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Heteroclinic Synchronization: Ultrasubharmonic Locking
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According to the traditional view of synchronization, a weak periodic input is able to lock a nonlinear
oscillator at a frequency close to that of the input (1:1 zone). If the forcing increases, it is possible to
achieve synchronization at subharmonic bands also. Using a competitive dynamical system we show the
inverse phenomenon: with a weak signal the 1:1 zone is narrow, but the synchronization of ultra-
subharmonics is dominant. In the system’s phase space, there exists a heteroclinic contour in the
autonomous regime, which is the image of sequential dynamics. Under the action of a weak periodic
forcing, in the vicinity of the contour a stable limit cycle with long period appears. This results in the
locking of very low-frequency oscillations with the finite frequency of the forcing. We hypothesize that
this phenomenon can be the origin for the synchronization of slow and fast brain rhythms.
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Introduction.—The synchronization of periodic dynam-
ics is usually associated with a ‘‘devil’s staircase’’ whose
main step is the 1:1 zone of synchronization and with
Arnold tongues that become wider as the forcing is in-
creased [1]. However, the synchronization of low-
frequency oscillators by a high-frequency forcing, when
such synchronization exists, is characterized by quite dif-
ferent features. Using as an example the long period oscil-
lations that are observed in systems with winnerless
competition (WLC), we analyze below the ultrasubhar-
monic synchronization phenomenon. Competition without
a winner based on heteroclinic cycles is a robust oscillatory
behavior in diverse multiagent systems, such as biological
communities (the simplest example is the competition
between three species [2]), structured hydrodynamic flows
(e.g., competition between different convective patterns of
rotating layers of fluid heated from below [3]), Earth
magnetic field dynamics [4,5], cellular flame dynamics in
porous media [6,7], mode interaction in counterrotating
von Karman swirling flow [8], multimode lasers [9,10],
etc. In this Letter, we use as an example the competitive
activity of neural circuits and their synchronization by
weak high-frequency input.

Competitive neural dynamics are responsible for the
generation of low-frequency oscillations (�5 Hz) in the
visual cortex of monkeys responding to visual stimuli
[11,12]. WLC is presumably the dynamics observed in
the antennal lobe, a first relay station of the insect olfactory
system [13–15]. Chaotic WLC sensory dynamics has also
been proposed as the origin of the irregular hunting behav-
ior of the marine mollusk Clione [16–18]. The key control
parameters for competitive neural circuits with inhibition
are the degree of nonsymmetry of the inhibitory connec-
tions and the strength of inhibition between competing
neuronal pools. In recurrent circuits with nonsymmetric
connections, an increase of the strength of inhibition leads
to a change of system dynamics from the coexisting activ-
ity of many pools to a ‘‘winner take all’’ regime or to a
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sequential switching of activities among different pools,
i.e., WLC behavior [13].

Model.—Lotka-Volterra–type equations are convenient
mathematical models to implement robust heteroclinic
cycles [19,20]. In particular, these models are suitable for
the description of synchronization phenomena in competi-
tive networks. The mathematical image of WLC dynamics
in the phase space of such models is a closed heteroclinic
contour that consists of saddle fixed points and one-
dimensional separatrices connecting them. In reality, be-
cause of the presence of a small amount of noise or
intrinsic fluctuations, it can be not a strict heteroclinic
contour but a long period limit cycle in its vicinity, which
corresponds to the rhythmic activity of the network. Thus,
we consider the model
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Here ai�t� � 0 represents the rate of the neural activity
of the ith neuronal pool, �ij is an inhibitory connection
matrix, where 0<�ij < 1< �ji, �ii � 1, ’i�!t; ai� � 0
is a periodic function with period T � 2�=!, ��t� is a
Gaussian noise with zero correlation h��t���t0�i � ���t�
t0�, and 0< �� 1. These nonsymmetrical connections
satisfy the necessary condition for the stability of the
heteroclinc cycle. For N � 3, if �1�2�3 > 1, where �i �
��i;i�2 � 1�=�1� �i;i�1� (i a cyclic index), the heteroclinic
contour or limit cycle in its vicinity is a global attractor
[21]. The period T of the noise induced cycles depends on
the level of noise as [22]:

T � j ln�j=�u; (2)

where �u is a positive Lyapunov exponent that character-
izes the one-dimensional unstable separatrices of the
saddle points (for simplicity, we suppose that they are
identical).
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FIG. 1 (color online). Devil’s staircase in a model described by
(1) with N � 3. Here ! is the observed frequency of oscillation
and !f is the forcing frequency. The parameter values are �ii �
1:0, with i � 1; . . . ; 3, �12 � �23 � �31 � 1:25, and �13 �
�21 � �32 � 0:8. In addition, ’1�!ft; a1� � �1� a1�	

�sin�!ft� � 1�, the first multiplier guarantees that the system
dynamics is in the subspace ai � 0, and ’2�t� � ’3�t� � 0. The
noise level in this example is � � 0.

