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Abstract

Panel Data Toolbox is a new package for MATLAB that includes functions to estimate
the main econometric methods of panel data analysis. The package includes code for
the standard fixed, between and random effects estimation methods, as well as for the
existing instrumental panel and new spatial panel. This paper describes the methodology
and implementation of the functions and illustrates their use with well-known examples.
We perform numerical checks against other popular commercial and free software in order
to show the validity of the results.
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1. Introduction

Panel data econometrics have grown in importance over the past decades due to increase
availability of data related to units that are observed over several periods of time. Panel data
econometric methods are available in Stata and R, but there is a lack of a full set of functions
for MATLAB, by The MathWorks, Inc. (2013).

The Panel Data Toolbox introduces such set of functions, including estimation methods for
the standard fixed, between and random effects models, as well as instrumental panel data
models, including the error components by Baltagi (1981) and Baltagi and Liu (2009), and,
finally, existing and new spatial panel data, Baltagi and Liu (2011). Numerical checks against
Stata and R using well-known classical examples show that the estimated coefficients and
t statistics are consistent with those obtained with the new MATLAB toolbox.

Spatial econometrics in MATLAB can be estimated using the LeSage and Pace (2009) Econo-
metrics Toolbox, which uses maximum likelihood and bayesian methods, and Elhorst (2011)
using maximum likelihood methods. In the new Panel Data Toolbox we use a two stage
instrumental variables method to estimate spatial panels with fixed, between and random
effects, as well as the error components model, following Baltagi and Liu (2011).

Panel Data Toolbox is available as free software and can be downloaded from http://www.

paneldatatoolbox.com, with all the supplementary material (data and source code) to repli-
cate all the results presented in this paper.

The paper is organized as follows. Section 3 presents the Panel data models with fixed,
between and random effects. Instrumental panel data models are illustrated in Section 4.
Spatial panels are covered in Section 5. Numerical checks against Stata and R are presented
in Section 6. Finally, Section 7 concludes.
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2. Data and structures

Panel data contains units (individuals, firms, countries, regions, etc.) that are observed
over several periods of time. Units are usually denoted by i = 1, 2, . . . , n, and time periods
by t = 1, 2, . . . T . In this paper we deal only with the case of balanced panel data, those
in which all units are observed over the same periods of time. Then, the total number of
observations in the panel is N = nT .

Data are managed as regular MATLAB vectors and matrices, constituting the inputs of the
estimation functions. Observations are expected to be ordered first by units and then by time
period. All estimation functions return a structure estoutput that contains properties with
the estimation results as well as the input used to generate that output. Properties can be
accessed directly using the dot notation and the whole structure can be used as an input to
other functions that print results (e.g., estprint) or plot graphs (e.g., estplot).

Some of the properties of the estoutput structure are the following:1

� y and X: contain the dependent and the independent variables, respectively.

� n, T and N: number of entities, time periods, and total number of observations.

� k and l: number of explanatory variables and instruments (including the constant term).

� coef, varcoef and stderr: estimated coefficients, estimated covariance matrix, and
estimated standard errors.

� yhat and res: fitted values and residuals.

� statistic, df_statistic and p_statistic: statistic of individual significance, degrees
of freedom of the statistic, and the corresponding p value.

3. Panel data models

The starting formulation is the panel data model with specific individual effects:

yit = α+Xitβ + µi + vit ∀i = 1, . . . , n, t = 1, . . . , T, (1)

where µi represents the i-th invariant time individual effect and vit the disturbance, with vit ∼
i.i.d(0, θ2v), E(vi) = 0, E(viv

>
i ) = θ2vIT and E(vivj) = 0 for i 6= j, being IT the T x T identity

matrix.

As a classic application we use Munnell (1990) and Baltagi (2008) data. Munnell (1990)
suggests a Cobb-Douglas production function using data for 48 U.S. states over 17 periods
(1970–1986). The dependent variable, output of the production function, is the gross state
product, log(gsp), and the explanatory ones are public capital, log(pcap), private capital,
log(pc), employment, log(emp), and the unemployment rate, log(unemp).2

1For a full list see the help of the function typing help estoutput in MATLAB.
2Munnell (1990) data are available in MATLAB format in the supplementary file MunnellData.mat.
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>> load('MunnellData.mat')

>> y = log(gsp);
>> X = [log(pcap), log(pc), log(emp), unemp];
>> T = 17;

>> dvarnames = {'lgsp'};
>> ivarnames = {'lpcap', 'lpc', 'lemp', 'unemp'};

We create a vector y containing the dependent variable and a matrix X with the explanatory
variables. A vector of ones for the constant term should not be added to X because it is
included internally by the estimation functions. The variables dvarnames and ivarnames are
cell arrays of strings that contain the name of the variables that are subsequently used when
printing the results of the estimation.

Panel data models are estimated using the panel(y, X, T, method, options) function,
where y is the vector of the dependent variable, X is the matrix of explanatory variables, T
is the number of time periods per entity, and method is a string that specifies the panel data
estimation method to be used among the following:

� po: for a pool estimation.

� fe: for a fixed effects (within) estimation.

� be: for a between effects estimation.

� re: for a random effects estimation

These estimation methods are explained in the following sections. options is an optional
parameter to specify alternative estimation choices.

3.1. Fixed effects model

Under typical specifications, individual effects are correlated with the explanatory variables:
COV(Xit, µi) 6= 0, which motivates the use of the fixed-effects (within) estimation, so as to
capture unobservable heterogeneity, Baltagi (2008).

