesis

about the data distribution but it is necessary to adjust this general description to the

particular problem to solve. This adaptation is called training and it is the basis of

learning from the training data. Chapter 2 will show how this learning process can

be formulated as the adjustment of the parameters of certain mathematical function

according to some criterion. That makes the machine learning possible. In the same way,

the selection of the model has implied the choice of a family of mathematical functions

which can go from simple hyperplanes to the most complex nonlinear mappings.

And to finish, the evaluation of the trained model is mandatory in order to check

if the original goals of the system have been fulfilled. The simplest way to measure the

success of the classifier is to determine how well it has executed its task (classification,

clustering, semisupervised classification or reinforcement learning) in the training sam-

ples. However, it is not a good practice as the classifier might have learn the training

patterns by heart and it has not been capable of inferring general rules from them. In
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this case, the evaluation of the classifier would be extremely positive but its performance

for unseen patterns could be really poor. A fairer qualification is obtained in practice by

evaluating the classifier in a set of examples not seeing during the training process. To

do that, two of the most popular techniques are the hold-out method and the k-fold

cross validation (kcv) technique. Hold-out approach consists in dividing the available

samples into two disjoint subsets: the training and validation sets using the first one

to train the model and the second one to evaluate it. On the other hand, the k-fold

validation strategy randomly generates k partitions of the available data using one of

the partitions to evaluate the model and the rest form the training set. This procedure

is repeated the k times corresponding to consider each of the partitions individually as

the test set and the overall performance is given by the average over each partition. As

aforementioned, even though the ultimate aim of any machine learning system is to dis-

cover relationships from data, other factors can guide the decision about the goodness of

the classifier and especially those which have been decisive in the selection of the model

such as the training or prediction time, to name just a few. If the final evaluation is not

positive, it may be necessary to reconsider one or several of the decisions taken in the

previous steps. Once the final model is achieved, it is a good practice to carry out an

external evaluation of its performance by means of a set of patterns not used in neither

the training nor the validation phases and popularly known as test set.

1.1 Thesis Scope

The goals and contributions of this thesis are focused on the improvement of machine

learning solutions when they are applied to large-scale classification problems.

Why classification? Because many problems in the real world can be understood

as a supervised classification task and they cover areas as diverse as those presented in

Table 1.1.

And why in large-scale domains? Because the scope of machine learning solutions

has changed dramatically in the last years with the emergence of “large-scale” appli-

cations in domains like web, finance or biology, among others. The Internet expansion

has caused such explosion in the volume of information available that web applications

have become the main consumer of large-scale machine learning solutions. Examples of
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Domain Application Input space Output space Ex.

Bioinformatics Sequence analysis DNA / protein se-
quence

Types of genes [2]

Document classi-
fication

Internet search Text document
(bag of words)

Categories (busi-
ness, sports, etc.)

[3]

Document image
analysis

Reading machine Document image Alphanumeric
characters, words

[4]

Biometrics Personal identifi-
cation

Fingerprints, iris,
sign, etc.

Identity accept-
ed/rejected

[5]

Speech recogni-
tion

Automatic tran-
scription of spo-
ken language into
readable text

Speech waveform Transcribed
words

[6]

Fraud detection Credit card trans-
actions

Information of
the use of cards
by different cus-
tomers and its
legality

Fraud / not fraud [7]

Table 1.1: Examples of supervised classification applications. Table adapted from [8]
including some related works (Ex.).

the amount of data traveling on Internet coming from sources as diverse as documents,

social networks, images and videos or on-line shopping are presented in Figure 1.2.

At a first glance, having many training samples might help to infer more general models

due to the variety of situations described in the input space. But this apparent appeal-

ing contrasts with the difficulties associated with handling such amount of data. The

initial concerns in machine learning – and Computer Science in general – about opti-

mizing the algorithms’ complexity to deal with the hardware limitations faded with the

development of more powerful machines capable of working with the available volume

of data. However, the interest in designing and implementing efficient algorithms have

reemerged lately due to the hardware progress has not followed the exponential growth

of data. Aspects like the training and test times as well as memory requirements

are these days extremely relevant in the design of a large-scale classification system.

Furthermore, it is worth reflecting on the real usefulness of this extra training data and

its involvement in the performance of the model.
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Figure 1.2: Massive amount of data created everyday on Internet. Infographic ex-
tracted from the article “The World of Data We’re Creating on the Internet” published

in Good Magazine (October 2010).

But what can be considered “large-scale”? Unfortunately, it does not exist a

single answer to this question. The definition of large-scale is not as simple as provide

a threshold for the number of training samples and/or dimensions since it depends

on the requirements and characteristics of each classification problem. Mainly, two

different definitions can be raised: a problem can be categorized as “large-scale” if

(i) it does not fit in RAM and then, the conventional machine learning algorithms

cannot be straightforwardly used, or (ii) in spite of having all the information loaded in

memory, the classifier cannot be applied on a single machine in reasonable time because

it does not fulfill the time requirements associated with the training or classification

phases. These limitations make it necessary to revisit traditional models and algorithms

since the solution is not as simple as “throw more machines“: algorithms that were

outstanding not many years ago, such as polynomial time ones, nowadays might turn

into an unfeasible task as the number of patterns increases. This phenomenon affects

not only the training costs but also the classification response times: methods providing

acceptable training times in large-scale scenarios might become useless because they

are not fast enough to classify a new patterns in few milliseconds. Therefore, another

dimension comes into play in the large-scale scenario: the scalability. Actually, the

challenge goes one step further as it requires to make a more transcendental decision

about the result of the machine learning process: the necessity of exact solutions in
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weaker models versus the validity of approximate solutions in stronger models. Recent

advances point out that the second approach has won the battle since in some cases

the effectiveness of the exact but weak solutions is insufficient and what is more, the

computation or the evaluation of the exact solution might be prohibitive even for a linear

model.

The scalability challenge has been tackled from different points of view:

• Subsampling the data. Probably the simplest approach: only a subset of the

training samples are used with conventional methods. Although this alternative

can be a good point of reference and it would accelerate the classification in those

cases in which the resulting model depends somehow on the number of training

samples, hiding some information to the classifier can degrade its accuracy. Truth-

fully, it does not represent a real solution to large-scale problems since it solves a

simplified problem.

• MapReduce consists in partitioning the training data into several groups and dis-

tributing them to multiple machines. This way, each machine solves a subproblem

and the process ends with the combination of the individual results. this approach

can be also adopted for speeding up the classification by dividing the evaluation

of the model into several tasks. In spite of the attractiveness of this massive par-

allelization, many of the machine learning algorithms cannot be adapted to this

architecture.

• Hardware solution: Graphics Processing Unit (GPU). GPUs are dedicated

to graphical processing and float-point operations in order to lighten the CPU

workload. They are usually arranged in a parallel architecture pursuing to run

many concurrent threads rather than one fast thread as in CPUs. They have been

successfully applied to many machine learning methods in which they can reduce

the training time from weeks to hours [9, 10] or make their applicability to real-time

operation systems possible [11, 12]. Unfortunately, not all the machine learning

tasks can be parallelized at operation level and there still exists a dependence on

the CPU which might be a bottleneck.

• Adaptation of existing algorithms. The purest approach from the point of

view of machine learning. While all the preceding solutions are concerned about
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reducing the amount of data and/or parallelizing the algorithms’ operations, the

adaptation of existing algorithms to large-scale domains requires a deep knowledge

of their basis in order to make them scalable either in the training or in the

classification phases.

1.2 Thesis Contributions

The research work developed in this thesis is in line with the last approach focused on al-

gorithms and tools to make large-scale supervised classification problems possible. This

issue can be raised from complementary points of view in accordance with the machine

learning design cycle presented in Figure 1.1. As stated above, the simplest way to tackle

large-scale problems would be modifying the data collection step in order to reduce the

amount of available information but, it might imply a significant worsening in the clas-

sification accuracies. The contributions of this thesis cover three complementary phases

in which there are still room of improvement in large-scale domains: feature selection

and classifier choice and training. On the one hand, feature selection, working as a

preprocessing step, can be applied to many learning algorithms and it improves their

scalability when their complexity depends somehow on the dimension of the patterns.

In large-scale problems is crucial to evaluate the success of the feature selection not only

in terms of the dimensionality reduction but also as a function of its scalability. On the

other hand, the classifier selection and training are more domain-dependent tasks since

most of the times they should consider the final purpose of the algorithm beyond the

classification accuracy. For example, medical domains might be concerned about the

interpretability of the model whereas web applications might desire low response times

disregarding the classifier understanding. Among all the possible criteria, the second

part of the contributions will deal with large-scale classifiers requiring predictions in few

milliseconds that is, real-time classification. To summarize, the contributions of this

thesis are presented in the following points:

1. A new feature selection algorithm for large-scale and high-dimensional datasets

named Quadratic Programming Feature Selection (QPFS) given rise to

the following publication:
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I. Rodriguez-Lujan, R. Huerta, C. Elkan, and C. Santa Cruz. Quadratic pro-

gramming feature selection. Journal of Machine Learning Research, 99:1491–1516,

2010.

The new algorithm can be categorized as multivariate filter (Section 2.2.1) as it

takes into account not only the relevance between each feature with the class but

also possible redundancies between attributes. QPFS allows to use more power-

ful but more computationally intensive classification algorithms by reducing the

dimensionality of the patterns.

2. The reformulation of the QPFS algorithm to generate new attributes. The new al-

gorithm called Kernel Quadratic Programming Feature Selection (KQPFS)

makes use of the popular kernel trick (Section 2.3.2.1) to implicitly introduce non-

linearities in the data and it is shown the equivalence with the well-known Kernel

Fisher Discriminant Analysis (KFDA). These results are published in:

I. Rodriguez-Lujan, C. Santa Cruz, and R. Huerta. On the equivalence of Kernel

Fisher Discriminant Analysis and Kernel Quadratic Programming Feature Selec-

tion. Pattern Recognition Letters, 32(11):1567 – 1571, 2011.

3. A new learning algorithm for binary classification problems named Hierarchi-

cal Linear Support Vector Machine (H-LSVM) which has given rise to a

manuscript which is currently under review:

I. Rodriguez-Lujan, C. Santa Cruz, and R. Huerta. Hierarchical Linear Support

Vector Machine. Pattern Recognition. Under second review.

The new algorithm attempts to be a solution to the high classification cost in

large-scale domains of one of the most successful algorithms nowadays: Support

Vector Machines (SVMs) (Section 2.3.2). The new algorithm enables to classify

new patterns in few milliseconds by means of piecewise linear decision functions

while locally preserve the generalization properties the SVM models.

All these contributions will be presented in separate chapters including a thorough anal-

ysis of the strengths and weaknesses of the state-of-the-art solutions, as well as exper-

imental results showing the practical performance and utility of the algorithms here

proposed. Software implementations of the QPFS and H-LSVM algorithms are publicly

available as additional material:
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http://sites.google.com/site/irenerodriguezlujan/documents/QPFS-1.0.zip

https://sites.google.com/site/irenerodriguezlujan/HLSVM-1.1.zip .

1.3 Thesis Structure

The rest of chapters in this thesis are organized as follows. Chapter 2 introduces the

concepts necessary for the comprehension of the contents developed throughout this

thesis. Specifically, a brief review of statistical learning theory provides a mathematical

statement of essential concepts such as risk minimization, underfitting, overfitting, gen-

eralization, model complexity or Vapnik-Chervonenkis (VC) dimension, among others.

Immediately afterwards, a general taxonomy of feature selection algorithms and a review

of the most promising approaches for large-scale problems are provided. The chapter

closes with a brief description of three learning algorithms highly related to the contents

of this thesis namely: Fisher Discriminant Analysis (FDA), Support Vector Machines

and decision trees. The three following chapters correspond to the three contributions of

this work introduced in the previous section. Chapter 3 presents a new feature selection

algorithm including an analysis of the scalability of existing approaches, the derivation

of the error bound of the new method and a lengthly experimental section. As an ex-

tension, Chapter 4 reformulates the algorithm proposed in Chapter 3 in a kernel space.

Theoretical and empirical proofs of its eivalence with the Kernel Fisher Discriminant

Analysis are given besides a comparison between the computational complexity of the

standard KFDA solution against the KQPFS one. Focusing now on real-time prediction

systems, Chapter 5 starts with some insights into the works addressing the acceleration

of the prediction time of nonlinear SVMs. After that, the new algorithm is presented to-

gether with a theoretical analysis of generalization error bounds. Then, the experimental

setup places the new method with respect to linear and nonlinear SVMs, compares it

against some of the techniques introduced at the beginning of the chapter and provides

a practical intuition about the resulting error bounds. Embracing the solutions provided

by Chapters 3 and 5, Chapter 6 analyzes the strengths and weaknesses of a machine

learning system combining these two approaches. To finish, Chapter 7 states the con-

clusions derived from this thesis and points out some possible lines of further work.

Additional material is provided in the appendices: Appendix A summarizes the nota-

tion following along this work, Appendix B gives some insights into the Nyström matrix

http://sites.google.com/site/irenerodriguezlujan/documents/QPFS-1.0.zip
https://sites.google.com/site/irenerodriguezlujan/HLSVM-1.1.zip
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diagonalization, a keystone in the algorithm proposed in Chapter 3, and Appendix C

establishes the convergence properties of the algorithm introduced in Chapter 5.



Chapter 2
Supervised Classification

This chapter is a general review of the notions necessary to the understanding of the

algorithms presented in Chapters 3-5 focused on dimensionality reduction and real-time

classification. The chapter starts with the mathematical statement of the supervised

learning problem and the introduction of the risk minimization and classifier’s complexity

concepts which allow to enshrine the contributions of this thesis in the generalization

framework. The following section establishes the basis of the algorithm proposed in

Chapters 3 and 4 providing a taxonomy of feature selection techniques as well as a

description of some of the most known feature selection algorithms. Finally, a survey of

different approaches for supervised classification is addressed at the end of the chapter,

specifically the Fisher Discriminant Analysis, that will play an essential role in Chapter 4,

and Support Vector Machines and decision trees, whose combination is the basis of the

method introduced in Chapter 5.

2.1 Statistical Learning Theory

Chapter 1 has described intuitively machine learning as a discipline oriented to learn

from the data in the sense that it tries to infer the most adequate model to describe

relationships from a given training set S. The training set is usually formed by a finite

number of training samples, N , in a M -dimensional space:

13
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S = {(xi, yi) ∈ X × Y | i = 1, . . . , N} .

Furthermore, each sample xi ∈ X is characterized by M features being xji the j-th

feature of the i-th pattern. The random variable corresponding to the j-th feature is

represented as Xj and then, {X1, X2, . . . , XM} is the set of all the features in X . In the

same way, the random variable associated with the labels is denoted as Y .

Chapter 1 has categorized machine learning algorithms as a function of the structure of

Y. If information about Y is not considered during the training phase, the problem is

called unsupervised learning. On the contrary, if the pair (xi, yi) is taking into account in

the construction of the model, the task is called supervised learning. In turn, supervised

learning can be divided into regression problems (Y = R) or classification problems (|Y|

is finite). Commonly, the classification problem is called binary if |Y| = 2 and muti-class,

otherwise.

According to the scope of this thesis, supervised classification problems are assumed

in what follows. In this case, the challenge of a learning algorithm is to determine a

function f : X −→ Y which transforms objects from the input space X to the set of

possible discrete labels Y. However, the complexity of many machine learning problems

prevents the existence of a deterministic one-to-one function f making necessary the

introduction of a probabilistic framework. Assuming that the process to be modeled

has been generated by an unknown and fixed probability distribution P (X,Y ) over the

space X × Y and supposing that the training patterns have been drawn independently

and identically from P , the probability of observing a particular label y ∈ Y subject to

the observation x ∈ X is given by the Bayes’ law,

P (Y |X) =
P (X,Y )

P (X)
=
P (X|Y )P (Y )

P (X)
.

Then, knowing the distribution P (Y |X), the Bayes’ decision rule of the Bayes’

optimal solution to assign a label y to the pattern x is given by
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f∗(x) = argmax
y∈Y

P (Y = y|X = x). (2.1)

Apart from its natural origin, it can be shown that the Bayes’ decision rule is optimal

by introducing the loss function concept. The loss function, l : Y ×Y −→ R+, quantifies

what is the cost of predicting f(x) when the real label of x is y. In classification

problems, an intuitive way to define the loss function is 1

l(f(x), y) =

 0 f(x) = y

1 f(x) 6= y
. (2.2)

The aim of many learning algorithms is to find the function f minimizing the expected

error or risk defined as,

R(f) = EP [l(f(x), y)] ,

where EP is the expectation with respect to the joint distribution P (X,Y ). The Bayes’

decision rule defined in Equation 2.1 minimizes R(f) for reasonably defined loss functions

as the one presented in Equation 2.2, and thus the classification problem can be solved in

an optimal way. Unfortunately, the probability P (X,Y ) is usually unknown in practice.

One possible solution would be to estimate it but it entails several difficulties such as

making assumptions about the underlying distribution or compiling enough data to have

a reliable approximation. As alternative, the expected risk is replaced by the empirical

error or risk computed as the average errors over the training set:

Remp(f) =
1

N

N∑
i=1

l(f(xi), yi). (2.3)

1Although other penalties are possible, especially in those asymmetric problems such as medical
diagnosis or fraud detection, this is the lost function considered through this thesis.
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(a) (b) (c)

Figure 2.1: The overfitting and underfitting phenomena. In Figure 2.1(a) the small
number of training patterns makes it impossible to determine which of the models is
closer to the real distribution of the data. Conversely, in Figure 2.1(b) the large size of
the training size provides a good approximation of the distribution of data. In this case,
the dashed model is closer to the ground truth while the solid one underfits the data.
Figure 2.1(c) shows the opposite scenario: the solid boundary seems correct whereas

the dashed model overfits the training data. Figure adapted from [13].

Consequently, learning algorithms will try to find a decision function f which minimizes

Remp(f). However, measuring the empirical error on the training set can yield models

with poor generalization on unseen data, even when the empirical risk on the training

set is small. This circumstance is known as overfitting: the model is complex enough

to learn the training patterns by heart but it is not able to generalize to unseen patterns.

The other extreme, underfitting, can also happen: the model is too coarse to learn

anything from particular data. A simple example of the underfitting and overfitting

dilemmas is presented in Figure 2.1. As a balance between overfitting and underfitting,

it would be desirable that as the number of training patterns increases (N → ∞), the

decision function f founded by the learning algorithm converges to the function with

the lowest expected error. In other words, it seems reasonable to impose consistency

in machine learning algorithms which can be achieved by controlling the model com-

plexity in order to protect it against overfitting and underfitting. The model complexity

is directly connected to the family of functions U which are potential solutions and in-

tuitively, it is determined by the number of different predictions that can be obtained

when choosing functions from this family.

2.1.1 The Vapnik-Chervonenkis Dimension

One possible way to quantify the complexity of a family of functions is the Vapnik-

Chervonenkis dimension which, broadly speaking, counts the maximum number of

points that can be shattered for all possible labellings using functions of the class U . A
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Figure 2.2: All the possible dichotomies of three points in R2 shattered by oriented
hyperplanes.

detailed analysis of the Vapnik-Chervonenkis theory is out of the scope of this thesis;

however, the VC dimension of an hyperplane in the space XM is studied as an example

and starting point of the generalization error bound of the algorithm presented in Chap-

ter 5 which assumes a two class classification problem with Y = {−1, 1} and a solution

of the form f(x) = (w ·x)+b. The family of functions containing all the possible hyper-

planes defined by w and b can be expressed as U = {f : X −→ R | f(x) = (w · x) + b}.

As stated above, the VC dimension of U is the maximal number of points, U , such that

there exists f ∈ U verifying f(xi) = yi for arbitrary yi ∈ {−1, 1}. In this case, the maxi-

mum number of M -dimensional points with an arbitrary labeling that can be completely

separated by an hyperplane is M + 1 (VCdim(U) = M + 1) since, for any configuration

of M + 1 points one of them can be chosen as origin in RM such that the remaining M

points are linearly independent2. This reasoning cannot be extended for M + 2 points

because, fixing one point as the origin, the remaining M + 1 points in a M -dimensional

space are not linearly independent. Figure 2.2 shows how all dichotomies of three not

collinear points in R2 can be separated by an hyperplane in R2.

2.1.2 Complexity Control and Regularization

The VC dimension is relevant because it provides bounds on the expected risk as a

function of the empirical risk and the number samples N . Paying attention to the aim

of this thesis, the following bound is applied to supervised classification problems using

the 0-1 loss function (Equation 2.2).

2Assuming that the M + 1 points are not collinear.
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VC Dimension

Empirical riskVC confidence

Expected risk

Underfitting Overfitting

Figure 2.3: Intuition behind the Vapnik-Chervonenkis bound (Theorem 2.1). The
optimal model is found as a balance between the empirical risk and the VC confidence.

Figure adapted from [13].

Theorem 2.1. [14] Let VCdim(U) the VC dimension of the family of functions U and

let Remp the empirical error as defined in Equation 2.3 using the 0-1 loss function. For

all δ > 0 and f ∈ U , with probability at least 1− δ the following bound holds:

R(f) ≤ Remp(f) +

√√√√VCdim(U)
(

log 2N
VCdim(U) + 1

)
− log( δ4)

N
(2.4)

for N > VCdim(U) training samples randomly drawn from P (X,Y ).

The second term on the right hand side is called the VC confidence and it becomes

smaller as the ratio N
VCdim(U) gets larger. This fact is consistent with the idea discussed

above and presented in Figure 2.1 that the empirical risk minimization is only a good

approximation when sufficient data is available. Regarding the discussion of the VC

bound, two extremes arise from Equation 2.4: the simplest models make the VC confi-

dence small but the empirical risk might be notably high whereas, families of functions

extremely complex reduce the training error at the price of large square root term. How-

ever, the best classifier is usually in the middle (Figure 2.3): it minimizes the empirical

risk – to learn from data– while keeping relatively simple models – to prevent overfitting

–.
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To summarize, the practical implications of the preceding analysis for the construction

of a machine learning algorithm are:

1. Find a function with small empirical error.

2. Try to keep the CV confidence small by means of (i) reduce VC dimension of the

classifier and (ii) use as many training patterns as possible.

In spite of its elegance, the VC theory can be hardly applied in practice because the

upper bound in Theorem 2.1 might be higher than one, the VC dimension cannot be

easily computed in some cases (for example, in neural networks) or even, it can be

infinite (as in the case of the nearest neighbor) [13]. Nevertheless, VC bounds provide

helpful insights into the machine learning problems that should be taken into account

in the design of an efficient classifier.

A practical approach to the VC bound is to consider, besides the empirical risk, a term

which penalizes the complexity of the model. The new term is so-called regularization

term and the learning algorithm minimizes the regularized error or risk defined as,

Rreg(f) = λΩ(f) +Remp(f). (2.5)

Where Ω : U → R+ is the regularizer which quantifies somehow the complexity of a

classifier f . The regularization constant λ > 0 establishes a trade-off between minimizing

the empirical error and minimizing the regularizer. It is expected that appropriate

choices of λ and Ω will provide a classifier f that also minimizes the VC bound. In

practice, the regularizer Ω usually is fixed beforehand and λ is adjusted in the validation

phase. Even though regularization was firstly introduced by Tikhonov and Arsenin

to solve ill-posed problems [15], it has been widely used in different fields of machine

learning to control the complexity of the model and to protect it against overfitting or

underfitting. Indeed, Section 2.3.2 will show how the regularized risk functional can be

successfully applied to linear models leading to the well-known Support Vector Machines.
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The statistical theory developed further up establishes a group of guidelines to have

in mind in the design cycle of a classifier and it suggests that accurate and simple

models should provide stability and good generalization. This point of view brings

up other benefits derived from the contributions presented in this thesis beyond the

computational time savings. From one hand, algorithms proposed in Chapters 3 and 4

attempt to reduce the dimension of the original input space by removing noisy features

which can perturb the learning process and hence, they can be very helpful to achieve

high accuracy and good generalization; on the other hand, the new classification method

presented in Chapter 5 is based on the local minimization of the regularized risk in order

to reach high level of generalization. Therefore, the three approaches group together

under the umbrella of generalization.

2.2 Feature Selection Fundamentals

Increasing the dimensionality of patterns without control is not a good practice in ma-

chine learning because it may end in an unmanageable situation for the learning algo-

rithm in which the relevant information is immersed in a sea of possibly irrelevant, noise

and redundant features (attributes or variables). Feature selection faces this problem

trying to answer when a feature is informative in order to select a subset of relevant

features to construct the final model. The incorporation of a successful feature selection

technique in a machine learning cycle can draw three main benefits:

• Substantial gain in computational efficiency, especially important for any

application that requires classifier execution in real-time as the one presented in

Chapter 5.

• Scientific discovery by determining which features are most correlated with the

class labels, which may in turn reveal unknown relationships among features.

• Reduction of the risk of overfitting especially if too few training instances are

available. This problem is particularly serious in situations with high dimension-

ality relative to training set sizes.

Document categorization [16], prosthesis control [17, 18], cardiac arrhythmia classifi-

cation [19], fMRI analysis, gene selection from microarray data [2, 20–22], real-time
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Figure 2.4: Interaction between the feature selection method and the classifier in for
each feature selection technique: 2.4(a) filter, 2.4(b) wrapper and 2.4(c) embedded.

Figure adapted from [21].

identification of polymers [23], and credit card fraud detection [24] are some real-life

domains where these gains are especially meaningful.

Before going into details, it is worth distinguishing feature selection methods from other

attempts to reduce the dimension of the data like projection techniques or com-

pression procedures. Among the first group, well-known algorithms like Principal

Component Analysis (PCA) [1] or Fisher Discriminant Analysis (FDA) (Section 2.3.1),

extracting new features as linear combinations of the original ones, can be found; the

second category is composed of those algorithms that simply reduce the storage require-

ments of the data ignoring the ultimate objective of classification. In any case, feature

selection algorithms are a completely different approach since they preserve the original

representation of the attributes to favor the understandability of the final model.

The unquestionable importance of the feature selection paradigm has caused such bar-

rage of methods during the last fifteen years that an exhaustive description of all of them

is unapproachable. Hence, the aim of what follows is to supply a general perspective

as the starting point of the methods proposed in Chapters 3 and 4. Feature selection

methods can be categorized into three groups depending on the interaction between the

feature selection process and the classifier. Figure 2.4 illustrates how the search in the

feature space coexists with the learning model in each of the categories of this taxonomy:

filter, wrapper and embedded techniques.

2.2.1 Filter Methods

Feature selection only considers the intrinsic properties of the data and it is performed

independently of the classifier as shown in Figure 2.4(a). Many filter techniques rank

features according to their correlation with the class label (relevance) ignoring possi-

ble dependences among features (redundancy), hence their name: univariate filter



Chapter 2. Supervised Classification 22

methods. This way, features with highest scores are preferable and they will be used

to train the final classifier. Two of the most representative metrics to score variables are

described below: the Pearson correlation coefficient and mutual information.

The Pearson correlation coefficient is simple and has it has been shown to be

effective in a wide variety of feature selection methods, including Correlation based

Feature Selection (CFS) [25] described below and Principal Component Analysis [1].

Formally, the Pearson correlation coefficient between two random variables Xi and Xj

is defined as

ρij =
cov(Xi, Xj)√

var(Xi)var(Xj)

where cov is the covariance of variables and var is the variance of each variable. The

sample correlation is calculated as

ρ̂ij =

∑N
k=1 (xik − X̄i)(x

j
k − X̄j)√∑N

k=1 (xik − X̄i)2
∑N

k=1 (xjk − X̄j)2

(2.6)

where, as before, N is the number of samples, xik is the k-th sample of random variable

Xi, and X̄i is the sample mean of the random variable Xi.

Mutual Information is a nonlinear statistic which can capture nonlinear dependen-

cies between variables unlike the Pearson correlation coefficient which only measures

linear relationships between two random variables (see Figure 2.5). Intuitively, given

two random variables Xi and Xj , mutual information measures, on average, how much

information Xi and Xj share that is, how much the knowledge of one of the random

variables can reduce the uncertainty about the other; by contrast, Pearson correlation
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Figure 2.5: An example where the Pearson correlation does not capture the nonlinear
relation among features. Features x and y were generated as a function of t uniformly
distributed in the interval (−1, 1) and according to x = sin(2πt) and y = cos(2πt).
Although knowing x gives valuable information about y, the correlation between these

two features is −0.014.

indicates how much variance in Xi can be explained by Xj . Formally, the mutual infor-

mation between the random variables Xi and Xj is defined as

I(Xi;Xj) =

∫ ∫
P (Xi, Xj) log

P (Xi, Xj)

P (Xi)P (Xj)
dXidXj . (2.7)

Mutual information properties are derived from the definition above:

I(Xi;Xj) ≥ 0

I(Xi;Xj) = I(Xj ;Xi).

If Xi and Xj are independent, knowing Xi does not provide any information about

Xj being their mutual information equals to zero – this implication is also true in

the other direction: mutual information is zero only for independent random variables
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[26] –. Conversely, if both variables are identically distributed, knowing Xi determines

completely Xj , and vice versa, and mutual information is maximum.

Computing mutual information is based on estimating the probability distributions

P (Xi), P (Xj) and P (Xi, Xj). For discrete features, Equation 2.7 can be expressed

as a summation and the mutual information calculation is straightforward,

I(Xi;Xj) =
∑
wi

∑
wj

P (Xi = wi, Xj = wj) log
P (Xi = wi, Xj = wj)

P (Xi = wi)P (Xj = wj)
. (2.8)

By contrast, estimating P (Xi), P (Xj) and P (Xi, Xj) for continuous variables can be

highly complicated. The continuous distributions can be discretized simplifying Equa-

tion 2.7 to Equation 2.8, but sometimes find out the appropriated discretization can be

extremely costly being a possible alternative to apply other density estimation methods

like maximum likelihood, bayesian estimation or non-parametric techniques [1].

Since univariate filter algorithms score variables separately from each other, they do

not achieve the goal of finding combinations of variables that give the best classification

performance. It has been shown that simply combining good variables does not necessary

lead to good classification accuracy [8, 27, 28] namely:

• Features that are not relevant by themselves may become relevant in the presence

of others.

• Features that are individually relevant may not be so useful in the presence of

others because of possible redundancies.

An example showing a variety of situations in which the univariate filters can fail is

given in Figure 2.6 [29]. While in Figure 2.6(a) feature X1 contains all the information

to separate both classes and variable X2 is uninformative, simply a 45 degree rotation of

the input space yields Figure 2.6(d) in which both features are informative. Figure 2.6(b)

shows an example in which a helpful feature may be irrelevant by itself: trying to

separate the problem only taking into account the informative feature X2 would not

produce as good performance as the oblique hyperplane in the bidimensional space being
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(a) Vertical separation with feature
X2 uninformative.

(b) Oblique separation with feature
X2 uninformative.

(c) Chessboard pattern. None of
the projections are informative.

(d) 45 degree rotation of 2.6(a).
Both features are informative.

(e) Same projections than 2.6(d). (f) Same projections than 2.6(d).

Figure 2.6: Binary and bidimensional classification examples to illustrate some defi-
ciencies of univariate filter methods. Red and blue points represents each of the classes.

The projections of the classes on the axes are also shown.

the projection of feature X1 uninformative. Going one step further, in Figure 2.6(c)

the projections of both features are uninformative whereas the problem can be easily

separated in the bidimensional space. Finally, Figures 2.6(e) and 2.6(f) illustrate that

correlation does not imply redundancy. The projections of the classes on the axes are the

same as in Figure 2.6(d) and, while in Figure 2.6(f) the features are correlated and are

indeed redundant (the elimination of one of the features does not imply a worsening in

the classification accuracy), in Figure 2.6(e) both features are anti-correlated but needed

for a perfect separation.

One common improvement direction for univariate filter algorithms is to consider depen-

dencies among variables leading to multivariate filter methods. These approaches

tend to achieve better classification results than univariate solutions because their as-

sumptions about feature independence are not so strict. Some of the most popular

algorithms falling into this group are described in what follows.
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Correlation based Feature Selection was proposed by Hall [25] as a method to rank

feature subsets rather than individual features. The heuristic is based on the hypothesis

that good feature subsets are those consisting of features highly correlated with the

class, yet uncorrelated with each other. The heuristic for a subset S of size M̃ can be

formalized as,

MeritS =
M̃ ρ̄cf√

M̃ + M̃(M̃ − 1)ρ̄ff

(2.9)

where ρ̄cf is the average feature-class correlation and ρ̄ff is the average feature-feature

correlation. The numerator in Equation 2.9 can be interpreted as the relevance term

whereas the denominator represents the redundancy factor. Although the relevance

class-feature is measured independently for each feature, it has been shown that CFS

can identify useful subsets of features with moderate levels of redundancy.

A crucial point of the CFS algorithm is how to select the candidate subsets to be

the optimal. In view of the impossibility to evaluate all the possible 2n subsets, CFS

searches in the feature subset space using a best first search starting from an empty

set of features. At each step of the algorithm, all possible single features expansions

are considered and that with the highest evaluation (Equation 2.9) is chosen. If at

some point the expansion does not entail any improvement, the search draws back and

the next best subset is expanded. Obviously, the best first search will examine all the

possibilities if no criterion is imposed to limit the search, thus in practice the number of

returns is bounded by a parameter of the algorithm.

Streamwise Feature Selection (SFS) [30] selects a feature if the benefit of adding it

to the model is greater than the increase in the model complexity. SFS can be used in a

statistical setting using a t or F statistic yielding the α-investing procedure. Intuitively,

this approach dynamically modifies the threshold on the error reduction required to

add a new feature in order to reduce the risk of overfitting. Mathematically, this idea

is implemented by controlling the False Discovery Rate (FDR) that is, the fraction

of features that, when added to the model, reduce its predictive accuracy. This way,
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α-investing adds as many features as possible subject to the FDR bound giving the

minimum out-of-sample error. One of the main advantages of this algorithm is that it

considers features sequentially for addition to a model, making unnecessary to know all

the features in advance. Furthermore, as it will be seen in the experimental section of

Chapter 3, it is able to reduce the dimension of the problem drastically while getting

acceptable accuracies.

minimum Redundancy Maximum Relevance criterion (mRMR) [31] has been

a significant advance in multivariate feature selection methods based on mutual infor-

mation. The aim of any feature selection algorithm based on mutual information is to

find a subset of features X̃ = {X̃1, X̃2, . . . , X̃M̃} of size M̃ < M which jointly have the

largest dependency on the target class Y :

maxD(X̃, Y ) , D = I
({
X̃i, i = 1, . . . , M̃

}
;Y
)
.

