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Abstract
Proximal Methods for Structured Group Features and Correlation Matrix Nearness,

by C. M. Alaíz.

Optimization is ubiquitous in real life as many of the strategies followed both by nature and
by humans aim to minimize a certain cost, or maximize a certain benefit. More specifically,
numerous strategies in engineering are designed according to a minimization problem, although
usually the problems tackled are convex with a differentiable objective function, since these
problems have no local minima and they can be solved with gradient-based techniques. Never-
theless, many interesting problems are not differentiable, such as, for instance, projection prob-
lems or problems based on non-smooth norms. An approach to deal with them can be found in
the theory of Proximal Methods (PMs), which are based on iterative local minimizations using
the Proximity Operator (ProxOp) of the terms that compose the objective function.

This thesis begins with a general introduction and a brief motivation of the work done. The state
of the art in PMs is thoroughly reviewed, defining the basic concepts from the very beginning
and describing the main algorithms, as far as possible, in a simple and self-contained way.

After that, the PMs are employed in the field of supervised regression, where regularized models
play a prominent role. In particular, some classical linear sparse models are reviewed and unified
under the point of view of regularization, namely the Lasso, the Elastic–Network, the Group
Lasso and the Group Elastic–Network. All these models are trained by minimizing an error
term plus a regularization term, and thus they fit nicely in the domain of PMs, as the structure of
the problem can be exploited by minimizing alternatively the different expressions that compose
the objective function, in particular using the Fast Iterative Shrinkage–Thresholding Algorithm
(FISTA). As a real-world application, it is shown how these models can be used to forecast wind
energy, where they yield both good predictions in terms of the error and, more importantly,
valuable information about the structure and distribution of the relevant features.

Following with the regularized learning approach, a new regularizer is proposed, called the
Group Total Variation, which is a group extension of the classical Total Variation regularizer
and thus it imposes constancy over groups of features. In order to deal with it, an approach to
compute its ProxOp is derived. Moreover, it is shown that this regularizer can be used directly
to clean noisy multidimensional signals (such as colour images) or to define a new linear model,
the Group Fused Lasso (GFL), which can be then trained using FISTA. It is also exemplified
how this model, when applied to regression problems, is able to provide solutions that iden-
tify the underlying problem structure. As an additional result of this thesis, a public software
implementation of the GFL model is provided.

The PMs are also applied to the Nearest Correlation Matrix problem under observation uncer-
tainty. The original problem consists in finding the correlation matrix which is nearest to the
true empirical one. Some variants introduce weights to adapt the confidence given to each entry
of the matrix; with a more general perspective, in this thesis the problem is explored directly
considering uncertainty on the observations, which is formalized as a set of intervals where the
measured matrices lie. Two different variants are defined under this framework: a robust ap-
proach called the Robust Nearest Correlation Matrix (which aims to minimize the worst-case
scenario) and an exploratory approach, the Exploratory Nearest Correlation Matrix (which fo-
cuses on the best-case scenario). It is shown how both optimization problems can be solved
using the Douglas–Rachford PM with a suitable splitting of the objective functions.

The thesis ends with a brief overall discussion and pointers to further work.

v





Resumen
Métodos Proximales para Características Grupales Estructuradas y Problemas de

Cercanía de Matrices de Correlación, por C. M. Alaíz.

La optimización está presente en todas las facetas de la vida, de hecho muchas de las estrategias
tanto de la naturaleza como del ser humano pretenden minimizar un cierto coste, o maximizar
un cierto beneficio. En concreto, multitud de estrategias en ingeniería se diseñan según pro-
blemas de minimización, que habitualmente son problemas convexos con una función objetivo
diferenciable, puesto que en ese caso no hay mínimos locales y los problemas pueden resolverse
mediante técnicas basadas en gradiente. Sin embargo, hay muchos problemas interesantes que
no son diferenciables, como por ejemplo problemas de proyección o basados en normas no sua-
ves. Una aproximación para abordar estos problemas son los Métodos Proximales (PMs), que
se basan en minimizaciones locales iterativas utilizando el Operador de Proximidad (ProxOp)
de los términos de la función objetivo.

La tesis comienza con una introducción general y una breve motivación del trabajo hecho. Se
revisa en profundidad el estado del arte en PMs, definiendo los conceptos básicos y describiendo
los algoritmos principales, dentro de lo posible, de forma simple y auto-contenida.

Tras ello, se emplean los PMs en el campo de la regresión supervisada, donde los modelos regu-
larizados tienen un papel prominente. En particular, se revisan y unifican bajo esta perspectiva
de regularización algunos modelos lineales dispersos clásicos, a saber, Lasso, Elastic–Network,
Lasso Grupal y Elastic–Network Grupal. Todos estos modelos se entrenan minimizando un tér-
mino de error y uno de regularización, y por tanto encajan perfectamente en el dominio de los
PMs, ya que la estructura del problema puede ser aprovechada minimizando alternativamente las
diferentes expresiones que componen la función objetivo, en particular mediante el Algoritmo
Fast Iterative Shrinkage–Thresholding (FISTA). Como aplicación al mundo real, se muestra que
estos modelos pueden utilizarse para predecir energía eólica, donde proporcionan tanto buenos
resultados en términos del error como información valiosa sobre la estructura y distribución de
las características relevantes.

Siguiendo con esta aproximación, se propone un nuevo regularizador, llamado Variación To-
tal Grupal, que es una extensión grupal del regularizador clásico de Variación Total y que por
tanto induce constancia sobre grupos de características. Para aplicarlo, se desarrolla una apro-
ximación para calcular su ProxOp. Además, se muestra que este regularizador puede utilizarse
directamente para limpiar señales multidimensionales ruidosas (como imágenes a color) o para
definir un nuevo modelo lineal, el Fused Lasso Grupal (GFL), que se entrena con FISTA. Se
ilustra cómo este modelo, cuando se aplica a problemas de regresión, es capaz de proporcionar
soluciones que identifican la estructura subyacente del problema. Como resultado adicional de
esta tesis, se publica una implementación software del modelo GFL.

Asimismo, se aplican los PMs al problema de Matriz de Correlación Próxima (NCM) bajo in-
certidumbre. El problema original consiste en encontrar la matriz de correlación más cercana a
la empírica verdadera. Algunas variantes introducen pesos para ajustar la confianza que se da a
cada entrada de la matriz; con un carácter más general, en esta tesis se explora el problema con-
siderando incertidumbre en las observaciones, que se formaliza como un conjunto de intervalos
en el que se encuentran las matrices medidas. Bajo este marco se definen dos variantes: una
aproximación robusta llamada NCM Robusta (que minimiza el caso peor) y una exploratoria,
NCM Exploratoria (que se centra en el caso mejor). Ambos problemas de optimización pueden
resolverse con el PM de Douglas–Rachford y una partición adecuada de las funciones objetivo.

La tesis concluye con una discusión global y referencias a trabajo futuro.
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Notation

In general, matrices are denoted in upper-case with bold font (X), whereas vectors are in lower-

case bold font, (x). The plain lower-case font stands for scalars (x), although some constant

scalars are denoted using small upper-case letters (k). The components of a vector x are de-

noted using a subscript (xn); when the vector is decomposed into several subvectors, the bold

face is maintained (xn). The components of a matrix X are denoted by two subscripts (xn,m).

For a general sequence of elements, such as a set of patterns, a superscript with parenthesis is

employed ({x(p)}), whereas for the sequence generated over the different iterations of an algo-

rithm a bracket is used instead ({x[t]}). Spaces are denoted using blackboard bold font (X), and

sets with calligraphic font (X ). Functions are denoted using a slightly different calligraphic

font (f ).

All the non-standard operators are defined on their first use. Regarding the standard ones, the

gradient of a function f is denoted ∇f as usual, and the Hessian matrix as Hf . The derivative

of a scalar function f is just f ′ (if the expression is long, the alternate notation d
dx shall be

preferred). The transpose of a matrix X is X>, and its inverse X−1.

Moreover, for readability a relation of the abbreviations and main symbols used across this thesis

is included next.

Abbreviations

AD . . . . . . Anisotropic Diffusion.
AW . . . . . . Active Weights.

CayOp . . . Cayley Operator.

xix
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Chapter 1

Introduction

This chapter presents an overview of the thesis pointing out the two basic pillars over which it

is based.

The first one is the concept of mathematical optimization. Although the complete mathematical

background is formalized in more detail in Chapter 2, some brief concepts are advanced on

mathematical optimization to discuss its importance and motivate this work.

The second one is the field of Machine Learning, which in particular is strongly related with

the optimization as the learning systems are, in general, built so as to fit the observed data and

possibly satisfy other additional requirements; in many cases this procedure can be expressed as

a mathematical optimization problem.

The structure of the chapter is as follows. Section 1.1 introduces the concept of optimization,

with a brief justification of its importance. The concept of Machine Learning, the other funda-

mental idea of this work, is presented in Section 1.2. Finally, Section 1.3 gives an outline of the

rest of the thesis and a list of the contributions.

1
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1.1 Optimization

1.1.1 General View

The verb optimize comes from the Latin optimus (best), and it can be defined as “make the best

or most effective use of (a situation or resource)” [Oxford Dict., 2014].

Roughly speaking, an optimization problem consists in finding the best element of a certain

space with respect to some criteria. This can be mathematically formalized as:

minimize
x∈X

{
fo(x)

}

subject to x ∈ S ,
(1.1)

where the following fundamental elements can be distinguished:

The optimization variables. These are the variables x ∈ X that can be modified.

The objective function. This is the function fo : X → R ∪ {∞} that represents the cost of

selecting each possible element x ∈ X.

The feasible region. Every acceptable solution must lie in this region S ⊂ X, this is thus the

set of elements in which to select the best one.

The solution of Problem (1.1) is the element xop ∈ S with the lower cost (in terms of fo) among

all the elements of S . Formally, for every x ∈ S :

fo(xop) ≤ fo(x) . (1.2)

It is worth noting that Problem (1.1) is a constrained problem, which means that the solution is

required to satisfy a certain restriction, in this case given by the belonging to a subset S ∈ X,

and hence not all the elements of the space X are acceptable. This is a general formulation of an

optimization problem, although it can be relaxed to the unconstrained problem

minimize
x∈X

{
fo(x)

}
, (1.3)

where the solution in this case is an element xop ∈ X such that for every x ∈ X, Equation (1.2)

is satisfied.

The differences between both types of optimization problems are illustrated in Figure 1.1, where

Figure 1.1a shows the unconstrained solution (which only seeks for the minimum of the objec-

tive fo) whereas the solution of Figure 1.1b has also to lie in S . Nevertheless, every constrained

problem can be represented as an unconstrained one with the proper modification of its objective
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Figure 1.1: Comparative between unconstrained and constrained optimization. The
solutions are represented in black, and for 1.1b the feasible region is shadowed in

grey.

function as described in Section 2.1.2, basically assigning a cost of∞ to every point outside the

feasible region.

The intuition behind the concept of optimization is clear as it is just about selecting the best

choice according to some criteria. Moreover, optimization problems are ubiquitous in real life.

Human behaviour aims many times to minimize a certain cost such as the distance walked, the

time spent, the effort needed..., or to maximize a certain benefit such as the profits earned, the

products made... The strategies of several tasks are therefore designed to optimize; this is why

mathematical optimization is also called mathematical programming, in the sense of designing

a program or plan of activities satisfying certain requirements and which is somehow optimum.

The difficulty of applying optimization to real-life problems is double. On the one hand, the

problem has to be properly defined in terms of the space of possible solutions (optimization

variables), the way to measure the cost of each solution (objective function) and the restrictions

over them (feasible region). On the other hand, the resultant optimization problem has to be

solved, which means that it has to be manageable. A balance between the complexity of the

problem and the cost of solving it has to be found, since more involved problems will reflect

the reality more accurately, but they will also be more difficult to solve, and vice-versa, simple

problems are easy to solve but the solutions that they provide are less helpful.

Finally, in this thesis there are two different types of optimization problem according to their

purpose. There are some problems that are interesting by their own, as mentioned above, since
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DescentMethod

Input: fo convex and smooth ;

Output: xop ' arg minx∈X
{

fo(x)
}

;

Initialization: x[0] ∈ X ;

1: for t = 0, 1, . . . do

2: set δ[t] > 0 ; I Step size.

3: set d[t] ∈ X ; I Descent direction.

4: x[t+1] ← x[t] + δ[t]d[t] ; I Update.

5: end for

Algorithm 1.1: DM for minimizing the objective function fo.

their solution represent the best strategy for a certain activity (for example, some schedule opti-

mization), because that solution allows to clean some real observation (in denoising or projection

tasks)... On the other side, there are some optimization problems that allow to adapt a certain

model to the real available observation, and afterwards apply that model to predict certain in-

teresting factors. As further explained in Section 1.3, the contributions of this thesis are based

on both types of optimization problem. On the one hand, optimization problems which allow to

deal with correlation matrices under observation uncertainty, and on the other hand, optimiza-

tion problems posed to train a learning machine satisfying certain special characteristics (the

latter is further detailed in Section 1.2).

1.1.2 Gradient-Based Optimization

Many optimization problems are defined considering the posterior difficulty of solving them, in

the sense that, for example, the objective functions are usually defined to be convex (which is,

indeed, a strong restriction kept across this thesis) and smooth (continuous and differentiable).

This allows to tackle unconstrained problems in the form of Problem (1.3) using gradient-based

methods. In this case, a necessary and sufficient optimality condition is just that the gradient is

zero:

∇fo(xop) = 0 . (1.4)

Therefore, solving Problem (1.3) is equivalent to finding a solution of Equation (1.4). Although

in some particular cases Equation (1.4) has a closed-form solution, most of the times it has

to be solved numerically through iterative algorithms, which can be named in general as De-

scent Methods (DMs). The structure of a DM, according to Boyd and Vandenberghe [2004], is

included in Algorithm 1.1.
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For constrained problems with simple constraints, a possible approach is to solve the Lagrangian

dual problem, since under certain circumstances it is easier to deal with it. Other possibility is

to use a DM in which, after each descent iteration, the point is projected back onto the feasible

region, what is done for example in the Projected Gradient (PG) algorithm.

Nevertheless, in numerous cases the interesting objective functions are non-smooth. As it is

explained in detail in Chapter 2, the paradigm of Proximal Methods (PMs) offers a suitable

first-order approach for such problems, both constrained and unconstrained.

1.2 Machine Learning

One of the most accepted definitions of Machine Learning (ML) is attributed to A. Samuel,

and it describes ML as the field of study that gives computers the ability to learn without being

explicitly programmed. Therefore, ML concerns the construction and study of systems that can

learn from data.

There are plenty of examples of ML applications concerning different types of problems; some

of them, taken from Alpaydin [2004], are:

(i) Finding relationships between the products bought by certain customers. This is an ex-

ample of a learning association problem.

(ii) Categorizing the possible receivers of a bank credit as low-risk or high-risk customers,

using data such as their income, savings, collaterals, profession, age, past financial his-

tory... This is a classification problem, which aims to assign each input observation to a

category (and the number of categories is finite).

(iii) Estimating the price of a used car from its brand, year, capacity, mileage... This is a

regression problem, which consists in finding the relation between the input (dependent)

variables and the output (independent) variables, where the outputs are continuous.

(iv) Grouping together similar documents in function of the distribution of the words within

them. This is a clustering problem, in which the input objects are grouped according to

their similarity (in some sense).

(v) Determining the sequence of movements for a robot to get a certain goal. This is an

example of reinforcement learning: each action has associated a certain reward, and the

model seeks to find the strategy that maximizes it.

In particular, the focus of this thesis is on supervised learning, in which a function from a certain

input data to the target has to be inferred from a set of input-output pairs (known as training

set). This function can be later applied to estimate the output for a new unknown observation.
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Data Collection

Feature Selection

Model Selection

Training

Evaluation

Design Cycle

Figure 1.2: Design cycle of a learning system.

In particular, through Chapters 3 and 4 only regression problems are considered, although as

explained there the extension to classification problems is trivial.

Building a ML system requires several subtasks. Figure 1.2 represents the general scheme of

the design cycle of a learning system according to Duda et al. [1973], which is divided in the

following steps:

Data Collection. In this step, the data over which the model will learn are collected, cleaned

from observation noise and also preprocessed, which can include normalization of the

features, discretisation, generation of new features...

Feature Selection. This is the extraction (or generation) of the relevant features for the problem

at hand. Although some of the models are designed to be robust against irrelevant in-

formation, a large dimensionality (especially compared with a relatively small number of

training samples) can be very damaging, so a first reduction of the dimensionality, through

methods like Principal Component Analysis (PCA) [Jolliffe, 2005], can help to improve

the ulterior performance.

Model Selection. The selection of the model is also a crucial point, as the complexity of the

model has to be enough to learn the underlying structure of the data, but if it is too complex

then the model will not generalize well (these under-fitting and over-fitting effects are

discussed in more detail later).

Training. This is the phase in which the model learns from the data. Indeed, since the configu-

ration of the model is selected so as fit the data according to some criteria, this is usually

formalized as an optimization problem as those introduced in Section 1.1.

Evaluation. In this step, the model quality is evaluated before exploiting it. Depending on the

results, one or several of the phases above can be repeated.
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Figure 1.3: Example of under-fitted and over-fitted models, including the noisy ob-
servations upon which both models are built and the underlying (true) model that

generated the observations.

In this thesis, the steps of Data Collection and Feature Selection are more or less obviated,

and as the problems tackled are supervised, they can be represented by a training data set Dtr,

which is composed by a sequence of input patterns {x(p)}np=1 and the corresponding sequence

of outputs {y(p)}np=1.

