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Winnerless competition in coupled Lotka-Volterra maps
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Winnerless competition is analyzed in coupled maps with discrete temporal evolution of the Lotka-Volterra
type of arbitrary dimension. Necessary and sufficient conditions for the appearance of structurally stable
heteroclinic cycles as a function of the model parameters are deduced. It is shown that under such conditions
winnerless competition dynamics is fully exhibited. Based on these conditions different cases characterizing
low, intermediate, and high dimensions are therefore computationally recreated. An analytical expression
for the residence times valid in the N -dimensional case is deduced and successfully compared with the
simulations.
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I. INTRODUCTION

In dynamical systems a heteroclinic orbit is a path in
phase space joining two different equilibrium points, and a
heteroclinic cycle (HC) is a collection of solution trajecto-
ries connecting equilibriums, periodic solutions, or chaotic
invariant sets via saddle-sink connections. HC is a mecha-
nism producing complex behavior in deterministic dynamical
systems; i.e., heteroclinic orbits are related to recurrence,
intermittency, and other nontrivial sequential dynamics. A
HC is known as structurally stable if its topology does
not change by arbitrarily small perturbations. Note that this
situation should be distinguished from the case where the
HC is maintained under the constant influence of an external
perturbation without which the cycle vanishes [1–4]. It is
well known that in continuous systems symmetry properties
can lead to structurally or asymptotically stable HCs [5,6].
Robust HCs determine behavior in a wide range of prob-
lems, such as models of competing species in ecology [3],
thermal convection [7–9], coupled oscillator networks [10],
and neurodynamics [11,12], among others. While HCs in
continuous symmetric systems of differential equations are
well documented, there are few works dealing with the
analysis [13,14] and applications [15] of symmetric systems
of difference equations. Symmetric systems of difference
equations could help the simulation of numerous coupled units
without integration errors and with minimal computational
costs. For instance, this may be the case for simulations
of large multispecies population dynamics or the simula-
tion of nervous network structures in neurocomputation.
HCs sustain the concept of cyclic dominance or winnerless
competition (WLC) where no competing agent wins; i.e.,
all participant agents alternate sequentially in time [16–18].
This concept can be used to explain and implement robust
sequential activity (yet sensible to informative perturbations)
and has been applied to describe spatiotemporal sensory
encoding [18], robust rhythm generation [19], and cognitive
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phenomena relying on transient dynamics such as working
memory and decision making, including pathological states
[20–22]. As WLC map models are more computationally
efficient and easy to realize in hardware configurations, this
type of description is also preferred for robotic applications
[23,24].

II. DISCRETE CANONICAL LOTKA-VOLTERRA MODEL:
GENERALITIES

We have already emphasized the general scope of WLC
dynamics. The present work considers a set of Lotka-Volterra
difference equations with a functional form similar to those
used in neurodynamics studies of the mollusk Clione limacina
[4,25]. Such a term corresponds to the self-regulation present
in the original works on the time continuous version in [26,27].
Closely related difference equations have been considered in
population dynamics [28] and other contexts [29]. The Lotka-
Volterra difference equations are given by the set of maps on
the unit interval

ai(t + 1) = rai(t)

⎛
⎝1 −

N∑
j=1

ρij aj (t)

⎞
⎠

≡ ai(t)fi(aj (t)), (1)

with ρij � 0, ρij = 1 ∀ i = j , and r > 0 being a control
parameter. The system (1) has one interior fixed point a∗

0 =
(0,0, . . . ,0) ∈ RN and N exterior fixed points, a∗

k ∈ RN , such
that the kth fixed point has a nonzero component δ at the kth
vector position, i.e.,

a∗
k = (a∗

k1
, . . . ,a∗

ki
, . . . ,a∗

kN
),

(2)
a∗

ki
= δ for i = k, a∗

ki
= 0 for i �= k,

with δ = 1 − 1
r
. Therefore a∗

1 has a nonzero component δ in
the first position, a∗

2 in the second position, and so on. In each
fixed point, fi(a∗

ki
) = 1. Linear stability analysis is carried out

by calculating the Jacobian matrix whose elements can be
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shown to be

Jij (a∗
k) = r

⎛
⎝1 − 2a∗

ki
−

N∑
i �=s

ρisa
∗
ks

⎞
⎠ δij − rρij a

∗
ki

(1 − δij )

(3)

for i,j = 1, . . . ,N . Solving the eigenvalue problem for the
Jacobian matrix evaluated on each exterior fixed point yields
the corresponding eigenvalues and eigenvectors. Each exterior
fixed point a∗

k has N eigenvalues,

λki
= 2 − r for i = k,

(4)
λki

= r − ρik(1 − r) ∀ i �= k,

i = 1, . . . ,N . The eigenvalues (4) describe the motion trans-
verse to the hyperplane i. Additionally, each exterior fixed
point has N eigenvectors,

eki = (eki1
, . . . ,ekij

, . . . ,ekiN
), ekij

= 1 for j = i,

ekij
= ρkj

ρjk − 2
for j �= i, j = k, ekij

= 0 otherwise.

