

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

Software & Systems Modeling 12.3 (2013): 555–577

DOI: http://dx.doi.org/10.1007/s10270-011-0211-2

Copyright: © 2013 Springer Berlin Heidelberg

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1007/s10270-011-0211-2

Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Engineering Model Transformations with transML

Esther Guerra1 ⋆, Juan de Lara1, Dimitrios S. Kolovos2, Richard F. Paige2, Osmar Marchi dos
Santos2

1 Universidad Autónoma de Madrid (Spain), e-mail: {Esther.Guerra, Juan.deLara}@uam.es
2 University of York (UK), e-mail: {dkolovos, paige, osantos}@cs.york.ac.uk

Received: date / Revised version: date

Abstract Model transformation is one of the pillars of
Model-Driven Engineering (MDE). The increasing com-
plexity of systems and modelling languages has dramat-
ically raised the complexity and size of model trans-
formations as well. Even though many transformation
languages and tools have been proposed in the last few
years, most of them are directed to the implementation
phase of transformation development. In this way, even
though transformations should be built using sound en-
gineering principles – just like any other kind of soft-
ware – there is currently a lack of cohesive support for
the other phases of the transformation development, like
requirements, analysis, design and testing.

In this paper, we propose a unified family of lan-
guages to cover the life-cycle of transformation develop-
ment enabling the engineering of transformations. More-
over, following an MDE approach, we provide tools to
partially automate the progressive refinement of models
between the different phases and the generation of code
for several transformation implementation languages.

Key words Model Driven Engineering – Model Trans-
formation – Domain-Specific Languages

1 Introduction

Model-Driven Engineering (MDE) relies on models to
conduct the software development process. In this way,
high-level models are refined using automated transfor-
mations until the code of the final application is ob-
tained. A key aspect in MDE is the automation of model
management operations. In particular, there is a recur-
ring need to transform models between different lan-
guages and levels of abstraction, e.g. to migrate between

Send offprint requests to:
⋆ Present address: Computer Science Department, Univer-

sidad Autónoma de Madrid, 28049 Madrid (Spain)

language versions, to translate models into semantic do-
mains for analysis, to generate platform-dependent from
platform-independent models, or to refine and abstract
models. This kind of transformation is called Model-to-
Model (M2M) transformation.

In MDE, transformations are seldom specified with
general-purpose programming languages (e.g. Java) but
with M2M transformation languages specially tailored
for the task of transforming models [12]. Prominent ex-
amples of such languages are QVT [52], ATL [36], Triple
Graph Grammars [57] and ETL [40].

M2M transformations are deployed as software and,
like any other software, they need to be analysed, de-
signed, implemented and tested. Therefore, their devel-
opment requires systematic engineering processes, no-
tations, methods and tools. This need is more acute
in industrial projects, where the complexity of models
and modelling languages makes necessary large and com-
plex transformations. Surprisingly, most transformation
languages proposed by the MDE community nowadays
are either directed towards the implementation phase of
transformations, or are not integrated in a unified engi-
neering process. As a consequence, there is a lack of co-
hesive support for transformations – involving notations,
methods and tools – across all development phases. This
makes more difficult the design of large-scale transfor-
mations, hinders the standardization and codification of
best practices (e.g. patterns [1,6] analogous to design
patterns in UML), and complicates the maintenance and
understandability of the transformation code.

In this paper we present a family of modelling lan-
guages, called transML, which covers the whole life-cycle
of transformation development: requirements, analysis,
design and testing. It can be used together with any
transformation implementation language. Moreover, fol-
lowing an MDE approach to the construction of trans-
formations, we provide partial automation for the refine-
ment of transML models and the generation of code for
several transformation implementation languages. We
also provide support for reengineering transformation

code by its parsing into transML models, and facilitating
platform migration.

This paper is an extended version of [29]. Most no-
tably, here we incorporate a new diagram type for trans-
formation testing – in a style similar to the xUnit testing
frameworks [4] – together with a supporting platform;
we illustrate the use of platform models to character-
ize different implementation languages and validate rule
diagrams for them; we support the generation of QVT
code from transML models; and we elaborate on two ex-
tended case studies.

The paper is organized as follows. Section 2 reviews
previous attempts to model transformations, pointing
out limitations and motivating the needs for high-level
modelling languages for transformations. Next, Section 3
gives an overview of transML, our family of languages
that cover the identified needs to build transformations
in the large. The following sections describe each lan-
guage of the family: Section 4 describes our support for
the requirements and analysis phases; Section 5 shows
our notation to model the architecture; Section 6 intro-
duces the languages to model the high-level (mappings)
and low-level (rule structure and behaviour) design; and
Section 7 explains our support for testing. Then, Sec-
tion 8 shows how all these languages are integrated by
means of traceability relations. Section 9 presents tool
support for forward and reverse transformation engineer-
ing, followed by Section 10, which evaluates the approach
with two case studies. Finally, Section 11 concludes.

2 Related work

Most research in M2M transformation focuses on the im-
plementation phase, either to develop new languages to
implement transformations, or to test final implementa-
tions. This is likely due to the infancy of M2M transfor-
mation research, and is analogous to early research on
software engineering languages, where the focus was di-
rected to implementation languages. There, analysis and
design notations came later, when issues of system scale
became a concern. In the following we review languages
and approaches directed to modelling transformation de-
velopment phases other than implementation.

Requirements and Analysis. Very few attempts to
describe methods for capturing and representing
model transformation requirements can be found in
the literature. In [26], the authors propose apply-
ing test-driven development [4] to model transforma-
tions. Thus, requirements are captured in the form
of test cases made of an input model, together with
output fragments and assertions expressed in OCL.
This representation is however not suitable to cap-
ture non-functional requirements, or to express re-
lationships between functional ones. Other recent
works only target a specific non-functional require-
ment type, such as [34,48], where the expected qual-

ity attributes for transformations are modelled and
subsequently used to discriminate between alterna-
tive transformation design solutions.

Design. As for analysis, there is limited work propos-
ing design notations for transformations. For in-
stance, [53] presents a language to design trans-
formations, but focused only on their implementa-
tion. There are several approaches that use UML ob-
ject diagrams to represent each rule pre and post-
conditions [11,20] as well as notations similar to ac-
tivity diagrams to represent rule control flow. As an
example, UML-like class diagrams are used to rep-
resent the structure of rules and cover the low-level
design of transformations in [18]. In [27] the authors
propose a UML profile for modelling transformations.
In particular, they use a stereotyped activity diagram
where each activity is tagged with the name of a rule,
and rule behaviour is expressed by class diagrams
with stereotypes (like create and destroy). The aim
of that work is to enable the generation of code for
different transformation engines.
There is also work on architectural design languages
allowing for the composition and orchestration of
transformations. Whereas [55] is a specific language
for composing ATL transformations, the approach
in [64] is more platform independent. Kleppe pro-
posed the MCC environment [37], which offers a
scripting language with composition operators en-
abling the design of transformation chains. In [66] the
authors propose mechanisms to compose transforma-
tion chains by defining correspondence meta-models.
In [2] the authors present a tool integration frame-
work enabling the description and execution of MDE
processes. In all cases, other phases of transformation
development are neglected.

Validation and Verification. Validation and Verifi-
cation is an integral task of software development. In
the context of model transformations, there are many
works targeting the verification of transformation im-
plementations. We distinguish two approaches: those
based on the use of a formal transformation language,
like graph transformation [16,17], and those trans-
lating the transformation specifications into a for-
mal domain enabling analysis, such as Petri nets [14],
rewriting logic [8] or a SAT problem [10].
There are also works dealing with model transforma-
tion testing [3,9,21,43]. In [46], the authors present
a testing framework for the C-SAW transformation
languages atop the GME meta-modelling environ-
ment. A test case in this approach consists of a source
model and its expected output model. An execution
engine runs the tests and displays the differences
between the actual and expected output. The ap-
proaches in [26,41] follow a similar philosophy to the
xUnit framework but for transformation testing.
Another branch of related works deals with the gen-
eration of input test models for transformation test-

2

ing [21,58]. These works tend to consider only the
features of the input meta-models in order to gen-
erate the test models, but not properties of the
transformations (i.e. they support black-box testing).
There are a few exceptions though. For example,
in [43], the authors propose using all possible overlap-
ping models of each pair of rules in a transformation
as input models for testing as well (i.e. white-box
testing).
Other works target the testing of transformation en-
gines [13,61]. For instance, in [13], the authors gen-
erate test models in order to test the pattern match-
ing algorithm of graph transformation engines. The
generated test models consider the structure of the
rule pre-conditions, the specific semantics of graph
transformation (e.g. dangling edges, non-injective
matches) and fault injection techniques.
Finally, some approaches bring techniques from com-
piler testing for the purpose of testing model-based
code generators [56,62]. For example, MetaTest [56]
is a tool directed to testing model-based processors,
like code generators or model simulators. It allows
the specification of the model syntax using context
free grammars, and their semantics using inference
rules. Then, the tool uses the inference rules to gen-
erate models satisfying certain syntactic and seman-
tic coverability criteria. In [62], the authors test op-
timization rules in model-based C code generation
from Simulink models. The semantics of the opti-
mization rule under test is given by a graph transfor-
mation rule, and its (possibly infinite) input space
is partitioned into a finite number of equivalence
classes. Then, test cases are automatically generated
to compare the execution of the Simulink model and
the generated C code.

Complete Life-Cycle. Only a few works cover several
phases of transformation development, being closer
to our engineering view of developing transforma-
tions. For instance, [59] identifies a transformation
development life-cycle and proposes describing trans-
formations incrementally, starting from transforma-
tional patterns and partial specifications that are
gradually refined. Unfortunately, no concrete nota-
tion or tool is proposed. The position paper [42] en-
visages a mapping and a transformation view for
transformations. Its aim is providing a precise se-
mantics for mappings in terms of Petri nets so that
the transformation view can be generated from the
mappings view. Still, the framework seems ad-hoc for
their particular transformation approach and cannot
be applied to other implementation languages.
In the context of the QVT RFP, the authors in [5]
propose using a tool/technology- independent trans-
formation representation, which could be used to re-
alize the transformation using several implementa-
tion languages. The suggested platform-independent
representation is UML, modelling transformations as

operations in a class diagram, and resorting to ac-
tivity diagrams to express the transformation be-
haviour. Even though this work recognises that trans-
formations should be developed similarly to other
software, it obviates the fact that activities like anal-
ysis and testing are required as well, and that trans-
formation development requires from specific ab-
stractions and primitives not present in UML. Thus,
from the point of view of transformation designers, it
is more productive to have notations with native sup-
port for transformation concepts like mapping, rule
or transformation.

In summary, we observe a lack of modelling notations
and tools to cover the complete life-cycle of transforma-
tion development in a cohesive way. Transformation de-
velopers should be able to use such notations with their
favourite transformation implementation languages, in
the same way as the UML can be used with any object-
oriented programming language. Having available such
transformation modelling notations would make possible
to apply systematic engineering principles to transfor-
mation development, to trace the models in the different
stages of the transformation development in a non ad-
hoc way, as well as to apply MDE techniques to obtain
transformation code from high-level models. Such nota-
tions are urgently needed in order to be able to benefit
from proven software engineering principles, like design
patterns for model transformations [1,6,33].

