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Abstract— The Bayesian approach provides a unified and logical framework for the analysis of evidence and 

to provide results in the form of Likelihood Ratios (LR) from the forensic laboratory to Court. In this 

contribution we want to clarify how the biometric scientist or laboratory can adapt their conventional 

biometric systems or technologies to work according to this Bayesian approach. Forensic systems providing 

their results in the form of LR will be assessed through Tippett plots, which give a clear representation of the 

LR-based performance both for targets (the suspect is the author/source of the test pattern) and non-targets. 

However, the computation procedures of the LR values, especially with biometric evidences, are still an open 

issue. Reliable estimation techniques showing good generalization properties for the estimation of the between- 

and within-source variabilities of the test pattern are required, as variance restriction techniques in the 

within-source density estimation to stand for the variability of the source with the course of time. Fingerprint, 

face and on-line signature recognition systems will be adapted to work according to this Bayesian approach 

showing both the Likelihood Ratios range in each application and the adequacy of these biometric techniques 

to the daily forensic work.  

 

Index Terms— Bayesian, biometrics, face, fingerprint, forensic, signature.  

 

I. INTRODUCTION(*) 

This contribution deals with how forensic scientists should report to the judge/jury their conclusions when automatic 

biometric identification techniques are used, such as fingerprint, face, or signature recognition (figure 1). In this 

sense, we will firstly note the difference from system characterization, that is, the identification abilities of the 

recognition technique in use, with respect to the characterization of the forensic system that will provide objective 

results to the Court. This is the key issue of this contribution as forensic scientists should not arrogate the role of the 
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judge/jury in taking decisions. Making use of thresholds allows the forensic scientist to take the actual decision, that 

belongs to the court. So, scientists must know how to submit their objective results in order to comply with all the 

conditions of the judicial procedures, converting the system identification scores in meaningful values useful to the 

Court. 
While commercial biometric verification systems performance, oriented to acceptance or rejection decisions, are 

widely assessed through different classical decision-based criteria, as type I and II errors or ROC/DET plots [1], an 

intense debate among forensic practitioners have taken place during the last decade in order to achieve a common 

framework for the evaluation of evidence and its interpretation in Court, and then how to assess the performance of 

forensic systems. Nowadays, the Bayesian approach [2][3][4], which propose to submit results to Court in the form 

of Likelihood Ratios, has been proposed as a theoretical framework valid for any forensic discipline, where systems 

providing its results according to this approach, from the large experience gained in DNA-based forensic 

individualisation, can be assessed through Tippett plots as a way to represent forensic systems performance. Firstly 

used in [5], Tippett plots are based on experiments in paint flakes performed by Tippett et al., where distributions of 

LRs computed were presented separately in matching and non-matching experiments. In this paper, we will show the 

different nature of the outputs that automatic biometric systems can provide respectively in commercial and forensic 

approaches, even if the systems use the same core technology, and subsequently the need for different assessment 

tools specially suited for their corresponding applications.   

The paper is organized as follows. In Section II we will show the different objectives of commercial biometric 

systems and forensic biometric identification and the different needs of specific characterization techniques, as the 

scores provided by both commercial and forensic systems will be completely different. In Section III we will 

introduce the Bayesian approach for evidence analysis and forensic reporting which will perfectly suit both the needs 

of the Court and those of the forensic scientist, and in Section IV we will show how to assess the performance of any 

forensic system according to this Bayesian approach in the form of Tippett plots. Once the Bayesian approach is 

understood, we will show in Section V how any biometric system can be adapted to provide its results in the form of 

Likelihood Ratios (LR) in this Bayesian environment, being so converted into a forensic identification system, 

focusing in different procedures for between- and within-source density estimation, the generalization properties of 

these estimation techniques, and the problems induced from the usual lack of data in forensic cases for density 

estimation. Finally, in Section VI a detailed description of the adaptation of three different biometric systems, namely 

fingerprint, face and on-line signature recognition, to the forensic environment according to the Bayesian approach is 

shown. Results in the form of Tippett plots will show the expected LR values range in each application and the 

adequacy of these video-based techniques to the forensic biometrics tasks. Some conclusions will be finally extracted 

in Section VII, concluding with a full list of references to allow a deep insight into any of the aspects of this 

contribution. 
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II. BIOMETRIC SYSTEMS AND CLASSICAL FORENSIC REPORTING 

A. Assessment of Biometric Systems 

The typical objective of commercial biometric systems is to accept true users and to reject impostors, usually 

minimizing some type of cost function as false acceptance (also known as false alarm in detection theory) and false 

rejection (missed detections) may occur. The usual operation mode of any biometric system is the following: in the 

presence of an unknown pattern and a claimed user identity, the system will compare a reference pattern/model from 

the claimed user with the input pattern, providing a matching score which will be compared with a predetermined 

threshold for that specific user for the acceptance or rejection of the input pattern as belonging to the claimed user.  