This criterion, so-called Maximal Dependency (MaxDep), is theoretically opti-

mum but it is often unfeasible to compute the joint density functions of all features

and of all features with the class since (i) the number of training samples is usually not

enough and (ii) the high computational load. Therefore, the use of MaxDep is restricted

to problems with many patterns and few dimensions.

One alternative to making the MaxDep approach practical is Maximal Relevance

(MaxRel) feature selection [31]. This approach, categorized into the univariate filer

methods, selects those features that have the highest relevance (mutual information)

with the target class. As explained above, the main drawback of univariate filters is not

accounting for redundancy among features. The mRMR criterion overcomes this limita-

tion by choosing a subset of features X̃ with both, minimum redundancy (approximated

as the mean value of the mutual information between each pair of variables in the sub-

set) and maximum relevance (estimated as the mean value of the mutual information

between each feature and the target class):
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max
X̃

 1

|X̃|

∑
X̃i∈X̃

I(Xi;Y )− 1

|X̃|2
∑

X̃i,X̃j∈X̃

I(X̃i; X̃j)

 . (2.10)

Again, the evaluation of Equation 2.10 for all the possible subsets of features is unfeasible.

The mRMR authors propose a greedy algorithm that, assuming that the optimal subset

of size m− 1, X̃m−1, has be found, forms the subset of size m, X̃m, according to

max
Xj∈X\X̃m−1

I(Xj ;Y )− 1

m− 1

∑
X̃i∈X̃m−1

I(X̃i;Xj)

 .

In the first iteration of the algorithm, the feature with the highest relevance with the class

is chosen. The previous formulation of the mRMR criterion is also known as the Mutual

Information Difference (MID) and it is the most used in practice. Nevertheless,

the quotient of the relevance and redundancy term, so-called Mutual Information

Quotient (MIQ), has also been successfully applied to microarray expression data

[20].

ReliefF [32] evaluates the quality of a feature according to how well it distinguishes

between instances that are near to each other. Specifically, the algorithm starts by

identifying the K closest samples of the same class (nearest hits) and the K closest

samples of a different class (nearest misses) of each training pattern xi. Then, only

considering the j-th feature, the sum of distances between the examples and their nearest

misses is compared to the sum of distances of their nearest hits as follows,

C(Xj) =

∑N
i=1

∑K
k=1|x

j
i − x

j
Mk(i)|∑N

i=1

∑K
k=1|x

j
i − x

j
Hk(i)|
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where Mk(i) and Hk(i) are the k-the nearest miss and hit of pattern xi, respectively.

Therefore, features with the highest scores are those that keep close samples in the same

class while they get away from samples of different classes.

2.2.2 Wrapper Methods

Wrappers use search techniques to select candidate subsets of variables and evaluate

their fitness based on classification accuracy as presented in Figure 2.4(b). Wrapper

framework requires to specify how the search in the space of all possible feature subsets

is conducted, the underlying classifier and how the misclassification error will be used

to guide the search. Wrapper methods are usually criticized because they seem a brute-

force approaches involving high computational load though several search strategies

have been proposed to reduce their complexity; best-first [33], simulated annealing [34]

or genetic algorithms [35, 36] among others. Regardless of the algorithm, the search

can be performed either adding iteratively the most relevant features (forward) to an

initially empty subset, or taking the whole set of features as starting point and removing

sequentially those variables less informative (backward).

2.2.3 Embedded Methods

Feature selection is accomplished together with the training of the classifier by incor-

porating the feature selection step in the classifier’s objective function (or algorithm)

as illustrated in Figure 2.4(c). Examples per excellence of embedded feature selection

techniques are decision trees with axis-parallel splits (Section 2.3.3). However, one of

the simplest and more efficient methods in line with embedded methods and Support

Vector Machines, studied more in depth in Section 2.3.2, is the Recursive Feature Elim-

ination Support Vector Machine algorithm (RFE-SVM) proposed by Guyon et al. [37]

and successfully applied to problems of gene selection for microarray data [37–39].

Recursive Feature Elimination Support Vector Machine. Given a classification

problem in a M -dimensional space, the number of final dimensions M̃ < M should be

specified at the beginning of the algorithm. The aim of the algorithm is to choose the
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subset of M̃ features which leads to the largest margin in the SVM classifier. The search

among all the possible subsets of size M̃ is a combinatorial problem extremely costly,

especially when M is high. Thus, the RFE-SVM method greedily constructs the subset

of size M̃ using a backward procedure: at each iteration in the SVM training, the input

dimension that reduces the margin the least is removed until only M̃ dimensions remain.

A pseudocode of this method is presented in Algorithm 1. An alternative to speed up

the execution time of the algorithm is to remove more than one feature at each iteration

(step 4). A study of the SVMs model reveals that, while finding out the feature reducing

the least the margin is straightforward for linear SVMs, this discovery is not so easy in

the nonlinear case being necessary some simplifications about the SVM model [37].

Algorithm 1 Recursive Feature Elimination Support Vector Machine.

1: Inputs: Subset of training patterns S in a M -dimensional space, new dimension
M̃ .

2: repeat
3: Training a linear/nonlinear SVM.
4: Remove the feature that reduces the margin the least.
5: until M̃ features are left
6: Outputs: subset of M̃ features.

The strengths and weaknesses of each of the three feature selection approaches are

summarized in Table 2.1 adapted from [21]. These characteristics can be decisive when

feature selection wants to be applied to certain domains. Among large-scale and high-

dimensionality problems, filter approaches usually are preferred due to their simplicity

and good scalability. In particular, univariate strategies seem the perfect candidate for

large-scale problems and, in fact, this is true but their little competitiveness in terms of

classification accuracy makes it necessary to resort to multivariate filters. The algorithm

proposed in Chapter 3 is in line with multivariate filter techniques and it is especially

suitable for large-scale domains.

2.3 Learning Algorithms

The diversity of classification models with different assumptions about the characteristics

of the data can be kept in the non free lunch theorem context. Quoting Ho and
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Group Advantages Disadvantages

· Fast · Ignores feature dependences

Filter univariate · Scalable · Ignores interaction with the
classifier

· Independent of the classifier

· Models feature dependences · Slower than univariate tech-
niques

Filter multivariate · Independent of the classifier · Less scalable than univariate
techniques

· Lower computational com-
plexity than wrapper methods

· Ignores interaction with the
classifier

· Interacts with the classifier · Risk of overfitting

Wrapper · Models feature dependencies · Classifier dependent

· Computationally expensive

· Interacts with the classifier · Classifier dependent

Embedded · Lower computational com-
plexity than wrapper methods

· Models feature dependencies

Table 2.1: Main advantages and disadvantages of the different feature selection ap-
proaches.

Pepyne: “A general-purpose universal optimization strategy is theoretically impossible,

and the only way one strategy can outperform another is if it is specialized to the specific

problem under consideration”3. A common strategy used in practice is to choose the best

classifier in terms of classification accuracy among a set of candidates. Other features

such as simplicity or interpretability can be also taking into account in order to evaluate

the goodness of the model as discussed in Chapter 1.

A taxonomy of the classification models can be formed as a function of the kind of

borders used to distinguish different regions in the input space, also known as decision

boundaries. Figure 2.7 shows three of the most popular decision boundaries: linear,

axis-parallel splitting and nonlinear. According to this categorization, it is said that

a classification problem is linearly separable if it can be completely separated by a

hyperplane, being nonlinearly separable otherwise. While the classification borders

3“Simple Explanation of the No-Free-Lunch Theorem and Its Implications”, 2002.
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(a) (b) (c)

Figure 2.7: An example of different decision boundaries for a binary classification
task. Figure 2.7(a) linear; Figure 2.7(b) axis-parallel split; Figure 2.7(c) nonlinear.

parallel to the axes of the feature space are characteristic of decision trees, many differ-

ent learning algorithms yield linear and nonlinear decision boundaries. A description of

all these methods is beyond the scope of this thesis and therefore, only a brief analysis

of those classifiers used throughout this work are presented namely: Fisher Linear Dis-

criminant (Section 2.3.1), Support Vector Machines (Section 2.3.2) and decision trees

(Section 2.3.3).

For simplicity, in what follows the term of classification problem will refer to binary clas-

sification problems (Y = {−1, 1}) although the Fisher Linear Discriminant and decision

trees admit a direct multiclass formulation. Multiclass Support Vector Machines can be

implemented following the one-against-others [40] or the one-against-one [41] strategies.

2.3.1 Fisher Discriminant Analysis

Fisher Discriminant Analysis belongs to the family of Linear discriminants, which pro-

duce linear decision boundaries by modeling the output y of the classifier as a linear

combination of the input patterns x,

ŷ = f(x) = w · x+ b (2.11)

beingw the weight vector and (−b) the threshold or bias. This way, the classification

criterion divides the space into two regions corresponding to the side of the hyperplane

in which the pattern x falls. That is, if f(x) ≥ 0 the pattern x is assigned to the positive

class, being labeled as negative otherwise. The linear discriminant function defined by
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w and b can be determined in different ways. In particular, the Fisher Discriminant

Analysis (also known as Fisher Linear Discriminant Analysis) tries to maximize

the separation between the projected means of each class, µ̃+ and µ̃−, while minimizing

the variance within each projected class, s̃2
+ and s̃2

−. This idea can be formally expressed

as,

max J(w) =
‖µ̃+ − µ̃−‖2

s̃2
+ + s̃2

−
, (2.12)

where the means, the projected means and the variance within each projected class are

defined as,

µ+ = 1
N+

∑
x∈S+

x µ− = 1
N−

∑
x∈S− x

µ̃+ = 1
N+

∑
x∈S+

w · x µ̃− = 1
N−

∑
x∈S− w · x

s̃2
+ = 1

N+

∑
x∈S+

(w · x− µ̃+)2 s̃2
− = 1

N−

∑
x∈S− (w · x− µ̃−)2

being S+ and S− the subsets of training patterns corresponding to the positive and

negative labels, respectively. Writing Equation 2.12 in terms of w,

max J(w) =
wTSBw

wTSWw
(2.13)

being the matrices SB and SW the Between and Within scatter matrices:

SB = (µ+ − µ−) (µ+ − µ−)T (2.14)

SW =
∑
x∈S+

(x− µ+) (x− µ+)T +
∑
x∈S−

(x− µ−) (x− µ−)T . (2.15)

It can be shown that the optimal solution wFDA of Equation 2.13 is obtained either as

the leading eigenvector of S−1
W SB or in a closed form as wFDA = S−1

W (µ+ − µ−) [42].
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As the rank of matrix SB is at most one, the direction wFDA projects the data into a

1-dimensional space.

Up to this point, the Fisher direction wFDA can be interpreted as a way to reduce the

dimensionality of the original space but it does not represent a discriminatory function

by itself since Fisher Discriminant’s assumption is that the discriminatory information

is in the mean of the data, the decision criterion consists in, once the unlabeled pattern

has been projected, assigning the class of the closest projected mean.

A remarkable fact about the Fisher Discriminant is that it is the Bayes’ optimal solution

if the two classes are gaussian distributions with equal covariance matrix [42].

2.3.2 Support Vector Machines (SVMs)

Support Vector Machines have become one of the most popular classifiers nowadays

due to their good performance in many domains besides their solid mathematical basis.

Introduced by Boser et al. [43], SVMs were initially designed to solve binary classifica-

tion problems but these days the SVM framewok is widespread in domains like novelty

detection [44], clustering [45] or feature selection and extraction [44], among others. In-

deed, Chapter 4 deals with the adaptation of classical feature selection and extraction

methods like PCA [1] or the FDA (Section 2.3.1) to the SVM structure.

Conceptually, SVMs are linear classifiers acting over special features and based on the

statistical learning theory addressed in Section 2.1. As linear model, the understand-

ing of the SVM’s grounds requires to go back to the perceptron model introduced by

Rosenblatt [1]. Thought based on the imitation of the synaptic behavior of a neuron,

from the machine learning perspective the perceptron attempts to find an hyperplane

that perfectly separates all the points in the training set. Therefore, following a linear

model f(x) = w · x + b and assuming that the patterns are labeled as +1 or −1, zero

classification error rate implies,

yi (w · xi + b) ≥ 0 ∀i.
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Figure 2.8: An example of two separating hyperplanes valid for the perceptron model.

The derivation of SVMs comes from the observation that two (or more) hyperplanes

separating correctly all the training points are equally good for the perceptron criterion,

not matter how they divide the input space. However, in practice not all the models

have the same generalization capability when applied to out-of-training samples. A clear

example of this situation is presented in Figure 2.8 in which both hyperplanes, H1 and

H2, classify correctly all the training samples but H1 seems more stable than H2: the

presence of noise in the training data or even small changes in the distribution of unseen

patterns can provoke a degradation in the test performance of H2 as there are some

training samples close to the hyperplane. On the contrary, the hyperplane H1 is more

robust in these circumstances.

Then, it is reasonable to define the optimal hyperplane as the one separating the classes

with maximal distance between the hyperplane and the nearest data point. This distance

is known as margin and can be written as,

m = min
i

|w · xi + b|
‖w‖2

i = 1, . . . , N.

Assuming a linearly separable problem, above equation is equivalent to

m = min
i

yi (w · xi + b)

‖w‖2
i = 1, . . . , N,
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(a) (b)

Figure 2.9: Figure 2.9(a) Maximum margin hyperplane for a binary classification
problems. Figure 2.9(b) Maximum margin hyperplane and slack variables for the soft

SVM formulation.

and the idea of maximizing the margin can be expressed as max-min optimization

problem,

max
w,b

min
i

yi (w · xi + b)

‖w‖2
i = 1, . . . , N. (2.16)

Without loss of generality and to ensure uniqueness, w and b can be rescaled enforcing

that the closest point to the optimal hyperplane lies in one of the hyperplanes w ·x+b =

±1. Consequently, every training point xi verifies yi(w · xi + b) ≥ 1 and the margin is

equal to 2
‖w‖2 ; that is, maximizing the margin means to minimize ‖w‖2. Under these

assumptions, Equation 2.16 can be restated as a more tractable optimization problem:

min
w,b

1

2
‖w‖22 (2.17)

s.t. yi(w · xi + b) ≥ 1 i = 1, . . . , N. (2.18)

Figure 2.9(a) shows an example of the maximal margin hyperplane obtained by the

SVM model. Training points on the margin have been stressed in the illustration. These

samples, called support vectors, are especially relevant for the SVM model because

they define the separating hyperplane and they are the most difficult to classify.

Thus far, only linearly separable problems have been tackled and strict margin conditions

have been imposed, restricting the applicability of the model to non-realistic problems
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as the one presented in Figure 2.9(a).

In those cases in which the underlying model is linear but the training set is disturbed by

some noise, the above model fails. The incorporation of certain flexibility in the margin

requirements was suggested by Cortes and Vapnik [46] to alleviate this problem. Each

training pattern xi has associated a scalar variable ξi, called slack variable, which, in

a nutshell, quantifies how much xi violates the margin requirement (see Figure 2.9(b)).

The model proposed by Cortes and Vapnik is known as soft margin SVM in contrast to

the hard margin SVM stated by Equation 2.18. Soft margin SVM can be formalized

as,

min
w,b

1

2
‖w‖22 + C

N∑
i=1

ξi (2.19)

s.t. yi(w · xi + b) ≥ 1− ξi (2.20)

ξi ≥ 0 i = 1, . . . , N. (2.21)

The above equation can be compacted as

min
w,b

1

2
‖w‖22 + C

N∑
i=1

|1− yi(w · xi + b)|+ (2.22)

where |1− yi(w · xi + b)|+ takes the value of 1− yi(w · xi + b) only when it is positive

and zero otherwise.

The presence of the slack variables provides room to handle the noisy data but only

up to point. Moreover, the new parameter C ∈ [0,∞) establishes a trade-off between

the two objectives of the model: maximizing the margin while classifying correctly as

many training patterns as possible. Large values of C focus the attention on reducing

the violations whereas small values of C overweight the large-margin to the detriment of

the classification effectiveness. Obviously, these extreme values of C can be identified,

respectively, with the overfitting and underfitting phenomena. To conclude, it is worth

noting how Equation 2.22 matches with the regularization risk minimization raised in

Section 2.1.2 (Equation 2.5).
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Finally, learning the SVM model set out in Equation 2.21 requires, inevitably, to solve

an optimization problem. From this point of view, one of the most attractive properties

of the SVM problem is that it can be categorized into the group of convex optimiza-

tion problems widely studied in the literature [47, 48]. The convexity of the SVM

formulation, derived from the convexity of the objective function and the linearity of

the constraints, allows not only to guarantee the existence of a global minimum but

also to solve an alternative problem in the dual space 4. To do so, the Lagrangian is

constructed,

L(w, b, ξ,α,β) =
1

2
‖w‖22 + C

N∑
i=1

ξi +
N∑
i=1

αi (1− ξi − yi(w · xi + b))−
N∑
i=1

βiξi, (2.23)

where αi ≥ 0 and βi ≥ 0 are the Lagrange multipliers. The optimal primal variables

(w∗, b∗, ξ∗) minimize the Lagrangian by making their gradients equals to zero,

∂L

∂w
= w∗ −

N∑
i=1

αiyixi = 0 (2.24)

∂L

∂b
= −

N∑
i=1

αiyi = 0 (2.25)

∂L

∂ξi
= C − αi − βi = 0. (2.26)

After some substitutions of Equations 2.24-2.26 into Equation 2.23, the SVM optimiza-

tion problem is transformed to the following convex dual optimization problem,

max
α

−1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi · xj +

N∑
i=1

αi (2.27)

s.t.

 0 ≤ αi ≤ C ∀i∑N
i=1 αiyi = 0

.

And the primal variables w∗ and b∗ can be worked out

4The optimization notions laying behind these results are out of the scope of this thesis, a detailed
review of convexity optimization theory can be found in [49].
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w∗ =

N∑
i=1

αiyixi, (2.28)

b∗ = (yi −w∗ · xi) for some xi, (2.29)

wherew∗ has been directly obtained from Equation 2.24 and b∗ is recovered by observing

that αi’s greater than zero are precisely the support vectors lying in the margins yi(w ·

xi+ b∗) = 1. Any pattern xi with αi > 0 can be used to compute b∗, though in practice

the average over the support vectors is considered: b∗ = 1
#{αi>0}

∑
αi>0(yi −w∗ · xi).

2.3.2.1 Introducing Kernels: The Kernel Trick

The soft margin SVMs have solved the problem of noisy linear datasets but it is still

a linear model that probably fails when the data is nonlinearly separable by nature.

As solution, Boser et al. suggested a way to extend the SVM framework to nonlinear

classifiers with slight modifications into the linear SVM formulation via the kernel trick.

Intuitively, the kernel trick maps the input samples into a higher-dimensional space

where the maximal separating hyperplane described above is calculated. Therefore,

linear classification in the new space may be equivalent to non-linear classification in

the original space if the mapping function is nonlinear. A naive example of how the

kernel trick can work in non-linearly separable problems is presented in Figure 2.10.

The general scheme of the kernel trick applied to SVMs is shown in Figure 2.11 (adapted

from [50]) and it consists of two steps:

1. A non-linear mapping Φ(x) from the input space X to the high dimensional feature

space F that is hidden for both sides (input and output).

2. The construction of the large-margin hyperplane in the feature space F .

The theoretical justification of the first step finds its place in the Cover’s theorem5

and, the second step is based on the structural risk minimization of SVMs which plays

5“A complex pattern-classification problem, cast in a high-dimensional space nonlinearly, is more
likely to be linearly separable than in a low-dimensional space, provided that the space is not densely
populated.“ Cover, T.M. , Geometrical and Statistical properties of systems of linear inequalities with
applications in pattern recognition, 1965.
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Figure 2.10: An example of how mapping the nonlinear data into a higher dimen-
sional space can make the problem linearly separable. The original problem (left) is
a bidimensional problem in which the positive class is formed by those points veri-
fying X2

1 + X2
2 ≤ 1 and the negative class are the points located outside the circle.

This problem is clearly nonlinear but, if the two dimensional input space defined by
(X1, X2) is transformed to the three-dimensional space given by Φ1(x) = X2

1 ,Φ2(x) =
X2

2 ,Φ3(x) =
√

2X1X2), the problem turns out to be linearly separable in the larger
space (right).

Input space Feature space

Hyperplane

Output space

Kernel Trick

Figure 2.11: Scheme of the kernel trick applied to the SVM problem.

a vital role in this scheme to avoid overfitting in those cases in which the dimension of

the feature space is extremely high or even infinite.

The main advantage of the kenel trick is that there is no need to compute the mapping

function Φ explicitly but it requires to define the inner product in the feature space F

by means of a kernel function K. Given two patterns xi and xj in the input space

X , the kernel function K of xi and xj is defined as,

Kij : X × X −→ R

Kij = K(xi,xj) = Φ(xi) · Φ(xj).
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To guarantee the effectiveness of the kernel trick, Kij has to be expressed in terms of xi

and xj disregarding the implicit dependence on Φ. In addition, the kernel function must

satisfy the Mercer’s theorem conditions to guarantee that it defines an inner product in

F [51]. In practice, it is not necessary to have a depth knowledge about the mathematical

grounds around Mercer’s theorem, it is enough to assure that the kernel matrix K

formed by the inner product between every pair of training samples

K =


K11 K12 . . . K1N

K21 K22 . . . K2N

...
...

...
...

KN1 KN2 . . . KNN


is positive semi-definite and its decomposability into an inner product of mappings is

supported by the Mercer’s theorem.

Going into details, the kernel trick can be straightforwardly applied to SVMs observing

the dual optimization problem raised in Equation 2.27: the dot product xi · xj can be

replaced by a kernel function Kij . The new dual optimization problem is,

max
α

−1

2

N∑
i=1

N∑
j=1

αiαjyiyjKij +
N∑
i=1

αi (2.30)

with the same box constraints. Now the optimal hyperplane w∗ can be expressed as,

w∗ =
N∑
i=1

αiyiΦ(xi). (2.31)

Unfortunately, as the solution w∗ depends on the generally unknown mapping function

Φ(xi) it can not be explicitly computed as in the linear model. In any case, what it is

really important is the decision function and it can be expressed only in terms of inner

products in the feature space:
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Kernel Function Parameters Formula

Linear None xi · xj

Polynomial d: polynomial degree (xi · xj)d

Gaussian σ: kernel width exp
{
−‖xi−xj‖

2
2

2σ2

}
Table 2.2: Most used kernel functions.

ŷ = f(x) = sgn

((
N∑
i=1

αiyiΦ(xi)

)
· Φ(x) + b∗

)

= sgn

(
N∑
i=1

αiyiK(xi,x) + b∗

)
. (2.32)

At this moment, it is worth mentioning that the kernel trick can be similarly applied to

any learning algorithm which can be expressed in terms of dot products in the feature

space. The framework in Figure 2.11 holds replacing the second step corresponding to

the large-margin hyperplane by the method to be kernelized.

The most known kernel functions are given in Table 2.2. Certainly, the decision border

of the SVM classifier depends on the parameters used but, especially, on the kernel

type. The boundary can be linear as in Figure 2.7(a) or highly nonlinear as presented

in Figure 2.7(c) thus, a careful search of the proper SVMs model parameters must be

accomplished in the model selection phase (Figure 1.1). Of course, the use of the linear

kernel yields the linear soft margin SVMs introduced in Section 2.3.2, but in practice

the Gaussian kernel is the most used function due to its versatility.

2.3.2.2 SVM solvers

It has been seen how the SVM model can be formulated as a convex optimization prob-

lem, either in the primal or in the dual space. Each of these approaches entails certain

advantages and drawbacks that should be considered when working with a particular

problem. On the one hand, the dual problem has simplified the constraints of the primal

version but, on the other hand, it has made the quadratic term of the objective function

more complicated.
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Although SVM classifiers will be used in Chapters 3 and 5, the underlying optimization

solver is irrelevant for the contents developed throughout this thesis. In Chapter 3 a

linear SVM will be used as a black box receiving samples and returning the predicted

classification label after applying the proposed feature selection algorithm. Regarding

the algorithm presented in Chapter 5, the understanding of its motivation as well as the

interpretation of its results only require certain notions about the SVM model expounded

in the preceding sections. Therefore, the standard software for SVMs implementing two

of the state-of-the-art methods will be used, namely: the LIBLINEAR library [52]

for linear SVMs and the LIBSVM package [53] for nonlinear kernels. Both algorithms

solve the dual optimization problem, LIBLINEAR through dual coordinate descent [54]

and LIBSVM uses the Sequential Minimal Optimization (SMO) strategy proposed by

Platt [55] and consisting of the decomposition of the quadratic problem in smaller sub-

problems which can be efficiently solved and pieced together. Furthermore, the LIBSVM

package incorporates some improvements to reduce the number of kernel evaluations and

to accelerate the convergence. These binary SVM solvers have also been adapted to mul-

ticlass classification problems using the one-against-others strategy [40] in the case of

LIBLINEAR and the one-against-one scheme [41] in the case of LIBSVM.

Another outstanding algorithm appearing in the last years and resulting very efficient

for large-scale data is the Pegasos algorithm introduced by Shalev-Schwartz et al.

[56] which solves the linear SVM problem in the primal space. It is one of the keystones

of the algorithm suggested in Chapter 5 and more details about it are given in what

follows. The Pegasos algorithm is an efficient and practical method for training linear

SVMs in large-scale datasets via stochastic subgradient descent (SGD) method.

The Pegasos algorithm minimizes the objective function of a linear SVM in the primal

space,

min
w

λ

2
‖w‖2 +

1

N

∑
(x,y)∈S

L (w; (x, y)) (2.33)

where L (w; (x, y)) represents the loss function previously used in Equation 2.22,
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L (w; (x, y)) = |1− yi(w · xi)|+. (2.34)

Note that in the objective function of Pegasos the parameter C –used by LIBLINEAR

and LIBSVM software– has been replaced by λ; the equivalence between these two

parameters is immediate: C = 1
λN . To solve the problem in Equations 2.33 and 2.34, the

Pegasos algorithm given in Algorithm 2 alternates between stochastic gradient descent

steps and projection steps:

• Stochastic gradient descent. On iteration t of the algorithm, a set At ⊂ S of

size k is chosen. Then, the objective function 2.33 is approximated by,

min
w

f(w;At) = min
w

λ

2
‖w‖2 +

1

k

∑
(x,y)∈At

L (w; (x, y).) (2.35)

The update of the w based on the gradient descent method is given by wt+1
2

=

wt − ηt∇w
t , where ηt = 1

λt is the learning-rate and ∇w
t is the subgradient of

f(w;At) with respect to w on the iteration t,

∇w
t = λwt −

1

|At|
∑

(x,y)∈A+
t

yx (2.36)

beingA+
t the set of samples inAt with non-zero loss that is, A+

t = {(x, y) ∈ At | y(wt · x) < 1}.

• Projection step. Projection of wt+1
2

onto the set B =
{
w | ‖w‖ ≤ 1√

λ

}
since

it can be shown that the optimal solution of SVM is in the set B [56].

Finally, the bias term can be estimated following one of the three different approaches

suggested by the Pegasos’ authors:

1. Add one more feature to each pattern taking always the same value

(generally 1). Although this approach does not require any modifications in Algo-

rithm 2, it is solving a slightly different optimization problem that also regularizes

the bias term.
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Algorithm 2 The Pegasos Algorithm.

Inputs: S, λ, T, k
Intialization: Choose w1 s.t. ‖w1‖ ≤ 1/

√
λ

t = 1
while t ≤ T do

Choose At ⊆ S, where |At| = k
Set A+

t = {(x, y) ∈ At : y(wt · x) < 1}
Set ηt = 1

λt
Set wt+1

2
= (1− ηtλ)wt + ηt

k

∑
(x,y)∈A+

t
yx

Set wt+1 = min

{
1, 1/

√
λ

‖w
t+1

2
‖

}
wt+1

2

end while
Outputs: wT+1

2. Incorporate the bias b only in the loss function, |1 − yi(w · xi + b)|+, and

compute the subgradient with respect to b –the subgradient with respect to w

remain intact–. This strategy is also very simple but the cost function is no longer

strongly convex, which leads to a slower convergence rate.

3. Reformulate the loss term as an optimal value function in whose value

at each w depends on a minimization problem over b. The same update

rule can be used for w. The bias term b is also obtained while the subgradient

of w is calculated. Despite being the most desirable update rule, this approach

leaves aside the simplicity of the preceding solutions being computationally much

more expensive. Its application for large values of k is limited.

Alternatively, the standard SGD packages (http://leon.bottou.org/projects/sgd)

implement an heuristic in which the bias term is updated via subgradient descent and

using a smaller learning rate (scaled by the heuristically chosen parameter τ) as it is

updated more frequently than weights. At each epoch t, not only the stochastic gradient

descent is applied to the w vector but also to the bias term b: bt+1 = bt − τηt∇bt . The

subgradient of the bias is given by ∇bt = − 1
|At|

∑
(x,y)∈A+

t
y.

2.3.3 Decision Trees

Decision trees classify patterns according to a sequence of questions organized hierar-

chically in such way that the next question depends on the answers to the preceding

questions. This sequence of questions is represented as a decision tree in which each

http://leon.bottou.org/projects/sgd
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Figure 2.12: An example of decision tree model. The disjoint division of the input
space can be represented as a decision tree with a rule associated to internal nodes

(circles). The leaves (squares) determine the label assigned to each pattern.

question is associated to an internal node Hk and the initial question corresponds to

the root of the tree. Tree growing algorithm starts by the whole training set as the root

node and they recursively it divides the input space into disjoint subregions determined

by the decision rules of the internal nodes. The process finishes when a predefined stop-

ping criterion is reached and then, class assignment is performed by the terminal nodes

also known as leaves. Each leaf in the tree corresponds to one of the disjoints regions in

which the input space has been divided. An example of this architecture is presented in

Figure 2.12. Internal nodes are indicated as circles while leaves are displayed as squares.

H0, H1, H2 and H3 are the questions corresponding to the internal nodes being H0 the

root of the tree. The five disjoints subregions R1,R2, R3, R4 and R5 are associated to

one leaf in the tree.

One of the most noticeable drawbacks of decision tree models is their instability under

small changes on the training set which can produce extremely different decision trees.

In spite of this, decision trees fill a privileged position among machine learning classi-

fiers due to their simplicity, their interpretability and their speed classifying unlabeled

samples. The last point is especially remarkable in the scope of this thesis, pointing out

decision trees as a good candidate for those applications requiring real-time predictions

[57].

Typically, the questions associated with internal nodes consist in logical conditions each

of which depends on a single feature. It produces axis-parallel splits of the feature

space as illustrated in Figures 2.7(b) and 2.12. The well-known Classification And Re-

gression Trees (CART) [58] and C4.5 [59] algorithms can be categorized as axis-parallel
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models. Decision trees with rules based on linear combinations of the features are called

oblique decision trees and they were proposed to enhance the expressiveness of the

splits and to favor a better adjustment of the distribution of data. Unfortunately, these

models are prone to overfit the training samples and they are computationally more

expensive. Examples of oblique decision tree algorithms are CART with Linear Combi-

nations (CART-LC) [58] and the Oblique Classifier 1 (OC1) method [60]. Apart from

the parallel/oblique splitting, the number of links descending from a node (branching

factor) is another important parameter to take into account. While algorithms like

CART establish dichotomic answers (true/false), other kind of decision trees like C4.5

can have more than two descendant per node. In any case, a decision tree is defined by

the following five elements [58]:

1. The criterion for assigning the class label to a pattern when it reaches a leaf

of the tree.

2. The goodness of the node split which needs to be evaluated in each node of

the tree.

3. The type of test or splitting criterion carried out in each node of the tree to

determine the descendant of each pattern.

4. The stop-splitting rule to decide when the recursive expansion is finished.

5. The prunning algorithm to improve the generalization capability of the model.

Keeping with the algorithm that will be presented in Chapter 5, the subsequent analysis

assumes binary classification problems and dichotomic decision rules. In addition, the

notation presented in Table 2.3 will be used throughout this section. The probabilities

P (+|Hk), P (−|Hk), P (H l
k) and P (Hr

k) are estimated using the training data set as

follows,

P (+|Hk) =
N+
Hk

NHk
P (−|Hk) =

N−Hk
NHk

P (H l
k) =

N
Hk

l

NHk
P (Hr

k) =
NHkr

NHk
.
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Notation Description

T Decision tree

T̃ Set of leaves of T

|T̃ | Number of leaves in T

Hk Node in T

H l
k Left child of the node Hk

Hr
k Right child of the node Hk

SHk Subset of samples in the node Hk

S+
Hk

Subset of positive samples in the node Hk

S−Hk Subset of negative samples in the node Hk

NHk Number of samples in the node Hk

N+
Hk

Number of positive samples in the node Hk

N−Hk Number of negative samples in the node Hk

C(Hk) Class assigned to the node Hk

Remp(T ) Empirical error rate of T

P (+|Hk) Probability that a positive sample falls into Hk

P (−|Hk) Probability that a negative sample falls into Hk

P (H l
k) Probability that a sample in Hk falls into H l

k

P (Hr
k) Probability that a sample in Hk falls into Hr

k

Table 2.3: Decision tree terminology.

Class Assignment Criterion. Once a pattern reaches a leaf of the decision tree,

Hk ∈ T̃ , it is assigned to the majority class in such leaf:

C(Hk) = argmax {P (+|Hk), P (−|Hk)} . (2.37)

This class assignment rule minimizes the misclassification cost of the training set.

Splitting Goodness. The definition of the splitting goodness is based on the impurity

function concept for multiclass classification problems. In the particular case of binary
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classification problems, the impurity function of a nodeHk, I(Hk) = I(P (+|Hk), P (−|Hk))

is a multivariate function in a bidimensional space satisfying the following properties [58]:

1. I has a unique maximum at
(

1
2 ,

1
2

)
.

2. I takes its minimum values only at the points (1, 0) and (0, 1).

3. I is symmetric of P (+|Hk) and P (−|Hk).

Then, the splitting goodness ∆I(Hk) is defined as,

∆I(Hk) = I(Hk)− P (H l
k) I(H l

k)− P (Hr
k) I(Hr

k). (2.38)

As the aim of the decision tree is to minimize the overall misclassification rate, it would

be natural to think in the classification error as impurity measure. Then, those splits

reducing most the misclassification rate would be preferred and the impurity function

of the node Hk would be defined as,

I(Hk) = 1−max {P (+|Hk), P (−|Hk)} .