3 Overview of transML: A family of languages
to model transformations

How are transformations developed? The answer is too
frequently “in an ad-hoc manner”. Jumping directly to
an implementation language may be sufficient for simple
transformations, but this approach is challenging in the
large. If transformation technology is to be used in indus-
try, transformations must be constructed using engineer-
ing principles [5]. Hence, the process of transformation
development should include other phases in addition to
coding and testing, namely: requirements, analysis, ar-
chitectural design, high-level design and detailed design.

The notations to be used in these phases have to
consider the specificities of model transformation devel-
opment. Fig. 1 gives an overview of transML, the family
of languages we propose, and their relations. The upper
part of the figure shows the languages in the family: a re-
quirements diagram, formal specification diagrams and
scenarios to cover the transformation analysis; an archi-
tecture diagram to break the transformation in modu-
lar units; a high-level design view of the transformation
specified as a mapping diagram; and rule diagrams for
the low-level design. The figure also shows relations to
enable tracing elements across diagrams, e.g. to discover
the requirements each rule is addressing. The objective

3

of these diagrams is guiding the construction of the soft-
ware artifacts shown to the bottom of the figure: the
transformation code (in any implementation language
such as QVT or ETL), the generation of test cases and
testing models (also supported by transML) to exercise
the transformation using different criteria, the run-time
verification of transformation code, and the orchestra-
tion of transformations.

Traceability links

Rule
diagrams

Transformation code
(e.g. ETL, ATL, QVT…)

generation reengineering

Behavioural
diagrams

Mapping
diagram

Requirements

Formal
specification

Test
Cases

generationin
je

c
t

a
s
s
e
rt

io
n

s

Simple
scenarios

Testing
model

High-level
design

Low-level design

Orchestration
code

generation

Analysis

Architecture
diagram

Derived traceability links

Fig. 1 Model transformation framework.

We do not prescribe a particular process in which
these phases should occur, but in our experience, trans-
formations are often built in an iterative, incremental
way. Our testing models allow test-driven development
of transformations as well [26]. We do not suggest ei-
ther that all diagrams have to be used when building a
transformation, just like when building object-oriented
systems it is not mandatory to use all UML diagram
types. Depending on the project characteristics, we may
emphasize the use of the formal specification language
e.g. for complex transformations that should preserve be-
haviour, or just use the high-level design diagrams but
not the low-level ones for small, one-to-one transforma-
tions. Nonetheless, the full power of transML comes by
using its diagrams in combination.

The following sections present transML in detail. We
will use as a running example the class-to-relational
transformation to ease understanding, and provide eval-
uation of its use with two more complex transformations
– one of them in an industrial project – in Section 10.

4 Requirements and analysis

4.1 Requirements elicitation

Just like in the development of any other kind of
software, transformation developers need to record the
transformation rationale, identifying functional and non-
functional requirements. Therefore, notations helping
the hierarchical decomposition of requirements and per-
mitting traceability to further models are especially use-
ful. Here we can use any technique and notation from

the Requirements Engineering community [63]. However,
in order to trace requirements into subsequent phases,
transML includes a representation of requirements in
the form of diagrams. In particular, we use a notation
similar to SySML requirements diagrams [22], where we
have left out elements not deemed necessary for gather-
ing transformation requirements, and added other con-
cepts specific to transformations (e.g. a classification of
the source of requirements).

The meta-model for this representation, shown in
Fig. 2, enables hierarchical decomposition, classification,
refinement and traceability of requirements. Require-
ments contain an index indicating their relative position
in the hierarchical decomposition, and are classified in
a dual way: attending to whether they are functional or
not, and to whether they are requirements of the input
models, the output models or the transformation itself.

requirements

ReqDiagram

−name:String

−description:String

Requirement

−name:String

−text:String

−source:ReqSource

−type:ReqType

−/index:String

*

refines+*derives+ *

children+
*

{ordered}

<< enumeration >>

ReqSource

+sourceModel:int=1

+targetModel:int=2

+transformation:int=3

<< enumeration >>

ReqType

+functional:int=1

+nonFunctional:int=2

Fig. 2 Requirements meta-model.

Since transformations are sometimes not meant to
work properly with all possible instances of the input
meta-models, but with a restriction of them, it is im-
portant to explicitly record the requirements needed by
input models to qualify for the transformation. Simi-
larly, the transformation may not be able to generate
each possible instance of the output meta-models (i.e.
it may be not surjective), and this knowledge should be
recorded too. In our diagram it is possible to differenti-
ate between these two requirement types. We will see in
next subsection that our formal specification language is
able to precisely describe some of these requirements.

As an example, Fig. 3 shows the requirements dia-
gram for the class-to-relational transformation. Require-
ments for the input model are annotated with a right-
wards arrow in the upper right corner, whereas require-
ments of the transformation are annotated with dented
wheels. The children of a requirement are shown below it,

4

connected with lines terminated in a divided circle, and
indexed concatenating consecutive numbers to the index
of the parent. In the figure, requirement 0.1 restricts in-
put models to have no redefined attributes, whereas re-
quirement 0.3.1 derives from requirements 0.3.2 and
0.3.3.

«requirement»
OO2DB Transformation

The objective is, given a class diagram to create a DB schema

able to store the information of instances of the class diagram

«requirement»

Features

Features are transformed
to columns

«requirement»
Classes

Classes are transformed
into tables

«requirement»

Single-Val-Attributes

Single valued attributes

are transformed into
columns

«requirement»
Multi-Val-Attributes

Multi-valued attributes are
transformed into a table,

with a foreign key and a

column for their values

«requirement»

References

References are

transformed into
foreign keys

«requirement»

Inherited Attributes

Inherited attributes are
copied to the table

«requirement»
No Redefined Attributes

Redefined attributes in the class

diagrams are not allowed

0

0.1 0.2 0.3

0.3.1 0.3.2 0.3.3 0.3.4

<<derives>>

<<derives>>

Fig. 3 Requirements for the example transformation.

4.2 Analysis

Software engineers use a variety of mechanisms to anal-
yse, understand and reason about requirements. We have
identified techniques based on scenarios and on for-
mal specification languages, which we have adapted for
transML.

First, once some requirements are fixed, engineers
can write scenarios that provide examples of the trans-
formation (similar to the role of uses cases in UML). We
call these examples transformation cases, which describe
how concrete source models are transformed into target
ones. The examples may contain either full-fledged mod-
els or model fragments.

As an example, Fig. 4 shows a transformation case
explaining that a multi-valued attribute should be trans-
lated into a table with a foreign key from the table as-
sociated to its owner class. Actually, this transforma-
tion case is given through model fragments as, in a cor-
rect OO model, classes need to be enclosed in packages,
whereas in correct DB models tables should belong to a
schema. Although in this case we have used the abstract
syntax for both models, we could use a concrete syntax
as well.

The use of transformation cases serves different pur-
poses. First, they are used to understand and rea-
son about what the transformation has to do. Second,
they can be used as input to model transformation-by-
example techniques [65] which derive a rough sketch of
the transformation. Third, they can drive the transfor-
mation implementation using test-driven development
approaches [26], and they can also be used as test cases
to validate the transformation implementation (see Sec-
tion 7).

Class with Multi-Valued Attribute
fragment

OO DB

c:Class

name = “Book”

co2:Column

name = ”authorId”

child

co1:Column

t1:Table

name = ”BookId”

a:Attribute

name = “author”
isMany = true

t2:Table

name = “author” parent

fk:ForeignKey

name = ”Book”

co3:Column

name = “value”

co4:Column

name = ” id”

Fig. 4 Transformation case with model fragments.

The second notation we use in this phase is a visual,
formal specification language [28]. Similar to the role of
Z [60] or Alloy [35] for general software engineering, this
language is used to: (i) describe in an abstract manner
what the transformation has to do without stating how
to do it, (ii) specify correctness properties that the im-
plementation should satisfy, and (iii) specify restrictions
on the input or output models. These specifications can
be used later for formal reasoning of transformation re-
quirements, and for specification-driven testing of trans-
formations through the generation of an oracle function
to test the transformation.

Our specification language abstracts from concrete
examples through declarative patterns that express al-
lowed or forbidden relations between two models. Its
meta-model is shown in Fig. 5, and its formalization is
available at [28,30]. Patterns have a graphical part (class
ConstraintTripleGraph in the meta-model), and can in-
clude conditions on the attribute values and constraints
(we use EOL [38] for this). Patterns expressing allowed
relations are called positive, while those expressing for-
bidden relations are called negative. Thus, the language
supports constructive and non-constructive specification
styles, in contrast to scenarios which are always con-
structive. Moreover, patterns permit specifying proper-
ties for both uni-directional and bi-directional transfor-
mations, as they can be interpreted source-to-target and
target-to-source.

Since transML is designed to be independent of the
language used to implement the transformation, our
specification language supports the two most common
styles for M2M transformation: trace-based and trace-
less, depending on whether explicit traces are given be-
tween source and target elements or not. Examples of
languages that use an explicit declaration of traces are
QVT-Core and Triple Graph Grammars, whereas exam-
ples of traceless languages are QVT-Relations, ATL and
ETL. In the case of a trace-based specification, patterns
can define positive and negative graph pre-conditions
(associations positivePrecondition and negativePrecon-
ditions in the meta-model of Fig. 5), and the graphi-
cal part of the patterns is made of two Graphs related
through a CorrespondenceGraph which stores the traces.

5

analysis

Graph

Object

-identifier:String

-type:String

objects+*

Reference*refersTo+

Feature

-name:String
features+

*

Attribute

-variable:String

-value:String

NegativePattern PositivePattern

Specification

-name:String

-sourceMetamodel:String

-correspondenceMetamodel:String

-targetMetamodel:String

Pattern

-name:String

-when:String[*]

-where:String[*]

patterns+

1..*

ConstraintTripleGraph

-name:String

-attributeConditions:String [*]

CorrespondenceGraph

correspondenceGraph+ 0..1

Mapping

mappings+*

sourceGraph+ targetGraph+

source+

target+

constraint+

negativePreconditions+

*

positivePrecondition+

0..1

Fig. 5 Meta-model of the specification language.

In the case of a traceless specification, there is no corre-
spondence graph, but patterns are similar to QVT rela-
tions [52] and can include graph pre- and post-conditions
(when and where clauses respectively).

Our patterns have a formal semantics which allows
answering correctness questions about specifications, e.g.
whether there are conflicts between patterns. In addi-
tion, we provide a compilation of patterns into OCL ex-
pressions for the purpose of testing if a pair of models
(usually an input model and the result of its transfor-
mation) satisfies the pattern or not. The details of this
compilation are given in [28].

Finally, we maintain traceability between our pat-
terns, the transformation cases and the requirements of
the requirement diagram. A pattern addressing some re-
quirement in the requirements diagram is said to refine
it. As patterns can be used also for testing, this traceabil-
ity enables the detection of non-satisfied requirements.