Commercial, score-based biometric systems can perform two different tasks, namely identification and 

verification. In the former, the trace is compared to N suspect models, leading to N similarity measures (scores), one 

per suspect. Theses measures can be ordered, and selection of one or more “most-similar-models” would imply the 

establishment of a threshold. On the other hand, a verification task imply that the trace is compared to a claimed 

identity, and a threshold decides whether the trace belongs or not to the claimed identity. Some forensic disciplines 

could work in a similar way as a biometric identification system does, as they select one unique or a subset of 

individuals from a relevant population. Biometric verification systems can be viewed as decision systems classifying 

a trace in one of two classes, namely accepted or rejected, regarding the claimed identity. In both cases, the selection 

of a threshold is needed for taking decisions. 

In order to assess the identification abilities of any biometric system, the system must be tested with known users 

and impostors, task which is usually performed using databases of the corresponding input patterns (fingerprints, 

faces, signatures...). Two types of error can occur in a verification (i. e., detection) system: false rejection (type I 

error), when a true user is rejected, and false acceptance (type II error), when an impostor is accepted. The 

probability of any of these two errors is a trade-off: this means that if the threshold is increased, the false acceptance 

will be reduced but the false rejection will be increased, and vice versa. As the same system or technology could 

work in different operating conditions, it is usual to show all possible operating points. This has been done classically 

in detection tasks by means of ROC (Receiver Operating Characteristic) curves, showing the tradeoff between missed 

detection (false rejection) and false alarm (false acceptance). In order to have a single value characterizing the global 

performance of the system, the Equal Error Rate (EER) is usually given, which is the point where the probability of a 

missed detection equals the probability of a false alarm. 

However, as biometric systems performance increases and errors decrease, comparison of systems have become 

extremely difficult with this representation, as curves from different systems are extremely close to the lower left 

corner. This problem was overcome with the introduction of the DET (Detection Error Tradeoff) curve [1], which 

allows an almost linear representation of system performances, improving the observation of system contrasts (real 

ROC and DET plots for the same system in different conditions are shown in figure 2).  

We want to note that this type of performance assessment (ROC/DET) perfectly suits the objective of the assessed 

systems, that is, to accept or reject users, because it directly shows both types of possible errors (missed detections 

and false alarms). Obviously, the core technology in use within any forensic biometric system can also be  used in a 
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commercial biometric system and assessed through ROC/DET curves or EER value, in order to see how the system 

discriminate customers from impostors. 

B. Is Acceptance/Rejection the Objective of Forensic Biometrics? 

In the last years, the value of the different types of forensic evidence (even traditionally firmly established areas 

such as fingerprint identification) have been severely attacked, questioning their scientific status, as is shown in 

influential books [6][7] and papers [8] in the field specially “...after several highly publicized miscarriages of justice 

in which forensic expertise played a crucial role” [9].  

Classically, there have been two different approaches to forensic reporting in “individualization of the source” 

areas, which includes areas as fingerprint, firearms and toolmarks. The first approach has been to provide just 

“identification” (acceptance) or “exclusion/elimination” (rejection) decisions, which results in a very high percentage 

of non-reporting cases. This approach has two main drawbacks: the first one is related with the use of subjective 

thresholds, as these techniques does not provide absolute identifications, specially in forensic conditions, and all that 

the system/technique can provide is a score or a probability. Then, if the forensic scientist takes the (subjective) 

decision of identification or exclusion/rejection, he will be ignoring the prior probabilities related to the case 

(independent of the evidence under analysis), usurping the role of the Court in taking this decision, as “...the use of 

thresholds is in essence a qualification of the acceptable level of reasonable doubt adopted by the expert” [10]. This 

fact is well known by the court mainly in DNA analysis, although it is a problem concerning all forensic disciplines 

[11]. The second drawback is the possibility of existence of a large amount of non-reporting cases that this 

“identification” or “exclusion” process can induce, when “...there is no logical reason to suppress probability 

statements ... because ... any piece of evidence is relevant if it tends to make the matter which requires proof more or 

less probable than otherwise” [10]. The second classical approach to forensic reporting in this area consists in the 

use of a verbal scale of identification probabilities (typically “identification” / “very probable” / “probable” / “not 

conclusive” / “elimination”). This approach falls in the same errors as has just been noted, as it makes use of several 

subjective thresholds, but again ignores the prior probabilities (or usurp the judge/jury role if assigns them) relative 

to every case. 

III. BAYESIAN ANALYSIS OF FORENSIC EVIDENCE 

Fortunately, the Bayesian (or Likelihood-Ratio, LR) approach has been proposed as a theoretical framework valid 

for any forensic discipline [2][3][4]. As an example, there are eight Working Groups (DNA, Fibers, Fingerprint, 

Firearms, Handwriting, Tool Marks, Paint and Glass, Speech and Audio) in ENFSI (European Network of Forensic 

Science Institutes) dealing with individualization of the source. Some of them [12], in discussions open also to non-

European participants, have dealt or are dealing with the Bayesian approach at source (DNA) or activity (Fibers, 

Paint and Glass) levels [13], looking for common standards and procedures. 