This impurity function verifies all the properties given further up. However, as pointed

out by Breiman et al. [58, Chapter 4], this measure presents two important limitations:

1. The improvement in the impurity can be zero for all the splits in SHk :

∆I(Hk) = I(Hk)− P (H l
k) I(H l

k)− P (Hr
k) I(Hr

k)

=
∑

h6=C(Hk)

P (h|Hk)− P (H l
k) min

i

∑
h6=i

P (h|H l
k)− P (Hr

k) min
i

∑
h6=i

P (h|Hr
k)

=
∑

h6=C(Hk)

[
P (h|H l

k) P (H l
k) + P (h|Hr

k) P (Hr
k)
]

−P (H l
k) min

i

∑
h6=i

P (h|H l
k)− P (Hr

k) min
i

∑
h6=i

P (h|Hr
k)
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Class 1:2000
Class 2:2000

Class 1:1500
Class 2:500

Class 1:500
Class 2:1500

Split 1

(a)

Class 1:2000
Class 2:2000

Class 1:1000
Class 2:2000

Class 1:1000
Class 2:0

Split 2

(b)

Figure 2.13: An example of two different splits in a decision tree. If classification
error is used as impurity measure, both splits misclassified 1000 samples. Nevertheless,

the second split seems more desirable for the future expansion of the tree.

and grouping terms,

∆I(Hk) = P (H l
k)

 ∑
h6=C(Hk)

P (h|H l
k)−min

i

∑
h6=i

P (h|H l
k)


+ P (Hr

k)

 ∑
h6=C(Hk)

P (h|Hr
k)−min

i

∑
h6=i

P (h|Hr
k)

 .
The expressions in brackets are equals zero when C(Hk) = C(H l

k) = C(Hr
k) which

leads to undesirable situations; for example, suppose a binary classification prob-

lem with predominance of one of the classes in a node Hk, it is conceivable that the

majority class in Hk would be the predominance class for every split of Hk. Thus,

any split in Hk would have ∆I(Hk) = 0 making it impossible to decide which split

is the best.

2. The inadequacy of misclassification rate as impurity function for an iterative-split

decision tree method (see Figure 2.13).

Having dismissed the misclassification rate as a measure of splitting goodness, the most

known decision tree algorithms have adopted different splitting criteria. For example,

CART can use the impurity measured called Gini index,

I(Hk) = P (+|Hk) P (−|Hk)
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but CART can also use the gain criterion based on the entropy concept coming from

the information theory field:

I(Hk) = −P (+|Hk) log2 (P (+|Hk))− P (−|Hk) log2 (P (−|Hk)) .

In any case, it has been shown that all the popular splitting criteria generate decision

trees with similar generalization capabilities [58]. The main difference between using one

measure or other lies in the size of the resulting tree. The gain criterion usually yields

more compact decision trees [61] which favors its application in large-scale domains.

Splitting-Stop Criterion. A split can be stopped either when certain criterion is

reached (for example, the improvement in the impurity measure or the number of pat-

terns in the node are not large enough for successive splittings), or when all the patterns

in the node belong to the same class (homogeneous node). All these rules set to

stop the expansion of the tree before reaching homogeneous leaves can be considered as

preprunning approaches trying to avoid overfitting. However, these criteria are seldom

applied in practice because it is difficult to define a criterion which yield results close

to optimal. Stopping tree growth can save much time, but makes optimum solutions

less probable. A common practice is to build overfitted trees and prune them using a

pruning algorithm as the one described in the following paragraph.

2.3.3.1 Cost-Complexity Pruning

Generally, including a pruning algorithm at the end of the training of a decision tree is

mandatory, especially in those cases in which the stopping criterion does not incorporate

pre-pruning rules. Most of the existing pruning methods remove the deepest nodes of the

tree whose validity is in doubt as they can have been generated with few samples. Among

them, the Cost-Complexity pruning algorithm proposed by Breiman [58] is described in

what follows since it is a key element of the algorithm presented in Chapter 5.
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As it name suggests, the Cost-Complexity objective function establishes a trade-off

between the misclassification cost of the tree and its complexity, approximated by the

number of leaves in the tree. Formally, the cost-complexity objective function for a tree

T with a set of leaves T̃ is given by

Rαemp(T ) = α|T̃ |+Remp(T ) , (2.39)

where α ∈ [0,∞) is a scalar parameter overweighting the complexity and misclassifica-

tion terms. As α varies in the interval [0,∞), a set of decreasing-size subtrees of the

original tree is obtained. In fact, when α = 0 the complexity term in Equation 2.39 is

not considered and therefore, the best tree is that with the lowest misclassification rate.

On the other hand, there exists a large enough value for α which produces a decision

tree formed exclusively by the root. It can be shown that for every value of α, there

exists a tree T (α) minimizing Equation 2.39 [58, Chapter 10].

The main idea of the Cost-Complexity method is to construct a set of decreasing-size

subtrees by means of variations in the α parameter. Although α can take infinite values

in the interval [0,∞), the set of subtrees of the original tree is finite and thus, the problem

is not so arduous at it looks at first glance. It works as follows, suppose that T (αk) is

the minimizing tree of Equation 2.39 given αk then, this tree is still the minimizing

tree in Equation 2.39 until a jump point αk+1 is reached. Now, T (αk+1) becomes the

new minimizing tree until achieving the next jump point αk+2 and so on. The result of

this process is a sequence of subtrees T = T (0) > T (α1) > . . . > T (αK) = root(T ).

The search of the subtree minimizing the Cost-Complexity function among all the pos-

sible subtrees in T is unfeasible, being mandatory the implementation of an efficient

pruning algorithm. The starting point is not the original tree T but T0, the smallest

subtree of T verifying R(T0) = R(T ). The subtree T0 can be easily obtained by removing

the leaves of the original tree T which do not improve the misclassification error. The

heart of the Cost-Complexity pruning lies in finding the weakest-link cutting based

on the following proposition [58]:

Proposition 2.2. For t any nonterminal node of T0, Tt the subtree of T with root t and

T̃t the set of terminal nodes of Tt,
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Remp(t) > Remp(Tt) =
∑
t′∈T̃t

Remp(t′) . (2.40)

Then, if {t} is the subbranch of Tt consisting of the single node t, the cost-complexity

functions for {t} and Tt can be written as,

Rαemp({t}) = Remp(t) + α

Rαemp(Tt) = Remp(Tt) + α|T̃t|.

At some critical value of α, Rαemp({t}) and Rαemp(Tt) met. Working out α in Remp(t)+α =

Remp(Tt) + α|T̃t|:

α =
Remp(t)−Remp(Tt)

|T̃t| − 1
.

Regarding Equation 2.40, α is positive and it can be interpreted as the value which

makes the subbranch {t} preferable to Tt. Writing the previous expression as a function

of the set of internal nodes t in T0,

g0(t) =


Remp(t)−Remp(Tt)

|T̃t|−1
if t /∈ T̃0;

+∞ if t ∈ T̃0.

The weakest link t̄0 in T0 is the node minimizing g0(t). Intuitively, t̄0 is the first node that

as α increases, Rαemp({t̄0}) becomes equal to Rαemp(Tt̄0) and therefore, t̄0 is preferable

to Tt̄0 . The critical value for α associated to the weakest link is α1 = g0(t̄0). The

process is repeated starting from T1 = T0 − Tt̄0 instead of T0. If at any step there are

several candidates to minimize gk(t) (for example gk(t̄k) = gk(t̄
′
k)), the next subtree in

the sequence is defined as Tk+1 = Tk − Tt̄k − Tt̄′k . The algorithm finishes when only

the root is left, having obtained the complete sequence of subtrees. The only point

left to address is how to select one of these subtrees as the optimum-size tree. As
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the training misclassification rate is a biased estimation of Remp(Tk), an independent

pruning set, made up randomly or via cross-validation, is used to evaluate the goodness

of each subtree and select that with the highest classification accuracy.

Other pruning methods have been developed in parallel to decision tree algorithms. For

example, the C4.5 algorithm tackles the pruning task from other perspective, making

pessimistic assumptions about the error rate in each node of the tree. A thorough

analysis of the CART and C4.5 pruning techniques was carried out by Esposito et al.

[62] concluding that, while C4.5 pruning tends to prune less than necessary, the Cost-

Complexity method usually yields subtrees smaller than the optimal. Bearing in mind

all these factors, the Cost-Complexity algorithm seems more suitable for large-scale

machine learning systems trying to reduce the classification cost.

Table 2.4 gathers some of the advantages and limitations of the previous classifiers. In

accordance with the goal of Chapter 5 of constructing a classifier capable of classifying

new patterns in few milliseconds, the nonlinear SVMs do not look as the best option in

spite of their effectiveness and robust mathematical background. However, the high pre-

diction speed of linear SVMs (besides their good generalization properties) and decision

trees together with the easy combination of decision trees with other classification algo-

rithms, points to the hybrid architecture of decision trees and linear SVMs presented in

Chapter 5 as an appealing solution to approximate nonlinear SVMs by piecewise linear

functions with low classification cost.
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Classifier Advantages Disadvantages

· Simplicity · Poor performance in non-linear
domains

Linear · Good scalability

· Fast training algorithms in gen-
eral

· Fast classification

· Robust mathematical basis · Lack of expressiveness and com-
prehensibility

SVM · Flexible method for creating
nonlinear models

· Poor scalability of training algo-
rithms (except for the linear ker-
nel)

· Good generalization

· Good accuracy levels

· Simplicity · Instability and high risk of over-
fitting

Decision trees · Fast classification · Higher training cost than linear
models

· Graphical representation · The structure of decision
boundaries limits its application

· Relatively faster learning speed
than other classification methods

· Oblique decision trees are not
convex and computationally ex-
pensive

· Can be combined with other de-
cision techniques

Table 2.4: Main advantages and disadvantages of some of the most popular learning
algorithms.





Chapter 3
Quadratic Programming Feature

Selection (QPFS)

Chapters 1 and 2 have highlighted how the incorporation of an effective feature selection

phase in a large-scale classification system is highly recommendable in order to, not

only reduce the computational cost of the learning algorithm, but also to favor the

generalization and the understandability of the final model. In this respect, this chapter

presents one of the contributions of this thesis: a new feature selection method for

very large and high dimensionality multiclass classification problems [63]. The new

method is in line with filter feature selection techniques introduced in Section

2.2.1 and, in particular, it is inspired by the mRMR algorithm which not only takes

into account the relevance of each feature with the target class but also dependences

among variables. The proposed method, named Quadratic Programming Feature

Selection, reduces the feature selection task to a quadratic optimization problem

simplifying the optimization process thanks to the Nyström method (Appendix C).

The chapter presents the QPFS algorithm, including the Nyström approximation, error

estimation and theoretical complexity. Finally, experiments comparing the proposed

algorithm with state of the art filter techniques show that the new QPFS+Nyström

method is a competitive and efficient filter-type feature selection algorithm for large-scale

and high-dimensional supervised classification problems. The new method is superior in

terms of computational efficiency to other successful feature selection algorithms while

it maintains their classification accuracy.

57
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3.1 Scalability of Feature Selection Methods

As discussed in Section 2.2, feature selection methods can be categorized into three

groups as a function of their dependence on the classifier: filter methods perform fea-

ture selection regardless of the classifier, wrapper methods use search techniques to

select candidate subsets of variables whose goodness is based on their classification ac-

curacy, and embedded methods incorporate feature selection in the classifier objective

function or algorithm. Section 2.2 has analyzed the most prominent advantages and

disadvantages of each category, revealing their differences in terms of computational

load as reflected in Figure 3.1. Among these groups, filter methods are often preferable

to other selection methods for high dimensionality problems because of (i) their scala-

bility, favored by their computational speed and their simplicity [64, 65]; and (ii) their

usability with alternative classifiers, which means evaluate the costly feature selection

process only once and then analyze different classifiers. A common disadvantage of filter

methods is that most proposed techniques are univariate ignoring dependences among

features. To overcome this problem, multivariate filter techniques taking into account

dependences among features were proposed. Multivariate filters improve significantly

the classification accuracy of univariate approaches but increase the computational ef-

fort. The applicability of wrapper methods in high-dimensional problems is particularly

critical in those cases where the number of features is large compared to the number of

training samples (e.g., 10,000 features and 100 samples); a common case in gene selec-

tion domains [21]. In this situations, wrapper methods not only can be much slower,

especially in learning the classifier, but also can prone to overfitting. Finally, embed-

ded techniques can be located in an intermediate point between univariate filter and

wrapper methods, being far less computationally demanding than wrapper methods but

more expensive than univariate filter approaches. Regarding the multivariate filters,

the most influential embedded techniques have a computational cost similar that of the

multivariate filters [65]. However, as pointed out in Chapter 1, large-scale classifiers can

be focused on different aspects like accelerating the training time, improving the classi-

fication cost or reducing the memory requirements thus, multivariate filters are versatile

enough to use them whatever is the final purpose. Moreover, their use as a preprocessing

step can lighten the computational cost of the classifier and overcome overfitting at the

same time [64].
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Figure 3.1: Dependence between the computational cost and the independence with
the classifier of the main feature selection algorithms: univariate filter, multivariate

filter, wrapper and embedded methods.

Leaving aside the computationally intensive wrapper methods, Table 3.1 shows the time

charge of some of the most influential filter and embedded techniques aforementioned

in Section 2.2. Note that these computational costs correspond to ranking features ac-

cording to certain criterion but they do not include the cost of determining the optimal

number of features to be selected. As expected, the univariate filter feature selection

methods (MaxRel) has the lowest computational cost but it does not takes into ac-

count dependences among features, which limits its effectiveness. The SFS method

captures linear dependences as well but it is not simply a feature selection technique as

it is able to generate new features. However, its cost is cubic in the number of features

which makes SFS hardly scalable. In spite of the computational efficiency of multivari-

ate feature selection methods based on linear similarities – like CFS –, multivariate

algorithms, such as mRMR or ReliefF, with reasonable computational requirements

and based on nonlinear similarities are often preferred as they are not reduced to linear

dependences [28, 66]. Specifically, mRMR has a quadratic dependence on the dimension

of the classification problem while ReliefF scales at least quadratically with the number

of patterns. However, the mRMR provides in general better classification rates than

ReliefF as it will be shown later in Section 3.3. Finally, the RFE-SVM algorithm

introduced in Section 2.2.3 is a good example of embedded methods because of its clas-

sification effectiveness and its leadership in terms of computational cost. RFE-SVM

performs backward feature elimination and its cost is totally dependent on the criterion

used to remove features. The most popular techniques are (i) deleting features by a

factor of 2 (that is, reduce the number of remaining features by half at each iteration)
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Model Examples Complexity

Univariate MaxRel NM

CFS NM2

Filter Multivariate SFS NM3

mRMR NM2

ReliefF N2M

Embedded RFE-SVM max(N,M)N2 (Features removed by a factor of 2)

N2M2 (Features removed one by one )

Table 3.1: Frequently used filter and embedded feature selection methods. N is the
number of training patterns and M the number of features.

or (ii) removing features one by one.

3.2 The QPFS Algorithm

A depth insight of state-of-the-art feature selection methods points at filter techniques

as a good approach to handle large-scale and high-dimensional domains. The univari-

ate filter algorithms are the best choice in terms of computational efficiency but their

classification performance is not competitive enough, making multivariate approach al-

most mandatory. However, the scalability of these methods for high dimensional prob-

lems is still compromised. The algorithm presented in this chapter is motivated by

the possibility of accelerating the most successful multivariate filters while maintaining

their classification effectiveness. The aim of the QPFS method is dealing with large

datasets with high dimensionality providing a time complexity improvement respect to

current multivariate filter methods. To achieve this goal, the QPFS method proposes

a novel formulation of the feature selection task based on quadratic programming.

The quadratic programming methodology has previously been successful for machine

learning –Support Vector Machines introduced in Section 2.3.2 have been its represen-

tative par excellence during last years – and for a broad range of other quite different

applications [67].

Suppose a classifier learning problem involving N training samples and M variables. A

quadratic programming problem is to minimize a multivariate quadratic function subject
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to linear constraints as follows:

min
w

{
1

2
wTQw − F Tw

}
. (3.1)

Above, w is an M -dimensional vector, Q ∈ RM×M is a symmetric positive semidefi-

nite matrix, and F is a vector in RM with non-negative entries. Applied to the feature

selection task, the QPFS method assumes that Q represents the similarity among vari-

ables (redundancy), F measures how correlated each feature is with the target class

(relevance) and the optimal value for w is used for feature ranking by interpreting

the components of w as the weight (or importance) of each feature. Thus, features with

higher weights are better variables to use for subsequent classifier training. Since wi rep-

resents the weight of each variable, it is reasonable to enforce the following constraints:

wi > 0 for all i = 1, . . . ,M (3.2)
M∑
i=1

wi = 1 . (3.3)

In order to provide some flexibility to the model, let introduce a scalar parameter

α ∈ [0, 1] which, depending on the learning problem, overweights the linear and the

quadratic terms as follows,

min
w

{
1
2(1− α)wTQw − αF Tw

}
(3.4)

s.t. wi ≥ 0 ∀i = 1 . . .M

‖w‖1 = 1.

If α = 1, only relevance is considered; the quadratic programming problem becomes lin-

ear and equivalent to classical univariate filter methods in which features are ranked

according to their relevance with the class; among these approaches, criteria based

in Pearson correlation or mutual information (MaxRel) as the ones presented in Sec-

tion 2.2.1 or decision trees (Section 2.3.3) can be found. On the contrary, if α = 0

only independence between features is considered and features with higher weights are
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Figure 3.2: Relation between the α parameter of QPFS and other feature selection
and extraction techniques

those having the lowest similarity coefficients with the rest of features. In this case, the

QPFS algorithm can be categorized into unsupervised feature selection algorithms like

those based on clustering algorithms [68, 69] or based on the Laplacian Score [70]. How-

ever, values of α in the interval (0, 1) establish a trade-off between dependences among

features which leads QPFS to be considered as a multivariate feature selection method

like the ones introduced in Section 2.2.1 and whose scalability have been analyzed at

the beginning of this chapter: CFS, MBF, SFS, mRMR or ReliefF. To sum up, the α

parameter provides QPFS with a flexible model capable of represent the main categories

of feature selection techniques as shown in Figure 3.2.

Every dataset has its best choice of α to extract the minimum number of features for

classification purposes. The best methodology for determining an appropriate value for

α would be to use a validation subset. However, that approach requires evaluating the

accuracy of the underlying classifier for each point in a grid of values for α in which

case, QPFS would become a wrapper feature selection method instead of a filter method

because it would depend on the classifier accuracy to determine the proper value of α.

Unfortunately, the evaluation of a classifier for each α value makes the QPFS extremely

costly for high dimensional datasets, making necessary an heuristic approximation for

α providing competitive classification results and less computational load. A reasonable

choice of α must balance the linear and quadratic terms of Equation 3.4 in order to

ensure that both redundancy and relevance are taking into account. If features are only

slightly redundant, i.e. they have low correlation with each other, then the linear term

in Equation 3.1 is dominant: f̄ � q̄. Making α small reduces this dominance. On the

other hand, if the features have a high level of redundancy relative to relevance (q̄ � f̄),
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then the quadratic term in Equation 3.1 can dominate the linear one. In this case,

overweighting the linear term (α close to 1) makes the objective function be balanced.

Thus, estimating the mean value q̄ of the elements of the matrix Q and the mean value

f̄ of the elements of the vector F as

q̄ =
1

M2

M∑
i=1

M∑
j=1

qij (3.5)

f̄ =
1

M

M∑
i=1

fi , (3.6)

the relevance and redundancy terms in Equation 3.4 are balanced when (1− α̂) q̄ = α̂f̄ .

Then, a reasonable initial estimate of α is

α̂ =
q̄

q̄ + f̄
. (3.7)

As it will be shown in practice (Section 3.3), this α heuristic leads to good results in

terms of classification accuracy and number of selected features.

Regarding that the quadratic programming problem given by Equation 3.4 is convex if

the matrix Q is positive semidefinite and strictly convex if matrix Q is positive definite

[71]. Hence, one immediate advantage of the QPFS formulation is that it is sufficiently

general to permit the use of any symmetric similarity measure as long as Q verifies these

conditions in Q. This thesis suggests the Pearson correlation coefficient and mu-

tual information as similarity measures because they are well-known measurements

of dependences between random variables (Section 2.2.1). Nevertheless, the QPFS algo-

rithm has also been successfully applied by Sousa et al. with other similarity criterion

[72].

When correlation is used, each matrix element qij is defined to be the absolute value

of the Pearson correlation coefficient of the pair of variables Xi and Xj , i.e. qij = |ρ̂ij |.

Suppose a classifier learning problem with C classes, the relevance weight of variable

Xi, Fi, is computed using a modified correlation coefficient [73] which is an extension to

the C-class classification scenario:
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Fi =
C∑
k=1

P̂ (Y = k)|ρ̂iYk |

where Y is the target class variable, Yk is a binary variable taking the value 1 when

Y = k and 0 otherwise, P̂ (Y = k) is the empirical prior probability of class k, and ρ̂iYk

is the sample correlation between the feature Xi and the binary variable Yk, computed

according to Equation 2.6.

As discussed in Section 2.2.1, since the correlation coefficient only measures linear rela-

tionships between random variables it may not be suitable for some classification prob-

lems, being necessary the use of nonlinear similarity measures as mutual information. In

this case, the QPFS quadratic term is qij = I(Xi, Xj) and the linear one is Fi = I(Xi, Y ).

QPFS using mutual information as its similarity measure resembles mRMR, but there

is an important difference: while the mRMR method selects features greedily, as a func-

tion of features chosen in previous steps, QPFS is not greedy and provides a ranking

of features that takes into account simultaneously the mutual information between all

pairs of features and the relevance of each feature to the class label.

The quadratic programming formulation of the feature selection problem is elegant and

provides insight but the formulation by itself does not significantly reduce the computa-

tional complexity of well established feature selection methods like mRMR. Nevertheless,

in high-dimensional domains, it is likely that the feature space is redundant. If so, the

symmetric matrix Q is singular and Equation 3.4 can then be simplified and solved in a

space of dimension less than M , thus reducing the computational cost.

Given the diagonalization Q = UΛUT in decreasing order of eigenvalues, Equation 3.4

is equivalent to

min
w

{
1

2
(1− α)wTUΛUTw − αF Tw

}
. (3.8)

If the rank of Q is k � M , then the diagonalization Q = UΛUT can be written as

Q = Ū Λ̄ŪT , where Λ̄ is a diagonal square matrix consisting of the highest k eigenvalues

of Q in decreasing order and Ū is a M × k matrix consisting of the first k eigenvectors

of Q. Then, Equation 3.8 can be rewritten as
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min
w

{
1

2
(1− α)wT Ū Λ̄ŪTw − αF Tw

}
.

Let z = ŪTw be a vector in Rk. The optimization problem is reduced to minimizing a

derived quadratic function in a k-dimensional space:

min
z

{
1

2
(1− α)zT Λ̄z − αF T Ūz

}

under M + 1 constraints:

Ūz ≥ −→
0

M∑
i=1

k∑
j=1

ūijzj = 1.

And the original vector w can be approximated as w ≈ Ūz.

Nonetheless, this scenario is not practical: the matrix Q is seldom precisely singular

for real world datasets. However, Q can normally be reasonably approximated by a

low-rank matrix formed from its k̃ eigenvectors whose eigenvalues are greater than a

fixed threshold δ > 0 [74]. More precisely, let Q̃ = UΓUT be the k̃-rank approximation

of Q, where Γ ∈ RM×M is a diagonal matrix consisting of the k̃ highest eigenvalues of Q

and the rest of diagonal entries are zero. Then, the approximate quadratic programming

problem is formulated as

min
w

{
1

2
(1− α)wTUΓUTw − αF Tw

}
.

Equivalently,

min
z

{
1

2
(1− α)zT Γ̃z − αF T Ũz

}
(3.9)

where z = ŨTw ∈ Rk̃, Γ̃ ∈ Rk̃×k̃ is a diagonal matrix with the nonzero eigenvalues

of Γ and Ũ ∈ RM×k̃ are the first k̃ eigenvectors of U . The M + 1 constraints of the
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optimization problem are now defined as

Ũz ≥ −→
0

M∑
i=1

k̃∑
j=1

ũijzj = 1 .

A diagram of the proposed approximation of the QPFS model in a lower-dimensional

space is shown in Figure 3.3(a). It must be remarked that the model given by Equa-

tion 3.9 is an approximation of the original model (Equation 3.4), and thus the optimal

solutions found by both methods are not necessarily the same. An estimation of the

error due to this approximation is given later in Section 3.2.2.

3.2.1 QPFS + Nyström: Approximate Solution of the Quadratic Pro-

gramming Problem

Although the QPFS approximation (Equation 3.9) reduces the quadratic programming

problem to a lower dimensional space, the bottleneck of QPFS falls now on the diago-

nalization of the Q ∈ RM×M matrix, whose cubic cost, O(M3), compromises the QPFS

scalability.

However, taking advantage of the redundancy that typically makes the matrix Q almost

singular, it is possible to speed up the diagonalization through the Nyström approx-

imation. When the feature space is highly redundant, the rank of Q is much smaller

than M and the Nyström method can approximate eigenvalues and eigenvectors of Q

by solving a smaller eigenproblem using only a subset of rows and columns of Q 1.

Suppose that k < M is the rank of Q which is represented as

Q =

 A B

BT E

 (3.10)

where A ∈ Rk×k, B ∈ Rk×(M−k), E ∈ R(M−k)×(M−k), and the rows of [A B] are

independent. Then, the eigenvalues and eigenvectors of Q can be calculated exactly

1A more detailed description of this method as well a brief discussion on Nyström sampling techniques
are given in Appendix C.
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from the submatrix [A B] and the diagonalization of A. Let S = A+A−
1
2BBTA−

1
2 and

its diagonalization S = RΣ̂RT then, the highest k eigenvalues of Q are given by Λ̃ = Σ̂

and its associated eigenvectors Ũ are calculated as,

Ũ =

 A

BT

A−
1
2RΣ̂−

1
2 .

The application of the Nyström method entails some practical issues:

1. A prior knowledge of the rank k of Q is, in general, unfeasible and it is necessary

to estimate the number of subsamples r to be used in the Nyström approximation.

2. The r rows of [A B] should be, ideally, linearly independent. If the rank of Q is

greater than r or the rows of [A B] are not linearly independent, an approximation

of the diagonalization of Q is obtained whose error can be quantified, in general,

as ‖E −BTA−1B‖.

Although the Nyström approximation is not error-free, if the redundancy of the feature

space is large enough, then good approximations can be achieved, as shown later on.

When QPFS+Nyström is used, not only the diagonalization of the redundancy matrix

can be accelerated but also the calculation of the entries of such matrix. As explained

above, the Nyström approximation just needs to know the submatrix [A B] whose

calculation requires k ×M operations in contrast with the calculation of the whole Q

matrix consisting of M ×M entries (in fact, only M2

2 entries should be computed due

to the symmetry in Q). In this case, it would be inefficient to compute all the entries of

Q only to estimate the value of the α parameter so, a slightly different rule for setting

the value of α is suggested. The Nyström approximation Q̂ of the original matrix Q is

defined as,

Q̂ = (q̂ij) =

 A B

BT BTA−1B

 .
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Figure 3.3: 3.3(a) Diagram of the QPFS algorithm in a lower-dimensional space.
3.3(b) Diagram of the QPFS algorithm using the Nyström method. [A B] is the upper

r ×M submatrix of Q.

An intuitive way to extend the α rule given by Equation 3.7 to the QPFS+Nsytröm

method would be to compute the mean value of Q̂. Unfortunately, it requires to obtain

the submatrix BTA−1B with a computational cost of O(k3 + (M − k)2k2), which is still

expensive2. Therefore, the mean value of Q̂ is approximated as the mean value of the

entries of the submatrix [A B] as follows,

¯̂q =
1

kM

k∑
i=1

M∑
j=1

q̂ij .

The mean value f̄ of the vector F is still calculated using Equation 3.6, since QPFS+Nyström

needs to know all the coordinates of F . To sum up, the α heuristic for the QPFS+Nyström

method is

α̂ =
¯̂q

¯̂q + f̄
. (3.11)

2The cubic cost k3 corresponds to the inversion of matrix A and the cost (M − k)2k2 is associated
to the matrix multiplication BTA−1B.
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A diagram of the proposed QPFS+Nyström method is shown in Figure 3.3(b) and it

can be summarized as follows:

1. Compute the F vector representing the dependence of each variable with the class.

2. Choose r rows of Q according to some criterion (typically, uniform sampling with-

out replacement3).Arrange the Q matrix so that these r rows are the first ones.

Define the [A B] matrix to be the first r rows of Q.

3. Set the value of the α parameter according to Equation 3.11.

4. Apply the Nyström method knowing [A B]. Obtain an approximation of the

eigenvalues and eigenvectors of Q, Q̂ = Û Λ̂ÛT .

5. Formulate the quadratic programming problem in the lower dimensional space

ˆ̂
Q =

ˆ̂
U

ˆ̂
Λ

ˆ̂
UT .

6. Solve the quadratic programming problem in the subspace to obtain the solution

vector z.

7. Return to the original space via w =
ˆ̂
Uz.

8. Rank the variables according to the coefficients of vector w. In case of equal

coefficients, rank them by decreasing relevance to the class.

3.2.2 Error Estimation

Any of the previous QPFS formulations reducing the quadratic programming problem to

a lower-dimensional space are subject to an approximation error whenever the original

space is dimensionality higher than the reduced space where the quadratic program is

going to be solved. Moreover, the application of the Nyström method entails considering

the error owing to the approximation of the eigenproblem.

Firstly, a bound for the QPFS approximation error using the exact matrix diagonal-

ization (Figure 3.3(a)) is provided. Given the solutions w∗ of Equation 3.4 and w̃∗

of Equation 3.9, the error of the approximation can be estimated using the following

theorem by Fine et al. [74],

3See Appendix C.
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Theorem 3.1. Given Q̃ a k̃-rank approximation of Q, if (Q−Q̃) is positive semidefinite

and tr(Q−Q̃) ≤ ε then the optimal value of the original problem is larger than the optimal

objective value of the perturbed problem and their difference is bounded by

g̃(w̃∗) ≤ g(w∗) ≤ g̃(w̃∗) +
d2lε

2
(3.12)

where l is the number of active constraints in the perturbed problem and d is an upper

bound for the w’s coefficients of the original solution.

In the QPFS case, 0 ≤ wi ≤ 1 and d = 1. The matrix (Q − Q̃) is positive semidefinite

since (Q− Q̃) = U(Λ−Γ)UT and (Λ−Γ) is a diagonal matrix with positive eigenvalues

upper bounded by δ. Moreover ε ≤ (M − k̃)δ and l ≤M + 1, so

g(w∗)− g̃(w̃∗) ≤ l(M − k̃)δ

2
≤ (M + 1)(M − k̃)δ

2
= γ (3.13)

where g(w) and g̃(w) are defined as

g(w) =
1

2
(1− α)wTQw − αF Tw for w ∈ RM (3.14)

g̃(w) =
1

2
(1− α)wT Γ̃w − αF T Ũw for w ∈ Rk̃ . (3.15)

The analysis of the QPFS+Nyström error is more arduous as it has two levels of ap-

proximation:

1. The first level is to approximate the eigenvalues and eigenvectors of the original

matrix Q based on only a subset of rows, applying the Nyström method: Q̂ =

Û Λ̂ÛT . One of the critical issues with the Nyström method is how to choose the

subset of rows to use [75]. Ideally, the number of linearly independent rows of

[A B] should be the rank of Q. Uniform sampling without replacement has been

used to select the rows of [A B] submatrix because of (i) its successful results in

other applications and (ii) the existence of theoretical performance bounds which

show that this technique not only is efficient in terms of time and space but also
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it produces more effective approximations [76]. The following theorem by Kumar

et al. [76] is used,

Theorem 3.2. Let Q ∈ RM×M be a symmetric positive semidefinite Gram (or

kernel) matrix. Assume that r columns of Q are sampled uniformly at random

without replacement (r > k), let Q̂ be the rank-k Nyström approximation to Q,

and let Q̃ the best rank-k approximation to Q. For ε > 0, if r ≥ 64k
ε4

, then

E
[
‖Q− Q̂‖F

]
≤ ‖Q− Q̃‖F + ε

M
r

∑
i∈D(r)

Qii


√√√√M

M∑
i=1

Q2
ii


1
2

(3.16)

where
∑

i∈D(r)Qii is the sum of the largest r diagonal entries of Q and ‖ · ‖F

represents the Frobenius norm.

The best rank-k̃ approximation to Q is Q̃ = UΓUT as given in Section 3.2. As

expected, Equation 3.16 shows that the error in the Nyström approximation de-

creases with the number of sampled rows, r.

2. The second level of approximation corresponds to solve the quadratic program-

ming problem using the Nyström approximation: only eigenvalues higher than a

fixed threshold δ > 0 are considered in the rank of matrix Q̂. Then, these top k̃

eigenvalues of matrix Q̂ are taken to make up a diagonal matrix
ˆ̂
Λ ∈ Rk̃×k̃ whose

eigenvectors are the columns of matrix
ˆ̂
U ∈ RM×k̃. Therefore, the QPFS+Nyström

method approximates Q by
ˆ̂
Q =

ˆ̂
U

ˆ̂
Λ

ˆ̂
UT and the quadratic programming problem

is defined as,

ˆ̂g(w) =
1

2
(1− α)wT ˆ̂

Qw − αF Tw for w ∈ RM .

By denoting the optimal solution of ˆ̂g(w) as ˆ̂w∗ and defining g(w) and g̃(w) as

in Equations 3.14 and 3.15, respectively, the total error in the QPFS+Nyström

approximation is obtained as follows,
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E
[∣∣∣g(w∗)− ˆ̂g( ˆ̂w∗)

∣∣∣] ≤ E
[∣∣∣g( ˆ̂w∗)− ˆ̂g( ˆ̂w∗)

∣∣∣]
=

1

2
(1− α)E

[∣∣∣( ˆ̂w∗)T
(
Q− ˆ̂

Q
)

( ˆ̂w∗)
∣∣∣]

=
1

2
(1− α)E

[∥∥∥( ˆ̂w∗)T
(
Q− ˆ̂

Q
)

( ˆ̂w∗)
∥∥∥

2

]
.

The α parameter of QPFS belongs to the interval [0, 1] which implies,

1

2
(1− α)E

[∥∥∥( ˆ̂w∗)T
(
Q− ˆ̂

Q
)

( ˆ̂w∗)
∥∥∥

2

]
≤ 1

2
E
[∥∥∥( ˆ̂w∗)T

(
Q− ˆ̂

Q
)

( ˆ̂w∗)
∥∥∥

2

]
.

