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Abstract 

 
We use the multiregional core-periphery model of the new economic geography to 

analyze and compare the agglomeration and dispersion forces shaping the location of 
economic activity for a continuum of network topologies characterized by their degree 
of centrality, and comprised between two extremes represented by the homogenous 
(ring) and the heterogeneous (star) configurations. Resorting to graph theory, we 
systematically extend the analytical tools and graphical representations of the 
coreperiphery model for alternative spatial configurations, and study the stability of 
the alternative equilibria in terms of the sustain and break points. We study new 
phenomena such as the absence of any stable distribution of economic activity for some 
range of transport costs, and the infeasibility of the dispersed equilibrium in the 
heterogeneous space, resulting in the introduction of the concept pseudo flat-earth as a 
long run-equilibrium corresponding to an uneven distribution of economic activity 
between regions.  
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1. Introduction and motivation 

Economic geography, the study of where economic activity takes place and the 

forces behind it, is a field of increasing interest in economics. The real world shows that 

economic activity is distributed unevenly across locations: nations, regions and cities, 

Krugman et al. (2011). One of the most important explanations for that uneven 

distribution is geography. At no time can the configuration of economic activity at any 

of the above mentioned territorial scales be dissociated from the particular geography 

where the activity takes place. Because economic forces are influenced by the 

economy’s geographical characteristics, both “first nature” geographical determinants 

and “second nature” economic factors (market structure, pricing rules,…) shape the 

particular distribution of economic activity in a given space.1 For example, if we take 

regions as the territorial benchmark, the distribution of economic activity and transport 

networks in France has given rise to a topology resembling a star network, where the 

central Île-de-France region presents a prominent situation, characterized by its high 

degree of centrality. Germany, meanwhile, presents a more even geographical 

distribution of economic activity, which, with the tightly woven transport grid, results in 

a more balanced, less centralized economy. It is clear, then, that geography, understood 

as a specific spatial configuration, determines the final distribution of economic activity 

along with economic forces. 

Theoretical models explain agglomeration outcomes as a result of increasing returns 

to scale, and thereby depart from the perfectly competitive market assumption. 

Increasing returns in production and transport costs, as the opposing centrifugal force, 

are the main ingredients of the so-called new economic geography with respect to other 

approaches that study the location of economic activity in space such as location theory,  

Thisse (2010). Geography is introduced into the economic models by way of transport 

costs, normally associated to the concept of distance between locations, shaping a 

specific spatial configurationto which we associate a network topology in this study. 

 Graph theory makes it possible to characterize the geographical configuration of 

economic activity with a specific spatial topology. In this context, the question naturally 

                                                 
1 Cronon (1991) defines “first nature” as the local natural advantages that firms seek when settling on 
their location, and “second nature” as the forces arising from the presence of other firms. The first is 
related to geographical features and results in diverse market potential, while the second corresponds to 
economic interactions: i.e., Marshallian externalities. 
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arises on how a particular topology influences the centripetal and centrifugal forces that 

drive agglomeration or dispersion. In recent years several contributions have appeared 

that change the initial setting of the seminal core-periphery model introduced by 

Krugman (1991) and thoughtfully discussed in a textbook presentation by Fujita et al. 

(1999)—e.g., allowing for different definitions of the utility function as the model by 

Ottaviano et al. (2002), the existence of vertical linkages as in Puga and Venables 

(1195), etc.—but it is fair to say that the behavior of these models under alternative 

spatial configurations of the economy has not been systematically discussed. In its 

original version, there are two regions with the long-run distribution of economic 

activity either fully agglomerated in one or equally divided between the two.  

Nevertheless, a few ways to generalize the model to a multiregional setting have 

been proposed in the literature. The core-periphery model has been extended to a greater 

number of regions with the assumption that they are evenly located along the rim of a 

circumference, in the so-called “racetrack economy”, e.g., Krugman (1993), Fujita et al. 

1999, Brakman et al. (2009). Whereas these authors obtain results through numerical 

simulation, Ago et al. (2006) analytically study a situation in which three regions are 

located on a line, while Castro et al. (2012) consider the case of three regions equally 

spaced along a circle. The former authors conclude that the central region has locational 

advantages and that economic activity will concentrate there as transport costs fall. With 

the alternative model of Ottaviano et al. (2002), however, they also show that the central 

region can present locational disadvantages and that price competition can make 

economic activity move to two or just one of the peripheral regions. Castro et al. (2012) 

qualify the results obtained for two regions regarding long run-equilibria, and are able 

to generalize some of them for a larger number of regions. In graph theory, the previous 

racetrack (or ring) economy and the line (star) economy represent two simple and 

extreme topologies of a spatial network; the former characterizing a neutral or 

homogeneous topology where no region has a (first nature) geographical advantage, and 

the latter a non-neutral heterogeneous space where the center is a privileged location.  

The aim of the present study is to generalize the well-known canonical model of the 

new economic geography and systematically analyze the effect of different geographic 

configurations on the locational patterns of economic activity. To accomplish this goal 

we use the customary analytical and simulation tools of the new economic geography to 

analyze how alternative network topologies determine the long-run equilibrium of the 
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multiregional model. In particular—and mainly with the methodology summarized as 

“Dixit-Stiglitz, icebergs, evolution and the computer” by Fujita and Krugman (2004), 

since the non-linearity of the model prevents closed analytical results for the 

multiregional model—we calculate the sustain and break points: i.e., the transport cost 

levels at which full agglomeration cannot be sustained and the symmetric dispersion is 

broken, and determine the existence (or absence) of alternative equilibria. We do so for 

a continuum of network topologies between the already mentioned extreme cases: the 

racetrack-ring economy (homogeneous space) and the star economy (the most uneven 

heterogeneous space). In fact, a racetrack-ring economy with three locations 

corresponds geometrically to the triangle studied by Castro et al. (2012), while the star 

economy corresponds to the line economy of Ago et al. (2006). Because our 

methodology can be extended to a larger number of regions, we can with no loss of 

generality study all possible network topologies (spatial configurations) for the case of 

four locations, which yields new results never studied in the literature.  

By exploring the effect of different geographic configurations on the locational 

patterns of economic activity our study determines the relationship between “first” 

nature network characteristics and “second” nature economic forces: i.e., the underlying 

assumptions of the core-periphery model corresponding to CES preferences, iceberg 

transport costs, increasing returns and monopolistic competition. As a result we 

contribute to the scarce literature studying the combinationharmonizationof both 

first- and second-nature characteristics, and see how localization patterns change as 

some locations benefit from first-nature advantages, yielding endogenous asymmetries 

associated with short-run and long-run equilibria, as well as the dynamics associated 

with continuous or catastrophic changes (see the recent discussion on this matter by 

Picard and Zeng, 2010).  

For the real case of economies with a heterogeneous network we confirm that the 

greater the centrality of the economy’s spatial configuration, the higher the sustain 

points. Centripetal economic forces are reinforced by the advantage of the region with 

the best location, and the dissemination of economic activity therefore takes place at a 

higher transport cost. Alternatively, economic activity fully agglomerated in the least 

central region (a peripheral region) is less sustainable, because the locational 

disadvantage works against the agglomerating forces. Consequently, an increase in 

transport costs shifts economic activity in the network from regions with the lowest 
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centrality to regions with the highest centrality. For the break points, we show that the 

flat-earth equilibrium is infeasible in heterogeneous space. Therefore, performing the 

stability analysis for break points requires the introduction of an analogous concept that 

we term pseudo flat-earth, for which we can determine the transport cost at which 

economic activity starts agglomerating. We find that this break point is higher the 

greater the centrality of the region with the best location. Note that these important 

results are observed not only for the extreme topologies represented by the ring and star 

networks, but also for the continuum of topologies that exists between them.  