(5)

with i = 1, . . . ,N . The fact that the spectrum of eigenvalues
has the same structure at each fixed point is a consequence of
the a∗

k’s being symmetrically related under the action of the
symmetry group ZN , i.e., ZN · a∗

k = a∗
k+1 and ZN · a∗

N = a∗
1.

This result is needed to assert the existence of a cycle.
The interior fixed point a∗

0 has N eigenvalues,

λ0i
= r, i = 1, . . . ,N, (6)

and eigenvectors corresponding to unit vectors along each i

axis.

III. NECESSARY AND SUFFICIENT CONDITIONS FOR
THE APPEARANCE OF A HETEROCLINIC CONTOUR

Necessary and sufficient conditions for the continuous
counterpart of (1) in the three-dimensional case were deduced
in [4]. We are not aware of previous works dealing with
the determination of necessary or sufficient conditions for
the N -dimensional discrete case as considered in this work.
Given system (1), we are interested in determining necessary
and sufficient conditions for the existence of a heteroclinic
cycle able to support WLC dynamics. WLC networks produce
identity-temporal or spatiotemporal coding in the form of
deterministic trajectories moving along heteroclinic orbits that
connect saddle fixed points or saddle limit cycles. For the sake
of simplicity we assume that there is a heteroclinic orbit �k,k+1

connecting points a∗
k and a∗

k+1, k = 1, . . . ,N , and a∗
N+1 ≡ a∗

1.
In such a situation the interior point a∗

0 must be a repeller; i.e.,
their N eigenvalues should satisfy

‖λ0i
‖ = ‖r‖ > 1, i = 1, . . . ,N, (7)

given that solutions of the map (1) are of the form λt . Next, the
heteroclinic cycle needs to be an attracting set. Therefore the
exterior fixed point a∗

k should only have one unstable direction,
while all other directions should be stable. Thus, it is required
that

ρi+1i < 1 for i = 1, . . . ,N,

i + 1 = 1 if i = N ; 1 < r < 3, (8)

ρki ∈
(

1,
r + 1

r − 1

)
for k = 1, . . . ,N, i = 1, . . . ,N ;

k �= i + 1; 1 < r � 3. (9)

These restrictions on the values of the parameters ρij ensure
the following: (i) There are no exterior fixed points in the
i axis > 0, (i + 1) axis > 0 positive region. Because of (1),
ai(t + 1) < 0 if ai+1(t) � 1, and a separatrix �i,i+1 exists on
the plane Pi,i+1 connecting the saddle a∗

i direction to the stable
a∗

i+1 direction, (ii) the leading direction [30] in a∗
i is transversal

to the (i + 1) axis on Pi,i+1, and (iii) the heteroclinic cycle is
structurally stable [6] and attractive.

The heteroclinic contour will be a global attractor if we
require real numbers p1, . . . ,pN > 0, such that

N∑
i=1

pif
i(a∗

ki
) > 0 (10)

for each exterior fixed point a∗
k in the contour ∂RN

+ [31].
Choosing p1 = p2 = · · · = pN = 1 and evaluating (10) at
each exterior fixed point a∗

k, we obtain

N∑
i=1,i �=k

ρik < N r
r−1 , k = 1, . . . ,N. (11)

Condition (11) ensures that the region inside the heteroclinic
contour repels the orbits. Because of the attractiveness of
the cycle these orbits will be trapped by the heteroclinic
contour only. Conditions (8), (9), and (11) on the values of
the parameters ρij are necessary and sufficient conditions for
the appearance of a stable heteroclinic channel (SHC) [32]
with independence of the initial conditions. From now on, the
matrix whose inputs are the parameters ρij satisfying (8), (9),
and (11) will be called the connectivity matrix of (1).

