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Abstract

We have previously shown that oval cells harboring a genetically inactivated Met tyrosine kinase (Met2/2 oval cells) are
more sensitive to TGF-b-induced apoptosis than cells expressing a functional Met (Metflx/flx), demonstrating that the HGF/
Met axis plays a pivotal role in oval cell survival. Here, we have examined the mechanism behind this effect and have found
that TGF-b induced a mitochondria-dependent apoptotic cell death in Metflx/flx and Met2/2 oval cells, associated with a
marked increase in levels of the BH3-only proteins Bim and Bmf. Bmf plays a key role during TGF-b-mediated apoptosis since
knocking down of BMF significantly diminished the apoptotic response in Met2/2 oval cells. TGF-b also induced oxidative
stress accompanied by NADPH oxidase 4 (Nox4) mRNA up-regulation and decreased protein levels of antioxidant enzymes.
Antioxidants inhibit both TGF-b-induced caspase 3 activity and Bmf up-regulation, revealing an oxidative stress-dependent
Bmf regulation by TGF-b. Notably, oxidative stress-related events were strongly amplified in Met2/2 oval cells, emphasizing
the critical role of Met in promoting survival. Pharmacological inhibition of PI3K did impair HGF-driven protection from TGF-
b-induced apoptosis and increased sensitivity of Metflx/flx oval cells to TGF-ß by enhancing oxidative stress, reaching
apoptotic indices similar to those obtained in Met2/2 oval cells. Interestingly, both PI3K inhibition and/or knockdown itself
resulted in caspase-3 activation and loss of viability in Metflx/flx oval cells, whereas no effect was observed in Met2/2 oval
cells. Altogether, results presented here provide solid evidences that both paracrine and autocrine HGF/Met signaling
requires PI3K to promote mouse hepatic oval cell survival against TGF-b-induced oxidative stress and apoptosis.
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Introduction

Oval cells constitute a bi-potential progenitor cell population

from adult liver. When hepatocyte proliferation and/or function is

impaired by chronic liver disease or hepatotoxin administration,

oval cells emerge from the periportal area, in particular the canals

of Hering, the terminal smallest branch of the biliary tree, and

expand into the damaged parenchyma, a process known as ‘‘oval

cell response’’ or ‘‘ductular reaction’’. Oval cells can give rise to

both hepatocytes and biliary epithelial cells and are characterized

by the co-expression of both hepatocytic and cholangiocytic

markers as well as hematopoietic and neuroepithelial markers,

which reflects their immature phenotype [1,2,3]. These cells are

nowadays a matter of intense investigation. On the one hand, due

to their facultative role in liver regeneration, oval cells have been

postulated as a therapeutic tool in acute or chronic liver diseases.

On the other hand a link has been established between oval cells

and hepatocarcinogenesis. Indeed, a substantial body of evidence

in the literature supports the hypothesis that oval cells could be the

origin of at least a subset of hepatocellular carcinoma (HCC) [4].

Understanding the intricate growth factor network and signaling

events that regulate oval cell biology will help us to clarify these

contrasting roles of oval cells in liver regeneration and tumor

development.

Transforming growth factor beta (TGF-b), a member of the

TGF-b superfamily ligands, has highly pleiotropic effects that

depend on the dose, duration of signal and the type and state of

the target cell. It has a crucial role during development, tissue

remodelling and homeostasis by controlling many cellular

processes, such as differentiation, proliferation, apoptosis and

motility in many types of cells [5]. TGF-b initiates the intracellular
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signaling through binding to transmembrane serine-threonine

kinase receptors and subsequent activation of SMAD proteins,

which regulate gene expression [6]. Besides the canonical SMAD-

mediated pathway, TGF-b triggers a variety of intracellular

signaling pathways, commonly referred to as ‘‘non-SMAD’’ or

‘‘non-canonical’’ pathways that include mitogen-activated protein

kinases (MAPKs), Rho-like guanosine triphosphatases (GTPases)

and phosphatidilinositol-3-kinase PI3K/AKT pathways [7]. In

hepatocytes, the best characterized effects of TGF-b are undoubt-

edly the induction of growth arrest and apoptosis, which target

cells at different stages of differentiation and pathophysiological

conditions, i.e. adult, fetal and regenerating hepatocytes

[8,9,10,11,12]. Surprisingly, the effects of TGF-b on oval cell

biology are not yet well defined. In vivo and in vitro data indicate

that TGF-b negatively controls oval cell activation but the

mechanisms underlying its effects have not been fully explored.

Thus, transgenic mice expressing active TGF-b in the liver show

an impaired oval cell response after hepatic chronic injury induced

by a 3,5-diethoxycarbonyl-1,4-dihydro-collidine (DDC)-contain-

ing diet [13]. Furthermore, coinciding with the oval cell

proliferation an increased expression of TGF-b1 in hepatic stellate

cells is observed, followed by a peak in apoptosis of oval cells [14].

In agreement with these in vivo observations, TGF-b decreases rat

oval cell growth in vitro although to a lesser extent than in

hepatocytes [15]. We have also shown that TGF-b decreases cell

viability and induces caspase-3 activation in oval cells in vitro [16].

Interestingly, CD133+/CD45- oval cells isolated from methionine

adenosyltransferase 1a (Mat1a2/2) deficient mice, a cell popula-

tion that resemble cancer stem cells, show cell growth inhibition in

response to TGF-b but appear to be resistant to its apoptotic

effects [17].

Met is a proto-oncogene that encodes for the Hepatocyte

Growth Factor (HGF) receptor. HGF binds to Met to mediate its

multiple cellular activities including mitogenesis, motogenesis,

morphogenesis and survival in a variety of cell types [18,19]. Upon

HGF binding, Met is activated and autophosphorylated in specific

tyrosine residues, leading to the recruitment of signal transducers

through the C-terminal docking site. Among the signaling

pathways activated by Met in response to HGF are PI3K/AKT,

phospholipase-C gamma (PLC-c), sarcoma protein kinase (Src),

signal transducer and activator of transcription 3 (STAT3),

nuclear factor-kappa B (NF-kB) and MAPKs including Ras/

extracellular signal-regulated kinases (ERKs), c-Jun N-terminal

kinases (JNK) and p38 [19]. The HGF/Met signaling pathway is

critical during tissue formation and homeostasis, playing a major

role in liver physiology and pathology, both during development

and adulthood. This notion is supported by the fact that deletion

of either HGF or Met causes embryonic lethality due to multiple

abnormalities including massive hepatoblasts apoptosis [20,21].

Additionally, liver specific Met or HGF conditional knock-out

mice show an impaired regenerative response associated with an

increased cell death, delayed and decreased proliferation and

healing [22,23]. The increased apoptotic cell death is a common

trait in all these genetic ablation models, highlighting the

remarkable action of HGF/Met in the suppression of apoptosis.

Antiapoptotic action of HGF/Met in liver does not exclusively

target hepatocytes. To the contrary, HGF has proved to be a

survival factor for oval cells against different apoptotic insults, such

as Tumor Necrosis Factor (TNF-a), serum withdrawal and TGF-b
[24,25]. Accordingly, we have demonstrated that oval cells

harboring a genetically inactivated Met tyrosine kinase (Met2/2

oval cells) are more sensitive to TGF-b-induced apoptosis than

their normal counterparts (Metflx/flx oval cells) [24].