The paper is structured as follows. The multiregional core-periphery model and the 

characterization of network topologies by centrality index, including the extreme 

racetrack-ring and star space topologies, are presented in section 2. In this section we 

also generalize the model’s dynamics relative to workers moving between existing 

locations. In section 3, without loss of generality, we perform the four-region analysis 

for the well-known racetrack economy and for its opposite spatial configuration in 

network topology, the star. We determine the transport cost value up to which the 

agglomeration of the economic activity is sustainable, the sustain point, and when the 

symmetry between regions gives way, the break point. We introduce and discuss new 

phenomena regarding the absence of long-run equilibria in the core periphery model 

within a homogeneous space and the infeasibility of the symmetric flat-earth 

equilibrium in heterogeneous space. We also show bifurcation diagrams summarizing 

this information for the extreme topologies. In section 4, we analyze the continuum of 

intermediate topologies using the network centrality index, determine the corresponding 

sustain and break points, and generalize the previous results for any degree of centrality. 

Section 5 concludes. 

2. The multiregional core-periphery model and the network topology 

In the multiregional core-periphery model, there are N regions with two sectors of 

production: the numéraire agricultural sector, perfectly competitive, and the 

manufacturing sector, with increasing returns to scale. The agricultural sector is 

immobile and equally distributed across regions.2 Manufacturing workers can move 

                                                 
2 Although different asymmetries can be incorporated into the model (e.g., uneven distribution of the 
population working in the agricultural sector, varying productivity among firms, etc.), we follow the 
seminal model where all locations are symmetric, and our only sources of variation in the long-run 
distribution of economic activity are unitary transport cost and network topology. 



6 
 

between regions, and λi is the share of manufacturing workers and manufacturing 

activity in region i. Iceberg transport costs are assumed for the manufacturing sector. 

Transport costs between region i and region j, ij , depend on the unit-distance transport 

cost T and on the distance between the regions h
ijd  in the network h. The transport cost 

function defines as: 

 
h
ijd

ij T   (1) 

The income, price index, wage, and real wage equations that determine the 

multiregional instantaneous equilibrium are well known, Fujita et al. (1999): 
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 , 1,...,  i i iw g i N  (5) 

The homogeneous space is defined as a topology in which all regions have the same 

relative position, whereas in the heterogeneous space certain regions have better relative 

positions: i.e., “first nature” locational advantages. The simplest and most extensively 

studied case of a homogeneous topology corresponds to the afore mentioned racetrack-

ring economy, where all regions are evenly situated along the rim of a circumference, 

Krugman (1993). The extreme heterogeneous topology is the star, where one region, the 

center, has the best relative position, while all the other regions, the periphery, also 

situated along the rim of the circumference, have the least advantageous relative 

positions and are connected to the center only through the spokes of the star. Figure 1 

represents the four-location case for both the homogeneous ring and heterogeneous star 

network topologies.  
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Figure 1: The extreme homogeneous ring and heterogeneous star network topologies.  

 

The network topology enters the model as the distance between regions, which 

determines the transport costs between them. Since we are interested in how changes to 

the topology affect the agglomeration and dispersion of economic activity, we 

normalize the absolute measures of distance and transport cost, so as to render all 

topologies comparable. The simplest way is with the following transport cost function 

replacing (1): 

 ,

h
ijd

r
ij T   (6) 

where r is the radius of the circumference circumscribing all possible topologies h for a 

given N. To illustrate, Figure 1 shows the circumference enclosing the networks; the 

dotted circle denotes that regions are not connected through the circumference but 

through the distances within the network h, represented in these cases by straight, solid 

lines: i.e., the ring or star topologies.  

With regard to the shares of workers and manufacturing activity, the dynamics are 

as follows: (i) workers will leave region i if there is a region j with a higher real wage, 

eq. (5), or, equivalently, higher indirect utility; (ii) if several regions have higher real 

wages, workers are assumed to move to the one offering the highest value; (iii) when 

the highest wage is observed in several regions, workers emigrate evenly towards those 

regions. Therefore, from region i’s perspective, workers will move according to these 

rules: 
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where the second line summarizes the instantaneous equilibrium: i.e., equal real wages 

across regions. A distribution of lambdas for which the system of equations (2) through 

(5) holds therefore represents an instantaneous equilibrium, while a long-run 

equilibriumsteady stateis one in which workers do not have an incentive to move 

according to (7) if there is a shock marginally increasing the share of manufactures in 

any region, and is denoted by * * *
1( ,..., )   N .  

In a multiregional economy we can characterize the spatial or network topology 

with graph theory, which proposes several indicators that summarize the pattern of 

interconnections between various locations; e.g., Harary (1969). Centrality measures are 

particularly useful for the study of the multiregional network, as they are good 

indicators to characterize the space topology with.  

With 
1j

N
h
ijd


  being the sum of the distances from location i to all other j locations within 

the network h, the centrality of location i corresponds to the following expression: 
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where 
1

min
N

ij
j

hd


 
 
 
  corresponds to the value of the location(s) best positioned within 

the economy, denoted by i*, with *

h

i
c  = 1. In a homogeneous space such as that 

represented by the ring topology all locations have a centrality of 1, whereas in the 

heterogeneous star topology the central node has a centrality of 1 and all peripheral 

nodes have equal centrality values lower than 1: h
ic

 
< *

h

i
c

 
= 1. 

The centrality of the economynetwork centralitydefines as: 
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where *

1

N
h

i
i

i
hc c



    is the sum of the centrality differences between the location with the 

highest centrality and all remaining locations, and 
* *

*

1

max
N

h h
i

i
i

c c

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 is the maximum 

sum of the differences that can exist in a network with the same number of nodes. This 

maximum corresponds to a heterogeneous star network with a central node and N-1 

periphery nodes. The network centrality for the homogeneous ring space is  HMC h
 
= 0 

and for the heterogeneous star space  HTC h
 
= 1. The two extreme topologies have the 

extreme network centralities. 

3. Analysis of the extreme topologies: The ring and star economies 

Without loss of generality, we can study a four-region economy by comparing the 

two opposite cases of spatial topology in terms of network centrality: the ring and the 

star (Figure 1). In the homogeneous space the four regions are the four vertices of a 

square. In the heterogeneous three-pointed star topology there is a central location, 1, 

and three peripheral locations connected to the center. Both spaces are circumscribed in 

a circumference of radius 1. The distance matrices of the four-region ring and star 

networks are the following:3 

0 1.4142 2.8284 1.4142 0 1 1 1

1.4142 0 1.4142 2.8284 1 0 2 2
,    .

2.8284 1.4142 0 1.4142 1 2 0 2

1.4142 2.8284 1.4142 0 1 2 2 0

HM HTD D

   
   
    
   
   
   

 

3.1 Sustain points 

The sustain point is the level of transport cost at which the agglomeration of 

economic activity is no longer sustainable and economic activity disperses across 

regions. To compute the value of the sustain point we must select the reference region, 

                                                 
3 To compute the distance between two neighbor regions, we use the formula of the length of the side of a 

regular polygon of n sides and radius r:  2 sin .HM
ijd r n  
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or regions, where the economic activity is initially agglomerated and check whether it is 

a feasible solution for the instantaneous equilibrium defined in eqs. (2) through (5). 

Next, given a particular network h, we use the dynamic rules set in (7) to compute the 

value of T  for which 0i   in each region. For example, assuming that a single 

location agglomerates (e.g., region 1: 1 1   in (5)) and given the generalized definition 

of the real wages for the remaining regions (i ≠ 1) (Appendix1):  

 1 1 1 1
1 1 1

2

1
1

1 11 1
, 2,..., ,i i i i i ij

N

j

N
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N N
N

N
                


  



  
   

 

(10)

 
we compute the level of the transport cost corresponding to the sustain point  1iT S  for 

which  1, 1i i   , and determine the subsequent final instantaneous equilibrium 

compatible with  1iT T S : i.e., a comparative statics analysis. In this section we 

explore the sustain point for the two extreme ring and star topologies when the region in 

the center starts agglomerating. In the first case all the regions in the homogeneous 

space are equivalent, and we need to explore only the case of one of the regions, as the 

long-run equilibria are symmetric: i.e., any permutation of the agglomerating location 

yields equal results. 