And applying the consistency of the L2-norm for matrices,

1

2
E
[∥∥∥( ˆ̂w∗)T

(
Q− ˆ̂

Q
)

( ˆ̂w∗)
∥∥∥

2

]
≤ 1

2
E
[
‖Q− ˆ̂

Q‖2‖ ˆ̂w∗‖22
]

≤ 1

2
(M + 1)E

[
‖Q− ˆ̂

Q‖F
]
.

The last inequality is obtained from the constraints 0 ≤ wi ≤ 1 which must

be satisfied by the optimum value ˆ̂w∗. Applying the bound for the Nyström

method with uniform sampling without replacement (Equation 3.16) and noting

that ‖Q−Q̃‖F ≤ trace
(
Q− Q̃

)
≤ (M− k̃)δ by construction, the above expression

can be upper bounded as follows,

E
[∣∣∣g(w∗)− ˆ̂g( ˆ̂w∗)

∣∣∣] ≤ 1

2
(M + 1)

(M − k̃)δ + ε

M
r

∑
i∈D(r)

Qii


√√√√M

M∑
i=1

Q2
ii


1
2


≤ γ +
ε

2
(M + 1)

M
r

∑
i∈D(r)

Qii


√√√√M

M∑
i=1

Q2
ii


1
2

.

That is, the total error is the sum of the error γ obtained from the approximation

of the quadratic programming problem in a subspace (Equation 3.13) and the error

due to the Nyström method.
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Figure 3.4: QPFS variable discretization for mutual information estimation. The
variable is discretized in an odd number of segments, n, covering s standard deviations.

µ is the sample mean of the training data and σ the standard deviation.

3.2.3 Theoretical Complexity

As already mentioned, the mRMR method is one of the most successful previous methods

for multivariate filter feature selection. However, its scalability for high-dimensional data

is compromised due to its computational cost depends quadratically on the dimension

of the classification problem. In this section, an analysis of the theoretical complexity of

mRMR and QPFS is carried out to conclude that the QPFS+Nyström method is able

to improve the time complexity of the mRMR algorithm.

The time complexities of mRMR and QPFS both have two components, the time needed

to compute the matrices Q and F (Similarity), and the time needed to perform variable

ranking (Rank). The computational cost of calculating the correlation among a pair of

variables is O(N). The theoretical complexity of mutual information depends directly

on how to estimate the density functions for continuous variables. For simplicity and

following the mRMR methodology [31], each variable is discretized in an odd number

of segments, n, covering s standard deviations as illustrated in Figure 3.4. In this case,

mutual information can be approximated in a simple way using Equation 2.8. The cost

of the discretization of each variable is O(N) – corresponding to calculate its mean and

its standard deviation. Once the attributes have been discretized, the marginal and joint

probabilities for each pair of variables are obtained with cost O(N).

In the case of mRMR and when the complete redundancy matrix Q is used by QPFS,

the correlation or mutual information between each pair of variables and between each
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variable with the target class are computed with cost O(NM2) and O(NM) respectively,

being the dominant term O(NM2). The QPFS+Nyström approximation needs also the

vector F , O(NM) but it only requires to know the submatrix [A B] in Equation 3.10.

Let p ∈ (0, 1] the proportion of features randomly chosen by the Nyström method and

k = pM the number of subsampled features then, the submatrix [A B] has k rows and

M columns and thus, pM2 entries need to be computed with a total cost of O(NpM2).

Summing up, the predominant cost in the QPFS+Nyström similarity phase is given by

O(NpM2).

The variable ranking is the process in which QPFS+Nyström advantages mRMR. The

mRMR algorithm selects iteratively the best feature taking into account the subset of

variables chosen in previous steps. Therefore, a linear search is performed at each itera-

tion and M iterations are needed to provided a complete permutation of the variables,

which means a total cost of O(M2). In the case of QPFS, the feature ranking implies

the solution of a quadratic programming problem whose time cost is cubic in the feature

space O(M3) [77]. Nevertheless, the cubic cost is an upper bound for the quadratic

programming problem and it will be seldom achieved by the proposed model because

(i) the QPFS algorithm generally solves the quadratic programming problem in a lower

dimensional space and (ii) the matrix in the quadratic term is diagonal. The diagonal-

ization of matrix Q can be performed by well-known algorithms like SVD or Jacobi [78]

with cost O(M3). Finally, the cost of the Nyström diagonalization with k subsamples is

O(k2M) = O(p2M3) [77] and then, the solution of the quadratic programming problem

of rank k is, at the most, O(k3) = O(p3M3). Obviously, p2M3 > p3M3 thus, the ranking

cost in QPFS+Nyström is O(p2M3).

Note that the predominant cost in the ranking phase is the one associated with the Q

diagonalization – regardless if the Nyström approach is used or not – which means that

it is not worth trying to speed up the quadratic programing solver.

Table 3.2 summarizes the time cost of the three algorithms mRMR, QPFS and QPFS

+ Nyström indicating the most expensive phase, Similarity or Rank, in boldface. It can

be concluded, thus, that the QPFS time complexity is greater than or similar to that of

mRMR. However, in the case of the QPFS+Nyström its time complexity is the lowest

when N � pM and N � M . For N � pM , QPFS+Nyström outperforms mRMR

provided that p2M3 � NM2 or, equivalently, N � p2M . For example, if p = 10−1 then
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mRMR QPFS QPFS+Nyström
Similarity Rank Similarity Rank Similarity Rank

M large

N � pM
O(NM2) O(M2) O(NM2) O(M3) O(NpM2) O(p2M3)

M medium

N � pM
O(NM2) O(M2) O(NM2) O(M3) O(NpM2) O(p2M3)

M small

N �M
O(NM2) O(M2) O(NM2) O(M3) O(NpM2) O(p2M3)

Table 3.2: Time complexity of algorithms as a function of training set size N , number
of variables M ,and Nyström sampling rate p. The predominant cost term is indicated

in boldface.

QPFS+Nyström is more efficient than mRMR when N � 10−2M i.e. if the size of the

training set is greater than 10−2 times the number of variables.

3.3 Experimental Results

Experimental results described in this section provide an extensive analysis of the QPFS

performance divided into two subsections according to the twofold aim of the experi-

ments: first, to compare classification accuracy achieved using QPFS versus other well-

known filter techniques, especially mRMR; and second, to compare their computational

cost.

The datasets used for all the experiments are shown in Table 3.3 and they were chosen

because they are representative of multiple types of classification problems with respect

to the number of samples, the number of features, and the achievable classification

accuracy. Moreover, these datasets have been used in other research on the feature

selection task [2, 31, 79–83].

In order to estimate classification accuracy, for the ARR, NCI60, SRBCT and GCM

datasets 10-fold cross-validation (10CV) and 100 runs were used. Mean error rates are

comparable to the results reported in [2, 31, 82, 83]. In the case of the RAT dataset,

120 training samples (61 for test) and 300 runs were used, following [79]. The MNIST

dataset was divided into training and testing subsets as proposed by [53], with 60,000

and 10,000 patterns, respectively.
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Dataset N M C
Baseline

References
Error Rate

ARR 422 278 2 21.81% [31, 82]

NCI60 60 1,123 9 38.67% [2, 82, 83]

SRBCT 83 2,308 4 0.22% [2, 83]

GCM 198 16,063 14 33.85% [2, 82, 83]

RAT 181 8,460 2 8.61% [79]

MNIST 60,000 780 10 6.02% [80, 81]

Table 3.3: Description of the datasets used in experiments. N is the number of
examples, M is the number of variables, and C is the number of classes. Baseline error
rate is the rate obtained taking into account all variables. The last column cites papers

where the datasets have been used.

mRMR and QPFS were implemented in C using LAPACK for matrix operations [84].

Quadratic optimization is performed by the Goldfarb and Idnani algorithm implemented

in Fortran and used in the R quadprog package [71]. A publicly available toolbox of QPFS

can be found at

http://sites.google.com/site/irenerodriguezlujan/documents/QPFS-1.0.zip.

3.3.1 Classification Accuracy Results: Comparison with other filter

feature selection methods

The aim of the experiments described in this section is to compare classification accu-

racy achieved by some state-of-the-art filter feature selection methods and by QPFS,

with and without the Nyström approximation. The classification error is measured as

a function of the number of features in order to determine the efficiency of the different

feature selection approaches. Firstly, the two proposed similarity measures, correlation

and mutual information, will be considered to conclude that, generally, mutual informa-

tion outperforms correlation since its capability detecting nonlinear relationships among

features. Then, the experiments will be focused on comparing QPFS with the greedy

filter-type method mRMR in its difference form (MID), which also takes into account

the difference between redundancy and relevance, and with the MaxRel algorithm that

basically ranks features according to their similarity with the target class. Finally, other

filter-type feature selection methods will be also evaluated in order to point out QPFS

as a promising multivariate filter feature selection method.

http://sites.google.com/site/irenerodriguezlujan/documents/QPFS-1.0.zip
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Any of the versions of the QPFS algorithm requires to adjust the α parameter that

weights the importance of the redundancy and relevance in the final model. The heuris-

tics proposed in Equations 3.7 and 3.11 to avoid any dependence on the underlying

classifier yield the α values shown in Table 3.4. Notice that high values of α are better

for datasets with high redundancy among variables. On the other hand, if there is low

redundancy then small α should yield better results. Other values of the α parameter,

α ∈ {0.0, 0.1, 0.3, 0.5, 0.7, 0.9}, were considered in all experiments in order to verify that

the proposed method of setting α provides good results. Besides the α parameter, the

QPFS+Nyström method needs to determine the Nyström sampling rate p; it was cho-

sen as large as possible while still yielding a reasonable running time, since larger values

reduce error in the approximation of the Q matrix (Equation 3.16).

Dataset p q̄ f̄ α̂

ARR (cor) - 0.0889 0.0958 0.481
NCI60 (cor) - 0.267 0.165 0.618
ARR (MI) - 0.0106 0.0152 0.411
NCI60 (MI) - 0.0703 0.253 0.217
SRBCT (MI) - 0.0188 0.0861 0.179
GCM (MI) 0.05 0.0284 0.158 0.152
RAT (MI) 0.1 0.0346 0.0187 0.649
MNIST (MI) - 0.0454 0.0515 0.469

Table 3.4: Values of the α parameter for each dataset. Correlation (cor) and mutual
information (MI) were used as similarity measures for ARR and NCI60 datasets. Only
mutual information was used for SRBCT, GCM, RAT and MNIST datasets. p is the
subsampling rate in the Nyström method, q̄ is the mean value of the elements of the
matrix Q (similarity among each pair of features), and f̄ is the mean value of the
elements of the F vector (similarity of each feature with the target class). For the
MNIST dataset only nonzero values have been considered for the statistics due to the

high level of sparsity of its features (80.78% sparsity in average).

As stated in Section 2.2, filter feature selection methods can be used with any classifier

thus, the learning algorithm can be considered as a metaparameter for any filter method.

In all the experiments described in this section, the linear SVM model introduced in

Section 2.3.2 and provided by the LIBSVM package [53] was used as underlying classifier.

Of course, any other classification learning algorithm can be used instead of linear SVMs

but results here presented are expected to be representative enough. The linear kernel

has been chosen to reduce the number of SVM parameters, thus making meaningful

results easier to obtain. In particular, the cost parameter C of the linear SVM needs

to be adjusted. The influence of the value of the parameter on the comparison between

mRMR and QPFS can be analyzed from Figure 3.5, where the performance of both
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Figure 3.5: Classification error as a function of the number of features for the ARR
dataset and different regularization parameter values C in linear SVM. The figure shows
that for C = 0.01, the SVM is too regularized. The effect when C = 10.0 is the opposite

and the SVM overfits the training data. A value of C = 1.0 is a good tradeoff.

methods for the ARR dataset and different C values is shown. From Figure 3.5 it can

be concluded that the C value does not affect in the comparison between filter feature

selection models and therefore, C is set to 1.0 in all experiments.

The definition of the QPFS model admits any symmetric similarity measure as discussed

in Section 3.2 and, depending on the context in which the feature selection method is

going to be used, certain measures may be better than others. In this thesis, correlation

and mutual information are used due to they are well established statistical measures of

dependence. The mutual information was proposed as an alternative to the correlation

to solve some deficiencies of the last one in detecting nonlinear relationships between

features. In the first experiment, an empirical comparison between the performance

of both similarity measures in the ARR dataset is accomplished. Figure 3.6 shows

the average classification error rate for the ARR dataset as a function of the number of

features. In Figure 3.6(a), correlation is the similarity measure while mutual information

(MI) is applied in Figure 3.6(b). As a secondary objective, results from a non-informative

feature selection method which does random selection of features are also provided in

order to determine the absolute advantage of using any feature selection method. Several

conclusions can be derived from the experimental results obtained in Figure3.6:

1. α parameter. In both cases the best accuracy is obtained with α = 0.5, which

means that an equal tradeoff between relevance and redundancy is better. How-

ever, accuracies using the values of α specified by the heuristic (Table 3.4) are
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Figure 3.6: Classification error as a function of the number of features for the ARR
dataset. 3.6(a) QPFS results using correlation as similarity measure with different α
values. 3.6(b) MaxRel, mRMR and QPFS results using mutual information as similarity

measure and different values of α for QPFS.

similar.

2. Similarity measures. The use of MI as similarity measure improves significantly

the QPFS accuracy compared to the correlation performance.

3. Comparison with mRMR. When MI is used (Figure 3.6(b)) the error rate curve

for α = 0.5 is similar to that obtained with mRMR.

4. Effectiveness of feature selection. The random selection method yields results

significantly worse than those obtained with the other algorithms, especially up to

about 150 features.
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Figure 3.7: Classification error as a function of number of features for the NCI60
dataset. 3.7(a) QPFS results using correlation as similarity measure with different α
values. 3.7(b) MaxRel, mRMR and QPFS results using mutual information as similarity

measure and different values of α for QPFS.

In order to check the truthfulness of these four statements, the previous experiment

was reproduced for the NCI60 dataset (Figure 3.7). In this case, the best accuracy is

obtained when mutual information is used (Figure 3.7(b)) and α is set to 0.217 according

to Table 3.4; what is more, this accuracy is slightly better than the accuracy of mRMR.

The value of α close to zero indicates that it is appropriate to give more weight to the

quadratic term in QPFS. When correlation is used (Figure 3.7(a)), the best accuracy is

also obtained when α is set according to the heuristic. Again, the performance of the

random feature selection is poor compared with the best results of mRMR and QPFS.

Generally, MI as similarity measure leads to better accuracy than correlation. This

finding is reasonable given that MI can capture nonlinear relationships between variables.
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Therefore, MI is used in the experiments described in the remainder of this section.

Furthermore, it is clear that information guided procedures are essential for the success

of the feature selection task and hence, random feature selection is not included in the

following experiments.

Up to now, the experiments have analyzed the performance of QPFS without the

Nyström approximation but, as stated in Section 3.2.1, in despite of the novelty of the

QPFS formulation, it does not represent any improvement in terms of computational

time. The aim of the following experiments is to point out the influence of the Nyström

method in the QPFS algorithm starting with the SRBCT dataset which illustrates not

only the competitiveness of QPFS+Nyström in terms of classification accuracy, but also

the dependence between the Nyström subsampling rate, p, and the approximate model.

The average error for the SRBCT dataset and different sampling rates as a function of

the number of selected features is shown in Figure 3.8. In order to simplify the figure,

only results for the best α value in the grid {0, 0.1, 0.3, 0.5, 0.7, 0.9}, α = 0.1, and the

estimated α̂ = 0.179 are shown providing both values similar results in terms of clas-

sification accuracy and comparable to those of mRMR. The fact that a low value of α

is best indicates low redundancy among variables compared to their relevance with the

target class. This scenario favors the hypotheses that the redundancy matrix can be ap-

proximated by a low-rank matrix efficiently computed by the Nyström method. Indeed,

the QPFS+Nyström method gives a classification accuracy similar to that of QPFS

when p > 0.1 which means computing only the redundancy among 10% of the variables

with all the rest and solving the optimization problem in a subspace 10 times lower.

Moreover, a remarkable result in Figure 3.8 is the empirical verification of the Nyström

error bound given in Equation 3.16: the higher parameter p, the closer the Nyström

approximation is to the complete diagonalization and thus to the QPFS solution.

Once the relationship between the subsampling rate and the effectiveness QPFS+Nyström

has been verified, the computational savings of QPFS+Nyström in the high dimensional

datasets GCM and RAT are presented. Figure 3.9 shows error rates for the GCM dataset

using the algorithms MaxRel, mRMR, and QPFS+Nyström with α = 0.1 and α̂ = 0.152.

When the number of features is over 60, accuracy achieved with QPFS+Nyström is

better than with mRMR. A sampling rate of 3% is adequate for this dataset, which

represents a major time complexity reduction given a feature space of 16, 063 variables.

Looking at Table 3.2, the GCM dataset can be classified in the group of problems with M
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Figure 3.8: Error rates using MaxRel, mRMR and QPFS+Nyström methods, with
mutual information as similarity measure for the SRBCT dataset.
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Figure 3.9: Error rates using MaxRel, mRMR and QPFS+Nyström methods, with
mutual information as similarity measure for the GCM dataset.

large (N � pM) in which case mRMR has a cost of NM2 ≈ 2 ·102(1.6 ·104)2 ≈ 5.1 ·1010

while the cost associated to QPFS+Nyström (p = 0.03) is one order of magnitude lower:

p2M3 ≈ (3 · 10−2)2(1.6 · 104)3 ≈ 3.7 · 109. In the case of the RAT dataset (Figure 3.10),

QPFS+Nyström gives classification accuracy similar to that of mRMR when the subset

size is over 80 and the sampling rate is 10%. Given the good performance of the MaxRel

algorithm for this dataset, it is not surprising that a large α value α = 0.9 or α̂ = 0.649 is

best, considering also that QPFS with α = 1.0 is equivalent to MaxRel. Again, the RAT

dataset can be categorized in the first row of Table 3.2 and QPFS+Nyström accelerates

mRMR: p2M3 ≈ 6.1 · 109 versus NM2 ≈ 1.3 · 1010. However, the good performance of

the univariate filter points to MaxRel as the best option for this dataset.
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Figure 3.10: Error rates using MaxRel, mRMR and QPFS+Nyström methods, with
mutual information as similarity measure for the RAT dataset.

Finally, an example in which the result of the feature selection can be visualized and can

be easily interpreted is presented. The MNIST dataset has a high number of training

examples (60, 000) each ofwhich represents a handwriting digit (0 to 9) in a grid of 780

pixels (features). Results for MNIST are shown in Figure 3.11 for QPFS with α = 0.3,

the estimation α̂ = 0.469 and QPFS+Nyström with α̂ and p ∈ {0.1, 0.2, 0.5}. The error

rate for all algorithms reaches a minimum when about 350 features are selected. This

is not a surprising fact: analyzing the sparsity of the MNIST features, approximately

400 of them have a level of sparsity higher than 70%. But if the feature space needs a

greater reduction, significant differences appears between the studied methods as shown

in Figure 3.11. mRMR and QPFS with α̂ = 0.469 have similar performance and close

to the best results obtained by QPFS with α = 0.3. For this dataset, the number of

samples is much greater than the number of features, N � M , and therefore , the

time complexity of mRMR and QPFS is the same: O(NM2). When QPFS+Nyström is

applied with p = 0.2, the error rate is competitive and the MNIST provides an example

of the ability of QPFS+Nyström to handle large datasets reducing the computational

cost of mRMR and QPFS by a factor of 5. Note that the error rates shown for the

MNIST dataset are obtained using a linear kernel. The radial basis function kernel for

SVM classifiers is known to lead to lower error rates for the full MNIST dataset, but

the choice of kernel is an issue separate from feature selection, which is the focus of this

chapter.

To illustrate graphically the effects of QPFS feature selection, Figure 3.12 shows a grid

of 780 pixels arrayed in the same way as the images in the MNIST datasets. A pixel is
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Figure 3.11: Error rates using MaxRel, mRMR and QPFS+Nyström methods, with
mutual information as similarity measure for the MNIST dataset.

(a) (b)

Figure 3.12: First 3.12(a) 100 and 3.12(b) 350 features selected by QPFS+Nyström
(α̂ = 0.469 and p = 0.5) for the MNIST dataset (black pixels).

black if it corresponds to one of the top 100 (Figure 3.12(a)) and 350 (Figure 3.12(b))

selected features, and white otherwise. Black pixels are more dense towards the middle

of the grid, because that is where the most informative features are. Pixels sometimes

appear in a black/white/black checkerboard pattern, because neighboring pixels tend to

make each other redundant.

In order to compare in-depth the mRMR and QPFS classification errors, the statistical

significance of error rate differences is evaluated in Table 3.5. For each dataset, 100 clas-

sifiers were trained using the stated number M of selected features. The 100 classifiers

arise from 10 repetitions of 10-fold cross-validation, so which M features are used may

be different for each classifier. The one-tailed paired t-test for equal means is applied

to the two sets of error rates, one set for mRMR and one set for QPFS. The test is

one-tailed because the null hypothesis is that the mRMR method is as good or better

than the QPFS method. The test is paired because both methods were applied to the
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same 100 dataset versions. Results of the test are given in the row labeled significant?.

For the NCI60 and SRBCT datasets, the best result is obtained when QPFS is used and

it is statistically significantly better than mRMR. When 200 to 400 variables are consid-

ered, mRMR and QPFS are not statistically significantly different but the accuracy is

not as good as in the case of 100 features, probably due to overfitting. In the case of the

GCM dataset, the mRMR method is statistically significantly better when fewer than

50 variables are considered. If the number of features is over 100, the accuracy with

QPFS is significantly better than with mRMR, and the best performance is obtained in

this case. For the ARR dataset, mRMR is statistically significantly better than QPFS

if fewer than 10 features are considered but the error rate obtained can be improved if

more features are taken into account. When more than 50 features are selected, the two

methods are not statistically significantly different. The RAT dataset behavior is quite

similar. When fewer than 100 features are used, the mRMR algorithm is statistically

better than QPFS, but the error rate can be reduced adding more features. The two

algorithms are not statistically significantly different in the other cases, except if more

than 400 features are involved in which case QPFS is statistically significantly better

than mRMR. Note that the error rates shown for QPFS are obtained with the proposed

estimation of α̂. In some cases, as shown in Figures 3.6 to 3.10, this α value cannot be

the best choice.

Beyond simple binary statistical significance, Table 3.5 indicates that the QPFS method

is statistically significantly better when the value of α̂ is small. A possible explanation for

this finding is the following. When α̂ is small, features are highly correlated with the label

(f̄ � q̄). The mRMR method is greedy, and only takes into account redundancy among

features selected in previous iterations. When features are highly correlated with the

label, then mRMR selects features with high relevance and mostly ignores redundancy.

In contrast, QPFS evaluates all variables simultaneously, and always balances relevance

and redundancy.

Once QPFS algorithm has been successfully compared against mRMR, it seems natu-

ral to extend the comparison to other other multivariate filter methods. The feature

selection review developed in Section 2.2 point to mRMR quotient form (called MIQ),

reliefF and SFS as some of the most satisfactory feature selection algorithms indepen-

dent of the classifier. Again, this independence makes the applicability of any learning
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M
10 50 100 200 400

RAT

mRMR 21.15± 0.31 16.18± 0.27 14.88± 0.24 12.81± 0.25 10.95± 0.23

QPFS α̂ = 0.65 27.13± 0.33 18.16± 0.29 15.24± 0.27 12.85± 0.26 10.51± 0.21

significant? no no no no yes

p value 1.00 1.00 0.89 0.56 1.7× 10−2

ARR

mRMR 25.19± 0.65 20.76± 0.63 21.71± 0.61 21.64± 0.61 -

QPFS α̂ = 0.41 28.05± 0.65 21.30± 0.65 21.52± 0.65 21.76± 0.58 -

significant? no no no no -

p value 1.00 0.96 0.69 0.39 -

NCI60

mRMR 53.50± 2.17 34.33± 1.74 32.00± 1.93 32.83± 1.84 33.64± 1.80

QPFS α̂ = 0.22 46.33± 2.19 29.83± 1.68 29.00± 1.83 34.67± 1.81 35.17± 1.95

significant? yes yes yes no no

p value 1.6× 10−3 7.5× 10−3 3.3× 10−2 0.95 0.96

SRBCT

mRMR 9.38± 1.06 2.31± 0.51 0.47± 0.23 0.24± 0.17 0.49± 0.30

QPFS α̂ = 0.18 3.89± 0.75 0.11± 0.11 0.05± 0.11 0.11± 0.11 0.35± 0.25

significant? yes yes yes no no

p value 5.4× 10−9 5.6× 10−5 2.3× 10−2 0.27 0.36

GCM

mRMR 54.26± 1.19 43.38± 1.18 41.38± 1.08 38.26± 1.06 38.50± 1.10

QPFS α̂ = 0.15 65.66± 1.03 44.11± 1.11 39.57± 1.24 38.06± 1.16 35.23± 1.17

significant? no no yes no yes

p value 1.00 0.81 0.037 0.40 1.42× 10−4

Table 3.5: Average error rates using the mRMR and QPFS methods, for classifiers
based on M features. The parameter α̂ of the QPFS method is indicated; rows are
ordered according to this value. The Nyström approximation was used for the GCM

and RAT datasets.

algorithm possible but, from analogy with the previous experiments, linear SVMs with

cost parameter C = 1.0 were chosen. Furthermore, ReliefF and SFS are feature selection

methods which need to establish the value of some parameters. In ReliefF, all instances

were considered (not random subsampling) and the number of neighbors was adjusted

for all datasets resulting to be 3 for all datasets, except for MNIST in which 10 neighbors

were taking into account. The ReliefF implementation provided by the LIBGS package

[85] was used. In the case of the SFS algorithm, a Matlab implementation [30] with the

default parameters was used.

Average error rates for MaxRel, mRMR (MID), mRMR (MIQ), reliefF and QPFS and
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different number of features are shown in Table 3.6. The error rate for SFS is shown

separately (Table 3.7) since SFS has been formulated for binary datasets being only

suitable for the ARR and RAT datasets. In spite of the SFS original formulation includes

a feature generation step [30], it has not been considered in the experiments to provide

a fair comparison with the rest of methods. Table 3.6 shows that for ARR, NCI60,

SRBCT and GCM datasets, the best selector is mRMR or QPFS (the statistical study

of the performance of both methods has been given in Table 3.5). In the case of the

RAT dataset, the best methods are MaxRel and reliefF. The fact that the best results

are obtained with methods which only consider relevance with the target class fits in

with the analysis of Figure 3.10. Finally, for the MNIST dataset the best choice is

the mRMR (MIQ) algorithm. Nevertheless, the performance of MIQ in some datasets

is not competitive (see, for instance, the ARR and NCI60 results). The accuracy of

QPFS+Nyström (p = 0.2) is good if a high enough number of features is used, and it has

lower computational cost than mRMR and QPFS. Regarding SFS, Table 3.7 shows that

SFS provides a competitive error rate for the ARR dataset with few features (around 11)

but its effectiveness in the RAT dataset is improved by other feature selection algorithms

when more than 6 attributes are considered. It is noticeable the efficiency of SFS getting

acceptable accuracies using a small number of features.

3.3.2 Computational Complexity Results

Since the previous section has established the superiority of mRMR and QPFS in terms

of classification performance, it is useful now to compare mRMR and QPFS experi-

mentally with respect to time complexity. Time complexity is measured as a function

of the training set size (N), the dimensionality (M), and the Nyström sampling rate

(p =
r

M
). In all cases, times are obtained as the average over 50 runs. In order to

measure time complexity as a function of the training set size, the number of SRBCT

examples was artificially increased 4 times (N = 332) and dimensionality reduced to

M = 140. Time complexity as a function of the dimensionality and the Nyström sample

rate was measured using the original SRBCT dataset. The results obtained from the

threefold comparison are shown in Figure 3.13 and can be analyzed as follows.

• Computational cost as a function of the number of patterns N . As

stated in Section 3.2.3, the running times of mRMR and QPFS with and without
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Dataset Method
M

10 20 40 50 100 200 400

MaxRel 27.48 24.68 21.70 20.82 20.31 21.73 -

MID 25.19 22.99 20.64 20.76 21.71 21.64 -

ARR MIQ 29.79 27.78 23.89 23.32 21.53 21.74 -

reliefF 30.64 24.48 21.54 21.34 20.90 21.66 -

QPFS 28.05 23.72 22.39 21.30 21.52 21.76 -

MaxRel 61.33 49.83 40.00 38.67 34.83 35.50 34.17

MID 53.50 41.50 36.33 34.33 32.00 32.83 33.67

NCI60 MIQ 56.50 47.50 38.83 38.17 32.83 35.50 35.17

reliefF 56.93 54.17 48.49 48.49 38.07 32.13 34.36

QPFS 46.33 36.00 33.00 29.83 29.00 34.67 35.17

MaxRel 21.58 14.33 6.36 4.51 2.19 0.24 0.13

MID 9.39 3.33 2.01 2.31 0.47 0.24 0.49

SRBCT MIQ 10.11 2.18 0.47 0.72 0.24 0.25 0.72

reliefF 6.38 4.18 1.65 1.79 0.96 0.40 0.40

QPFS 3.89 1.57 0.97 0.11 0.05 0.11 0.35

MaxRel 79.32 60.78 48.46 45.58 40.98 39.98 38.77

MID 54.26 48.45 44.16 43.38 41.38 38.26 35.50

GCM MIQ 79.32 56.48 46.64 43.96 41.80 38.46 38.05

reliefF 61.25 51.61 46.36 43.83 39.35 39.75 37.08

QPFS+N p = 0.05 65.66 54.72 46.09 44.11 39.57 38.06 35.26

MaxRel 19.95 17.32 15.40 15.16 14.34 13.54 11.97

MID 21.15 18.46 16.53 16.18 14.88 12.81 10.95

RAT MIQ 23.69 19.62 17.23 16.61 15.07 12.46 10.96

reliefF 22.16 20.40 17.44 16.45 13.68 11.43 9.85

QPFS+N p = 0.1 27.13 21.89 19.02 18.16 15.24 12.85 10.51

MaxRel 59.19 40.98 25.77 22.5 12.09 7.64 6.72

MID 53.39 29.37 19.56 17.40 11.72 7.55 6.66

MNIST MIQ 51.69 25.98 11.79 10.87 7.78 6.90 6.33

reliefF 50.91 40.20 23.81 19.56 12.31 8.47 6.86

QPFS+N p = 0.2 57.00 35.39 23.62 20.48 11.31 7.71 6.54

Table 3.6: Error rates for different feature selection methods and Linear SVM. The
best result in each case is marked in bold. QPFS+N indicates that the Nyström ap-
proximation is used in the QPFS method and p represents the subsampling rate in

Nyström method. In all cases, the α parameter of QPFS is set to α̂.

Dataset Number of Selected Features (average) Error rate (%)

ARR 10.75± 0.155 23.34± 0.63

RAT 6.12± 0.13 22.87± 0.33

Table 3.7: Streamwise Feature Selection error rates.

Nyström all depend linearly on N when M and p are fixed. This theoretical

dependence is confirmed in Figure 3.13(a), in which mRMR and QPFS show a
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linear dependence on the number of patterns. For QPFS+Nyström, Table 3.2

shows that the slope of this linear dependence is proportional to the sampling

rate p. Over the range p = 0.01 to p = 0.5, a decrease in p leads to a decrease

in the slope of the linear dependence on N . Therefore, although all algorithms

are linearly dependent on N , the QPFS+Nyström is computationally the most

efficient. The time cost advantage increases with increasing number of training

examples because the slope is greater for mRMR than for QPFS.

• Computational cost as a function of the original dimension M . Table 3.2

shows that mRMR and QPFS have quadratic and cubic dependence on M , re-

spectively. However, the QPFS+Nyström cubic coefficient is proportional to the

square of the sampling rate. When small value of p are sufficient,which is the

typical case, the cubic terms are not dominant. These results are illustrated in the

experiments shown in Figure 3.13(b). As expected from Table 3.2, mRMR and

QPFS empirically show quadratic and cubic dependence on problem dimension.

QPFS+Nyström shows only quadratic dependence on problem dimension, with a

decreasing coefficient for decreasing p values. In all cases, a t-test has been used to

verify the order of the polynomial that best fits each curve by least-squares fitting

[86]. Overall, for small Nyström sampling rates, QPFS+Nyström is computation-

ally the most efficient.

• Computational cost as a function of the Nyström subsmapling rate p.

Table 3.2 reveals that there should be a quadratic dependence on sampling rate for

the QPFS+Nyström algorithm. Figure 3.13(c) shows the empirical average time

cost for the SRBCT dataset as a function of the sampling rate p. As expected, there

is quadratic dependence on p and cubic dependence on the problem dimension M .

3.4 Discussion

Among machine learning tasks, identifying a subset of features with a competitive clas-

sification accuracy is a problem of growing importance because of the increasing size

and dimensionality of real-world datasets. This responsibility fall on feature selection

methods which can be divided into three groups according to their dependence with
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Figure 3.13: Time cost in seconds for mRMR and QPFS as a function of: 3.13(a)
the number of patterns, N ; 3.13(b) the dimension, M ; and 3.13(c) the sampling rate,
p. QPFS+N indicates that the Nyström approximation is used in the QPFS method.

the classifier algorithm. Among them, filter approaches are often preferred in large-

scale contexts due to its scalability and independence of the underlying classifier. The

most scalable filter-type approaches are the univariate methods that only consider the

discriminative power of variables individually. Unfortunately, their classification rates

are generally poor, being necessary to resort to multivariate filters which also detect

redundancies among features.

The chapter has started with the analysis of the scalability of the most important state-

of-the-art multivariate filter algorithms to show that computational complexity improve-

ments are still desirable in high-dimensional and large-scale domains. In this regard, a

new multivariate filter feature selection method for multiclass classification problems has

been presented and studied. The new method, named Quadratic Programming Feature

Selection (QPFS), is based on the optimization of a quadratic function that is reformu-

lated in a lower-dimensional space using the Nyström approximation (QPFS+Nyström).

Experimental results show that QPFS classification accuracy is similar to those of

mRMR when mutual information used, and it yields slightly better results if there is

high redundancy. Both methods outperform several well-known filter feature techniques

considered in this chapter. In all experiments, QPFS using mutual information obtains

better classification accuracy than correlation, presumably because mutual information

better captures nonlinear dependencies among attributes. With respect to the compu-

tational complexity, small sampling rates in the Nyström method still lead to reasonable

approximations of exact matrix diagonalization, sharply reducing the time complexity of

QPFS. In fact, the QPFS+Nyström method using either Pearson correlation coefficient
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or mutual information as similarity measure is computationally more efficient than the

leading previous method mRMR.