IV. TESTING THE ANALYTICAL CONDITIONS
WITH NUMERICAL SIMULATIONS

In order to test the above analytical approach, we sim-
ulate cases with different dimensions: a low-dimensional
case with N = 9 (Fig. 1, left), an intermediate-dimensional
case with N = 27 (Fig. 1, middle), and a high-dimensional
case with N = 729 (Fig. 1, right). From now on we
designate the parameter t as time, even though it is di-
mensionless. The structure of the connectivity matrix ρ̂

for the low-dimensional case (N = 9) and parameter value
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r = 1.5 is

ρ̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1.15 1.017 1.015 1.017 1.015 1.017 1.015 0

0 1 1.33 1.017 1.015 1.017 1.015 1.017 1.015

1.017 0 1 1.28 1.017 1.015 1.017 1.015 1.017

1.015 1.017 0 1 1.19 1.017 1.015 1.017 1.015

1.017 1.015 1.017 0 1 1.43 1.017 1.015 1.017

1.015 1.017 1.015 1.017 0 1 1.26 1.017 1.015

1.017 1.015 1.017 1.015 1.017 0 1 1.17 1.017

1.015 1.017 1.017 1.015 1.017 1.015 0 1 1.21

1.37 1.017 1.015 1.017 1.015 1.017 1.015 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

Cases with larger dimension were simulated using a
connectivity matrix with a similar structure to (12), also
satisfying conditions (8), (9), and (11) and values of the control
parameter as specified in the figure captions.

In Fig. 1 the time intervals where each unit is active and
in the fixed point are displayed for each value of i. The
switching dynamics of each ai(t) is characteristic of WLC
where only one of the solutions satisfies ai(t + 1) = ai(t) �= 0
when active. Note that the solution’s qualitative behavior
is the same for the different dimensions considered and, in
particular, for the intermediate- and high-dimensional cases.
As the dimension is increased, temporal patterns emerge in a
specific sequential order.

For the parameter values used in Fig. 1, WLC is obtained in
the absence of an external perturbation. So we next consider the
case of the system evaluated in a set of parameters where WLC
is not observed, i.e., a case where, after some initial transient,
the switching dynamics stops abruptly and the trajectory is
trapped in one fixed point (Fig. 2, top). Now, with the same
set of parameters a constant perturbation (equal to 55% of the
fixed point value, i.e., 0.275) is added to Eq. (1). A switching
behavior characteristic of WLC is recovered (Fig. 2, bottom),
and each ai(t) remains active during a short residence time.
Therefore a single constant perturbation acts on the discrete
version as it does on the time continuous version. The robust-
ness of the sequence order and the flexibility in the residence
times makes such a stable HC a good candidate for the neuronal
encoding of trajectories [21]. Furthermore, the attractor of the

perturbed orbit remains in a small neighborhood of the unper-
turbed attractor [4], i.e., in a stable heteroclinic channel [21].

V. RESIDENCE TIMES

To better understand system (1) we analytically study the
behavior of �, the sojourn or residence times, i.e., the time the
trajectory spends around a saddle. Without loss of generality
let’s start considering system (1) with a N × N connectivity
matrix with the following particular structure:

ρ̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ12 . . . ρ1N−2 ρ1N−1 ρ1N

ρ1N 1 ρ12 . . . ρ1N−2 ρ1N−1

ρ1N−1 ρ1N 1 ρ12 . . . ρ1N−2

...
...

...
...

...
...

ρ13 . . . . . . ρ1N 1 ρ12

ρ12 . . . . . . ρ1N−1 ρ1N 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

and let’s define

S(t + 1) = a1(t + 1) + a2(t + 1) + · · · + aN (t + 1)

= rS(t) − r

N∑
k=1

ak(t) −
N∑

k=2

ρ1k

N∑
i = 1
i �= j

N∑
j = 1
j �= j

aiaj

2
.

(14)
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FIG. 1. Time series showing the switching process for each solution of (1). Data obtained with (left) r = 1.5 and N = 9, (middle) r = 1.5
and N = 27, and (right) r = 2.1 and N = 729. The inset is a temporal window showing detailed activity of units 187 to 207.
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FIG. 2. (Color online) Time evolution for all units of system (1)
with N = 6 obtained with r = 2.2, (top) with no perturbation added
and (bottom) with a constant perturbation added equal to 55% of a∗,
i.e., 0.275. Different colors indicate different ai(t).