In this context, including individual effects on the error component while performing OLS
(ordinary least squares) results into a biased estimation. In order to extract these effects, the
within estimator of the parameters is computed using OLS:

β̂fe = (X̃>X̃)−1X̃>ỹ, (2)

where ỹ = y − ȳ and X̃ = X − X̄ are the transformed variables in deviations from the group
mean. It is called “within” estimator because it takes into account the variations in each
group. This estimator is unbiased and consistent when both n and T are large. Statistical
inference is generally based on the asymptotic variance covariance matrix:

VAR(β̂fe) = S2(X̃>X̃)−1, (3)

where S2 denotes the residual variance: S2 = (e>e)/(n(T − 1) − k + 1), with residuals
e = y − (Xβ̂fe + α+ µ).
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Finally, inference can be performed using the standard tests. The individual significance
statistic is distributed as a t-student with n(T − 1) − k + 1 degrees of freedom under ho-
moscedasticity, while the F statistic of joint significance is:3

F =
Wald

k − 1
∼ Fk−1,n(T−1)−k+1 (4)

The goodness of fit is measured with the R-squared: R2 = 1− (e>e)/(ỹỹ), and the adjusted
R-squared R̄2 = 1− (N − 1)/(N − k−n)(1−R2). The test for individual effects is the Chow
test proposed in Baltagi (2008):

F =
(RRSS − URSS)/(n− 1)

URSS/(n(T − 1)− (k − 1))
∼ Fn−1,n(T−1)−(k−1), (5)

where RRSS is the restricted residual sums of squares, coming from an OLS pool estimation,
and URSS is the unrestricted residual sums of squares, from the fixed effects estimation.

The panel function implements the estimation of fixed effects panel data models in MATLAB:

>> regfe = panel(y, X, T, 'fe');
>> regfe.dvarnames = dvarnames;
>> regfe.ivarnames = ivarnames;
>> estprint(regfe);

Panel: Fixed effects (Within)

N observations: 816
N groups: 48
Obs per group: 17
R−squared = 0.941336
Adj R−squared = 0.941046
Joint significance: F(4, 764) = 3064.808435

p = 0.0000
Dept Var: lgsp
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Varname Coefficient Std. Error Statistic p−value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lpcap −0.02615 0.02900 −0.9017 0.368
lpc 0.29201 0.02512 11.6246 0.000***

lemp 0.76816 0.03009 25.5273 0.000***
unemp −0.00530 0.00099 −5.3582 0.000***

CONSTANT 2.35290 0.17481 13.4595 0.000***
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Test of individual effects: F(47,764) = 75.820406

p−value = 0.000

The function estprint is used to display the table with the results taking the name of the
variables specified in the properties dvarnames and ivarnames of the estoutput structure
that is returned from the panel function.

3Where Wald is the standard Wald distance for joint significance tests of all estimated coefficients, excluding
the constant term.
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3.2. Between effects model

In the between estimation the parameters with the transformed variables:

β̂be = (X̄ ′X̄)−1X̄ ′ȳ, (6)

where ȳ and X̄ are the means by groups, premultiplied by
√

(T ) to take into account that
the regression is based on nT observations, since the mean of each group is repeated T times,
and it should be based on the n observations, Baltagi (2008) . It is called “between” estimator
because it takes into account the variation between groups, and since all observations are
constant in each group. Again, this estimator is unbiased and consistent when n and T are
large. Statistical inference is generally based on the asymptotic variance-covariance matrix:

VAR(β̂fe) = S2(X̄ ′X̄)−1, (7)

where S2 denotes the residual variance: S2 = (e>e)/(n−k), with residuals e = y−X̄β̂fe. The
statistic of individual significance is distributed as a t student with n− k degrees of freedom.
The Wald distance is computed as usual and the F statistic of joint significance is:

F =
Wald

k − 1
∼ Fk−1,n−k. (8)

The goodness of fit is measured with the R2, which is computed as the square of the correlation
coefficient of ȳ and ŷ.

The panel function implements the estimation of between effects panel data in MATLAB:

>> regbe = panel(y, X, T, 'be');
>> regbe.dvarnames = dvarnames;
>> regbe.ivarnames = ivarnames;
>> estprint(regbe);

Panel: Between effects

N observations: 816
N groups: 48
Obs per group: 17
R−squared = 0.993909
Joint significance: F(4, 43) = 1754.114154

p = 0.0000
Dept Var: lgsp
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Varname Coefficient Std. Error Statistic p−value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lpcap 0.17937 0.07197 2.4922 0.017**
lpc 0.30195 0.04182 7.2201 0.000***

lemp 0.57613 0.05637 10.2196 0.000***
unemp −0.00389 0.00991 −0.3926 0.697

CONSTANT 1.58944 0.23298 6.8222 0.000***
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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3.3. Random effects model

In the panel data model (1) the loss of degrees of freedom can be avoided if the individual
effects can be assumed random, where the error component uit = µi + vit includes the i-th
invariant time individual effects µi and the disturbance vit.

yit = α+Xitβ + uit ∀i = 1, . . . , n, t = 1, . . . , T (9)

The individual effect µi is assumed independent of the disturbance vit. In addition, individual
effects and disturbances are independent of the explanatory variables, i.e., COV(Xit, µi) 6= 0
and COV(Xit, vit) 6= 0 for all i and t. For this reason, the random effects model is an appro-
priate specification in the analysis of n individuals randomly drawn from a large population.
In this context, n is usually large and a fixed effects model would lead to a loss of degrees of
freedom.