3.1.1 Homogeneous-ring topology: From full agglomeration to flat-earth dispersion  

In simulations for the ring network with region 1 agglomerating ( *
1 1  ), the sustain 

point for region 3 (the farthest region from 1, as 13
HMd  = 2.83) is  13 1.39HMT S  , which 

is lower than the value for neighbor regions 2 and 4 (separated by 1
HM
jd = 1.41, j = 2, 4): 

i.e.,   1 1.52,  2,4HM
jT S j  .4 That is, when the transport cost T rises above 1.39 

economic activity spreads to region 3, since 3 1  , and regions 1 and 3 both produce 

manufactures. The sustain point, defined as   1min 1.39, 2,3,4HM
jT S j  , suggests a 

partial agglomeration in two regions separated by the maximum distance 13
HMd  = 2.83. 

As a result, the configuration   = 1 2 3 4( 0.5, 0, 0.5, 0)        is a candidate for a 

                                                 
4 To ease comparability with Fujita et al. (1999), all simulations in these sections use the parameter values 

5  and 0.4  . Expressions for real wages when only one region is agglomerating and the 

agglomeration depends only on transport costs are presented in Appendix 1for N regions and in Appendix 
2 for N = 4 regions. 
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stable equilibrium, since real salaries in the agglomerating regions are equal: 

0.9353, 1,3  i i , while those of the empty regions  are 0.8611, 2,4  i i . Because 

the minimum sustain value corresponds to the farthest regions, the balance between 

competition and transport costs makes it more profitable for firms and workers leaving 

the agglomerating region to relocate as far as possible and thereby equally serve the 

markets of the regions with no manufacturing activity, regions 2 and 4.   

Whether the partial agglomeration (or partial dispersion) given by   = 

1 2 3 4( 0.5, 0, 0.5, 0)        is a long-run equilibrium depends on the 

corresponding stability analysis for a shock that marginally increases the share of 

manufactures in one or more regions, and its effect on the real salaries: i.e., i i   , 

i=1, 3. This stability analysis is performed in the next section, on break points. 

Nevertheless, if we assume that such a shock does not take place, and since the previous 

distribution may represent a subsequent instantaneous equilibrium, we can further study 

its sustainability as transport costs keep rising. Figure 2 shows real wages for different 

transport-cost values when the instantaneous equilibrium corresponds to agglomeration 

in regions 1 and 3. The sustain point in this case is    1 3 1.72,  2,4HM HM
j jT S T S j   . 

When transport cost increases beyond 1.72 manufacturing activity disperses across all 

regionsflat-earth. That is, a situation where all regions have the same share of 

manufacturing activity, 0.25  i i , emerges as a possible long-run equilibrium, as 

regions end up having the same real wage 0.878,  i i . Once again, however, its 

steady-state assessment depends on the necessary stability analysis for long-run 

equilibrium.  
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Figure 2: Real wages for the ring topology when opposite regions agglomerate. 

 

3.1.2 Heterogeneous-star topology: From full agglomeration to “pseudo” flat-earth 

We now examine the star topology when the location with the highest centrality—

the center of the star: * 1max HT HT HT
i ic c c  = 1—begins agglomerating: *

1 1  . As shown 

Section 4, this extreme heterogeneous network topology has the highest sustain point of 

all possible spatial configurationsnetwork centralities, with   
*

2.58,  2,3,4
i

HT
jcT S j  . 

Above this value of transport cost, agglomeration is no longer sustainable and 

manufacturing activity disperses to the three peripheral regions. Once again, the 

question is whether the dispersion of economic activity can result in an equal 

distribution of the manufacturing industry: i.e., whether 0.25  i i  corresponds to a 

long-run equilibrium.  

Once again, we must resort to stability analysis, but it turns out that we can 

immediately prove that this spatial configuration does not represent a stable 

equilibrium, because it simply cannot exist. That is, the flat-earth long-run equilibrium 

is infeasible in any heterogeneous space with the system of equations (2) through (5) 

characterizing it, because it requires transport costs to be equal for all regions (i.e., a 

2 4   

1 3   
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homogeneous space topology is a necessary condition). Indeed, symmetric equilibrium 

is possible only if all regions have the same real wage: i i iw g    i . If all regions 

have the same share of manufacturing, λi = 1/N, the nominal wage in all agglomerating 

regions is 1iw  , as the following condition holds (cf. Robert-Nicoud (2005, 11) for 

N=2, as well as Ago et al. (2006, 822) and Castro et al. (2012, 406) for N = 3): 

 
1

1i

n

i
i

w


  (11) 

Therefore, real wages are equal in all regions only if price indices are equal in all 

regions. Since the price index of a region i  depends on the transport cost between all 

agglomerating regions and region i , the price index will be equal across regions if and 

only if all the regions have the same relative position in the network economy. 

Proposition 1. Inexistence of the flat-earth equilibrium in a heterogeneous space: 

Symmetric equilibrium, flat-earth, is feasible only if all locations have the same relative 

position in the network. Therefore, symmetric equilibrium is feasible only in a 

homogeneous space. 

Proof: Equality of real wages across regions: , ,  i j i j , agglomerating an even 

share of manufacturing activity 1/i N i   , requires that price indices be equal: 

, , i jg g i j . Substituting this even share of manufacturing and iw = 1  ifrom 

(11)in (3), real salaries are (not) equal if all bilateral transport 

costscentralitiesare the same; this is (not) verified in the homogeneous 

(heterogeneous) space.                                    ■ 

Proposition 1 can be easily illustrated. Real wages when the four regions of the star 

hypothetically have the same share of manufacturing activity: 0.25i i   , are 

represented in Figure 3. For all levels of transport cost, the real wage of the central 

region 1 is higher than the real wages of the remaining regions except in the unreal case 

when transport is costless: T = 1. This illustrates that economic activity moves from the 

periphery to the center and that the flat-earth equilibrium is not feasible in the 

heterogeneous space.  
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Figure 3: Real wages for the star topology when all regions have an equal share of economic 
activity.  

 

Therefore, with region 1 agglomerating, once transport costs overcome the (single) 

sustain point  
*

2.58,  2,3,4
i

HT
jcT S j   , manufacturing activity will disperse across 

regions and reach a configuration that we define and characterize in the following 

section and name pseudo flat-earth. As we show, for a pseudo flat-earth the central 

region’s share of manufacturing is above 0.25, while peripheral regions’ shares are 

below 0.25. Figure 3 illustrates that the hypothetical flat-earth situation is not a stable 

equilibrium for all transport costs, including the sustain point  
*

2.58,  2,3,4
i

HT
jcT S j  , 

as the real salary is higher in the central region than in any other: 1 0.8774   > 

0.8772, 2,3,4  i i . 

1  

2 3 4     
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3.1.3 Comparing sustain points in ring and star network topologies 

The differences in the sustain points between the homogeneous and the 

heterogeneous space lead to the following resultas long as the “no-black-hole” 

condition holds: 5 

Result 1. The sustain point in a heterogeneous space is higher (lower) than in the 

homogeneous space for central (peripheral) regions. There is a transport-cost level in 

the homogeneous ring topology and the heterogeneous star topology at which dispersion 

forces outweigh agglomeration forces are outweighed by the dispersion forces. 