As an example, the left of Fig. 6 shows a negative
pattern (indicated by the N(...)) used to express a
restriction on the input models. The pattern refines re-
quirement 0.1 in Fig. 3 (no redefined attributes). It
checks the existence of two classes c and p such that p
is an ancestor of c, having both an attribute with same
name (represented by variable X). In our language, at-
tributes may have a specific value, or may be assigned to
a variable, which then can be included in a constraint.
As the pattern is negative, models in which the pat-
tern occurs are invalid. In this respect, we can inject in
the transformation code the OCL expressions generated
from the pattern in order to test whether a given input
model qualifies for the transformation.

The right of the figure shows a positive pattern (in-
dicated by the P(...)) expressing a property of the
transformation. The pattern refines requirement 0.3.1
(inherited attributes). It expresses that if a class p has
two children classes c1 and c2, then each attribute in
the ancestor class p has to be replicated as a column in
the tables associated to c1 and c2. The tables in which

N(N R d fi dAtt) P(I h it dAtt)

p:Class

N(NoRedefinedAttrs)

a:Attribute

P(InheritedAttrs)

p: Class a: Attribute t1:Table t2:Table

OO DB OO DB

p:Class a:Attribute

name=X

c:Class ar:Attribute c1: Class

p: Class a: Attribute

name=X

c2: Class

name=C1 name=C2

d:Column e:Column

name=X

c.general.includes(p) c1.general.includes(p) and c2.general.includes(p)

name=C1 name=C2 name=X name=X

Fig. 6 Restriction on the input model (left). Verification
property (right).

the classes are transformed are located by equality of
names (variables C1 and C2), but any formula relating
their names is also allowed. We can use patterns like
this one for several purposes. First, we can inject the
OCL code generated from the pattern in the transfor-
mation, in order to check whether the implementation
generates target models satisfying these properties. Sec-
ond, we can use the patterns as assertions in testing
models, so that combined with a suitable set of input
models enable transformation testing in a similar style
to the xUnit framework. Finally, we can use these pat-
terns to reason about the correctness of the requirements
themselves.

Although there is considerable research in languages
to express patterns on graphs [31,51,54], our language
has the characteristic of being specifically designed for
M2M transformations. Hence, our patterns contain both
a source and a target model (graph pattern languages
only consider one graph) and their bidirectional se-
mantics enables their interpretation forwards and back-
wards.

5 Architecture

Large software is seldom monolithic, but is decomposed
into interacting blocks. Hence engineers have to design
its architecture. Moreover, it is often the case that a
transformation has to be integrated with further soft-

6

ware components providing extra functionality, such as
code generators. For these reasons we have included a
modelling language for architectural design which per-
mits the modular decomposition of transformations in
functional units, as well as their integration with other
software artifacts. This is very useful in large-scale trans-
formations that need to be split in different units and
orchestrated. For the design of this language we have
taken some ideas from works dealing with orchestration
of transformations [55,64], as well as from architectural
description languages [25].

Our architectural language is made of components
and connectors, as the meta-model in Fig. 7 shows. Com-
ponents interact through directional interfaces with a
type given by meta-models, event types, artefacts or
other components (to allow higher-order transforma-
tions). They can have a set of constraints, can be ar-
ranged hierarchically, and may represent transforma-
tions (model-to-model, model-to-text, text-to-model or
in-place), software (a black-box) or actors (to model hu-
man intervention). As we will see later, transML foresees
different kinds of constraints: interpreted constraints in
some language like OCL, opaque constraints written e.g.
in natural language, and constraints given by a pattern
specification like the ones used during the analysis phase
(previous section). Constraints act like a contract [50] to
further restrict the expected inputs and outputs of a
component. Moreover, assigning constraints to ports en-
ables conformance checking when connecting two com-
ponents.

architecture

Architecture

ArchComponent

-name:String

ArchComposite

SWComponentTransformation

Actor

components+*

Interface

-name:String

-direction:Direction

<< enumeration >>

Direction

+IN:int=0

+OUT:int=1

+INOUT:int=2

ports+

*

Connector

*

*

IType

-name:String

types+
*

children+

*

type+0..1

MetamodelEvent Artefact

<< from mappings >>

Constraint

constraints+*

Fig. 7 Architecture meta-model.

Fig. 8 shows a simple architectural diagram for our
example. The model depicts a chain of transformations:
the first takes an OO model and transforms it into a
DB model, the second optimises this DB model, and
the third generates textual code for a particular plat-
form. The diagram shows the transformations as com-

ponents with typed, directional interfaces. The type
of the interfaces is given by a meta-model, together
with extra constraints to rule out models that conform
to the meta-model but are not handled by the trans-
formation. Models conforming to those interfaces can
be input/output of the transformations. For example,
the input interface of component OO2DB has the UML
meta-model as type, and is constrained by the pattern
N(NoRedefinedAttrs) shown in Fig. 6. The type
also allows checking compatibility when connecting two
transformation components.

N(NoRedefinedAttrs)

OO2DB

in out

Normalize

in out

GenSchSQL

in out
«M2M» «inPlace» «M2text»

UML DB
SQL Grammar

ISO/IEC 9075:2008

Fig. 8 Architectural diagram: transformation-centric view.

Fig. 9 shows a type-centric view of the same model.
This view is similar to a mega-model [19], where trans-
formation components are visualized as arrows connect-
ing interface types. This architectural view can bridge
modelware and grammarware technical spaces by includ-
ing model-to-text and text-to-model transformations.

UML DB
OO2DB

Normalize

SQL Grammar

ISO/IEC 9075:2008

GenSchSQL

Fig. 9 Architectural diagram: type-centric view.

6 Design

6.1 High-level design: Mappings

The design of a transformation benefits from proceeding
from a high to a lower level of abstraction, and therefore
we provide different notations for them. The high-level
design of a transformation is given by a mapping dia-
gram that defines the mappings between the elements of
the arbitrary number of languages involved in the trans-
formation. This diagram provides an intuition of which
is transformed into what, without giving details on the
how, thus enabling the transition between analysis and
design. We use a concrete syntax similar to Triple Graph
Grammar schemas [57], however our mappings are not
intended to be used as an auxiliary tracing mechanism
to guide the actual execution of the transformation code.

Fig. 10 shows the mappings meta-model. A mapping
model is established between several languages, each one
of them defined by a meta-model. The directionality of

7

the transformation is established using the navigable at-
tribute inModelEnds. Models are structured in packages,
each one of them containing mappings that can be orga-
nized hierarchically as well. Mappings connect elements
in the meta-models of the involved languages through
MappingEnds. Mappings are provided with constraints
to express when a mapping holds. Constraints can be
given either in uninterpreted text, in some language like
OCL, or using our formal specification patterns. The
mapping meta-model refers to the meta-models of the
languages involved in the transformation. We use an ab-
stract class ModellingElement to represent meta-model
elements, which can be replaced by any concrete meta-
modelling infrastructure.

mappings

MappingModel ModelEnd

-name:String

-navigable:Boolean

1..*

Language

*

MetaModel

ModellingElement

children+
*

*

*

MappingEnd

-name:String

-min:int

-max:int

-navigable:Boolean

when+0..1

Mapping

Constraint

-text:String
OpaqueConstraint

InterpretedConstraint

-language:String

Package

<< from analysis >>

Pattern

1..*

*

Fig. 10 Mappings meta-model.

Fig. 11 shows a mapping diagram. It has one block
for each language, containing the relevant elements of
their meta-model. Another block in the middle includes
mappings connecting some of these elements to indi-
cate a causal relation between them. The links from the
mappings to the language elements have a role name
(e.g. fkey, pkey), a multiplicity (1 is assumed if it is not
shown) and a direction (to denote either access or cre-
ation of elements). As our example transformation is uni-
directional, mapping ends are depicted with arrows on
the side of the DB.

Mapping diagrams can be used with different lev-
els of detail. One can start with a rough sketch of the
mappings and add details as the transformation is bet-
ter understood. For example, in Fig. 11 we have omit-
ted element ForeignKey of the DB meta-model. Later, if
needed, one can add more details: further mapping ends,
additional mappings, or new constraints to refine exist-
ing mappings. For instance, Fig. 12 shows an excerpt of
a mapping diagram that refines the previous one by at-
taching an OCL constraint to one of the mappings. The

Table

Column

pkey

Class
Classes are transformed to

tables

3

Reference
References are transformed

into foreign keys

Single-Valued-Att
Single-valued attributes are
transformed into a column

fkey

DBClass2Relational

Multi-Val-Att-Top
Multi-valued attributes are
transformed into a table,
with a pkey, a fkey, and a

column for their values

Multi-Val-Att-Child
In children classes the table
is not created, but only the

foreign key

fk
e

y

Class

Attribute

Reference

OO

Fig. 11 Mapping diagram example.

constraint demands the owner class of the attribute at
to be top-level, so that the mapping makes sense only in
this case.

Table

Column

at

DBClass2Relational

Multi-Val-Att-Top
Multi-valued attributes are

transformed into a table,

with a pkey, a fkey, and a

column for their values

Attribute

OO

3

… … …

at.owner.general.size()=0

OCL

Fig. 12 Adding constraints to mappings.

The mapping diagram is a high-level design notation,
and hence independent of the transformation implemen-
tation language. Moreover, it is not necessarily the case
that a mapping has to be implemented by a unique rule
and vice-versa. As we show next, we can use rule dia-
grams as a way to design the implementation of map-
pings if more details are needed before coding.

6.2 Low-level design: Rule structure and rule behaviour

Low-level detailed design diagrams indicate how the
transformation has to be implemented. Here we use a
rule-based style for transformations, and separate the de-
scription of the rule structure from its behaviour (other
transformation styles such as functional are not cur-
rently supported). Hence, one or several rule structure
diagrams may describe the structure of the rules in the
transformation, and several rule behaviour diagrams at-
tached to the rules can be used to specify what these
rules should do. In particular, rule structure diagrams
are helpful to specify and understand the relationships
between rules, both control flow and parameter pass-
ing. They provide high-level structuring mechanisms like

8

blocks, which perhaps are not present in the target im-
plementation language, as well as a compact notation to
express common dependencies. Our notation can also
help in describing good practices and transformation
patterns, in the same way as UML helps to record object-
oriented patterns. Finally, rule diagrams are also useful
to generate code for different platforms and reengineer-
ing of existing code, so that implementation code can be
better understood using a more abstract notation.

Fig. 13 shows part of the meta-model of the rule
structure diagrams. This kind of diagram depicts the
structure of rules (input and output parameters), their
execution flow, and data dependencies between them
(e.g. parameter passing). Rule diagrams refine mapping
diagrams by giving the low-level design of how the spec-
ified mappings are to be realized. In this way, a rule
can contribute to implement several mappings, and a
mapping can be realized by several rules. Regarding rule
structure, we can declare uni-directional or bi-directional
rules, their involved domains and their parameters. It is
also possible to specify helpers, i.e. auxiliary operations
to be used by rules.

Concerning the execution flow, we support both
explicit flows (subclasses of Flow) as well as non-
deterministic constructs found e.g. in graph transfor-
mation, as one can place a collection of rules inside a
non-deterministic Block. Among the flows, we differenti-
ate between rule execution order (class After), alterna-
tive execution flows (Choice), and explicit invocations to
other rules (or blocks of rules) which may imply param-
eter passing (classes When and Call for invocations that
occur before or after the rule, respectively).