Regarding to the Model Selection phase, an important consideration here is that of the complex-

ity of the model. If a model is too simple, then it will be unable to learn the relation between

the input x and the output y (effect known as under-fitting). On the other side, if the model is

too complex then it will also learn the observation noise, and though it will usually fit Dtr with a

very low error, it will generalize very badly for new observations (this is known as over-fitting).

These two effects are depicted in Figure 1.3, where the under-fitted model does not learn the

underlying sinus generator, whereas the over-fitted model has an unnecessary complex structure

to learn the noise. Moreover, many times some structure on the resultant model is required,

in order to impose some good properties, to introduce some prior knowledge, or to learn some

relevant information about the problem (for example, the features that are relevant—the steps

of Feature Selection and Training can collapse in this case—, possible group structures in the

data...). Hence, designing a good model implies to consider the proper criteria that will be then

used in the Training phase.

Finally, the model has to learn from Dtr the underlying relationship between x and y, what it is

done solving the corresponding optimization problem in the Training step, using the objective

function designed before.



8 C. M. Alaíz - PMs for Structured Group Features and Correlation Matrix Nearness

1.3 Thesis Contributions and Structure

1.3.1 Contributions

As stated above, the link of all the contributions of this thesis is mathematical optimization,

mainly under the paradigm of Proximal Methods (PMs), and both for optimization problems

that are important by themselves, or for optimization problem that are the heart of Machine

Learning (ML) models. Consequently, these contributions are based on a study of the state of

the art in optimization, on defining ML models and solving the optimization problems needed

to train them, and on describing and solving new optimization problems related with denoising

empirical observations.

Specifically, the main contributions of this thesis are:

(i) A review of the main concepts of convex optimization and in particular of the framework

of PMs. Although there are several surveys on this topic (for example that of Combettes

and Pesquet [2011]), the literature is somewhat dispersed and often the main concepts

and results are presented in a highly formalized way. In this thesis, the basic concepts

are defined from the very beginning, and the main algorithms are described in a simple

and self-contained way, emphasizing also the theoretical results that support them and

referencing the corresponding sources when needed.

(ii) A review of some classical linear sparse models, which are unified under the concept

of regularized learning. They can be solved using PMs, in particular through the Fast

Iterative Shrinkage–Thresholding Algorithm (FISTA). Three of these models are well

known, Lasso (LA), Elastic–Network (ENet) and Group Lasso (GL), whereas the fourth

is a combination of the group approach of GL and an `2 regularization à la ENet and

it is named Group Elastic–Network (GENet) (this extension is straightforward thanks to

the PMs modularity). Moreover, these models are successfully applied to the real-world

and very important task of wind energy forecast, where they can give accurate predictions

and also information about the relevant features (using the distribution of the non-zero

coefficients and also regularization paths).

(iii) The proposal of a new regularizer based on the Total Variation (TV) one but for a group

setting, which is called Group Total Variation (GTV); it enforces constancy along groups

of features (instead of individual features). Moreover, the Proximity Operator (ProxOp)

of GTV can be used for the denoising of colour images (as shown experimentally), since it

explodes the structure of the three colour layers considering each colour pixel as a group of

three features. Finally, the GTV regularizer is extended to the Group Fused Lasso (GFL)

linear model, which is equivalent to the Fused Lasso (FL) model but for multidimensional

features. This model can be trained using FISTA.
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(iv) Two approaches to deal with the problem of Nearest Correlation Matrix (NCM) but under

uncertainty. More precisely, two new optimization problems are defined, one of them a

robust version of the classical NCM problem, called Robust Nearest Correlation Matrix

(R-NCM), and the other one an exploratory version, Exploratory Nearest Correlation Ma-

trix (E-NCM). Both of them can be solved using the Douglas–Rachford (DR) method with

the proposed split of the objective function in two non-smooth functions and the derived

ProxOps.

(v) A public software implementation of the GFL model, available at the software website of

the Machine Learning Group at Universidad Autónoma de Madrid [GAA, 2014].

1.3.2 Structure

A list of the chapters of the thesis, and a brief summary of each of them, is included next.

Chapter 1: Introduction. This is the present chapter, which motivates the remaining of the

thesis through a short introduction to the concept of mathematical optimization, and a brief

description of the field of ML. It also summarizes the contribution of the thesis and its structure.

Chapter 2: Convex Optimization and Proximal Methods. This chapter reviews the opti-

mization paradigm of PMs, and the required mathematical background. It starts with a formal-

ization of the main concepts, including the optimization problems that are subsequently tackled.

After that, the ProxOps, the base of the PMs, are described, and finally the main PMs are de-

tailed, including an outline of the different optimization algorithms.

Chapter 3: Sparse Linear Regression. This chapter defines the concept of regularized learn-

ing and characterizes the different regularized models as those trained using an objective func-

tion with two well differentiated terms: an error term and a regularization term. Furthermore,

some sparse linear regression problems are reviewed, indicating also how to solve them under a

common approach based on PMs, in particular using FISTA. This sparse models are: LA, ENet,

GL and GENet, which are applied to the real-world task of wind energy forecast.

Chapter 4: Structured Linear Regression. This chapter follows the same characterization

scheme of the previous chapter, revisiting the structured linear model of FL, which is based

on the TV regularizer. This latter regularizer is extended to a group setting, resulting into the

GTV term, which can be completed to get the GFL linear model. The behaviour of this model

is illustrated numerically over synthetic examples. Moreover, the GTV regularizer, by itself, is

applied successfully to the task of colour images denoising.
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Chapter 5: Correlation Matrix Nearness under Uncertainty. This chapter presents two

ways to deal with observation uncertainty in the NCM problem. The first one is based on the

concept of Robust Optimization (RO), and the second one on an exploratory perspective. Both

approaches result into two constrained optimization problems which can be solved using DR

with an adequate split of the objective function. Furthermore, several simulations exemplify the

proposed approaches.

Chapter 6: Conclusions. This chapter finishes the main part of the thesis including a discus-

sion of the work done and some conclusions on it. In addition, some lines of further work are

described.

Capítulo 6: Conclusiones. This chapter is the Spanish translation of the previous chapter.

Appendix A: Additional Material. This appendix includes additional material, which is not

incorporated in the main chapters for the sake of clarity. In particular, several mathematical

derivations of the ProxOps and Fenchel Conjugates (FCs) used in the thesis are detailed, and

also a short dissertation about how to introduce a constant term in the linear models.

Appendix B: List of Publications. This appendix shows a list of the articles published during

the realization of the thesis, and their relationship with the work described here.



Chapter 2

Convex Optimization and ProximalMethods

This chapter summarizes the main theory needed for the optimization problems tackled in Chap-

ters 3 to 5. In particular, some basic concepts on convex optimization are included, and the Prox-

imal Methods framework is introduced and instantiated in several proximal algorithms like the

Fast Iterative Shrinkage–Thresholding Algorithm, Proximal Dykstra and Douglas–Rachford.

The structure of the chapter is as follows. Some important general concepts on optimization

are defined in Section 2.1, whereas Section 2.2 reviews some basis on subdifferential calculus.

Section 2.3 introduces the monotone operators, later instantiated in the concept of Proximity

Operator in Section 2.4. Finally, Section 2.5 revisits the main Proximal Methods, and Section 2.6

closes the chapter with a discussion.

2.1 Theoretical Background

In this section some initial concepts related with the field of convex optimization are introduced,

as they are required later to define the optimization techniques based on Proximal Methods

(PMs) (most of these concepts are included, for example, in Boyd and Vandenberghe [2004];

Nesterov [2004]).

11
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2.1.1 Initial Concepts

The space over which the optimization problems are solved is a general Euclidean space, defined

as follows.

Definition 2.1 (Euclidean Space). A Euclidean space E is a finite dimensional real space with

an inner product, denoted by 〈·, ·〉 and a norm, ‖·‖.

In the case of a d-dimensional Euclidean space, E can also be denoted as Rd (using a proper

orthonormal basis).

The objective functions of the optimization problems tackled in this work are restricted to func-

tions on E which can take any real value and the value∞. This class of functions are formally

characterized next.

Definition 2.2 (Extended Real Function). An Extended Real Function (ERF) f is a map from a

Euclidean space E to R ∪ {∞}:
f : E→ R ∪ {∞} .

Some direct properties of the ERFs, which are immediately derived from the definition, are:

(i) For γ > 0, if f is an ERF then γf is also an ERF.

(ii) For f1, . . . , fm ERFs, the sum f (x) = ∑m
m=1 fm(x) is also an ERF.

(iii) For f1, . . . , fm ERFs, the maximum f (x) = max1≤m≤m fm(x) is also an ERF.

A significant example of ERF is the indicator function, which as shown later allows to convert

constrained problems into unconstrained ones.

Definition 2.3 (Indicator Function). The indicator function of a closed set C ∈ E is the ERF

ι{C } : E→ {0,∞} defined as:

ι{C }(x) =





0 if x ∈ C ,

∞ if x 6∈ C .

In order to minimize an ERF, the region of interest is that in which the function takes a finite

value, that is, its domain.

Definition 2.4 (Domain). The domain of an ERF f on E is:

dom f =
{
x ∈ E | f (x) <∞

}
.

If dom f 6= ∅, f is called proper.
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Projection

C

x

PrC (x)

dC (x)

Figure 2.1: Example of projection operator.

Obviously, only proper functions are considered as the objective of minimization problems.

Other two important concepts are the distance to a non-empty set and the projection operator

onto it.

Definition 2.5 (Distance). The distance function to a non-empty set C ⊂ E is the ERF dC :
E→

[
0,∞

)
defined as:

dC (x) = inf
y∈C

{‖x− y‖} .

Definition 2.6 (Projection). The projection of x ∈ E onto a non-empty closed set C ⊂ E is the

point PrC (x) ∈ C such that dC (x) = ‖x− PrC (x)‖.

Intuitively the projection of x onto C is the point in C nearest to x, as illustrated in Figure 2.1.

The Fenchel Conjugate is an important tool to get a dual formulation of some optimization

problems. It is formally defined as:

Definition 2.7 (Fenchel Conjugate). The Fenchel Conjugate (FC) of an ERF f on E is the ERF

f ∗ : E→ R ∪ {∞} defined as:

f ∗(x) = sup
x̂∈E

{
〈x̂,x〉 − f (x̂)

}
= − inf

x̂∈E

{
f (x̂)− 〈x̂,x〉

}
.

Examples of the FCs of some function are included in Section A.2.

2.1.2 Optimization Problems

With the previous definitions, the optimization problems over which the main contributions of

this thesis are based can be introduced. In particular, the fundamental one is the unconstrained

optimization problem

min
x∈E

{
f (x)

}
, (2.1)
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Convex Set

x

y

Non-Convex Set

x

y

Figure 2.2: Example of convex and non-convex sets.

where f is a proper ERF over E (if f were not proper, the minimization would be pointless),

which is called the objective function of the problem.

Problem (2.1) can be extended to consider constraints, in particular that the solutions lies in a

certain set S ⊂ E, resulting in

min
x∈E

{
f (x)

}
s.t. x ∈ S . (2.2)

Problem (2.2) can also be expressed as an unconstrained optimization problem using the indica-

tor function of S :

min
x∈E

{
f (x)

}
s.t. x ∈ S ≡ min

x∈E

{
f (x) + ι{S }(x)

}
. (2.3)

Without loss of generality, only minimization problems are considered, as a maximization prob-

lem is equivalent to the minimization problem of the minus objective function:

max
x∈E

{
f (x)

}
≡ −min

x∈E

{
−f (x)

}
.

2.1.3 Convexity and Continuity

Another essential concept is the convexity, both for sets and functions.

Definition 2.8 (Convex Set). A set C ⊂ E is called convex if for all x,y ∈ C and θ ∈
[
0, 1
]
,

then

θx + (1− θ)y ∈ C .

Conceptually, the line segment joining two points of C is contained in C , as shown in Figure 2.2

Definition 2.9 (Convex Function). An ERF f : E → R ∪ {∞} is convex if dom f is a convex

set and if for all x,y ∈ dom f , and θ ∈
[
0, 1
]
, the following inequality is satisfied:

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y) .
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Convex Function

x y

Non-Convex Function

x y

Figure 2.3: Example of convex and non-convex functions.

Conceptually, the line segment joining two points of the graph of f lies above the graph, as

illustrated in Figure 2.3

The objective of the minimization problems of this work are all convex, because in this type of

functions local minima are also global minima, as stated in the following proposition.

Proposition 2.1 (Minimum of a Convex Function). Let f be a proper convex ERF over E. If

x ∈ E is a local minimum, then x is a global minimum.

Proof. If x ∈ E is a local minimum, then there exists some neighbourhood around x, N ⊂ E,

with x ∈ N and such that for all ȳ ∈ N , f (x) ≤ f (ȳ). Moreover, for every y ∈ E, there

exists a small enough θ > 0 for which (1− θ)x + θy ∈ N . Thus, applying the definition of

convex function:

f (x) ≤ f ((1− θ)x + θy) =⇒

f (x) ≤ (1− θ)f (x) + θf (y) =⇒

θf (x) ≤ θf (y) =⇒

f (x) ≤ f (y) ,

which is satisfied for all y ∈ E, and thus x is a global minimum.

Now the concept of lower semi-continuity is presented, which is a relaxation of the continuity

property.

Definition 2.10 (Lower Semi-Continuous Function). An ERF f is Lower Semi-Continuous

(LSC) if for all x ∈ E and for every sequence converging to x, {x(k)} → x, the following

inequality is satisfied:

lim inf
k

f (x(k)) ≥ f (x) .

Conceptually, the function values at points near x are either close to f (x) (in the sense of

continuity) or greater than f (x) (this is depicted in Figure 2.4). For example, the indicator
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LSC Function

x

Figure 2.4: Example of an LSC function: in the only non-differentiable point, the
function takes as value the lower one of the two limits.

function of a closed set C is LSC, as this function is continuous everywhere but at the boundary

of C , where it takes the lower value of 0 for being C closed.

The next class of functions characterizes the objectives of the optimization problems considered

in the remaining of this thesis.

Definition 2.11 (Class Γ0(E)). The class Γ0(E) is the class of ERF over E which are LSC,

convex and proper.

This is an interesting class of functions as they can be minimized. Moreover, every differentiable

and convex function also belongs to Γ0(E), so the classical differentiable optimization problems

are included under this more general framework.

It is important to mention that the indicator function of a closed convex set is a member of

Γ0(E), and consequently the objective function of Problem (2.3) also belongs to this class.

2.2 Subdifferential Calculus

The main optimization problems of interest in this work are non-differentiable, and thus standard

gradient-based methods cannot be directly applied. In particular, the PMs generalize the concept

of gradient by those of subgradient and subdifferential. These concepts and some important

results on them are described next.

2.2.1 Definition of Subgradient and Subdifferential

Definition 2.12 (Subgradient). A subgradient of a proper convex ERF f at a point x ∈ E is a

vector ξx ∈ E such that for all y ∈ E the following inequality is satisfied:

f (y)− f (x) ≥ 〈ξx,y− x〉 .
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Subgradients

x

Figure 2.5: Example of subgradients of f at x.

In the one-dimensional case E = R, a subgradient of f at x is the slope of a line which goes

through
(
x, f (x)

)
and which remains either touching or below the graph of f , as illustrated in

Figure 2.5.

Definition 2.13 (Subdifferential). The subdifferential of a proper convex ERF f on E is the

set-valued map ∂f : E → 2E that assigns to each point the set of all the subgradients of f at

that point:

∂f (x) =
{
ξx ∈ E | f (y)− f (x) ≥ 〈ξx,y− x〉 , ∀y ∈ E

}
.(i)

2.2.2 Properties of the Subdifferential

The following theorem [Rockafellar, 1996, Theorem 23.8] states the relation between the subd-

ifferential of the sum and the sum of subdifferentials.

Theorem 2.1 (Moreau–Rockafellar). Let f1, . . . , fm be proper convex ERFs on Rd, and let f =
f1 + · · ·+ fm. If the convex sets ri

(
dom fm

)
(ii) for m = 1, . . . ,m have a point in common, then

for all x ∈ Rd,

∂f (x) = ∂f1(x) + · · ·+ ∂fm(x) .

It is worth noting that the inclusion ⊃ is direct application of the definition of subdifferential

and the linearity of the inner product. A detailed proof of the other inclusion can be found in

[Rockafellar, 1996, Theorem 23.8].

Some other interesting properties of the subdifferential of a proper convex ERF f on E are:

(i) For γ > 0, ∂
(
γf
)
(x) = γ∂f (x).

(ii) For x ∈ E, ∂f (x) is either empty or a closed convex set.

(i)For convenience, when the expression of f is long, the alternate notation ∂f (x) := ∂xf is used.
(ii)The operator ri (C ) denotes the relative interior of a non-empty set C ∈ E, which is defined as the interior of C

relative to its affine hull.
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(iii) For x 6∈ dom f , ∂f (x) = ∅.

(iv) For x ∈ ri
(
dom f

)
, ∂f (x) 6= ∅.

(v) ∂f (x) if a non-empty bounded set if and only if x ∈ int
(
dom f

)
.

(vi) For x ∈ E, ∂f (x) =
{
∇f (x)

}
if and only if f is differentiable at x.

Property (i) is direct application of the definition and the linearity of the inner product. The

convexity of Property (ii) comes from the definition of subgradient, and it is easy to verify that

the boundary of the subdifferential also belongs to the subdifferential. Properties (iii) to (v) are

detailed in Theorem 23.4 of Rockafellar [1996], and Property (vi) in Theorem 25.1.

The subdifferential of a convex function can be used to establish an optimality condition, hence

its relevance. This is formalized next.

Theorem 2.2 (Fermat’s Rule). The point x ∈ E is a minimizer of a proper convex ERF f on E
if and only if 0 ∈ ∂f (x).

Proof.