Regarding this level of the transport cost, the sustain point for the central region 

(peripheral region) is higher (lower) in a heterogeneous space than in a homogeneous 

space, because agglomeration forces are higher (lower) in regions that have a locational 

advantage (disadvantage), i.e., that exhibit a better (worse) relative position: 6 

 
     

* *i i

HT HM HT
j ij jc cT S T S T S   (12) 

The values of the sustain point for the different situations already examined are 

presented in Table 1.  Beginning with the homogeneous space we have the initial 

equilibrium, EHM = 1, in which only one region is agglomerating. When transport cost 

reaches  13 1.39HMT S   half of the economic activity moves to the farthest region, 

thereby reaching a secondunstableequilibrium, EHM = 2. If transport cost continues 

to increase beyond    1 3 1.72,  2,4  HM HM
j jT S T S j

 
economic activity disperses across 

all regions, attaining a final long-run equilibrium, EHM = 3. In a heterogeneous star 

topology, starting at an equilibrium in which the center is agglomerating economic 

activity, EHT = 1, when transport cost rises above  1 2.58,  =2,3,4HT
jT S j , economic 

activity disperses across all regions, attaining a pseudo flat-earth long-run situation, EHT 

= 2.  
                                                 
5 The “no-black-hole” condition in the multiregional model can be obtained from eq. (10). It can be 
shown that all summands except the second tend to infinity as transport costs increaseregardless of 
network configuration—as long (-1)/ < : i.e., as long as the original two-region condition holds. For 
the particular N =4 case shown in Appendix 2, the first summand coincides with that of the two-region 
case, while the third and fourth terms are positive for the values of   and  previously assumed:  > 1 
and   [0, 1]. 
6 We have also studied the sustain point for one of the peripheral regions with lowest centrality: 2 1   

with HT
ic = 0.6, i = 2, 3, 4 (top region in Figure 1). In this case, the central region defines the lowest value 

for the sustain point: min  
*2 1.44

i

HT
cT S  . Complete results for the full range of alternative simulations 

are available upon request.      
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Table 1: Sustain-point values for different network topologies: From agglomeration to dispersion 

Region 

Homogeneous ring topology Heterogeneous star topology 

One region 

agglomerating 

EHM = 1  

(1) 

Opposite 

regions 

agglomerating 

EHM = 2  

(2) 

Dispersion 

EHM = 3  

(3) 

Central Region 

agglomerating 

EHT = 1  

(4) 

Dispersion 

EHT = 2 

 (5) 

1 
Agglomeration: 

λ1 = 1 

Partial 

agglomeration: 

λ1 = 0.5 

Dispersion: 

λ1 = 0.25 

Agglomeration: 

λ1 = 1 

Dispersion: 

λ1 > 0.25 

2 1.52 1.72 
Dispersion: 

λ2 = 0.25 
2.58 

Dispersion: 

λ2 <  0.25 

3 1.39 

Partial 

agglomeration: 

λ2 = 0.5 

Dispersion: 

λ3 = 0.25 
2.58 

Dispersion: 

λ3 < 0.25 

4 1.52 1.72 
Dispersion: 

λ4 = 0.25 
2.58 

Dispersion: 

λ4 < 0.25 
 

 

3.2 Break points 

Studying the break point involves determining when a symmetric equilibrium is 

broken. To obtain the break point analytically we generalize the procedure set out in 

Fujita et al. (1999), which requires defining an initial distribution for the stability 

analysis. We start with a symmetric equilibriumeither flat-earth in the homogeneous 

ring topology or pseudo flat-earth in the heterogeneous star topologyin which all 

regions have the same share of manufacturing activity ( 1/i N  ) and evaluate the 

derivative of the real wage with respect to the change in a region’s share of 

manufacturing activity i: i i   . A break point is the transport cost at which the 

derivative of the real wage equals zero and the symmetric equilibrium is unstable, 

because the right derivative is positive and the left derivative negative. If the 

equilibrium is unstable, a small shock increasing a region’s share of manufacturing 

activity triggers agglomeration in that region.7 

                                                 
7 This is normally illustrated in the literature with the so-called “wiggle” diagram, which presents the 
value of the derivative   i i  for the full range on lambda values:   [0, 1]. In this diagram, 

instantaneous equilibria are characterized by equality of real wages. The instability (stability) of these 
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The system of nonlinear equation derivatives of (2) through (5) that allows us to 

determine the value of i i   is the following:8 

 ,i i i idw wdy d     (13) 

 

   

    1

1

1 1

1

1 1

1 ,
N

j

i
i i i i i

i

j ji j j ji j j

dg
w d w dw

g

w d w dw

 


  

   

    

 


  




    

  
 (14) 

 

 

  

1 2

1 1 1 2
1

1

,

1

1

  

   

  

  


 

   



  

 





i
i i i i i i

i

j ij j i i
j

j j j

N

g dy y dg

g dy y g dg

dw
w

w
 (15) 

 .i
i i i i

i

w
dg

g d dw
g

     (16) 

3.2.1 Homogeneous ring topology: From flat-earth to agglomeration 

At the symmetric equilibrium we calculate the break point corresponding to a first 

simulation (S1) characterized by: (i) an equal distribution of manufacturing activity 

corresponding to the followingtransposedvector:

1 * '( ) (0.25,0.25,0.25,0.25)S
i   , and (ii) the evaluation of the system on non-linear 

equations   i i i under a shock of the following magnitude: 1Sd  = '
4·1d  = 

1 2 1 3 1 4 1( 0.001,  /3, /3, /3)d d dd dd d             . This corresponds to the 

standard setting in the literature for break-point evaluation: a flat-earth configuration 

and a shock in one of the regions. The value of the break point is   S1 S1,
1.45

d

HMT B
 

 , 

meaning that when transport cost falls below 1.45 the symmetric equilibrium breaks as 

1 1    > 0, and the agglomeration of economic activity starts. Given the differentials, 

this positive value is observed in the region whose share of manufacturing increases:

id > 0, which in this case is region 1. However, a long-run equilibrium characterized 

                                                                                                                                               
interior equilibria depends on whether the right and left derivatives are positive (negative) and negative 
(positive), respectively.    
8 Equation (13) is obtained directly by totally differentiating the income equation (2). The differentiation 
process yielding (14) through (16) is presented in Appendices 3 through 5, respectively. 
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by *
1 = 1 is not reached, because, as shown in the previous section, the sustain point for 

this configuration is    13min 1.39 HM HM
ijT S T S a value that situates below the 

previous break point   S1 S1,
1.45

d

HMT B
 

 . In ring topology, therefore, neither full 

agglomeration nor symmetric dispersion represents long-run equilibria for values of T 

    S1 S1,
min ; HH

d

MM
ijT S T B

 
 =  1.39;1.45 . This contrasts with the usual 

configurations of stable equilibria in two- or three-region economies, where at least one 

or both of the equilibria exist (cf. Ago et al (2006) and Castro et al. (2012)). Given the 

relevance of this situation we stress the following result.  

Result 2. In the multiregional homogeneous ring network topology, core-periphery 

and symmetric flat-earth equilibria do not exist if the break point is greater than 

the minimum sustain point. In the ring topology, there exist transport costs in the 

range T       S1 S1,
min ; HH

d

MM
ijT S T B

 
 for which full agglomeration and symmetric 

dispersion of manufacturing activity are not stable equilibria.  

This result holds when the following inequality is verified: 

     S1 S1,
minHM HM

ijd
T B T S

 
  (16) 

As shown below, the existence of an intermediate distribution of manufacturing 

activity *  representing a stable long-run equilibrium for the previous range of 

transport cost: T       S1 S1,
min ; HH

d

MM
ijT S T B

 
, can be ascertained through a 

stability analysis evaluating the equality of real wages and by the sign of the derivative 

  i i . 