In this Bayesian framework, the roles of the scientist and the judge/jury are clearly separated, as the Court wants 

to know the odds in favor of the prosecution proposition (C), (“the biometric trace belongs to the suspect”), given the 
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circumstances of the case (I) and the observations made by the forensic scientist (E).  These odds in favor of C are 

obtained from Eq. (1): 

( ) ( )
( ) ( )ICO

I,CEPr

I,CEPr
I,ECO ⋅=  (1) 

Expressed in words, Posterior Odds = Likelihood Ratio x Prior Odds, where the prior odds concern to the Court 

(background information relative to the case) and the likelihood ratio (LR):  

( )
( )I,CEPr

I,CEPr
LR =  (2) 

is provided by the forensic scientist. As a reference, in [2] a scale of likelihood ratios (LR) in the framework of DNA 

analysis is proposed with their respective linguistic qualifier suggesting the strength of verbal support for the 

evidence. This scale, as shown in Table 1, is actually in use in DNA laboratories and is being extended to other 

identification areas and labs all over the world. 

The use of the Bayesian approach is recommended because “...assists scientists to assess the value of scientific 

evidence, help jurists to interpret scientific evidence, and clarify the respective roles of scientists and of members of 

the Court” [10]. In this way, the scientist alone cannot infer the identity of the author/source of the questioned 

biometric pattern from the analysis of the scientific evidence, but gives the Court the likelihood ratio of the two 

competing hypothesis (usually C, “the biometric trace belongs to the suspect”, and C , “the biometric trace belongs to 

someone else but not the suspect”). 

This Likelihood Ratio, or Bayes factor, must be determined by the forensic scientist. In order to compute these 

numerator and denominator probabilities, population data allows the forensic scientist to determine objective 

probabilities (figure 3). For score-based systems, as all biometric techniques are, distribution of measurements can be 

modeled from data, both within and between sources, as this LR is in this case a ratio of probability density functions 

evaluated at the evidence score. Also, Bayesian analysis allows to easily include subjective opinions in the form of 

subjective probabilities [14]. 

Moreover, the Bayesian approach allows to combine different types of evidence present in a case (voice, 

fingerprint, ...) and even the incorporation of subjective probabilities related to uncertain events, as shown in [4], 

providing an unified approach to the joint analysis of any type of evidence.   

IV. ASSESSMENT OF FORENSIC BIOMETRIC SYSTEMS 

In order to test the abilities of systems providing their results in the form of LR values (as it is described in [15], 

[16], [17] and [18]), some system calibration experiments have to be performed. Based on the work by Tippett et al. 

[19], in [5] a useful representation for between-source comparisons in any forensic discipline, the so-called Tippett 

plots, is provided, representing proportion of cases with “LR values greater than…” (figure 4). Then, we will draw in 

each Tippett plot simultaneously two curves, one for the C hypothesis (the pattern belongs to the suspect – targets), 
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where the system should provide high LR values (LR>>1), and another one for the C  hypothesis (the pattern does 

not belong to the suspect – non-targets), where the system should provide low LR values (LR<<1). In this way, for 

any x-axis value each curve shows proportion of cases with LR greater than x. Then, the greater the separation 

between curves, the higher the strength of the prior to posterior inference by means of the LR value, and the better 

the forensic system (in an ideal system the curves should adjust respectively to the upper-right and lower-left margins 

of the plot). Additionally, good performance of both curves around LR=1 is desired, that is, the proportion of targets 

with LR<1 and non-targets with LR>1 should be as small as possible. Moreover, in forensic applications it is 

convenient, in order to guarantee the presumption of innocence, that non-target suspects do not obtain LRs greater 

than one, even if this condition leads to worse performance (smaller separation between target and non-target curves 

in Tippett plots). 

As no threshold should be involved in forensic reporting under the Bayesian methodology, ROC/DET curves 

remains useful and perfectly suited to assess performance in detection tasks, but another way of performance 

assessment has to be used in a Bayesian forensic environment, where no threshold is established. Tippett plots are 

ideal to present system performance in such methodology. 

V. COMPUTATION OF LIKELIHOOD RATIOS IN FORENSIC BIOMETRICS 

 Unfortunately, there is no closed solution to the problem of Likelihood Ratio (LR) computation in all the different 

classical identification-of-the-source forensic areas (DNA, Fibers, Fingerprint, Firearms, Handwriting, Tool Marks, 

Paint and Glass, Speech). While it is assumed that the numerator of the LR calls for an assessment of the intra-

variability of the studied feature for the putative source, the denominator is the random match probability of the same 

feature over the relevant population of sources. Both can be obtained from objective or subjective measures. There 

exist two different alternatives for the evaluation of the evidence, depending on the existence of categorical data 

(e.g., the probability of the suspect blood type) or continuous data (e.g., the refractive index of a piece of glass found 

in the suspect clothes). In case of biometric evidence types, we are always dealing with continuous data as our 

“evidence” will be scores obtained from the comparison of a known pattern from the suspect (the “model”) with the 

questioned biometric pattern from the crime scene. Those scores are the output of generic biometric systems, which 

compared to a threshold give a decision of acceptance or rejection. in commercial biometric systems. In forensic 

systems, where we do not look for an acceptance or rejection decision, those scores need to be referenced into the 

within-source variability and between-source variability in order to provide to Court the likelihood ratio of the 

competing hypothesis. 

In [20] a solution is proposed for evaluation of continuous data from glass evidence, but we want to focus in the 

alternative shown in [21] for the problem of forensic speaker recognition using automatic speaker recognition 

techniques. In this paper we have adapted that proposal for its use in any forensic biometric area, as any automatic 

biometric system will provide scores relating identity models with questioned biometric patterns.  