0 ∈ ∂f (x) ⇐⇒ f (y)− f (x) ≥ 〈0,y− x〉 ∀y ∈ E

⇐⇒ f (y)− f (x) ≥ 0 ∀y ∈ E

⇐⇒ f (y) ≥ f (x) ∀y ∈ E .

The last inequality is the definition of x as a minimizer of f .

Proposition 2.2 (Separability of the Subdifferential). Let E = Rd, which is partitioned as Rd1×
· · · × Rdm (x ∈ Rd can thus be decomposed as x = (x1, . . . ,xm)). Let f (x) = ∑m

m=1 fm(xm)
be a (partially) separable and proper convex ERF on Rd. Then the subdifferential of f is also

separable:

∂f (x) = ∂f1(x1)× · · · × ∂fm(xm) ,

in other words, ξx = (ξx1 , . . . , ξxm) ∈ ∂f (x) if and only if ξxm ∈ ∂fm(xm) for m =
1, . . . ,m.(iii)

Proof. The inclusion ⊃ is a direct application of the definition of subdifferential. If ξxm is a

subgradient of fm at xm for m = 1, . . . ,m, then ξx = (ξx1 , . . . , ξxm) is a subgradient of f at x
(iii)It is worth noting that the subdifferential is expressed as a Cartesian product instead of simply a concatenation

because the components ∂fm(xm) are, in general, set-valued.
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since:

f (y)− f (x) =
m∑

m=1
fm(ym)−

m∑

m=1
fm(xm)

=
m∑

m=1

(
fm(ym)− fm(xm)

)

≥
m∑

m=1
〈ξxm ,ym − xm〉

= 〈ξx,y− x〉 ,

which is satisfied for all y ∈ Rd, and thus ξx ∈ ∂f (x). The inclusion ⊂ is proved next. If

ξx = (ξx1 , . . . , ξxm) is a subgradient of f at x, then ξxm is a subgradient of fm at xm for

m = 1, . . . ,m, because taking y = (x1, . . . ,ym̂, . . . ,xm) (all the components are fixed but the

m̂-th one), the following chain of implications is verified:

ξx ∈ ∂f (x) =⇒ f (y)− f (x) ≥ 〈ξx,y− x〉 ∀ym̂ ∈ Rdm̂

=⇒
m∑

m=1

(
fm(ym)− fm(xm)

)
≥

m∑

m=1
〈ξxm ,ym − xm〉 ∀ym̂ ∈ Rdm̂

=⇒ fm̂(ym̂)− fm̂(xm̂) ≥ 〈ξxm̂ ,ym̂ − xm̂〉 ∀ym̂ ∈ Rdm̂

=⇒ ξxm̂ ∈ ∂fm̂(xm̂) .

Proposition 2.2 implies that, for functions applied element-wise (or independently over groups

of variables) it suffices to compute the subdifferential of each component (or group of compo-

nents).

2.3 Monotone Operators

This section revisits the concept of monotone operators [Aubin and Frankowska, 2009] and

some of their properties, because the subdifferential of a convex function is monotone, and as

shown later some of the characteristics of these operators are the basis of the PMs.

2.3.1 Definition and Properties

Definition 2.14 (Monotone Operator). A set-valued operator F : E→ 2E is monotone if for all

x1,x2 ∈ E, for all ξx1 ∈ F (x1) and for all ξx2 ∈ F (x2), the following inequality is satisfied:

〈x1 − x2, ξx1 − ξx2〉 ≥ 0 .



20 C. M. Alaíz - PMs for Structured Group Features and Correlation Matrix Nearness

Some trivial examples of monotone operators are the identity operator, any linear positive

semidefinite operator and any non-decreasing function from R to R.

Corollary 2.1 (Monotonicity of the Subdifferential). The subdifferential of a convex ERF f on

E is a monotone operator.

Proof. Let ξx1 ∈ ∂f (x1) and ξx2 ∈ ∂f (x2). Using the definition of subdifferential:

〈ξx1 − ξx2 ,x1 − x2〉 = 〈ξx1 ,x1 − x2〉 − 〈ξx2 ,x1 − x2〉

= 〈ξx1 ,x1 − x2〉+ 〈ξx2 ,x2 − x1〉

≥ f (x1)− f (x2) + f (x2)− f (x1)

= 0 .

Some properties of the monotone operators:

(i) If F1 and F2 are monotone operators on E, then F1 + F2 is also a monotone operator on

E.

(ii) If F is a monotone operator on E, then γF , for γ ≥ 0, is also a monotone operator on E.

(iii) If F is a monotone operator on E, then F −1 is also a monotone operator on E.

Properties (i) and (ii) come from the definition of monotonicity and from the linearity of the

inner product, and Property (iii) from its symmetry.

2.3.2 Resolvent

The resolvent operator plays also a central role in the definition of the Proximity Operator

(ProxOp), and thus in the paradigm of PMs.

Definition 2.15 (Resolvent). The resolvent of a set-valued operator F : E→ 2E is the operator

resF defined as:

resF = (Id +F )−1 ,

where Id is the identity operator.

Another important concept is that of a firmly non-expansive operator.

Definition 2.16 (Firmly Non-Expansive Operator). An operator F : E → 2E is firmly non-

expansive if, for all z1, z2 ∈ E, for all x1 ∈ F (z1) and for all x2 ∈ F (z2), the following

inequality is satisfied:

‖x1 − x2‖2 ≤ ‖z1 − z2‖2 .
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As shown next, the resolvent of a monotone operator is firmly non-expansive.

Proposition 2.3 (Resolvent of Monotone Operators). The resolvent of a monotone operator

F : E→ 2E is firmly non-expansive.

Proof. Let x1 ∈ resF (z1) and x2 ∈ resF (z2). By definition of the resolvent:

x1 ∈ resF (z1) =⇒ x1 ∈ (Id +F )−1(z1) =⇒ z1 ∈ x1 + F (x1) =⇒ z1 = x1 + ξx1 ,

x2 ∈ resF (z2) =⇒ x2 ∈ (Id +F )−1(z2) =⇒ z2 ∈ x2 + F (x2) =⇒ z2 = x2 + ξx2 ,

for some ξx1 ∈ F (x1) and some ξx2 ∈ F (x2). Therefore, the distance term between z1 and z2

becomes:

‖z1 − z2‖2 = 〈z1 − z2, z1 − z2〉

= 〈x1 + ξx1 − x2 − ξx2 ,x1 + ξx1 − x2 − ξx2〉

= 〈x1 − x2,x1 − x2〉+ 〈ξx1 − ξx2 , ξx1 − ξx2〉+ 2 〈x1 − x2, ξx1 − ξx2〉

= ‖x1 − x2‖2 + ‖ξx1 − ξx2‖
2 + 2 〈x1 − x2, ξx1 − ξx2〉

≥ ‖x1 − x2‖2 + 2 〈x1 − x2, ξx1 − ξx2〉

≥ ‖x1 − x2‖2 ,

where for the last inequality the monotonicity of F is used. Therefore,

‖x1 − x2‖2 ≤ ‖z1 − z2‖2 ,

which is Definition 2.16 applied to the operator resF .

Moreover, the resolvent turns out to be a single-valued map, as shown below.

Corollary 2.2 (Resolvent of Monotone Operators). The resolvent of a monotone operator F :
E→ 2E is single-valued, in other words, it is a function resF : E→ E.

Proof. As resF is firmly non-expansive, then ‖x1 − x2‖2 ≤ ‖z1 − z2‖2, ∀z1, z2 ∈ E, ∀x1 ∈
resF (z1) and ∀x2 ∈ resF (z2). In particular, if z1 = z2, then ‖x1 − x2‖2 ≤ 0, and thus

x1 = x2 = resF (z1).

The resolvent operator can be used to characterize the zeros of a monotone operator.

Proposition 2.4 (Zeros of a Monotone Operator). The zeros of a monotone operator F : E →
2E are the fixed points of the resolvents resγF , for all γ > 0:

0 ∈ F (x) ⇐⇒ x = resγF (x), ∀γ > 0 .
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Proof. Applying the definition of the resolvent:

0 ∈ F (x) ⇐⇒ 0 ∈ γF (x) ∀γ > 0

⇐⇒ x ∈ x + γF (x) ∀γ > 0

⇐⇒ x ∈ (Id +γF )(x) ∀γ > 0

⇐⇒ x ∈ (Id +γF )−1(x) ∀γ > 0

⇐⇒ x = resγF (x) ∀γ > 0 .

Another important operator is the Cayley Operator, which is defined next:

Definition 2.17 (Cayley Operator). The Cayley Operator (CayOp) of a set-valued operator F :
E→ 2E is the operator cayF defined as:

cayF = 2 resF − Id = 2(Id +F )−1 − Id .

2.4 Proximity Operators

In the following, the concept of Proximity Operator is defined, which is the fundamental tool in

the field of PMs.

Definition 2.18 (Proximity Operator). The Proximity Operator (ProxOp) of a proper convex

ERF f on E is the map proxf : E→ E defined as the resolvent of the subdifferential of f :

proxf = res∂f =
(
Id +∂f

)−1
.

This mapping can also be expressed as the solution of a minimization problem.

Proposition 2.5 (Alternative Definition of the Proximity Operator). The ProxOp of a proper

convex ERF f on E at a point x ∈ E is the solution of the minimization problem:

proxf (x) = arg min
x̂∈E

{1
2‖x̂− x‖2 + f (x̂)

}
. (2.4)

Proof. Let g (x̂) = 1
2‖x̂− x‖2 + f (x̂). By Theorem 2.1, ∂g (x̂) = x̂ − x + ∂f (x̂). Applying

the definition of ProxOp:

proxf (x) =
(
Id +∂f

)−1
(x) ⇐⇒ x ∈ proxf (x) + ∂f

(
proxf (x)

)

⇐⇒ 0 ∈ proxf (x)− x + ∂f
(
proxf (x)

)

⇐⇒ 0 ∈ ∂g
(
proxf (x)

)
.
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Therefore and for Theorem 2.2, proxf (x) is the unique minimizer of g (which is strictly con-

vex).

The definition through Problem (2.4) is crucial at it provides a general way to compute the

ProxOps for non-trivial functions; indeed, in Chapter 4 the ProxOps of two regularizers are

computed approximately solving this problem with classical optimization techniques.

It is worth remarking that, as the ProxOp of a proper convex function is the resolvent of its

subdifferential, then by Proposition 2.4, the zeros of its subdifferential can be obtained as fixed

points of its ProxOps. Furthermore, by Theorem 2.2 those points are also the minimizers of the

function:

x = arg min
x̂∈E

{
f (x̂)

}
⇐⇒ 0 ∈ ∂f (x) ⇐⇒ x = proxf (x) . (2.5)

Obviously, this is satisfied for any multiple of the function δf , for δ > 0, as it has trivially the

same minima. All these results suggest the iterative application of the ProxOp of a function f
with different steps, proxδf , as a natural strategy to minimize a non-differentiable function; as

shown in Section 2.5 this is the basis of the first PM.

Conceptually, the definition of ProxOp as a minimization problem allows to interpret the ProxOp

of δf , namely proxδf , as a generalization of the gradient descent step of f at x with step δ. In

fact, the minimization problem considering δf is:

min
x̂∈E

{1
2‖x̂− x‖2 + δf (x̂)

}
. (2.6)

The solution of Problem (2.6) tries to minimize the original function f while remaining rela-

tively close to the original point x, where the length of the step is determined by δ: if δ is large,

then the problem is dominated by f , which will be minimized at the expense of a larger distance

to x; if it is small, the solution proxδf (x) will stay near x but will hardly minimize f . To

illustrate the relationship between the ProxOp and the gradient descent step, the ProxOp of a

differentiable function f can be considered:

min
x̂∈E

{1
2‖x̂− x‖2 + δf (x̂)

}
=⇒ 0 = x̂− x + δ∇f (x̂) =⇒ x̂ = x− δ∇f (x̂) .

This seems as an implicit gradient descent step, in which the direction of the step is the gradient

at the arrival point x̂, instead of that at the initial point x (which is the case in the gradient

descent step, namely x̂ = x− δ∇f (x)).

Finally, an interesting property is that the ProxOp of a separable function is also separable, and

thus the ProxOps of each component determine the global ProxOp.

Proposition 2.6 (Separability of the Proximity Operator). Let E = Rd, which is partitioned

as Rd1 × · · · × Rdm (x ∈ Rd can thus be decomposed as x = (x1, . . . ,xm)). Let f (x) =
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∑m
m=1 fm(xm) be a (partially) separable and proper convex ERF on Rd. Then the ProxOp of f

is also separable:

proxf (x) =
(
proxf1

(x1), . . . ,proxfm
(xm)

)>
.(iv) (2.7)

Proof. The separability of f implies the separability of the objective of Problem (2.4), whose

objective function is 1
2‖x̂− x‖2 + f (x̂). Therefore, the minimization problem that defines

proxf (x) can also be separated:

min
x̂∈Rd

{1
2‖x̂− x‖2 + f (x̂)

}
= min

x̂∈Rd

{
1
2‖x̂− x‖2 +

m∑

m=1
fm(x̂m)

}

= min
x̂∈Rd

{
1
2

m∑

m=1
‖x̂m − xm‖2 +

m∑

m=1
fm(x̂m)

}

=
m∑

m=1
min

x̂m∈Rdm

{1
2‖x̂m − xm‖2 + fm(x̂m)

}
.

As the inner minimization problems are the expressions of the ProxOps of the components fm,

Equation (2.7) is satisfied:

proxf (x) = arg min
x̂∈Rd

{1
2‖x̂− x‖2 + f (x̂)

}

=




arg minx̂1∈Rd1

{
1
2‖x̂1 − x1‖2 + f1(x̂1)

}

...

arg minx̂m∈Rdm

{
1
2‖x̂m − xm‖2 + fm(x̂m)

}




=




proxf1
(x1)

...

proxfm
(xm)


 .

2.5 Proximal Methods

In this section the Proximal Methods (PMs) are finally introduced to solve minimization prob-

lems of convex objective functions. Roughly speaking, these methods are based on a convenient

splitting of the objective function f as the sum of convex functions f = f1 + · · ·+ fm which are

individually used so as to yield an easily implementable algorithm; the name proximal comes

because each non-smooth function in the sum is involved via its ProxOp [Combettes and Pes-

quet, 2011].
(iv)In contrast to Proposition 2.2, the Cartesian product is not needed in this case since the ProxOps are single-

valued.
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2.5.1 Subgradient Method

As a first example of a method to minimize numerically a non-differentiable function f ∈ Γ0(E)
is the Subgradient Method (SGM), originally developed by Shor [1985]. This is not strictly a

PM, as it does not use the ProxOp but only the concept of subgradient. More precisely, this

method is based on updating the current (approximate) solution with a subgradient descent step.

In fact, the minus minimum-norm subgradient at a point x ∈ E (that is, the element of the

subdifferential ∂f (x) which has minimum norm) is a descent direction of f at x [Bazaraa et al.,

2006, Theorem 6.3.11], although this cannot be assured in general for a subgradient without

minimum norm. Since computing the minimum norm subgradient can be costly compared with

computing any subgradient, the simplest version of SGM does not require the subgradient to be

of minimum norm. Therefore, although this method converges to the optimum with proper step

sizes, the convergence is non-monotonic.

Algorithm 2.1 shows the complete procedure. It is worth noting that, because of the non-

monotonicity of the method, instead of just returning the last point x[t+1] the algorithm returns

the point xbest with lower objective functional of all the generated sequence {x[t′]}t+1
t′=0. This

method is guaranteed to converge to a minimum of f if the step sizes satisfy [Polyak, 1987,

Chapter 5]:

lim
t→∞

δ[t] = 0 ;
∞∑

t=0
δ[t] =∞ . (2.8)

More specifically, the difference between the objective at step t and the real minimum satisfies:

f (xbest)− f (xop) ≤ r2 + g2∑t
t′=0 (δ[t′])2

2∑t
t′=0 δ

[t′] , (2.9)

where r is a bound of the distance between x[0] and xop and g is a bound of the norm of the

subgradients of f [Nesterov, 2004, Theorem 3.2.2]. Moreover, a bound on the right hand side

of Equation (2.9) is rg√
t
; therefore, this inequality gives an order of convergence of O

(
1√
t

)
in

the best case (these results are also derived and discussed in detail, for example, in Boyd and

Mutapcic [2006]).

2.5.2 Proximal Point Algorithm

A second approach to solve an unconstrained minimization problem as Problem (2.1) is based

on Equation (2.5), which identifies the minima with fixed points of the ProxOp. This is known

as the Proximal Point (PP) algorithm, which is summarized in Algorithm 2.2. This method

converges weakly(v) to a minimizer if the step sizes are bounded away from zero [Rockafellar,
(v)A sequence {x(k)} ∈ E converges weakly to x ∈ E if, for all y ∈ E, 〈x(k),y〉 → 〈x,y〉 as k →∞.
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SubgradientMethod

Input: f ∈ Γ0(E) ;

Output: xbest ' arg minx∈E
{

f (x)
}

;

Initialization: x[0] ∈ E ;

1: xbest ← x[0] ;

2: for t = 0, 1, . . . do

3: set ξx[t] ∈ ∂f (x[t]) ; δ[t] > 0 ; I δ[t] satisfying Equations (2.8).

4: x[t+1] ← x[t] − δ[t]

‖ξx[t]‖ξx[t] ;

5: if f (x[t+1]) ≤ f (xbest) then

6: xbest ← x[t+1] ;

7: end if

8: end for

Algorithm 2.1: SGM for minimizing an ERF f . The sequence xbest converges to a
minimum of f .

Proximal Point Algorithm

Input: f ∈ Γ0(E) ;

Output: x[t+1] ' arg minx∈E
{

f (x)
}

;

Initialization: x[0] ∈ E ;

1: for t = 0, 1, . . . do

2: set δ[t] ∈
(
0, δmax

)
; I δ[t] satisfying Equation (2.10).