The previous evaluation of the stability of the symmetric equilibrium produced by 

the shock 1Sd  in the first region is not the only possible one. Complementing the 

existing literature on three-region models, in the multiregional model there can be 

shocks affecting any number of regions as long as 
1

1


N

i
d . Let us now consider a 

simulation with the initial distribution of manufacturing activity:  

S2 S1 * '( ) (0.25,0.25,0.25,0.25)i     , but in which a shock hits two opposite 
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regions, so that: 
S2d  = '

4·1d  = 

 2 41 30.0005, 0.0005, 0.0005, 0.0005d d dd         . This results in a break 

point value of   S2 S2,
1.59,

d

HMT B
 

  which is higher than the previous one. Thus the 

second result above still holds. This second break point is larger than the first—

  S2 S2,

H

d

MT B
 

 >   S1 S1,

H

d

MT B
 

—because as the agglomerating shock spreads to more 

and more regions (from region 1 to include region 3) the other regions remaining at the 

symmetric equilibrium decrease in number accordingly, and the centrifugal forces 

associated with them weaken. As a result, the symmetric equilibrium breaks at a higher 

transport cost. For this second simulation, the range of transport costs for which neither 

full agglomeration nor symmetric dispersion exists is T  

     S2 S2,
min ; HH

d

MM
ijT S T B

 
 =  1.39;1.59 . In this case, regions 1 and 3 both start 

agglomerating and a partial symmetric dispersion—or partial asymmetric 

agglomeration—occurs in the two regions: '  =  1 2 3 4( 0.5, 0, 0.5, 0)       . As 

a result, we reach the instantaneous equilibrium as characterized in the previous section, 

with the first region’s departure from full agglomeration, and we can now perform the 

stability analysis to check if this represents a long-run equilibrium.   

Specifically, we check for each region whether the derivative of its real wage with 

respect to its manufacturing share is positive, signaling unstable equilibrium, or 

negative, signaling stability. We have calculated these derivatives for the whole range of 

transport costs assuming the distribution of economic activity 

3 '( ) (0.5,0,0.5,0)S
i    and a subsequent shock to the two farthest regions 

exhibiting manufacturing activity: i.e., 
S3d  = '

4·1d  = 

 3 41 20.001, 0.001, 0, 0d d d d        . In this case, we find that for region 1 the 

derivative is always positive for any transport-cost level and no break point exists, since 

the instantaneous equilibrium characterized by 3S  is never stable and brakes in favor 

of the region experiencing the positive shock. Figure 4 shows the real wage derivatives 

for the previous shock and partial equilibrium. This means that in this partial symmetric 

equilibrium if a shock were to hit one on the regions that agglomerates, further 

agglomeration would start in that region regardless of transport cost; and this 

distribution of economic activity is therefore never a long-run equilibrium. However, 
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whether region 1 ends up in stable full agglomeration ( *
1 1  ) depends on the particular 

transport cost at which the shock takes place. For transport costs below the sustain point 

T <   min HM
ijT S , economic activity agglomerates in that  region, while for transport 

costs above this threshold T >   min HM
ijT S , the change in other regions’ real salaries 

eventually reverses the agglomeration process, with the real salary in the third region 

overcoming that in the first region. As we discuss in the following section when 

commenting on the bifurcation diagram, for T >   min HM
ijT S

 
any positive shock in 

one of the regions results in the redistribution of manufacturing activity between 

different instantaneous equilibria. 

 

Figure 4: Real-wage derivative for a positive shock in region 1 under partial equilibrium.  

 

 

3.2.2 Heterogeneous star topology: From “pseudo” flat-earth to agglomeration  

In any heterogeneous network topology like the star the flat-earth equilibrium, with 

all regions having the same share of manufacturing activity, is as stated in proposition 1, 

1 1/d d   

3 3/d d   
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infeasible. Therefore, to analyze the break point we must first characterize the stable 

long-run equilibrium that best captures the idea of symmetric dispersion: i.e., a spatial 

configuration where no region lacks manufacturing production: *' * * *
1( ,..., ), 0N i     . 

In general, then, what we call pseudo flat-earth is a situation in which all locations have 

some level of manufacturing but some (central) regions have a greater share. Given this 

criterion we can introduce a further qualification that allows us to determine the bounds 

for the set of lambdas *  for which long-run equilibria exist. The lowest bound can be 

defined according to the principle of least difference, by which the sum of the 

differences in manufacturing shares is the lowest: min   max  N
i ii denoted by 

* ' * * *
1( ,..., ), 0L L L L

N i      and named minimum pseudo flat-earth. Opposite to this, the  

upper bound corresponds to that distribution for which the sum of differences is the 

highest: 
* ' * * *

1( ,..., ), 0H H H H
N i     , termed maximum pseudo flat-earth: max

  max  N
i ii . The introduction of pseudo flat-earth (including its maximum and 

minimum qualifications) is a novel outcome of the present multiregional core-periphery 

model, which, unlike the two- and three-region models, allows us to characterize a 

steady state where all regions produce manufacturing but have different shares. In 

pseudo flat-earth, each region’s particular share of manufacturing depends on its relative 

position in the network.  

Definition 1. In multiregional heterogeneous network topology, pseudo flat-earth is 

a stable long-run equilibrium characterized by: i) * 0  i i , ii) ,i j i j   , and 

iii) 0    i i i . 

In the particular case of the heterogeneous star network topology, derivative of the 

real wage should be zero for the central region and negative for peripheral regions. 

Pseudo flat-earth is therefore given by the set of lambdas *' * * *
1· 1( ,..., ), 0N N i     , the 

upper and lower bounds being the values that solve the following optimization 

programs for all transport-cost levels, corresponding to the maximum and minimum 

pseudo-flat-earth distributions of manufacturing production, respectively. Considering 

the system of equations (2) through (5) and its associated system of derivatives (13) 

through (16) , we determine the upper bound associated with the maximum lambda of 
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the region of highest centrality (maximum pseudo flat-earth distribution) by solving the 

following program:  

 
*

max  
i

H
c  (17) 

 1

1

,

, ,

0,            

0,

 

. .

  0, 1, 

i

j

j

i j

s

i

i j

j

t


 







 











  







  

 

where the first set of restrictions characterizes the new pseudo-flat-earth definition (no 

emptiness), the second set ensures that an instantaneous equilibrium exists, and the third 

and fourth sets determine its stability. Precisely, the upper bound corresponds to third 

restriction, which determines the largest value of lambda *
1

H  for which the pseudo flat-

earth still holds, thereby signaling the associated transport cost corresponding to the 

break-point value.  

The minimum value of lambda for which the dispersed equilibrium holds—i.e., 

characterizing the minimum pseudo flat-earth distribution—is: 

 
*

min  
i

L
c  (18) 
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We let   denote the distance between the maximum and minimum shares of 

manufacturing that the central region can have for pseudo flat-earth equilibria to be 

stable. 

 
* *

* *max min
i i

H L
c c     (19) 
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As for the stability analysis, since the central region tends to attract and agglomerate 

economic activity as a result of its privileged “first nature” situationsee proposition 1 

in Ago et al. (2006)—we consider once again the first shock: 1Sd  = '
4·1d  = 

1 2 1 3 1 4 1( 0.001,  /3, /3, /3)d d dd dd d             , when evaluating   i i . In 

this analysis, maximum pseudo flat-earth corresponds to the transport cost and its 

associated distribution of manufacturing shares for which 1 1 0     constitutes a 

break point   * S1,H

M

d

HT B
 

. Conversely, minimum pseudo flat-earth is asymptotic to 

the traditional flat-earth definition, with manufacturing production approaching equal 

distribution as transport cost tends to infinity. 