Seeking to understand how HGF/Met exerts its survival effect

against TGF-b-induced apoptosis, we conducted a broad analysis

on the apoptotic signaling cascade induced by TGF-b in both

Metflx/flx and Met2/2 oval cell lines. Here we report that TGF-b
induces a mitochondrial apoptotic cell death in oval cells, with up-

regulation of BIM and BMF proteins, two BH3-only members of

the Bcl-2 family. Furthermore, we reveal a signaling pathway in

which TGF-b induces oxidative stress associated with up-

regulation of Nox4 and down-regulation of the intracellular

antioxidant defenses, which leads to Bmf up-regulation and

subsequent cell apoptosis. Although both Metflx/flx and Met2/2

oval cells do respond to TGF-b, alteration of both mitochondrial

function and oxidative homeostasis are amplified in Met2/2 oval

cells, providing one mechanism for the increased sensitivity to

TGF-b-triggered apoptosis in Met-deficient oval cells. Finally, our

results provide strong evidence that PI3K may be a key player in

mediating anti-apoptotic signals via Met in oval cells by acting as

an antioxidant signal.

Materials and Methods

Reagents and Antibodies
Mouse recombinant HGF was purchased from R&D Systems

(Minneapolis, MN). Human recombinant TGF-b, ERK inhibitor

PD90059, p38 inhibitor SB203580 and PI3K inhibitor LY294002

were from Calbiochem (La Jolla, CA). SP600125 JNK inhibitor

was from Alexis Biochemical (Madrid, Spain), Dulbecco’s

modified Eagle’s medium (DMEM), fetal bovine serum (FBS)

and trypsin-EDTA were from Gibco-Invitrogen (Barcelona,

Spain). Ascorbate, pyrrolidine carbodithioic acid (PDTC), peni-

cillin, streptomycin, HEPES, bovine serum albumin (fraction V,

fatty-acid free), propidium iodide, DNA oligos and buffer reagents

were from Sigma-Aldrich (Tres Cantos, Madrid, Spain). 29,79-

dichlorofluorescein-diacetate (DCFH-DA) was from Molecular

Probes (Eugene, OR). RNeasy Kit was from Qiagen (Valencia,

CA). SuperScript III RNase H Reverse Transcriptase was from

Invitrogen. Oligo-dT was from Roche Diagnostics (Sant Cugat del

Valles, Barcelona, Spain). Horseradish peroxidase-conjugated

secondary antibody and ECL reagent were from GE Healthcare

Europe (Barcelona, Spain). Caspase-3 substrate was obtained from

PharMingen (San Diego, CA).

The rabbit polyclonal antibodies against phospho-Smad2 (Ser

465/467) (CS3101), phospho-p38 (Thr180/Tyr1829) (CS9211)

and GADPH (CS2118) were purchased from Cell Signaling

(Beverly, MA). Rabbit polyclonal against p38 (SC-535) and mouse

monoclonal against phospho-JNK (SC-6254) antibodies were from

Santa Cruz Biotechnology, Inc., (Paso Robles, CA). Mouse

monoclonal anti-Cytochrome C (556433) and rabbit polyclonal

anti-Bim (559685) and anti-Bcl-x (610211) antibodies were from

BD Biosciences. Anti-b-actin (clone AC-15) and anti-Catalase

(C0979) mouse monoclonal antibodies were from Sigma-Aldrich.

Polyclonal antibodies anti-Manganese Superoxide Dismutase 2

(SOD2) (06–984) and anti-PI3K p85 (06–195) were from

Millipore, anti-gamma-Glutamylcysteine Synthetase (c-GCS) from

Abcam (40929) and mouse monoclonal antibody anti-Bmf from

Alexis Biochemicals (ALX-804-342).

Cell Lines and Culture Conditions
Metflx/flx and Met2/2 oval cell lines were generated as

described previously [24]. Cells were routinely maintained in

DMEM supplemented with 10% FBS in a humidified incubator at

37uC and a 5% CO2 atmosphere. Medium was replaced every

three days, and cells were harvested at 80% to 90% confluence

using trypsin-EDTA and replated at 1:10 dilution for mainte-
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nance. After an overnight attachment period, medium was

replaced by serum-free DMEM. Cells were maintained in

serum-free medium for 4–12 hours prior to treatment with growth

factors. Where indicated, cells were pretreated with HGF for at

least 6 hours followed by TGF-b treatment. PD98059, SB203580,

LY294002, SP600125, ascorbate and PDTC were added 30

minutes before addition of growth factors.

Analysis of Apoptosis by Phosphatidylserine Exposure
Cells were collected by centrifugation at 1300 rpm for 5 min

and washed once with PBS. 500,000 cells were resuspended with

195 ml of binding buffer (10 mM HEPES, pH 7.4, 2.5 mM CaCl2,

140 mM NaCl) supplemented with 5 ml annexin V-FITC (BD

Pharmingen) and incubated for 10 min at room temperature.

Samples were centrifuged and resuspended with 300 ml of binding

buffer containing 1 mg/ml propidium iodide. Fluorescence inten-

sity was analyzed using a FACSCalibur flow cytometer. 10,000

cells were recorded in each analysis.

Measurement of Intracellular ROS
For the analysis of intracellular ROS by flow cytometry, the

oxidation-sensitive probe DCFH-DA was used, as previously

described [12]. Cells were detached by trypsinization, collected by

centrifugation at 1300 rpm for 5 min and washed once with PBS.

Samples were then incubated with 5 mM DCFH-DA for 30

minutes at 37uC. Cellular fluorescence intensity was measured in a

FACScan flow cytometer. Propidium iodide (0.005%) was used to

detect dead cells. For each analysis 10,000 events were recorded.

Glutathione Determination
Cells were washed twice with PBS, scraped off and pelleted at

4uC. Cellular glutathione was extracted in a buffer containing

0.2% Triton X-100, 2.5% sulfosalicylic acid. After centrifugation

at 12000 rpm for 15 min at 4uC, the supernatant was used for the

determination of total glutathione, using the method of Griffith

modified as described previously [26]. Using reduced glutathione

as standard, glutathione content is expressed as nmol/mg protein.

Analysis of Mitochondrial Transmembrane Potential
Cells were collected by centrifugation at 1300 rpm for 5 min,

washed once and incubated with 2 mM 5,59,6,69-tetrachloro-

1,19,3,39-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) (Mo-

lecular Probes) for 1 hour at 37uC. Then, samples were

centrifuged and resuspended with 500 ml DMEM. Fluorescence

intensity (FL1 and FL2) was measured in a FACScan flow

cytometer. 10,000 cells were recorded in each analysis. JC-1 dye

exhibits potential-dependent accumulation in mitochondria. Cells

with healthy mitochondria show both red (FL2) (aggregate,

mitochondrial) and green (monomeric, cytoplasmic) fluorescence.

Mitochondria depolarization is indicated by a decrease in the red/

green (FL2/FL1) fluorescence intensity ratio, which is due to loss

of red J-aggregate fluorescence and cytoplasmic diffusion of green

monomer fluorescence.