Fig. 14 shows a rule structure diagram with four
rules, which considers ETL as the implementation lan-
guage of the transformation. The diagram is semi-
collapsed, as it only shows the parameters of the OO
domain. The diagram shows the rule execution flow by
means of rounded rectangles (Block objects), in a no-
tation similar to activity diagrams. Hence, the start-
ing point is the block containing rule Class2Table,
which implements the Class mapping. After execut-
ing this rule, the control passes to another block with
three rules, to be executed in any order. In particu-
lar, rule MultiValuedAtt2Table has been designed to im-
plement two mappings: Multi-Val-Att-Child and
Multi-Val-Att-Top. In all cases, rules are applied
at all matches of the input parameters. As previously
stated, note how blocks serve as a useful structuring
mechanism, which may not be present in the target im-
plementation language (ETL in this case).

In contrast to the previous stages in the transforma-
tion modelling, where the designer can remain oblivious
of the language finally used to implement the transfor-
mation, in this stage the particular language should be
taken into account. This is so as the rule structure dia-
gram models the actual rules of the transformation, their
relations and the execution flow. Since the features of the

Directional Transformation

from OO to DB (ETL)

c:Class

OO DB

calls

{c.parent}

SingleValuedAtt

2Column
{Single-Valued-Att}

MultiValuedAtt

2Table
{Multi-Val-Att-Child,
Multi-Val-Att-Top}

after

a:Attribute

Reference2Column
{Reference}

r:Reference

a:Attribute
DBOO

DBOO

DBOO

Class2Table
{Class}

Fig. 14 Rule structure diagram for ETL.

great variety of implementation languages are heteroge-
neous, targeting one language or other may result in dif-
ferent rule diagrams. For instance, Fig. 15 shows the rule
structure diagram in case the transformation is being
written with QVT-Relations. In this case, Class2Table
is a top rule (indicated with a double thicker border),
there is an additional rule ChClass-Table to handle the
transformation of children classes, and the rules in the
right block are explicitly invoked receiving a class and
table as parameters (since all rules in this block receive
the same parameters, we use a shortcut notation and in-
dicate the parameters in the block instead of in each one
of the rules). This diagram cannot be used for ETL be-
cause ETL rules are allowed to have only one parameter
in the source domain.

c
:C

la
s
s

t:
T

a
b
le

Directional Transformation

from OO to DB (QVT-R)

calls {c,t}

OO DB

Class2Table
{Class}

calls {c,t}

c:Class

OO DB

MultiValuedAtt

2Table
{Multi-Val-Att-Child,

Multi-Val-Att-Top}

a:Attribute

OO DB

Reference2Column
{Reference}

r:Reference

OO DB

SingleValuedAtt

2Column
{Single-Valued-Att}

a:Attribute

calls {c1,t}

calls{c1,t}

ChClass-Table
{Class}

OO

DBc1:Class

c:Class t:Table

Fig. 15 Rule structure diagram for QVT-Relations.

Thus, although our rule language captures the main
features of transformation languages, a particular rule
diagram has to consider the specific implementation
platform. For example, rules can have an arbitrary num-
ber of input parameters if we use ATL as the implemen-
tation language, whereas they only have one input pa-
rameter if we use ETL, and we have object patterns if us-
ing QVT-Relations. Also, platforms differ in the execu-
tion control of their rules. While in graph transformation
the execution scheme is “as long as possible” (ALAP)
and we can have rule priorities or layers, in ETL rules

9

rules-structure

Transformation

-isBidirectional:Boolean

<< from mappings >>

MappingModel

implements+

Flow

*

Component

-isALAP:Boolean

rules+1..*
src+

*

{ordered}

tar+

*

{ordered}

After

Choice

Invocation

DataDependency

-expressionParam:String

*

<< from mappings >>

Constraint

guard+

Parameter

src+ *
tar+

Rule

-isAbstract:Boolean

-isTop:Boolean

-isLazy:Boolean

-priority:int

Block

-isConcurrent:Boolean

-isNondeterministic:Boolean

-isInitial:Boolean

DirectionalRule BidirectionalRule

elements+

*

guard+

0..1

children+
*0..1

Domain
* *

<< from mappings >>

ModellingElement

type+

<< from mappings >>

Mapping

implements+

*

<< from mappings >>

Language

Call When

Helper

return

+ 0..1
params+

*

{ordered}

Fig. 13 Excerpt of the meta-model of the rule structure diagram.

are executed once at each instance of the input parame-
ter type. Hence, even though our language for modelling
rule structure covers the most widely used styles of trans-
formation, for its use with particular platforms we define
platform models for different transformation languages.
These models contain the features allowed in each lan-
guage, and can be used to check whether a rule model is
compliant with an execution platform when code is gen-
erated, as well as by editors to guide the user in building
compliant models with the platform. Hence, they act as
a kind of profiling mechanism for different transforma-
tion languages.

Fig. 16 shows the meta-model of our platform mod-
els. This allows customizing the supported control flow
constructions, rule features, number and type of rule pa-
rameters, and execution policy of transformation lan-
guages. Boolean features, such rule extension and ab-
straction, can be either present or absent in a certain
language. Features with type SupportType can be either
the only possible choice in the language (value all), it can
be an optional feature (selectable) or unsupported. For in-
stance, in QVT-Relations rules are always executed as
long as possible (all), we can choose whether they are top
or not (selectable), and rule priorities are not supported.

As an example, Table 1 depicts in the form of a table
the platform models for the languages ETL and QVT-
Relations. Platform models allow comparison of trans-
formation languages. While QVT-Relations supports bi-
directionality and rules with arbitrary parameters, ETL
is directional and rules support one parameter in the
from domain. Hence, platform models allow comparing
different transformation approaches, in a similar way as
in [12].

From the point of view of the rule structure diagrams,
rules are black-boxes: their behaviour is still missing, in

platform

PlatformModel

-platform:String

ControlFlow

-call:boolean

-when:boolean

-after:boolean

-choice:boolean

-helper:boolean

flow+

RuleParameters

-maxParameters:int

-linksAllowed:boolean

RuleFeatures

-abstract:boolean

-extension:boolean

-top:SupportType

-lazy:SupportType

-priority:SupportType

-alap:SupportType

params+

ExecutionPolicy

-concurrency:SupportType

-nonDeterminism:SupportType

-alap:SupportType

-bx:SupportType

execution+rules+

<< enumeration >>

SupportType

+all:int=0

+selectable:int=1

+unsupported:int=2

Fig. 16 Platform meta-model.

Table 1 Platform models for ETL and QVT-Relations.

ETL QVT-R

Control flow

call true true
when false true
after true false
choice true true
helper true true

Rule features

abstract true false
extension true false
top unsup. selec.
lazy selec. unsup.
priority unsup. unsup.
as long as possible all all

Rule parameters
max parameters 1 ∗
links allowed false false

Execution policy

concurrency unsup. unsup.
non determinism unsup. all
as long as possible all all
bidirectionality unsup. selec.

particular, attribute computations and object and link
creations are not specified. We use rule behaviour di-
agrams to specify the actions each rule performs. We

10

have identified three ways of expressing behaviour: (i) ac-
tion languages, (ii) declarative, graphical pre- and post-
conditions, and (iii) object diagrams annotated with op-
erations like new, delete or forbidden.

In the case of an action language, one can use the
concrete syntax of existing transformation implementa-
tion languages such as ATL or ETL. The case of pre-
and post-conditions follows the style of graph transfor-
mation [57]. The third option is present in tools like
Fujaba [23]. As an example, the left of Fig. 17 shows
a behavioural diagram using this third type of syntax
where created elements are annotated with the new key-
word. The right of the figure shows the same rule using
an action language with ETL syntax.

c:Class

OO

«new»

t:Table

DB

Class2Table

name:=c.name

«new»

pk:Column

name:=t.pkName()

type:=‘NUMBER’

columns primaryKeys
«new» «new»

transform c: OO!Class

to t:DB!Table, pk: DB!Column

t.name:=c.name;

pk.name:=t.pkName();

pk.type:=‘NUMBER’;

t.columns.add(pk);

t.primaryKeys.add(pk);

Fig. 17 Behavioural rule diagram in visual (left) and textual
(right) notation.

7 Implementation and testing

transML does not include any implementation language,
but we can use any existing target language to imple-
ment the transformations (e.g. QVT, ATL or ETL). Us-
ing the MDE philosophy, code for different platforms
can be generated from the diagrams, specifically from
the rule (structure and behaviour) diagrams. Currently,
we support both ETL and QVT-Relations, but many
other languages, like ATL, could be targeted as well.

With respect to testing, transML includes a ded-
icated language for model-based testing, of which its
meta-model is shown in Fig. 18. This language enables
the description of test cases, including both the test in-
put models (class TestInput) and the expected outcome
or oracle function (class Assertion). The language sup-
ports four different formats for the input data: models
(which can be either a file or a transML graph model),
meta-models, graph constraints and constructive oper-
ational specifications (for instance written in EOL). In
the case of meta-models and graph constraints, it is pos-
sible to specify cardinality for the number of instance
models to be generated as input, as well as a set of gener-
ation criteria guiding the test generation procedure and
defining coverage criteria [21] (e.g. class, association and
attribute coverage among others). The expected output
for a specific test case can be given as an operation over

a given model or as an oracle function. The first possibil-
ity is useful to check whether the transformation result
is equals, includes or overlaps with a given model. The
second approach allows checking verification properties
of the resulting model, which can be defined either as
a specification (e.g. written in OCL) or as a graph con-
straint using a pattern of our formal specification lan-
guage.

Test cases can be automatically generated from the
transformation cases as these already define the ex-
pected output for a given input, as well as from the for-
mal specification built in the analysis phase, in this case
by deriving AssertionGraphConstraint assertions from
each one of the verification properties. Thus, having an
explicit model for the test suite makes it possible to trace
back detected errors to the specific transformation cases
and properties that were violated during a particular
transformation execution.

As an example, Listing 1 shows a testing model for
the class-to-relational transformation, using a textual
concrete syntax. It contains a test case derived from
the transformation case in Fig. 4, which exemplified the
transformation of multi-valued attributes. Its input is
the OO model in the transformation case where, in ad-
dition, the operation ‘complete’ in line 9 indicates that
the model fragment is being added the necessary ele-
ments to obtain a valid instance of the OO meta-model.
This is necessary as, in general, transformations assume
correct input models. The assertion in lines 11-19 checks
whether transforming the OO model yields a model that
includes the DB model in the transformation case. Note
how, in lines 3-4, the test case is annotated with the
name of the transformation case from which it was de-
rived.

1 TestSuite "OO2DB.etl" <OO:"OO", DB:"DB"> {
2

3 @transformationcase(name=
4 "Class with Multi-Valued Attribute")
5 test Class_with_Multi-Valued_Attribute {
6 input model OO {
7 c:Class { name="Book"; features=@a; }
8 a:Attribute { name="author"; isMany="true"; } }
9 .complete()

10

11 assert model DB {
12 t1:Table { name="Book"; columns=[@co1,@co2]; }
13 t2:Table { name="author"; columns=[@co3,@co4]; }
14 co1:Column { name="BookId"; }
15 co2:Column { name="authorId"; }
16 co3:Column { name="value"; }
17 co4:Column { name="id"; }
18 fk:ForeignKey { child=@co2; parent=@co4; } }
19 .included()
20 }
21 }

Listing 1 Test case derived from a transformation case.