FIG. 2. Bands of synchronization in system (1) as a function of
the strength of the forcing � for some representative subhar-
monics. The parameter values are the same as in Fig. 1.
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FIG. 3. Period dependence of the oscillations as a function of
the noise level �. The fit, a logarithmic function, is almost
perfect with T / log���=0:133.
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Ultrasubharmonic synchronization.—In Fig. 1, we show
the synchronization bands for different levels of strength of
the forcing � in a system of three units described by (1). A
very small strength of the stimulus is able to induce ultra-
subharmonic synchronization that remains in the presence
of noise. Figure 2 shows that the width of the synchroni-
zation bands are squeezed for �! 0 that corresponds to
the heteroclinic orbit. This figure also shows that the
synchronization bands of the system, as a function of the
forcing frequency, have a fairly smooth dependence on the
forcing, which indicates that the system near a heteroclinic
trajectory has a good degree of flexibility to lock in a wide
range of ultrasubharmonics, i.e., multistability.

Origin of the flexibility.—To explain the origin of the
flexibility of the system, we introduced increasing levels of
additive noise � in system (1). Then we estimated the
dependence of the oscillation period T on the vicinity of
the heteroclinic orbit as a function of �. A simple calcu-
lation indicated that most of the time is taken by the
unstable manifold. Therefore, the mean period of the os-
cillations should be described by (2). In Fig. 3, we show the
result of the simulation of the previously described system
with a clear logarithmic dependence on the noise level.
This feature exposes the ability of the system to lock in
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such a variety of frequency bands in the proximity of the
heteroclinic orbit.

As an illustration of the complexity of the bifurcations
near the synchronization bands, we show in Fig. 4 the
period as a function of the forcing frequency. The region
in between synchronized regimes displays chaos. If, in-
stead of plotting the period changes, the time series are
plotted, chaos is not apparent.

Map.—To generalize the framework of ultrasubhar-
monic synchronization, we have built a heteroclinic circle
map as follows:

�n�1 � G��n� � 	F��n�; (3)

where the function G��n� describes the motion along the
heteroclinic cycle in the phase space of the autonomous
system when 	 � 0. F��n� is the forcing function with
frequency!f. Figure 5 shows the bands of synchronization
of a map that reproduces the main features of the ultra-
subharmonic synchronization observed in the previously
studied system (1). This map is made of three exponentials
as follows:
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FIG. 5 (color online). Devil’s staircase for the heteroclinic
circle map (3), where ! is the frequency of oscillation of the
system and !f is the forcing frequency. The inset figure repre-
sents the map (4) without forcing.

FIG. 4. Period as a function of the
forcing frequency !f for � � 10�6 and
� � 0. The inset shows a blowup of the
region 0:18<!f < 0:23.
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G��n� �

�
g��n� for �n 
 D3;
g�2���n� for �n > D3;

(4)

where g��n� � ��1 � 2j�=3 � b�1 �

eb��n���1�2j�=3�b�1 ln�b��, with b � 4 and j runs from 0 to
2 representing each of the exponential domains. For
j � 0, D1 � �n > D3; for j � 1, D1 <�n 
 D2; and
for j � 2, D2 <�n 
 D3. The domain connection
points are D1 � �� b�1 lnf2=3��b=�e2=3�b � 1��g,D2 �

�� b�1 lnf2=3��b=�e�2=3�b � 1��g, and D3 � 5�=3�
b�1 ln�b� � b�1 ln��3� 5�b�=3b�. This map without forc-
ing is shown in the inset of Fig. 5. The forcing function
used to build the devil’s staircase in this example is
F��n� � 1� sin�!ft� with 	 � 0:1.

Discussion.—The origin of the observed phenomenon is
related to the following important features of the hetero-
clinic oscillator: (i) The oscillation frequency depends on
the intensity of small perturbations as in (2) (see Fig. 3),
and (ii) the oscillator is strongly nonlinear and the spec-
trum of the oscillations is very rich. These features are able
to explain both the sensitive dependence of the ultrasub-
harmonic synchronization on the strength of a high peri-
odic forcing, and the phase-locking itself.

This kind of phase synchronization can be observed in
neurophysiological data. A popular point of view is that the
gamma rhythm (40–80 Hz) plays the role of a timer in
brain activity. The mechanisms of synchronization of low-
frequency rhythms, i.e., theta (4–8 Hz) and beta (10–
15 Hz), by gamma oscillation are not known yet. Since a
possible mechanism for low-frequency rhythm generation
in the brain is the activity of inhibitory competitive net-
works [23,24], it is reasonable to hypothesize that the
phase synchronization of high- and low-frequency oscilla-
tions can be explained by the phenomenon discussed
above. Phase synchronization among low- and high-
frequency rhythms in the human cortex has been observed
in Refs. [25,26]. Examples of frequency coordination of
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slow rhythm by fast rhythms have been observed also in
specific networks of inhibitory neurons in invertebrates
[27,28]. Robust synchronization of different neural
rhythms can also play an important role in short-term
memory [29,30]. For example, in Ref. [29] it has been
shown that neural patterns associated with multiple short
time memories can be stored in a single neural network that
exhibits nested oscillations similar to those recorded from
the brain. According to this multiplexing mechanism, each
memory (or each event) is stored in a different high-
frequency (�40 Hz) subcycle of a low-frequency (5–
12 Hz) oscillation. In order to control the serial processing
of short-term memories, these high- and low-frequency
rhythms have to be synchronized.

The discussed phenomena can be of interest in many
other disciplines, e.g., the study of the control of structured
hydrodynamics by high-frequency acoustic forcings, the
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stabilization of chaotic dynamics by external forcings in
lasers with heteroclinic cycles, or population dynamics of
competitive species under seasonal perturbations.
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