Transcriptional Reporter Assays
Transcriptional reporter assays were performed using Cignal

SMAD Reporter (luc) kit (CCS-017L) from Qiagen. Cells were

plated in 96 well dishes. The next day, DNA was transfected into

the cells with Fugene transfection reagent, according to manufac-

turer recommendations. After 15 hours, medium was replaced

with serum-free medium for additional 15 hours. Cells were then

incubated with or without TGF-b and firefly and renilla

(normalizing transfection control) luciferase activities were mea-

sured using ‘‘Dual luciferase Reporter Assay System’’ (Promega) in

a luminometer Fluostar Omega (BMG labtech).

Quantitative Reverse Transcriptase-Polymerase Chain
Reaction (qRT-PCR) Analysis

Total cellular RNA was isolated using the RNeasy Kit (Qiagen,

Valencia, CA). RNA yield and purity were analyzed using a

spectrophotometer (UV-visible recording spectrophotometer Spe-

cord 205, AnalytikJena). 1 mg total RNA was reverse-transcribed

into complementary DNA using SuperScript III RNase H Reverse

Transcriptase and oligo-dT as a primer. Quantitative PCR was

performed using SYBRGREEN (Roche) and Amplified products

were analysed in ABI Prism 7900 HT Fast Real-Time (Applied

Biosystems). The relative amount of target mRNA was determined

after normalization against reference gene (Gusb) in each sample.

Primers used in the study are presented in supporting information,

table S1.

Measurement of Caspase-3-Like Enzymatic Activity
A fluorometric assay in the presence of Ac-DEVD-AMC as

fluorogenic Caspase-3 substrate was used following a previously

described procedure [26]. Cleavage of the substrate was moni-

tored in a Microplate Fluorescence Reader FL600 (Bio-Tek)

(excitation, 380 nm; emission, 440 nm). A unit of caspase activity

is the amount of enzyme that will lead to a one unit increase in the

fluorescence intensity. Protein concentration was estimated and

results are expressed as units of activity per microgram of protein.

Immunoblotting
For standard western blotting total cell extracts were prepared

in modified RIPA buffer (30 mM Tris pH 7.5; 150 mM sodium

chloride; 1% NP40; 0.5% sodium deoxycholate; 0.1% SDS;

5 mM EDTA) supplemented with 1 mM phenylmethylsulfonyl

fluoride, 10 mg/ml aprotinin and leupeptin and 1 mM sodium

orthovanadate. 30 to 80 mg of protein were separated in 10–12%

acrylamide sodium dodecyl sulfate-polyacrylamide electrophoresis

gels and blotted to Immobilon-P membranes (Millipore, Bedford,

MA). Membranes were probed with the primary antibodies

diluted 1:500 to 1:1000 in Tris-buffered saline containing 0.1%

Tween 20 and 0.5% non-fat dried milk or 0.5% bovine serum

albumin according to manufacturer’s instructions. Detection was

done using the enhanced chemiluminescence method and

autoradiography.

Measurement of Apoptotic Index
Measurement of apoptotic index was performed as previously

described [24]. After staining with propidium iodide, cells

undergoing apoptosis were scored under inverted fluorescence

microscope (Eclipse TE300, Nikon) at high magnification (x60)

following standard morphological criteria. Apoptotic indices were

calculated after counting a minimum of 1000 cells per treatment in

a blinded manner.

siRNA Knockdown Assays
siRNA knockdown assays were performed as previously

described [27]. For transient siRNA transfection, cells were seeded

at 50–60% confluence. On the following day, cells were

transfected with a SMARTpool siRNA directed to the mouse

p85a regulatory subunit of PI3K (50 nM) or to mouse Bmf

(20 nM) or the control non-targeting siRNA (50 nM and 20 nM,

respectively) (Dharmacon, Lafayette, CO) using TransIT-siQuest

reagent (Mirus, Madison, WI) according to manufacturers

instructions. Transfected cells were grown for 24 hours in
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complete medium, then tripsinized, diluted to the appropriate cell

density, and replated in dishes for subsequent assays.

Adenovirus-mediated Met Knockdown
In vitro inactivation of Met was achieved following previous

protocols [24]. Twenty-four hours after plating, Metflx/flx cells

were infected with adenovirus expressing Cre recombinase (Ad-

CMVCre, Vector Biolabs, Philadelphia, PA) to disrupt endoge-

nous met allele, or an empty adenovirus (Ad-CMVNull) used as

control. Virus was diluted in infection medium (growth medium

supplemented with 2.5 mg/ml polybrene) at a multiplicity of

infection of 10. Cells were incubated in infection medium for one

hour in the incubator with occasional shaking and then fresh

medium was added to complete volume. After 24 hours of

infection, cells were serum starved for 4 hours and treated with

TGF-b for additional 24 hours to analyze cell apoptosis. In

parallel, infected cells were used to isolate genomic DNA following

standard procedures to identify the deleted allele by PCR using

specific oligonucleotides [23].

Statistical Analysis
Statistical analysis was performed by Studentst-test method. The

differences were assumed significant at P,0.05.

Results

Absence of a Functional Met Receptor does not Affect
TGF-b Induced Activation of Canonical and Non-
canonical Signaling Pathways in Oval Cells

Previous results from our group have shown that mouse oval cell

lines harboring a genetically inactivated Met tyrosine kinase

(Met2/2) respond differently to apoptotic insults than Metflx/flx

oval cells and show an increased sensitivity to TGF-b and serum

starvation-induced apoptosis [24]. Indeed, caspase-3 activity

increased in oval cells upon TGF-b addition, being this increase

significantly higher in Met2/2 than in Metflx/flx oval cells

(figure 1A). Caspase-3 activation occurred concomitantly with

other apoptotic hallmarks. Thus, TGF-b promoted phosphatilser-

ine exposure on the outer leaflet of the plasma membrane, which

started after 15 hours of treatment and was maintained for several

hours (figure 1B). It is noteworthy that the annexin V positive/

propidium iodide negative subpopulation, corresponding to the

apoptotic cell subpopulation, was larger in Met2/2 oval cells

compared to their normal counterparts, serving as additional proof

that absence of a functional Met sensitizes oval cells to apoptosis.