Listing 2 contains another set of test cases for our
transformation. In this case the input models are files
specified at the test suite level (lines 3 and 4), therefore
they are being used as input by all the test cases in the
suite. Lines 8-23 correspond to a test case derived from
the specification property shown to the right of Fig. 6.

11

tests

TestSuite

-transformationURI:String

TestCase

-name:String

-isExecutable:boolean

extends+

*

*

TransformationTestCase

TestInput

-name:String

-cardinality:int=1

GenerationCriterion*

ExtensibleInput

TestSpecification TestGraphConstraint TestModel

-modelURI:String

TestMetaModel

extends+

*
*

<< from mappings >>

InterpretedConstraint

<< from analysis >>

Pattern

<< from analysis >>

Graph

0..1

RuleTestCase

Assertion

AssertionSpecification AssertionGraphConstraint
Operation

-URI:String

0..1

globInputs+ *

1..*

locInputs+

*

assertions

+ *

Fig. 18 Excerpt of the meta-model of the tests diagram.

This is an assertion of type AssertionGraphConstraint,
and it uses a textual concrete syntax for the property.
Another test case is shown in lines 25-34, which illus-
trates the use of a constraint language such as EOL to
specify model assertions. The first assertion checks the
absence of duplicated columns in tables, while the second
checks that as many tables are generated as classes, or
more (in case of transforming multi-valued attributes).

1 TestSuite "OO2DB.etl" <OO:"OO", DB:"DB"> {
2

3 input model "models/OOInstance1.xmi"
4 input model "models/OOInstance2.xmi"
5

6 @property(name="InheritedAttrs")
7 @requirement(name="0.3.1")
8 test InheritedAttrsProperty {
9 assert ppattern InheritedAttrs {

10 OO {
11 p:Class { features=@a; }
12 c1:Class { name=C1; }
13 c2:Class { name=C2; }
14 a:Attribute { name=X; } }
15 DB {
16 t1:Table { name=C1; columns=@d; }
17 t2:Table { name=C2; columns=@e; }
18 d:Column { name=X; }
19 e:Column { name=X; } }
20 condition: "c1.general.includes(p)",
21 "c2.general.includes(p)";
22 }
23 }
24

25 test transformationOfClasses {
26 assert constraint nonDuplicatedColumns (
27 "DB!Table.allInstances().forAll(t |
28 t.columns.forAll(co1 |
29 not t.columns.exists(co2 |
30 co1.name=co2.name and co1<>co2)))")
31 assert constraint numberOfTables (
32 "DB!Table.allInstances().size() >=
33 OO!Class.allInstances().size()")
34 }
35 }

Listing 2 Test case derived from a verification property and
test case defining constraint-based assertions.

The automatically generated test cases perform
black-box testing of transformations, where the gran-
ularity level is the complete transformation as the ex-
pected output is evaluated only after the transformation
is completely executed. Nonetheless it is also possible
to check assertions after rule executions through class
RuleTestCase, allowing for a finer control of errors. Re-
garding white-box testing, here one is interested in spec-
ifying input models enabling the execution (or not) of
sequences of rules. Some degree of automation could be
achieved for this purpose by taking into account the de-
fined rule diagrams. The more detailed and complete the
rule models, the more accurate the generated tests.

Complementing the test cases, it is also possible to
generate assertion code from the formal specification
of transformation properties, and directly inject it in
the final transformation code for its run-time verifica-
tion. This injected code is an oracle function, indepen-
dent from the actual language used to implement the
transformation. As an example, Listing 3 shows part
of the EOL code automatically generated from pattern
N(NoRedefinedAttrs) in Fig. 6, which can be in-
jected into the pre section of the ETL transformation
code to discard non-supported input models.

1 operation sat_NoRefinedAttrs () : Boolean {
2 return not
3 OO!Class.allInstances().exists(p |
4 OO!Class.allInstances().exists(c | c <> p and
5 OO!Attribute.allInstances().exists(a |
6 p.features.includes(a) and
7 OO!Attribute.allInstances().exists(ar |
8 ar <> a and c.features.includes(ar) and
9 checkatt_NoRefinedAttrs(p, c, a, ar)))));

10 }
11

12 operation checkatt_NoRefinedAttrs(p:OO!Class,
13 c:OO!Class, a:OO!Attribute, ar:OO!Attribute)
14 : Boolean {
15 var X := a.name;
16 var Xar := ar.name;

12

17 return c.general.includes(p) and X=Xar;
18 }

Listing 3 EOL code derived from a specification property.

8 Putting everything together: Traceability

Even though the different transML diagrams can be used
in isolation, their power comes from their combined use.
This is so as one can trace requirements into the code
and build the final transformation by the progressive re-
finement of models. For this purpose, we have defined
traceability relations between the different diagrams as
shown in Fig. 19. These relations correspond to the dot-
ted arrows in Fig. 1.

<< from requirements >>

Requirement

<< from architecture >>

ArchComponent

<< from architecture >>

Interface

satisfies+ * satisfies+ *

<< from mappings >>

Mapping
satisfies+

*

<< from rules-structure >>

Rule

implements+ *

<< from rules-behaviour >>

BehaviouralDiagram

refines+

<< from analysis >>

Patternrefines+

*

<< from rules-structure >>

Transformation

implements+ *

<< from mappings >>

MappingModel

implements+

<< from tests >>

TestCase

*

tests+ *

*

addresses+ *

Fig. 19 Traceability links.

In particular, it is possible to trace which require-
ments are addressed by a given transformation case or
specification pattern (refines relationship). Architectural
components, mappings and test cases are also traced to
requirements. We can trace the mappings a rule imple-
ments, and the behavioural diagrams that refine a rule.
Therefore, we can trace the requirements each rule ad-
dresses and vice versa. Finally, test cases can refer to
the requirements they address, and to the transforma-
tion cases or verification patterns they test.

Making available explicit traces between the different
transML models permits automating the generation of
requirement traceability matrices [63] documenting the
requirements of a transformation against its test cases
or analysis properties. As an example, Fig. 23 shows the
requirement traceability matrix for the test cases of our
example, using a web-based user-friendly format.

Finally, we provide some automation for traceability.
For instance, we create traces when generating the skele-
ton of a rule structure diagram from a mapping diagram
(see Fig. 20) or when generating a test case from a trans-
formation case (see Listing 1). However, most traceabil-
ity links have to be specified by hand (see for example

the annotations in Listing 2). A higher degree of automa-
tion (e.g. inference or maintenance of traces) is left for
future work.

9 Tool support: Towards the model-driven
engineering of transformations

We have built Ecore meta-models for the presented lan-
guages, together with several model transformations and
code generators that allow automating the conversion
between diagrams, as shown in Fig. 20. The purpose of
these transformations is to provide partial automation
for model refinement from requirements to code gen-
eration and testing. Hence, they enable the construc-
tion of model transformations using MDE. For example,
given a mapping diagram we generate a skeleton of a rule
structure diagram, which has to be completed with the
rule behaviour model by the transformation developer.
All model transformations have been implemented with
ETL, and all code generators with EGL.

Rule Diagram

ETL
Transformation code

Architecture

Diagram
EGL

program

Orchestration

code (ANT files)

ETL transf.

EGL

program parser

ETL

transf.

ETL

transf.

Aggregated
Scenarios

Formal
Specification

1

2

3 7

assertions

Platform
Model

EVL
invariants

check
& fix

Aggregated
Scenarios

Testing

Model

4 6
Aggregated
Scenarios

Transformation
Cases5

check

8

9 9

Mapping
Diagram

Fig. 20 Scheme of tool support.

The code generator with label “1” takes as input the
architecture diagram, and generates ANT files that or-
chestrate the execution of the transformation chain spec-
ified in the architecture (i.e. it will ask the user the mod-
els to transform and pass them to the appropriate trans-
formations). This generator also produces one additional
ANT file for each transformation in the architecture,
which defines tasks to automate the other labelled ac-
tivities in the figure.

Transformation “2” generates one mapping diagram
for each transformation in the architecture. The map-
ping diagrams are added a mapping for each concrete
class defined by the input port types. Then, the transfor-
mation designer is in charge of connecting the mappings
with the appropriate output types.

13

Transformation “3” generates a simple rule diagram
from a mapping diagram that contains one rule for each
mapping. Each rule stores a trace pointing to the map-
ping it implements. The opposite transformation is also
possible for reengineering (label “7”).

As stated before, one may use features of rule di-
agrams that are not available in the specific execution
platform. In order to check whether a rule diagram fits
a particular platform, we have created an EVL [39] pro-
gram made of OCL-like constraints which validate a
rule diagram for a specific platform model, discovering
whether it conforms to the features of the platform, and
automatically repairing the detected errors when possi-
ble (label “8”).

In “4”, code is generated from the structural rule di-
agram, taking into account the flow directives. In our
current implementation we generate ETL code, and a
parser for reverse engineering (label “6”) generates a
rule diagram from ETL code. Although not shown in
the figure, we support the generation of QVT-Relations
code from structural diagrams as well, but not its reverse
engineering.

The generator in “5” produces OCL code from the
properties defined with the specification language. There
are two ways to inject this code into ETL transforma-
tions. Firstly, code generated from patterns specifying
restrictions on the input model is included in the pre
section of the transformation, and checked on the input
model before the transformation starts. If the model vi-
olates these constraints, a pop-up window informs the
user of the unsatisfied properties. Secondly, code gen-
erated from patterns specifying properties of the trans-
formation or of the expected output models is injected
in the post section of the transformation, and checked
when the transformation ends. This is used to perform
run-time verification of the transformation. When the
execution of a transformation finishes, the user is in-
formed of any violated property and of the rules that
are responsible for the error. An example screenshot is
shown in Fig. 38.

In order to enable systematic transformation testing,
a testing model is generated from the formal properties
and transformation cases (label “9”). The generated test
cases can be executed to test the final transformation.
Currently, we only support model files as input test data,
and all assertion types in our meta-model. Supporting
other criteria for input model generation is left as fu-
ture work. The execution of a test case for a given input
model returns whether the result of transforming the
model violates any of the specified assertions. As an ex-
ample, Fig. 21 shows in the upper right window part of
a test case (the complete test case was previously shown
in Listing 2). The lower right window contains the result
of running the test case.

Additionally, starting from the transML models,
we generate different requirement traceability matrices
which can be visualized in a web browser. In particu-

Fig. 21 Result of running a transformation test case.

lar, we trace requirements against test cases to anal-
yse whether every requirement has been tested, as well
as against transformation cases and verification prop-
erties. Fig. 22 shows a screenshot of a requirements
diagram being edited, while Fig. 23 shows the gen-
erated matrix tracing requirements (rows) against ex-
isting test cases (columns). Crossed cells have differ-
ent colours depending on whether there is a direct
traceability link between the requirement and the test
case (e.g. requirement Inherited Attributes and
test InheritedAttrs), or if the test covers a sub-
requirement of a given one (e.g. requirement Features
and test InheritedAttrs). Moreover, each require-
ment in the matrix is linked to a web page containing
the details of all its traces.