The approach to the computation of the Likelihood Ratio in the different biometric disciplines (fingerprint, face 

recognition, and on-line signature will be considered in this paper) is shown in figure 5. Once the laboratory has a 

suspect and a questioned biometric pattern, the classical approach consists in obtaining some reference patterns from 
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the suspect (called here biometric controls). In the case of automatic biometric systems, these reference patterns  will 

be used for obtaining a biometric model (e.g., a minutiae pattern for fingerprint recognition or a Hidden Markov 

Model for signature recognition), which will be finally tested with the questioned pattern, obtaining a probability 

(likelihood, score) of the questioned pattern coming from that model (person). This value, which will be called here 

the evidence, is directly used in the classical forensic approach to submit a decision or a qualification of the decision 

in form of probability scale (both inadequate because of the incorrect use of thresholds as shown above). 

However, in the Bayesian approach this evidence must be referenced into two different distributions, the within-

source and between-source variabilities (figure 6). The within-source variability, which stands for the intravariability 

of the putative source, looks for the consistency of the biometric patterns of the suspect, obtaining a statistical 

distribution of the scores resulting from the comparison of biometric control patterns with (a) biometric model(s) 

obtained from some other control patterns. This distribution is usually assumed to be gaussian, which has been 

confirmed with experimental data as a good model of this distribution. 

The between-source variability, which stands for the intervariability of the source, tries to model the probability of 

the test pattern coming from anyone from a reference population. Several problems arise here as how to select the 

correct size and member list of the population, or how to model the available between-source distribution as it will 

always be composed of just a part of the real possible population. Then, this distribution estimation procedure should 

be robust to the absence of enough population data and observe good generalization properties, that is, the results 

with the observed (limited) population should be as similar as possible to those with a bigger (ideally the whole) 

population. 

A. Between-source Density Estimation 

This is one of the main problems for LR computation, as we will always have less population available than the 

real population of candidates. Additionally, the underlying probability density function or even its type (e.g. 

Gaussian, Rayleigh) is unknown, so we will look for estimation procedures able to adjust to any new unknown data 

set. Both parametric and non-parametric methods have been described in the literature, and one of each have been 

proposed for this task [21][22].  

Non-parametric estimation via Parzen windows [23], also known as Kernel Density Functions (KDF), is used in 

[21] to model the underlying distribution of between-source variability. If we perform histogram estimation, dividing 

the x-axis into successive bins of length h, we can estimate the probability of a sample x being in a bin for each of the 

bins. If N samples are available and kN are located in a bin, the corresponding probability is approximated by the 

frequency ratio kN/N, which converges to true for N→∞. The corresponding pdf value is assumed constant through 

the bin and is approximated by: 

( ) ( )
2
hxx          ,

N
k

h
1xp̂xp̂ 0

N
0 ≤−≈≡  (3) 

where x0 is the midpoint of the bin. Parzen [23] showed that using smooth functions φ (instead of step functions as in 

the histogram), provided φ(x) ≥ 0 and: 
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( ) 1dxx
x

=⋅∫φ  (4) 

the resulting estimate is a legitimate pdf. Such smooth functions are known as kernel (also potential) functions or 

Parzen windows. Typical examples are exponentials, gaussians and so forth. In this kind of estimators, for fixed N 

the smaller the h the higher the variance, which will give a noisy appearance to the resulting pdf estimate. In the same 

sense, for a fixed h, the variance decreases as the number of sample points N tends to infinity. 

On the other hand, the authors propose in [22] the use of parametric estimation via a linear combination of M 

gaussian density functions: 

( ) ( )∑
=

⋅=
M

1m
mm xbpxp                               (5) 

where: 

∑
=

=
M

1m
m 1p                                            (6) 

In order to obtain the best model that fits the known data, we use Maximum Likelihood estimation via the EM 

(Expectation Maximization) algorithm [24]. This EM algorithm guarantees that given a model λ of the underlying 

distribution of the data X, the new estimate λ’ in each iteration verifies p(X|λ’)≥p(X|λ). The likelihood function keeps 

increasing until a maximum (local or global) is reached and the EM algorithm converges. The great advantage of the 

algorithm is that its convergence is smooth and is not vulnerable to instabilities, which is ideal here for the between-

source variability estimation as the population subset available is just a part of the whole reference population 

B. Generalization  

This property of generalization is highly desirable for the selected density estimation technique, as this is going to 

be one of our main problems because of the limited size of available databases. Our reference population will always 

consist in known members from the proper biometric database, but they should be good representatives of the general 

behavior of the whole population which will be highly dependent on the biometric pattern in use. As this can not be 

guaranteed for every available group in known databases, we have to check the generalization properties of every 

method. 

Some experiments on the generalization properties of both non-parametric (Kernel Density Functions) and 

parametric (Maximum Likelihood via Expectation Maximization) methods for the estimation of the between-source 

variability with the known population have been performed. Results in the form of Tippett plots and interesting 

conclusions will be shown with a forensic fingerprint system in subheading VI.A (figures 9 and 10).  