As an alternative approach Met was transiently knocked down in

oval cells by infection with adenovirus expressing Cre recombinase

under a CMV promoter (Ad-CMVCre). Subsequently, cells were

treated with TGF-b and apoptosis was measured. Cells infected

with the Ad-CMVCre virus elicited a stronger apoptotic response

to TGF-b compared to control cells infected with an empty

adenovirus vector (Ad-CMVNull) (figure 1C) demonstrating the

specificity of the changes observed in the cell lines. Aiming to

understand the functional relevance of Met in the TGF-b-

triggered apoptosis in oval cells, we next study whether Met

mutant cells have an altered signaling response to TGF-b. In rat

oval cells, TGF-b induces phosphorylation and nuclear transloca-

tion of SMAD2 [15] but nothing is known about activation of

other signaling pathways by this factor in oval cells. On this basis,

we first checked TGF-b ability to induce SMAD2 phosphorylation

in mouse oval cells by western blot. SMAD2 phosphorylation was

maximal after 30 minutes of treatment with TGF-b and was

maintained up to 6 hours. No differences in kinetics or intensity of

SMAD2 phosphorylation were detected between Metflx/flx and

Met2/2 oval cells (figure 2A). Consistently, nuclear p-SMAD2

protein levels were similarly increased upon TGF-b treatment in

Metflx/flx and Met2/2 oval cells (data not shown). To further

demonstrate SMAD-dependent signaling in both cell lines,

transcriptional reporter assays were performed using a commercial

construct containing Smad Binding Elements (SBE) linked to

luciferase, which can be considered as a read out for transcrip-

tional responses to TGF-b. Cells were transfected with SBE-

containing construct and incubated in the presence or absence of

TGF-b for 8 hours. A three to four-fold induction in luciferase

reporter activity was observed upon TGF-b treatment in both

Metflx/flx and Met2/2 oval cells (figure 2B). Altogether, these

results indicate that activation of the SMAD pathway in response

to TGF-b in mouse oval cells is not affected by the absence of a

functional Met. TGF-b also activates other non-SMAD signaling

pathways [7]. Among them, p38 and JNK MAPKs pathways have

been reported to play a relevant role in controlling the apoptotic

response to TGF-b in a variety of cell types [28]. Therefore, we

next checked whether TGF-b triggers these signaling cascades by

western blot analysis using antibodies against the phosphorylated

(active) form of p38 and JNK. Results in figure 2C show that

treatment with TGF-b activates JNK and p38 in both Metflx/flx

and Met2/2 cells and no major differences were observed between

cell lines. To evaluate whether these kinases are involved in TGF-

b-mediated apoptotic response in mouse oval cells, Metflx/flx and

Met2/2 cells were preincubated with the synthetic p38 inhibitor

SB203580 or JNK inhibitor SP600125 and subsequently treated

with TGF-b. TGF-b was able to increase caspase-3 activity

regardless of presence or absence of the inhibitors (supporting

information, figure S1), demonstrating that neither p38 nor JNK

activation is required for the TGF-b apoptotic effect in oval cells.

Whether these signal effectors are involved in other biological

responses to TGF-b in oval cells remains to be investigated.

Mitochondrial Apoptotic Program Triggered by TGF-b is
Enhanced in Oval Cells Lacking a Functional Met

Our next goal was to perform a detailed analysis of the

apoptotic cascade induced by TGF-b in oval cells. TGF-b has

been described to induce mitochondrial apoptosis in different cells

types including hepatocytes and HCC cells [26,28,29]. To assess if

mitochondria was implicated in the apoptosis induced by TGF-b
in mouse oval cells, we analyzed changes in the mitochondrial

inner transmembrane potential (DYm) by flow cytometry after

incubation of the cells with the fluorescent probe JC1. TGF-b
provoked a decrease in DYm both in Metflx/flx and Met2/2 cells

(figure 3A) that was accompanied by cytochrome c release from

the mitochondria to the cytosol (data not shown). Importantly, our

data revealed that this effect was magnified in Met2/2 cells since

the dissipation of DYm was significantly lower in Met2/2 oval cells

than in Metflx/flx cells at the earlier time point analyzed (15 hours

of treatment), which is consistent with an increased caspase-3

activity in the Met2/2 oval cells (figure 1A). Since Bcl-2 family

members act as sentinels of mitochondrial outer membrane

permeabilization (MOMP) in the mitochondrial apoptotic path-

way [30], we next tested the possibility that TGF-b could

modulate the expression of some members of this family. In fact,

it has been previously described that TGF-b up-regulates the pro-

apoptotic Bcl-2 family members Bim and Bmf [31,32,33] and

down-regulates the anti-apoptotic member Bcl-xL [26] at the

transcriptional level. In oval cells both Bim and Bmf mRNA levels

were up-regulated by TGF-b (figure 3B and 3C). Bim mRNA

levels increased rapidly after treatment reaching maximum levels

after 5 hours and dropped to basal levels or even below after 12

and 24 hours, respectively, in both cell lines. Bmf mRNA
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expression follows similar kinetics in Metflx/flx cells, but interest-

ingly, up-regulation of Bmf mRNA was significantly stronger in

Met2/2 cells and remained elevated longer than in Metflx/flx cells.

Data were confirmed at the protein level, which showed an early

increase in BIM upon TGF-b treatment (6 hours) both in Metflx/flx

and Met2/2 cells that display similar maximum levels. BMF was

also up-regulated in both cell types, but showed much higher levels

in Met2/2 oval cells. It is worth noting that basal levels of BIM

and BMF were higher in Met2/2 cells than in Metflx/flx cells,

which is likely related to the increased apoptosis observed in oval

cells lacking a functional Met under serum deprivation [34]. No

significant modulation of BCL-XL (figure 3D) was observed upon

TGF-b treatment. Altogether, these results evidence a role for the

mitochondria in the apoptotic pathway induced by TGF-b in oval

cells. Remarkably, absence of a functional Met in oval cells results

in an enhancement of the mitochondrial apoptotic events, such as

dissipation of DYm and Bmf up-regulation induced by TGF-b. In

fact, differences in Bmf regulation suggested an important role for

this protein in TGF-b-mediated apoptosis in oval cells, and

therefore in amplification of the apoptotic response observed in

Met2/2 oval cells. To evaluate this hypothesis, we performed

transient knockdown experiments using specific siRNA targeting

Bmf in Met2/2 oval cells. A Bmf silencing efficiency of 70%

(figure 3E) significantly reduced TGF-b-induced apoptosis in oval

cells, as demonstrated by a clear decrease in the percentage of

apoptotic cells (annexin-V positive/IP negative cells) measured by

flow cytometry (figure 3F) and a significant reduction in caspase-3

activity (figure 3G). These results served as unequivocal proof that

Bmf plays an essential role in the TGF-b-triggered apoptotic

signaling cascade in oval cells.

TGF-b Induces Oxidative Stress in Oval Cells that is
Amplified in the Absence of a Functional Met

ROS production is an early event of the apoptotic process

induced by TGF-b in a number of epithelial cells, including

normal and transformed hepatocytes [12,26,31,35,36]. We

hypothesized that TGF-b might act through a similar mechanism

in oval cells. Indeed, results shown in figure 4A indicate that TGF-

b increases intracellular ROS content as measured by flow

cytometry after incubation with the fluorescent probe DCFH-DA.

ROS increase was observed in both cell lines but was significantly

larger in Met2/2 cells after 24 hours of TGF-b treatment.

Intracellular ROS accumulation correlated with a depletion of

glutathione levels that occurred in both cell lines upon TGF-b
treatment (figure 4B). It is noteworthy that while in Metflx/flx cells

glutathione content completely recovered to the normal levels after

48 hours, in Met2/2 cells glutathione levels still remained low. To

further characterize the oxidative stress process induced by TGF-b
in these cells, we analyzed the expression of antioxidant enzymes

such as mitochondrial MnSOD (SOD2), catalase and c-GCS.