In the vicinity of the fixed point a∗
1 = (δ,0, . . . ,0), the trajec-

tory satisfies a1(t) ≈ δ and a2(t) ≈ a3(t) ≈ · · · ≈ aN (t) ≈ 0.
Therefore (14) is reduced to

S(t + 1) ≈ rS(t)[1 − S(t)], (15)

whose solution is S(t) = δ. Now, define the quantity

P ≡ a1(t + 1)

a1(t)
+ a2(t + 1)

a2(t)
+ · · · + aN (t + 1)

aN (t)

= Nr − r

(
1 +

N∑
k=2

ρik

)
S(t). (16)

Evaluating this expression in the simplex, i.e., S(t) ≈ |a∗
1| =

δ = 1 − 1
r
, we obtain

P ≈ 1 + r(N − 1) −
N∑

k=2

ρ1k(r − 1). (17)

For t large enough and close to the saddle the trajectory satisfies
a1(t+1)
a1(t) ≈ 1 and a2(t+1)

a2(t) ≈ · · · ≈ aN (t+1)
aN (t) ≡ A. Therefore from

the definition of P
P ≈ 1 + (N − 1)A. (18)

The value of A can be obtained by matching (17) and (18):

1 + (N − 1)A ≈ 1 + r(N − 1) −
N∑

k=2

ρ1k(r − 1), (19)

and A turns out to be

A ≈ r − (r − 1)

N − 1

N∑
k=2

ρ1k. (20)

The trajectory approaches a∗
1 from the a∗

N leading direction,
and we just said that aN (t+1)

aN (t) ≡ A; then,

aN (t + 1) ≈ A aN (t) =
(

r − (r − 1)

N − 1

N∑
k=2

ρ1k

)
aN (t), (21)

and thus the aN temporal evolution is given approximately
by

aN (t) ≈
(

r − (r − 1)

N − 1

N∑
k=2

ρ1k

)t

aN (0). (22)

However, in the vicinity of the fixed point the system’s
temporal evolution is determined by the eigenvalue given by
(4), i.e.,

aN (t) ≈ [r(1 − ρN1δ)]t = [r − (r − 1)ρN1]t . (23)

At this point we can combine (22) and (23):(
r − (r − 1)

N − 1

N∑
k=2

ρ1k

)t

aN (0) ≈ [r − (r − 1)ρN1]tin , (24)

where tin is the time spent approaching the neighborhood of
(δ,0, . . . ,0) and t is the total time elapsed up to that stage.
Thus,

tin ≈ ln aN (0)

ln[r − (r − 1)ρN1]
+ ln

[
r − (r−1)

N−1

∑N
k=2 ρ1k

]
ln[r − (r − 1)ρN1]

t. (25)

The trajectory is expelled from the fix point in the leading
direction of a∗

2; thus following a procedure similar to that
above, we can find an expression for tout, the time spent
departing from the neighborhood of (δ,0, . . . ,0):

tout ≈ ln a2(0)

ln[r − (r − 1)ρ21]
+ ln

[
r − (r−1)

N−1

∑N
k=2 ρ1k

]
ln[r − (r − 1)ρ21]

t. (26)

Adding (25) and (26), the time spent by the orbit in
the neighborhood of the fixed point in any one cycle is
obtained:

� = tin + tout = ln[r − (r−1)
N−1

∑N
k=2 ρ1k] ln{[r − (r − 1)ρ21][r − (r − 1)ρN1]}

ln[r − (r − 1)ρ21] ln[r − (r − 1)ρN1]
t + C, (27)

where C is a constant that depends on the initial conditions.
The relationship between the entry and exit times is deduced
by combining (25) and (26),

tout = ln[r − (r − 1)ρN1]

| ln[r − (r − 1)ρ21]| tin. (28)

Note that this expression is similar to that deduced in [33] for
lower-dimension systems and, as in that work, the sojourn time
near the saddle is analogous to the continuous case [3], except
that the eigenvalues are replaced by their logarithms. We must
recall that this calculation has been done on the simplex and not
on the heteroclinic trajectory. This implies that we expect the
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FIG. 3. (Color online) Evolution of the residence time � with
respect to the activation number η for a1 in the cases with dimension
N = 3 (circles), 9 (squares), 27 (diamonds), 32 (right-pointing tri-
angles), 64 (left-pointing triangles), and 81 (upward triangles). The
top inset shows that � obtained with a set of parameters not satisfying
(13) exhibits sustained periodic activity, as shown on the time interval
[5 × 106,7.5 × 106] in the bottom inset.