C. Data Scarcity for Density Estimation 

Another problem related with the limited amount of data in biometric databases is the lack of enough data for 

reliable estimation of probability density functions, even for single gaussians as usually selected for within-source 

variability estimation. The problem is usually related with the time course since the test pattern was obtained in order 
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to generate the suspect controls. Usually single-session biometric controls are highly consistent, shown in likelihood 

values relative to the biometric model of the suspect highly similar, which usually gives very low variance gaussians. 

Different techniques for variance restriction are proposed in the following subheadings, with the intention of 

retaining the intersession variability of the corresponding biometric pattern of the suspect. Experiments with different 

restrictions of the distribution variances have been performed both with the forensic face recognition system (figure 

15) and the forensic on-line signature recognition system (figures 19 and 20), where the efficiency of those methods 

will be shown.  

VI. EXPERIMENTAL FORENSIC EVALUATION OF SOME BIOMETRIC SYSTEMS 

In order to have an overview about the application of the Bayesian approach to the different forensic biometric 

disciplines, some sample systems will be shown here. We will show how three different biometric systems 

(fingerprint, face and on-line signature) have been turned into efficient forensic systems according to the Bayesian 

approach. In this contribution, a detailed description of the biometric systems will not be provided, as they are out of 

the focus of this paper, and will be just properly referenced. We will then focus on the process of optimizing a 

forensic biometric system from a reference biometric system, that is, from an already working system in classical 

biometric tasks. 

For each forensic system we will provide a short description of the system, the corresponding biometric database 

and the global performance of that system with that database in verification tasks through DET plots. Then, the 

Bayesian approach is applied with each system, detailing the selection of the selected/available reference population 

and showing the performance of the forensic system in the form of Tippett plots. Finally, some optimization 

techniques will be shown in each case, in order to have the best possible forensic system with the same biometric 

reference system. 

A. Fingerprint Evidence Analysis 

When enough quality of the fingerprint is available, they are usually used in the judicial process as absolute 

indicators of identity. However, with classical fingerprint analysis, based on manual comparison of minutiae after 

automatic selection of the list of N-best candidates, this “decision” cannot be objectively combined neither with the a 

priori probability of the suspect being the author of that fingerprint (based on other information about the case) nor 

with other types of evidence present in the case.  

The automatic fingerprint recognition system we have used for these experiments have been developed in our 

ATVS laboratory [25][26], based on minutiae extraction and pattern comparison through dynamic programming [27]. 

The different image processing steps to obtain the fingerprint minutiae are shown progressively in figure 7 (details in 

[25]), where from the scanned fingerprint the orientation field is obtained and used for ridge-oriented spatial filtering. 

Then the ridges are thinned to one pixel width, and minutiae are searched and saved with the last 10 points along the 

corresponding ridge. For pattern comparison, firstly the two patterns are spatially aligned (translation and rotation) 

and then the edit distance is computed [28], which is a dynamic programming algorithm that will take into account 
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substitutions, insertions and deletions and look for the minimum cost edit operation to transform one minutiae pattern 

into the other. 

In order to test the system, a subcorpus of 50 users from the MCYT database [29] has been used. Each user has 10 

sample fingerprints, where the first one will be used as reference pattern. When DET curves are shown, every user 

acts also as impostor to the other users, so 50×9=450 correct user trials and 50×49×9=22050 impostor trials are 

summed up in the DET plot. Figure 8 shows the performance of our fingerprint recognition system with that 50 users 

subset of the MCYT database, showing an Equal Error Rate close to 3%, with excellent operating points as 0.1% 

false acceptance with just 9% of false rejection. 

When forensic experiments are performed and summed up in Tippett curves, 5 (out of 9) samples will be used as 

controls (reference fingerprints from the known suspect), and the remaining 4 are used as test (unknown) 

fingerprints. In each Likelihood Ratio computation, the reference population is composed of the remaining 49 users 

of the MCYT database subset. Target curves comprise 50×4=200 Likelihood Ratios and 50×4×49=9800 for non-

target.  

In order to test the different approaches for between-source estimation described in heading V.A, we have 

performed two different experiments with the same data and reference population, the first one using Maximum 

Likelihood (ML) Gaussian Mixture Models (GMM) with different number of mixtures (M), and the second using 

Kernel Density Functions (KDF), with different bin sizes (k).   

In the first experiment we want to test the capability of our LR-based forensic system for different number of 

gaussian mixtures. We can observe in figure 9 that the better results are obtained for a low number of mixtures (M=1 

or 3), as they show excellent performance around LR=1 for non-targets and a good enough performance for targets. It 

is interesting to note the excellent separation between target and non-target curves with our fingerprint system, 

showing that can be used to provide Likelihood Ratio results to Court for any fingerprint (if quality conditions are 

not worse than those present in the database used in this experiment), that is, there are not no-reporting cases because 

of uncertainties of the method/expert. Additionally, the possibility of absolute identifications with classical methods 

agrees here with 90% of target users obtaining  LR values greater than 105. 

The same experiment was conducted with KDF estimation of the between-source variability, summing up the 

results in figure 10. As shown, results are equally good, even for low values of h as enough population data (50 

people) is available. 

Both experiments have been performed with 50 people in the reference population. However, in lot of cases the 

reference population could be even smaller, so in the following experiment we will test again both alternatives 

selecting a subgroup of 10 people (out of the original 50) and observe which technique can better predict with 10 

people the performance of 50 people, which should be closer to the whole relevant population.  