10 Case studies

This section illustrates the use of transML with two
real case studies. In the first one the aim was to trans-
late models of productions systems into Petri nets for
their analysis, and the chosen transformation language
was QVT-Relations. The second example is an industrial
project in the railway domain for which we used ETL.

14

Fig. 22 Editor for the transformation requirements.

Fig. 23 Generated requirement traceability matrix.

10.1 From production plants to time Petri nets

In this section we describe the use of transML for build-
ing a transformation chain for the verification of pro-
duction plant models [15] using time Petri nets [49].
Petri nets have powerful analysis techniques and hence
are a frequently used analysis domain for higher-level
modelling languages like UML or domain-specific lan-
guages [7].

We use a domain-specific language to describe pro-
duction plants as nets of interconnected machines and
conveyors with a certain capacity. There are four types
of machines: generators of cylinders and bars, assem-
blers, and packaging machines. Generators introduce a
given kind of part (a cylinder or a bar) in a factory con-
veyor, assemblers take one cylinder and a bar and pro-
duce an assembled part, and packaging machines remove
assembled parts from the factory. All machines are char-
acterized by some processing delay given by a uniform
time interval, whereas for simplicity conveyors have zero
transport time.

As a first step in the development of our transforma-
tion, we defined several transformation cases with exam-
ples of specific models or model fragments and the ex-
pected time Petri net in each case. For example, Fig. 24
depicts how the connection between two conveyors of ca-
pacity 4 and 3 should be expressed in time Petri nets,

where in addition the target conveyor is full as it contains
three parts (two cylinders and one assembled part). In
this example we can see that conveyors should be trans-
formed into a set of places, one for each kind of part (e.g.
the places cvs cyl, cvs bar and cvs assem corre-
spond to conveyor cvs). The Petri net representation
for conveyors should also include an additional place to
ensure the maximum capacity constraint of conveyors
(places cvs cap and cvt cap). This transformation
case is an example of situation where the target conveyor
is full (zero tokens in the place for capacity constraint),
so that no part from the incoming conveyor can move.

cvs

[0, 0]

cvs bar

cvs assem

cvs

cap

cap=4

cvt

cap=3

move
cyl

[0, 0]

move
bar

[0, 0]

move
assem

cvs cyl

cvt bar

cvt assem

cvt cyl

cvt
cap

Conveyor connection with deadlock
fragment

Fig. 24 Transformation case showing the time Petri net se-
mantics of two connected conveyors.

Fig. 25 shows another transformation case, this time
an example of the transformation of a complete factory
model. The factory contains a generator of bars gb, a
generator of cylinders gc, an assembler asse, and a
packaging machine pack. One conveyor feeds pieces into
the assembler, and another conveyor moves the assem-
bled parts to the packaging machine. From this example
we learnt how to transform the different kinds of ma-
chines and that unused places of conveyors should be
deleted.

cv

[1,2.5]
gc

cap=4

asse
[3,3.5]

cva

cap=3

pack
[5,6.5]

[1.5,2.3]
gb

gc

[1,2.5]

cv bar

cv
cap

cv cyl

gb

[1.5,2.3]

asse
start

asse idle

asse
busy

asse

end

2

cva pack

cva cap

[0,0]

[3,3.5]

[5,6.5]

Simple plant model 1
model

Fig. 25 Transformation case for simple plant model.

15

The Petri nets generated by our transformation must
ensure the preservation of the maximum capacity for
conveyors. As the transformation case in Fig. 24 showed,
this should be implemented by an extra place connected
to each transition, and removing or adding tokens to the
set of places modelling the conveyor. More in detail, if a
transition adds tokens (parts) to the places of the con-
veyor, it should remove the same amount of tokens from
the capacity constraining place. This property can be
formally expressed using our specification language as
shown in Fig. 26. We also defined a similar pattern for
incoming transitions to capacity places.

[l,h]

x+’ cap’

w

[l,h]

x+’ cap’

w

P(Capacity)

t t

w=t.inarcs.select(a | a.inp.name=x+y).
collect(a | a.weight).sum()

P(inWeights)

Fig. 26 Correctness property for the target model.

Other desired properties of the generated time Petri
nets were the absence of non-used places (which could
come from conveyors not connected directly or indirectly
to some generator) as well as the absence of dead tran-
sitions (i.e. transitions that can never fire as they are
connected to an incoming place with zero tokens and
without any other input transition). These two proper-
ties were specified with the patterns shown in Fig. 27.

pl

N(Unconnected places)

pl.inarcs.size()=0 and
pl.outarcs.size()=0

pl

N(Dead transitions 1)

pl.inarcs.size()=1 and

pl.outarcs.size()=1 and
pl.tokens.size() =0

pl

N(Dead transitions 2)

pl.inarcs.size()=0 and

pl.tokens.size() =0

Fig. 27 Verification properties for the target model.

Regarding the transformation design, we decided to
break the transformation in two steps: the first one trans-
forming the factory models into time Petri nets, and the
second one simplifying the resulting net by eliminating
unconnected places and dead transitions. Altogether, our
architectural diagram is shown in Fig. 28. The two trans-
formation steps are included in a composite block, for
which the output is constrained by some of the identi-
fied verification properties. Afterwards, a model-to-text
transformation would produce code for its analysis with
the Romeo tool [24].

Next, we built the mapping diagram shown in
Fig. 29 for the first transformation step, named
ProdSys2TPNets. The diagram only reflects the trans-
formation of entities (i.e. conveyors, machines and parts)
but not the net topology (i.e. connections). This was

ProdSys2

TPNets

in out

Optimize

in out

ProdSys
Time

PetriNets

GenRomeo

in out

Romeo

format

«M2M» «inPlace» «M2text»

Romeo

«SW»
in out

PS2TPNs «M2M»

N(Unconnected places)

N(Dead transitions 1)

N(Dead transitions 2)

Fig. 28 Architecture of the transformation chain.

quite useful as we only wanted to focus on this aspect
of the transformation, instead of having to specify all
details. Thus, the diagram shows that any kind of gen-
erator should be translated into one transition, that
any part should be transformed into a token, and that
assemblers should be transformed into two places, two
transitions and one token.

Transition

Place

Generators
Generators are transformed

into transitions

Assemblers
Assembler machines are

transformed into a busy/idle

pair of places connected to

two transitions

2

TimePetriNetsProdSys2TPNets

Generator

Assembler

Production

Systems

2

Packaging

Packaging
Packaging machines are

transformed into transitions,

which remove tokens

Conveyor

Conveyors
Comveyors are transformed

into 4 places: 3 to store each

type of piece, and another

constraining the capacity

4

Part
Parts

Parts are transformed into

Tokens.

Token

Fig. 29 Mapping diagram for the first transformation.

We chose QVT-Relations to implement the first
transformation due to its declarative nature, which was
very convenient because the source and target languages
were heterogeneous and we had to create complex pat-
terns in the target model. Fig. 30 shows the rule struc-
ture diagram, which is organized in two main blocks: En-
tities and Topology. The Entities block contains one rule
to transform each entity kind, according to the mapping
diagram of Fig. 29. The translation of parts is handled
by block genParts, which is collapsed so that it only
shows the number of rules it contains (4, one for each
kind of part and another one for the capacity constraint
places). The Topology block contains rules to connect the
Petri net fragments generated by the first block. Indeed,
these rules have dependencies with the rules in the first
block. For instance, rule Connect Packaging can be exe-
cuted only when rules Packaging2Transition and Con-
veyor2Places (this latter dependency indicated in the
block) have been executed. Altogether, we found this
diagram useful to understand the relationships between

16

rules. Moreover, it provided structuring mechanisms like
blocks which were not present in QVT-Relations, as well
as a compact notation to express common dependencies
(e.g. we specified a when dependency for all rules in block
Topology with a single arrow).

PS PN

Generator2

Transition
{Generators}

g:Generator

Assembler2

capConstNet
{Assemblers}

PS PN

a:Assembler

Packaging2

Transition
{Packaging}

PS PN

p:Packaging

Conveyor2

Places
{Conveyors}

PS PN

c:Conveyor

4 rules

{Parts}

genParts

2 rules

connAssemb
when

2 rules

connGens
when

Connect
Packaging

when

Connect

Conveyors

PS PN

PS PN

when

Entities Topology

Directional Transformation

ProdSys2TPNets (QVT-R)

calls {…}

Fig. 30 Rule structure diagram.

Starting from our rule diagram, we used our code
generator for QVT-Relations to generate a skeleton
of the transformation implementation, which ended up
with some 350 lines of code (LOC). The simplification
transformation was written in EOL and contained 7 op-
erations and 85 LOC. Finally, we wrote the code gener-
ator with EGL (60 LOC).

During the process, we also wrote some tests mod-
els. Some of them were derived from the transformation
cases and the verification properties. Listing 4 shows an
excerpt of a test model declaring two test cases. The first
one (lines 4-7) tests the scenario of Fig. 25, while the sec-
ond one (lines 12-43) checks the properties of Fig. 27 on
three input models.

1 TestSuite "PS2TPNs.ant" <PS:"ProductionSystems",
2 PN:"TimePetriNets"> {
3 @transformationcase(name="Simple Plan Model 1")
4 test SimplePlanModel1 {
5 input model "SimpleModel1.xmi"
6 assert model "PetriNetModel1.xmi".equals()
7 }
8

9 @property(name="Unconnected places")
10 @property(name="Dead transitions 1")
11 @property(name="Dead transitions 2")
12 test AssertionProperties {
13 input model "SimpleModel1.xmi"
14 input model "SimpleModel2.xmi"
15 input model "ConveyorSequence.xmi"
16

17 assert npattern UnconnectedPlaces {

18 PS {}
19 PN { pl:Place {} }
20 condition: "pl.inarcs.size()=0",
21 "pl.outarcs.size()=0";
22 }
23

24 assert npattern DeadTransitions1 {
25 PS {}
26 PN { pl:Place { outarcs=@a1; inarcs=@a2; }
27 a1:ArcPT { outt=@t; }
28 a2:ArcTP { intt=@t; }
29 t:Transition {} }
30 condition: "pl.inarcs.size()=1",
31 "pl.outarcs.size()=1",
32 "pl.tokens.size()=0";
33 }
34

35 assert npattern DeadTransitions2 {
36 PS {}
37 PN { pl:Place { outarcs=@a; }
38 a:ArcPT { outt=@t; }
39 t:Transition {} }
40 condition: "pl.inarcs.size()=0",
41 "pl.tokens.size()=0";
42 }
43 }
44 }

Listing 4 A test suite for the case study (excerpt).

Altogether, transML offered a step-by-step guideline
to engineer the transformation. In particular, we inten-
sively used the transformation cases, which were used
for automated testing later. The specification language
was useful to explicitly formalize knowledge of Petri net
patterns and idioms (e.g. how capacity constraint places
work, Fig. 26), as well as specific properties of our tar-
get models (Fig. 27). The architecture diagram was a
means to modularize and organize the transformation.
The mapping diagram provided a first sketch of how ele-
ments in both languages corresponded to each other, and
served well for the purpose of understanding the trans-
formation design. Finally, the rule structure diagrams
allowed a more structured way to coding, and constitute
a good means for documenting and understanding the
transformation code.