3: x[t+1] ← proxδ[t]f (x[t]) ;

4: end for

Algorithm 2.2: PP algorithm for minimizing an ERF f . The sequence x[t+1] con-
verges to a minimum of f .

1976]:

δ[t] > δmin , (2.10)

for some bound δmin > 0. Furthermore, f (x[t]) converges to the minimum f (xop) with a rate

O
(

1
t

)
, as the PP algorithm is a particular instance of the Forward–Backward Splitting algorithm

(explained below) with fsm identically zero.

The main problem of this method is that the ProxOp of the objective function has to be computed

several times. In fact, the ProxOp requires to solve Problem (2.4), which is itself an optimization

problem that involves f . Hence, the ProxOp of a function is not always easy to compute: it can
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require a specific optimization method which can be computationally too expensive, or maybe

there is not a straightforward approach of solving it.

As an alternative, the following methods allow to solve optimization problems for which the

objective function f can be properly split using only the individual ProxOps of each one of

the components of f (or their gradients, if they are differentiable) which are expected to be

easier to evaluate. In that way, the optimization problem is gradually decomposed until arriving

to affordable ProxOps (such as those described in Section A.1). Nevertheless, it is important

to observe that nesting too many PMs may result into a high increase of the computational

complexity, since they are iterative algorithms.

2.5.3 Forward–Backward Splitting Algorithm

The Forward–Backward Splitting (FBS) algorithm [Combettes and Wajs, 2005] is a method to

minimize the sum of a smooth and a non-smooth functions. This is a situation that often arises

in practice, for example when the fitness function of a learning system is composed by an error

term (usually smooth) and a regularization term (non-smooth), as shown in Chapters 3 and 4.

In particular, the objective is f = fsm + fnsm, where the smooth term fsm is a convex ERF

on E with Lipschitz gradient ∇fsm with constant β(vi) and the non-smooth term fnsm belongs

to Γ0(E). A condition to guarantee the feasibility of the resultant problem is also needed; in

particular, a usual choice is to require that fsm(x) + fnsm(x) → ∞ as ‖x‖ → ∞, which avoids

the case of an always decreasing objective. Hence, the optimization problem is:

min
x∈E

{
fsm(x) + fnsm(x)

}
. (2.11)

This method is based on the optimality condition given by Theorem 2.2; in particular, xop is a

minimizer of f if and only if 0 ∈ ∂f (xop) = ∂
(
fsm + fnsm

)
(xop) = ∇fsm(xop) + ∂fnsm(xop),

where the last equality comes from Theorem 2.1. Therefore, for all δ > 0:

0 ∈ ∇fsm(xop) + ∂fnsm(xop) ⇐⇒ xop ∈ xop + δ∇fsm(xop) + δ∂fnsm(xop)

⇐⇒ xop − δ∇fsm(xop) ∈ xop + δ∂fnsm(xop)

⇐⇒ xop ∈
(
Id +δ∂fnsm

)−1(
xop − δ∇fsm(xop)

)

⇐⇒ xop = proxδfnsm

(
xop − δ∇fsm(xop)

)
, (2.12)

where the definition of ProxOp has been used. This fixed-point equation suggests an iterative

algorithm, which is precisely the FBS method shown in Algorithm 2.3, whose convergence is

guaranteed for the specified selection of parameters. More specifically, the objective function

(vi)This means that
∥∥∇fsm(x)−∇fsm(y)

∥∥ ≤ β‖x− y‖, for all x,y ∈ E.



28 C. M. Alaíz - PMs for Structured Group Features and Correlation Matrix Nearness

Forward–Backward Splitting Algorithm

Input: fsm convex with∇fsm Lipschitz with constant β ; fnsm ∈ Γ0(E) ;

Output: x[t+1] ' arg minx∈E
{

fsm(x) + fnsm(x)
}

;

Initialization: x[0] ∈ E ; ε ∈
(
0,min

(
1, 1

β

))
;

1: for t = 0, 1, . . . do

2: set δ[t] ∈
[
ε, 2
β
− ε
]

; γ[t] ∈
[
ε, 1
]

;

3: y[t] ← x[t] − δ[t]∇fsm(x[t]) ;

4: x[t+1] ← x[t] + γ[t]
(

proxδ[t]fnsm
(y[t])− x[t]

)
;

5: end for

Algorithm 2.3: FBS algorithm for minimizing the sum of a smooth and a non-
smooth functions. The sequence x[t+1] converges to a minimum of Problem (2.11).

Simplified Forward–Backward Splitting Algorithm

Input: fsm convex with∇fsm Lipschitz with constant β ; fnsm ∈ Γ0(E) ;

Output: x[t+1] ' arg minx∈E
{

fsm(x) + fnsm(x)
}

;

Initialization: x[0] ∈ E ; ε ∈
(
0,min

(
1, 1

β

))
;

1: for t = 0, 1, . . . do

2: set δ[t] ∈
(
ε, 2
β
− ε
)

;

3: x[t+1] ← proxδ[t]fnsm

(
x[t] − δ[t]∇fsm(x[t])

)
;

4: end for

Algorithm 2.4: Simplified FBS algorithm for minimizing the sum of a smooth and
a non-smooth functions. The sequence x[t+1] converges to a minimum of Prob-

lem (2.11).

f (x[t]) converges to f (xop) with rate O
(

1
t

)
[Beck and Teboulle, 2009; Bredies and Lorenz,

2008].

This algorithm can be further simplified by fixing γ[t] = 1, resulting in Algorithm 2.4, which

only has one parameter (the sizes of the ProxOp steps, with their respective lower bound ε).

2.5.4 ISTA and FISTA

The algorithms below also intend to solve Problem (2.11), that is, the minimization of the sum of

a smooth and a non-smooth functions. They are based on the family of the Iterative Shrinkage–

Thresholding Algorithms (ISTAs), which were originally designed to tackle the problem of

linear regression with an `1 norm regularizer, and then extended to the general case [Beck and

Teboulle, 2009].
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Iterative Shrinkage–Thresholding Algorithm with Constant Step

Input: fsm convex with∇fsm Lipschitz with constant β ; fnsm ∈ Γ0(E) ;

Output: x[t+1] ' arg minx∈E
{

fsm(x) + fnsm(x)
}

;

Initialization: x[0] ∈ E ;

1: for t = 0, 1, . . . do

2: x[t+1] ← prox 1
β

fnsm

(
x[t] − 1

β
∇fsm(x[t])

)
;

3: end for

Algorithm 2.5: Iterative Shrinkage–Thresholding Algorithm with constant step for
minimizing the sum of a smooth and a non-smooth functions. The sequence x[t+1]

converges to a minimum of Problem (2.11).

ISTA with constant step, described in Algorithm 2.5, iterates the fixed-point Equation (2.12)

with a constant step δ = 1
β , and thus it is a particular case of Algorithm 2.4.

Its main drawback is that this method requires to know a Lipschitz constant of∇fsm in advance.

In some instances, such as in the Lasso problem of Section 3.3, a Lipschitz constant can be

estimated easily from the data matrix. When this is not the case, this drawback can be overcome

using a backtracking approach to estimate β. More specifically, a quadratic approximation

around y ∈ E to fsm(x) + fnsm(x), with an estimation of the Lipschitz constant β̄, is used:

Q
(
x,y; β̄

)
= fnsm(x) + fsm(y) +

〈
x− y,∇fsm(y)

〉
+ β̄

2 ‖x− y‖2 ,

which is just a Taylor expansion of fsm around y. In particular, for a true Lipschitz constant β of

the gradient of fsm, then Q (x,y;β) is greater or equal to fsm(x) + fnsm(x) [Bertsekas, 1995],

as β is a bound of the maximum eigenvalue of the Hessian of fsm at any point z ∈ E:

fsm(x) = fsm(y) +
〈
x− y,∇fsm(y)

〉
+ 1

2(x− y)>H fsm(z)(x− y)

≤ fsm(y) +
〈
x− y,∇fsm(y)

〉
+ β

2 (x− y)>(x− y)

= fsm(y) +
〈
x− y,∇fsm(y)

〉
+ β

2 ‖x− y‖2 ,

where z is in the line segment joining x and y. Therefore, adding fnsm(x) in both sides, the

following inequality is verified for any Lipschitz constant β of∇fsm:

Q (x,y;β) ≥ fnsm(x) + fsm(x) .
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Iterative Shrinkage–Thresholding Algorithm with Backtracking

Input: fsm convex with∇fsm Lipschitz ; fnsm ∈ Γ0(E) ;

Output: x[t+1] ' arg minx∈E
{

fsm(x) + fnsm(x)
}

;

Initialization: x[0] ∈ E ; β[0] > 0 ; η > 1 ;

1: for t = 0, 1, . . . do

2: i← 0 ;

3: repeat

4: β̄ ← ηiβ[t] ;

5: x[t+1]
β̄

← prox 1
β̄

fnsm

(
x[t] − 1

β̄
∇fsm(x[t])

)
;

6: i← i+ 1 ;

7: until fsm
(
x[t+1]
β̄

)
+ fnsm

(
x[t+1]
β̄

)
≤ Q

(
x[t+1]
β̄

,x[t]; β̄
)

;

8: β[t] ← β̄ ;

9: x[t+1] ← x[t+1]
β̄

;

10: end for

Algorithm 2.6: Iterative Shrinkage–Thresholding Algorithm with backtracking for
minimizing the sum of a smooth and a non-smooth functions. The sequence x[t+1]

converges to a minimum of Problem (2.11).

With this result, the idea of the backtracking is to substitute the basic step of ISTA to find an

estimation of the Lipschitz constant β̄ that satisfies:

fnsm

(
x[t+1]
β̄

)
+ fsm

(
x[t+1]
β̄

)
≤ Q

(
x[t+1]
β̄

,x[t]; β̄
)
,

where

x[t+1]
β̄

= prox 1
β̄

fnsm

(
x[t] − 1

β̄
∇fsm(x[t])

)

is the new update rule (which is the same as for ISTA with constant step but approximating β

with β̄). The complete procedure is shown in Algorithm 2.6, which starts with an initial guess

of the Lipschitz constant β[0] and increments it if needed.

With respect to the convergence, the value of the objective function f (x[t]) = fsm(x[t]) +
fnsm(x[t]) converges sublinearly to f (xop) = fsm(xop) + fnsm(xop) for both Algorithms 2.5

and 2.6, that is, the rate of convergence isO
(

1
t

)
[Beck and Teboulle, 2009, Theorem 3.1]. More

specifically, and for α = 1 in the case of Algorithm 2.5 and α = η for Algorithm 2.6, the

objective function satisfies the following inequality:

f (x[t])− f (xop) ≤ αβ‖x[0] − xop‖2

2t ,

for every minimizer xop of f .
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Fast Iterative Shrinkage–Thresholding Algorithm with Constant Step

Input: fsm convex with∇fsm Lipschitz with constant β ; fnsm ∈ Γ0(E) ;

Output: x[t] ' arg minx∈E
{

fsm(x) + fnsm(x)
}

;

Initialization: x[0] ∈ E ;

1: y[1] ← x[0] ;

2: δ[1] ← 1 ;

3: for t = 1, 2, . . . do

4: x[t] ← prox 1
β

fnsm

(
y[t] − 1

β
∇fsm(y[t])

)
;

5: δ[t+1] ← 1+
√

1+4(δ[t])2
2 ;

6: y[t+1] ← x[t] + δ[t]−1
δ[t+1] (x[t] − x[t−1]) ;

7: end for

Algorithm 2.7: Fast Iterative Shrinkage–Thresholding Algorithm with constant step
for minimizing the sum of a smooth and a non-smooth functions. The sequence x[t]

converges to a minimum of Problem (2.11).

In order to improve the convergence rate, Beck and Teboulle [2009] designed the Fast Iterative

Shrinkage–Thresholding Algorithm (FISTA), which is based on improved gradient-based meth-

ods for the differentiable case, in particular, on the method of Nesterov [1983]. Moreover, this

algorithm does not need any additional gradient evaluation, just to compute an additional point.

The method is described in Algorithm 2.7 with constant step (it requires to know a Lipschitz

constant of the gradient of fsm) and in Algorithm 2.8 with backtracking.

The convergence rate of ISTA is improved by both variants of FISTA: the objective f (x[t])
converges to f (xop) with rate O

(
1
t2

)
[Beck and Teboulle, 2009, Theorem 3.4]. In particular,

and for α = 1 in the case of Algorithm 2.7 and α = η for Algorithm 2.8, the objective function

satisfies:

f (x[t])− f (xop) ≤ 2αβ‖x[0] − xop‖2

(t+ 1)2 ,

for every minimizer xop of f .

Next section focuses on the minimization of the sum of two non-differentiable functions.

2.5.5 Douglas–Rachford Algorithm

The Douglas–Rachford (DR) algorithm aims to minimize the sum of two non-smooth functions,

f1, f2 ∈ Γ0(E). In order to assure the existence of a solution, it is usually assumed that f1(x) +
f2(x) → ∞ as ‖x‖ → ∞, and ri

(
dom f1

)
∩ ri

(
dom f2

)
6= ∅ (the first condition is the same

as in Section 2.5.3, whereas the second condition requires that both functions take finite values
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Fast Iterative Shrinkage–Thresholding Algorithm with Backtracking

Input: fsm convex with∇fsm Lipschitz ; fnsm ∈ Γ0(E) ;

Output: x[t] ' arg minx∈E
{

fsm(x) + fnsm(x)
}

;

Initialization: x[0] ∈ E ; β[0] > 0 ; η > 1 ;

1: y[1] ← x[0] ;

2: δ[1] ← 1 ;

3: for t = 0, 1, . . . do

4: i← 0 ;

5: repeat

6: β̄ ← ηiβ[t] ;

7: x[t]
β̄
← prox 1

β̄
fnsm

(
y[t] − 1

β̄
∇fsm(y[t])

)
;

8: i← i+ 1 ;

9: until fsm
(
x[t]
β̄

)
+ fnsm

(
x[t]
β̄

)
≤ Q

(
x[t]
β̄
,y[t]; β̄

)
;

10: β[t] ← β̄ ;

11: x[t] ← x[t]
β̄

;

12: δ[t+1] ← 1+
√

1+4(δ[t])2
2 ;

13: y[t+1] ← x[t] + δ[t]−1
δ[t+1] (x[t] − x[t−1]) ;

14: end for

Algorithm 2.8: Fast Iterative Shrinkage–Thresholding Algorithm with backtracking
for minimizing the sum of a smooth and a non-smooth functions. The sequence x[t]

converges to a minimum of Problem (2.11).

in some region at the same time). Thus, the problem is:

min
x∈E

{
f1(x) + f2(x)

}
. (2.13)

In order to solve Problem (2.13), DR is based only on the individual ProxOps of f1 and f2.

Therefore, it is a useful approach in situations where the ProxOp of the complete objective func-

tion f is difficult to compute, since it allows to minimize f by splitting it on simpler functions

f1 and f2, whose ProxOps are hopefully easier to evaluate (this is the approach followed for

solving the matrix nearness problems of Chapter 5).

In particular, it is based on the iteration of the following two level condition:

0 ∈ ∂f1(x) + ∂f2(x) ⇐⇒





x = proxδf2
(y) ,

y = cayδ∂f1
cayδ∂f2

(y) .
(2.14)

This means that x = proxδf2
(y) is a solution of Problem (2.13) if y is a fixed point of

cayδ∂f1
◦ cayδ∂f2

. Although the equivalence is not trivial, it is easy to verify that any x,y ∈ E
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satisfying Equations (2.14) are solution of Problem (2.13). By hypothesis,

x = proxδf2
(y) ; y ∈ x + δ∂f2(x) . (a)

ȳ = 2x− y = cayδ∂f2
(y) . (b)

x̄ = proxδf1
(ȳ) ; ȳ ∈ x̄ + δ∂f1(x̄) . (c)

y = 2x̄− ȳ = cayδ∂f1
(ȳ) . (d)

The expression (a) is the first one of Equations (2.14) (and the definition of ProxOp), and (b)

to (d) come from the second condition of Equations (2.14) and the definition of CayOp. Com-

bining them:

(b)− (d) : x = x̄ . (e)

(d), (e) : 2x = y + ȳ . (f)

(a), (c), (e), (f) : 2x ∈ 2x + δ∂f1(x) + δ∂f2(x) =⇒ 0 ∈ ∂f1(x) + ∂f2(x) .

A detailed proof, including the other implication, can be found in [Combettes and Pesquet, 2007,

Proposition 18].

Coming back to Equations (2.14), and using the expression for the CayOp of Definition 2.17,

the condition becomes:




x = proxδf2
(y)

y = 2 proxδf1

(
2 proxδf2

(y)− y
)
−
(
2 proxδf2

(y)− y
)

=⇒





x = proxδf2
(y) ,

y = y + 2
(
proxδf1

(2x− y)− x
)
.

(2.15)

Equations (2.15) suggest the basic update of the DR algorithm:

x[t] = proxδf2
(y[t]) ,

y[t+1] = y[t] + γ[t]
(
proxδf1

(2x[t] − y[t])− x[t])
)
,

which is generalized in Algorithm 2.9, where the sequence x[t] converges weakly to an optimum

of Problem (2.13) [Combettes and Pesquet, 2007].