Now we will focus firstly in the results with KDF estimation (figure 11), where general good performance is 

observed. However, the results for target users with a reference population of 10 people are better than those with 50, 

which means that we are having a falsely optimistic prediction. 
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In figure 12 the results with (ML) estimation are shown for 10 and 50 people as reference population. The 

performance for non-targets is extremely similar to that observed with KDFs. However, the prediction for targets is 

far more realistic than that with KDF as both (10 and 50) target curves show similar performance. This relative 

advantage of ML over KDF for this task is based in the generalization properties of both techniques. With KDF in 

order to obtain a good estimate of the actual histogram a low value of h is needed, but when this histogram comes 

from a small amount of data (10 people) the resulting pdf is excessively adjusted to these data and does not represent 

with enough accuracy the underlying distribution from a higher number of reference persons. On the other hand, the 

ML estimate of the pdf shows better generalization properties, as it is less accurate to the histogram for the 10 people 

case, but it is a better model of a greater unknown population as is shown here for 50 people.  

B. Face Evidence Analysis 

The automatic analysis of face evidence in court [30] is not as usual as other characteristics as fingerprint, but the 

underlying principles shown here for an automatic face recognition system could be used for other face recognition 

systems, so there are a lack of face databases under forensic conditions. However, as biometric systems are becoming 

more and more available, we could think in possible crimes committed after a false acceptance of a non-user 

(impostor) accessing to a restricted area through a face-verification based access control system. Later we should 

show in Court if the face of the suspect corresponds or not to the photo of the person who accessed cheating the 

system. Of course this comparison could be also performed subjectively by a human, but that person cannot obtain an 

objective Likelihood Ratio from his observation to relate with other parts of the process (a priori probabilities or 

other evidences, even of different kind). 

The face recognition system that has been used has been developed in our ATVS laboratory and is based in 

feature extraction through a combination of eigenfaces and fisherfaces [31][26]. Pattern comparison will be 

performed through the normalized scalar product of feature vectors. Before dimensionality reduction, geometric 

normalization is performed through face warping. A sample face preprocessing is shown in figure 13 (details in [31]), 

where the original face, the warped face with the reference points, and the final selection with an elliptic patch are 

shown. The dimensionality of that elliptic patch (64×64) is first reduced to 250 through eigenfaces, and then down to 

180 through fisherfaces.  

The different experiments that have been performed have used the configuration 1 of Lausanne Protocol described 

in [32] for the XM2FDB database (a subcorpus of XM2VTS), with 200 users and 95 different impostors with two 

faces per session and 4 photo sessions. This database contains data typically used for verification of identity, and not 

on data available in forensic conditions. However, it is useful to show the LR computing process. For DET assessed 

experiments, 50 users out of 200 have been selected, with 3 sample faces used for training and the remaining 5 as 

test, so 50×5=250 user trials and 50×49×5=12250 impostor trials are shown in the DET curve. In figure 14, the 

performance of our face verification system in those conditions is shown, where an Equal Error Rate close to 2% is 

obtained, with very interesting operating points for very low false acceptance rates. This performance is even better 

than in the case of the reported fingerprint experiment, due to the controlled conditions of the face database in use. 



12 

For the forensic evaluation, assessed with Tippett plots, the whole XM2FDB database has been used. Three 

samples are used to model each suspect, three are used as suspect face controls, and the remaining two are used as 

test (unknown) faces. The reference population for each Likelihood Ratio computation will be composed of the 199 

remaining users. Each one of the 8 sample faces of the 95 impostors subset will be used as non-targets faces. Then, 

200×2=400 target Likelihood Ratios are obtained and 200×8×95=152000 for non-targets.  

In the following forensic experiment, we will firstly show the performance of our automatic face recognition 

system with the users and reference populations of the database described above. One of the usual problems of 

available databases is the small amount of control material available, in this case different unquestioned faces from 

the same suspect. This will lead to inconsistencies in the estimation of the within-source variability of the suspect, 

which could lead (as in the following experiment) to target evidences with scores clearly above the scores obtained 

by the population that incorrectly give low or very-low likelihood ratios, as described in heading V.C (solid line in 

figure 15, where 10% of targets obtain LR values smaller than one). 

Two different, but similar, approaches have been used in this case to avoid this problem, both of them related with 

the establishment of a minimum variance in the pdf (gaussian) estimate of the within-source variability. The first 

approach consisted in computing the standard deviation of all within-source variabilities in the database, and the 

mean of those standard deviations is used as minimum for every user, where the underlying idea is that the 

multisession variability for all users should be similar or at least have a common minimum.  

The second approach was to compute this minimum from the mean of the standard deviations of the between-

source variabilities assumed to be single-gaussian (this assumption is just used for this minimum computation; later 

on, the between-source variability is estimated as usual with Kernel Density Functions or Gaussian Mixture Models). 

In this case, the assumption is that the multisession variability of the user can be predicted from the variability of the 

test face relative to the reference population. 