In summary, the new QPFS+Nyström method presented in this chapter establishes a

new formulation of the feature selection task capable of reducing the computational cost

of state-of-the-art multivariate filter-type algorithms while maintaining their classifica-

tion effectiveness.





Chapter 4
Kernel Quadratic Programming Feature

Selection (KQPFS)

Feature selection techniques presented in Chapter 3 do not perform well if the origi-

nal features do not contain explicitly the discriminatory information. In these cases,

finding a proper representation of data is fundamental for the success of the feature

selection task. However, obtaining a good representation entails not only removing

irrelevant features, but also deriving new attributes as well. To tackle this problem,

several well-known feature selection and extraction methods has been extended to per-

form the feature selection/extraction in a kernel space using a specially designed

mapping function which implicitly generates nonlinear combinations of the original fea-

tures –in a similar way as it was done in the context of Support Vector Machines in

Section 2.3.2.1–. Following this approach, this chapter presents the second contribution

of this thesis: the reformulation of the feature selection method proposed in Chapter 3

in a kernel space resulting the Kernel Quadratic Programming Feature Selection

algorithm [87]. The chapter starts with a general overview about the application of

the kernel trick to feature extraction algorithms and the case of the Fisher Discriminant

Analysis introduced in Section 2.3.1 is studied in depth. Afterwards, the kernelized ver-

sion of the QPFS method is formulated to find the projection direction which maximizes

the quadratic objective function of QPFS in the kernel space. This direction turns out

to be the well-known Kernel Fisher vector and the theoretical proof of such equiva-

lence is given. The subsequent analysis of the computational complexity of the standard

93
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Kernel Fisher Discriminant Analysis solution and the new solution derived from KQPFS

reveals that the latest can be more efficient for highly unbalanced datasets. Finally, the

experiments carried out at the end of the chapter corroborate the preceding theoretical

results.

4.1 Feature Selection in a Kernel Space

Feature selection methods choose subsets of features in the original feature space and, as

shown in Chapter 3, they can achieve good results in several domains. However, there are

some cases in which it is not enough to detect relationships between the original features

and the class and the dimensionality reduction problem requires to go one step further.

As example, Figure 4.1 shows a synthetic dataset in which the class of each point is

determined by its euclidean norm: a point belongs to the blue class if its distance to the

origin (0, 0) is lower than 0.5; otherwise, it is assigned to the red class. The symmetry

of the problem makes that any reasonable feature selection algorithm considers any of

the original features, X1 and X2, equally important and thus, dimensionality reduction

maintaining the separability of the original data is not possible. Nevertheless, with a

single variable Z = X2
1 +X2

2 both classes could be distinguished perfectly. The limited

scope of feature selection methods is extended by feature extraction techniques. Among

those, Principal Component Analysis (PCA) [1] or FDA (Section 2.3.1) are widely known

in machine learning but they fail in cases as the one illustrated in Figure 4.1 as they

only take into account linear combinations of the original features. Nonlinear feature

extraction methods are more general approaches since they are capable of generating

nonlinear combinations of the original features.

Nonlinear feature extraction can be tackled from two opposite points of view (Figure 4.2).

The first approach consist in introducing a set of nonlinear functions acting directly

on the samples and then, applying a feature selection/extraction method. In turn, the

nonlinear functions can be established beforehand, for example as radial basis functions

(RBF), or they can be extracted from certain grammar established by the user [88, 89].

The grammar makes it possible to add some prior information in the feature extraction

process and it favors the understanding of the new attributes. However, grammatical

evolution techniques are computationally expensive in terms of run time and memory

allocation because they require to generate explicitly the new features. Therefore, its
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1-dimensional separable problem

2-dimensional non-linear separable problem

Figure 4.1: Bidimensional (x1, x2) synthetic dataset where feature selection methods
performs poorly while nonlinear feature extraction methods can make the problem

separable with a single feature Z = X2
1 +X2

2 .

direct application to large-scale and high-dimensionality datasets is unfeasible and more

effort is needed to make this alternative viable.

As a second approach, kernel methods for feature extraction map the data from

an original space to a kernel space (by means the nonlinear function Φ generally

not known) in which the feature selection is carried out corresponding to a nonlinear

function in the input space. Section 2.3.2.1 presented the use of the kernel trick in the

context of SVMs yet its application goes beyond and the most popular feature extraction

methods like PCA and FDA have been reformulated in a kernel space. However, the

kernelization of traditional feature selection techniques is not as straightforward as in

the case of feature extraction methods since it entails several difficulties:

• The mapping function Φ is generally not known which makes it impossible to

have an explicit list of the new features and select them using any of the traditional

feature selection methods studied in Chapters 2 and 3.

• The dimensionality of the feature space can be potentially infinite thus,

it makes no sense to rank features according to some criterion.

• In those cases in which the dimensionality of the feature space is not infinite

and the new features could be obtained explicitly (i.e., polynomial kernel), the

dimension of the new feature space is so high that even the most efficient

feature selection algorithms become impracticable.

• The most commonly used similarity measures as correlation or mutual information

can not be expressed as dot-products in the kernel space, forcing the search of
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Figure 4.2: Differences between feature selection in the space generated either by a
set of known nonlinear function or by a kernel.

a basis set in the kernel space. But, when the data is not sufficient or the

dimension of the kernel space is infinite, not all the basis in the kernel space can be

expressed by combinations of the data. Kernel Gram-Schmidt [90] or Kernel PCA

[91] has been used to find such basis leading to an increment in the computational

cost of the algorithm.

In despite of these limitations, several of the filter feature selection methods enumerated

in Table 3.1 have their kernelized version. Those algorithms based on the computation

of correlation or mutual information as similarity measure (MaxRel, CFS, mRMR) can

be reformulated in the kernel space by finding a basis in the kernel space. ReliefF has

also been adapted to the kernel space in combination with the Kernel Gram-Schmidt

algorithm [90, 92]. In the case of wrapper methods, the kernelization must be done in the

underlying classifier used to evaluate the performance of every feature subset. Basically,

this group is formed by any backward or forward algorithm using the nonlinear SVM

performance as quality measure. Again, for large-scale and high dimensional domains,

the evaluation of a nonlinear SVM for every candidate subset is too expensive. Finally,

the kernelization of embedded feature selection methods has been focused on feature

selection in SVMs. This topic has been widely studied in the literature and several

approaches has been suggested [93, 94]. In particular, Wu et al. proposed Sparse Large

Margin Classifiers which find sparse SVMs classifiers consisting in finding sparse SVMs
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that usually have better generalization ability than SVMs models in which sparsity is

not enforced. As any embedded method, the main drawback of these models is the lack

of versatility to be used with other classifiers.

4.1.1 Kernel Fisher Discriminant Analysis

The Fisher Discriminant Analysis expounded in Section 2.3.1 is probably the most pop-

ular supervised feature extraction techniques in machine learning. Although relying on

heavy assumptions which are not true in many applications, Fisher Discriminant Analy-

sis has proven to be very powerful and it is a point of reference in many machine learning

systems due to its appealing properties:

1. The existence of a global solution and the absence of a local minima.

2. The solution has a closed form.

3. Its clear interpretation.

However, the analysis carried out in the previous section still holds here: for most real-

world data, a linear discriminant is not complex enough. To tackle this problem, two

different approaches can be considered:

1. Use more sophisticated distributions –instead of gaussian distributions–

to model the data. Assuming general distributions often sacrifices the simple

and closed form and it requires more complex solvers, which is not desirable for

large-scale problems.

2. Look for nonlinear directions. These nonlinearities can be in turn introduced

explicitly or implicitly.

• Introducing explicit nonlinearities. A set D of predefined nonlinear func-

tions Φi(x) acting directly on the samples is considered: D = {Φi : X → R}.

Then, the optimal discriminant is defined as,

f(x) =
∑

Φi(x)∈D

wiΦi(x) + b. (4.1)
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These models produce nonlinear functions and hence, they are known as gen-

eralized linear discriminants. Taking advantage of the linearity of f with re-

spect to the parameters w and b, Equation 4.1 can be optimized via least

squares fitting. Well-known examples following this approach are radial-

basis function (RBF) networks [95], where nonlinear functions have the form

Φi(x) = exp(−‖xi − x‖2/σ) with xi a fixed pattern and σ ≥ 0. If σ pa-

rameter is also optimized, the function f is not linear anymore and methods

like gradient descent should be applied. Many other works extending the

classical linear discriminant framework can be found in the literature. These

methods are based on the introduction of special nonlinearities, the impo-

sition of certain types of regularization and the use of special optimization

algorithms [42]. While an appropriate choice of functions D could approxi-

mate any function with an arbitrary precision, the presence of parameters to

be tuned in the basis functions (multilayer neural networks) complicates the

optimization problem, which is often prone to local minimal and lack for an

intuitive interpretation.

• Introducing implicit nonlinearities. Instead of hand-crafting a nonlinear

preprocessing, kernel functions are introduced. The idea introduced by Mika

et al. [96] suggests an efficient way to increase the expressiveness of the dis-

criminant via nonlinear directions applying the kernel-trick (Section 2.3.2.1):

first map the data nonlinearly into some feature space F and compute the

Fisher Discriminant Analysis there, which yields a nonlinear discriminant in

the original input space. Being still the solutions hardly interpretable, this

new formulation is able to find closed form solutions while maintaining the

theoretical beauty of Fisher discriminant providing the model with flexibility

by means of the use of different kernels. The rest of this section is directed

to explain in detail the kernelization of the Fisher discriminant, closely

related with the QPFS kernelization.

Formalizing the idea given by Mika et al. [96], let S+ = {x+
1 , . . . ,x

+
N1
} and S− =

{x−
1 , . . . ,x

−
N2
} be samples from two different classes, xi ∈ RM and S = S+ ∪ S− the

complete set of N (N = N+ +N−) training samples. And let y ∈ {−1, 1}N be the vector

with the corresponding labels. Let Φ : RM −→ F be the mapping function to the kernel

space and K(xi,xj) = Φ(xi) · Φ(xj) the Mercer kernel which defines the dot-product
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Linear Fisher Direction

(a)

Kernel Fisher Preimage

(b)

Figure 4.3: Illustrating the performance of Fisher Discriminant in a nonlinear syn-
thetic example. Figure 4.3(a) shows the projection direction of the Fisher discriminant
in the original space. Figure 4.3(b) shows the preimage in the original space of the

Kernel Fisher Discriminant.

in F . To find the Fisher Discriminant Analysis in F , the following quantity must be

maximized1,

J(w) =
wTSΦ

Bw

wTSΦ
Ww

(4.2)

where w ∈ F and SΦ
B and SΦ

W are the corresponding between and within scatter matrices

in F , i.e.

SΦ
B = (µΦ

+ − µ
Φ
−)(µΦ

+ − µ
Φ
−)T

SΦ
W =

∑
x∈S+

(Φ(x)− µΦ
+)(Φ(x)− µΦ

+)T +
∑
x∈S−

(Φ(x)− µΦ
−)(Φ(x)− µΦ

−)T

with µΦ
+ = 1

N+

∑
x∈S+

Φ(x) and µΦ
− = 1

N−

∑
x∈S− Φ(x). Finding a solution to Equa-

tion 4.2 in the kernel space F requires to reformulate it in terms of only dot products

of the input patterns. Every solution w ∈ F can be written as an expansion in terms

of the mapped training data w =
∑N

i=1 αiΦ (xi) making the things tractable. Consider

the symmetric operators S on the finite-dimensional subspace spanned by the Φ(xi)

in a feature space F –possibly infinite–. For example, any matrix S constructed as a

linear combination of {Φ(xi)} as matrices SB and SW . Writing w = v1 + v2 as the

decomposition of the part v1 lying in the subspace spanned by the training data and

1Observe the similarity between the following expressions and the objective function of Fisher Dis-
criminant Analysis given by Equations 2.13–2.15.
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v2 lying in its orthogonal subspace, it can be shown that it is sufficient to consider the

part of the quadratic form wTSw which lies in the span of the examples,

〈w, Sw〉 = 〈(v1 + v2), S(v1 + v2)〉 = 〈(v1 + v2), Sv1〉 = 〈v1, Sv1〉.

These equalities use the properties Sv2 = 0 and 〈v, Sv〉. Moreover, as v1 lies in the

span of {Φ(xi)} and S, by construction, only operates in this subspace, Sv1 lies in the

subspace spanned by {Φ(xi)} as well.

The formulation ofw as the linear combination of the mapped patterns,w =
∑N

i=1 αiΦ (xi)

makes it possible to write Equation 4.2 in terms of dot products in the kernel space as

follows,

J(α) =
αTBα

αTWα
(4.3)

being

B = (B+ −B−)(B+ −B−)T W = K+(IN+ − 1N+)KT
+ +K−(IN− − 1N−)KT

−

(B+)j = 1
N+

∑N+

k=1K(xj ,x
+
k ) (B−)j = 1

N−

∑N−
k=1K(xj ,x

−
k )

where K+ is a N ×N+ matrix with (K+)nm = K(xn,x
+
m), IN+ is the identity matrix in

RN+×N+ and 1N+ is a square matrix in RN+×N+ with all entries equal to 1
N+

. Definitions

for the negative class are analogous. Similarly to how the linear Fisher direction is

obtained in the Fisher Discriminant Analysis, αKFDA can be worked out by finding the

leading eigenvector of W−1B or by computing αKFDA = W−1(B− − B+). However,

the proposed model is ill-posed [15]: the N -dimensional covariance matrix has been

estimated with N patterns which cause matrix W not to be positive2. Besides the

2Let W = KDKT with D = I − v1vT
1 − v2vT

2 , vj ∈ RN and (v+)i = 1√
N+

if the example i

belongs to the positive class and zero otherwise. The same applies for negative samples. Rank(W )
≤ min{Rank(K),Rank(D)}. Matrix K is usually full rank in practice but anyway, the rank of matrix
D is N − 2 spanning v1 and v2 the null space of D.
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numerical problems, successful learning requires to control the size and complexity of

the classification model as stated in Section 2.1. While the Fisher discriminant is rather

simple, its reformulation in a kernel space admits a wide variety of nonlinear solutions

and the incorporation of a regularization term improves the generalization capability

of the model. Regularization functions as ‖α‖2, ‖w‖2 and others have been proposed

in [96–98]. The KFDA authors propose to approximate matrix W by Wµ = W + µW IN

with µW ≥ 0 and, as it will be shown later, this regularization is equivalent to regularize

‖α‖2. This kind of regularization can be viewed from different perspectives:

• If µW is large enough (ideally, the minimum value which makes W positive defi-

nite), the problem in Equation 4.3 is feasible and numerically more stable.

• As µW is increased, the variance of the W estimation decreases. In fact, when

µW →∞ the solution lie in the direction of (B− −B+).

• The regularization ‖α‖2 is a l2-regularization which favors solutions with small

expansion coefficients.

Regularization on ‖w‖2 is achieved by adding a multiple of the kernel matrix to W :

Wµ = W + µKK (µK ≥ 0). This regularization resembles Support Vector Machines

studied in Chapter 2 (Section 2.3.2) and indeed it can be formulated as a Least Squares

SVM problem [99].

The question now is how to project a point into the direction given by the coefficients

αKFDA if wKFDA is not explicitly known (recall that it has been assumed that wKFDA =∑N
i=1 α

KFDA
i Φ(xi)). The dependence on Φ must be removed and the projection of a

point need to be expressed as a function of the kernel matrix. More precisely, let x̃ a

point in the original input space, its projection according to the KFDA optimal direction

is a one-dimensional feature given by,

z̃ = wKFDA · Φ(x̃) =

(
N∑
i=1

αKFDA
i Φ(xi)

)
· Φ(x̃) =

N∑
i=1

αKFDA
i (Φ(xi) · Φ(x̃))

=
N∑
i=1

αKFDA
i K(xi, x̃).
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Regarding the synthetic example given in Figure 4.1, Figure 4.3(a) shows the projection

direction computed via FDA which does not improve the discriminatory information in

the data. By contrast, the KFDA boundary shown in Figure 4.3(b) separates linearly

the input data with a single feature. Then, why not use always KFDA to ensure the most

general model? The answer is simple, while the projection of a point to the linear Fisher

direction only requires to evaluate one dot product in the input space, the projection

of a point in the kernel space requires as many kernel evaluations as training samples

and weighting each evaluation by αKFDA. In short, the evaluation of the kernel Fisher

discriminant is so computationally intensive that its use is only justified in those cases

in which linear feature extraction is insufficient. In addition to its high computational

cost and unlike its linear counterpart, when KFDA is used it may not be possible to

find an exact preimage of a reconstructed pattern. And, as in FDA, KFDA for binary

problems project the data into one dimensional space which may be not enough for

complex classification problems.

4.2 The QPFS Kernelization

Having the kernelization of popular methods like PCA and FDA in mind, it seems natural

to try to adapt QPFS to a kernel space in order to extract nonlinear features which can

reveal the discriminatory information. Despite the difficulty –even the impossibility– of

getting the preimage of the nonlinear extracted features, the kernelization of PCA and

FDA is able to maintain the theoretical basis of the original linear methods while, at

the same time, to provide enough flexibility with the use of different kernels. Recall the

QPFS method proposed in Chapter 3 consists in minimizing a multivariate quadratic

function subjected to linear constraints as follows

min
w

1
2w

TQw − F Tw (4.4)

s.t. wi ≥ 0 ∀i = 1 . . .M

‖w‖1 = 1,
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where w is an M -dimensional vector, Q ∈ RM×M is a symmetric positive semidefinite

matrix, and F is a vector in RM with non-negative entries. Q represents the similarity

among variables (redundancy), and F measures how correlated each feature is with the

target class (relevance). The components of the solution vector w∗ represents the weight

of each feature which are normalized to be in the interval [0, 1] and to sum up to one.

Thus, the aim of Equation 4.4 is to select those features which provide a good tradeoff

between relevance and redundancy for the classification task. For the time being, the

α parameter weighting redundancy-relevance in QPFS (Equation 3.4) is set to α = 0.5.

The effect of this parameter in the following reasoning will be analyzed at the end of

this section.

Intuitively, the kernelization of QPFS would try to perform QPFS in a kernel space

so that the new features would be as much independent as possible and highly correlated

with the target class. Furthermore, the redundancy reduction gain importance in the

feature space where the dimension of the mapped data can be significantly higher than

the number of training samples. However, the formulation of Equation 4.4 in a kernel

space suffers from the same drawbacks previously enumerated for feature selection meth-

ods: for some kernels, it is not possible to give a weight to each feature in the kernel

space due to its potential infinite dimension and what is more, the mapping function

is not generally known. Maintaining still the goal of redundancy minimization of the

features and relevance maximization of each feature with the target class, Equation 4.4

can be adapted to find an optimal direction w to project the data into the kernel space.

Let Φ be the nonlinear mapping to the feature space F then, the adapted QPFS

objective function is defined as,

min
w

1

2
wTQΦw −

(
FΦ
)T
w (4.5)

where QΦ is the redundancy among features in the kernel space and FΦ is the rel-

evance of each feature with the target class in the kernel space. Thus, Equation 4.5

represents a feature extraction method, KQPFS, instead of a feature selection tech-

nique as the original QPFS.
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In the original QPFS approach, correlation and mutual information were considered as

similarity measures of redundancy and relevance. Mutual information was proposed to

handle nonlinear relationships in the data, but now a linear dependence –like correlation–

must be applied since w induces a linear projection of the data. To adapt correlation

to the kernel space, the undesirable search of a basis in the kernel space is enforced.

If instead of correlation the covariance is used as similarity measure, the KQPFS

formulation does not require the presence of an explicit basis in the kernel space. More

precisely, the QΦ and FΦ matrices are defined as follows,

QΦ =
∑
x∈S

(
Φ(x)− µΦ

) (
Φ(x)− µΦ

)T
FΦ =

∑
x∈S

(y − µy)
(
Φ(x)− µΦ

)

where y is a N -dimensional vector with the labels of the training samples while µΦ

and µy are the mean value of the training samples and the training labels, respectively.

That is,

µΦ =
1

N

N∑
i=1

Φ(xi)

µy =
1

N

N∑
i=1

yi .

But a formulation of Equation 4.5 in terms of only dot products of the input patterns

is needed. Following the same reasoning that in Section 4.1.1, it can be shown that the

solution vector w can be written as a linear combination of the mapped samples. The

quadratic term in Equation 4.5 lies in the subspace spanned by the mapped training

patterns {Φ(xi)} since QΦ also lies in the subspace of {Φ(xi)} by construction. Re-

garding the linear term, the operator FΦ is formed by a linear combination of {Φ(xi)},

(y − µy) ∈ R, and thus when it is applied to w = v1 + v2 (v1 ∈ Span{Φ(xi)} and

v2 ⊥ Span{Φ(xi)}) only FΦv1 is non zero. Therefore, writing w as w =
∑N

i=1 αiΦ (xi),

Equation 4.5 can be formulated as the minimization of function G(α) defined as
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G(α) =
1

2
αTK (IN − 1N )Kα− yT (IN − 1N )Kα, (4.6)

where IN is the N -dimensional identity matrix and 1N is a N -dimensional square matrix

with all entries 1
N .

Defining QK = K (IN − 1N )K and FK = K (IN − 1N )y, the optimal value of αKQPFS

is obtained by making the gradient of G(α) equals to zero,

αKQPFS = (QK)−1 FK .

If the QK matrix is invertible, the formulation of the optimal direction is straightforward,

α∗KQPFS = (QK)−1 FK

= K−1 (IN − 1N )−1K−1K (IN − 1N )y

= K−1y.

Unfortunately, the matrix QK is always singular because its rank is upper-bounded by

the rank of matrix (IN − 1N ) which is N − 1. As in the KFDA case, some regularizer

is needed and following [96], a multiple of the identity matrix is added to QK matrix:

Qµ = QK + µQIN with µQ ≥ 0. Ideally, µQ is the minimum value which makes Qµ

positive definite and a process to estimate its value is needed.

Replacing QK by Qµ in Equation 4.6, we obtain the regularized version of KQPFS,

Gµ(α) =
1

2
αT (QK + µQIN )α− F TKα

which is equivalent to,

Gµ(α) =
1

2
αTQKα− F TKα+

µQ
2
‖α‖2. (4.7)
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And the regularized KQPFS direction is given by,

αKQPFS = (QK + µQIN )−1 FK (4.8)

The KQPFS solution raised by Equation 4.8 projects the input data to one-dimensional

space and it represents the projection direction which minimizes the covariance among

features and maximizes the covariance of each feature with the target class in the kernel

space. Note that such direction depends only on the kernel matrix K and the class

labels y.

Up to now, the parameter α of QPFS was assumed to be α = 0.5 and indeed, the value

of the parameter has no effect in the solution given in Equation 4.8. Denoting this

parameter by β in order to become notation clearer, the KQPFS equation incorporating

the β parameter can be written as follows,

1

2
(1− β)wTQΦ

µw − β(FΦ)Tw. (4.9)

Making the first derivative equal to zero and assuming β ∈ (0, 1), the optimal direction

wKQPFS
β can be expressed as wKQPFS

β = β
1−βQ

−1
µ F . It is straightforward to see that this

direction is the same as the one obtained above except by the scaling factor β
1−β that has

not effect in the projection. The extreme cases β = 0 and β = 1 make KQPFS objective

function meaningless. When β = 0, the relevance term is not considered and the KQPFS

direction is wKQPFS
β = 0 under the assumption that matrix QΦ is positive semidefinite.

On the other hand, if β = 1, the redundancy term is removed from Equation 4.9 which

turns out to be an unconstrained linear problem in which the coordinates of wKQPFS
β

are equal to ∞ or −∞ when the corresponding entries in F are positive or negative,

respectively.

4.3 Equivalence of KFDA and KQPFS

This section will show that the apparent different approaches which encouraged KFDA

and KQPFS converge to the same solution in the kernel space. Without loss of generality,
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the regularization approaches defined in Sections 4.1.1 and 4.2 will be considered. It is

straightforward to show that the following proof is also valid for other regularization

functions.

Firstly, let put forward the reasons which lead Mika et al. [100] to formulate KFDA

as a quadratic programming problem. While KFDA avoids working explicitly in

the high dimensional feature space induced by the kernel matrix, the closed solution

initially proposed by KFDA requires (i) a memory allocation of the order of N2 doubles

corresponding to matrices B+, B− and W and (ii) the calculation of either inverse

of the matrix W or the greater eigenvalue of W−1(B− − B+) entails a computational

cost of O(N3). In spite of the increasing memory storage of modern computers and

the existence of several off-the-selve efficient eigensolvers or Cholesky packages, dealing

with these matrices in large-scale domains is still unpleasant. Moreover, the obtained

solutions are in general non sparse – which would speed up the projection of new points

in the feature space– and it is not obvious how to induce sparsity in the model raised by

Equation 4.3. However, writing the Kernel Fisher discriminant as a convex quadratic

programming avoids the matrix inversion or diagonalization by making use of the most

efficient quadratic programming solvers for large-scale domains. Regarding the sparsity,

it can be enforced easily in the quadratic optimization model in a similar way as it was

introduced for SVMs in Section 2.3.2.

The initial version of the casting of KFDA into a quadratic program exploits the fact

that the matrix B has rank 1 ( B = (B+ − B−)(B+ − B−)T , being Bi N -dimensional

vectors) and thus, αTBα can be rewritten as (αT (B− − B+))2. Noting that any non-

zero multiple of α is also solution for Equation 4.3, (αT (B− − B+))2 can be equal to

any non-zero number, let say 2. And all that is left is to minimize αTWα resulting the

following optimization problem,

min
α
αTWα+ CP (α) (4.10)

Subject to:

αT (B+ −B−) = 2 (4.11)
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where P (α) is a regularization term which makes the W regularization raised in Sec-

tion 4.1.1 explicit and C ∈ R is the regularization constant. The previous formulation

has an appealing interpretation: the constraint ensures that the distance between the

projected means of each class is 2 (corresponding to the distance between labels ±1)

while the intra-class variance is minimized in the objective function; that is, the aver-

age margin is being maximized. It can be shown3 that solving the problem given in

Equations 4.10 and 4.11 is equivalent to optimize

min
α,b,ξ
‖ξ‖2 + CP (α) (4.12)

Subject to:

Kα+ 1b = y + ξ (4.13)

1Ti ξ = 0 for i = {−1, 1} (4.14)

being 1 ∈ RN a vector with all entries 1 and 1i ∈ RN are binary vectors with j-th entry

equals to 1 if the j-th sample belongs to class i and 0 otherwise. The quadratic opti-

mization problem can be understood as a least squares minimization in the kernel space,

being ξ the error in the model prediction as stated in the first constraint. The second

constraint represents the maximization of the distance between the average outputs for

each class.

Besides the computational advantages derived from the reformulation of KFDA as a

quadratic programming, the regularization has an extra motivation: if the number of

patterns is higher than the dimension of the problem, the system of equalities is over-

determined; conversely, if the number of samples is lower than the dimension of the

feature space –a typical situation in kernel spaces–, the system is under-determined

existing one or more solutions fitting the labels and the solution is prone to overfitting.

3The equivalence is obtained straightforwardly verifying that (i) the feasible sets of problems 4.10–
4.11 and 4.12–4.14 are the same with respect to α and (ii) that the objective functions coincide. For
more details, consult [100].
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Once KFDA has been expressed as a quadratic optimization problem, the equivalence

between KQPFS and KFDA can be easily obtained. Replacing W by Wµ in Equa-

tion 4.10, the regularization term P (α) is equal to ‖α‖2, the regularization constant C

is µW and the regularized quadratic problem in Equations 4.12-4.14 can be written as,

min
α,b,ξ
‖ξ‖2 + µW ‖α‖2. (4.15)

Subject to:

Kα+ 1b = y + ξ (4.16)

1Ti ξ = 0 for i = {−1, 1}. (4.17)

The following proposition establishes the equivalence between KFDA and KQPFS by

means of the quadratic programming above and the assumption that both methods use

the same regularization criterion.

Proposition 4.1. Given µW ∈ R and let µW = µQ, any optimal solution (α∗, b∗, ξ∗)

to the optimization problem (4.15-4.17) is also optimal for the regularized KQPFS (4.7)

and vice versa.

Proof. Working out ξ in the constraint given in Equation 4.16 leads to

ξ (α, b) = Kα+ 1b− y .

By expanding ‖ξ (α, b) ‖2 the optimization problem of Equation 4.15 is reformulated as

min
α,b
{αTKKα−Nb2 − 2yTKα+ yTy + µW ‖α‖2}

subject to:

1Ti ξ(α, b) = 0 for i = {−1, 1}.

The value of b can be expressed as a function of α using the remaining constraint:
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b(α) = − 1

N
1NKα+ 1Ny . (4.18)

The resulting optimization problem has no constraints:

minα {αTKKα−N (b(α))2

−2yTKα+ yTy + µW ‖α‖2}. (4.19)

Then, substituting b(α) in Equation 4.19 by the value obtained in Equation 4.18,

minα {αTK (IN − 1N )Kα

−2yT (IN − 1N )Kα+
µW
2
‖α‖2 +D} (4.20)

with D being a constant. It follows that the minimum value of Equation 4.20 is the same

as the obtained for the objective function of the regularized KQPFS (Equation 4.7) when

µW = µQ.

This equivalence provides a new solution of the Fisher direction which does not depend

explicitly on the unintuitive kernelized within scatter matrix W (Equation 4.8). More-

over, the Fisher solution has a simple interpretation as the direction which minimizes

the covariance among features and maximizes the covariance of each feature with the

target class. Going one step further, the equivalence between KFDA and KQPFS swells

the list of equivalences among KFDA and other machine learning methods. Particularly

beneficial for large-scale problems is the Keerthi et al. work [101], which shows that the

KFDA solution using as regularizer ‖w‖2 can be derived by rescaling the solution of a

Least Squares Support Vector Machines [99]. It makes possible the use of the efficient

Sequential Minimal Optimization algorithm [55] to solve it and, in fact, recent advances

in the SMO algorithm [49] are also applicable to KFDA. The most impressive advan-

tages of SMO are that it does not require to storage the entire kernel matrix K at any

time and it can be computationally faster for large-scale datasets than the KFDA closed

formulations. Unfortunately, the design of a SMO-style algorithm is not straightforward
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when regularization in α is desired and costlier greedy approaches need to be applied in

this case [42].

Finally, the use of the linear kernel which turns KFDA – and hence KQPFS – into the

Fisher linear discriminant (regularized) could lead to believe that FDA is equivalent

to QPFS in this case. Nothing further from reality – the differences between KQPFS

and QPFS are noticeable: (i) QPFS is not a feature extraction method and (ii) the

optimization constraints on QPFS were removed in the KQPFS formulation.

4.3.1 Theoretical Complexity Comparison

A reasonable question now is to determine whether it is possible to get any computational

advantage from the new KFDA formulation as the kernelization of QPFS. Even though

several algorithms have been proposed to speed up KFDA [102–104], the interest is

focused on analyzing an equivalent problem to the KQPFS one given in Equation 4.4

and thus, the regularized KFDA solution αKFDA = (Wµ)−1(B−−B+) from Section 4.1.1

will be used.

Algorithms 3 and 4 show the MATLAB code for the KFDA and KQPFS methods,

respectively. The number of float-point operations needed by KFDA is 4N (lines 2-5),

N2
+ + N2

− + N2 + 2N(N2
+ + N2

−) + 3N2 (line 6), N2 + 3N (line 7) and O(N3) (line 8)

which makes a total cost of O(N3) + 2N(N2
+ +N2

−) + 5N2 +N2
+ +N2

−+ 7N operations.

In the case of the KQPFS algorithm, N2 +N3 operations are needed in line 2, 2N2 +N3

in line 3, N2 in line 4 and O(N3) in line 5 that is, a total cost of O(N3) + 2N3 + 4N2

float-point operations. As the instruction in line 8 of KFDA and line 5 of KQPFS work

with dimensionality equivalent matrices, it is supposed that the cost of these lines is the

same in both cases and therefore, KQPFS is computationally faster than the proposed

version of KFDA if (N2
+ + N2

−)(2N + 1) + 5N2 + 7N � 2N3 + 4N2. The inequality is

satisfied when the prior distributions of the class labels are highly unbalanced i.e., when

N+ → N or N− → N . Summing up, the KFDA cost depends on the prior distribution

of classes while KQPFS does not and KQPFS is more efficient for highly unbalanced

classification problems.
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Algorithm 3 Kernel Fisher Discriminant Analysis

1: Inputs: N,K, y, µW

2: pos = (y==1);

3: neg = (y==-1);

4: Npos = sum(pos);

5: Nneg= sum(neg);

6: W = K(:,pos)*(eye(Npos)-(1/Npos)*ones(Npos))*(K(:,pos))’+

K(:,neg)*(eye(Nneg)-(1/Nneg)*ones(Nneg))*(K(:,neg))’+

diag(µW *ones(N,1));

7: B = ((1/Npos)*(sum(K(:,pos),2))) - ((1/Nneg)*(sum(K(:,neg),2)));

8: αKFDA = W \ B;

9: Output: αKFDA

Algorithm 4 Kernel Quadratic Programming Feature Selection

1: Inputs: N,K, y, µQ

2: A=K*(eye(N)-((1/N)*ones(N));

3: Q=A*K+diag(µQ*ones(N,1));

4: B = A*y;

5: αKQPFS = Q \B
6: Outputs: αKQPFS

4.4 Experimental Results

Experimental results described in this section are divided into two subsections according

to the twofold aim of the experiments: in the first place, to verify that the projection

direction obtained by KFDA and KQPFS in thirteen datasets is the same for both

methods; and secondly, to compare their computational cost.

4.4.1 Empirical Equivalence between KFDA and KQPFS

Proposition 4.1 provides a theoretical proof of the equivalence between KFDA and

KQPFS and it is time to corroborate that the numerical solutions given by KFDA

and KQPFS coincide with the theoretical results.

Part of the experimental setup described by the KFDA’s authors [96] was followed:

Gaussian kernel (Table 2.2) and the regularized matrices Wµ and Qµ described in Sec-

tions 4.1.1 and 4.2, respectively were used. Thirteen artificial and real world datasets

were considered from the Rätsch benchmark repository4. Some of these datasets were

4The datasets are available at http://ftp.tuebingen.mpg.de/pub/fml/raetsch-lab/benchmarks/
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not binary so they were transformed into two-classes problems and all of them were

partitioned into 100 pairs of training and test sets (about 60%:40%). The KFDA and

KQPFS algorithms were implemented in MATLAB according to the codes given in Al-

gorithms 3 and 4. The experiments require to estimate two parameters: the width of

the Gaussian kernel and the regularization parameter µW of the within class scatter ma-

trix W in KFDA. The procedure to estimate these parameters consists in running 5-fold

cross validation on the first five realizations of the training sets and taking the model

parameter to be the median over the five estimates. The value of these parameters is

also provided by the KFDA’s authors [96]. Since the equivalence of KQPFS and KFDA

holds when the same regularization form and regularization constant is applied in both

cases, there is no need to adjust the KQPFS regularization parameter µQ.

