Show simple item record

dc.contributor.authorPulido-Reyes, Gerardo
dc.contributor.authorRodea-Palomares, Ismael
dc.contributor.authorDas, Soumen
dc.contributor.authorSakthivel, Tamil Selvan
dc.contributor.authorLeganés Nieto, Francisco 
dc.contributor.authorRosal, Roberto
dc.contributor.authorSeal, Sudipta
dc.contributor.authorFernández Piñas, Francisca 
dc.contributor.otherUAM. Departamento de Biologíaes_ES
dc.date.accessioned2016-09-12T11:11:14Z
dc.date.available2016-09-12T11:11:14Z
dc.date.issued2015-10-22
dc.identifier.citationScientific Reports 5 (2015): 15613en_US
dc.identifier.issn2045-2322es_ES
dc.identifier.urihttp://hdl.handle.net/10486/672888
dc.description.abstractCerium oxide nanoparticles (nanoceria; CNPs) have been found to have both pro-oxidant and antioxidant effects on different cell systems or organisms. In order to untangle the mechanisms which underlie the biological activity of nanoceria, we have studied the effect of five different CNPs on a model relevant aquatic microorganism. Neither shape, concentration, synthesis method, surface charge (ζ-potential), nor nominal size had any influence in the observed biological activity. The main driver of toxicity was found to be the percentage of surface content of Ce3+ sites: CNP1 (58%) and CNP5 (40%) were found to be toxic whereas CNP2 (28%), CNP3 (36%) and CNP4 (26%) were found to be non-toxic. The colloidal stability and redox chemistry of the most and least toxic CNPs, CNP1 and CNP2, respectively, were modified by incubation with iron and phosphate buffers. Blocking surface Ce3+ sites of the most toxic CNP, CNP1, with phosphate treatment reverted toxicity and stimulated growth. Colloidal destabilization with Fe treatment only increased toxicity of CNP1. The results of this study are relevant in the understanding of the main drivers of biological activity of nanoceria and to define global descriptors of engineered nanoparticles (ENPs) bioactivity which may be useful in safer-by-design strategies of nanomaterialsen_US
dc.description.sponsorshipThis research was supported by CTM2013-45775-C2-1-R and CTM2013-45775-C2-2-R grants from MINECO, the Dirección General de Universidades e Investigación de la Comunidad de Madrid, Research Network S2013/MAE-2716 and National Science Foundation for Nanotechnology Research (EECS – 0901503, CBET-1261956). Gerardo Pulido-Reyes thanks the Spanish Ministry of Education for the award of an FPU grant.en_US
dc.format.extent14 pag.en
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherNature Publishing Groupen_US
dc.relation.ispartofScientific Reportsen_US
dc.subject.otherCerium oxide nanoparticlesen_US
dc.subject.otherCell systemsen_US
dc.subject.otherAquatic microorganismen_US
dc.subject.otherToxicityen_US
dc.titleUntangling the biological effects of cerium oxide nanoparticles: The role of surface valence statesen_US
dc.typearticleen
dc.subject.ecienciaBiología y Biomedicina / Biologíaes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.10.1038/srep15613es_ES
dc.identifier.doi10.1038/srep15613es_ES
dc.identifier.publicationfirstpage15613-1es_ES
dc.identifier.publicationlastpage15613-14es_ES
dc.identifier.publicationvolume5es_ES
dc.relation.projectIDGobierno de España. CTM2013-45775-C2-1-Res_ES
dc.relation.projectIDGobierno de España. CTM2013-45775-C2-2-Res_ES
dc.relation.projectIDComunidad de Madrid. S2013/MAE-2716/REMTAVARESes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.rights.ccReconocimientoes_ES
dc.rights.accessRightsopenAccessen
dc.authorUAMFernández Piñas, Francisca (260189)
dc.authorUAMLeganés Nieto, Francisco (261828)
dc.authorUAMRodea Palomares, Ismael Martín (263998)
dc.facultadUAMFacultad de Ciencias


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record