10.2 From UML (for railway systems) into PROMELA

INESS (INtegrated European Signalling System –
http://www.iness.eu) is an industry-focused
project funded by the FP7 programme of the Euro-
pean Union, comprising 30 partners, including 6 railway
companies. Its objective is to provide a common rail-
way signalling system that integrates existing European
ones. In the project, experts have been modelling a spec-
ification of the proposed integrated signalling system
using xUML [47]. This is a subset of UML comprising
class diagrams and state machines, as well as an action
language to specify class operations and state actions.
The idea is to use the specified xUML models to check
for inconsistencies in the requirements and against core
properties of the system provided by professional rail-
way engineers. Currently, xUML models can be analysed
only via simulation, but due to safety-critical require-
ments involved in railway signalling systems, our work

17

in the project is to enable the analysis of models using
formal verification.

In order to achieve this goal, we are using a
transformation-based approach for the formal analy-
sis of the xUML models. This entails on the automatic
translation of xUML models to the input language of
formal verification tools, like SPIN [32]. While previous
works in the literature [44,45] have analysed subsets of
UML (in particular Statechart diagrams) using model
checkers, the main feature of this project is that we deal
with the action language of xUML in its full generality.

Because of the research nature of the project, we were
not given initial requirements about the transformation.
Instead, they began emerging as we started designing
the transformation. In the first stages, we agreed on
some guidelines for the experts to build the xUML mod-
els. Expressing these requirements using transML ver-
ification patterns automates checking if a given xUML
model satisfies these guidelines and therefore qualifies for
the transformation. Some of the main requirements in-
cluded: (i) classes always have exactly one associated be-
haviour, of type state machine; (ii) multiple-inheritance
is not allowed; (iii) a transition always has a unique trig-
ger; (iv) a change-event can be associated to at most
one trigger; (v) transition triggers have to be of type
change-event, time-event or signal-event; (vi) a special
class called “Application” is used to instantiate a sce-
nario (representing a railway track layout) for the exe-
cution of the model; (vii) objects can only be created in
the state-machine of the “Application” class. As an ex-
ample, Fig. 31 shows the verification pattern formalizing
requirement (i), while Fig. 32 partially describes require-
ment (vii). For this latter requirement, another similar
pattern is needed, to check the creation of objects in
transition actions.

c:Class

P(Class)

c:Class

P(hasOneStateMachine)

sm:StateMachine

classifierBehaviour

c.ownedBehaviour.size()=1

Fig. 31 Pattern expressing requirement (i).

s :State

entry=X

exit=Y

doActivity=Z

:Region
subVertex

stateMachine

ownedBehaviour

name=“Application”

“CreateObject”.isSubstringOf(X) or

“CreateObject”.isSubstringOf(Y) or

“CreateObject”.isSubstringOf(Z)

P(StateCreateObject) P(InApplication)

s :State

entry=X

exit=Y

doActivity=Z :StateMachine

:Class

Fig. 32 Pattern expressing requirement (vii).

The main difficulties found in our transformation
were dealing with both the action language and inher-
itance in the xUML language. First, dealing with the
action language in its full generality means that certain
actions have to be specially encoded in the target lan-
guage (formal languages normally comprise a more basic
set of statements). Second, since every class has an as-
sociated state-machine, by inheriting a class, two state
machines have to be executed in parallel in the target
language. Additional sources of complexity included col-
lecting the possible state configurations in the state ma-
chines, the transitions that can fire in parallel as well as
resolving the order of firing entry and exit actions.

In order to deal with these issues in a more structured
and efficient way, we decided to split the transforma-
tion in several steps. The architecture representing the
transformation to the input language of the SPIN model-
checker is shown in Fig. 33. It makes use of an inter-
mediate meta-model, called (transition-based) tbUML,
which is a simplified UML meta-model that only con-
siders the structure of class diagrams and the possible
set of transitions of the state-machines. In this way, the
first transformation performs a flattening of the classes
and states machines, and the second one transforms the
obtained tbUML model into a PROMELA model – the
input language to SPIN – from which code conforming to
the PROMELA grammar is generated as input to SPIN.

Fig. 33 Architecture diagram for the project.

Splitting the transformation facilitates the elicitation
of requirements. For instance, requirements related to
the flattening of classes in the first transformation in-
clude copying attributes, associations and states for each
class and its generalizations. A pattern specifying the re-
quirement on attributes is described in Fig. 34, the other
requirements about the flattening of classes are defined
similarly. Requirements related to the flattening of state
machines include aggregating and creating transitions
depending on concurrent events of orthogonal states and
of state machines associated to super-classes, as well as
on exit actions in composite states. We were also able to

18

express these requirements using our specification lan-
guage.

c1:Class

c2.generalization.exists(g |
g.target.includes(c1))

p:Property

name=X

owned
Attribute

t:Type

name=T

type

c2:Class

name=N

c3:Class

name=N

a:Attribute

name=X
type=T

attribute

UML tbUML

P(flatSuperAttrs)

Fig. 34 A verification property for UML to tbUML.

We chose ETL to implement the transformations and
EGL for code generation. We did not define a mapping
diagram for the first transformation (UML to tbUML)
as it was straightforward, but we built the mapping di-
agram shown in Fig. 35 for the second transformation
(tbUML to PROMELA). In this case, StateNodes and
Signals are translated to Constants with a unique value;
Objects (i.e. classes that appear in the “Application”
class) are translated to a Proctype which represents a
PROMELA execution unit; and models are transformed
into another model and an Init process that is responsi-
ble for starting the objects in the model – for example,
creating communication channels and setting references
accordingly.

Fig. 35 Mapping diagram for tbUML to PROMELA.

In this way, the complexity of our transformations
did not come from a large number of rules, but from
the complexity of the helper computations associated
to certain rules. For this reason, the rule diagrams for
this case study made intensive use of helpers. Fig. 36
shows the rule structure diagram for the second trans-
formation, which displays the two main helpers in the
transformation: parseActions and createInit. The former
is called whenever an action is found in the transition
body/entry and exit body of a transition and a state.
The function is responsible for translating the xUML
action language into PROMELA constructions. The cre-
ateInit helper method is used by rule Mod2Mod, and
creates an Init process in the target model, provided the

correct reference to the objects (i.e. classes in the “Ap-
plication” class).

Directional Transformation
from tbUML to PROMELA (ETL)

State2Constant
{Constant}

s:StateNode c:Constant

Signal2Constant
{Constant}

s:Signal c:Constant

PROMELAtbUML

after

c:Class

Obj2Proc
{Object}

tbUML PROMELA

p:Proctype

calls {c,p}

after

m:Model

Mod2Mod
{Model}

tbUML PROMELA

m1:Model

i:Init

calls{m.objects}

PROMELAtbUML

parseActions

c: Class p: Proctype

createInit

o:Object[*]

returns

Fig. 36 Rule structure diagram for tbUML to PROMELA.

We also attached a behaviour diagram to some of the
rules, giving additional details about their expected im-
plementation. As an example, Fig. 37 shows the diagram
that corresponds to rule Model2Model of the first trans-
formation. This creates a tbUML model with two special
states (called StateNodes) starting from a UML model.
The state node root is created in order to maintain a
reference that can be used to compute the Least Com-
mon Ancestor during the flattening of the state machines
– all other states are within this one. The state node
init represents the initial pseudo-states in the state-
machines of the model. This way, initial pseudo-states
are abstracted and the initial actions found in them are
directly associated to the classes.

Fig. 37 Behaviour diagram for rule Model2Model.

The implementation of the first transformation in our
architecture ended up with more than 5000 lines of ETL
code, whereas the second one had more than 2500 LOC.
In order to validate both implementations, we made use
of the verification patterns specified at the first stages of
our design. In particular, we generated assertion code for
the run-time verification of the transformations. Fig. 38
shows a moment in the execution of the first transfor-
mation, where a violation of the verification property
flatSuperAttrs occurs. By having traceability from
the models into the code we were able to identify the
erroneous rule. Additionally, we built some testing mod-

19

els which enabled automated testing of the verification
properties as well as checking the correct translation of
specific input UML models.

Fig. 38 Testing the implementation.

Altogether, in this project we found particularly use-
ful the formal specification language, as it enabled to
formally gather requirements about the input models
as well as verification properties for the transformation.
Guaranteeing the satisfaction of these safety-critical re-
quirements was essential due to the application domain
of the project. Moreover, we were able to provide a
means to automatically validate such properties on in-
put xUML models. However, our specification language
cannot be used to express dynamic correctness criteria
for the transformation (e.g. that a step in the Statechart
corresponds to a step in Promela), which is left for fu-
ture work. For this project, the rule structure diagrams
were less useful, as the complexity of the transformations
were not on the number of rules or on their data depen-
dencies, but it was on the operations and helpers used
by the rules. Nonetheless, rule structure diagrams were
really useful in the first case study due to the complex-
ity of rule dependencies. Hence, we can conclude that
each transformation project has its own characteristics,
and engineers need to select the most useful transML
diagrams for each particular situation, just like software
engineers select the most useful kinds of UML diagrams
to construct software systems.

11 Conclusions and lines of future work

Transformations should be engineered, not hacked. For
this purpose we have presented transML, a family of
languages to help building transformations using well-
founded engineering principles. The languages cover the
complete life-cycle of the transformation development in-
cluding requirements, analysis, architecture, design and

testing. We have provided partial tool support and au-
tomation for the MDE of transformations, and evaluated
the approach using several case studies, which showed
the benefits of modelling transformations.

We are currently working in improving the tool sup-
port for our approach, in particular the usability of the
visual editors and the integration of the different lan-
guages. Regarding our language for testing, we are cur-
rently developing tool support for the automatic genera-
tion of input test models according to different coverage
criteria, combining techniques based on meta-models,
constraints and specifications as seed for the generation.
We are also planning the use of transML in further case
studies, and investigating processes for transformation
development.

Acknowledgements. We thank the referees for
their useful comments. This work has been sponsored
by the Spanish Ministry of Science and Innovation with
project METEORIC (TIN2008-02081), and by the R&D
program of the Community of Madrid with projects
“e-Madrid” (S2009/TIC-1650). Parts of this work were
done during the research stays of Esther and Juan at
the University of York, with financial support from the
Spanish Ministry of Science and Innovation (grant refs.
JC2009-00015, PR2009-0019 and PR2008-0185).

References

1. A. Agrawal, A. Vizhanyo, Z. Kalmar, F. Shi,
A. Narayanan, and G. Karsai. Reusable idioms and pat-
terns in graph transformation languages. Electron. Notes
Theor. Comput. Sci., 127:181–192, 2005.

2. A. Balogh, G. Bergmann, G. Csertán, L. Gönczy,
Á. Horváth, I. Majzik, A. Pataricza, B. Polgár, I. Ráth,
D. Varró, and et al. Workflow-driven tool integration
using model transformations. In Graph Transformations
and Model-Driven Engineering, volume 5765 of LNCS,
pages 224–248. Springer, 2010.