From the composed error component,

E(µi) = E(vit) = E(µivit) = 0 (10)

E(µiµj) =

{
σ2µ i 6= j

0 i = j
E(vivj) =

{
σ2v i 6= j

0 i = j
(11)

This results in a block-diagonal covariance matrix with serial correlation over time only be-
tween disturbances of the same individual and zero otherwise:

COV(uit, ujs) =

{
σ2µ + σ2v i = j, t = s

σ2µ i = j, t 6= s
(12)

This implies the following correlation coefficient between disturbances:

ρ = CORR(uit, ujs) =

{
1 i = j, t = s

σ2µ/(σ
2
µ + σ2v) i = j, t 6= s

(13)

Therefore, the covariance matrix can be computed as follows:

Ω = E(uu>) = σ2µ(In ⊗ JT ) + σ2v(In ⊗ IT ), (14)

where JT is a matrix of ones of size T and the homoscedastic variance is VAR(uit) = σ2µ + σ2v
for all i and t. In this case, the GLS (generalized least squares) method yields an efficient
estimator of the parameters. Following the general expression (White, 1980),

β̂re = (X>Ω−1X)−1X>Ω−1y, (15)

with Ω−1 = 1/σ2v
[
IT − σ2µ/(σ2v + Tσ2µ)

]
. In order to obtain the GLS estimator of the regres-

sion coefficients, it is necessary to estimate Ω−1 which is a matrix of dimension nT x nT .
The GLS estimation of the random effects model is based on the transformation proposed by
Baltagi (2008):

β̂re = (X̃>X̃)−1X̃>y, (16)
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where ỹ = y− θȳ and X̃ = X − θX̄ are the transformed variables in quasideviations from the
group mean. The factor theta corresponds to Greene (2012):

θ = 1−
√

σ2v
σ2v + Tσ2µ

. (17)

Focusing on a different derivation based on the spectral decomposition of Ω one obtains,
Baltagi (2008):

σ21 = Tσ2µ + σ2v (18)

The random effects estimator (16) is a weighted average of the within and between estimators,
with the ratio σ2v/(σ

2
v + Tσ2µ) being the weight assigned to the between groups variation.

Therefore, under the assumption of fixed effects this latter variation is omitted, with the ratio
equal to zero and θ equal to one (opposite to the OLS case). As a result, the treatment of
individual effects as random provides an intermediate solution between complete variation
and time invariant fixed effects.

Swamy and Arora (1972) suggest using the within regression residuals to compute σ2v and
the residuals from the between regression to compute σ21. From these estimates σ2µ can be
calculated as: 4.

σ2µ =
σ21 − σ2v
T

(19)

Statistical inference is generally based on the asymptotic variance-covariance matrix:

VAR(β̂re) = S2(X̃>X̃)−1, (20)

where, once again, S2 denotes the residual variance: S2 = (e>e)/(N − k), with residuals
e = y − X̃β̂re.
Finally, the statistic of individual significance is computed as usual and it is normally dis-
tributed. Also, Wald distance for joint significance is computed as before, and the statistic of
joint significance is:

χ2 = Wald ∼ χ2
k−1. (21)

The goodness of fit is measured with the R2, which is computed as the square of the correlation
coefficient of ŷ and ỹ.

The panel function implements the estimation of random effects panel data in MATLAB:

>> regre = panel(y, X, T, 're');
>> regre.dvarnames = dvarnames;
>> regre.ivarnames = ivarnames;
>> estprint(regre);

4If the estimated σ2
µ is negative, which occurs when the true value is closed to zero (Baltagi 2008, p. 20),

it may be replaced by zero as suggested by Maddala and Mount (1973)
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Panel: Random effects GLS (Swamy and Arora)

N observations: 816
N groups: 48
Obs per group: 17
R−squared = 0.959332
Joint significance: Chi2(4) = 19131.085009

p−value = 0.0000
Dept Var: lgsp
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Varname Coefficient Std. Error Statistic p−value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lpcap 0.00444 0.02342 0.1895 0.850
lpc 0.31055 0.01980 15.6805 0.000***

lemp 0.72967 0.02492 29.2803 0.000***
unemp −0.00617 0.00091 −6.8033 0.000***

CONSTANT 2.13541 0.13346 16.0002 0.000***
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sigma_mu = 0.082691
sigma_v = 0.038137 sigma_1 = 0.343068
rho_mu = 0.824601 Theta = 0.888835

Here rho_mu is the fraction of variance due to the individual effects and it is computed as
ρµ = σ2µ/(σ

2
µ + σ2v).

3.4. Hausman test of specification

In order to determine the correct specification of the model, fixed versus random effects, it
is necessary to check the correlation between the individual effects and the regressors. When
the individuals effects and the explanatory variables are correlated: E(µiXit) 6= 0, the fixed
effects model provides an unbiased estimator, otherwise a feasible GLS is an efficient estimator
in a random effects model.

Hausman (1978) suggests comparing the GLS estimator of the random effects model β̂re and
the within estimator in the fixed effects model β̂fe, both of which are consistent under the
null hypothesis H0 : E(µiXit) = 0. Under H0 the GLS estimator is BLUE, consistent and
asymptotically efficient, while the within estimator is consistent whether H0 is true or not.
Furthermore, the GLS estimator is inconsistent if H0 is false. Therefore, the statistic would
be based on the difference between both estimators: β̂fe − β̂re.
Hence, the Hausman test statistic is given by (Baltagi (2008)):

H = (β̂fe − β̂re)>VAR(β̂fe − β̂re)−1(β̂fe − β̂re) ∼ χ2
k−1, (22)

where VAR(β̂fe − β̂re)−1 = VAR(β̂fe)− VAR(β̂re).

For n fixed and T large, both estimators tend to similar values, with their difference converging
to zero, and Hausman’s test is unnecessary. However, in applications where n is relatively
large with respect to T , it can be used to choose between estimators.