The empirical equivalence of KFDA and KQPFS can be demonstrated showing that

the directions wKFDA and wKQPFS obtained by these algorithms are parallel. Enforcing

parallel directions implies that the vectors’ coordinates are equal except by a real factor

ρ 6= 0. More precisely, wKFDA = ρwKQPFS. A sufficient condition to guarantee paral-

lelism is to impose the parallelism in αKFDA and αKQPFS, which are the outputs of the

Algorithms 3 and 4. Therefore, the empirical equivalence of KFDA and KQPFS has

been confirmed measuring the cosine between the solutions αKFDA and αKQPFS, which

ideally should be close to 1 or to −1. In all the datasets, the cosine of both directions

was 1 for every training set.

4.4.2 Time Complexity Results

Once the numerical equivalence between KFDA and KQPFS has been demonstrated,

the runtime of the KFDA and KQPFS algorithms is presented in order to show some

advantages derived from the new formulation in certain scenarios. As discussed in Sec-

tion 4.3.1, the KFDA complexity depends on the prior distribution of the classes in the

binary classification problem and thus, the experimental setup consists in modifying the

prior probability of one of the classes and then comparing the runtime of KFDA and

KQPFS codes (Algorithms 3 and 4).

The regression dataset cadata available in the LIBSVM repository [53] was used. The

dataset, formed by 20, 640 samples (N) in a 8-dimensional space, was modified in order
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Figure 4.4: Cadata. Training time in seconds for the KFDA and KQPFS algorithms.

to analyze the performance of both algorithms as a function of the prior distribution of

classes and the number of training samples.

• Prior distribution of classes. The samples were arranged in ascending order

according to the regression variable. The prior probability of the positive class p+

was modified from 0 to 1 with a stepwise of 0.05, assigning the positive label to

those samples among the first p+N patterns in the ranking.

• Number of training samples (N). The first 5, 000, 6, 000, 7, 000, 8, 000, 9, 000

and 10, 000 samples were considered.

Figure 4.4 shows the runtime in training as a function of the prior probability of the

positive class. As expected, the KFDA cost is dependent on the class prior probabilities,

being faster than KQPFS except when the class distributions are highly unbalanced.

Furthermore, the KQPFS complexity is independent of the prior distributions.
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4.5 Discussion

Motivated by the possible lack of expressiveness of feature selection methods introduced

in Chapters 2 and 3, this chapter has extended the feature selection method proposed in

Chapter 3 to a kernel space giving rise to a nonlinear feature extraction algorithm: Kernel

Quadratic Programming Feature Selection (KQPFS). The kernelization of the QPFS

algorithm gives as a result an optimal projection direction in the kernel space, which

maximizes the relevance between the features and the labels and minimizes redundancies

among features as stated in Chapter 3. However, the similarity criteria used in the

previous chapter namely, Pearson correlation and mutual information, cannot be easily

extended to the kernel space since they require to compute a basis there. The obtaining

of such basis not only affects to the performance of the feature selection method, but also

increases its computational load, which makes this approach unfeasible for large-scale

domains. Fortunately, if covariance is used instead of the previous similarity measures,

the reformulation of QPFS in a kernel space can be done without computing any basis.

The use of the covariance as similarity measure in the KQPFS algorithm yields the

main contribution of this Chapter: a theoretical proof of the equivalence between the

KQPFS and KFDA projection directions. Such relation leads to a new interpretation of

the KFDA vector as the direction which minimizes the covariance among features and

maximizes the covariance of each feature with the target class in the kernel space. In

addition, the new KFDA solution disregards the explicitly dependence on the kernelized

between and within scatter matrices used traditionally in the Fisher algorithm and it

allows a more efficient computation of the Kernel Fisher direction when classes are highly

unbalanced.

In conclusion, the new KQPFS method introduced in this chapter establishes a new

formulation of the Kernel Fisher Discriminant Analysis which gives new insights into

the Kernel Fisher direction.





Chapter 5
Hierarchical Linear Support Vector

Machine

According to the large-scale data mining process described in Chapter 2, Chapters 3 and

4 have been focused on improving the efficiency of large-scale systems in the preprocess-

ing phase. In this chapter the attention is going to be centered in the development

of a fast algorithm in the prediction phase, which represents the third contribution of

this thesis [105]. The new algorithm is motivated by the necessity of designing efficient

large-scale algorithms not only in the training but also in the prediction phases. Among

classification problems, Support Vector Machines studied in Section 2.3.2 have been

widely used due to its effectiveness but its application to large-scale domains requiring

real-time predictions is compromised. An overview of the existing techniques focused on

the acceleration of the SVMs prediction phase makes it possible to conclude that more

effort is needed for large-scale and real-time classification problems. In this line,

the Hierarchical Linear Support Vector Machine algorithm is presented together

with an analysis of its training and prediction complexities. In addition, the derivation

of an upper bound of the generalization error allows to quantify the complexity of the

H-LSVM model. The chapter closes with a group of experiments pointing to H-LSVM as

a compromise solution for real-time classification systems where the applicability of the

nonlinear SVMs is extremely limited and linear models are too simple. The experimental

results also confirm the validity of the generalization error bound in practice.

117
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5.1 Accelerating SVM Classification

The undeniable appeal of SVMs contrasts with their high computational cost [8]. That

is the reason that has led machine learning community to suggest a wide range of

solutions to reduce the SVM complexity. Although many of these efforts have been

focused on speeding up the SVM training, the emergence of applications requiring great

classification speed (like a credit card fraud detection system with response times lower

than 10 milliseconds) makes necessary the design of new algorithms maintaining as much

as possible the effectiveness of nonlinear SVM and improving its classification complexity

at the same time. Specifically, Equation 2.32 showed that the computational complexity

of testing a pattern using a nonlinear SVM optimized in the dual space is:

O (nSV ×M × nK) , (5.1)

where nSV is the number of support vectors, M is the dimension of the samples and nK

is the cost of evaluating the kernel function.

The excessive computational load of this expression becomes more pronounced as the

number of training samples increases, since the number of support vectors (nSV ) scales

linearly with the number of training patterns [106].

In accordance with Equation 5.1, several approaches –not exclusive– can help in the

reduction of the classification cost of a machine learning system based on SVMs (Fig-

ure 5.1),

1. Choose features using dimensionality reduction techniques as the one proposed

in Chapter 3.

2. Choose the SVM model to reduce the complexity of the kernel function nK .

3. Reduce the number of support vectors nSV . Several techniques have been

proposed in order to reduce the complexity of the SVM model using either numer-

ical approximations or data-reduction approaches; at the same time, they can be

performed before (preprocess), during (embedded) or after (postprocess) the

training process.
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Figure 5.1: Machine learning system based on SVM model. The reduction of the
prediction cost can be performed in different phases: choose features, choose SVM

model and training the SVM model.

Linear SVMs are the best alternative for fast execution because the cost of computing

the kernel function is M and their decision boundary is formed by a single hyperplane

(nSV = 1). However, their performance for nonlinear problems is uncompetitive and a

compromise between performance and classification speed is needed. Therefore, methods

to reduce the number of support vectors while maintaining the nonlinear kernel have

been proposed in the literature. They can be divided into two groups as suggested by

Keerthi et al. [107]:

• Numerical techniques find a reduced set of basis functions needed to classify

a pattern. These algorithms usually consider all the training patterns and find a

sparse representation of the support vectors. It is worth noting that the resulting

model is an approximation of the exact solution of the SVM optimization problem.

– Embedded numerical methods. Sparseness is imposed in the SVM model

during the training process. This sparseness can be induced either in the

Lagrange multipliers of the SVM dual problem or in the primal space. How-

ever, the formulation in the primal is often preferable because it is straight-

forward to control the quality of the obtained solution while there is no

guarantee that a good approximation in the dual space yields a good ap-

proximation in the primal space [108]. In order to simplify the model, the

SVM hyperplane w is written as as a linear combination of Ñ basis functions

Φ(x̃i) as w =
∑Ñ

i=1 βiΦ(x̃i) trying to have as few non-zero βi’s as possible

[93, 107, 109–111]. These works suggest different methods to determine the
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subset of basis functions (Ñ ≤ N), being all of them computationally inten-

sive. The prediction cost is considerably reduced while having a competitive

classification accuracy but in some datasets the number of basis functions

needed to achieve a good classification rate is still high for efficient prediction

phases [107].

– Post-processing numerical methods. The support vector reduction can

be performed as a post-processing phase after training the SVM model. These

techniques reduce the number of support vectors once the SVM model has

been trained [112, 113]. Therefore, they still depend on the standard SVM

training which can be extremely costly in large-scale problems.

• Data-reduction methods reduce the number of training patterns by dividing

the original training set into one or several smaller subsets and a SVM is trained

in each partition. The subsets can be formed before (preprocessing) or during

(embedded) the training process and the individual classifiers are combined using

some of the classical classifier ensembles.

– Preprocessing data-reduction methods. Parallel combinations of classi-

fiers like bagging [114] or parallel mixture of SVMs [115] can be categorized

into this group.

– Hierarchical data-reduction methods. The subsets are organized hier-

archically like in SVM-cascade (the classifiers are sequentially invoked until

a pattern is classified) [116] or decision tree approaches (a decision tree de-

composes the input space in small subregions modeled by a SVM classifier)

[117, 118]. In both cases, the subset selection takes place during the training

of the model.

5.1.1 Approximating nonlinear SVMs by linear SVMs

In despite of the significant improvement in terms of classification speed reached by the

numerical and data-reduction approaches, their application to real-time and large-scale

domains is still compromised if they depend somehow on nonlinear SVMs. Restricting

the application of the approximations presented further up to linear SVMs, the nu-

merical methods are still insufficient for the most complex task as they would generate
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approximate linear models. Regarding the data-reduction techniques, in those cases in

which the decision boundary is approximately linear and the data is linearly separable

in a small region, the low classification cost of linear SVMs can be well-spent by building

piecewise linear models. The main contributions published in the literature in this line

can be categorized according to the different architectures adopted by ensemble learning,

• Parallel combination of linear SVMs. Each linear classifier is trained inde-

pendently using the whole set or a subset of the training patterns.

– Linear SVMs on the manifold coordinates. Research in this area [119–

121] is based on manifold learning algorithms, also called local coding meth-

ods. The idea is to approximate any point x on the manifold as the linear

combination of a set C of anchor points v; thus, x can be written as follows

x ≈
∑
v∈C

γv(x)v,

where γv(x) are the coefficients of the combination. Moreover, it is imposed

that
∑
v∈C γv(x) = 1 to guarantee invariance to Euclidean transformations

of the data. The coefficients γv(x) –also called local coordinates– can be

either obtained as a function of the distance of x to each anchor point [119],

or as the minimization of the projection error using some regularization term

inducing properties such as sparsity or locality [120]. The set of anchor points

can be obtained by using standard vector quantization methods [119] or by

minimizing the sum of the projection errors over the training set [120]. In any

case, the local coding defined above can be used to approximate any Lipschitz

function f(x) as the linear combination of the values of the function in the an-

chor points: f(x) ≈
∑
v∈C γv(x)f(v); and the quality of this approximation

can be quantified using the bounds provided by Yu et al. [120]. An example

of the application of these ideas is the method proposed by Ladický and Torr

[121] in which the anchor points are chosen via the k-means algorithm [1] and

the local coordinates are obtained as the inverse of the Euclidean distance to

the k nearest neighbors.
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– Mixture of Linear SVMs (MLSVM). The method proposed by Fu and

Robles-Kelly [122] is based on a mixture of linear SVMs defining an underlying

probabilistic model which implicitly selects the linear SVMs to be used to

classify each pattern. A test sample is classified by the weighted average over

the mixture of classifiers.

• Hierarchical combination of linear SVMs. As before, the classifiers can be

grouped forming a cascade or a decision tree.

– Cascade of Linear SVMs. This approach is the one followed by Zapién

et al. [123] (Figure 5.2(a)) assuming that each split in the tree is able to

classify correctly all the patterns belonging to the left child. Other algorithms

proposed by Fehr et al. [124] and Sun et al. [125] represent an extension to

the Zapién’s model, being the split of each node a linear SVM and having

nonlinear SVMs in the leaves of the tree (Figure 5.2(b)). These models still

depend on nonlinear SVMs which means a large number of support vector

evaluations to classify a test sample.

– Decision Tree of Linear SVMs. This architecture is very flexible and it

uses a specialized classifier in each subregion of the input space. However, the

design of the tree should be carefully guided as the tree can easily incur in

overfitting as pointed out in Section 2.3.3. To the best of the knowledge of the

author of this thesis, any algorithm based on the construction of a decision

tree with linear SVMs as node splits has been proposed in the literature.

Although Bennet et al. [126] pointed out that enlarging the margin in decision

trees improves their generalization ability, their methods are based on the

refinement of the decision tree obtained by the OC1 algorithm [60] instead of

using directly linear SVMs. The main limitations of Bennet’s methods falls

on (i) the non-convexity of the OC1 objective function which produces non-

deterministic solutions since the algorithm can stuck in local-minimal, (ii)

their dependence of several parameters that have to be tuned with extreme

precision to achieve satisfactory results and (iii) their high training cost for

large-scale domains.
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Figure 5.2: Architecture of different algorithms combining hierarchically SVMs. Fig-
ure 5.2(a) Zapién et al. model [123]. Figure 5.2(b) Fehr et al. [124] and Sun et al. [125]

models.

5.2 The Hierarchical Linear Support Vector Machine Al-

gorithm (H-LSVM)

In the preceding section, several approaches to speed up the prediction phase of nonlinear

SVMs have been presented being the combination of linear SVMs and decision

trees one of the most attractive solutions due to the demonstrated prediction speed of

decision trees [57] and the effectiveness and generalization capabilities of linear SVMs

as linear models [8]. However, the particular structure of the algorithms based on the

combination of SVMs and decision trees illustrated in Figures 5.2(a)–5.2(b) suggests two

possible improvements in the design of the decision tree: (i) remove the dependence on

the nonlinear SVMs to avoid their high prediction complexity for large-scale settings

and (ii) generalize the cascade structure adopted by the Zapién and Fehr methods.

Taking into account these two points, the proposed algorithm named Hierarchical

Linear Support Vector Machine is based on the construction of a complete binary

decision tree (Figure 5.3) in which both children of each node can be expanded and

the dependence on the costly nonlinear models is removed.

Following the notation used throughout this thesis, suppose a classifier learning problem

involving N training samples, M variables and the training set S = {(xi, yi)}Ni=1, where
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Figure 5.3: H-LSVM decision tree architecture.

xi ∈ RM and yi ∈ {+1,−1}. Decision tree terminology will be the same as the one used

in Section 2.3.3 and summarized in Table 2.3.

From the point of view of decision tree algorithms (Section 2.3.3), the novelty of the

H-LSVM algorithm stems from the splitting criterion consisting on linear SVMs trained

with a modified version of the Pegasos algorithm (Section 2.3.2.2) with weighted pat-

terns. For the rest of elements, well-known techniques and criteria have been used.

Moreover, once the complete tree is trained, a pruning step improves the generalization

capability of the H-LSVM model. The four key elements for the construction of the

H-LSVM decision tree with the pruning algorithm are described below.

Splitting Goodness. The entropy was chosen as impurity function because it is one

of the most common impurity functions in recent methods [127, 128]. Recalling the

concept introduced in Section 2.3.3, the entropy of a node Hk in a binary decision tree

is formulated as follows,

I(Hk) = −P (+|Hk) log2 (P (+|Hk))− P (−|Hk) log2 (P (−|Hk)) . (5.2)
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Splitting Criterion. The H-LSVM algorithm uses a linear SVM as splitting criterion

because a single hyperplane vector w is obtained as a result of the training process which

makes prediction much more efficient. Furthermore, the Pegasos algorithm has been

demonstrated to be an efficient method for training linear SVMs in large-scale datasets

[56, 129]. However, in the original formulation of the primal SVM objective function

given in Section 2.3.2.2, the misclassification cost for each pattern is the same and

independent of the class. This scheme can give classifiers that assign the majority class

to all patterns [130], which can be optimum for the overall performance but undesirable

for H-LSVM’s interests in separating classes with successive splits. Going one step

further, the proposed model generates a piecewise linear decision functions that divide

the input space into disjoint regions in which the proportion of patterns of each class

can be unbalanced and can not necessarily be the same as in the original problem. In

addition, some classification problems, like fraud detection [131] or medical diagnosis

[132], are unbalanced by nature. To overcome the imbalance, the H-LSVM method

computes the weight νHki of the sample xi in the node Hk according to,

νHki =


1

2N+
Hk

if xi ∈ S+
Hk

1
2N−Hk

if xi ∈ S−Hk
(5.3)

and verifying
∑NHk

i=1 νHki = 1 for all Hk. Now, the objective function of the Weighted-

Pegasos algorithm incorporates the sample weight in the loss term,

min
w

f(w;At) =

min
w

λ

2
‖w‖2 +

1

k

∑
(ν,x,y)∈At

νmax {0, 1− y(w · x)} (5.4)

and the subgradient of Equation 5.4 with respect to w on the iteration t is given by,

∇w
t = λwt −

1

|At|
∑

(ν,x,y)∈A+
t

νyx. (5.5)
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Figure 5.4: An example of the application of weighted patterns scheme in a nonlinear
binary classification problem where patterns are unbalanced. The positive class contains
8, 000 samples while the negative class is formed by 1, 000 patterns. For different values
of the λ parameter, the left figure shows the hyperplanes obtained by uniform weighting
strategy while the right figure depicts the resulting hyperplanes of the weighting scheme

proposed in Equation 5.3.

Figure 5.4 shows an example of the effect of weighting patterns in an unbalanced binary

classification problem consisting of 9, 000 samples (8, 000 belonging to the positive class

and 1, 000 corresponding to the negative class). The hyperplanes obtained by the uni-

form weights for different values of λ parameter are shown on the left. It can be seen that

large values of λ produce a symmetric separation of the input space while small values

for λ overweight the cost term, classifying all patterns as positive. This last situation

is undesirable for the H-LSVM algorithm as it does not represent any advance in the

splitting process. On the other hand, the right figure shows the resulting hyperplanes

for different values of λ according to the weighting scheme given in Equation 5.3. As

expected, when the regularization parameter λ takes the largest values, the behavior of

the model is the same as the one with uniform weights since the optimization is focused

on the regularization term and the effects of the new weights are negligible. However,

in the most complex cases in which more effort needs to be invested in the correct clas-

sification of the patterns, the new weights successfully solve the problem of assigning all

samples to the majority class by providing a good hyperplane for successive splits.
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It is worth noting that this reassignment of the penalization does not implies an im-

provement in the overall classification accuracy. In the example in Figure 5.4, the overall

misclassification rate for wA is 1
11 whereas the rate is 5

11 for the wB hyperplane.

It can be shown that the Weighted-Pegasos algorithm verifies that the norm of the

optimum of Equation 5.4 is upper bounded by 1√
Nλ

unlike the original version, whose

solution was upper bounded by 1√
λ

[56]. Nevertheless, the number of iterations required

for achieving a solution of accuracy ε is the same in both cases: Õ
(
R2

λε

)
, where R is the

radius of the ball containing all the training samples. A more detailed derivation of the

convergence properties of the Weighted-Pegasos algorithm is given in Appendix C.

The pseudocode of the Weighted-Pegasos algorithm is presented in Algorithm 5. Ob-

viously, it is based on the Pegasos algorithm introduced in Section 2.3.2.2 but some

implementation issues besides the incorporation of the new bound in the projection step

must be tackled. In Section 2.3.2.2, several alternatives to calculate the bias term in

the Pegasos algorithm were analyzed. The simplest ones did not solve the original SVM

problem and the best solution from the point of view of optimization was too expensive

for large-scale problems. The H-LSVM method opts for the implementation followed by

one of the standard SGD packages1, which updates the bias term via subgradient descent

and using a smaller learning rate scaled by a factor τ heuristically chosen. In addition,

the number of iterations is reduced by incorporating an allowable tolerance εPEG for

the norm of the difference between two consecutive w vectors. Thus, the training stops

whenever the maximum number of iterations T is reached or the tolerance condition is

satisfied.

Splitting-Stop Criterion. A node split is stopped when it does not represent an

improvement in the impurity measure or when the rate of training samples associated

to this node is lower than a parameter δ. If δ value is too large, the tree could be

not expanded enough. It is preferable small values of δ which yield an overfitted tree

because such tree will be pruned later. That is why, δ was set to 10−i, i = blog10Nc in

the experiments carried out further down in Section 5.3.

1http://leon.bottou.org/projects/sgd

http://leon.bottou.org/projects/sgd
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Algorithm 5 The Weighted-Pegasos Algorithm.

Inputs: S, λ, T, k, τ, εPEG

Intialization: Choose w1 s.t. ‖w1‖ ≤ 1/
√
Nλ

t = 1
while t ≤ T AND ‖wt −wt−1‖ > εPEG do

Choose At ⊆ S, where |At| = k
Set A+

t = {(ν,x, y) ∈ At : y(wt · x) < 1}
Set ηt = 1

λt
Set wt+1

2
= (1− ηtλ)wt + ηt

k

∑
(ν,x,y)∈A+

t
νyx

Set wt+1 = min

{
1, 1/

√
Nλ

‖w
t+1

2
‖

}
wt+1

2

Set bt+1 = bt + τ ηtk
∑

(ν,~x,y)∈A+
t
νy

end while
Outputs: wT+1, bT+1

Class Assignment Criterion. As justified in Section 2.3.3, once a pattern reaches a

leaf of the decision tree, it is assigned to the majority class in such leaf because this rule

minimizes the misclassification cost in the training set.

Pruning. Incorporating a pruning process in a decision tree algorithm reduces the risk

of having an overfitted model [133, 134]. Although the SVM formulation already incor-

porates a regularization term which favors the generalization capability of the optimal

hyperplane, a small value for δ in the splitting-stop criterion might imply an overfitted

model. This point can be solved setting different δ values and evaluating the performance

of the model in a validation step. However, this approach is computationally costlier

than using a small value for δ –that is, making the tree grows as much as possible–

and then applying a pruning algorithm. The latest approach is used by H-LSVM and

it uses the Cost-Complexity pruning algorithm proposed by Breiman et al. [58]

and described in Section 2.3.3.1. The pruning algorithm needs a subset of patters not

seen during the construction of the tree to evaluate the goodness of the pruning. The

H-LSVM algorithm keeps away a proportion ρ of the input patterns to be used by the

Cost-Complexity method. The value of ρ is a parameter of the model and it must be

tuned in the validation phase.

Figure 5.5 presents an example of application of the H-LSVM model. The bidimensional

synthetic banana dataset [135] is used. The H-LSVM parameters were λ = 10−5 and
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(a) (b)

Figure 5.5: An example of application of H-LSVM on the banana
dataset.Figure 5.5(a) shows the decision boundary when no pruning is applied.

Figure 5.5(b) shows the decision boundary after a pruning process with ρ = 0.1.

δ = 10−3. Blue and red points correspond to positive and negative samples, respectively.

The problem is clearly nonlinearly separable: the linear SVM yields a classification

accuracy of 54.44% while the Gaussian Kernel SVM achieves a classification rate of

90.60% with 1152 support vectors. Figure 5.5(a) shows the H-LSVM decision boundary

when no pruning is applied (ρ = 0.0). The model is clearly overfitted. Figure 5.5(b)

shows the H-LSVM decision boundary when pruning is applied (ρ = 0.1). This model

only needs to evaluate at most 12 hyperplanes to classify a new pattern achieving a

classification rate of 90.60%. In this case, H-LSVM gets the same classification accuracy

that the nonlinear SVM but with a classification time two orders of magnitude lower.

Once the design aspects of the H-LSVM algorithm have been established, the H-LSVM

training procedure can be summarized in the following steps assuming that the model

parameters T, k, τ, εPEG, δ have been fixed and the parameters λ and ρ has been esti-

mated in the validation phase.

1. Select randomly (1−ρ)N samples from the initial training set S to form the subset

S0. The remaining ρN samples, subset P , is used by the pruning algorithm.

2. Initialize the weight of each pattern in S0 as described in Equation 5.3.

3. Train recursively the H-LSVM Tree following the steps given in Algorithm 6.
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4. As a result of the H-LSVM tree construction, a set of K hyperplanes {wk, bk}Kk=1

is obtained.

5. Pruning step: If ρ > 0 apply the Cost-Complexity pruning algorithm over the

set P to get
{(
w̃k, b̃k

)}K̃
k=1

where K̃ ≤ K; otherwise, set w̃k = wk and b̃k = bk

for all 1 ≤ k ≤ K.

6. Prediction step: Let x̃ a new sample and the H-LSVM tree defined by
{(
w̃k, b̃k

)}K̃
k=1

.

The target ỹ of the pattern x̃ is calculated as the majority class in the leaf node

of the tree associated to x̃.

Algorithm 6 H-LSVM Tree Construction.

Inputs: S0, T, k, τ, εPEG, δ, λ, ρ
I0=I(H0)
if I0 = 0 then

Finish {Homogeneous node}
end if
if ( |S0|

N > δ) then
{w, b}=Weighted-Pegasos(S0, λ, T, k, τ, εPEG)

else
Finish {There are not enough number of patterns.}

end if
if I(w, b) ≥ I0 then

Finish {Cannot find any split}
end if
SHl = {x ∈ S | w · x+ b ≤ 0}
SHr = {x ∈ S | w · x+ b > 0}
if |SHl | > 0 then

Compute the weight of each pattern in SHl using Equation 5.3 where Hk = H
H-LSVM Tree(SHl , λ, T, δ, τ)

end if
if |SHr | > 0 then

Compute the weight of each pattern in SHr using Equation 5.3 where Hk = H
H-LSVM Tree(SHr , λ, T, δ, τ)

end if
Outputs: {(wk, bk)}Kk=1

To finish, note that the H-LSVM learning algorithm always converges and produces

a decision tree as final model. The number of nodes to generate is finite and upper

bounded by the number of training samples because of the stopping criterion commonly

used in learning decision tree schemes: the tree expansion is finished when there is not

improvement in the impurity measure or when there are not enough number of patterns

in a node. The convergence properties of the model can be obtained considering each
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node separately and applying the Weighted-Pegasos convergence bounds provided in

Appendix C.

5.2.1 Training and Prediction Complexity

As already mentioned, the main advantage of the H-LSVM method is speeding up the

prediction phase of nonlinear SVMs. SVMs have very good results in performance

in off-line problems, but when they are placed in real time operation, they are not

viable. Thus, the focal attention has to be placed on prediction complexity of the

linear/nonlinear SVMs and H-LSVM, though training complexity is also provided for

completeness. Regarding the convexity of the SVM objective function presented in

Section 2.3.2, the solution of the optimization problem is the same independently of

the solver used as long as it finds the exact optimum. Therefore, the analysis of the

prediction complexity carried out in what follows is valid for any SVM exact solver.

However, the training complexity depends on the SVM solver used and that is why the

methods used for training the SVMs are specified in what follows.

The linear SVMs were trained using the popular LIBLINEAR classification package

[52]. The algorithm behind LIBLINEAR [52] is coordinate descent on the dual SVM

formulation [54]. The nonlinear SVMs have been trained using the SMO algorithm [55]

implemented in the LIBSVM package [53]. Finally, the H-LSVM cost is that of training

as many linear SVMs as nodes in the H-LSVM tree via the Weighted-Pegasos algorithm.

More precisely, if the H-LSVM decision tree has NH internal nodes and ni training

samples reach the i-th node, the training complexity is given by the cost of training

NH linear SVMs with the Weighted-Pegasos algorithm given in Algorithm 5. Then,

considering that the number of iterations needed by the Weighted-Pegasos algorithm to

achieve a solution with tolerance ε is Õ
(
R2

λε

)
– being R the radius of the ball containing

all the training samples– and the cost per iteration is O (kM), the total cost of H-LSVM

is O
(
NHkM
λε

)
. For simplicity, the tolerance ε is fixed for every node in the tree, but as

suggested by Shalev-Shwartz and Srebo [129], it could be adapted as a function of the

number of training samples ni to get some fixed generalization error in each node.

The training complexities of LIBLINEAR, LIBSVM and Pegasos algorithms are analyzed

in depth by Menon [136]. Table 5.1 (column Training) shows the training time complex-

ities of the three algorithms LIBLINEAR, SVM-SMO and H-LSVM. H-LSVM cost is
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highly dependent on each dataset as it is determined by the structure of the tree (NH).

As expected, the lowest training cost corresponds to the linear SVM. The comparison

between the training times of the nonlinear SVM and H-LSVM is not straightforward

as it depends on the H-LSVM tree architecture and the λ and ε parameters. H-LSVM

would be faster than SMO-SVM in the training phase if NHk
λε � N2.

The cost to classify a new pattern x ∈ RM by a linear SVM is the cost of computing the

dot product between the resulting hyperplane and the pattern to be classified: O(M).

In the case of nonlinear SVMs, the classification of the pattern x is performed according

to:
∑nSV

i=1 αi ×K(xi,x), being nSV the number of support vectors. If the number of

operations needed to compute K(xi,x) is expressed as nK ×M , the SVM prediction

complexity is nSV ×M ×nK . The proposed H-LSVM algorithm needs to find the leaf of

the tree for the pattern x which leads toNP
H (x)×M operations, beingNP

H (x) the number

of internal nodes –oblique hyperplanes– evaluated by the algorithm until the pattern x

reaches a leaf in the tree. The summary of the number of operations needed by each

algorithm to classify a new pattern x is given in Table 5.1 (column Classification).

Obviously the lowest classification cost corresponds to the linear SVM but the linear

model is usually not competitive enough for real-world datasets. Regarding the nonlinear

models, it is reasonable to assume that the number of kernel operations nK is at least 1.

In that case, H-LSVM has the lowest cost if the number of node evaluations needed to

classify the pattern x, NP
H (x), is lower than the number of support vectors encountered

by SVM, nSV . The values of nSV and NP
H (x) for real-world datasets are given in the

following experiments and it is shown that in practice the number of operations needed

by H-LSVM is indeed several orders of magnitude lower than the number of evaluations

required by the nonlinear SVMs.

5.2.2 Generalization Error Bound

An interesting point of analysis in the H-LSVM algorithm is to determine the gener-

alization capability of the model as well as to quantify somehow the complexity of the

resulting tree.

The generalization error bound derived in this section is obtained from the results given

by Golea et al. [137]. In this work, the bounds depend on the effective number of leaves
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Algorithm Training Classification

Linear SVM NM log
(
1
ε

)
M

SMO-SVM N2 ×M nSV ×M × nK

H-LSVM MkNH

λε NP
H (x)×M

Table 5.1: Number of operations needed to train a set S of N patterns in a M -
dimensional space (Training column) and to classify a new pattern (Classification
column) by Linear SVM, SVM-SMO and the H-LSVM algorithm. λ: regularization
parameter in Pegasos formulation. ε: optimization tolerance. nSV : number of support
vectors of the nonlinear SVM model. nK : operations are needed to compute the kernel
between each support vector and the test pattern. NH : total number of internal nodes
in the H-LSVM tree. ni: number of training samples which reach the node i in the
H-LSVM tree. k: size of the random subset at each iteration of the Weighted-Pegasos
algorithm. NP

H (x): number of nodes encountered by pattern x in the H-LSVM tree.
Computational costs of linear SVM, SMO-SVM and Pegasos are extracted from [136].

Leff, a data-dependent quantity which reflects how uniformly the training data covers

the tree’s leaves. Leff can be considerably smaller than the total number of leaves in

the tree (L) [138] and it makes this bound different from the Vapnik−Chervonenkis one,

dependent on L [139, 140].

Suppose a two-class decision tree T whose internal decision nodes are labeled with

boolean functions from some class U and whose leaves are labeled as −1 or 1. For-

mally, let P = (p1, . . . , pL) the probability vector which represents the probability that

a pattern ~x reaches leaf i for i = 1 . . . L. Then, the quadratic distance between the

probability vector P and the uniform probability vector U = (1/L, . . . , 1/L) is given by

d(P,U) =
∑L

i=1 (pi − 1/L)2 and the effective number of leaves in the tree is defined by

Leff ≡ L(1−d(P,U)). A bound of misclassification probability under certain distribution

D, PD [T (x) 6= y], can be estimated using the following theorem [137]:

Theorem 5.1. For a fixed ξ > 0, there is a constant c that satisfies the following. Let

D be a distribution on X ×{−1,+1}. Consider the class of decision trees of depth up to

D, with decision functions in U . With probability at least 1 − ξ over the training set S

(of size N), every decision tree T that is consistent with S has

PD [T (x) 6= y] ≤ c
(
Leff VCdim(U) log2N log D

N

) 1
2
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where V Cdim is the Vapnik-Chevonenkis dimension.

The H-LSVM algorithm is in line with this framework identifying the class U with the

linear SVM. As discussed in Section 2.1.1, the Vapnik-Chervonenkis dimension of an

hyperplane in a M -dimensional space is (M + 1) and therefore, the error bound for the

H-LSVM method is reformulated as,

Lemma 5.2. For a fixed ξ > 0, there is a constant c that satisfies the following. Let

D be a distribution on X × {−1,+1}. Consider the class of decision trees of depth up

to D, with H-LSVM decision functions. With probability at least 1− ξ over the training

set S (of size N), every decision tree T that is consistent with S has

PD [T (x) 6= y] ≤ c
(
Leff (M + 1) log2N log D

N

) 1
2

. (5.6)

In practice it is quite difficult to have a consistent tree with the training data S. In

that case, a bound of the misclassification probability can be obtained as a function

of the misclassification probability in S, PS [T (x) 6= y]. Now, the probability vector is

reformulated according to the training set as

P ′i =
piPS [T (x) = y | x reaches leaf i]

PS [T (x) = y]
.

Applying the adapted version of theorem 5.1 to not consistent trees [137], the following

result is obtained for the H-LSVM tree,

Lemma 5.3. For a fixed ξ > 0, there is a constant c that satisfies the following. Let D

be a distribution on X × {−1,+1}. Consider the class of decision trees of depth up to

D with H-LSVM internal node decision functions. With probability at least 1 − ξ over

the training set S (of size N), every decision tree T has

PD [T (x) 6= y] ≤ PS [T (x) 6= y] + c

(
L′eff (M + 1) log2N log D

N

) 1
3

(5.7)
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where c is a universal constant, and L′eff = L(1 − d(P ′, U)) is the empirical effective

number of leaves of T .