For our particular four-region star network topology, the combination of shares that 

solves the maximization problem given by (17) is 

*

* * *
1 0.3376,  0.2208, 2,3,4

i

H H H
c j j     , yielding a break point value of 

  * S1,H

T

d

HT B
 

 = 2.14, at which real wages across regions are equal ,i j i j   as 

illustrated in Figure 5aand 1 1 0    , with the right derivative being positive and 

the left derivative negative. In contrast to a “wiggle” diagram representing i i    for 

different  and a given T, Figure 5b illustrates these values for different T and a given 

lambda, and therefore the equilibrium is unstable when i i    is negative for a 

marginal increment in T. This means that for a transport cost value lower than 

  * S1,H

T

d

HT B
 

 = 2.14, the maximum pseudo flat-earth is no longer stable and 

manufacturing production starts agglomerating in the central region 1. Instead, the 

combination of shares of manufacturing that solves the minimization problem given by 

(18) is 
*

* *
1 0.25

i

L L
c   , slightly over 0.25 for the central region, and 

* * *
2 3 4 0.25L L L     , slightly under 0.25 for the peripheral regions. The distance 

between the maximum and the minimum is  =0.0875. Consequently, pseudo flatearth 

exists for 
*

* * * *
1 1 1;

i

L H
c       

=  0.25;0.3376 ,  * 0.2208;0.25 , 2,3,4j j  , and for 

this range of transport costs  2.139;T   . For each level of transport cost we find a 

unique combination of shares of manufacturing that produces stable long-run pseudo-

flat-earth equilibrium; Figures 5a and 5b illustrate the real wage and real-wage 

derivatives for maximum pseudo flat-earth. 
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Figure 5a-b: Real wages and real-wage derivatives for the maximum pseudo flat-earth 

 

1  

2 3 4     

1 1/d d   

/ , 2,3,4i id id    
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3.2.3 Comparing the break point in homogeneous and heterogeneous spaces 

The differences in break points between homogeneous and heterogeneous spaces 

lead to the following resultas long as the “no-black-hole” condition holds:  

Result 3. The break point is greater in heterogeneous than in homogeneous space. 

There is a transport-cost level in the homogeneous ring topology and the heterogeneous 

star topology below which the long-run dispersed equilibrium (either flat-earth or 

pseudo flat-earth, respectively) becomes unstable. This level of transport cost is higher 

in the star than in the ring topology, because regions with locational advantage—i.e., 

better relative position—start agglomerating economic activity for higher values of 

transport costs. 

This result can be summarized in the following inequality: 

    * S1 S1 S1, ,H d d

HT HMT B T B
   

  (19) 

The value of the break points for the two network topologies are summarized in 

Table 2. Beginning with the ring topology, the full dispersion equilibrium characterized 

by * 0.25,  i i , EHM = 1, is stable for transport costs from   * S1,H

T

d

HT B
   

= 1.45 to 

infinity if the positive shock affects only central region 1: 1Sd  = 'd  = 

1 2 1 3 1 4 1( 0.001,  /3, /3, /3)d d dd dd d             , and from   * S2,H

T

d

HT B
 

 = 

1.59 to infinity if the exogenous shock applies to the two farthest regions S2d  = '
4·1d  

=  2 41 30.0005, 0.0005, 0.0005, 0.0005d d dd         . In Table 2 we report the 

latter simulation. For the obtained partial dispersion (or partial agglomeration) 

instantaneous equilibrium: 1 3 0.5   , EHM = 2, the partial derivative of real salaries 

with respect to manufacturing share for region 1 is always positive (Figure 4), so it is 

unstable. And together with the sustain-point results, for transport-cost range T  

     S2 S2,
min ; HH

d

MM
ijT S T B

   
=  1.39;1.59  full-agglomeration and partial-

symmetric-dispersion equilibria are unfeasible (result 2), and only short-run 

instantaneous equilibria exist. For transport-cost levels below sustain point  13
HMT S  = 

1.39, full-agglomeration long-run equilibrium in one region is stable.
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For the star topology, pseudo-flat-earth dispersed equilibrium, EHT = 1, is stable 

only for transport costs from   * S1,H

T

d

HT B
 

 = 2.14 to infinity. If transport costs fall 

below 2.14, only full agglomeration in the central region, EHT = 2, is possible, because 

the sustain point for the star network topology is  
*

2.58, 2,3,4
i

HT
c jT S j  , and 

therefore   * S1,H

T

d

HT B
 

<  
*

, 2,3, 4
i

HT
c jT S j  (i.e., result 2 above does not hold).   

Table 2: Break-point values for different network topologies: From dispersion to agglomeration 
 

Region 

Homogeneous ring topology Heterogeneous star topology 

Flat-earth 

EHM = 1 

Partial 

dispersion 

EHM = 2 

Full 

agglomeration 

EHM = 3 

Pseudo flat-earth 

EHT = 1 

Full 

agglomeration 

EHT = 2 

1 *
1 = 0.25 1 = 0.5 *

1 = 1 *
1 =(0.25;0.3376) *

1 = 1 

2 *
2  = 0.25 2  = 0 *

2  = 0 *
2 = [0.2208;0.25) *

2  = 0 

3 *
3 = 0.25 3  = 0.5 *

3  = 0 *
3 =[0.2208;0.25) *

3  = 0 

4 *
4  = 0.25 4 = 0 *

4  = 0 *
4 =[0.2208;0.25) *

4  = 0 

T(B) 1.59     2.14   

Stability 

range 
1.59  +∞ 

Unstable  

(Result 2) 
1 1.39 2.14  +∞ 1  2.58 

 

 

3.3 Bifurcation diagrams 

The bifurcation diagrams summarizing the information on the sustain and break 

points for both the homogeneous ring and heterogeneous star network topologies are 

shown in Figures 6a-b, respectively. The horizontal axis shows the different transport-

cost values, and the vertical axis the share of manufacturing for region 1. Solid lines 

represent stable long-run equilibria and dotted lines only short-run stable equilibria. 

3.3.1 Bifurcation diagram of the homogeneous ring topology 

In the bifurcation diagram of the homogeneous ring topology (Figure 6a), full 

agglomeration in region 1 is stable until transport cost reaches  13 1.39HMT S  . Beyond 

this threshold economic activity disperses to the two opposite regions 1 and 3, sharing 

half of the manufacturing activity: 1 3 0.5   . This is nevertheless not a stable 

equilibrium (Figure 4), and thus any shock to the manufacturing share in one of the two 
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regions triggers a redistribution between instantaneous short-run equilibria. This 

situation holds for any simulation where T       S2 S2,
min ; HH

d

MM
ijT S T B

 
 = 

 1.39;1.59  if the shock for the break point is given by S2d  = '
4·1d  = 

 2 41 30.0005, 0.0005, 0.0005, 0.0005d d dd         , and for different  

distributions of economic activity between regions 1 and 3.  However, as transport cost 

increases over break point   S2 S2,

H

d

MT B
 

 = 1.59, manufacturing activity spreads over all 

regions, each attaining the same share: * 0.25i  . 

Indeed, with a departure from the flat-earth equilibrium and a shock on the two 

opposite regions: 1 3 0.0005d d    and 42 0.0005   d d , the symmetric 

equibrium is stable for transport-cost values higher than   S2 S2,

H

d

MT B
 

=1.59 but 

unstable for lower values. That said, the intermediate instantaneous equilibrium 

1 3 0.5    is not stable, and, once again, we find no long-run equilibria for transport 

costs in the range T       S2 S2,
min ; HH

d

MM
ijT S T B

   
=  1.39;1.59 .9 As transport 

costs fall below 1.39, an exogenous shock to the share of manufacturing in two opposite 

regions leads to an agglomeration process in one of the regions: e.g., region 1. Note that 

there are levels of the transport cost at which different equilibria are possible. For 

example, there are several unstable equilibria between the highest break point, 1.59, and 

the second sustain point, 1.72 , as well as between that break point and the first sustain 

point. 