The [H, p] = hausman(estA, estB) function implements the Hausman test in MATLAB,
where the input arguments estA and estB are estoutput structures of the previous estima-
tions. The function returns the value of the test, H, and its corresponding p value, p. To
display the results in a table, the hausmanprint(estA, estB) must be used:
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>> hausmanprint(regfe, regre);

Hausman's test of specification

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
EstimationA EstimationB Coef Std. Error

Varname Panel−fe Panel−re Difference Difference
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lpcap −0.026150 0.004439 −0.030588 0.01711
lpc 0.292007 0.310548 −0.018542 0.01545

lemp 0.768159 0.729671 0.038489 0.01687
unemp −0.005298 −0.006172 0.000875 0.00039

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
estA is consistent under H0 and H1 (estA = Panel−fe)
estB is consistent under H0 (estB = Panel−re)
H0: coef(estA) − coef(estB) = 0
H1: coef(estA) − coef(estB) != 0

H = 9.5254156
p−value = 0.04923
H is distributed as Chi2(4)

3.5. Heteroscedasticity in panel data models

The fixed effects model can be estimated using the within estimator and a robust covariance
matrix when the disturbances are affected by heteroscedasticity. Hansen (2007) proposed a
robust estimation of the parameters’ covariance matrix using the White sandwich estimator,
White (1980):

VAR(β̂fe) =
n

n− 1

N − 1

N − k (X̃>X̃)−1
[

n∑

i=1

X̃>i eie
>
i X̃i

]
(X̃>X̃)−1 (23)

From VAR(β̂fe) the correct variance of the constant term must be computed as:

VAR(α̂fe) = (
1

n

n∑

i=1

(
1

T

T∑

t=1

Xit))VAR(β̂fe)(
1

n

n∑

i=1

(
1

T

T∑

t=1

Xit))
> (24)

For the random effects model the robust estimation of the parameters’ covariance matrix is
computed using an estimator equivalent to that proposed by White (1980), (23), but with the
suitable transformation of the variables.

The panel function, with the options argument set to robust, implements the estimation
of fixed effects robust panel data models in MATLAB:

>> regfer = panel(y, X, T, 'fe', 'robust');
>> regfer.dvarnames = dvarnames;
>> regfer.ivarnames = ivarnames;
>> estprint(regfer);
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Panel: Fixed effects (Within)

N observations: 816
N groups: 48
Obs per group: 17
R−squared = 0.941336
Adj R−squared = 0.941046
Joint significance: F(4, 47) = 395.610133

p = 0.0000
Dept Var: lgsp
Robust standard errors adjusted for 48 clusters
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Varname Coefficient Std. Error Statistic p−value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lpcap −0.02615 0.06111 −0.4279 0.671
lpc 0.29201 0.06255 4.6684 0.000***

lemp 0.76816 0.08273 9.2848 0.000***
unemp −0.00530 0.00253 −2.0952 0.042**

CONSTANT 2.35290 0.31459 7.4792 0.000***
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

In the random effects model the robust option provides the robust covariance matrix esti-
mation:

>> regrer = panel(y, X, T, 're', 'robust');
>> regrer.dvarnames = dvarnames;
>> regrer.ivarnames = ivarnames;
>> estprint(regrer);

Panel: Random effects GLS (Swamy and Arora)

N observations: 816
N groups: 48
Obs per group: 17
R−squared = 0.959332
Joint significance: Chi2(4) = 4408.644223

p−value = 0.0000
Dept Var: lgsp
Robust standard errors adjusted for 48 clusters
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Varname Coefficient Std. Error Statistic p−value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lpcap 0.00444 0.05531 0.0802 0.936
lpc 0.31055 0.04416 7.0320 0.000***

lemp 0.72967 0.07088 10.2941 0.000***
unemp −0.00617 0.00236 −2.6120 0.009***

CONSTANT 2.13541 0.24179 8.8318 0.000***
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sigma_mu = 0.082691
sigma_v = 0.038137 sigma_1 = 0.343068
rho_mu = 0.824601 Theta = 0.888835
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4. Instrumental panel data models

The assumption of exogeneity of the independent variables, X, when they are uncorrelated
with the disturbance, E(Xit, vit) = 0, implies that OLS remains valid. However, there are
many applications in which this assumption is untenable. In this case, when the regressors
are endogenous, the OLS estimator loses consistency and unbiasedness. Consequently, we can
apply an instrumental variables (IV) two stage estimation to the fixed effects, random effects
and between models, Greene (2012).

We assume that there is a set of variables that are exogenous, uncorrelated with the distur-
bance, and relevant, i.e., correlated with the endogenous independent variables. This set is
represented by the H matrix.

For an application of instrumental panel data, we follow Baltagi and Levin (1992) and Baltagi,
Griffin, and Xiong (2000) who estimate the demand for cigarettes using data from 46 U.S.
states over the period 1963–1992.5 We estimate the consumption, c, measured as per capita
sales, which depends on the price per pack, price, per capita disposable income, ndi, and
the minimum price in neighbor states, pimin. The instruments normally used are the lags of
the disposable income, ndi_1, and the lag of the minimum price pimin_1.6

>> load('CigarData.mat')

>> y = log(c);
>> X = [log(price), log(ndi), log(pimin)];
>> H = [log(ndi_1), log(pimin_1), log(ndi), log(pimin)];
>> T = 29;

>> dvarnames = {'lc'};
>> ivarnames = {'lprice', 'lndi', 'lpimin'};

Instrumental panel data models are estimated using the ivpanel(y, X, H, T, method)

function, where y is the vector of the dependent variable, X is the matrix of explanatory vari-
ables, H is the matrix of instruments, T is the number of time periods per unit, and method is
a string that specifies the choice of panel data estimation method, among the following:

� po: for a pool estimation.