SOD activity is the major intracellular antioxidant defense against

superoxide anion, being SOD2 one of the three mammalian SOD

isoforms. Catalase catalyzed the decomposition of hydrogen

peroxide to water and oxygen while c-GCS is the rate limiting

enzyme of the glutathione biosynthesis pathway [37]. SOD2,

Figure 1. Increased sensitivity to TGF-b-induced apoptosis in
oval cells lacking a functional Met receptor. A. Mouse Metflx/flx

and Met2/2 oval cell lines were serum-starved and incubated in the
absence (C) or presence of 1 ng/ml TGF-b (Tb) for different periods of
time. Cells were lysed and caspase-3 activity was measured. Data are
mean6SEM of eight independent experiments. B. Cells were treated as
in A, detached by tripsinization and incubated with annexin V and PI.
Subsequently, fluorescence intensity was measured in a FACScan flow
cytometer and the percentage of annexin V positive/PI negative cells
was calculated. Data are expressed as fold induction over untreated
cells and are mean6SEM of four independent experiments. C. Cells

were infected with Ad-CMVCre or Ad-CMVNull for 24 hours, then
serum-starved for 4 hours and treated with 1 ng/ml TGF-b for 24 hours.
Apoptotic nuclei were visualized and counted after PI staining under a
fluorescence microscope. A minimum of 1000 nuclei was counted per
condition. D. PCR genotyping of genomic DNA to confirm met deletion
in infected cells. Black bars, Metflx/flx cells. White bars, Met2/2 cells.
*P,0.05; **P,0.01; ***P,0.001 (treated versus untreated); #P,0.05
(treated Met2/2 versus treated Metflx/flx).
doi:10.1371/journal.pone.0053108.g001
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catalase and c-GCS protein levels were strongly down-regulated

upon TGF-b challenge (figure 4C). SOD2 down-regulation by

TGF-b was also observed at the mRNA levels (data not shown),

indicating a TGF-b-mediated transcriptional regulation of Sod2

gene as previously described [38]. Importantly, coincident with

accentuated ROS increase and glutathione depletion, Met2/2

oval cells display a stronger reduction in SOD2 and c-GCS

protein levels after TGF-b treatment as compared to their normal

counterparts, suggesting that Met helps counteract loss of

antioxidant defenses induced by TGF-b. Besides antioxidant

enzymes down-regulation, previous data of our group had

reported the implication of the NADPH oxidase Nox4 in TGF-

b-triggered ROS production and apoptosis in hepatocytes

[31,36,39]. We analyzed Nox4 expression in oval cells and found

an early and sustained up-regulation of Nox4 mRNA by TGF-b
(figure 4D) that precedes ROS accumulation (figure 4A) suggesting

a role for Nox4 as a source of ROS in oval cells. Met2/2 oval cells

display higher up-regulation of Nox4 mRNA than Metflx/flx cells,

although differences did not reach statistical significance. Next, we

raised the question of whether ROS production induced by TGF-

b was involved in the apoptotic response of oval cells. To answer

this question, cells were incubated with ascorbate and PDTC, two

radical scavenger agents that have previously proved to be very

efficient in counteracting ROS effects in fetal hepatocytes [12,26].

Indeed, pretreatment of oval cells with these antioxidant agents

completely abrogated ROS accumulation induced by TGF-b
(supporting information, figure S2), and more importantly,

significantly inhibited TGF-b-induced caspase-3 activity

(figure 4E) demonstrating their capacity to counteract the

apoptotic response. Additionally, we analyzed the effect of

antioxidants on Bmf and Bim mRNA expression levels (figure 4F

and data not shown, respectively) and found that antioxidants

were able to inhibit TGF-b-mediated induction of Bmf, but not

Bim. Collectively, these results show that TGF-b induces apoptosis

in oval cells through an oxidative stress process involving Bmf

induction. Furthermore, we provide strong evidence of a Met-

mediated antioxidant protective effect in oval cells.

PI3K is Required for HGF Anti-apoptotic Activity in Oval
Cells

We and others have previously shown that HGF readily

activates ERKs MAPK, p38 MAPK, PI3K/AKT, STAT3 and

NF-kB in oval cells. Furthermore, some of these pathways have

been involved in HGF-mediated proliferative effect on these cells

[25,27,40,41,42]. However, their potential implication in the

protective effect of Met revealed in oval cells is not yet known.

Certainly, PI3K signaling pathway has long been involved in

HGF-mediated cell survival in many cellular contexts including

liver cells [25,43,44,45,46,47] therefore being a good candidate for

analysis. Exogenously added HGF partially suppressed TGF-b-

induced apoptosis in Metflx/flx oval cells, effect that was lost when

cells were pre-incubated with the PI3K inhibitor LY294002

(figure 5A). These results indicated that PI3K activity is required

for HGF anti-apoptotic effect. Furthermore, combined treatment

of Metflx/flx oval cells with LY294002 and TGF-b caused an

increase in the percentage of apoptotic cells that reached similar

levels to those seen in TGF-b-treated Met2/2 oval cells, hence,

demonstrating that LY294002 sensitizes Metflx/flx oval cells to

TGF-b-induced apoptosis mimicking Met2/2 oval cells phenotype

(figure 5B). Strikingly, the increase in apoptosis observed in Metflx/

flx cells treated with LY294002 plus TGF-b was coincident with

deeper glutathione depletion (figure 5C) and enhanced TGF-b-

mediated up-regulation of Nox4 and Bmf mRNA (figures 5D and

5E). These data provide strong evidence that PI3K impairs TGF-b

Figure 2. Comparison of the TGF-b-induced canonical and non-
canonical signaling in oval cell expressing a functionally active
or inactive Met receptor. A. Mouse Metflx/flx and Met2/2 oval cell
lines were serum-starved and treated with 1 ng/ml TGF-b for different
periods of time as indicated. Untreated cells were included as control.
Whole cell lysates were collected and used for immunoblotting with
anti-phosphoSmad2 antibody. b-actin was analyzed as loading control.
A representative experiment of two is shown. B. Mouse Metflx/flx and
Met2/2 oval cell lines were transiently transfected with SBE containing
construct linked to a luciferase reporter (Cignal Smad reporter). Cells
were serum-starved and incubated in the absence (C) or presence of
1 ng/ml TGF-b (Tb) for 8 hours. Normalized luciferase activity is shown
as fold induction relative to untreated cells. Data are mean6SEM of
three independent experiments run in triplicates. C. Cells were treated
as in A. Whole cell lysates were collected and used for immunoblotting
with indicated antibodies. A representative experiment of two is shown.
Black bars, Metflx/flx cells. White bars, Met2/2 cells. ***P,0.001
(treated versus untreated).
doi:10.1371/journal.pone.0053108.g002
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Figure 3. TGF-b induces mitochondrial depolarization and changes in expression of Bcl-2 family members in oval cells. Mouse Metflx/

flx and Met2/2 oval cell lines were serum-starved and incubated in the absence (C) or presence of 1 ng/ml TGF-b (Tb) for different periods of time. A.
After 1 hour incubation with JC1 (2 mM), fluorescence intensity (FL1 and FL2) was measured in a FACScan flow cytometer. Results are expressed as
FL2/FL1 fluorescence intensity ratio, as indicative of changes in the mitochondrial membrane potential. Data are mean6SEM of three independent
experiments run in duplicate. *P,0.05; **P,0.01; ***P,0.001 (treated versus untreated), #P,0.05 (treated Met2/2 versus treated Metflx/flx). B and C.
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induced apoptosis by counteracting the oxidative stress induced by

this factor.