analytical expression to approach the numerical outcomes for
long times. In Fig. 3, the analytical and the numerical behaviors
of � are plotted as a function of the activation index η for
different dimension values. For the lower-dimensional case
considered (N = 3) the theoretical curve fits the simulation
results remarkably well. For the following case shown with
N = 9 the theoretical curve still fits the experimental one
pretty well. Further increasing the system dimension shows
coincident trends between theory and simulation. Results are
notoriously good for the case N = 81, and theoretical curves
for cases with N = 27,32,64 also behave reasonably well.
Therefore we conclude that our analytical deduction is able to
describe trends of � for a large variety of dimensional cases.
Furthermore, these results point out that for large enough
dimensional situations the system tends to reach a state where
the residence time behaves close to a periodical regime. This
aspect was numerically analyzed in detail, revealing that
before reaching such a state the trajectory is trapped in a fixed
point. This trapping seem to be avoided by modifying the set

of selected parameters as shown in the inset of Fig. 3, where a
periodic switching between saddles is reported, at least for the
times simulated. Unfortunately, the combination of parameters
used does not satisfy the structure of the matrix (13);
thus we cannot use the expression deduced for the sojourn
times to contrast with the theory. We cannot compare our
results with those for time continuous systems, as is the case
with the pioneering work by May and Leonard [3], given that
studies on high-dimensional situations are not available in the
literature.

VI. FINAL REMARKS

Summarizing, symmetry properties provide a way to obtain
necessary and sufficient conditions for HC supporting WLC
in system (1). These conditions are functions of the system
control parameter r , which is different from continuous coun-
terpart studies of (1), where the control parameter was fixed to
1 [4]. Our approach is valid for the N -dimensional situation.
Numerical results illustrate WLC for low-, intermediate-,
and high-dimensional cases, without decomposing the system
into lower-dimensional components. This work shows WLC
in high-dimensional systems; we have shown results for
the competing dynamics between 36 = 729 units. In the
absence of external perturbations all the considered cases
show self-sustained WLC. For parameter values implying
no WLC an added external constant perturbation turns on
the competing dynamics along a stable heteroclinic channel.
An analytical expression for the times spent around the
activation states which fits the simulation data reasonably
well was deduced. Evidence is provided that shows that for
certain matrix structures the residence time may converge to
a constant value, giving place to a periodic regime over the
time scales observed. Producing WLC in high-dimensional
maps opens the door to massive computer simulations of
neuronal systems that may have important implications for the
study of dynamics based coding, sequential memory, and other
important problems in neuroscience. It may also be the case
for large population dynamics simulations. The consideration
of flows in maps constitutes an important step to facilitate
the connection between information flows in phase space with
Shannon information and the capacity dimension of chaotic
sets [22]. Therefore results from this work may turn out to
be relevant in such a context. This contribution may have
the potential to stimulate further related developments at a
fundamental level or in the applied sciences.
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L. A. GONZÁLEZ-DÍAZ et al. PHYSICAL REVIEW E 88, 012709 (2013)

[5] M. J. Field, Trans. Am. Math. Soc. 259, 185 (1980).
[6] J. Guckenheimer and P. Holmes, Math. Proc. Cambridge Philos.

Soc. 103, 189 (1988).
[7] R. M. Clever and F. H. Busse, J. Fluid Mech. 94, 609

(1979).
[8] F. H. Busse and K. E. Heikes, Science 208, 173 (1980).
[9] D. Armbruster, J. Guckenheimer, and P. Holmes, Phys. D 29,

257 (1987).
[10] A. S. Kuznetsov and J. Kurths, Phys. Rev. E 66, 026201

(2002).
[11] G. Laurent, M. Stopfer, R. W. Friedrich, M. I. Rabinovich,

A. Volkovskii, and H. D. I. Abarbanel, Annu. Rev. Neurosci.
24, 263 (2001).

[12] P. Varona, R. Levi, Y. I. Arshavsky, M. I. Rabinovich, and A. I.
Selverston, Neurocomputing 58, 549 (2004).

[13] A. Palacios, Int. J. Bifurcation Chaos 12, 1859 (2002).
[14] A. Palacios, J. Differ. Equations Appl. 9, 671 (2002).
[15] J. M. Casado, Phys. Rev. Lett. 91, 208102 (2003).
[16] M. Rabinovich, A. Volkovskii, P. Lecanda, R. Huerta, H. D. I.