 

                                                 
9 In fact, the partial dispersion or agglomeration, instantaneous equilibrium, represented by 1 3 0.5    

exists only in the transport cost range from 1 to 1.72. 
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Figure 6a-b: Bifurcation diagrams of four-region ring and star topologies  

 

 

  1min HM
jT S  

  S2 S2,

H

d

MT B
   

  1min ,  2,3,4HT
jT S j   

  * S1,H

T

d

HT B
 
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3.3.2 Bifurcation diagram of the heterogeneous star topology 

In the bifurcation diagram of the heterogeneous star space (Figure 6b) 

agglomeration in the central region, region 1, is stable for transport costs lower than 

 1 2.58,  2,3,4HT
jT S j  . If transport cost rises over 2.58, economic activity is 

dispersed between all regions, resulting in a pseudo-flat-earth long-run equilibrium with 

a manufacturing share over 0.25 in the central region and slightly under 0.25 in the 

peripheral regions. On the other hand, the pseudo-flat earth-long-run equilibrium is 

stable with transport costs over   * S1,H

T

d

HT B
 

 = 2.14 and the following ranges of 

manufacturing shares: 
*

* * * *
1 1 1;

i

L H
c       

=  0.25;0.3376 ,

 * 0.2208;0.25 , 2,3,4j j  . Under 2.14, the only long-run stable equilibrium is the 

agglomeration in the central region. We note in passing that in this case, contrary to the 

two- and three-region models, there is continuous change in manufacturing shares as we 

reduce transport costs within the range from infinity to 2.14. This change corresponds to 

successive equilibria (in favor of regions with the highest centrality). We therefore 

observe smooth changes in equilibria, as opposed to catastrophic agglomeration or 

dispersion. For transport-cost values from   S1,H

T

d

HT B
 

 = 2.14 to 

 1 2.58,  2,3,4HT
jT S j   there are three possible equilibria. Two represent stable long-

run equilibria—full agglomeration in the central region and the pseudo flat-earth—and 

the other is unstable: i.e., short-run equilibrium.  

4. Intermediate topologies: Centrality and critical points   

In this section we explore the sustain and break points for a continuum of topologies 

between the already studied extremes: the homogeneous ring configuration, exhibiting a 

centrality measure  HMC h  = 0, and the heterogeneous star configuration, with  HTC h  

= 1. First, we determine the number of intermediate topologies, or steps, that we want to 

study between these two cases. If we recall the distance matrices in section 3, the 

differences between these extreme topologies are given by a linear transition matrix: 

 

 
,

HM H

Dif

TD D
D

S


  (20)
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where HMD  is the distance matrix of the ring topology e, HTD  the distance matrix of 

the star topology and S stands for the total number of steps. 

For our four-region case, the difference matrix is: 

 

 

0 0.4142 / 1.8284 / 0.4142 /

0.4142 / 0 0.5858 / 0.8284 /
.

1.8284 / 0.5858 / 0 0.5858 /

0.4142 / 0.8284 / 0.5858 / 0

Dif

S S S

S S S
D

S S S

S S S

 
  
  
 

   

(21) 

In our simulation we determine the sustain and break points for a hundred network 

topologies: S = 100, each corresponding to the following matrices: 

( ) ,HT h HT
DifD D hD   h = 0,…,100, where ( )HT hD  varies as the matrix of the star 

topology gets successively one step closer to that of the ring topology: i.e., for h=100, 

( )HT h HMD D . 

Given the linear transition schedule represented by the difference matrix (21), we 

determine the extension of the economy represented by the circle circumscribing each 

topology, so as to adjust transportation cost by  (6). This ensures that transportation 

costs are normalized and we can disentangle the effect on changes in the unit transport 

cost and each network’s centrality.  

4.1 Sustain points for the continuum of network topologies 

Figure 7a shows the sustain point for intermediate space topologies from  HMC h  = 

0 to  HTC h  = 1. Generalizing the first result, we see that the underlying function that 

defines the sustain point increases as the network centrality increases. Moreover, it is 

convex, implying that as the uneven spatial configuration associated with first-nature 

characteristics reduces, the reduction in the sustain point gets smaller. Assuming that 

the “no-black-hole” condition holds, we can summarize this finding as follows:  

Result 4: The higher (lower) the centrality of the network, the higher (lower) the 

sustain point. There exists a transport-cost level at which the forces agglomerating 

economic activity are outweighed by the forces dispersing manufacturing activity. This 
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transport-cost levelthe sustain pointrises (falls) as the centrality of the network, 

 C h , rises (falls). 

This result can be summarized in the following inequality: 

      (
1 1

) ( ')min min , ( ) ( ')j j
C h C hT S T S C h C h   (22) 

4.2 Break point values for the continuum of network topologies 

To compute the break point for each intermediate topology and its associated 

maximum pseudo-flat-earth distribution: 
*

*

i

H
c , we once again evaluate the system of 

equations (2) through (5) along with its associated system of derivatives (13) through 

(16), for the following vectors of differentials, which correspond to the previous 

analyses of ring and star topologies. 

 

1 1

2 2

3 3

4 4

0.0005 0.001

0.0005 0.001/ 3
;  .

0.0005 0.001/ 3

0.0005 0.001/ 3

HM HT

d d

d d
d d

d d

d d

 
 

 
 
 

      
                
      
      

         

(23)

 

The difference vector of the shock from one topology to the next is given by: 

 

 
.

HM HT

Dif

d d
d

S

 





 
(24)

 

As for the distance matrices, the vector of differentials for each simulation is  

( ) ,HT h HT
Difd d hd     h = 0,…,100, where ( )HT hd  varies as the star topology’s 

associated matrix gets one step closer to that of the ring topology, and ( )HT hd = HMd

for 
 
h=100. 

The break point values for intermediate topologies 
*

* ( ),
( ) H H

ci
T hd

T B
 

 are shown in 

Figure 7a and the shares of manufactures for those break points in Figure 7b. As with 

the sustain points, the function underlying the break point shows increasing network 

centrality and is convex. This implies that decreasing network centrality makes the full 

dispersed equilibrium stable over a larger range of transport costs. Once again, if the 
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“no-black-hole” condition holds, this generalizes the third result, relating the break 

points for the two extreme topologies.   

Result 5. The higher (lower) the centrality of the network, the higher (lower) the 

break point. There exists a transport-cost level at which long-run dispersed equilibrium 

becomes unstable. This level rises (falls) as the centrality of the network rises (falls). 

Again, this result can be summarized in the following inequality: 

   *
*

( )(
*

* )

( ) ( ')

,,
( ) , ( ) ( ')H HT h

cc i
H HT

i
h

C h C h

dd
T B T B C h C h

  
    (25) 

Figures 7a allows us to disentangle the effects of changes in network topology, C(h), 

and the unit-distance transport cost T. For a given value of transport cost between the 

minimum (ring) and maximum sustain (star) points: T        *
min ;

i

HM HT
ij c jT S T S , and 

with a departure from a fully agglomerated equilibrium (below the sustain point line), 

reducing the centrality of the network will eventually result in a dispersed spatial 

configuration as the sustain point is reached eventually. Alternatively, for a given value 

of transport cost between the minimum (ring) and maximum (star) break points: T   

  S2 S2
*

* ( ), ,
;max ( )

ci
H HT h

HM T

d

H

d
T B T B

 

      
, and with a departure from a dispersed 

pseudo-flat-earth equilibrium (above the break point line), increasing the centrality of 

the network will break the equilibrium eventually and shift the economy toward a more 

agglomerated outcome.  

Also, Figure 7a illustrates the previous result 2, regarding the inexistence of either 

fully agglomerated or dispersed equilibria. For zero-degree centrality we noted that in 

the range T       S2 S2,
min , HH

d

MM
ijT S T B

 
 =  1.39,1.59  none of these equilibria 

exists. Now we confirm that this situation holds for a range of centrality from  HMC h  

= 0 to  HTC h  = 0.6975 (for this latter value   min HM
ijT S  =   S2 S2,

H

d

MT B
 

 ), and that 

beyond this level of centrality both long-run as well as other, intermediate, unstable 

equilibria exist, as presented in the bifurcation diagram for the star topology (Figure 

6b).  The expected outcome with regards to the final long-run situation that is eventually 

reached as network centrality varies is also illustrated in Figure 7a, where A represents 

an economy exhibiting a degree of centrality and unitary transport cost given by 



33 
 

. In this situation neither fully agglomerated nor fully dispersed equilibria are 

steady states, and reducing network centrality (e.g., by infrastructure policy) favors the 

dispersed outcome, whereas if network centrality were increased the agglomerated 

outcome would emerge.  