Interestingly, we observed that treatment with LY294002

resulted in an increase in the basal apoptotic index in Metflx/flx

oval cell (data not shown). As these experiments were performed in

the absence of serum or any exogenously added growth factor,

data suggested the existence of a PI3K-mediated autocrine

antiapoptotic signaling in oval cells. These data pushed us to

explore this effect in more detail. Addition of LY294002 to oval

cells had a different effect depending on the presence or the

absence of a functional Met receptor. Thus, while PI3K activity

inhibition caused a decrease in cell viability and increase in

caspase-3 activity in Metflx/flx oval cells, no significant effect was

observed in Met2/2 oval cells (figures 6A and 6B). The specificity

of these effects was subsequently proved by cell transfection with

siRNA targeting p85a, the PI3K regulatory subunit. We found

that a p85a silencing efficiency of 70% (figure 6C) lead to

significant decrease in cell viability and increase in caspase-3

activity (figure 6D and 6E). Together, all these data strongly

suggest that PI3K signaling downstream both autocrine and

exogenous HGF is responsible for Met-mediated anti-apoptotic

activity in oval cells.

Discussion

In the present study, we have mechanistically addressed the

Met-mediated protective effect against TGF-b-triggered apoptosis

in mouse oval cells. We have found that autocrine Met-dependent

signaling helps counteract TGF-b-induced oxidative stress and

mitochondrial dysfunction. Additionally, our results have revealed

a pivotal role for PI3K activity in Met-mediated antioxidant and

antiapoptotic activities in oval cells.

It has been described that HGF can interfere with SMAD-

mediated signaling at different levels. Thus, HGF can negatively

regulate SMAD nuclear translocation [48,49] and SMAD-

dependent transcriptional activity by increasing the expression of

the SMAD co-repressor SnoN [50]. Therefore, it was plausible

that autocrine HGF signaling in Metflx/flx oval cells may impair or

modulate TGF-b signaling leading to an impairment of TGF-b-

mediated apoptosis. Our results demonstrate that TGF-b readily

induces SMAD2 phosphorylation and nuclear translocation in

both Metflx/flx and Met2/2 oval cells. Although Nguyen et al have

shown that intensity of SMAD signaling in response to TGF-b in

oval cells is weaker than in hepatocytes [15], we prove that the

level of induction of the canonical pathway in oval cells is sufficient

to control gene transcription. In fact, TGF-b is capable of

regulating the expression of prototypical target genes such as

plasminogen activator inhibitor-1 (Pai-1), inhibitor of differentia-

tion-1 and -2 (Id1, Id2) or follistatin (data not shown). Importantly,

we could not observe major differences neither in the intensity nor

the dynamics of the SMAD signaling between Metflx/flx and

Met2/2 oval cells, thus discarding a Met-mediated alteration in

SMAD signaling in oval cells. Besides SMADs, our results show

that JNK and p38 are activated in oval cells in response to TGF-b,

providing the first experimental evidence for activation of these

signaling pathways by TGF-b in oval cells. However, none of them

seems to be required for TGF-b-elicited apoptotic response. These

data oppose to previous work in murine hepatocytes (AML12) and

rat and human hepatoma cells showing a critical role for these two

MAPK in TGF-b-induced apoptosis [51]. Nonetheless, mecha-

nisms mediating TGF-b apoptosis have proven to be cell and

context dependent. In line with this, data obtained in mouse oval

cells are consistent with previous results from our laboratory using

fetal rat hepatocytes, which indicated a ROS-dependent activation

of p38 by TGF-b, which is dispensable for apoptosis [52].

Furthermore, epidermal growth factor (EGF) treatment, which

blocks TGF-b-induced apoptosis in fetal hepatocytes, does not

affect JNK activation by TGF-b, serving as evidence that JNK is

not essential in the apoptotic response [53]. Nevertheless, our data

cannot rule out a role for p38 and JNK in regulation of other

biological effects of TGF-b in oval cells, such as epithelial to

mesenchymal transition (EMT) (unpublished results), hypothesis

that is being currently tested.

Mechanisms involved in TGF-b-induced apoptosis include the

two major apoptotic pathways, death receptor-mediated and

mitochondrial apoptosis [28]. Here, we present novel evidence

showing that TGF-b-induced apoptosis in oval cells occurs

through a mitochondrial-dependent pathway. In our model,

TGF-b up-regulates the expression of two pro-apoptotic Bcl-2

family members, Bim and Bmf, as part of the mitochondrial

apoptotic program. This is consistent with previous results

reported in other cell types [31,32,33]. Furthermore, by using

gene silencing and other experimental approaches and models, a

fundamental role for Bim and Bmf has been demonstrated during

TGF-b-induced apoptosis [54,55,56]. However, our data show a

differential regulation of Bmf in Metflx/flx and Met2/2 oval cells,

not observed for Bim, which lead us to hypothesize on a

differential role for Bmf and Bim during the apoptotic response.

In this regard, by using transient knockdown approaches we have

demonstrated a critical role for Bmf up-regulation in the oval cell

apoptotic response triggered by TGF-b in Met2/2 oval cells.