� fe: for a fixed effects (within) estimation.

� be: for a between effects estimation.

� re: for a random effects estimation

� ec: for a error-components estimation, Baltagi and Liu (2009).

5Data is available in MATLAB format in the supplementary file CigarData.mat.
6The equation we estimate differs from the original one, which corresponds to a dynamic panel data model.
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4.1. Two stage least squares (2SLS)

The first stage of the 2SLS estimation consists of estimating the independent variables, X̂,
by an OLS estimate of X over the exgonenous variables and instruments, H:7

X̂ = H̃(H̃>H̃)−1H̃>X̃ (25)

The second stage consists in estimating the coefficients, β̂, using the predicted X̂:

β̂2SLS = (X̂>X̂)1X̂>ỹ (26)

In each case, ỹ, X̃ and H̃ represent the different transformations applied to the variables to
obtain the within, between and GLS estimator as explained in Section 3. Regarding statistical
inference, the statistic of individual significance is normally distributed, while the statistic of
joint significance is distributed as a χ2 with k− 1 degrees of freedom. The test for individual
effects is that proposed in Baltagi (2008).

The ivpanel function implements the estimation of fixed, between and random effects instru-
mental panel data models in MATLAB:

>> regivfe = ivpanel(y, X, H, T, 'fe');
>> regivfe.dvarnames = dvarnames;
>> regivfe.ivarnames = ivarnames;
>> estprint(regivfe)

IV Panel: Fixed effects (Within)

N observations: 1334
N groups: 46
Obs per group: 29
R−squared = 0.640642
Joint significance: Chi2(3) = 1792.756633

p−value = 0.0000
Dept Var: lc
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Varname Coefficient Std. Error Statistic p−value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lprice −1.01636 0.24920 −4.0785 0.000***
lndi 0.53785 0.02303 23.3507 0.000***

lpimin 0.31237 0.22839 1.3677 0.171
CONSTANT 2.99141 0.08111 36.8827 0.000***

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

>> regivbe = ivpanel(y, X, H, T, 'be');
>> regivbe.dvarnames = dvarnames;
>> regivbe.ivarnames = ivarnames;
>> estprint(regivbe)

7Note that the matrix H must include the instruments as well as the exogenous variables that are also
included in X, which are instruments of themselves.
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IV Panel: Between effects

N observations: 1334
N groups: 46
Obs per group: 29
R−squared = 0.311151
Joint significance: Chi2(3) = 6.660389

p−value = 0.0835
Dept Var: lc
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Varname Coefficient Std. Error Statistic p−value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lprice −3.27523 2.61392 −1.2530 0.210
lndi 0.83220 0.40039 2.0785 0.038**

lpimin 1.18107 1.32375 0.8922 0.372
CONSTANT 6.17390 3.29673 1.8727 0.061*

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

>> regivre = ivpanel(y, X, H, T, 're');
>> regivre.dvarnames = dvarnames;
>> regivre.ivarnames = ivarnames;
>> estprint(regivre)

IV Panel: Random effects GLS (Swamy and Arora)

N observations: 1334
N groups: 46
Obs per group: 29
R−squared = 0.638272
Joint significance: Chi2(3) = 1820.426405

p−value = 0.0000
Dept Var: lc
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Varname Coefficient Std. Error Statistic p−value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lprice −1.00711 0.24735 −4.0715 0.000***
lndi 0.53747 0.02303 23.3398 0.000***

lpimin 0.30357 0.22643 1.3407 0.180
CONSTANT 2.99212 0.08567 34.9268 0.000***

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sigma_mu = 0.190101
sigma_v = 0.077566 sigma_1 = 1.026661
rho_mu = 0.857278 Theta = 0.924449
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4.2. Error components two stage least squares (EC2SLS)

Baltagi (1981) and Baltagi and Liu (2009) propose a generalized two stage least squares
(G2SLS) estimation using the following matrix of instruments:

A =
[
H̃, H̄

]
, (27)

where H̃ contains the transformed instruments in deviations from the group mean, and H̄
the group means. The 2SLS estimation is then performed using this matrix of instruments.8

The error components two stage least squares (EC2SLS) estimator is consistent and presents
the same limiting distribution than the G2SLS estimator. Although it is worth noting that
for small samples the former shows gains in efficiency, Baltagi and Liu (2009).

The ivpanel function provides an estimation of the error components two stage least squares
(EC2SLS) model in MATLAB by specifying the ec method:

>> regivec = ivpanel(y, X, H, T, 'ec');
>> regivec.dvarnames = dvarnames;
>> regivec.ivarnames = ivarnames;
>> estprint(regivec)

IV Panel: Error components (EC2SLS)

N observations: 1334
N groups: 46
Obs per group: 29
R−squared = 0.638782
Joint significance: Chi2(3) = 1825.252894

p−value = 0.0000
Dept Var: lc
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Varname Coefficient Std. Error Statistic p−value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lprice −0.99268 0.23587 −4.2086 0.000***
lndi 0.53641 0.02236 23.9939 0.000***

lpimin 0.29039 0.21597 1.3446 0.179
CONSTANT 2.99512 0.08420 35.5724 0.000***

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sigma_mu = 0.190101
sigma_v = 0.077566 sigma_1 = 1.026661
rho_mu = 0.857278 Theta = 0.924449

5. Spatial panel data models

In recent years the econometrics literature has grown with topics related to the analysis of
spatial relations using panel data models. The main reason is the availability of more complete
data sets in which units characterized by spatial features are followed over time. In general, a
spatial panel data set contains more information and less multicollinearity among the variables

8The instruments A are used in the 2SLS procedure, but only H is used when estimating σ2
v and σ2

1 .
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than a cross-section spatial counterpart (see Anselin (1988, 2010) for an introduction to this
literature). Additionally, the use of panel data increases the efficiency due to larger degrees
of freedom and allows the inclusion of unobservable heterogeneities Baltagi (2008).