3. B. Baudry, S. Ghosh, F. Fleurey, R. B. France, Y. L.
Traon, and J.-M. Mottu. Barriers to systematic model
transformation testing. Commun. ACM, 53(6):139–143,
2010.

4. K. Beck. Test Driven Development: By Example.
Addison-Wesley, 2003.

5. J. Bézivin, N. Farcet, J.-M. Jézéquel, B. Langlois, and
D. Pollet. Reflective model driven engineering. In UML,
volume 2863 of LNCS, pages 175–189. Springer, 2003.

6. J. Bézivin, F. Jouault, and J. Paliès. Towards model
transformation design patterns. In EWMT’05, 2005.

7. A. Bondavalli, I. Mura, and I. Majzik. Automatic de-
pendability analysis for supporting design decisions in
uml. In HASE’99, pages 64–72, 1999.

8. A. Boronat, J. A. Carśı, and I. Ramos. Algebraic speci-
fication of a model transformation engine. In FASE’06,
volume 3922 of LNCS, pages 262–277. Springer, 2006.

9. E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. L.
Traon. Metamodel-based test generation for model trans-
formations: an algorithm and a tool. In ISSRE, pages
85–94. IEEE CS, 2006.

20

10. J. Cabot, R. Clarisó, E. Guerra, and J. de Lara. Verifica-
tion and validation of declarative model-to-model trans-
formations through invariants. Journal of Systems and
Software, 83(2):283–302, 2010.

11. G. Csertán, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza,
and D. Varró. VIATRA - visual automated transforma-
tions for formal verification and validation of uml models.
In ASE’02, pages 267–270. IEEE CS, 2002.

12. K. Czarnecki and S. Helsen. Feature-based survey of
model transformation approaches. IBM Systems Journal,
45(3):621–646, 2006.

13. A. Darabos, A. Pataricza, and D. Varró. Towards testing
the implementation of graph transformations. Electron.
Notes Theor. Comput. Sci., 211:75–85, April 2008.

14. J. de Lara and E. Guerra. Formal support for QVT-
Relations with coloured Petri nets. In MoDELS’09, vol-
ume 5795 of LNCS, pages 256–270. Springer, 2009.

15. J. de Lara and H. Vangheluwe. Automating the
transformation-based analysis of visual languages. For-
mal Aspects of Computing, 22:297–326, 2010.

16. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fun-
damentals of algebraic graph transformation. Springer-
Verlag, 2006.

17. H. Ehrig and U. Prange. Formal analysis of model
transformations based on triple graph rules with ker-
nels. In ICGT’08, volume 5214 of LNCS, pages 178–193.
Springer, 2008.

18. A. Etien, C. Dumoulin, and E. Renaux. Towards a uni-
fied notation to represent model transformation. Tech-
nical Report RR-6187, INRIA, 2007.

19. J.-M. Favre and T. Nguyen. Towards a megamodel
to model software evolution through transformations.
Electr. Notes Theor. Comput. Sci., 127(3):59–74, 2005.

20. T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
diagrams: A new graph rewrite language based on the
unified modeling language and Java. In TAGT’98, vol-
ume 1764 of LNCS, pages 296–309. Springer, 2000.

21. F. Fleurey, B. Baudry, P.-A. Muller, and Y. Traon. Quali-
fying input test data for model transformations. Software
and Systems Modeling, 8:185–203, 2009.

22. S. Friedenthal, A. Moore, and R. Steiner. A Practical
Guide to SysML: The Systems Modeling Language. Mor-
gan Kaufmann, 2009. See also http://www.omg.org/
spec/SysML/1.1/.

23. Fujaba. http://www.fujaba.de.
24. G. Gardey, D. Lime, M. Magnin, and O. H. Roux.

Romeo: A tool for analyzing time Petri nets. In CAV,
volume 3576 of LNCS, pages 418–423. Springer, 2005.

25. D. Garlan, R. T. Monroe, and D. Wile. Acme: Ar-
chitectural description of component-based systems. In
Foundations of Component-Based Systems, pages 47–68.
Cambridge University Press, 2000.

26. P. Giner and V. Pelechano. Test-driven development of
model transformations. In MoDELS’09, volume 5795 of
LNCS, pages 748–752. Springer, 2009.

27. P. V. Gorp, A. Keller, and D. Janssens. Transformation
language integration based on profiles and higher order
transformations. In SLE, volume 5452 of LNCS, pages
208–226. Springer, 2008.

28. E. Guerra, J. de Lara, D. S. Kolovos, and R. F. Paige. A
visual specification language for model-to-model trans-
formations. In VLHCC’10, pages 119–126. IEEE CS,
2010.

29. E. Guerra, J. de Lara, D. S. Kolovos, R. F. Paige, and
O. M. dos Santos. transML: A family of languages to
model model transformations. In MoDELS (1), volume
6394 of LNCS, pages 106–120. Springer, 2010.

30. E. Guerra, J. de Lara, and F. Orejas. Inter-modelling
with patterns. Software and Systems Modeling, In press,
2011.

31. A. Habel and K.-H. Pennemann. Nested constraints and
application conditions for high-level structures. In For-
mal Methods in Software and Systems Modeling, volume
3393 of LNCS, pages 293–308. Springer, 2005.

32. G. J. Holzmann. The model checker SPIN. IEEE Trans-
actions on Software Engineering, 23(5):279–295, 1997.

33. M. Iacob, M. Steen, and L. Heerink. Reusable model
transformation patterns. In 3M4EC’08, pages 1–10,
2008.

34. E. Insfrán, J. Gonzalez-Huerta, and S. Abrahão. Design
guidelines for the development of quality-driven model
transformations. In MoDELS-10, volume 6395 of LNCS,
pages 288–302. Springer, 2010.

35. D. Jackson. Software Abstractions: Logic, Language, and
Analysis. The MIT Press, 2006.

36. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev.
ATL: A model transformation tool. Science of Com-
puter Programming, 72(1-2):31 – 39, 2008. See also
http://www.emn.fr/z-info/atlanmod/index.
php/Main_Page. Last accessed: Nov. 2010.

37. A. Kleppe. MCC: A model transformation environment.
In ECMDA-FA’06, volume 4066 of LNCS, pages 173–
187. Springer, 2006.

38. D. S. Kolovos, R. F. Paige, and F. Polack. The Ep-
silon Object Language (EOL). In ECMDA-FA’06, vol-
ume 4066 of LNCS, pages 128–142. Springer, 2006.

39. D. S. Kolovos, R. F. Paige, and F. Polack. Detecting and
repairing inconsistencies across heterogeneous models. In
ICST’08, pages 356–364. IEEE CS, 2008.

40. D. S. Kolovos, R. F. Paige, and F. Polack. The Epsilon
Transformation Language. In ICMT’08, volume 5063 of
LNCS, pages 46–60. Springer, 2008.

41. D. S. Kolovos, R. F. Paige, L. M. Rose, and F. A. Po-
lack. Unit testing model management operations. In
MoDeVVa’08, pages 97–104. IEEE CS, 2008.

42. A. Kusel. TROPIC - a framework for building reusable
transformation components. In Doctoral Symposium at
MODELS, 2009.

43. J. M. Küster and M. Abd-El-Razik. Validation of model
transformations - first experiences using a white box ap-
proach. In MoDELS Workshops, volume 4364 of LNCS,
pages 193–204. Springer, 2007.

44. D. Latella, I. Majzik, and M. Massink. Automatic verifi-
cation of a behavioural subset of uml statechart diagrams
using the SPIN model-checker. Formal Asp. Comput.,
11(6):637–664, 1999.

45. J. Lilius and I. Paltor. vUML: A tool for verifying UML
models. In ASE, pages 255–258, 1999.

46. Y. Lin, J. Zhang, and J. Gray. A framework for testing
model transformations. In Model-driven Software Devel-
opment - Research and Practice in Software Engineering.
Springer, 2005.

47. S. J. Mellor and M. J. Balcer. Executable UML: A Foun-
dation for Model-Driven Architecture. Addison-Wesley
Professional, 2002.

21

48. J. Merilinna. A tool for quality-driven architecture model
transformation. Master’s thesis, Technical Research Cen-
tre of Finland, 2005.

49. P. M. Merlin and D. J. Farber. Recoverability of com-
munication protocols. IEEE Trans. Computers, 24(9),
1976.

50. B. Meyer. Applying ”design by contract”. Computer,
25:40–51, October 1992.

51. F. Orejas. Symbolic graphs for attributed graph con-
straints. J. Symb. Comput., 46(3):294–315, 2011.

52. QVT. http://www.omg.org/docs/ptc/
05-11-01.pdf.

53. L. A. Rahim and S. B. R. S. Mansoor. Proposed design
notation for model transformation. In ASWEC’08, pages
589–598. IEEE CS, 2008.

54. A. Rensink. Representing first-order logic using graphs.
In ICGT’04, volume 3256 of LNCS, pages 319–335.
Springer, 2004.

55. J. E. Rivera, D. Ruiz-Gonzalez, F. Lopez-Romero,
J. Bautista, and A. Vallecillo. Orchestrating ATL model
transformations. In MtATL 2009, pages 34–46, 2009.

56. P. Sampath, A. C. Rajeev, K. C. Shashidhar, and
S. Ramesh. Verification of model processing tools. Int.
J. Passeng. Cars Electron. Electr. Syst., 1:45–52, 2009.

57. A. Schürr. Specification of graph translators with triple
graph grammars. In WG’94, volume 903 of LNCS, pages
151–163. Springer, 1994.

58. S. Sen, B. Baudry, and J.-M. Mottu. Automatic model
generation strategies for model transformation test-
ing. In ICMT, volume 5563 of LNCS, pages 148–164.
Springer, 2009.

59. M. Siikarla, M. Laitkorpi, P. Selonen, and T. Systä.
Transformations have to be developed ReST assured. In
ICMT’08, volume 5063 of LNCS, pages 1–15. Springer,
2008.

60. J. M. Spivey. An introduction to Z and formal specifica-
tions. Softw. Eng. J., 4(1):40–50, 1989.

61. J. Steel and M. Lawley. Model-based test driven devel-
opment of the Tefkat model-transformation engine. In
ISSRE’04, pages 151–160, 2004.

62. I. Stürmer, M. Conrad, H. Dörr, and P. Pepper. Sys-
tematic testing of model-based code generators. IEEE
Trans. Software Eng., 33(9):622–634, 2007.

63. A. van Lamsweerde. Requirements Engineering. From
System Goals to UML Models to Software Specifications.
Wiley, 2009.

64. B. Vanhooff, D. Ayed, S. V. Baelen, W. Joosen, and
Y. Berbers. Uniti: A unified transformation infrastruc-
ture. In MODELS’07, volume 4735 of LNCS, pages 31–
45, 2007.

65. D. Varró. Model transformation by example. In MOD-
ELS’06, volume 4199 of LNCS, pages 410–424, 2006.

66. A. Yie, R. Casallas, D. Deridder, and D. Wagelaar. Real-
izing model transformation chain interoperability. Soft-
ware and Systems Modeling, In press, 2011.

22