Finally, Figure 7b allows us to picture the gap between the maximum and minimum 

pseudo flat-earth for a given network centrality: 
 
. The largest 

and smallest gaps are observed for the extreme star and ring topologies, respectively.10  

5.   Conclusions 

The relative position of a location—nation, region or city—in space plays a critical 

role in the agglomeration and dispersion of economic activity. Whereas transport cost is 

one of the elements that shapes the current distribution of economic activity, 

geographical topology must also be taken into account, since the effects of a change in 

transport costs on the distribution of economic activity (e.g., the triggering of alternative 

processes of agglomeration or dispersion) differ depending on the economy’s spatial 

configuration. Thus the relative position of a region in space determines the final result 

of these processes. 

Our results show that alternative network topologies result in different behaviors for 

agglomerating and dispersing forces and thus for alternative spatial configurations of 

economic activity. Indeed, results 1 and 3 show that for the two polar cases—

homogeneous ring topology and heterogeneous star topology—both the sustain and 

break points are higher in the latter. The existence of a “first nature” advantage in favor 

of the central region makes agglomeration in that region more sustainable (and therefore 

less sustainable in peripheral regions). For the exact same reason, if we were to depart 

from symmetric equilibrium, regions with higher centralities would start drawing 

economic activity at a higher transport-cost level than if the network were neutral, with 

no region presenting a locational advantage. We generalize the results for extreme 

topologies to any pair of network configurations, showing in results 4 and 5 that the 

sustain and break points are higher in networks presenting higher centralities.   

  
                                                 
10 Given the transition matrix (21), regions 2 and 4 present the same centrality index (8) for all network 
topologies, and therefore have the same shares of manufacturing activity.  

 ( ),C h T

* *

* *max min
i i

H L
c c   
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Figure 7a-b: Sustain points, break points and manufacturing shares for intermediate network 
topologies.  
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The systematic study of sustain and break points results in several interesting results 

never studied in the literature. Firstly, for homogeneous networks with a zero degree of 

centrality we find a range of transport costs for which neither full agglomeration nor full 

dispersion produces stable long-run equilibrium; only instantaneous, short-run equilibria 

exist (as opposed to the existing two- and three-region cases literature where this result 

is not reported). This result is observed for transport-cost values between the minimum 

sustain points and the break point, with the particularity that the former is lower than the 

latter (result 2). Secondly, for heterogeneous networks exhibiting a positive degree of 

centrality, we stress that the dispersed flat-earth equilibrium, which is the initial 

configuration of manufacturing activity when studying break points, is infeasible 

(proposition 1). Therefore, to perform the stability analysis associated with the break 

points, we introduce the concept of pseudo flat-earth. We define pseudo flat-earth as a 

steady-state equilibrium in which all regions produce manufacturing. As there are 

various values of manufacturing shares that satisfy this stability criterion, we further 

qualify this concept in terms of inequality between shares. We thereby introduce 

maximum pseudo flat-earth as an economy where the share difference between the 

central region and the peripheral regions is at its largest, and the minimum pseudo flat-

earth as an economy where the difference is at its smallest. Thirdly, we find that both 

the sustain and break points are convex on the degree of centrality. As the centrality of 

the network increases, therefore, the transport-cost thresholds for which full 

agglomeration and symmetric dispersion are no longer stable increase to a higher rate. 

These results have important implications for policies aiming to increase territorial 

cohesion between regions by way of infrastructure investment (e.g., in terms of 

accessibility, which in our network framework corresponds to a reduction of network 

centrality). With a departure from a heterogeneous space, full cohesion between regions 

can be achieved only if all regions have the same relative position in terms of transport 

costs. Because in real geographical patterns some locations are better situated than 

others (i.e., have first-nature advantages), full cohesion is not possible unless transport 

costs are made equal across all regions (e.g., with infrastructure investments). 

Infrastructure policies should take this into account. And because in the real world it is 

impossible with infrastructure policies to transform a heterogeneous space into a 

homogeneous space like the “racetrack economy,” policymakers should bear in mind 

that there might be situations where the first-nature advantages of some locations are so 
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large that any feasible reduction in the centrality of network topology may not be 

enough to trigger a dispersion of economic activity. In other words, at existing levels of 

unit-transport costs, using infrastructure policy to reshape the economy’s spatial 

configuration in terms of network centrality may not be enough to substantially change 

the distribution of economic activity. In the same vein, given network centrality, a 

reduction in unitary transport cost driven by lower market prices (e.g., as expected from 

a liberalization of labor and capital markets) or by technological improvements (e.g., 

vehicle fuel efficiency) may not be enough to overcome the privileged position of some 

locations.11 

For our model, we have normalized the distance between regions by the radius of 

the circumference circumscribing the alternative topologies. Our results are therefore 

based on relative transport-cost differences, regardless of their absolute values. This 

allows us to disentangle the effects of changes in transport cost and in the network 

topology’s degree of centrality. Nevertheless, it is clear that both elements end up 

configuring total transport costs. In fact, distance as cost in economics, and even in 

geography, is not represented solely by the obvious geographical distance between two 

locations. There are other measures of distance besides it: for instance, distance as travel 

time, generalized transport cost. All of these can be expressed in unit-distance terms 

(e.g., per kilometer, minute, dollars), and thus our distinction between these two 

elements can be maintained in empirical applications. Still other clear alternatives for 

the introduction of transport costs would be weighted networks, where distance matrices 

capture more sophisticated definitions of the cost function. This opens the possibility of 

using weighted linkse.g., distances weighted by generalized transport costswithin 

network theory (e.g., Opsahl et al. (2010)). In any case, it would be possible to simulate 

the effect on particular economies of transport policies aimed at reducing network 

centrality, thereby predicting whether such investments would in fact increase territorial 

cohesion. For example, as previously suggested, a country’s network topology could be 

such that no investment whatsoever would change the existing geographical distribution 

                                                 
11 Note that we do not favor a particular locational pattern, since the superiority of dispersion or 
agglomeration as a social outcome depends on transport costs and the alternative social functions defined 
(Charlot et al., 2006). Nevertheless, it is widely accepted that transport-infrastructure policies aim to 
increase territorial cohesion in terms of per-capita income. When promoting infrastructure improvements, 
therefore, public officials take for granted that a reduction in network centrality favors less-developed 
(peripheral) regions: i.e., their expected long-run outcome is territorial cohesion through reduction of 
income differentials.  
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of economic activity, thanks to a network so central that no sustain point could ever be 

reached.  

Finally, for the multiregional model in this study we have considered only the 

canonical core-periphery model of Krugman (1991), but we could extend the analysis 

and introduce network theory in other simple models of the new economic geography, 

like the linear model by Ottaviano et al. (2002) or more elaborated models as the one 

with vertical linkages by Puga and Venables (1995).  
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Appendix 1: Real wages in a multiregional economy when one region is 

agglomerating 

When only one region—say, region 1—is agglomerating we set   and 

 in equation (2), thereby obtaining: 

 

Since by equation (11) the real wage of region 1 is equal to 1, we can substitute and 

get price indices (3): 

11 1; , 2,..., .iig g i N    

Inserting the price indices and income we obtain nominal wages (4): 
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as well as real wages (5): 
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Appendix 2: Real wages in a multiregional economy with N = 4. 

Following the same procedure as in Appendix 1 and setting N = 4, we obtain the 

following expressions of real wages: 
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Appendix 3: Price-index derivative 

Raising the price- ndex equation (3) to 1σ yields: 
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Taking logs: 
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Taking the derivative: 
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The denominator of the right-hand side is 1
ig   , which can be brought to the left 

side: 
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Totally differentiating the right-hand side, we obtain: 
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and we arrive at equation (14): 
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Appendix 4: Wage derivative 

Raising wage equation (4) to σ yields: 
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Taking derivatives: 
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The denominator of the right-hand side is iw , so it can be brought to the left side: 
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Totally differentiating the right-hand side, we get equation (15): 
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Appendix 5: Real-wage derivative 

Totally differentiating equation (5) yields: 
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Multiplying both sides by ig  : 
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results in equation (16): 
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