The likelihood ratios obtained  with those three systems are summed up in the Tippett plots of figure 15. As 

shown, when no restrictions in the variance are imposed (solid line), about 10% of targets are obtaining likelihood 

ratios smaller than one. However, when variance restrictions are applied, the performance of target and non-target 

curves is excellent with both proposed alternatives. Looking with higher detail, a slightly better performance is 

obtained with the second alternative, σW,min= mean(σB,i) with dotted line, where the first alternative, σW,min= 

mean(σW,i) with dashed line, performs slightly worse for targets in the area around  LR=1.  

C. On-line Signature Evidence Analysis 

Similar to the case of automatic face recognition systems, up to date is weird to have a case in Court involved with 

on-line signature analysis (the signature is captured with a especial pen and board, obtaining instantaneous position, 

pressure, azimuth and altitude as shown in figure 16). However, a few years ago, some companies use dynamic 

signature for the identity check of their bank customers. A case of ID theft involving dynamic signature could be a 

realistic case for a court. We have used this technology in these experiments because it is an available technology in 

our laboratory, that could be used e.g. for validating on-line transactions. We are actually developing in our 

laboratory an off-line signature recognition system (a written signature in any document is scanned and converted 
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into a gray-level image) [33]. Once we had ready our off-line signature recognition system, the approach will be 

exactly the one shown below, and this is an extremely frequent case in Courts. Anyway, as biometric systems are 

more and more present in society, it would not be strange to have soon cases where fraud have been committed with 

an on-line signature system, and exactly the below shown approach should be used in Court. 

The on-line signature recognition system [34] have also been developed in our laboratory [35], taking advantage 

of the dynamic nature of the signature process. Instantaneous information (x-position, y-position, pressure, azimuth, 

altitude) is sampled every 10 ms., and from those raw parameters some derived ones are obtained (instantaneous 

trajectory angle, log-curvature radius, instantaneous displacement).  From that 8 coefficient vector, velocity (delta) 

and acceleration (delta-delta) are computed, deriving the final 24 parameter vector. Dynamic modeling of the 

signature process is obtained by means of Left-to-Right Hidden Markov Models (HMM) [35], a powerful tool to 

solve pattern recognition problems when temporal or context information is present. Figure 16 shows pen azimuth 

and altitude, and the dynamic vector flow characterizing the on-line acquisition of writing. Figure 17 shows a sample 

signature (lower right part) and the corresponding raw time-dependent parameters. 

We have again selected for the experiments another subset of the MCYT database [29] containing 50 signers with 

15 signatures per signer. Additionally, every signer is deliberately mimicked by three different signers in 5 different 

signatures per impostor signer. Different types of tests have been performed both with casual impostors (any 

signature in the database) and skilled impostors (signers mimicking another signer signature). Signers are modeled 

with 6 sample signatures, and the remaining 9 will be used for testing, so 50×9=450 user trials are used in DET 

assessed experiments, with 50×49×9=22050 casual impostor trials or 50×3×5=750 skilled impostor trials in each 

case. When the forensic system is tested, the 9 samples available excluding training are divided in 5 for controls and 

4 for test (unknown) signatures, which results in 50×4=200 Likelihood Ratios for targets and 50×49×4=9800 for non-

targets. 

As just said, we have just available in that database a small amount (fifteen) of skilled forgeries of every signer 

trying to imitate a known signature. In that case, we cannot use reference populations because of lack of data in order 

to obtain the between-source variability of each signature. However, we have a big amount (all those included in the 

database) of different signatures which could be used as casual impostors. Of course, it could be said that the 

performance is not going to be comparable when the system is tested with skilled (imitating a signature) or casual 

(using his own signature) impostors, which would be completely true if a human expert performs the comparisons. 

However, as the automatic system does not rely in the resulting image (the signature) but in the time-dependent 

sequence of positions and pressure, a well designed system could be robust enough both if casual or skilled impostors 

are used. In figure 18 we show with a solid line the performance of the system, calibrated with casual impostors, that 

is going to be used in the following forensic experiments, which shows an Equal Error Rate (EER) slightly lower 

than two percent. We also show for comparisons two optimizations that have been obtained in our laboratory, both 

for casual impostors (dashed line) with EER about unity, and skilled impostors (dotted line) with EER close to two 

percent. We want to note then that if we had enough skilled impostors for each signer in the database, we could use 
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the skilled-impostor-based system, but testing the forensic system with a casual-based impostor approach will show a 

highly similar performance to that of skilled impostors if enough impostors per signature were available. 

The forensic on-line signature experiment that has been designed shows again the same problem of lack of data 

for the proper estimation of the within-variability of the suspect signature. Then, we have compared the raw results, 

with solid line in figure 19, with those obtained imposing a variance restriction. In that case, we have modeled both 

within- and between-source variabilities with single Gaussians, and then we will apply the same variance restrictions 

to both distributions. As shown in the Tippett plots of figure 19, about 20% of target users obtained likelihood ratios 

smaller than one (solid line), which has been solved imposing that variance restriction (dashed line).  