Interestingly, our results also show that Bmf, but not Bim up-

regulation, is dependent on TGF-b-mediated oxidative stress. This

contrasts with previous data reporting that both radical scavengers

and Nox4 silencing do impair TGF-b-mediated Bim and Bmf up-

regulation, indicating that ROS are involved in the regulation of

both genes [31,33]. Further experiments are needed to clarify the

mechanism behind Bim induction by TGF-b in oval cells and its

contribution, if any, to the apoptotic response. Pending further

investigation, our data provide strong evidence in favor of a

Bim and Bmf mRNA levels were analyzed by qRT-PCR and normalized to the housekeeping gene Gusb. Data represent fold change relative to
untreated samples and are mean6S.E.M of at least four independent experiments. *P,0.05; **P,0.01; ***P,0.001 (treated versus untreated),
#P,0.05 (treated Met2/2 versus treated Metflx/flx). D. Whole cell lysates were collected and used for immunoblotting with the indicated antibodies.
b-actin was analyzed as loading control. A representative experiment is shown. E, F and G. Mouse Met2/2 oval cells were transfected with either
non-targeting negative control siRNA (si NT) or BMF targeting siRNA (si BMF). E. Twenty-four hours after transfection, cells were serum starved and
treated or not with TGF-b (1 ng/ml) for 5 hours. RNA was isolated and Bmf mRNA levels were analyzed by qRT-PCR and normalized to the
housekeeping gene Gusb. Data represent fold change relative to si NT untreated cells and are mean6S.D of a representative experiment out of two.
F. Twenty-four hours after transfection, cells were serum starved and treated or not with TGF-b (1 ng/ml) for 24 hours. Fluorescence intensity was
measured in a FACScan flow cytometer and the percentage of annexin V positive/PI negative cells was calculated. Data are expressed as fold
induction over untreated cells and are mean6SD of a representative experiment out of two. G. Twenty-four hours after transfection, cells were serum
starved and treated or not with TGF-b (1 ng/ml) for 15 hours. Cells were lysed and caspase-3 activity was measured. Data are mean6SEM of three
independent experiments. *P,0.05; **P,0.01; ***P,0.001 (treated versus untreated), #P,0.05 (as indicated). Black bars, Metflx/flx cells. White
bars, Met2/2 cells.
doi:10.1371/journal.pone.0053108.g003
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Figure 4. Intracellular oxidative stress induced by TGF-b in oval cells is amplified in cells lacking a functional Met receptor. Mouse
Metflx/flx and Met2/2 oval cell lines were serum-starved and incubated in the absence (C) or presence of 1 ng/ml TGF-b (Tb) for different periods of
time. A. After 30 minutes incubation with DFCH-DA (5 mM) fluorescence intensity was measured in a FACScan flow cytometer. Data are expressed as
fold induction over untreated cells and are mean6SEM of three independent experiments run in duplicate. B. Cells were collected for
spectrophotometric determination of intracellular glutathione. Results are expressed as fold change over untreated cells and are mean6SEM of three
independent experiments run in duplicate. *P,0.05; **P,0.01; ***P,0.001 (treated versus untreated); #P,0.05 (treated Met2/2 versus treated
Metflx/flx). C. Whole cell lysates were collected and used for immunoblotting with indicated antibodies. b-actin was analyzed as loading control.
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relevant role for Bmf in TGF-b induced apoptosis in mouse oval

cells.

Our results also strongly suggest that autocrine signaling

through Met negatively regulates the increase in Bmf mRNA and

protein levels by TGF-b. Little is known about Bmf regulation by

growth factors. Up to date, an EGF-dependent Bmf down-

regulation has been described in human mammary epithelial

cells [57,58]. No data are currently available regarding potential

modulation of Bmf by HGF, although anti-apoptotic signaling

through HGF/Met has been largely associated to regulation of

members of Bcl-2 family, particularly to induction of anti-

apoptotic BCL-2 proteins, including BCL-2 or myeloid cell

leukemia-1 (MCL-1) [45,59]. Awaiting further investigation, we

provide novel evidence that negative regulation of pro-apoptotic

BCL-2 family proteins, such as BMF, might be an alternative

mechanism contributing to Met-dependent anti-apoptotic signal-

ing.

Studies conducted in hepatocytes and HCC cells have

demonstrated that oxidative stress is involved in TGF-b-mediated

apoptosis in hepatic cells [12,26,31,60,61]. Additionally, we have

proposed a model in which TGF-b-induced ROS have two main

sources, mitochondrial and extramitochondrial via Nox4

[31,36,38,39]. Oval cells seem to follow a similar model.

Evidence supporting this notion are: i) increased intracellular

ROS content and decreased glutathione levels in response to

TGF-b; ii) TGF-b-mediated down-regulation of SOD2, catalase

and c-GCS antioxidant enzymes; iii) up-regulation of Nox4

mRNA preceding the increase in ROS upon TGF-b treatment;

iv) impaired activation of caspase-3 and Bmf up-regulation in the

presence of radical scavengers. More importantly, our data

evidence an antioxidant role for HGF/Met axis in oval cells

since absence of Met results in an exacerbated oxidative stress

process. Thus, Met2/2 cells show higher increase in ROS,

sustained glutathione depletion and stronger down-regulation of

SOD2 and c-GCS protein and up-regulation of Nox4 mRNA. All

these data undoubtedly show that Met mutant oval cells display a

profound redox imbalance in response to TGF-b. This is

consistent with previous works reporting that HGF acts as an

antioxidant factor able to protect against oxidative stress-induced

cell death by increasing the expression and/or activity of c-GCS

and antioxidant enzymes, namely SOD1 and catalase [62,63,64].

In addition, similarly to Met2/2 oval cells, Met mutant

hepatocytes display a dysregulation in oxidative stress-responsive

genes and genes involved in glutathione metabolism [65].

Interestingly, HGF not only acts promoting cellular antioxidant

defenses but it can also prevent ROS production. Indeed, HGF

is able to attenuate the increase in NADPH oxidase activity

observed in hippocampus cells after ischemia [66]. Moreover, in

mesangial cells exposed to high glucose-mediated oxidative stress

HGF exerts a dual antioxidant action, both attenuating the

induction of expression of p22(phox), a component of the

NADPH oxidase system, and impeding a reduction in c-GCS

expression [67]. Based on our findings, our hypothesis is that

something similar might happen in oval cells. As to what are the

signaling pathways mediating the pro-survival antioxidant effect

of HGF in oval cells, a growing body of evidence suggests that

PI3K/AKT pathway is a good candidate. Thus, PI3K/AKT

signaling plays a critical role for HGF-mediated protection

against CD95- or bile acids-induced apoptosis in primary human

and rat hepatocytes, respectively [45,46]. It also mediates the

HGF pro-survival effect on DNA damaging agents-induced

apoptosis and oxidative damage caused by ethanol in hepatic

tumor cell lines [43,64]. In oval cells, PI3K signaling pathway

has been shown to be required for HGF proliferative effect

[41,42], but nothing is known about its role on the pro-survival

effect of HGF. Our results clearly show that treatment with

LY294002 completely suppresses the anti-apoptotic effect

induced by exogenous HGF demonstrating that PI3K is required

for the survival signaling triggered by HGF. Additionally, we

show that either LY294002 or siRNA-mediated PI3K silencing

by themselves decrease cell viability and increase apoptosis in the

absence of serum or any exogenously added growth factor,

indicating that PI3K is also mediating autocrine survival signals.

We and others have shown that oval cells have an autocrine

production of a number of growth factors, including PDGF, EGF

and HGF [24,27,68], all of them being putative PI3K activators.

We have also demonstrated that autocrine signaling through Met

and EGFR promotes oval cell survival [24,27]. The fact that

PI3K inhibition or silencing only increased apoptosis in Metflx/flx

but not in Met2/2 oval cells strongly evidences a Met-dependent

PI3K autocrine survival signaling. Besides, PI3K inhibition

results in an amplified TGF-b-triggered apoptotic response in

Metflx/flx cells resembling that observed in Met2/2 cells, with

analogous apoptotic indices and importantly, with a magnified

oxidative stress and Nox4 and Bmf up-regulation. It has been

shown in other cell systems that constitutive activation of AKT

by different means, including expression of an active oncogenic

mutant catalytic subunit of PI3K (p110a) or active myristoylated

AKT1 or AKT3 reduces and/or prevents Bmf induction [57,69].

Our data strongly suggest that amplification of TGF-b-mediated

Bmf up-regulation in the presence of LY294002 is a consequence

of the enhanced oxidative stress. Additionally, in agreement with

previous data in our laboratory reporting that PI3K inhibition

increases TGF-b-mediated up-regulation of Nox4 in fetal rat

hepatocytes [39], the increased Nox4 expression in the presence

of LY294002 suggest a negative regulatory role for PI3K on

Nox4 expression. Although additional work is required to fully

characterize the molecular mechanism involved in the regulation

of these genes in oval cells, altogether these data allow us to

propose a role for PI3K as a critical intracellular negative

regulator of Bmf and Nox4 during TGF-b-mediated apoptosis in

oval cells.