Therefore, the parameters of the tree which determine the error bound for the H-LSVM

algorithm are the depth D of the tree and the effective number of leaves Leff: the

lower these parameters are, the better generalization error. The value for these param-

eters and the subsequent estimation of the model complexity according to Equation 5.7

are provided and analyzed in the following section.

5.3 Experimental Results

The experiments developed in this section provide an analysis of the H-LSVM model

divided into three subsections corresponding to the threefold aim of the experiments:

• Compare H-LSVM with linear SVMs and nonlinear SVMs in terms of classification

accuracy and prediction complexity.

• Compare H-LSVM with Zapién’s algorithm described at the beginning of this

Chapter (Section 5.1.1) and illustrated in Figure 5.2(a) in terms of classification

accuracy and prediction complexity. To the best of the knowledge of the author of

this thesis, this is the only existing approach combining exclusively linear SVMs

and decision trees.

• Analyze numerically the H-LSVM error bounds derived in Section 5.2.2.

Following the aim of the H-LSVM algorithm, the experiments have been conducted

in binary classification problems in which nonlinear SVMs produce a large number of

support vectors. Table 5.2 presents the number of training and test patterns patterns,

the number of features and the public repository for each dataset. The Shuttle dataset

has been converted to a binary classification problem by differentiating class 1 from

the rest. In the same way, the Vehicle dataset has been reformulated as a binary

classification task consisting of differentiating class 3 from the rest. The M3VO and

M3VOm8 datasets correspond to differentiate digit 3 from all the other digits in the

MNIST and MNIST8m problems, respectively. Finally, the Covtype dataset has been
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# Train # Test # Feat. Repository

IJCNN 49,990 91,701 22 LIBSVM [53]

Shuttle 43,500 14,500 9 LIBSVM [53]

M3VO 60,000 10,000 780 LIBSVM [53]

M3VOm8 810,000 7,290,000 784 LIBSVM [53]

Vehicle 78,823 19,705 100 LIBSVM [53]

Faces 8,525 4,263 576 Peter Carbonetto [142]

Covtype 522,910 58,102 54 LIBSVM [53]

Table 5.2: Binary datasets used to compare H-LSVM with linear SVMs and nonlinear
SMVs.

transformed into a binary classification problem consisting of differentiating class 2 from

the rest.

In most of the datasets (IJCNN, Shuttle, M3VO and Vehicle), the training and test

subsets are given beforehand. In Faces dataset, the experimental setup described by

Zapién et al. [124] was followed using two thirds of the observations for the training

and the rest as testing set. Moreover, data was normalized to minimum and maximum

feature values. The experiments were run over 10 different randomly chosen training-test

partitions of the dataset. In the case of the M3VOm8 and Covtype datasets, it has been

tried to use as many as training patterns as possible in order to simulate a large-scale

system with a large number of support vectors. Then, the first 810, 000 patterns in

the M3VOm8 dataset were used for training and the remaining samples for test2. In

the Covtype dataset, according to the experiments carried out in [115, 141], 9/10 of the

samples for training and the remaining patterns for test and the experiments were run

over 10 different randomly chosen training-test partitions of the dataset.

In all the experiments and according to the scenario described in the complexity cost

analysis (Section 5.2.1), linear SVMs and nonlinear SVMs implemented in LIBLINEAR

[52] and LIBSVM [53] packages were used, respectively. In the case of nonlinear SVMs,

the Gaussian kernel, k(xi, xj) = exp
(
−γ‖xi − xj‖2

)
, was considered. The H-LSVM has

been implemented in C language and the code is publicly available at

https://sites.google.com/site/irenerodriguezlujan/HLSVM-1.1.zip.

2LIBSVM for the M3VOm8 dataset did not finish in reasonable time when training with all the
available patterns.

https://sites.google.com/site/irenerodriguezlujan/HLSVM-1.1.zip
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LIBLINEAR LIBSVM H-LSVM

C C γ λ ρ

IJCNN 101 101 100 10−5 0

Shuttle 102 106 100 10−7 0.2

M3VO 100 102 10−2 10−4 0.2

M3VOm8 100 102 10−2 10−5 0.2

Vehicle 10−1 101 10−1 10−6 0.1

Faces 10−1 101 10−2 10−5 0.1

Covtype 100 100 0.346 10−7 0.0

Table 5.3: Parameters used in the linear SVM, nonlinear SVM and H-LSVM models
for each binary dataset.

Linear SVMs, nonlinear SVMs and H-LSVM need to determine the values of a few

parameters. In all datasets, except Covtype, the hyperparameter selection has been done

using 5-fold cross validation over the training set. The cost parameter C in linear SVMs

and nonlinear SVMs were selected from the grid 10i, i = −6, . . . , 6. The γ parameter of

the Gaussian kernel was taken from the range 10i, i = −3, . . . , 3. Finally, for the H-LSVM

model, the maximum number of Weighted-Pegasos iterations was fixed to T = 107, the

allowable tolerance was set to εPEG = 10−4 and the minimum proportion of patterns

needed to split a node δ was chosen as 10−i with i = blog10Nc to guarantee that the

H-LSVM grows to sufficient size (pruning is applied if necessary). The regularization

parameter λ was chosen from the grid 10i

N , i = −6, . . . , 6 being N the number of training

samples. The grid was obtained from the equivalence λ = 1
CN between the LIBLINEAR

and LIBSVM cost parameter C and the λ regularizer in H-LSVM. The prune rate ρ

took values in [0.0, 0.1, 0.2]. Unfortunately, applying this hyperparameter procedure is

unfeasible due to the size of the Covtype dataset and the number of support vectors

in the resulting model; then, the nonlinear SVM hyperparameters provided in [115]

were applied. The resulting parameters for each dataset and each model are given in

Table 5.3.
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5.3.1 Results: Comparison with linear and nonlinear SVMs

Regarding the aims described at the beginning of this Chapter, the goals of the H-

LSVM algorithm were to develop an algorithm with classification effectiveness close to

the nonlinear SVM but with much lower prediction complexity favoring its application

in real-time classification settings. In order to quantify the efficiency of the algorithm

taking as a point of reference the linear and nonlinear SVMs, the quantities Relative

Error (RE) and Relative Complexity (RC) are defined as follows,

RE =
eLSVM − e

eLSVM − eSVM
(5.8)

RC =
Hyp− 1

nSV − 1
, (5.9)

where e represents the classification error rate. A value equals 0 in these magnitudes

RE/RC indicate that the classification accuracy/complexity is the same as that of the

linear SVM while a value of 1 represents the equivalence with the nonlinear case. There-

fore, it would be desirable to have a Relative Error close to 1 and a Relative Complexity

close to 0.

The results in terms of classification error (Error (%)), classification cost and the relative

magnitudes RE/RC are shown in Table 5.4. In the case of the linear SVM, the number of

hyperplane evaluations (Hyp) is shown whereas the number of support vectors (nSV ) is

indicated for the nonlinear SVM. While the classification cost of linear/nonlinear SVMs

is independent of the test sample, the H-LSVM prediction cost depends on the path

of the pattern in the H-LSVM tree. Thus, the mean number of H-LSVM hyperplanes

encountered per test sample and also the maximum number of H-LSVM hyperplane

evaluations written in parentheses are shown. In those cases in which there were several

training/test partitions, the average and standard deviation over the 10 runs of the

experiment are indicated.

As expected, the classification results of the nonlinear SVMs are superior than those of

the linear SVM and H-LSVM. However, the classification accuracy of H-LSVM is better

than that of the linear model in all cases. These results are not surprising because the

proposed H-LSVM method is simpler than the nonlinear SVM but more sophisticated
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IJCNN

Linear SVM Non-linear SVM H-LSVM

Class. Err (%) 7.82 1.01 2.36

nSV or Hyp 1 3, 154 7.28 (16)

RE / RC 0 / 0 1 / 1 0.80 / 2.0 · 10−3

Shuttle

Linear SVM Non-linear SVM H-LSVM

Class. Err (%) 2.21 0.062 0.10

nSV or Hyp 1 66 5.18 (12)

RE / RC 0 / 0 1 / 1 0.98 / 6.43 · 10−2

M3VO

Linear SVM Non-linear SVM H-LSVM

Class. Err (%) 2.09 0.33 1.79

nSV or Hyp 1 2, 873 3.15 (8)

RE / RC 0 / 0 1 / 1 0.17 / 7.49 · 10−4

M3VOm8

Linear SVM Non-linear SVM H-LSVM

Class. Err (%) 3.90 0.03 1.43± 0.02

nSV or Hyp 1 13, 471 4.73± 0.003 (11.00± 0.00)

RE / RC 0 / 0 1 / 1 0.64 / 2.77 · 10−4

Vehicle

Linear SVM Non-linear SVM H-LSVM

Class. Err (%) 14.18 11.88 12.61

nSV or Hyp 1 23, 642 2.84 (10)

RE / RC 0 / 0 1 / 1 0.68 / 7.78 · 10−5

Faces

Linear SVM Non-linear SVM H-LSVM

Class. Err (%) 8.81± 0.35 2.97± 0.24 6.39± 0.43

nSV or Hyp 1 1, 260.3± 14.81 2.59± 0.06 (5.30± 0.15)

RE / RC 0 / 0 1 / 1 0.41 / 1.26 · 10−3

Covtype

Linear SVM Non-linear SVM H-LSVM

Class. Err (%) 23.66± 0.21 18.57± 0.20 11.39± 0.08

nSV or Hyp 1 245, 687.2± 167.8 12.93± 0.087 (44.00± 1.08)

RE / RC 0 / 0 1 / 1 2.41 / 4.86 · 10−5

Table 5.4: Test error rate (Class. Err (%)) and classification complexity (nSV or
Hyp) of Linear SVMs, nonlinear SVMs and H-LSVM. The mean number of hyperplane
evaluations per test sample is indicated for linear SVMs and H-LSVM. The maximum
number of H-LSVM hyperplane evaluations is shown in parentheses. In the case of
nonlinear SVMs, the number of support vectors (nSV ) is shown. The reference measures

RE and RC (Equations 5.8 and 5.9) are also provided.
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than linear SVMs. The classification error of H-LSVM is closer to that of the nonlinear

SVM in most of the cases except in the Faces and M3VO datasets. Nevertheless, in the

case of the Faces dataset the H-LSVM model represents an improvement of 41% respect

to the linear SVM and, as it will be shown later, that outperforms significantly the results

of the Zapién’s algorithm. It seems that the proposed method cannot approximate

nonlinear SVMs in certain domains; probably because the assumption that the decision

boundary is approximately linear and the data is linearly separable in the small regions

generated by the H-LSVM tree does not hold in such cases. It is worth pointing out

that H-LSVM is superior to the nonlinear SVM in the Covtype dataset. Although,

the classification error obtained for the nonlinear SVM is comparable to the results

reported in [115], a thorough search of the nonlinear SVM parameters might provide

better results.

Nevertheless, the main interest of the H-LSVM algorithm is not having the best clas-

sification error rates but providing a method capable of classifying a pattern in few

milliseconds while having competitive performance. In this respect, the nonlinear SVM

needs the largest number of operations in prediction while the lowest cost is that of the

linear SVM. However, the performance of the linear SVM can be extremely poor as in

the IJCNN or Covtype datasets. The classification complexity of H-LSVM is between

these two models: it is higher than that of the linear SVM –in the worst case it increases

the cost of the linear model in one order of magnitude– but much lower than the cost of

the nonlinear SVM –H-LSVM can accelerate the prediction cost of the nonlinear SVM

even by a factor of 104 as in the case of the M3VOm8 and Covtype datasets–. In fact,

the Relative Complexity is lower than 10−1 in all cases.

In order to visualize the trade-off between the misclassification error versus classification

cost, Figure 5.6 shows the dependence between these two magnitudes for the linear SVM,

nonlinear SVM and H-LSVM. The x-axis represents the number of support vectors or

hyperplanes encountered by each method in logarithmic scale. The y-axis shows the

classification error rate. Each dataset is represented by a color according to the legend:

circles, squares and diamonds represent the linear SVM, nonlinear SVM and H-LSVM

models, respectively. The lower left-hand area is associated to the best scenario: the

lowest classification error and the lowest classification complexity. In this figure, three

clusters can be easily identified according to the underlying classifier (circles, squares

and diamonds). Clearly, the nonlinear SVMs have the highest classification complexity
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Figure 5.6: Classification complexity (nSV / Hyp) versus classification error rate for
different datasets. • Linear SVM � Nonlinear SVM � H-LSVM.

while the H-LSVM cost is closer to the linear one. Looking at the classification error, in

all cases the nonlinear SVM is superior –except the Covtype dataset– and the H-LSVM

effectiveness is greater than that of the linear model.

Finally, to give an idea of the goodness of the H-LSVM algorithm with regard to the

prediction time, Table 5.5 shows the time in seconds needed by a linear SVM, a nonlinear

SVM and H-LSVM to classify a new pattern in an Intel(R) Core(TM) i7 CPU 920 at

2.67GHz. The training time is also included for completeness. As expected, the lowest

training and testing times corresponds to the linear SVM. Regarding the training cost

discussed in Section 5.2.1 , the differences between the training cost of the nonlinear SVM

and H-LSVM are given by the structure of the H-LSVM tree. Therefore, depending

on the dataset either the nonlinear SVM or H-LSVM is faster in the training phase.

Focusing on the aim of speeding up the nonlinear SVM prediction cost, the H-LSVM

classification time is always in the order of tenths of milliseconds at most and significantly

lower than those of the nonlinear SVM.

Taking a glance at the methods oriented to find a reduced subset of basis functions

of the nonlinear SVM hyperplane, the results obtained in this section for the IJCNN,

Shuttle, M3VO and Vehicle datasets are comparable to those of the SpSVM method

proposed by Keerthi et al. [107]. The SpSVM formulation gets closer to the error rate

of nonlinear SVMs as the number of basis functions increases turning out to be the exact
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Linear SVM Nonlinear SVM H-LSVM
Training Test Training Test Training Test

IJCNN 4.00 · 10−1 1.22 · 10−7 2.54 · 101 2.17 · 10−4 1.44 · 103 2.21 · 10−6

Shuttle 4.77 · 10−1 1.09 · 10−7 4.83 · 100 3.91 · 10−6 2.37 · 104 2.76 · 10−6

M3VO 4.76 · 100 6.47 · 10−7 6.40 · 103 3.27 · 10−3 6.25 · 103 3.61 · 10−5

M3VOm8
3.38 · 102 3.00 · 10−6 7.71 · 104 2.77 · 10−2 7.19 · 104 2.88 · 10−5

±1.28 · 10−8 ±5.88 · 10−6 ±4.90 · 10−8

Vehicle 2.82 · 100 4.83 · 10−7 1.85 · 103 9.02 · 10−3 2.99 · 104 2.67 · 10−6

Faces
1.04 · 100 2.41 · 10−6 2.39 · 101 2.52 · 10−3 4.70 · 103 1.36 · 10−5

±5.28 · 10−2 ±5.38 · 10−9 ±9.61 · 10−2 ±1.66 · 10−5 ±5.98 · 101 ±4.71 · 10−7

Covtype
6.65 · 101 1.30 · 10−7 2.10 · 104 1.95 · 10−2 3.13 · 104 6.83 · 10−6

±1.05 · 10−1 ±1.76 · 10−9 ±1.31 · 102 ±7.43 · 10−5 ±8.47 · 101 ±3.86 · 10−8

USPS 5.46 · 100 3.58 · 10−6 5.21 · 100 1.17 · 10−3 5.88 · 103 1.59 · 10−4

Table 5.5: Training and testing times in seconds required by LIBLINEAR, LIBSVM
and H-LSVM.

Classification Cost SpSVM error rate H-LSVM error rate

IJCNN 101 ≈ 8.5% 2.36%

Shuttle 101 > 0.3% 0.14%

M3VO 100 > 3.4% 1.87%

Vehicle 101 ≈ 14.4% 12.98%

Table 5.6: Classification error rate for the SpSVM method [107] and the H-LSVM
algorithm at the level of H-LSVM prediction complexity. The SpSVM results are ex-

tracted from figures in [107].

solution of nonlinear SVM when the number of basis functions is equal to the number

of support vectors. However, when the number of basis functions is in the order of the

H-LSVM prediction complexity, SpSVM classification error rates are significantly higher

than those of H-LSVM as shown in Table 5.6. These results corroborates the suitability

of the H-LSVM method when fast classification is required.
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5.3.2 Results: Comparison with SVM Trees Algorithm

Once H-LSVM have been located respect to the SVMs reference models, now its per-

formance is compared with that of the Zapién’s decision tree (Figure 5.2(a)) also de-

nominated SVM Trees algorithm. Unfortunately, only one of the binary classification

problems used in Zapién’s works [123, 124] is nonlinear (Faces). Despite H-LSVM has

been designed for binary classification problems, the performance of the model in the

multiclass USPS dataset was measured. The USPS dataset for handwritten text recog-

nition is available in the LIBSVM Repository [53]. It consists of 7, 291 training samples

and 2, 007 test samples and each example is described by 256 features. Following the

methodology described in the experiments reported by the authors, the data was normal-

ized to minimum and maximum feature values and the one against one approach (1A1)

was used for the multiclass problem. The 1A1 strategy consists on training a classifier

for every pair of classes and classifying a new pattern based on majority voting. The

hyperparameters were chosen using 5-fold cross validation as described for the preceding

experiments. The selected parameters were C = 1 for the linear SVM, C = 101 and

γ = 10−2 for the nonlinear SVM with Gaussian kernel and λ = 10−5 and ρ = 0 for

the H-LSVM algorithm. The results in terms of the misclassification error, classification

cost and the relative measurements RE/RC for SVM Trees and H-LSVM methods are

presented in Table 5.7 in which the Zapién’s method performance was extracted from

[123, 124]. In both cases H-LSVM is superior in terms of classification accuracy whereas

the classification cost is in the same order of magnitude. Specifically, their classification

complexity is quite similar in the Faces dataset but SVM Trees algorithm is slightly

faster for the USPS database.

In summary, the H-LSVM decision tree expanding both children of each node and weight-

ing patterns in the linear SVM provides advantages with respect to the Zapién’s method

in terms of classification accuracy while maintaining its classification cost. It is also

worth noting that in all cases the maximum depth of the tree is lower than the number

of internal nodes (the number of linear SVMs), which means that the structure of the

tree is far from being a cascade of classifiers as in the models shown in Figures 5.2(a)

and 5.2(b).

Regarding other techniques based on the use of linear SVMs to accelerate the nonlinear
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Faces

Linear SVM Non-linear SVM SVM Trees H-LSVM

Class. Err (%) 8.81 2.97 8.99 6.39

nSV or Hyp 1 1260.3 4 2.59 (5.30)

RE / RC 0 / 0 1 / 1 −0.03 / 0.002 0.41 / 0.001

USPS

Linear SVM Non-linear SVM SVM Trees H-LSVM

Class. Err (%) 8.67 4.53 6.24 5.38

nSV or Hyp 1 1521 49 64.77 (117)

RE / RC 0 / 0 1 / 1 0.59 / 0.03 0.79 / 0.04

Table 5.7: Comparison of the SVM Trees method by Zapién et al. [123, 124] and H-
LSVM. The misclassification error (Class. Err (%)) and the mean number of hyperplane
evaluations per test sample (Hyp) are shown for both methods and for the linear and
non-linear SVMs (nSV ). The maximum number of H-LSVM hyperplane evaluations is
indicated in parentheses. The number of hyperplane evaluations was computed as the
sum of the hyperplanes evaluated in every binary classifier. The Relative Error (RE)
and the Relative Complexity (RC) of the SVM Trees method and H-LSVM are also

given.

SVMs prediction phase (Section 5.1.1), those based on the manifold coordinates have

come out recently making a big impact. In particular, the Locally Linear SVM (LL-

SVM) model proposed by Ladicky et al. [121] reports results for the USPS dataset with

a slightly lower classification accuracy. As stated in Section 5.1.1, the prediction cost

falls on the computation of the distance to the k-means centroids whose number amount

to 100 in this case whereas H-LSVM evaluates 64.77 hyperplanes in average (maximum

117). Therefore, both methods are comparable in terms of classification accuracy and

prediction complexity.

5.3.3 Numerical Analysis of H-LSVM Generalization Error Bound

The generalization error bound provided by Lemma 5.3 establishes a linear dependence

between the complexity of the tree and the difference between the misclassification prob-

ability under certain distribution D and the misclassification rate in the training set S.

More precisely, let Tcomp(L′eff,M,N,D) the complexity of the decision tree T defined as

a function of some data-dependent parameters as follows
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Tcomp(L′eff,M,N,D) =

(
L′eff (M + 1) log2N log D

N

) 1
3

.

The error bound can be rewritten as,

PD [T (x) 6= y] ≤ PS [T (x) 6= y] + c Tcomp(L′eff,M,N,D).

The aim of the experiments described in what follows is to determine whether this bound

holds in practice. The misclassification probability under a distribution D, PD [T (x) 6= y]

has been approximated by the error rate in the test set and it is denoted as P̂D [T (x) 6= y].

The range of values of the complexity measure depends on the characteristics of each

dataset making useless the comparison among different datasets. However, an interest-

ing point of analysis is to determine if, in practice, there exists such linear correlation

between the difference of the test and training error rates and the complexity of the

model. This relation is analyzed for the IJCNN and Faces datasets used above vary-

ing the values of the δ parameter to obtain the values for Tcomp, PS [T (x) 6= y] and

P̂D [T (x) 6= y]. The δ parameter allows to measure and control the complexity of the

model: if δ takes values in the grid {δ1 > δ2 > . . . > δK}, the resulting trees Tδm ver-

ify Tδ1 � Tδ2 � . . . � TδK . In particular, the δ grid in these experiments varies from

δ = 0.05 to δ = 0.0001. The prune rate was fixed to ρ = 0.0 in both datasets and the λ

parameter was selected as in Table 5.3.

The linear correlation between the H-LSVM tree complexity and the difference between

the test and training error rates is 0.91 for the IJCNN dataset and it is 0.97 for the

Faces dataset. These high correlations reveal that the generalization error bound given

in Lemma 5.3 is valid in practice.

Finally, it is interesting to see how the underfitting and overfitting phenomena intro-

duced in Section 2.1 are reflected in Figure 5.7. In the case of the IJCNN dataset, the

differences between the test and training error rates are small for the largest values of

δ while the test error rate is the worst. It seems that the model is too coarse to fit the

data. On the other hand, the lowest values for δ have slightly larger differences between
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Figure 5.7: Difference between the test and training error rates and the test error
rate as a function of the complexity Tcomp of the H-LSVM model. Figure 5.7(a) IJCNN

dataset; Figure 5.7(b) Faces dataset.

the test and training error rates but the test error rate is the lowest. This scenario is

preferable to that with large values of δ because the model have the lowest classification

error rate without incurring in overfitting.

In the Faces dataset underfitting/overfitting are clearly reflected for large/small δ values,

respectively. In the first case, when δ takes large values, the difference between the

training and test errors is small but the test error is the highest which means that

the model is underfitted. In the second case, δ taking low values implies that the

difference between the training and the test error increases whereas the test error starts
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to becoming worse for the lowest values of δ; that is, the H-LSVM decision tree is

generalizing poorly in the test set because it has overfitted the training data. Regarding

that the δ parameter was chosen in the experiments small to guarantee that the depth

of the tree is large enough to learn the data, it makes sense that the optimal pruning

rate for the Faces dataset was ρ = 0.1 in order to improve the generalization capabilities

of the model and avoid overfitting.

5.4 Discussion

This chapter has presented and analyzed a new classification method, named Hierarchi-

cal Linear Support Vector Machine, for medium and large-scale datasets which tackles

the problem of classification of large-scale databases. The new method was motivated by

the impossibility of applying nonlinear SVMs to large-scale problems because they gen-

erate a large number of support vectors. Although other methods have been proposed

in the literature to speed up SVMs by finding numerical approximations of the exact

model or by decomposing the data space in subregions, most of them still depend some-

how on nonlinear SVMs with an unmanageable number of support vectors. The success

of the new algorithm falls on the demonstrated efficiency in training and prediction of

linear SVMs and the arrangement of these models in a decision tree which allows the

construction of a piecewise linear model to approximate nonlinear decision boundaries.

In this way, the H-LSVM algorithm is based on the construction of an oblique decision

tree in which the node split is obtained as a linear SVM trained with a modified version

of the Pegasos algorithm with weighted patterns. The H-LSVM algorithm represents

a very simple and efficient model in training but mainly in prediction for large-scale

datasets: only a few hyperplanes need to be evaluated in the prediction step, no kernel

computation is required and the tree structure makes parallelization possible [143]. In

experiments with medium and large datasets, the H-LSVM is able to classify a pattern in

few milliseconds speeding up the prediction phase of SVMs several orders of magnitude

while maintaining a classification accuracy close to that of the nonlinear SVMs. Com-

pared with the existing methods based on the construction of a decision tree with linear

SVMs as splitting criterion, the H-LSVM model is superior in terms of classification

accuracy while maintaining a classification complexity of the same order of magnitude.

In addition, the derivation of a generalization error bound and its subsequent empirical
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analysis have shown not only the validity of this estimate, but also the importance of

a careful search of the H-LSVM parameters as well as the undeniable necessity of the

pruning postprocess carried out.

Complementing the methods proposed in Chapters 3 and 4 oriented to improve the effi-

ciency of large-scale machine learning systems, the new algorithm intends to be a solution

to the problem of applying SVM technology into industrial settings with high loads in

real-time classification in which the accuracy worsening is bearable when compared to

the runtime savings.



Chapter 6
A Global View

Chapters 3 and 5 have proposed two complementary approaches to improve the efficiency

of large-scale classification systems. Specifically, Chapter 3 presented a scalable feature

selection method (QPFS) applicable to any classification algorithm and able to reduce

considerably the computational cost of the classifier in both the training and prediction

phases. Chapter 5, for its part, was focused on a new classification algorithm (H-

LSVM) capable of guaranteeing classification response times of few milliseconds that

the successful nonlinear SVMs are unable to achieve. Undoubtedly, both approaches can

be easily combined and the aim of this chapter is to show empirically the advantages

derived from this synergy in a large-scale classification problem.

6.1 Experimental Setup

The experiments were in the M3VOm8 dataset already used in Chapter 5 and con-

sisting of 810,000 training patterns (N) and 7,290,000 test samples of 784

dimensions (M). Recall that this dataset is an extension of the MNIST database used

in Chapter 3 formed by 28× 28 pixel images of handwriting digits 0-9 and it is available

at the LIBSVM repository [53]. The dataset was converted into a binary classification

problem to distinguish digit 3 from all the rest. This dataset was chosen because (i)

it represents a large-scale domain in which nonlinear SVMs are hardly applicable when

real-time predictions are needed, (ii) the linear SVMs classification rate is far from that of

the nonlinear SVMs and (iii) the QPFS method has demonstrated its good performance

149
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Figure 6.1: Classification system incorporating the QPFS and H-LSVM algorithms.
Linear and nonlinear SVMs are also taking into account as baseline methods.

in the multiclass MNIST dataset. A diagram of the classification system to evaluate

is presented in Figure 6.1: the QPFS will be used as feature selection method and the

three different classification models introduced in Chapter 2 will be considered.

As in the preceding chapters, publicly available software was used to implement the

algorithms in Figure 6.1 namely, LIBLINEAR package [52] for linear SVMs, LIB-

SVM software [53] for nonlinear SVMs and the implementations of QPFS and

H-LSVM provided together with this thesis. All these methods entails to adjust some

parameters. In the case of QPFS, the parameter α weighting the relevance and redun-

dancy terms (Equation 3.4) was set according to the heuristic proposed in Chapter 3

and the Nyström approximation was used to alleviate considerably the computational

load of the feature selection algorithm. In particular, the Nyström subsampling rate

was set p = 0.5 which means to halve the computational cost of the original QPFS. In

the case of the classification learners, the parameters was set following the methodology

described in Chapter 5: the hyperparameter selection has been done using 5-fold cross

validation over the training set. The cost parameters in linear SVMs and nonlinear

SVMs were selected from the grid 10i, i = −6, . . . , 6. The γ parameter of the Gaussian

kernel was taken from the range 10i, i = −3, . . . , 3. Finally, for the H-LSVM model,

the maximum number of Pegasos iterations was fixed to T = 107 with a tolerance of

εP = 10−4 and the minimum proportion of patterns needed to split a node δ was chosen

as 10−5. The regularization parameter λ was chosen from the grid 10i

N , i = −6, . . . , 6

being N the number of training samples. The grid was obtained from the equivalence

λ = 1
CN between the LIBLINEAR and LIBSVM cost parameter C and the λ regularizer

in H-LSVM. The prune rate ρ took values in [0.0, 0.1, 0.2]. The resulting values for these

parameters are shown in Table 6.1.

Finally, all the experiments were run in a Intel(R) Core(TM) i7 CPU 920 at 2.67GHz.
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Algorithm Parameters

QPFS α̂ = 0.49 p = 0.5

LIBLINEAR C = 100

LIBSVM C = 102 γ = 10−2

H-LSVM λ = 10−5 ρ = 0.2

Table 6.1: Parameters used in the QPFS, linear SVM, nonlinear SVM and H-LSVM
models for the M3VOm8 dataset.

6.2 Experimental Results

According to the aim of this thesis, the results obtained from the experiments will be

analyzed in terms of the classification error rate and classification cost. The linear and

nonlinear SVMs without feature selection are considered as reference models and they

are denoted as BS-LSVM and BS-NLSVM, respectively. The proximity of the SVMs and

H-LSVM using QPFS to the baseline models is quantified with the following measures:

• Relative Error (RE). e represents the classification error rate of the model to

evaluate.

RE =
eBS-LSVM − e

eBS-LSVM − eSVM
.

• Relative Classification Complexity (RCC). eval represents the number of

operations required to classify a test pattern. According to Table 5.1 in Chap-

ter 5, the linear SVM complexity scales linearly with the dimension of the pat-

terns needing O(M) operations, the nonlinear SVM evaluates the sample with a

cost of O(nSV ×M × nK) and H-LSVM requires O(NP
H (x)×M) calculations. In

the case of nonlinear SVMs, the number of kernel evaluations is supposed to be

nK = 1, which is an optimistic approximation. Unlike the SVMs, the H-LSVM

classification complexity is not deterministic as it depends on the path of each

test samples in the H-LSVM decision tree. Thus, the RCC measure will use the

mean number of hyperplanes encountered by each test sample but, the maximum

number of internal nodes evaluated during the H-LSVM test phase will be also

provided in what follows to show the worst scenario in the H-LSVM classification

procedure.
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RCC =
eval − evalBS-LSVM

evalBS-NLSVM − evalBS-LSVM
.

• Relative Classification Time (RCT). tclass represents the time in seconds spent

in the classification phase. Analogously to the RCC measure, the classification

time of H-LSVM depends on the path followed by each test pattern in the H-

LSVM decision tree and tclass will be approximated by the mean value over all test

samples.

RCT =
tclass − tclass

BS-LSVM

tclass
BS-NLSVM − tclass

BS-LSVM

.

• Relative Training Time (RTT). Although the scope of this thesis has been

focused on the prediction time of the classifiers, the relative training time of the

different architectures presented in Figure 6.1 are also given for completeness. In

this case, ttrain represents the time (in seconds) spent in the training phase.

RTT =
ttrain − ttrain

BS-LSVM

ttrain
BS-NLSVM − ttrain

BS-LSVM

.

In all cases, a value equals 0 in these magnitudes indicates that the classification ac-

curacy, classification complexity or training/classification times are the same as those

of the linear SVM without feature selection. Conversely, a value of 1 represents the

equivalence with the nonlinear case. Therefore, it would be desirable to have RE close

to 1 and a RCC, RCT (and RTT ) close to 0. Table 6.2 shows the results in terms of

classification error rate and number of hyperplanes/support vectors for the three clas-

sifiers considered in Figure 6.1 which take into account different number of features

according to the QPFS algorithm as well as the relative measures RE and RCC. Besides

the classification complexity measure –which is independent of the characteristics of the

computer in which the classification system will work–, Table 6.3 shows the time in

seconds in the training and classification as well as the values of the relative measures

RCT and RTT in order to have an idea of the real computational time required by all

these algorithms (recall that the experiments were run in an Intel(R) Core(TM) i7 CPU

920 at 2.67GHz). At this point, it is worth mentioning that it took 2.80 · 104 seconds

(468 minutes) for QPFS (+Nyström) to obtain the single rank of features used by all
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the algorithms. Additionally, graphical representations of the results given by Tables 6.2

and 6.3 are given in Figures 6.2, 6.3, 6.4 and 6.5.

Similarly to Figure 5.6 in Chapter 5, Figure 6.6 attempts to give a visual representation

of the relative position of the different scenarios proposed in Figure 6.1 that is, it shows

the dependence between the misclassification error and the classification complexity for

the linear SVM, nonlinear SVM and H-LSVM with and without QPFS feature selection.

The number of features preserved in each case was chosen trying to maintain as much

as possible the effectiveness of the model without feature selection; that is, 400 features

were considered for SVMs and 500 attributes were taking into account by H-LSVM. The

x-axis represents in logarithmic scale the number of operations needed by each method

to classify a sample, the y-axis shows the classification error rate and the lower left-hand

area is associated to the best scenario: the lowest classification error and the lowest

classification complexity. The maximum classification cost of H-LSVM is also depicted.
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Figure 6.2: Classification error rate (Figure 6.2(a)) and number of operations needed
to classify a test pattern (Figure 6.2(b)) corresponding to the baseline linear SVM with
all features (BS-LSVM), the baseline nonlinear SVM with all features (BS-NLSVM)
and the three architectures presented in Figure 6.1 combining QPFS with SVMs and
H-LSVM. For H-LSVM, the maximum number of evaluations in classification is also

provided. More detail in Table 6.2.
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Figure 6.3: Relative Error (Figure 6.3(a) and Relative Classification Complexity (Fig-
ure 6.3(b)) corresponding to the baseline linear SVM with all features (BS-LSVM), the
baseline nonlinear SVM with all features (BS-NLSVM) and the three architectures pre-
sented in Figure 6.1 combining QPFS with SVMs and H-LSVM. For H-LSVM, the
maximum number of evaluations in classification is also provided. Note that values of
these relative measures close to 0 reveal the equivalence of the model under consider-
ation and the baseline linear SVM whereas values close to 1 show its proximity to the

baseline nonlinear SVM. More detail in Table 6.2.
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Figure 6.4: Training time (Figure 6.4(a)) and classification time (Figure 6.4(b)) in
seconds corresponding to the baseline linear SVM with all features (BS-LSVM), the
baseline nonlinear SVM with all features (BS-NLSVM) and the three architectures
presented in Figure 6.1 combining QPFS with SVMs and H-LSVM. For H-LSVM,
the maximum number of evaluations in classification is also provided. More detail in

Table 6.3.
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Figure 6.5: Relative Training Time (Figure 6.5(a)) and Relative Classification Time
(Figure 6.5(b)) corresponding to the baseline linear SVM with all features (BS-LSVM),
the baseline nonlinear SVM with all features (BS-NLSVM) and the three architectures
presented in Figure 6.1 combining QPFS with SVMs and H-LSVM. Note that values of
these relative measures close to 0 reveal the equivalence of the model under consider-
ation and the baseline linear SVM whereas values close to 1 show its proximity to the

baseline nonlinear SVM. More detail in Table 6.3.
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Figure 6.6: Classification complexity versus classification error rate for the different
classifiers presented in Figure 6.1 linear SVM (LSVM), nonlinear SVM (NLSVM) and H-
LSVM with QPFS feature selection. In addition, the linear SVM (BS-LSVM), nonlinear
SVM (BS-LSVM) and H-LSVM performances without feature selection are also shown
as well as the maximum number of hyperplanes encountered by the H-LSVM models

in the classification phase.