In the context of cross-sectional models, Kelejian and Prucha (1998) introduced a generalized
spatial two-stage least squares estimator, Kelejian and Prucha (1999)9 proposed a generalized
moments (GM) estimation method feasible even when n is large, while Anselin (1988) provided
the ML (Maximum likelihood) estimator. Kapoor, Kelejian, and Prucha (2007) generalized
the GM procedure from cross-section to panel data and derived its properties when T is fixed
and n tends to infinite. Most recently, Elhorst (2003, 2010) and Lee and Yu (2010) presented
the ML estimators of the spatial lag model as well as the error model extended to include fixed
and random effects, solving the computational problems when the number of cross sectional
units n is large. In line with Anselin (1988) and Kapoor et al. (2007), Baltagi, Egger, and
Pfaffermayr (2006) suggest a generalized spatial panel model allowing for spatial correlation
in the individual and the remainder error components. They derive the ML estimator for this
more general spatial panel model with random effects.

In order to compute different estimators in spatial panel models, we consider the Cliff-Ord
autoregressive spatial panel model:

yit = λWyit + βXX + βLWL+ ui + vit, (28)

where the matrix L contains the spatial lagged independent variables, which usually are also
included in X.

The application is based on Munnell (1990) and Baltagi (2008) data of U.S. states production
as in Section 3.10

>> load('MunnellData.mat')

>> y = log(gsp);
>> X = [log(pcap), log(pc), log(emp), unemp];
>> L = [ ];
>> T = 17;

>> dvarnames = {'lgsp'};
>> ivarnames = {'lpcap', 'lpc', 'lemp', 'unemp'};

>> load('MunnellW.mat');

>> W = kron(W, eye(T));

We use the kronecker product to replicate the W adjacency matrix of the 48 U.S. states over
all time periods:

Wbig = W ⊗ IT (29)

9Kelejian and Prucha (2004) extend the model to a system of equation spatially interrelated, while Kelejian
and Prucha (2007, 2010) introduce a method robust to heteroscedasticity and autocorrelation in disturbances
in a spatial autoregressive model.

10Munnel (1980) data is available in MATLAB format in the supplementary file MunnellData.mat, and the
W matrix in the file MunnellW.mat.



16 A Panel Data Toolbox for MATLAB

Spatial panel data models are estimated using the spanel(y, X, L, W, T, method) func-
tion, where y is the vector of the dependent variable, X is the matrix of explanatory variables,
L is the matrix of spatial lagged independent variables, T is the number of time periods per
unit, and method is a string that specifies the panel data estimation method to use, among
the following:

� po: for a spatial pool estimation.

� fe: for a spatial fixed effects (within) estimation.

� be: for a spatial between effects estimation.

� re: for a spatial random effects estimation

� ec: for a spatial error components estimation, Baltagi and Liu (2011).

� sec-b: for a spatial error components best estimation, Baltagi and Liu (2011).

5.1. Generalized two stage least squares (GS2SLS)

The spatial panels are computed as an instrumental variable estimation, extending the gen-
eralized spatial two stage least squares estimator (GS2SLS) provided by Kelejian and Prucha
(1998) with fixed, between and random effects.

For simplicity, we rewrite the model more compactly as follows:

yit = δZit + uit, (30)

where Zit = (Wyiy, Xit,WLit) and δ = (λ, βX , βL). Following Kelejian and Prucha (1998) we
build the matrix of instruments as:

H =
[
X,WX,W 2X

]
(31)

We compute the first stage of the GS2SLS method estimating the fitted values for the inde-
pendent variables Ẑ performing OLS of Z on the instruments H:

Ẑ = H̃(H̃>H̃)−1H̃>Z̃. (32)

In the second stage we compute the coefficients, δ̂ , using the predicted Ẑ:

δ̂ = (Ẑ>Ẑ)−1Ẑỹ (33)

In each case, ỹ , X̃ and Z̃ represent the different transformations applied to their corresponding
set of variables to obtain the alternative estimations: fixed effects spatial two stage least
squares (FE-S2SLS), between effects spatial two stage least squares (BE-2SLS), and random
effects spatial two stage least squares (RE-S2SLS).

The fitted values are computed as in Elhorst (2003, 2010):

ŷ = (IN − λW )−1(XβX +WLβL) (34)
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The spanel function implements the estimation of the fixed, between, random and error
components spatial panel data models in MATLAB:

>> regsfe = spanel(y, X, L, W, T, 'fe');
>> regsfe.dvarnames = dvarnames;
>> regsfe.ivarnames = ivarnames;
>> estprint(regsfe);

Spatial Panel: Fixed effects (FE−2SLS)

N observations: 816
N groups: 48
Obs per group: 17
Joint significance: Chi2(5) = 12845.284388

p−value = 0.0000
Dept Var: lgsp
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Varname Coefficient Std. Error Statistic p−value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lpcap −0.04041 0.02846 −1.4197 0.156
lpc 0.21904 0.02679 8.1770 0.000***

lemp 0.66833 0.03285 20.3447 0.000***
unemp −0.00473 0.00097 −4.8683 0.000***

W*lgsp 0.19166 0.02794 6.8597 0.000***
CONSTANT 1.93735 0.18150 10.6741 0.000***

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

>> regsbe = spanel(y, X, L, W, T, 'be');
>> regsbe.dvarnames = dvarnames;
>> regsbe.ivarnames = ivarnames;
>> estprint(regsbe);