Abarbanel, and G. Laurent, Phys. Rev. Lett. 87, 068102 (2001).
[17] P. Ashwin and M. Timme, Nature (London) 436, 36 (2005).
[18] M. Rabinovich, R. Huerta, and G. Laurent, Science 321, 48

(2008).
[19] T. Nowotny and M. I. Rabinovich, Phys. Rev. Lett. 98, 128106

(2007).

[20] M. I. Rabinovich, R. Huerta, P. Varona, and V. S. Afraimovich,
Biol. Cybern. 95, 519 (2006).

[21] M. I. Rabinovich, R. Huerta, P. Varona, and V. S. Afraimovich,
PLoS Comput. Biol. 4, e1000072 (2008).

[22] M. I. Rabinovich, V. S. Afraimovich, C. Bick, and P. Varona,
Phys. Live Rev. 9, 51 (2012).

[23] P. Arena, L. Fortuna, D. Lombardo, L. Patane, and M. G. Velarde,
Int. J. Circuit Theory Appl. 37, 505 (2009).

[24] F. Herrero-Carron, F. B. Rodriguez, and P. Varona,
Bioinspiration Biomimetics 6, 016006 (2011).

[25] P. Varona, M. I. Rabinovich, A. I. Selverston, and Y. I. Arshavsky,
Chaos 12, 672 (2002).

[26] V. Volterra, Mem. R. Accad. Naz. Lincei 2, 31 (1926).
[27] A. Lotka, J. Wash. Acad. Sci. 22, 461 (1932).
[28] S. H. Levine, F. M. Scudo, and D. J. Plunkett, J. Math. Biol. 4,

171 (1977).
[29] Y. Morimoto, J. Phys. Soc. Jpn. 53, 2640 (1984).
[30] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, and L. Chua,

Methods of Qualitative Theory in Nonlinear Dynamics: Part I
(World Scientific, Singapore, 2001).

[31] J. Hofbauer, V. Hutson, and W. Jansen, J. Math. Biol. 25, 553
(1987).

[32] M. I. Rabinovich, P. Varona, A. I. Selverston, and H. D. I.
Abarbanel, Rev. Mod. Phys. 78, 1213 (2006).

[33] A. Gaunersdorfer, SIAM J. Appl. Math. 52, 1476 (1992).

012709-6

http://dx.doi.org/10.1090/S0002-9947-1980-0561832-4
http://dx.doi.org/10.1017/S0305004100064732
http://dx.doi.org/10.1017/S0305004100064732
http://dx.doi.org/10.1017/S002211207900121X
http://dx.doi.org/10.1017/S002211207900121X
http://dx.doi.org/10.1126/science.208.4440.173
http://dx.doi.org/10.1016/0167-2789(88)90032-2
http://dx.doi.org/10.1016/0167-2789(88)90032-2
http://dx.doi.org/10.1103/PhysRevE.66.026201
http://dx.doi.org/10.1103/PhysRevE.66.026201
http://dx.doi.org/10.1146/annurev.neuro.24.1.263
http://dx.doi.org/10.1146/annurev.neuro.24.1.263
http://dx.doi.org/10.1016/j.neucom.2004.01.093
http://dx.doi.org/10.1142/S0218127402005492
http://dx.doi.org/10.1080/1023619021000042207
http://dx.doi.org/10.1103/PhysRevLett.91.208102
http://dx.doi.org/10.1103/PhysRevLett.87.068102
http://dx.doi.org/10.1038/436036b
http://dx.doi.org/10.1126/science.1155564
http://dx.doi.org/10.1126/science.1155564
http://dx.doi.org/10.1103/PhysRevLett.98.128106
http://dx.doi.org/10.1103/PhysRevLett.98.128106
http://dx.doi.org/10.1007/s00422-006-0121-5
http://dx.doi.org/10.1371/journal.pcbi.1000072
http://dx.doi.org/10.1016/j.plrev.2011.11.002
http://dx.doi.org/10.1002/cta.567
http://dx.doi.org/10.1088/1748-3182/6/1/016006
http://dx.doi.org/10.1063/1.1498155
http://dx.doi.org/10.1007/BF00275982
http://dx.doi.org/10.1007/BF00275982
http://dx.doi.org/10.1143/JPSJ.53.2640
http://dx.doi.org/10.1007/BF00276199
http://dx.doi.org/10.1007/BF00276199
http://dx.doi.org/10.1103/RevModPhys.78.1213
http://dx.doi.org/10.1137/0152085