6.3 Discussion

The preceding results give empirical evidence of the power of the QPFS+H-LSVM archi-

tecture and they also corroborate the conclusions derived in Chapters 3 and 5 about the

behavior of QPFS and H-LSVM when acting separately. More precisely and following

an incremental reasoning, a numerical analysis of the results reported in Tables 6.2–6.3

and shown in Figures 6.2–6.6 reveals that:

1. QPFS can lead to significant improvements in the complexity of the learning algo-

rithm whenever the input space contains redundant or uninformative dimensions.

In the M3VOm8 dataset, both linear and nonlinear SVMs considering the first 400

features achieve the same classification error rate as their counterparts without fea-

ture selection (Figure 6.2(a)); the same figure shows that the H-LSVM algorithm

with 500 features is enough to provide the same effectiveness as the model trained
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with all the attributes. According to the results given in Table 6.3, the incorpora-

tion of QPFS yields a relative improvement in the classification speed of 48% in the

linear SVM, 53% in the case of nonlinear SVM and 32% for H-LSVM whereas the

relative acceleration in the training times of the three algorithms amount to 50%,

30% and 41%, respectively. These computational savings correspond to select in

each case the minimum number of features maintaining the classification accu-

racy of the reference model with all features; that is, 400 variables for SVMs and

500 attributes for H-LSVM. Of course, if more decrease in the computation load

are necessary, the number of features can be reduced until obtain an acceptable

balance accuracy-complexity.

2. H-LSVM yields classification rates close to the nonlinear model with much lower

classification cost. In absolute terms, the H-LSVM model trained with all features

diminishes in 1.41% the accuracy of the nonlinear SVM model (Figure 6.2(a)) in

return for a classification speed 103 times faster (Figure 6.2(b)). It can also be

seen in Figure 6.2(a) that H-LSVM represents a plausible alternative capable of

improving the performance of the linear model in 2.49% in absolute terms while

providing the response times required by real-time classification systems (each test

sample is classified in less than 0.1 milliseconds according to Figure 6.4(b)).

3. QPFS+H-LSVM preserving the first 500 features leads to a degradation in the

performance of the nonlinear SVM without feature selection of 1.42% in absolute

terms (Figure 6.2(a)). Nevertheless, the improvements in the classification speed

are not inconsiderable: Table 6.3 shows that QPFS+H-LSVM is 1.4 · 103 times

faster than the nonlinear SVM with all the features and it entails a classification

complexity 4 · 103 times lower (Table 6.2). Compared against the performance of

the nonlinear SVM with 400 features shown in Figure 6.2(a), the difference between

misclassification rates holds while QPFS+H-LSVM has a classification complexity

2 · 103 times lower according to the results given in Table 6.2 (6.7 · 102 times

lower in terms of classification time looking at Table 6.3). The insufficiency of the

linear model is reflected in its classification error rate close to 4% (Figure 6.2(a)).

With not much effort in the classification process QPFS+H-LSVM can reduce this

rate by more than a half. Figure 6.6 highlights the efficiency of QPFS+H-LSVM

relative to the trade-off between accuracy and classification cost.
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With regard to the relative measures shown in Figures 6.3 and 6.5, their behavior

is exactly as expected: in the case of SVMs, they approach their reference values

0 (for the linear) and 1 (for the nonlinear) as the number of features increases;

similarly, in the case of H-LSVM the more features used, the larger values for the

relative measures. In addition, when more than 500 variables are considered by

QPFS+H-LSVM, the algorithm achieves a relative error closer to the nonlinear

SVM (Figure 6.3(a)) whilst the relative classification complexity (Figure 6.3(b))

and relative classification time (Figure 6.5(b)) are near to 0.

Finally, the training times of QPFS+H-LSVM are always below those of the non-

linear SVM as shown in Figures 6.4(a) and 6.5(a). Unfortunately, this behavior

can not be considered a general rule applicable to any classification problem as it

has been discussed in Section 5.3.



Chapter 7
Conclusions

This thesis has been focused on the design of new algorithms to classify datasets with

large number of samples and/or high dimensions. The task has been tackled from two

complementary points of view, each of them leading to improvements in the design of

large-scale machine learning systems. On the one hand, as step preceding the classifier

selection and training, dimensionality reduction can alleviate considerably the compu-

tational load of the underlying classifier in both the training and prediction phases.

Nevertheless, the scalability of the feature selection algorithm is essential to guarantee

its utility in high-dimensional domains. At the same time, the temporal restrictions of

some of these large-scale systems make it necessary to revisit the existing algorithms

and raise new solutions specially adapted to the new requirements. Traditionally, the

efforts to improve the scalability of the classification algorithms have opted for creating

fast algorithms in the training phase; however, several machine learning applications

require prediction times of few milliseconds. Motivated by these ideas, this thesis have

obtained the following results

• A new feature selection method named Quadratic Programming Feature Selection

(QPFS) has been proposed in line with multivariate filter techniques. The new

algorithm formulates the feature selection task as a quadratic problem in which the

linear term represents the similarity between each feature and the class while the

quadratic term takes into account dependences between each pair of variables. The

QPFS algorithm admits any positive and symmetric similarity measure. Although

163
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this work has limited the QPFS use to the Pearson correlation and mutual infor-

mation, other authors have successfully applied QPFS considering other similarity

measures [72].

• The improvement of the QPFS computational cost through the reformulation of

the optimization problem in a lower dimensional space. The dimensionality re-

duction is performed by the Nyström method for matrix diagonalization which

efficiently obtains an approximation of the eigenvectors and eigenvalues of the

matrix in the QPFS quadratic term reducing the intensive computational cost

of diagonalization. The reformulation of the quadratic programming in a lower

dimensional space obtained through the Nyström diagonalization places QPFS

among the most scalable multivariate filters.

• Experimental results show that the use of mutual information as similarity measure

yields better classification rates than the Pearson correlation. Generally speaking,

QPFS with mutual information provides similar results in terms of classification ac-

curacy than state-of-the-art multivariate filters being slightly superior in domains

with high levels of redundancy. Additionally, the incorporation of the Nyström

method is able to maintain competitive classification rates while reducing at the

same time the QPFS complexity. This fact puts QPFS at the top of multivariate

filter techniques.

• The posing of a feature extraction method Kernel Quadratic Programming Feature

Selection (KQPFS) to generate nonlinear features. The new method is arisen from

the reformulation of the QPFS algorithm in a higher dimensional space induced by

a kernel; hence the name. A theoretical proof of the equivalence between KQPFS

and the popular Kernel Fisher Discriminant Analysis has been given and it shows

a new understanding of KFDA and a new formulation of KFDA direction.

• Experimental results show the empirical equivalence of both methods as well as

the computational superiority of KQPFS in classification problems with highly

unbalanced classes.

• A new real-time classification algorithm, Hierarchical Linear Support Vector Ma-

chine (H-LSVM), consisting of a decision tree with linea SVM as splitting criterion

in the nodes which takes advantage of the fast classification of both methods. This

architecture generates piecewise linear decision functions and reduces significantly
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the classification cost of the nonlinear SVMs. Based on the results of Golea et al.

[137], a theoretical generalization error bound as a function of the tree structure

and the Vapnik-Chervonenkis dimension of the SVMs hyperplanes is established.

• Experimental results show how the new algorithm obtains classification rates be-

tween the linear SVMs and the nonlinear ones, being in general closer to the non-

linear models. However, in terms of classification complexity H-LSVM achieves

response times of few milliseconds outperforming the nonlinear SVM’s speed in all

cases and being even four orders of magnitude faster in some classification prob-

lems. Compared against other approaches based on the combination of decision

trees and linear SVMs, the proposed algorithm reaches better classification results

while keeping the same prediction complexity.

• An empirical analysis of the generalization error bound confirms its validity and

establishes a connection between the complexity of the H-LSVM tree and the

difference of the classification error in training and test sets. Furthermore, these

results have shown the necessity of pruning the decision tree, as it was done, in

order to prevent the overfitting phenomenon.

• An empirical proof of the suitability of the combination of QPFS and H-LSVM in

a case in which the nonlinear SVM is too expensive in the classification process

and a linear model is too simple.

• Public software implementations of the QPFS and H-LSVM algorithms. The

QPFS software includes the Nyström approximation as well as mutual informa-

tion and Pearson correlation as similarity measures. These codes are available at

https://sites.google.com/site/irenerodriguezlujan/documents/QPFS-1.0.zip

https://sites.google.com/site/irenerodriguezlujan/HLSVM-1.1.zip.

An overall analysis of the state-of-the-art methods, the proposed algorithms and the

experimental results obtained reveals the need of including a new dimension in the eval-

uation of a large-scale system: the scalability. Until few years ago, many of the machine

learning algorithms were concern about finding exact solutions for relatively complex

models having as a result computationally expensive algorithms. Conversely, the results

here presented suggest that sometimes it is necessary to sacrifice the accuracy of the

model to a certain extend in favor of simple and scalable approximations, which not

https://sites.google.com/site/irenerodriguezlujan/documents/QPFS-1.0.zip
https://sites.google.com/site/irenerodriguezlujan/HLSVM-1.1.zip
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only reduce the computational cost of the algorithms, but also improve their generaliza-

tion abilities.

The results obtained illustrate that the use of simplifications of the data, as feature

selection, the application of methods for numerical approximations, as the Nyström

method, or the combination of simple methods and ideas to form more complex models,

as in the case of H-LSVM, make it possible to design algorithms that, even not being

exact, are able to face some problems of machine learning which were unapproachable

by some of the conventional techniques.

7.1 Further Work

This thesis represents one step in a long way. There is still a lot to learn in large-scale

classification since datasets which today are considered as large-scale will probably turn

into the general trend in the near future. Therefore, it is worth investing more efforts in

making large-scale classification practical and the ideas and advances presented in this

work give rise to new approaches pursuing this goal:

• The QPFS has presented a new elegant and efficient solution to the feature se-

lection task. However, the decision about the number of features to conform the

final subset still depends on an extern process. It would be desirable to provide a

feature selection algorithm that instead of ranking the features, provides a closed

subset of them. This way, the entries of the solution vector to the QPFS quadratic

programming would take binary values {0, 1} indicating the membership of each

feature to the final subset. Although there exists a branch in optimization theory

exclusively dedicated to the optimization of 0 − 1 quadratic programming prob-

lems [144, 145], these solutions tends to be computationally expensive and more

efficient algorithms are needed for large-scale domains.

• The analysis of the QPFS computational complexity reveals that the main cost

falls on the computation of the similarity matrix between each pair of features when

the number of samples is large compared to the number of dimensions – a common

situation in large-scale problems –. In the same way as the Nyström approximation

has alleviated the diagonalization cost, it would be interesting to consider some
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numerical approaches or other similarity measures in order to improve the QPFS

scalability.

• Chapter 4 started with an analysis of different techniques to generate new features

from the original ones. Two opposite approaches can be distinguished according

to the process used to extract new attributes. On the one hand, new variables

can be created in a implicit manner by means of the reformulation of the feature

selection algorithm in a kernel space – as in KFDA and KQPFS –. Conversely,

new attributes can be explicitly generated to apply afterwards the original feature

selection method in the expanded space. From the point of view of large-scale

classification, the latest option is really appealing because the explicit knowledge

of the feature space makes its use as input of a simple linear model possible. One

alternative to explicitly increase the number of variables without expert knowledge

is to generate them randomly according to certain rules based on Grammatical

Evolution techniques [89]. Unfortunately, handling such amount of features is

inaccesible even for the most scalable feature selection methods. Therefore, it

would be of interest to combine QPFS with the grammatical feature selection

process controlling the dimensionality explosion somehow. For example, generate

the new features in a sequential manner or divide the feature space into subgroups

to distribute the QPFS computation could be plausible solutions.

• The first option discussed in the preceding point and consisting in reformulat-

ing the feature selection algorithm in a kernel space is the alternative adopted

in Chapter 4 leading to KQPFS. Lamentably, this approach turns out to have

the same scalability drawbacks that nonlinear SVMs in large-scale problems: (i)

expensive training and test processes if many Lagrange multipliers are not zero

and (ii) the kernel matrix storage. If instead of applying regularization to the La-

grange multipliers it is imposed to the hyperplane vector w, the problem is shown

to be equivalent to Least Squares Support Vector Machines [99] and thus, efficient

SMO-style methods can be used to solve it [49] although the slow prediction phase

is still an obstacle. However, the use of SMO-style solvers with regularization in

the Lagrange multipliers is not so straightforward and more efforts continuing the

work started by Mika [42] are necessary.

• Even though the aim of the H-LSVM algorithm was focused on speeding up the

prediction phase of nonlinear SVMs, it would be interesting to make an effort to
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parallelize the training algorithm taking advantage of the decision tree structure

of the model.

• It is known that the value of the regularization parameter affects critically the

performance of SVMs. In this regard, the H-LSVM algorithm divides the input

space into disjoint regions using the same regularization parameter in all the splits.

Nevertheless, even being drawn from the same statistical distribution, each of these

regions might have different properties being interesting to explore procedures to

set different regularization parameters in the nodes of the tree. This task must be

carefully guided as solutions evaluating each possible combination of parameters

in the tree are absolutely unfeasible.

7.2 Conclusiones

Esta tesis se ha centrado en el diseño de nuevos algoritmos para la clasificación de bases

de datos con gran número de patrones y/o dimensiones desde dos puntos de vista com-

plementarios y que constituyen sendas mejoras en el diseño de un sistema de clasificación

a gran escala. Por una parte, como paso previo a la selección y entrenamiento de un algo-

ritmo de aprendizaje automático, la reducción de las dimensiones de los patrones puede

aliviar considerablemente la carga computacional del clasificador subyacente, tanto en

entrenamiento como en predicción. No obstante, es fundamental que el algoritmo de

selección de variables sea escalable para garantizar su utilidad en dominios de altas di-

mensiones. Al mismo tiempo, las limitaciones temporales de algunos de estos sistemas a

gran escala requieren revisar los algoritmos existentes y plantear nuevas soluciones adap-

tadas a los nuevos requisitos. Tradicionalmente, gran parte de los avances realizados en

cuanto a la escalabilidad de los sistemas se han centrado en producir algoritmos rápidos

en la fase de entrenamiento. Sin embargo, también deben considerarse otras aplicaciones

del aprendizaje automático que precisan tiempos de predicción de pocos milisegundos.

Motivada por estas ideas, esta tesis ha obtenido los siguientes resultados:

• Propuesta de un nuevo método de selección de variables, Quadratic Programming

Feature Selection (QPFS), enmarcado dentro de los métodos de filtro multivari-

able. El nuevo algoritmo formula la selección de variables como la optimización

de un problema cuadrático donde el término lineal representa la similitud de cada
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variable con la clase y el término cuadrático modela las dependencias entre pares

de variables. El algoritmo QPFS admite cualquier medida de similitud positiva y

simétrica, restringiéndose este trabajo a la correlación de Pearson y la información

mutua. No obstante, ha sido aplicado con éxito por otros autores utilizando me-

didas de similitud distintas a las aqúı propuestas [72].

• Mejora del coste computacional del algoritmo QPFS mediante la reformulación del

problema de optimización en un subespacio de menor dimensión. La reducción de

dimensión se hace mediante el método Nyström para la diagonalización de matri-

ces que permite obtener eficientemente una solución aproximada de los autovalores

y autovectores de la matriz del término cuadrático, reduciendo aśı el coste com-

putacional de la diagonalización. La resolución del problema cuadrático en un

subespacio de menor dimensión obtenido mediante la diagonalización de Nyström

situa al QPFS como uno de los métodos de filtro multivariantes con menor coste

computacional.

• Resultados experimentales muestran que el uso de QPFS con información mu-

tua produce mejores aciertos en clasificación que la version con correlaciones. En

términos generales, iguala el estado del arte en métodos de filtro multivariantes

siendo ligeramente mejor en problemas con alto nivel de redundancia entre vari-

ables. Además, la incorporación del método Nyström es capaz de mantener los

resultados competitivos del algoritmo inicial reduciendo, a su vez, su coste com-

putacional y situándolo a la cabeza de las técnicas de filtro multivariables.

• Reformulación del método QPFS en un espacio de dimensión mayor inducido

por un núcleo (kernel) para generar atributos no lineales, dando lugar al algo-

ritmo de generación de variables Kernel Quadratic Programming Feature Selection

(KQPFS). Se ha dado una demostración teórica de la equivalencia entre este nuevo

método y el popular discriminante lineal de Fisher para núcleos que arroja una

nueva interpretación para el discriminante de Fisher además de una nueva forma

de cálculo.

• Resultados experimentales demuestran la equivalencia emṕırica de ambos métodos

aśı como la superioridad computacional de la nueva solución para problemas de

clasificación con clases altamente desbalanceadas.



Chapter 7. Conclusions 170

• Propuesta de un nuevo algoritmo para clasificación en tiempo real, Hierarchical

Linear Support Vector Machine (H-LSVM), formado por un árbol de decisión con

Máquinas de Vectores Soporte (SVM) lineales en los nodos, aprovechando aśı la

velocidad de predicción de ambas técnicas. Esta arquitectura genera fronteras de

decisión lineales a trozos (no lineales) pero con un coste en clasificación significa-

tivente inferior al de las SVMs no lineales. Basándose en los resultados de Golea

et al. [137] se deduce, además, una cota teórica del error de generalización del

nuevo método en función de la estructura del árbol y la dimensión de Vapnik-

Chervonenkis de los hiperplanos.

• Resultados experimentales muestran como el nuevo algoritmo obtiene aciertos de

clasificación situados entre las SVMs lineales y no lineales, siendo por lo general,

más cercanos a áquellos obtenidos por los modelos no lineales. Sin embargo, en

términos de coste en clasificación, H-LSVM es capaz de emitir una predicción en

pocos milisegundos acelerando el tiempo de las SVMs no lineales en todos los casos

y consiguiendo aceleraciones de incluso cuatro órdenes de magnitud para algunos

problemas. Comparado con otras aproximaciones basadas en la combinación de

árboles de decisión y SVMs lineales, el algoritmo propuesto obtiene mejores resul-

tados en clasificación manteniendo la misma velocidad de predicción.

• El análisis emṕırico de la cota del error de generalización propuesta confirma su

validez y establece una relación entre la complejidad del árbol H-LSVM y la diferen-

cia del error de clasificación en entrenamiento y test. Adicionalmente, ha quedado

patente la necesidad de un proceso de poda del árbol, tal y como se ha realizado,

para evitar el sobreajuste de los datos de entrenamiento.

• Una prueba emṕırica de la idoneidad de la combinación de QPFS y H-LSVM en

un caso en el que la SVM no lineal es demasiado costosa en la fase de clasificación

y un modelo lineal es demasiado simple.

• Implementación de software público de los algoritmos QPFS y H-LSVM. En el caso

de QPFS, el programa incluye la aproximación de Nyström aśı como la información

mutua y la correlación de Pearson como medidas de similitud. Estos códigos están

disponibles en:

https://sites.google.com/site/irenerodriguezlujan/documents/QPFS-1.0.zip

https://sites.google.com/site/irenerodriguezlujan/HLSVM-1.1.zip.

https://sites.google.com/site/irenerodriguezlujan/documents/QPFS-1.0.zip
https://sites.google.com/site/irenerodriguezlujan/HLSVM-1.1.zip
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Un análisis en conjunto de los métodos que conforman el estado del arte, los algoritmos

propuestos y los resultados experimentales obtenidos refleja la necesidad de incluir una

nueva dimensión en la evaluación de los modelos: la escalabilidad. Hasta hace unos años,

gran parte del aprendizaje automático se hab́ıa centrado en la consecución de soluciones

exactas para modelos relativamente complejos lo que desencadenaba en algoritmos com-

putacionalmente costosos. Sin embargo, los resultados derivados de esta tesis sugieren

que en ciertas ocasiones es preciso sacrificar hasta cierto punto la tasa de acierto del

modelo en favor de aproximaciones simples y escalables que además de reducir el coste

computacional de los algoritmos también mejoren su capacidad de generalización.

Los resultados aqúı obtenidos ilustran que el uso de simplificaciones de los datos, como en

el caso de la selección de variables, la aplicación de métodos de aproximación numérica,

como el caso del método Nyström, o la combinación de métodos e ideas simples para

formar modelos más complejos, como en el caso de H-LSVM, permiten diseñar algorit-

mos que, aunque no exactos, en la práctica afrontan satisfactoriamente problemas de

aprendizaje automático inabordables por algunas de las tećnicas convencionales.





Appendix A
Notation

N Number of the training samples

M Dimension of the training samples

S Training set

S+ Subset of samples labeled as positive in the training set

S− Subset of samples labeled as negative in the training set

N+ Number of samples labeled as positive in the training set

N− Number of samples labeled as negative in the training set

(xi, y) Pair sample-label for the i-th sample in the training set

X Input space

Y Output space

xji j-th feature in the i-th training sample

Xj Random variable corresponding to the j-th feature

Y Random variable representing the supervised classification targets

l(f(x, y) Loss function for the supervised method f

R(f) Expected error or risk

Remp(f) Empirical error or risk

Rreg(f) Regularized error or risk

EP Expectation with respect to the distribution P

V Cdim Vapnik-Chervonenkis dimension
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Appendix B
The Nyström Method for matrix

diagonalization

The Nyström method is an efficient technique to generate low-rank matrix approxi-

mations and it has been widely used in large-scale learning applications [75, 77, 146].

The method approximates the eigenvalues and eigenvectors of a M -dimensional Gram

matrix diagonalizing a k × k matrix with k �M by means of the Nyström extension.

Initially the Nyström method was used to find numerical approximations to eigenfunc-

tion problems of the form

∫ b

a
K(x, y)φ(y)dy = λφ(x). (B.1)

Dividing the interval [a, b] up to n evenly spaced points ξ1, ξ2, . . . , ξn and approximating

the above integral by the simple quadrature rule [78], the following expression approxi-

mates Equation B.1,

(b− a)

n

n∑
j=1

K(x, ξj)φ̂(ξj) = λφ̂(x) (B.2)

being φ̂(x) an approximation of Φ(x) and making x = ξi in Equation B.2,
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(b− a)

n

n∑
j=1

K(ξi, ξj)φ̂(ξj) = λφ̂(ξi) , for i = 1, . . . , n. (B.3)

Without loss of generality, let a = 0 and b = 1 then, the system described in Equation B.3

can be rewritten as,

KΦ̂ = nΦ̂Λ (B.4)

where Kij = K(ξi, ξj) is a Gram matrix, Λ a diagonal matrix with the approximated

eigenvalues {λ1, λ2, . . . , λn} of K and Φ = [φ1, φ2, . . . , φn] the associated eigenvectors.

Plugging the previous equality in Equation B.2 yields the Nyström extension for each

φ̂i,

φ̂i(x) =
1

nλi

n∑
j=1

K(x, ξj)φ̂i(ξj). (B.5)

The Nyström method for matrix diagonalization can be formulated starting from

the previous result. Let Q ∈ RM×M a symmetric matrix decomposed as,

Q =

 A B

BT E

 (B.6)

where A ∈ Rk×k, B ∈ Rk×m, and E ∈ Rm×m being k � m and k +m = M . As Q is a

Gram matrix, it can be rewritten as the inner product of a matrix Z by itself: Q = ZTZ.

If Q is of rank k and the rows of the submatrix [A B] are linearly independent, Z can

be defined as a function of the submatrices A and B. Let Z = [X Y ] with X ∈ RM×k

and Y ∈ RM×m, Q can be reformulated as follows
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Q = ZTZ =

XTX XTY

Y TX Y TY

 . (B.7)

Making equal each block in Equations B.6 and B.7 yields A = XTX and B = XTY .

Let A = UΛUT the diagonalization of matrix A with UTU = IM and where IM is the

M -dimensional identity matrix. By defining

X̄ = Λ
1
2UT (B.8)

Ŷ = (X̄T )−1B = Λ−
1
2UTB (B.9)

Ẑ = [X̄ Ŷ ], (B.10)

with X̄ ∈ Rk×k, Ŷ ∈ Rk×m and Ẑ ∈ Rk×M . Then, matrix Q̂ can be written as

Q̂ = ẐT Ẑ =

X̄T X̄ X̄T Ŷ

Ŷ T X̄ Ŷ T Ŷ

 (B.11)

=

 X̄T X̄ X̄TΛ−
1
2UTB

(Λ−
1
2UTB)T X̄ (Λ−

1
2UTB)TΛ−

1
2UTB

 (B.12)

=

 A B

BT BTA−1B

 . (B.13)

If the rank of matrix Q is larger than k or the rows of submatrix [A B] are not linearly

independent, Q̂ is an approximation of matrix Q whose quality can be quantified as

‖E −BTA−1B‖.

Given the previous approximation ofQ, Q̂ and theAmatrix diagonalization, A = UΛUT ,

it is possible to calculate the eigenvectors of Q̂, Q̂ = ŪΛŪT , by means of the Nyström

extension for matrix diagonalization; the jth coordinate of the ith eigenvector of Q̂ is

given by,
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Ūji =
1

λi

k∑
n=1

QjnUni, (B.14)

being λ1, λ2, . . . , λk the eigenvalues of A, Qjn the element of Q in the j-th row and the

n-th column and Uni the n-th coordinate of the i-th eigenvector of A. Then, the i-th

eigenvector of Q is given by,

Ūi =


1
λi

∑k
n=1Q1nUni

...

1
λi

∑k
n=1QMnUni

 =
1

λi

 A

BT

U. (B.15)

And thus,

Ū =

 A

BT

UΛ−1 =

 AUΛ−1

BTUΛ−1

 =

 U

BTUΛ−1

 . (B.16)

Finally, the columns of matrix Ū are orthogonalized. This is address as follows, let A
1
2

the symmetric positive definite square root of A, let S = A + A−
1
2BBTA−

1
2 and its

diagonalization S = RΛ̂RT . Defining the matrix V̂ as

V̂ =

 A

BT

A−
1
2RΛ̂−

1
2 , (B.17)

it can be shown that V̂ and Λ̂ diagonalize Q̂, i.e. Q̂ = V̂ Λ̂V̂ T and V̂ T V̂ = Ik.
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B.1 Nyström Sampling Techniques

One of the critical points in the Nyström approximation is to determine the sampling

criterion to select the rows forming the submatrix [A B] since the quality of the ap-

proximation Q̂ is quantified as ‖E − BTA−1B‖,depending directly on the choice of the

[A B] submatrix. In the work developed by Kumar et al. [76], different sampling

techniques for the Nyström method including theoretical and empirical points of view

are analyzed in depth. The sampling methods considered are fixed throughout the sub-

sampling process leaving aside those adaptive techniques which modify their selection

criteria in function of previous choices. Although adaptive methods yield in general bet-

ter results, they are quite expensive in practice [82, 147]. Several non-adaptive sampling

techniques have been studied in the literature and they can be divided into two groups,

• Uniform sampling without replacement. This is the sampling method pro-

posed in the paper which introduced the Nyström method for machine learning

applications [77] and the most commonly used in practice [75, 148–150].

• Non-uniform sampling. A weight is associated to each row in such a way that

rows with the highest weights are more likely to be selected. For instance, these

weights can be estimated as the L2 norm of the row (column-norm sampling) or

the corresponding diagonal element of the Nyström matrix Q̂ (diagonal sampling)

[146, 151].

Kumar results suggest that uniform sampling without replacement apart from being

more efficient in both time and space, produces more accurate approximations.





Appendix C
Convergence Properties of

Weighted-Pegasos Algorithm

The aim of this appendix is to show that the bound for the norm of the optimal

solution of the Weighted-Pegasos algorithm presented in Chapter 5 is different than

that of the standard Pegasos algorithm [56]. However, this modification has no effect in

the number of iterations needed for convergence which remains as in the original version.

A deep analysis of the mathematical results used further down is beyond the scope of

this thesis, more details can be found in [56, 152].

The analysis of the convergence of the Pegasos algorithm relies on the notion of strongly

convex functions [152]. Recall the approximate objective function of the Weighted-

Pegasos algorithm:

min
w

f(w;At) =

min
w

λ

2
‖w‖22 +

1

k

∑
(ν,x,y)∈At

νmax {0, 1− y(w · x)} .

According to Lemma 1 in [152], the above function is λ-strongly convex because it

can be represented as g = λ‖w‖22 + h(w) with ‖w‖22 differentiable and convex and

h(w) =
∑

(ν,x,y)∈At νmax {0, 1− y(w · x)} convex with respect to w. The h convexity

is guaranteed by the convexity of each term in the summation as shown in Figure C.1.
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Pegasos
Weighted Pegasos

Figure C.1: Convexity of the loss functions for the Pegasos and the weighted Pegasos
algorithms.

Therefore, all the convergence theory applied by the Pegasos’ authors holds here. How-

ever, the weights in the loss term slightly change the bound of the w norm and hence,

the projection step.

Lemma C.1. The optimal weight vector w∗ that minimizes the primal weighted SVM

problem satisfies ‖w‖2 ≤ 1√
Nλ

.

Proof. The strong duality theorem states that in the minimization of a convex function

subject to a set of linear constraints, the value of the optimal primal and dual solutions

meet. The optimization problem in of Weighted-Pegasos:

min
w

λ

2
‖w‖22 +

1

N

N∑
i=1

νi max {0, 1− yi(w · xi)} (C.1)

satisfies these conditions. The dual problem of Equation C.1 can be written as:

max
α∈[0,

νi
N

]N

N∑
i=1

αi −
1

2λ
‖αiyixi‖22

s.t.
N∑
i=1

yiαi = 0.

If w∗ and α∗ are the optimal primal and dual solutions respectively, the following

equality holds:
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λ

2
‖w∗‖22 +

1

N

N∑
i=1

νi max {0, 1− yi(w∗ · xi)} =

N∑
i=1

α∗i −
1

2λ
‖α∗i yixi‖2. (C.2)

At the optimum w∗ = 1
λ

∑N
i=1 α

∗
i yixi by imposing that the gradient of the Lagrangian

with respect to w∗ must be equals zero. Plugging this equality into the Equation C.2

and rearranging terms:

λ

2
‖w∗‖22 +

1

N

N∑
i=1

νi max {0, 1− yi(w∗ · xi)} =
N∑
i=1

α∗i −
λ

2
‖w∗‖22.

Working out ‖w∗‖22:

‖w∗‖22 =
1

λ

(
N∑
i=1

α∗i −
1

N

N∑
i=1

νi max {0, 1− yi(w∗ · xi)}

)
.

Taking into account that the term 1
N

∑N
i=1 νi max {0, 1− yi(w∗ · xi)} is positive and the

Lagrange multipliers are upper bounded by νi
N :

‖w∗‖2 ≤ 1

λ

N∑
i=1

νi
N
.

Finally, according to the weighting scheme proposed in Chapter 5 (Equation 5.3):

νi =

 1
2N+ if xi ∈ S+

1
2N− if xi ∈ S−

the desired bound is obtained,

‖w∗‖22 ≤
1

Nλ

 ∑
(xi,yi)∈S+

1

2N+
+

∑
(xi,yi)∈S−

1

2N−

 =
1

Nλ
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It is worth noting that the above bound is more restrictive than those of the standard

Pegasos algorithm: ‖w∗‖2 ≤ 1
λ [56]. According to the bound of Lemma C.1, the theorem

establishing the convergence rate in expectation for the Pegasos algorithm ([56, Theorem

2]) can be adapted as follows,

Theorem C.2. Assume that for all (x, y) ∈ S the norm of x is at most R and for all

t, At is chosen identically and independently distributed from S. Let r an integer picked

uniformly at a random from [1, 2, . . . , T ]. Then,

EA1,A2,...,ATEr[f(wr)] ≤ f(w∗) +
c log(T )

λT

where c =

(√
λ
N +R

)2

.

Then, the number of iterations requires for achieving a solution of accuracy ε = f(w)−

f(w∗) is Õ
(
R2

λε

)
where Õ denotes the stochastic component of the bound. Although

the value of the c constant is different from that of the standard Pegasos algorithm

(c = (
√
λ+R)2), the bound in terms of Õ is the same in both cases.
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[13] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction

to kernel-based learning algorithms. In IEEE Neural Networks, volume 12, pages

181–201, 2001.

[14] V. Vapnik and A. Chervonenkis. Theory of Pattern Recognition. Nauka, Moscow,

1974. (in Russian).

[15] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-posed problems. W.H. Winston,

1977.

[16] G. Forman. BNS feature scaling: an improved representation over TF-IDF for

SVM text classification. In CIKM ’08: Proceeding of the 17th ACM conference on

Information and knowledge mining, pages 263–270, 2008.

[17] K. Momen, S. Krishnan, and T. Chau. Real-time classification of forearm elec-

tromyographic signals corresponding to user-selected intentional movements for

multifunction prosthesis control. Neural Systems and Rehabilitation Engineering,

IEEE Transactions on, 15(4):535–542, 2007.

[18] P. Shenoy, K. J. Miller, B. Crawford, and R. N. Rao. Online electromyographic

control of a robotic prosthesis. IEEE Transactions on Biomedical Engineering, 55

(3):1128–1135, 2008.

[19] J. Rodriguez, A. Goni, and A. Illarramendi. Real-time classification of ECGs on a

PDA. IEEE Transactions on Information Technology in Biomedicine, 9(1):23–34,

2005.



Bibliography 187

[20] C. Ding and H. Peng. Minimum redundancy feature selection from microarray

gene expression data. Journal Bioinformatics and Computational Biology, 3(2):

185–205, April 2005.
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