Spatial Panel: Between effects (BE−2SLS)

N observations: 816
N groups: 48
Obs per group: 17
Joint significance: Chi2(5) = 6901.939058

p−value = 0.0000
Dept Var: lgsp
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Varname Coefficient Std. Error Statistic p−value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lpcap 0.17131 0.07487 2.2882 0.022**
lpc 0.30163 0.04217 7.1520 0.000***

lemp 0.58559 0.06082 9.6283 0.000***
unemp −0.00242 0.01054 −0.2297 0.818

W*lgsp −0.01082 0.02474 −0.4373 0.662
CONSTANT 1.70896 0.36036 4.7423 0.000***

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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>> regsre = spanel(y, X, L, W, T, 're');
>> regsre.dvarnames = dvarnames;
>> regsre.ivarnames = ivarnames;
>> estprint(regsre);

Spatial Panel: Random effects (RE−2SLS)

N observations: 816
N groups: 48
Obs per group: 17
Joint significance: Chi2(5) = 18847.914957

p−value = 0.0000
Dept Var: lgsp
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Varname Coefficient Std. Error Statistic p−value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lpcap 0.02286 0.02492 0.9173 0.359
lpc 0.29376 0.02104 13.9596 0.000***

lemp 0.70864 0.02679 26.4514 0.000***
unemp −0.00648 0.00092 −7.0525 0.000***

W*lgsp 0.03547 0.01481 2.3946 0.017**
CONSTANT 1.90996 0.16628 11.4865 0.000***

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sigma_mu = 0.083405
sigma_v = 0.037325 sigma_1 = 0.345907
rho_mu = 0.833143 Theta = 0.892094

>> regsec = spanel(y, X, L, W, T, 'ec');
>> regsec.dvarnames = dvarnames;
>> regsec.ivarnames = ivarnames;
>> estprint(regsec);

Spatial Panel: Error Components (SEC−2SLS)
N observations: 816
N groups: 48
Obs per group: 17
Joint significance: Chi2(5) = 18842.897203

p−value = 0.0000
Dept Var: lgsp
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Varname Coefficient Std. Error Statistic p−value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lpcap 0.02454 0.02491 0.9850 0.325
lpc 0.29239 0.02104 13.8978 0.000***

lemp 0.70670 0.02678 26.3879 0.000***
unemp −0.00651 0.00092 −7.0840 0.000***

W*lgsp 0.03850 0.01476 2.6089 0.009***
CONSTANT 1.89001 0.16608 11.3803 0.000***

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sigma_mu = 0.083405
sigma_v = 0.037325 sigma_1 = 0.345907
rho_mu = 0.833143 Theta = 0.892094
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5.2. Spatial error components best two stage least squares (SEC-B2SLS)

Baltagi and Liu (2011) extend the error component two-stage least square estimator proposed
by Baltagi (1981), following the method introduced by Kelejian and Prucha (1998) and using
Lee (2003) optimal instrument for this spatial autoregressive panel model. They obtain the
spatial error components best two stage least squares estimator (SEC-B2SLS), in which we
base our estimation.

Accordingly, we consider the following matrix of instruments:

B =
[
H̃?
b , H̄

?
b

]
, (35)

where H̃?
b =

[
X̃,WA−1X̃β

]
and H̄?

b =
[
X̄,WA−1X̄β

]
are the instruments with the trans-

formations used in the fixed and between models, respectively, and A = (IN − λW ). λ and
β are consistent estimators and can be those obtained from a pool spatial regression. Then,
GSL estimation is performed using the matrix of instruments B.

>> regsecb = spanel(y, X, L, W, T, 'sec−b');
>> regsecb.dvarnames = dvarnames;
>> regsecb.ivarnames = ivarnames;
>> estprint(regsecb);

Spatial Panel: Error Components Best (SEC−B2SLS)

N observations: 816
N groups: 48
Obs per group: 17
R−squared = 0.958805
Joint significance: Chi2(5) = 18852.569351

p−value = 0.0000
Dept Var: lgsp
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Varname Coefficient Std. Error Statistic p−value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lpcap 0.01838 0.02493 0.7371 0.461
lpc 0.29742 0.02105 14.1284 0.000***

lemp 0.71380 0.02680 26.6310 0.000***
unemp −0.00640 0.00092 −6.9677 0.000***

W*lgsp 0.02739 0.01489 1.8396 0.066*
CONSTANT 1.96319 0.16656 11.7869 0.000***

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sigma_mu = 0.083405
sigma_v = 0.037325 sigma_1 = 0.345907
rho_mu = 0.833143 Theta = 0.892094

6. Numerical checks

Numerical checks against other commercial and free software are performed by comparing the
standard panel data results obtained in Section 3 from this Panel Data Toolbox in MATLAB
and the results reported by Stata, xtreg function, and the R package plm by Croissant and
Millo (2008), plm function.
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Results for the fixed, between and random estimators using the Munnell (1990) data are
reported in Table 1. The decimal places are those corresponding to the default output of all
three softwares.11 Results show that there are not differences in the estimated coefficients
and t-statistics between the three programs.12

Coefficient t statistic
MATLAB Stata R MATLAB Stata R

Fixed lpcap -0.02615 -.0261493 -0.02614965 -0.9017 -0.90 -0.9017
lpc 0.29201 .2920067 0.29200693 11.6246 11.62 11.6246

lemp 0.76816 .7681595 0.76815947 25.5273 25.53 25.5273
unemp -0.00530 -.0052977 -0.00529774 -5.3582 -5.36 -5.3582