But the resulting system, even perfectly separating the target and non-target curves, does not obtain very high 

values for target users (LR are always below 500). This could be the best case in other biometric or non biometric 

technologies where better separation of the curves could not be possible because of no better technology was 

available, which would be shown in DET curves with much higher Equal Error Rates. However, in that case this can 

be improved using a better estimation of the between-source variability (remember it was obtained in this experiment 

with a single Gaussian with variance restriction), which is going to be performed here both with Kernel Density 

Functions and with Gaussian Mixture Models. The results are shown in figure 20 relative to the best case of last 

experiment (single Gaussian with variance restriction). In this case the variance restriction is just applied to the 

within-source distribution, and in both cases (KDF and GMM) the results improve significantly. From the curves, it 

seems that KDF is performing extraordinarily better than GMM (look both target curves), but from previous 

experiments it seems that the KDF estimation is being too optimistic from the reduced population available, as 

happened in the experiments reported in figure 11 (section VI.A). However, in that case we cannot check that 

hypothesis as we have used the full size of the population for that experiment, so the performance with bigger 

populations cannot be obtained and be used as reference. 

VII. CONCLUSION 

In this contribution, the role of the forensic scientist for the analysis of biometric evidences has been clarified, 

providing a unifying approach for the analysis of any type of evidence and their combination in a single objective 

number to be provided to Court through the use of Likelihood Ratios. The key point of this contribution is that we 

provide a method for adapting any existing biometric system into a forensic system according to the Bayesian 

approach. Additionally, the performance of the forensic system providing its results in the form of likelihood ratios 

cannot be assessed as classical identification systems through ROC or DET plots, and needs a different kind of 

specific representation such as Tippett plots. We have strengthen the need for reliable estimation techniques with 

good generalization properties both for the between-and within-source variability, and some simple but effective 

procedures as the use of variance restrictions have been shown to avoid singularities in the computation of 

Likelihood Ratios. Finally, detailed examples have been provided using fingerprint, face and on-line signature 

recognition systems, where the likelihood ratio range, both for targets and non-targets, and the forensic adequacy of 

these video-based techniques have been shown.  
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FIGURES 
 

Figure sizes have been magnified to ease review.  
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Fig. 1.  The problem of biometric score submission to Court. 

 
 

Fig. 2.  Comparison of system performance in two different conditions with (a) ROC detection curve, and (b) DET 
plots 



20 

 
 
 
 
 
 
 
 
 

 
TABLE I 

LR SCALE  WITH  CORRESPONDING LINGUISTIC QUALIFIERS  

Likelihood Ratio (LR) Verbal Equivalent 

>1 to 10 Limited evidence to support 
10 to 100 Moderate evidence to support 

100 to 1000 Moderately strong evidence to support 
1000 to 10000 Strong evidence to support 

>10000 Very strong evidence to support 

Identification 
Method 

Input 
pattern Likelihood 

Ratio 
Computation Probabilities, 

likelihoods,  
scores,  
expert-based opinions

Submission 
of LRs to 

Court 

Populations 

 
Fig. 3.  System architecture for LR Computation in the Bayesian framework. 

 
Fig. 4.  Example of Tippet curves for two competing systems. 
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Fig. 5.  LR computation in Forensic Analysis of Biometric Evidences. 

 
Fig. 6.  LR Computation  of an user Likelihood Ratio. 
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Fig. 8.  DET plot of the reference fingerprint verification system. 

 
Fig. 7. Different image processing stages in the minutiae computation process from a fingerprint. 
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Fig. 9.   Tippet plots for the forensic fingerprint system with between-source estimation via Maximum Likelihood 
with M gaussian mixtures; M=1 (solid), M=3 (dashed), M=10 (dash-dot) and M=30 (dotted). 

 
Fig. 10.  Tippet plots for the forensic fingerprint system with between-source estimation via Kernel 
Density Functions with bin size h=10 (solid), h=3 (dashed), h=1 (dotted). 
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Fig. 11. Analysis of the generalization abilities via Kernel Density Functions estimation (h=3) for 
different sizes (L) of the population;  L=50 (solid), L=10 (dashed). 

 
Fig. 12. Analysis of the generalization abilities via Maximum Likelihood estimation of a gaussian mixture 

(M=2) for different sizes (L) of the population;  L=50 (solid), L=10 (dashed). 
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Fig. 13. Geometric normalization previous to dimensionality reduction. 

 
Fig. 14. DET plot of the reference face verification system. 
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Fig. 15. Tippet plots for the forensic face recognition system with different variance restrictions in within-

source-estimation; no-restriction (solid), σW,min= mean(σW,i) (dashed),  σW,min= mean(σB,i) (dotted). 

 
Fig. 16. Pen azimuth and altitude, and characteristic vector time series representing a signature. 



27 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 17. Sample signature and raw time dependent coefficients (x-position, y-position, pressure, azimut and altitude). 

 
Fig. 18. DET plot of the reference on-line signature verification system (used in the following forensic 
experiments) with random impostors from the database (solid, black), our best system in the same 
condition (dashed), and our best system with skilled impostors forging the true signature (solid, grey). 
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Fig. 20. Tippet plots for the forensic signature system; single gaussian between- and within-source estimation 
with σW,min= σB,min= mean(σB,i) (solid), between-source estimation via Maximum Likelihood with M=3 
(dashed), and between-source estimation via Kernel Density Functions with h=3 (dotted). 

 
Fig. 19. Tippet plots for the forensic signature system with single gaussian between- and within-source 
estimation; no restriction (solid), σW,min= σB,min= mean(σB,i) (dotted). 