2.5.6 Proximal Dykstra Algorithm

All the algorithms above are based on the computation of one or several ProxOps. Since a

ProxOp can be hard to compute directly when the function is relatively complex, an alternative is
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Douglas–Rachford Algorithm

Input: f1, f2 ∈ Γ0(E) ;

Output: x[t] ' arg minx∈E
{

f1(x) + f2(x)
}

;

Initialization: y[0] ∈ E ; ε ∈
(
0, 1
)

; δ > 0 ;

1: for t = 0, 1, . . . do

2: x[t] ← proxδf2 (y[t]) ;

3: set γ[t] ∈
[
ε, 2− ε

]
;

4: y[t+1] ← y[t] + γ[t]
(

proxδf1 (2x[t] − y[t])− x[t])
)

;

5: end for

Algorithm 2.9: Douglas–Rachford algorithm for minimizing the sum of two non-
smooth functions. The sequence x[t] converges to a minimum of Problem (2.13).

to decompose it into simpler ProxOps. This is exactly what the Proximal Dykstra (PD) algorithm

does, it computes the ProxOp of f = f1 + f2 using only the individual ProxOps of f1 and f2.

In particular, the PD algorithm [Bauschke and Combettes, 2008] is a PM based on the original

Dykstra algorithm [Dykstra, 1983], which was designed to construct the projection onto the

intersection of two sets by using the individual projections onto each set. More specifically,

the proximal extension minimizes the sum of two non-smooth functions, f1, f2 ∈ Γ0(E) (with

dom f1 ∩ dom f2 6= ∅, to guarantee the feasibility), plus a deviation term that represents the

distance to a reference point, 1
2‖· − r‖2. Thus, the resultant problem is:

min
x∈E

{1
2‖x− r‖2 + f1(x) + f2(x)

}
, (2.16)

which is the same as Problem (2.4) given in Proposition 2.5 as an alternative definition of ProxOp

(although, for consistency with the previous problems, x is replaced by r, and the minimization

variable is x instead of x̂), and hence its unique solution is precisely proxf1+f2
(r). The method

is described in Algorithm 2.10, where the sequence x[t] converges weakly to the solution of

Problem (2.16).

The previous algorithm can be extended to the case of more than two functions. More specif-

ically, for f1, . . . , fm ∈ Γ0(E) with dom f1 ∩ · · · ∩ dom fm 6= ∅, the problem is to compute

prox∑m
m=1 fm (r), that is, to solve:

min
x∈E

{
1
2‖x− r‖2 +

m∑

m=1
fm(x)

}
. (2.17)

This problem can be tackled using the Parallel Proximal Dykstra (PPD) algorithm of Combettes

[2009]. This algorithm is based on reformulating Problem (2.17) into a two-functions problem
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Proximal Dykstra Algorithm

Input: f1, f2 ∈ Γ0(E) ; r ∈ E ;

Output: x[t+1] ' arg minx∈E
{ 1

2‖x− r‖2 + f1(x) + f2(x)
}

;

1: x[0] ← r ; p[0] ← 0 ; q[0] ← 0 ;

2: for t = 0, 1, . . . do

3: y[t] ← proxf2 (x[t] + p[t]) ;

4: p[t+1] ← x[t] + p[t] − y[t] ;

5: x[t+1] ← proxf1 (y[t] + q[t]) ;

6: q[t+1] ← y[t] + q[t] − x[t+1] ;

7: end for

Algorithm 2.10: Proximal Dykstra algorithm for computing the ProxOp of the sum
of two non-smooth functions. The sequence x[t+1] converges to the minimum of

Problem (2.16).

but in the m-fold product space:

E = E× · · · × E

where x ∈ E has the structure x = (x1, . . . ,xm) with xm ∈ E for m = 1, . . . ,m (this technique

was originally introduced by Pierra [1976]). In particular, Problem (2.17) is equivalent to:





min
x∈E

{
1

2m

m∑

m=1
‖xm − r‖2 +

m∑

m=1
fm(xm)

}

s.t. x1 = · · · = xm

≡





min
x∈E

{
1

2m
‖x− r‖2 +

m∑

m=1
fm(xm)

}

s.t. x1 = · · · = xm

≡





min
x∈E

{
1
2‖x− r‖2 +

m∑

m=1
mfm(xm)

}

s.t. x1 = · · · = xm ,

(2.18)

where r = (r, . . . , r) ∈ E is just the reference r repeated m times. Defining D as the set in which

all the components xm are equal, D =
{

(x, . . . ,x) ∈ E | x ∈ E
}

, Problem (2.18) becomes:

min
x∈E

{
1
2‖x− r‖2 +

m∑

m=1
mfm(xm) + ι{D}(x)

}
. (2.19)

Therefore, Problem (2.19) is the ProxOp of the sum of two non-smooth functions, namely f1 and

f2, and thus classical PD can be applied: the first function of the recast problem is the indicator
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function of D , which guarantees that all the sets of variables keep equal:

f1 = ι{D} ,

and the second function is the sum of the original functions multiplied by m, but each of them

applied to a different set of variables:

f2 = mf1(x1) + · · ·+ mfm(xm) .

Moreover, the ProxOp of f1 is the projection over D (as explained in Section A.1.3), which

consists simply in taking averages:

proxf1
(x) =

( m∑

m=1
xm, . . . ,

m∑

m=1
xm
)>

,

whereas using Proposition 2.6 the ProxOp of f2 is:

proxf2
(x) =

(
proxmf1

(x1), . . . ,proxmfm
(xm)

)>
,

Finally, the original PD algorithm is applied over these two functions, resulting into the proce-

dure summarized in Algorithm 2.11. It is worth noting that, for arriving from Algorithm 2.10

to Algorithm 2.11 (which is formulated according to Combettes and Wajs [2005]), some sim-

plifications have been done: (i) the term q is not needed any more because it disappears when

applying the ProxOp of f1, as the average of its components is always zero; (ii) the variable z in

the new algorithm is equal to x + p in the old one; and (iii) the variable p in the new algorithm

is equal to y in the old one.

2.6 Conclusions

This chapter has reviewed the basic concepts of convex optimization with the aim of summariz-

ing the main results in the field of Proximal Methods (PMs), a powerful framework that allows

to solve convex optimization problems in the case of non-differentiable objective functions.

These methods are based on the concept of subdifferential, which is a generalization of the

gradient of a smooth function. More specifically, they substitute the gradient descent step of the

first-order gradient-based methods by the application of the Proximity Operator (ProxOp). This

operator generalizes the projection operator, but it can also be interpreted as a step to minimize

locally a (non-differentiable) function.

The most simple PM is based on iterating the ProxOp of the function to be minimized and

it is known as the Proximal Point (PP) algorithm. Nevertheless, since the ProxOp of general
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Parallel Proximal Dykstra Algorithm

Input: f1, . . . , fm ∈ Γ0(E) ; r ∈ E ;

Output: x[t+1] ' arg minx∈E
{ 1

2‖x− r‖2 +
∑m

m=1 fm(x)
}

;

1: x[0] ← r ; z[0]
1 ← x[0] ; . . . ; z[0]

m ← x[0] ;

2: for t = 0, 1, . . . do

3: for m = 1, . . . ,m do

4: p[t]
m ← proxmfm (z[t]

m) ;

5: end for

6: x[t+1] ← 1
m

∑m
m=1 p[t]

m ;

7: for m = 1, . . . ,m do

8: z[t+1]
m ← x[t+1] + z[t]

m − p[t]
m ;

9: end for

10: end for

Algorithm 2.11: Parallel Proximal Dykstra algorithm for computing the ProxOp of
the sum of m non-smooth functions. The sequence x[t+1] converges to the minimum

of Problem (2.17).

functions can be hard to compute, several other methods have been proposed to take advantage

of the structure of the problem:

(i) The Forward–Backward Splitting (FBS) algorithm, the Iterative Shrinkage–Thresholding

Algorithm (ISTA) and the Fast Iterative Shrinkage–Thresholding Algorithm (FISTA), that

aim to minimize the sum of a smooth and a non-smooth functions (using the gradient of

the first one and the ProxOp of the second one).

(ii) The Douglas–Rachford (DR) algorithm that allows to minimize the sum of two non-

smooth functions.

(iii) Proximal Dykstra (PD), a method to compute the ProxOp of the sum of two functions

using the ProxOp of each component independently. Furthermore, the ProxOp of the sum

of more than two functions can be solved using a parallel variant of PD, namely Parallel

Proximal Dykstra (PPD).

The PMs are one of the basis of the remaining of this thesis, in particular for training regularized

linear models in Chapters 3 and 4 and for solving matrix nearness problems in Chapter 5.





Chapter 3

Sparse Linear Regression

In this chapter several linear regression models are reviewed under a common framework of

regularization. All of these models can be easily trained using Proximal Methods (except those

with a closed-form solution), in particular the Fast Iterative Shrinkage–Thresholding Algorithm,

once their objective functions have been split into a smooth and a non-smooth terms. Such a

proper split is thus specified. These linear models are also applied to a real-life problem: the

forecast of wind energy production, where they provide a good performance and, in the case of

sparse models, information about which are the relevant features.

The chapter starts with an introduction to regularized learning in Section 3.1, followed by the

review of classical and sparse linear regression models in Sections 3.2 and 3.3, respectively.

Section 3.4 forms the experimental part for wind energy production forecast, and finally some

conclusions are given in Section 3.5.

3.1 Introduction: Regularized Learning

Regularization usually denotes the set of techniques that attempt to improve the estimates by

biasing them away from their sample-based values towards values that are deemed to be more

“physically plausible” [Friedman, 1989]. In this way, the variance of the model is reduced to the

expense of a potentially higher bias.

39
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In particular, a regularized model can be interpreted as a model whose objective function F is

separated into two different terms:

F = E + γR .

The main term of the objective function is an error term E . This term represents how well

the model fits the training data Dtr. Usual choices for E are the Mean Squared Error (MSE)

for regression problems and the likelihood or, for convenience, the logarithm of the likelihood

(namely the log-likelihood) for classification problems. Minimizing only this term implies that

the model will adapt to Dtr as much as its flexibility allows. Therefore, if the model is very

complex (in the sense that its complexity is very high, which usually means that it is defined

with a large number of free parameters) compared to the size of Dtr, then the model will start to

memorize the training data, including the possible observation noise, instead of learning just the

underlying relationship between the inputs and the outputs. This effect is known as over-fitting,

and usually it entails a bad predicting performance over the test data.

The additional term is a regularization term R , which in general measures the complexity of

the model. It has several purposes. It helps to avoid over-fitting as the complexity of the model

is also penalized; thus a simpler model will be preferred over a more complex one. This term

can also be used to introduce some prior knowledge about the ground truth of the problem.

Finally, certain desirable properties can be enforced with special choices of R , such as sparsity,

piece-wise constancy, smoothness...

The parameter γ is a regularization parameter. It is responsible for the balance between the

accuracy of the model and its complexity, or the classical balance between bias and variance

[Geman et al., 1992]. If γ is very small, then the model will tend to over-fit the data, whereas if

γ is very big, then the model will tend to under-fitting (the model will be too simple to capture

the nature of the data). Consequently, a good choice of the regularization parameter is critical

for the performance of the model.

Notation

The training data Dtr is composed by a sequence of input patterns {x(p)}np=1, with x(p) ∈ Rd,

and the corresponding sequence of outputs {y(p)}np=1, with y(p) ∈ R. For convenience, the train-

ing input patterns are collected into a matrix X ∈ Rn×d, where the p-th row corresponds to the

pattern (x(p))>, and the training outputs into a vector y ∈ Rn, were the p-th entry corresponds

to y(p). The vector of weights of a linear model is denoted by w ∈ Rd.
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3.2 Classical Linear Models

Linear models are a branch of conceptually very simple models in which the output is estimated

as a weighted linear combination of the inputs. In particular, these models are defined by a

weighting vector w ∈ Rd, where d is the dimension of the input problem (the number of fea-

tures). Without loss of generality, these models are considered without intercept term, but they

can be easily extended as discussed in Section A.3.

In the case of regression problems, the predicted output for an input vector x ∈ Rd is directly the

linear combination of the inputs, ŷ = x·w. As stated above, the model is trained by attaining the

parameters w that minimize a certain objective function, which in this context usually involves

the MSE. This term can be expressed, using matrix notation, as:

Emse(w; Dtr) = 1
2n
‖Xw− y‖22 , (3.1)

where 1
n is a normalization constant that seeks to make this term independent on the number of

patterns. The MSE term is convex and differentiable, and its gradient is continuous and Lipschitz

with constant β:

∇wEmse(w; Dtr) = 1
n

(
X>Xw−X>y

)
. (3.2)

The Lipschitz constant β is given by the largest eigenvalue of 1
nX>X (the empirical covariance

matrix).

For binary classification problems, the model outputs can be transformed into a conditional

probability using a sigmoid function over the weighted linear combination of the inputs:

p(y = 1 | x) = π(x) = 1
1 + e−x·w .

Thus the probability of the class 0 is

p(y = 0 | x) = 1− π(x) = π(−x) .

In this framework, the error term E is usually taken as the minus log-likelihood over Dtr:

Emll(w; Dtr) = −1
n

n∑

p=1
(y(p) log π(x(p)) + (1− y(p)) log π(−x(p)))

= −1
n

n∑

p=1
(y(p)w · x(p) + log π(−x(p))) , (3.3)
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which is again normalized by the number of patterns. This function is also differentiable and

convex, and its gradient is:

∇wEmll(w; Dtr) = −1
n

n∑

p=1
x(p)(y(p) − π(x(p))) . (3.4)

The models discussed next are all linear models which only differ on the regularization term

R . For convenience, they are described for regression problems, but they can be defined also

for classification tasks, using the corresponding error term of Equation (3.3) and the gradient in

Equation (3.4).

3.2.1 Ordinary Least Squares

The first approach to solve the supervised problem is by using a linear model which just min-

imizes the training error; this is known as Ordinary Least Squares (OLS) when dealing with

regression tasks(i). This model has no restrictions on its complexity, and therefore its perfor-

mance will have a strong dependence on the relation between the number of free parameters d
(which is just the number of features) and the number of training samples n. If n is small with

respect to d, then the model will suffer from over-fitting. On the other hand, when d is small the

expressivity of the model will be limited, and if the underlying model is complex then the linear

model will under-fit it.

The objective function for this model is thus the MSE of Equation (3.1), F (w) = Emse(w; Dtr),

and the model is defined by the problem:

min
w∈Rd

{ 1
2n
‖Xw− y‖22

}
.

The gradient of the objective function is given by Equation (3.2). Making this expression equal

to zero, the optimum weights turn out to be:

wop =
(
X>X

)−1
X>y .

In the above expression the inverse is not well defined when the empirical covariance matrix of

the input features is not full rank. In this case, there exists a complete subspace of solutions to the

problem. In practice, this inverse is usually computed using the Singular Value Decomposition

(SVD). This SVD-based pseudo-inverse provides the weights with the minimum norm among

the entire solution subspace.
(i)In the classification case, the corresponding model is called Logistic Regression (LR).
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3.2.2 Regularized Least Squares

A first approach to alleviate the over-fitting of OLS consists in adding an `2 regularization

term, which penalizes the Euclidean norm of the weights as R (w) = 1
2d‖w‖

2
2 (also known

as Tikhonov regularization). The resultant model is called Regularized Least Squares (RLS), or,

alternatively, Ridge Regression.

The corresponding optimization problem is:

min
w∈Rd

{ 1
2n
‖Xw− y‖22 + γ

2d
‖w‖22

}
.

This problem has a closed-form solution, which is given by:

wop =
(

X>X + γn
d

I
)−1

X>y , (3.5)

where I ∈ Rd×d denotes the identity matrix.

From Equation (3.5) it is clear that the RLS solution tends to the OLS one as the regularization

parameter goes to zero, and also that when γ goes to ∞, the solution tends to 0. Essentially,

what the Tikhonov regularization is doing is to shrink the coefficients. In fact, when the features

are orthonormal (that is, X>X = I), the weights of RLS are just a shrinkage of those of OLS:

wop
RLS = 1

1 + γn
d

wop
OLS .

This behaviour is illustrated by Figure 3.1a for the general case, where the Proximity Operator

(ProxOp) of the `2 norm (which is derived in Section A.1.2) is applied with different steps to an

initial point; if RLS were solved using a Proximal Method (PM), a shrinkage step would follow

every gradient descent step, pushing the weights towards zero with a strength determined by γ.

Moreover, if γ > 0 then the matrix inverted in Equation (3.5) is positive definite, and therefore

there is uniqueness on the solution.

3.3 Sparse Linear Models

Some linear models are designed using a regularization term with a double goal: to avoid over-

fitting and also to impose a desired structure on the vector of weights w. In particular, the

following models induce sparsity, making zero some of the coefficients of w.
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Figure 3.1: Comparative between the ProxOps of the `2 and the `1 norms (in gray)
applied to the initial point (in black), using 30 equally spaced steps δ from 0 to 10.

3.3.1 Lasso and Elastic–Network Models

The Lasso (LA) model was designed by Tibshirani [1996] as a shrinkage and selection method

for linear regression. In its original formulation, the model was defined as the solution of the

following optimization problem:

min
w∈Rd

{ 1
2n
‖Xw− y‖22

}
s.t. ‖w‖1 ≤ s , (3.6)

where the bound s is a tuning parameter. An alternative formulation for this model is to use an

`1 regularizer, R (w) = 1
d‖w‖1. Thus, the optimization problem becomes:

min
w∈Rd

{ 1
2n
‖Xw− y‖22 + γ

d
‖w‖1

}
. (3.7)

It can be shown that every solution of Problem (3.6) is also a solution of Problem (3.7) for some

γ (this result is included in Figueiredo et al. [2007], that remits to Theorem 27.4 of Rockafellar

[1996]).

This kind of regularizer enforces sparse solutions as illustrated in Figure 3.2, hence some of the

weights wn will be identically zero (the application, with different steps, of the ProxOp of the

`1 norm in Figure 3.1b shows this effect and illustrates the differences with the `2 regularizer).