CONST 2.35290 2.352898 N.A. 13.4595 13.46 N.A.
Between lpcap 0.17937 .1793651 0.1793651 2.4922 2.49 2.4922

lpc 0.30195 .3019542 0.3019542 7.2201 7.22 7.2201
lemp 0.57613 .5761274 0.5761274 10.2196 10.22 10.2196

unemp -0.00389 -.0038903 -0.0038903 -0.3926 -0.39 -0.3926
CONST 1.58944 1.589444 1.5894444 6.8222 6.82 6.8222

Random lpcap 0.00444 .0044388 0.00443859 0.1895 0.19 0.1895
lpc 0.31055 .3105483 0.31054843 15.6805 15.68 15.6805

lemp 0.72967 .7296705 0.72967053 29.2803 29.28 29.2803
unemp -0.00617 -.0061725 -0.00617247 -6.8033 -6.80 -6.8033

CONST 2.13541 2.135411 2.13541100 16.0002 16.00 16.0002

Table 1: Comparison of estimated coefficients and t statistics for panel data
against Stata and R.

Checks for the instrumental variables panel data models with fixed, between, random, and
error components for Stata, using the xtivreg function, and R package plm function by
Croissant and Millo (2008), are reported in Table 2, using the cigarette data, Baltagi (2008).13

Again, results are the the same for all three programs.

Spatial panel estimations are checked against the R package splm by Millo and Piras (2012)14,
using the spgm function, which performs a GM implementation.15. Results in Table 3 reveal
slight differences in the estimated coefficients and t statistics, but these differences do not
change the overall features of the estimation results.

11All decimals can be obtained for the Panel Data Toolbox accessing directly the properties coef or statistic
of the estoutput structure.

12The code is available in the supplementary files NC_panel_Stata.do and NC_panel_R.R.
13The code is available in the supplementary files NC_ivpanel_Stata.do and NC_ivpanel_R.R.
14The R package sphet by Piras (2010) can estimate spatial models with heteroskedastic innovations.
15The code is available in the supplementary file NC_spanel_R.R.
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Coefficient t statistic
MATLAB Stata R MATLAB Stata R

Fixed lprice -1.01636 -1.016359 -1.016355 -4.0785 -4.08 -4.0785
lndi 0.53785 .5378483 0.537848 23.3507 23.35 23.3507

lpimin 0.31237 .3123759 0.312372 1.3677 1.37 1.3677
CONST 2.99141 2.99141 N.A. 36.8827 36.88 N.A.

Between lprice -3.27523 -3.275225 -3.27523 -1.2530 -1.25 0.21714
lndi 0.83220 .8322024 0.83220 2.0785 2.08 0.04381

lpimin 1.18107 1.181067 1.18107 0.8922 0.89 0.37736
CONST 6.17390 6.173898 6.17390 1.8727 1.87 1.8727

Random lprice -1.00711 -1.007117 -1.007113 -4.0715 -4.07 -4.0715
lndi 0.53747 .5374736 0.537473 23.3398 23.34 23.3398

lpimin 0.30357 .3035705 0.303567 1.3407 1.34 1.3407
CONST 2.99212 2.992121 2.992121 34.9268 34.93 34.9268

Error lprice -0.99268 -.9926806 -0.992679 -4.2086 -4.21 -4.2086
components lndi 0.53641 .5364105 0.536410 23.9939 23.99 23.9939

lpimin 0.29039 .2903891 0.290388 1.3446 1.34 1.3446
CONST 2.99512 2.995124 2.995124 35.5724 35.57 35.5724

Table 2: Comparison of estimated coefficients and t statistics for instrumental panel data
against Stata and R.

Coefficient t statistic
MATLAB R MATLAB R

Fixed lpcap -0.04041 -0.03994235 -1.4197 -1.4952
lpc 0.21904 0.22141443 8.1770 8.7866

lemp 0.66833 0.67158117 20.3447 21.7199
unemp -0.00473 -0.00474680 -4.8683 -5.2069

W*lgsp 0.19166 0.18542741 6.8597 6.9694
CONST 1.93735 N.A. 10.6741 N.A.

Between lpcap 0.17131 0.1713115 2.2882 2.2825
lpc 0.30163 0.3016278 7.1520 7.1343

lemp 0.58559 0.5855900 9.6283 9.6045
unemp -0.00242 -0.0024207 -0.2297 -0.2291

W*lgsp -0.01082 -0.0108194 -0.4373 -0.4363
CONST 1.70896 1.7089613 4.7423 4.7306

Random lpcap 0.02286 0.01938433 0.9173 0.7823
lpc 0.29376 0.29156673 13.9596 13.7588

lemp 0.70864 0.71205474 26.4514 26.5722
unemp -0.00648 -0.00638432 -7.0525 -7.0221

W*lgsp 0.03547 0.03645267 2.3946 2.4111
CONST 1.90996 1.93191718 11.4865 11.6601

Table 3: Comparison of estimated coefficients and t statistics for spatial panel data against R.
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7. Conclusions

The new Panel Data Toolbox covers a wide variety of panel data models in the organized
environment provided by MATLAB. Estimation methods include fixed, between and random
effects, as well as instrumental variables models and spatial models.

Numerical checks show the consistency of the results, as the estimated coefficients and t statis-
tics are equal to those reported by Stata and R for panel and instrumental panel data methods.
This positions the new toolbox as a valid self-contained alternative for panel data econometrics
in MATLAB.

Future improvements aim at adding new econometric methods, including unbalanced and
rotating panels, dynamic panel data models, and additional tests.
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