In summary, both inactivating Met and suppressing PI3K

signaling do result in an impairment of oval cell survival. Data

presented here constitute the first evidence that the HGF/Met/

PI3K signaling axis plays a central role in protecting oval cells

Optical density values relative to loading control were calculated. A representative experiment of two is shown. D. RNA was isolated and Nox4 mRNA
levels were analyzed by qRT-PCR and normalized to the housekeeping gene Gusb. Data represent fold change relative to untreated samples and are
mean6S.E.M of at least four independent experiments. *P,0.05; **P,0.01; ***P,0.001 (treated versus untreated). E. Cells were pretreated or not
with radical scavengers (1 mM ascorbate +50 mM PDTC) for 1 hour followed by treatment with TGF-b for 15 hours. Cells were lysed and caspase-3
activity was measured. Data are expressed as fold induction relative to untreated cells and are mean6SEM of three independent experiments run in
duplicate. F. Mouse Metflx/flx oval cells were pretreated or not with radical scavengers (1 mM ascorbate +50 mM PDTC) for 1 hour prior to TGF-b
treatment (1 ng/ml). After 5 hours, RNA was isolated and Bmf mRNA levels were analyzed by qRT-PCR and normalized to the housekeeping gene
Gusb. Data represent fold change relative to untreated samples and are mean6S.D from one representative experiment out of two. *P,0.05;
**P,0.01; ***P,0.001 (treated versus untreated); #P,0.05 (TGF-b treated versus ASC+PDTC+TGF-b treated). Black bars, Metflx/flx cells. White bars,
Met2/2 cells.
doi:10.1371/journal.pone.0053108.g004
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Figure 5. Effect of PI3K inhibition on TGF-b-induced apoptotic and HGF-induced anti-apoptotic activities in oval cells. A. Mouse
Metflx/flx oval cells were serum-starved and incubated in the absence or presence of TGF-b (1 ng/ml) 6 HGF (40 ng/ml) and/or LY294002 (7.5 mM) for
24 hours. Apoptotic index was calculated by counting apoptotic nuclei after PI staining under a fluorescence microscope. A minimum of 1000 nuclei
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against TGF-b-induced oxidative stress and apoptosis. These

findings have important implications in vivo. Oval cells expand

during liver damage and are exposed to apoptotic insults such us

TGF-b, which is known to be elevated in several human chronic

liver pathologies or other liver injuries involving an oxidative stress

process [70]. Hence, antioxidant and anti-apoptotic signaling

through Met/PI3K could have a fundamental role in promoting

oval cell survival. This mechanism may be relevant for oval cell-

mediated liver regeneration but also for its role in HCC

development.

was counted per condition. Data are mean6S.D. of a representative experiment performed with triplicate dishes. B. Mouse Metflx/flx and Met2/2 oval
cells were serum-starved and incubated in the absence or presence of TGF-b (1 ng/ml) 6 LY294002 (7.5 mM) for different periods of time.
Fluorescence intensity was measured in a FACScan flow cytometer and the percentage of annexin V positive/PI negative cells was calculated. Data
are expressed as fold induction over untreated cells and are mean6SEM of four independent experiments. C, D and E. Mouse Metflx/flx oval cells
were serum-starved and incubated in the absence or presence of TGF-b (1 ng/ml) 6 LY294002 (7.5 mM). C. After 8 hours of treatment, cells were
collected for spectrophotometric determination of intracellular glutathione. Results are expressed as fold change over untreated cells and are
mean6SEM of two independent experiments run in duplicate. D and E. After 12 hours of treatment RNA was isolated and Nox4 and Bmf mRNA
levels were analyzed by qRT-PCR and normalized to the housekeeping gene Gusb. Data represent fold change relative to untreated samples and are
mean6S.E.M of three independent experiments. Black bars, Metflx/flx cells. White bars, Met2/2 cells. *P,0.05; **P,0.01; ***P,0.001 (treated versus
untreated); #P,0.05 (T+LY treated versus T treated).
doi:10.1371/journal.pone.0053108.g005

Figure 6. Effect of PI3K inhibition or silencing on basal oval cell viability and apoptosis. A. Mouse Metflx/flx and Met2/2 oval cells were
serum-starved and incubated in the absence or presence of LY294002 (7.5 mM) for 24 hours. Cell viability was assayed by crystal violet staining. Data
are expressed as fold change over untreated cells and are mean6S.D of one representative experiment out of two run in triplicate. B. Cells were
treated as in B for 15 hours and caspase-3 activity was measured. Data are expressed as fold change over untreated cells and are mean6S.E.M of five
independent experiments. C, D and E. Mouse Metflx/flx oval cell lines were transfected with non-targeting negative control siRNA (siRNA NT) or p85
targeting siRNA (siRNA p85) for 24 hours and serum-starved for additional 24 hours. C. Whole cell lysates were collected and used for
immunoblotting with anti-PI3K p85 antibody. b-actin was analyzed as loading control. A representative experiment of five is shown (upper panel).
Optical density values relative to loading controls were calculated and expressed as fold change relative to siRNA NT, given an arbitrary value of 1
(bottom panel). Data are mean6SEM of five independent experiments. D. Caspase-3 activity was analyzed. Data are expressed as fold change over
siRNA NT and are mean6SEM of two independent experiments run in duplicate. E. Cell viability by crystal violet staining was assayed. Data are
expressed as fold change over siRNA NT and are mean6SEM of four independent experiments run in duplicate. Black bars, Metflx/flx cells. White
bars, Met2/2 cells. *P,0.05; **P,0.01; ***P,0.001 (treated versus untreated); #P,0.05 (treated Met2/2 versus treated Metflx/flx).
doi:10.1371/journal.pone.0053108.g006
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Supporting Information

Figure S1 Effect of p38 and JNK MAPKs inhibition on
TGF-b-induced apoptosis in oval cells. Mouse Metflx/flx and

Met2/2 oval cell lines were serum-starved and incubated for 15

hours in the absence or in the presence of 1 ng/ml TGF-b, and in

the absence or the presence of (A) p38 inhibitor, SB203580

(10 mM) or (B) JNK inhibitor SP600125 (30 mM) added 30

minutes before TGF-b. Cells were lysed and caspase-3 activity

assayed. Data are mean6SEM of at least three independent

experiments.

(PDF)

Figure S2 Effect of antioxidant agents on intracellular
ROS content in oval cells. Mouse Metflx/flx and Met2/2 oval

cell lines were serum-starved, pretreated or not with radical

scavengers (1 mM ascorbate +50 mM PDTC) for 1 hour prior to

TGF-b (1 ng/ml) treatment for 24 hours. After 30 minutes

incubation with DFCH-DA (5 mM) fluorescence intensity was

measured in a FACScan flow cytometer. Data are expressed as

fold induction over untreated cells and are mean6SEM of two

independent experiments run in duplicate. Black bars, Metflx/flx

cells. White bars, Met2/2 cells. ns = not significant; *P,0.05;

**P,0.01 (treated versus untreated); #P,0.05 (T treated versus

T+Antioxidants treated).

(PDF)

Table S1 Primers used for qRT-PCR.

(PDF)
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