For the particular case of orthonormal features, the weights of LA can be obtained applying the

soft-thresholding (defined in Section A.1.1) to the weights of OLS:

wop
LA = soft γ

d

(
wop

OLS
)
.
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Figure 3.2: Example of the weights for a LA model. Some of the coefficients are
identically zero, and therefore the corresponding features are discarded.

More details on the comparative between RLS and LA can be found in Hastie et al. [2001].

Furthermore, the sparsity can be interpreted as an implicit feature selection, as the final model

ignores all the inputs that correspond to zero coefficients.

For both formulations, the resultant Problems (3.6) and (3.7) are non-differentiable, which pre-

vents them from being solvable by standard gradient-based methods. In the case of the original

formulation of Problem (3.6), the Least Angle Regression (LARS) algorithm of Efron et al.

[2004] provides an efficient way of computing the solution for all the possible values of s ex-

ploiting the special structure of the problem. On the other side, the regularized optimization

Problem (3.7) fits nicely in the framework of PMs; in particular it can be solved using the Fast

Iterative Shrinkage–Thresholding Algorithm (FISTA), the algorithm explained in Section 2.5.4.

In order to apply this method, the objective function has to be split into a smooth term fsm and a

non-smooth one fnsm. In this case, these two terms coincide with the error and the regularization

terms:

min
w∈Rd

{ 1
2n
‖Xw− y‖22

︸ ︷︷ ︸
fsm(w)

+ γ

d
‖w‖1

︸ ︷︷ ︸
fnsm(w)

}
. (3.8)

Since the gradient of fsm(w) = Emse(w; Dtr) is given by Equation (3.2) and its Lipschitz con-

stant can be computed, the algorithm can be applied straightforwardly once the ProxOp of fnsm

is known, but in this case it is the ProxOp of the `1 norm, which is just the soft-thresholding of

Section A.1.1 applied element-wise:

softδ (w) =




sgn (w1) [|w1| − δ]+
sgn (w2) [|w2| − δ]+

...

sgn (wd) [|wd| − δ]+




.

Therefore, the LA model relies on the `1 regularization, whereas RLS is based on the `2 penal-

ization. Depending on the nature of the particular problem at hand, the performance of one of

those terms will dominate. Thus, a natural extension of the LA model consists in adding an `2
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regularization term, so the advantages of both models can be combined. The Elastic–Network

(ENet) model [Zou and Hastie, 2005] uses precisely such a regularizer, R (w) = 1
d‖w‖1 +

γ0
2d‖w‖

2
2, where γ0 is a parameter to balance between the `1 and the `2 regularizers. With the

general regularization parameter, the expression becomes γR (w) = γ1
d ‖w‖1 + γ2

2d‖w‖
2
2 (where

γ1 = γ and γ2 = γγ0 are the two regularization parameters of the model). Hence, the complete

optimization problem for ENet is:

min
w∈Rd

{ 1
2n
‖Xw− y‖22 + γ1

d
‖w‖1 + γ2

2d
‖w‖22

}
. (3.9)

This problem is, as the LA one, non-differentiable due to the absolute values of the `1 norm. Fol-

lowing the same philosophy, FISTA can be applied once the objective function of Problem (3.9)

has been separated into its fsm and fnsm terms. As the `2 norm is differentiable, it can be included

into the fsm term, and therefore fnsm is the same as in Problem (3.8):

min
w∈Rd

{ 1
2n
‖Xw− y‖22 + γ2

2d
‖w‖22

︸ ︷︷ ︸
fsm(w)

+ γ1
d
‖w‖1

︸ ︷︷ ︸
fnsm(w)

}
.

Consequently, the previous gradient of fsm(w) is slightly modified with a weight decay term:

∇wfsm(w) = 1
n

(
X>Xw−X>y

)
+ γ2

d
w , (3.10)

and the ProxOp of fnsm is still the soft-thresholding.

3.3.2 Group Lasso and Group Elastic–Network

The methods proposed previously do not consider any possible group structure on the problem

features and, therefore, the resulting models will not reflect it even if it may be present. Each

feature is treated independently, and it will be active or inactive without taking into account any

relationship with other features. However, the pattern features have such a structure in some

situations. In particular, in some context x can be seen as a collection of multidimensional

features, that is, x is composed by d = dg ·dv components that come in dg groups of dv features

each:

x =
( x1︷ ︸︸ ︷
x1,1, x1,2, . . . , x1,dv ,

x2︷ ︸︸ ︷
x2,1, x2,2, . . . , x2,dv , . . .

xdg︷ ︸︸ ︷
xdg,1, xdg,2, . . . , xdg,dv

)>
. (3.11)

The first subscript in xn,v indicates the group (or the multidimensional feature) and the second

subscript the feature or variable inside the group. Therefore, x is decomposed in dg blocks

xn ∈ Rdv , for n = 1, . . . , dg, each one with dv variables.
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In this framework, the behaviour of the weights should reflect this structure. In particular, and

looking for a similar effect to the one of LA, all the coefficients of a particular group should

be zero, or non-zero, at the same time, so the sparsity is achieved at the group level (a multi-

dimensional feature is considered as irrelevant or relevant as a whole, and not each component

independently as in the traditional LA model). This behaviour is obtained using a regularization

based on the `2,1 norm, which is defined, for a vector w with the structure of Equation (3.11), as

‖w‖2,1 =
dg∑

n=1
‖wn‖2 =

dg∑

n=1

√√√√
dv∑

v=1
w2
n,v .

This is just the `1 norm of the `2 norms of the groups of features. Hence, it induces sparsity

over the groups (the `2 norm of some groups will be identically zero, and therefore all the

components of that group will be inactive). The Group Lasso (GL) model [Yuan and Lin, 2006]

is defined using as regularization term the `2,1 norm of the weights, R (w) = 1
d‖w‖2,1. In this

way, GL models are sparse over the groups of variables, as illustrated in Figure 3.3. Thus, the

optimization problem to train this model is:

min
w∈Rd

{ 1
2n
‖Xw− y‖22

︸ ︷︷ ︸
fsm(w)

+ γ

d
‖w‖2,1

︸ ︷︷ ︸
fnsm(w)

}
.

This problem is also non-differentiable due to the presence of the `2,1 norm, but FISTA can

be applied using as the smooth part the error term, fsm(w) = Emse(w; Dtr), and as the non-

smooth one the regularizer fnsm(w) = γ1
d ‖w‖2,1. The gradient of fsm(w) is again given by

Equation (3.2), whereas the ProxOp of fnsm(w) is the group soft-thresholding of Section A.1.2

applied over each group, namely:

gsoftδ (w) =




w1
[
1− δ

‖w1‖2

]
+

w2
[
1− δ

‖w2‖2

]
+

...

wdg

[
1− δ

‖wdg‖2

]

+




.

In order to take advantage of the `2 regularizer, the GL model can be extended following the

same philosophy as for ENet. In particular, the regularization term is modified to R (w) =
1
d‖w‖2,1 + γ0

2d‖w‖
2
2. The resultant model is called Group Elastic–Network (GENet), whose

corresponding optimization problem is:

min
w∈Rd

{ 1
2n
‖Xw− y‖22 + γ1

d
‖w‖2,1 + γ2

2d
‖w‖22

}
,

where again the regularization parameters are renamed as γ1 = γ and γ2 = γγ0. The separation

needed to apply FISTA is analogue to that of ENet. For fsm, the `2 regularizer is mixed with the
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1 2 3 4 5 6 7 8 9 10

Feature

GL Weights

Figure 3.3: Example of the weights for a GL model. The two components corre-
sponding to the same group are represented by a vector, which is either equal to zero

or both components are different from zero.

error term, whereas fnsm is the `2,1 norm:

min
w∈Rd

{ 1
2n
‖Xw− y‖22 + γ2

2d
‖w‖22

︸ ︷︷ ︸
fsm(w)

+ γ1
d
‖w‖2,1

︸ ︷︷ ︸
fnsm(w)

}
.

The gradient of fsm is given in Equation (3.10), and the ProxOp of fnsm is the group soft-

thresholding.

As an illustration, Figure 3.4 shows the unitary ball in R3 for the four different norms involved

in the previous regularizers, in order to illustrate their different behaviours:

• Figure 3.4a: `2 norm, ‖w‖2 =
√
w2

1 + w2
2 + w2

3. The ball is the standard (Euclidean)

ball.

• Figure 3.4b: `1 norm, ‖w‖1 = |w1|+ |w2|+ |w3| The ball is an octahedron.

• Figure 3.4c: `1 + `2 norm, ‖w‖1+‖w‖2
2 = 1

2(|w1|+ |w2|+ |w3|) + 1
2

√
w2

1 + w2
2 + w2

3.

The resultant ball is in between the `1 and the `2 balls.

• Figure 3.4d: `2,1 norm (in this particular case, for two groups of different size), ‖w‖2,1 =√
w2

1 + w2
2 + |w3|. The `2,1 norm is similar to the `2 norm when w3 is fixed, whereas it

behaves as the `1 norm when either w1 or w2 are constant.

3.4 Wind Energy Forecast

This section describes the application of the sparse linear regression models to the forecast and

analysis of wind energy production. These models fit nicely in this context, because (i) the

feature dimension can be very large compared to the number of patterns, making mandatory the

use of regularizers; (ii) it is a problem that involves high correlation between the features, so an

implicit selection of them is convenient; and (iii) the sparse models are more interpretable than

other more sophisticated approaches, as they also highlight the relevant features.
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Figure 3.4: Illustration of a ball in R3 under the different norms used in the linear
models.

3.4.1 Motivation

Weather related research is receiving nowadays a growing degree of attention. Climate change

is an obvious topic of research (and concern); another important issue is the management of

renewable energies, particularly those such as wind and solar energy that are not easily stored.

This difficulty can only be compensated by adequate planning which, in turn, requires accurate

enough forecasting methods. It is known that Machine Learning (ML) methods can be very

useful to provide accurate predictions of the produced energy. Usually, these approaches use as

main predictive variables the forecasts of Numerical Weather Prediction (NWP) systems, such

as the European Center for Medium-Range Weather Forecast (ECMWF) [ECMWF, 2014] or

the Global Forecasting System (GFS) [GFS, 2014].

An area of interest is, therefore, the application of ML models to transform NWP forecasts into

actual energy production forecasts [Monteiro et al., 2009]. However, the large dimensionality of

NWP predictions makes mandatory to precede ML model building with either dimensionality

reduction techniques or, alternatively, the use of sparsity-inducing models. One such problem

is addressed in this section to illustrate the sparse linear regression models: globally predicting

the wind energy production over a very large area, namely, that of peninsular Spain, which

is among the world leaders in both absolute and relative wind energy penetration. This high

penetration level makes it critical to provide accurate predictions of wind energy, both to meet

the daily energy market requirements and to enable the electricity system operator to operate the

electrical system as efficiently and reliably as possible.

A first approach to this problem would be to predict the individual output of each individual

wind farm and then to aggregate these estimations. This is a quite sensible approach, which can

result in obtaining an aggregate global prediction more accurate than that of individual farms,

particularly if the individual farm outputs are fairly uncorrelated (something that is not always

true, as wind farms are clustered about those regions with larger wind readings). However, at its

extreme, this approach implies building a model for each of the wind farms in the entire country,
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which in turn would require very specific and detailed energy production information from each

of them, as well as a high degree of information synchronization that, while certainly feasible,

may also be quite difficult and costly. Therefore, the alternative considered in what follows is

the prediction of a single global wind energy value.

The usual procedure for the application of ML methods is to use historical wind energy pro-

duction data and NWPs to build models that will be able to predict wind energy from NWP

forecasts for days to follow. As stated above, one important issue is the handling of the very

large dimensionality of NWP forecasts. Usually data points are provided in the form of a lattice

with a spatial resolution that are between 0.5 and 0.05 degrees, which results in grids composed

by between 500 and 50, 000 nodes for the Iberian Peninsula. Furthermore, a number of pre-

dicted meteorological variables are provided for each of those points, also possibly including

information at different pressure layers. This supposes that the dimensionality is, in the best

case, of the same order of magnitude that the number of patterns, well below the standard rule

of thumb for linear regression of having at least 10 patterns per free parameter.

One effective way to alleviate this is by using some of the prior knowledge about the problem,

in particular that the actual wind productions are mainly influenced by those NWP features

corresponding to data points close to farms themselves. However, the spatial location of all of

the wind farms within a country is not always readily available, and this information can vary as

new farms are incorporated into the system. A more practical alternative is the use of automated

methods to pick those grid nodes and/or features most useful for global wind power prediction,

discarding the rest. Therefore, a sensible approach is to use NWP data over all the considered

area (in this particular case, an enlarged region around the Iberian Peninsula) but to work with

sparsity-inducing models, which is the approach described next.

3.4.2 Experimental Framework

The following experiment employs the NWP forecasts of the ECMWF. Initially, data points are

provided in the form of a lattice with a spatial resolution of 0.5 degrees, which results in a grid

of 18×29 = 522 nodes for the Iberian Peninsula. Eight meteorological variables per node were

included, and just a single layer of forecasts. Still, this data set results in NWP patterns with

522 ·8 = 4, 176 features. This has to be compared to the number of samples available: ECMWF

forecasts are given at three-hour intervals and a whole year of data is used as training set for this

study (a year allows to have samples of all the seasons). The number of available patterns is thus

8 · 365 = 2, 920, that is, smaller than pattern dimension, justifying the use of the sparse models.

In more detail, the features were composed by eight meteorological variables, which are the

ECMWF forecasts specified in Table 3.1. Each one of these variables is taken over each one
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Meteorological Variables

Variable Description

V Norm of the wind speed at surface level.
Vx First component of V .
Vy Second component of V .
V h Norm of the wind speed at 100 metres high.
V h

x First component of V h.
V h

y Second component of V h.
P Pressure.
T Temperature.

Table 3.1: Meteorological variables used in the forecast of wind energy.
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Figure 3.5: Wind energy production for a 10 day period. The marked points repre-
sent hours with ECMWF forecasts (every three hours).

of the points of a 0.5◦ grid that contains 522 nodes with longitudes in the interval [−9.5◦, 4.5◦]
(that makes a total of 29 “columns”) and latitudes in the interval [35.5◦, 44.0◦] (with 18 “rows”).

The meteorological variables are normalized to have 0 mean and a standard deviation of 1.

Each ECMWF forecast for the entire grid corresponds to a sample pattern, which had as its

target value the corresponding wind energy production; these productions are provided by Red

Eléctrica de España (REE), Spain’s TSO. The targets are normalized to the interval
[
0, 1
]

as a

rate of the overall installed wind power of Spain (currently about 23 GW). Figure 3.5 gives an

example of a 10 day evolution of the wind energy target, which is a rather smooth temporal series

but that can change relatively fast, and which does not seem to have any particular structure.

Although the meteorological data are available for a large geographical area, it is also obvious

that only some grid points will be close to wind farms. A very natural approach to the problem of

feature selection is to select just the grid points closest to individual wind farms or, alternatively,

a number of grid points more or less centred at each farm. For example, the maps shown in

Figure 3.6 illustrate two different approaches: the first one considers a set of grid points that
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Figure 3.6: Selected meteorological points for the large and small grids.

approximately covers all the area where there are wind farms (large grid selection) and the

second one is a subsample of the previous one, where every subgrid of 9 points is replaced

just by its centre (small grid selection). Of course, this procedure requires structural knowledge

about the farms, which must be very precise and, at least in countries with a growing wind

energy infrastructure, has to be updated quite often. Another possible drawback is to rely too

much on the implicit assumption that the only relevant grid points are those close to actual wind

farm location, which may not always be optimal.

In fact, a preliminary measure of the relevance of individual points is the absolute correlation

between wind speeds (reasonably the most important input variables) and wind energy produc-

tion. As shown in Figures 3.7c and 3.7d, there are grid points over the Mediterranean sea far

away from any wind farm whose wind speeds have nevertheless a relatively high correlation

with wind energy.

The data used in this simulation correspond to a two year period, in particular to 2011 and 2012.

Since meteorological forecasts are only available every three hours, there are only eight NWP

patterns per day. In order to define the training and testing sets, two different approaches are

used. The first one is to compute a global model using as training set all the data from the first

year, and then apply it to the full second year as a test set. The errors corresponding to this

approach can help to estimate the robustness of the models, in other words, how good it remains

over time. The second approach is a sliding model, where a new model is computed every month

using the previous 12 months for training and the next month for test. In other words, 12 train-

test pairs are considered and once a model is built, it is applied over the daily NWP forecasts for

the test month. As explained below, both models use a single cross validation over the first year

to estimate the hyper-parameters.
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Figure 3.7: Average values of the wind speed variables and absolute correlations
between them and the global energy production.

The models are evaluated using two measures for each framework (global and monthly models).

The first error is just the Mean Absolute Error (MAE):

Emae(w) = 1
nte

nte∑

p=1
|x(p) ·w + b− y(p)| , (3.12)

and the second error is the Relative Mean Absolute Error (RMAE),

Ermae(w) = 1
nte

nte∑

p=1

|x(p) ·w + b− y(p)|
|y(p)|

. (3.13)

Thus there are four error measures for each algorithm, namely the global errors MAEG and

RMAEG and the monthly errors MAEM and RMAEM.

In this case, the models are not homogeneous (hence the term b appears in Equations (3.12)

and (3.13); the extension is described in Section A.3), so as not to lose the scale of the outputs

as a rate of the installed power.
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Models Applied toWind Energy Forecast

Acronym Description

OLS Ordinary Least Squares.
RLS Regularized Least Squares.
LA Lasso.

RLSLA Regularized Least Squares over Lasso.
GL Group Lasso.

RLSGL Regularized Least Squares over Group Lasso.
ENet Elastic–Network.

GENet Group Elastic–Network.
RLSLG Regularized Least Squares over Large Grid.
RLSSG Regularized Least Squares over Small Grid.

Table 3.2: Models applied.

3.4.3 Models and Hyper-Parameters

The models used are described in Table 3.2. They can be divided in three groups:

(i) The standard models: OLS, RLS, LA, GL, ENet and GENet. The first two models are for

reference (RLS is a regularized model only focused on the error), whereas the last four

models should provide also interpretable models and, hopefully, an intrinsic selection of

relevant features (LA and ENet) and grid points (GL and GENet).

(ii) Two approaches based on expert knowledge of the problem: Regularized Least Squares

over Small Grid (RLSSG) and Regularized Least Squares over Large Grid (RLSLG), as

reference of models based on expert knowledge.

(iii) Two hierarchical models consisting in building an RLS model over the features selected

by LA and GL: Regularized Least Squares over Lasso (RLSLA) and Regularized Least

Squares over Group Lasso (RLSGL). These models should combine the intrinsic feature

selection of the sparse models with the advantages of an error-based model like RLS.

An important issue for most of the previous models is the estimation of the hyper-parameters

γ, γ1 and γ2 that weight the penalties. The simplest approach to this estimation is by searching

over a grid which defines a quantized version of the parameter space, working in both cases on a

logarithmic scale that varies from 10−3 to 103 in steps of 100.25. At each point of this parameter

grid, a given model is evaluated by 5-fold cross validation over the training set, using as fitness

the MAE.

This hyper-parameter search is done only once for both global and monthly models using for

this the first year data (which is the training set for the global models and for the first monthly

models); therefore, the selected γ, γ1 and γ2 parameters are the same for both the global and

monthly models. Moreover, in order to force sparseness when an `1 or `2,1 penalty is used, in the

hyper-parameters search those models with more than 35% of active components are discarded
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Parameters of Simulations

Model AWG AWM log10 γ log10 γ1 log10 γ2

RLSLG 42.5% 42.5% +2.00 × ×
RLSGL 26.6% 27.0% +1.75 × ×
ENet 33.4% 34.8% × −0.25 +1.00
LA 28.8% 31.6% −0.25 × ×
RLSSG 14.2% 14.2% +1.00 × ×
RLS 100.0% 100.0% +2.50 × ×
RLSLA 28.8% 31.6% +1.75 × ×
GL 26.6% 27.0% +0.75 × ×
GENet 28.2% 29.2% × +0.75 +1.50
OLS 100.0% 100.0% × × ×

Table 3.3: Parameters of the simulations, ordered by global rank, and corresponding
induced sparsity levels.

(a sparsity level between those of RLSSG and RLSLG). Nevertheless, the resulting ratios of

active weights are slightly smaller to 35% because, in order to save computational time, the

convergence criterion used for the final models is more strict than those for the hyper-parameter

searches, and thus it enforces a higher sparsity. The obtained parameters together with the

induced sparsity levels are included in Table 3.3.

3.4.4 Numerical Results

Table 3.4 shows the results of the described experiments. Using the four measures specified

above, the different models are ordered combining the rankings obtained for each one of these

measures. Having two models with the same rank indicates that there is no significant difference

between the means(ii). The testing performances of the different models are rather similar except

for OLS. The best algorithm for this problem, according to the global rank, is RLSLG, (RLS over

the large wind farm grid), although RLSGL (RLS over the features selected by GL) performs

essentially as well (with a tie in three of the four measures). ENet and LA follow closely, and

then the rest of the models. As expected given the similar orders of magnitude of sample size

and dimension, the unregularized linear regression OLS performs very badly due to a clear case

of over-fitting. Therefore, RLSGL is only beaten by a model that needs structural information

about the problem; this indicates that the implicit feature selection of GL is almost as precise

as the available expert knowledge. Moreover, the complexity of this two-step model can be

avoided by using ENet, which has very similar results thanks to its double `1/`2 penalization.

Finally, the errors show that all the models are quite stable, since the global models perform

only slightly worse than the monthly ones.
(ii)Using a Wilcoxon signed rank test for zero median, with a significance level of 5%.
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Results of Simulations

Model MAEG (%) RMAEG (%) MAEM (%) RMAEM (%)

RLSLG 3.12±2.8(1) 14.44±17.9(1) 3.06±2.7(1) 14.84±18.4(1)

RLSGL 3.09±2.7(1) 14.55±18.7(1) 3.08±2.7(2) 14.93±18.9(1)

ENet 3.11±2.8(1) 14.60±19.4(1) 3.09±2.7(3) 15.30±20.4(2)

LA 3.11±2.8(1) 14.63±19.3(2) 3.10±2.7(4) 15.36±20.5(4)

RLSSG 3.18±2.8(2) 14.84±18.9(4) 3.13±2.7(5) 15.33±20.1(3)

RLS 3.18±2.8(2) 14.82±18.8(4) 3.15±2.7(5) 15.49±20.2(5)

RLSLA 3.16±2.8(2) 14.87±19.7(5) 3.17±2.7(6) 15.74±20.8(6)

GL 3.23±2.9(3) 14.71±18.5(3) 3.22±2.8(7) 15.51±19.9(6)

GENet 3.23±2.9(4) 14.71±18.6(4) 3.22±2.8(7) 15.53±20.0(6)

OLS 1751.30±1402(5) 9673.18±13514(6) 504.68±866(8) 2817.72±6979(7)

Table 3.4: Results of the simulations, ordered by global rank, as a percentage of the
overall installed wind power.

3.4.5 Feature Selection

Although the sparse models provide a good accuracy in terms of the error, they can be outper-

formed by more sophisticated non-linear models like Support Vector Machines (SVMs) [Cortes

and Vapnik, 1995], although these models are more sensible to the hyper-parameters and they

have to be updated more often. As reference, a monthly model using an SVM attains an er-

ror, over the first month, of MAEM = 2.45%, but the error considering all the test year is

MAEM = 2.92% (the model is updated, but the performance gradually degrades as the initial

hyper-parameters get “older”). Moreover, using just one global model for the whole year gives

an error of MAEG = 3.17%, worse than the best linear models.

Furthermore, these linear models are also interesting due to their interpretability and their intrin-

sic feature selection that can offer more knowledge about the problem at hand. In this case, they

can highlight which are the relevant nodes of the grid for predicting wind energy production.

This is studied next.

3.4.5.1 Location of Weights

It is interesting to identify first where are located the grid points selected (those with a non-zero

weight) by the various sparse models above. Figure 3.8 shows this for the LA, GL, ENet and

GENet global models. For GL and GENet the active weights are the same for all the meteo-

rological variables, so an average of the eight weights is depicted. For LA and ENet only the

weights for the wind speed norm at 100 metres high are displayed, as this variable seems to be

the more informative, as discussed below.

It should be noticed first that the grid points activated by LA and GL are essentially the same

than those of ENet and GENet, respectively. On the other side, the GL and GENet models are
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Figure 3.8: Global weights for four of the models. Redder points represent bigger
absolute weights, whereas bluer points are less active points. Those points with a

zero weight are not depicted.

more structured as they are sub-sampling over the geographical space, in the sense that, due

to the nature of their `2,1 regularizer, they select or discard all the variables of a coordinate

as a whole; thus they can no select more coordinates for a meteorological variable than for

another. Nevertheless, LA and ENet tends to gather all the coefficients in the most informative

variables, as the wind speed norm and the pressure. This is shown in Table 3.5, which displays

the distribution of the weights per meteorological variable; for example, LA selects 240 (5.75%
of 4, 176) features of V h, and just 66 (1.58% of 4, 176) of T . Finally, the four depicted methods

detect relevant points over the Mediterranean Sea. This is more clear for the group variants

as the other two models seem to do some kind of sub-sampling over the whole space. While

slightly surprising because there are obviously no wind farms in the middle of the sea, this is

nevertheless in accordance with the correlation levels depicted in Figure 3.7.
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Sparsity per Variable

Model V Vx Vy V h V h
x V h

y P T Total

LA 4.0 3.3 3.6 5.7 2.5 3.3 4.8 1.6 28.8
GL 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 26.6
ENet 4.8 3.8 4.2 6.6 3.1 3.7 5.5 1.7 33.4
GENet 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 28.2

Table 3.5: Sparsity per variable for the global LA, GL, ENet and GENet models, as
percentage of the total number of features (4, 176). As expected, the group variants
select the same points for every variable, whereas LA and ENet focus mainly on the

wind speed norms and the pressure.

3.4.5.2 Regularization Path

Another way of analysing the most relevant grid points using sparse models is defining a regu-

larization path [Friedman et al., 2010] and showing which features are iteratively selected. This

can be easily done for the LA and GL models, where only one parameter controls the complex-

ity of the model, which for the `1 regularizer is reflected in the number of active features and

for the `2,1 penalization in the number of active groups. It is worth mentioning that the regu-

larization paths are mostly used to determine the optimum regularization parameter; in the next

experiments, on the contrary, they are used as an analytical tool to determine which features,

and in which order, are selected.

Specifically, an initial high enough regularization parameter γ is defined so the resultant models

do not select any grid point, and instead give as trivial solution a constant (input-independent)

model. This parameter is gradually reduced and more features are selected (the lower γ is, the

more complex the model can be). For each parameter at iteration t, γ[t], the optimal solution

using the parameter γ[t−1] of the previous iteration t − 1 is used as the initial point of the

optimization algorithm, speeding up the convergence (this is usually known as warm start).

Global Wind Energy. Figure 3.9 includes the results for 1, 5, 10 and 50 coordinates, applying

LA (using only the meteorological variable V h) and GL (using all the variables) to the prediction

of the global wind energy production. It is worth noting that the real limit of features for GL is

eight times the limit of the LA model, as for each coordinate GL selects eight features, the eight

meteorological variables corresponding to that coordinate.

Both selections are quite similar: they start with a centred point in the regions of highest cor-

relation (somewhere in the Ebro river valley), and then they add some sub-sampled points in

the north of peninsula. With more than 10 points, they select farther points, some of them over

the Mediterranean Sea (first in the south, and finally in the east), conforming a more general

sub-sample. Therefore, the models initially take points with a high correlation that correspond
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Figure 3.9: Regularization paths for LA (using V h) and GL (using all the variables)
for the global wind energy forecast problem. The colours differentiate the moment

of apparition of each point. The last figure shows the evolution of the test error.

to the real distribution of the wind farms, but at some point they start to consider distant points,

probably because these points are still correlated but they are not as redundant as nearer points.

Moreover, Figure 3.9 also shows the evolution of the test errors as a reference of the models

quality. Although the objective of this experiment is not to build good models in terms of the

error, both LA and GL attain acceptable results with just 50 points (around a 9.6% of active

weights).

Single Wind Farm. In order to further illustrate the utility of these regularization paths, the

experiment is repeated for a single wind farm, namely Sotavento [Sotavento, 2014]. This farm

is situated in the Galicia region of north-western Spain (specifically, at 43.34◦N, 7.86◦W), and

it makes production data publicly available. The same experimental set-up and data than in the

previous experiment are used.

The main difference with the forecast of global energy is that there is only one wind farm and

it is well localized over the map, thus it is interesting to compare the grid points selected using

the regularization path with the intuition that the most important points should be those near the

farm.
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Figure 3.10: Regularization paths for LA (using V h) and GL (using all the variables)
for the local wind energy forecast problem. The colours differentiate the moment of
apparition of each point. The triangle indicates the position of the wind farm. The

last figure shows the evolution of the test error.

Figure 3.10 depicts the maps with the different levels of sparsity. A small black triangle marks

the position of the wind farm. Both approaches (LA and GL) select first a point slightly west

of the farm, instead of the nearest one. With 5 points they start to surround the farm and LA

already selects the nearest point, and with 10 points both select that point and they do some

sub-sampling of the north-west, and GL starts to consider farther points in the south. Finally,

for 50 points they sub-sample the entire peninsula, but with a special concentration around the

farm.

It is important to note that these results give more information than the mere position of the farm

(although, in fact, that position can be inferred quite precisely after 1 and 5 points have been

selected). Indeed, the maps reveal that in this case the most informative point is not exactly over

the wind farm, and that, once a proper sub-sample around the farm is done, there is no need to

add more points in that region, and it is better to carry out a more general sub-sample.

As before, Figure 3.10 includes also the test errors over the next year, which are reasonable for

such small percentages of active weights (it is worth mentioning that the problem of predicting

wind energy at a single farm is in general more difficult and implies more error than that of a

global prediction).



Chapter 3. Sparse Linear Regression 61

3.5 Conclusions

This chapter has introduced a very simple characterization of regularized models, based on a

trivial splitting of the objective function in two different terms: an error term which measures

how the model fits the data, and a regularization term which controls the complexity of the

model, its structure and several other desirable properties.

In particular, some classical linear regression models have been revised, namely:

(i) Lasso (LA), which imposes sparsity on the solution through the `1 norm.

(ii) Elastic–Network (ENet), which adds an `2 norm regularizer to the LA model.

(iii) Group Lasso (GL), which considers a group structure, imposing sparsity at group level

thanks to an `2,1 norm penalization.

(iv) Group Elastic–Network (GENet), which extends GL with an `2 penalization.

Furthermore, the optimization problems associated to these models can be solved using the Fast

Iterative Shrinkage–Thresholding Algorithm (FISTA), since a proper splitting of their objective

function, in a smooth term fsm and a non-smooth term fnsm, can be given: in summary, fsm is

composed by the error term plus the `2 regularizer (if present), and fnsm by the `1 or the `2,1
regularizers.

Moreover, the usage of these models have been illustrated, as they have been successfully ap-

plied to the problem of wind energy forecast, where they provide not only accurate predictions

but also information about the relevant grid points for the problem at hand. This analysis has

been done considering first the non-zero weights for the final model and also the models’ reg-

ularization paths, a technique that obtains gradually less sparse models in order to see which

features (in this case, grid points) are selected at each level. This information may shed light

on the relationship between Numerical Weather Prediction (NWP) forecasts and wind energy

production.





Chapter 4

Structured Linear Regression

Further to Chapter 3, this chapter introduces the Total Variation regularizer and the linear model

associated with it, the so called Fused Lasso model, under the same paradigm of regularized

learning. Moreover, as a first main contribution of this thesis, a new regularizer called Group

Total Variation is presented, which is based on the Total Variation one but for multidimensional

features. A linear model including this regularizer is also developed, namely the Group Fused

Lasso model, together with their corresponding solver algorithms. Finally, the behaviour of both

the regularizer and the complete linear model is illustrated experimentally.

The chapter starts with a review of the Total Variation regularizer and the Fused Lasso model

in Section 4.1. In Section 4.2, their group variants, namely the Group Total Variation regular-

izer and the Group Fused Lasso model, are presented. Section 4.3 includes an experimental

comparative, and Section 4.4 closes the chapter with a discussion.

4.1 Total Variation and Fused Lasso

4.1.1 Total Variation

In addition to the sparsity, another possible structure on the problem features that would be con-

venient to capture is some spatial location that relates nearby features. If such a structure exists,

then the models should reflect it, in the sense that the coefficients corresponding to adjacent

63
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Figure 4.1: Temperature forecasts over Spain (the particular time is 13-Jun-2011,
9h) as an example of feature space with a spatial structure.

features should be similar. For example, Figure 4.1 shows a photograph of the predicted temper-

ature over Spain. The colour of each point corresponds to the measure over that geographical

location, and, as expected, it changes smoothly in function of the position. In particular, the

coefficients assigned to the two groups of squared points should be comparable, as the features

are similar.

This spatial smoothness effect can be achieved by penalizing the differences between adja-

cent coefficients, which is known as the Total Variation (TV) regularizer. Formally, the one-

dimensional TV regularizer of norm `p for a vector w ∈ Rd is defined as:

TV 1d
p (w) = ‖Dw‖p =

(d−1∑

n=1
|wn+1 − wn|p

)1/p

, (4.1)

where D ∈ R(d−1)×d stands for the differencing matrix:

D =




−1 1
−1 1

. . . . . .

−1 1




,

that is, dn,n = −1, dn,n+1 = 1 and dn,m = 0 elsewhere.

The term of Equation (4.1) only penalizes discrepancies between an entry and the previous and

next ones, considering exclusively one-dimensional locations. This regularizer can be extended
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Figure 4.2: Scheme of the structure of the two-dimensional TV.

to represent adjacency in spaces of several dimensions by combining one-dimensional TV. For

instance, if the problem features are located in some two-dimensional space as illustrated in

Figure 4.1, the model should take into account not only the differences between one feature and

the features located at the left and right of it, but also the differences with the features above and

below it, what can be achieved by adding up one TV term over each column and each row of the

problem features:

TV 2d
p (w) =

d1∑

n1=1




d2−1∑

n2=1
|wn1,n2+1 − wn1,n2 |

p




1/p

+
d2∑

n2=1




d1−1∑

n1=1
|wn1+1,n2 − wn1,n2 |

p




1/p

=
d1∑

n1=1
TV 1d

p

(
w[n1,·]

)
+

d2∑

n2=1
TV 1d

p

(
w[·,n2]

)
,

where d1 is the number of rows of the two-dimensional feature space, d2 is the number of

columns, w[n1,·] is the n1-th row and w[·,n2] the n2-th column. An illustration of the two-

dimensional TV is included in Figure 4.2.

Following this approach, the TV regularizer can be generalized to a space of arbitrary dimen-

sions. Assuming that the features are located into a space of dimension t, and denoting by dd
the number of entries for dimension d (thus the total number of features is d = ∏t

d=1 dd) and

by wn1,n2,...,nt the component of w which is located on the grid point (n1, n2, . . . , nt), the TV
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regularizer can be defined as follows:

TV td
p (w) =

d2∑

n2=1

d3∑

n3=1
· · ·

dt∑

nt=1




d1−1∑

n1=1
|wn1+1,n2,...,nt − wn1,n2,...,nt |

p




1/p

+
d1∑

n1=1

d3∑

n3=1
· · ·

dt∑

nt=1




d2−1∑

n2=1
|wn1,n2+1,...,nt − wn1,n2,...,nt |

p




1/p

...

+
d1∑

n1=1

d2∑

n2=1
· · ·

dt−1∑

nt−1=1




dt−1∑

nt=1
|wn1,n2,...,nt+1 − wn1,n2,...,nt |

p




1/p

.

This expression is just the sum of the one-dimensional TV applied along each row of each

dimension of the space. Thence, in compact notation the multidimensional TV is:

TV td
p (w) =

t∑

d=1

∑

{n1,...,nt}\nd
TV 1d

p

(
w[n1,...,nd−1,·,nd+1,...,nt]

)
. (4.2)

Although the TV has been defined for a general norm p (in fact, several norms can be mixed

along the different dimensions), the most relevant norm in the context of this work, for its spar-

sity inducing capability, is the `1 norm, which will be the focus of the following derivations (a

more general approach, including the `2 norm p = 2, is detailed in [Barbero and Sra, 2011]).

Therefore, and for the shake of notation, TV 1d
1 will be denoted just by TV .

In order to deal with this non-differentiable regularizer, and to include it into a structured lin-

ear model, it is mandatory to derive an efficient algorithm to compute its Proximity Operator

(ProxOp). In particular, the problem to be solved (for the one-dimensional case) is:

proxδTV (w) = arg min
ŵ∈Rd

{1
2‖ŵ−w‖22 + δTV (ŵ)

}

= arg min
ŵ∈Rd

{1
2‖ŵ−w‖22 + δ‖Dŵ‖1

}
. (4.3)

This problem can be recast through its dual formulation using the equivalence

inf
z∈Rd

{
f (z) + δr (Bz)

} Dual≡ sup
u∈Rd̄

{
−f ∗

(
−B>u

)
− δr ∗

(1
δ
u
)}

, (4.4)

where B ∈ Rd×d and f ∗ denotes the Fenchel Conjugate (FC) of f introduced in Definition 2.7.

In particular, the equivalence can be applied for f (s) = 1
2‖s−w‖22, r (s) = ‖s‖1 and B = D.

The dimension of the dual problem is thus d = d − 1 (because D ∈ R(d−1)×d) and the corre-

sponding FCs (derived in Section A.2) are f ∗(s) = 1
2‖s‖

2
2 + s ·w and r ∗(s) = ι{Bd−1

∞ (1)}(s),

where Bd−1
∞ (1) ⊂ Rd−1 is the unitary ball in `∞ norm, Bd−1

∞ (1) =
{
s ∈ Rd−1 | ‖s‖∞ ≤ 1

}
,
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and ι is the indicator function. Therefore, the equivalent problem to Problem (4.3) is:

max
u∈Rd−1

{
−1

2
∥∥∥D>u

∥∥∥
2

2
+ u>Dw− δι{Bd−1

∞ (δ)}(u)
}

≡





min
u∈Rd−1

{1
2
∥∥∥D>u−w

∥∥∥
2

2

}

s.t. ‖u‖∞ ≤ δ

≡





min
u∈Rd−1

{1
2
∥∥∥D>u−w

∥∥∥
2

2

}

s.t. |un| ≤ δ, n = 1, . . . , d− 1 ,
(4.5)

where the equivalences come from completing squares and converting the unconstrained opti-

mization problem with an indicator function into a constrained one. Once the optimum uop of

the dual Problem (4.5) is computed, the ProxOp ŵop = proxδTV (w), which is the solution of

the primal Problem (4.3), can be recovered as:

proxδTV (w) = ŵop = w−D>uop .

Moreover, using the previous relationship, the dual gap (the difference between the primal and

dual objective functions evaluated over the corresponding primal and dual partial solutions),

which can be used as a stopping criterion, is given by the formula:

gap (ŵ,u) = δ‖Dŵ‖1 − u>Dŵ .

Provided that Problem (4.5) is a minimization problem with box constraints and a quadratic

convex objective function, the structure of the problem was used to design an efficient Projected

Newton (PN) method by Barbero and Sra [2011] which allows to compute the ProxOp of the

TV regularizer.

For the multidimensional TV of Equation (4.2) its ProxOp can be calculated using those of the

individual, one-dimensional TV regularizers corresponding to each of the dimensions, and then

combining them either with the Proximal Dykstra (PD) or the Parallel Proximal Dykstra (PPD)

algorithms (Algorithms 2.10 and 2.11, in Section 2.5.6), depending on whether there are two or

more terms. In particular, for a given dimension d, each term of the inner summation

∑

{n1,...,nt}\nd
TV 1d

p

(
w[n1,...,nd−1,·,nd+1,...,nt]

)

applies to different coefficients, and thus the ProxOp of the summation is the composition of

the ProxOps of the individual TV 1d
p terms. Finally, the resultant terms for the different vales of

d = 1, . . . , t are combined using PD or PPD. This scheme is summarized in Figure 4.3 for the

two-dimensional case.
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Figure 4.3: Scheme of the computations of the ProxOp of the two-dimensional
TV. The one-dimensional ProxOps are solved using PN, and those corresponding
to different rows (or columns) are just composed (the Separ. boxes have no cost).

Finally, the ProxOps of both summations are combined with PD.

The ProxOps of either the one-dimensional or the multidimensional TV can be used in signal

denoising problems. In particular, the optimization problem

prox
δTV td

p
(w) = arg min

ŵ∈Rd

{1
2‖ŵ−w‖22 + δTV td

p (ŵ)
}

has as solution a t-dimensional signal near to the reference one w but with a certain smoothness,

in terms of constancy when p = 1, imposed by the TV term. The balance between the fidelity

to the original signal and the smoothness is given by the parameter δ, so large values of δ will

lead to almost constant signals which can be very different from w, whereas small values of δ

results into less smooth signals, but much similar to the reference w. As examples, using t = 1
a one-dimensional temporal signal can be cleaned. Image denoising can be tackled with t = 2,

and video denoising with t = 3.

4.1.2 Fused Lasso

Returning to the issue of the structured linear regression, the TV regularizer is usually com-

bined with the `1 regularizer of the Lasso (LA) model, resulting in the so called Fused Lasso

(FL) model of Tibshirani et al. [2005]. This linear model imposes, on the one side, sparsity in the

coefficients, and on the other side, constancy along them based on some spatial structure (Fig-

ure 4.4 illustrates this behaviour). Formally, the regularization term is the combination of both

terms, R (w) = 1
d‖w‖1 + γ0

d TV (w), and therefore the model is the solution of the following

optimization problem:

min
w∈Rd

{ 1
2n
‖Xw− y‖22 + γ1

d
‖w‖1 + γ2

d
TV (w)

}
, (4.6)

with γ1 = γ, γ2 = γγ0 and γ the regularization parameter that multiplies R .
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Figure 4.4: Example of the weights for a FL model. Some of the coefficients are
identically zero, and the others are piece-wise constant.

The objective function is non-differentiable due to both the `1 and the TV terms, and the Fast

Iterative Shrinkage–Thresholding Algorithm (FISTA) can be used setting as the smooth part the

error term, fsm(w) = Emse(w; Dtr), and as the non-smooth one the sum of the regularizers:

min
w∈Rd

{ 1
2n
‖Xw− y‖22

︸ ︷︷ ︸
fsm(w)

+ γ1
d
‖w‖1 + γ2

d
TV (w)

︸ ︷︷ ︸
fnsm(w)

}
.

As in the previous models, the gradient of fsm(w) is included in Equation (3.2); thus it only

remains to compute the ProxOp of fnsm(w). The individual ProxOps have been already defined,

for the `1 term it is the soft-thresholding of Equation (A.2), whereas for the TV term it is solved

using PN over Problem (4.3). Although usually the mixture of several ProxOps requires an

inner proximal algorithm as PD, in this particular case they are separable [Friedman, 1989], and

therefore they can be combined just by composing the individual ProxOps:

proxδ(‖·‖1+γ0TV ) (w) = softδ
(
proxδγ0TV (w)

)
.

This scheme is illustrated in Figure 4.5.

4.2 Group Total Variation and Group Fused Lasso

A natural extension of the FL model is to consider a group variant that takes into account a

possible group structure on the problem feature, following the same philosophy as for Group

Lasso (GL). This extension constitutes a main contribution of this thesis, and it was proposed in

[Alaíz et al., 2013a] under the name of Group Fused Lasso (GFL).

First of all, in Section 4.2.1 the Group Total Variation (GTV) regularizer is presented, which

penalizes the differences between adjacent groups of features using the `2,1 norm. Secondly,

in Section 4.2.2 this regularizer is combined with the `2,1 norm of the weights (as in the GL

model) and with an error term, in order to obtain a complete linear model, the GFL, which

enforces sparsity and homogeneity at group level.
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∇
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Figure 4.5: Scheme of the computations of the one and two-dimensional FL model.
First, the ProxOp of the one/two-dimensional TV is computed. Then, the ProxOp
adding the `1 norm just requires to apply a soft-thresholding. Finally, the ProxOp of

R and the gradient of E are combined with FISTA.

Precedents

A GFL model but only with the GTV penalty was introduced in Bleakley and Vert [2011].

However, the solution proposed there reduces this GFL to a GL model that is then solved by

a group Least Angle Regression (LARS) algorithm, whereas the approach based on Proximal

Methods (PMs) presented next seems better suited to deal with the full general GFL case, that

also includes the `2,1 norm.

On the other side, in Zhou et al. [2012], the Convex Fused Sparse Group Lasso (cFSGL) model

was proposed, which uses as regularizer the combination of the `1 norm of LA, the `2,1 norm of

GL and a TV term; thus it mixes the terms of the GL and FL models but without truly extending

the TV regularizer to a multidimensional setting, as done in this section.
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4.2.1 Group Total Variation

In this group configuration, the effect that the regularizer should impose is that all the compo-

nents corresponding to one multidimensional feature should be equal, or different, to the adja-

cent multidimensional feature at the same time. Therefore, the model should cluster the features

looking for regions over which all the points behave in a similar way, and therefore they can be

combined and be assigned just one multidimensional weight to all of them.

This can be achieved by defining first a variant of the TV for the multidimensional features

framework introduced in Section 3.3.2, which following the same philosophy is based in the

`2,1 norm. Formally, the GTV regularizer, applied to a multidimensional feature vector w ∈ Rd,

with d = dgdv, is defined as:

GTV 1d(w) =
∥∥∥Dw

∥∥∥
2,1

=
dg−1∑

n=1
‖wn+1 −wn‖2 =

dg−1∑

n=1

√√√√
dv∑

v=1
(wn+1,v − wn,v)2 ,

where D ∈ R(dg−1)dv×dgdv stands for the group differencing matrix:

D =




−I I
−I I

. . . . . .

−I I




= D⊗ I ,

with I ∈ Rdv×dv the identity matrix.

The GTV regularizer contains as a particular case the TV one when the number of variables is

dv = 1, which is when each multidimensional feature contains just one variable. Otherwise,

when dv > 1 the `2,1 norm enforces sparsity in the differences between groups, thus the coef-

ficients of a group tend to align with those of the adjacent groups as a whole: the coefficients

corresponding to all the variables of a group will be equal to the coefficients of the adjacent

group, or different, at the same time. This results in a piece-wise constant vector of groups.

This regularizer can also be extended to a space of several dimensions as:

GTV td(w) =
t∑

d=1

∑

{n1,...,nt}\nd
GTV 1d

(
w[n1,...,nd−1,·,nd+1,...,nt]

)
. (4.7)

Similarly to the multidimensional TV, the multidimensional GTV is the sum of one-dimensional

GTV regularizers applied over each row of each dimension.
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In order to deal with this regularizer, its ProxOp should be derived, and a corresponding algo-

rithm to solve it developed. In particular, the problem to be solved is:

proxδGTV (w) = arg min
ŵ∈Rd

{1
2‖ŵ−w‖22 + δ

∥∥∥Dŵ
∥∥∥

2,1

}
. (4.8)

Following a similar approach as for the TV regularizer, the problem can be recast using the

equivalence of Equation (4.4) for f (s) = 1
2‖s−w‖22, r (s) = ‖s‖2,1 and B = D. The FCs are

detailed in Section A.2: for f is again f ∗(s) = 1
2‖s‖

2
2 + s ·w, whereas for r is:

r ∗(s) = ι


Bdv
2 (1)× · · · ×Bdv

2 (1)︸ ︷︷ ︸
dg times





(s) ,

which is the indicator function of the set of vectors whose groups are into the unitary `2 ball

Bdv
2 (1) ⊂ Rdv . Denoting by d =

(
dg − 1

)
dv = d− dv the new dimension, the dual problem of

Problem (4.8) turns out to be:

max
u∈Rd

{
−1

2
∥∥∥D>u

∥∥∥
2

2
+ u>Dw− δι{Bdv

2 (δ)×···×Bdv
2 (δ)}(u)

}

≡





min
u∈Rd

{1
2
∥∥∥D>u−w

∥∥∥
2

2

}

s.t. ‖un‖2 ≤ δ, n = 1, . . . , dg − 1

≡ min
u∈Rd

{1
2
∥∥∥D>u−w

∥∥∥
2

2

}
s.t. max

n=1,...,dg−1
‖un‖2 ≤ δ

≡ min
u∈Rd

{1
2
∥∥∥D>u−w

∥∥∥
2

2

}
s.t. ‖un‖2,∞ ≤ δ . (4.9)

The primal solution ŵop = proxδGTV (w) can be recovered from the dual one uop with the

equivalence:

proxδGTV (w) = ŵop = w−D>uop ,

and the dual gap is:

gap (ŵ,u) = δ
∥∥∥Dŵ

∥∥∥
2,1
− u>Dŵ .

In contrast to Problem (4.5), the feasible region of Problem (4.9) is not composed by simple

linear constrains, which prevents it to be solved straightforwardly by PN. Nevertheless, it is still

a quadratic convex problem, restricted to an `2,∞ ball. The projection over this ball is trivial,

being just the independent projection of the coefficients corresponding to each group over an

`2 ball. Therefore, it can be easily solved using a Spectral Projected Gradient (SPG) method

[Birgin et al., 2000]. In general, these methods determine the solution by iterating a gradient

descent step followed by a projection step, computing the length of the step to satisfy a certain

minimum decrease. In this case, the length of the step is determined using a backtracking

approach with quadratic interpolation [Nocedal and Wright, 1999], so if with the current step
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Spectral Projected Gradient

Input: f convex with∇f Lipschitz ;

Output: x[t+1] ' arg minx∈C

{
f (x)

}
;

Initialization: x[0] ∈ E ; ε ∈
(
0, 1
)

;

1: for t = 0, 1, . . . do

2: v[t] ← f (x[t]) ; g[t] ← ∇f
(
x[t]) ; I Current value and gradient of f .

3: α← SpectStep(x[t−1],x[t],g[t−1], g[t]) ; I Spectral step.

4: d[t] ← PrC (x[t] − αg[t])− x[t] ; I Step direction.

5: δ ← InitialEstim(g[t],d[t]) ; I Initial guess of the step size.

6: x[t+1]
δ ← x + δd[t] ; I Tentative update.

7: v[t+1] ← f (x[t+1]
δ ) ; I Value of f at x[t+1]

δ
.

8: while v[t+1] > v[t] + εδ(g[t] · d[t]) do

9: δ ← QuadEstim(g[t],d[t],v[t],v[t+1],δ) ; I Estimation of the step size.

10: x[t+1]
δ ← x + δd[t] ; I Tentative update.

11: v[t+1] ← f (x[t+1]
δ ) ; I Value of f at x[t+1]

δ
.

12: end while

13: x[t+1] ← x[t+1]
δ ; I Update.

14: end for

Algorithm 4.1: SPG for minimizing a function f onto a convex set C . The sequence
x[t+1] converges to a minimum of f over C .

the resulting decrease is not sufficient (according to Armijo’s rule [Armijo, 1966]), then a new

step is determined as the minimizer of a quadratic approach to the objective in function of the

step. This strategy is summarized in Algorithm 4.1.

The ProxOp of the multidimensional GTV in Equation (4.7) can be computed using an anal-

ogous scheme as for the multidimensional TV, represented in Figure 4.6, which is based on

computing the ProxOps of the one-dimensional GTV over each dimension and, as they are not

separable, combining them through PD or PPD.

These ProxOps can be used in signal denoising, both for one-dimensional and multidimensional

signals. In this case, the signals are assumed to have a more special structure: they have mul-

tidimensional features (each feature is, indeed, a group) which have a certain spatial location

and tend to be piece-wise constant in all the variables of the group at the same time. Although

this can seem a strong assumption, there are several real-world applications with such a struc-

ture. For example, a colour image has groups with a two-dimensional structure (the pixels) with

three different variables for each group (the values corresponding to the three channels of the

Red Green Blue (RGB) colour model). Moreover, a natural image is smooth, keeping the same
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∑
n1

GTV 1d(w[n1,·]
)

+
∑
n2

GTV 1d(w[·,n2]
)

SPG over Dual SPG over Dual

Separ. Separ.

PD

Two-Dimensional GTV

Figure 4.6: Scheme of the computations of the ProxOp of the two-dimensional GTV.
The one-dimensional ProxOps are solved using SPG, and those corresponding to
different rows (or columns) are just composed (the Separ. boxes have no cost).

Finally, the ProxOps of both summations are combined with PD.

colour over a region, except at the borders, where a change in the three channels takes place

(examples of colour image denoising are included in Section 4.3.3). In this context, the ProxOp

prox
δGTV td (w) = arg min

ŵ∈Rd

{1
2‖ŵ−w‖22 + δGTV td(ŵ)

}

imposes the GTV structure over the reference signal w, with a strength controlled by the param-

eter δ.

4.2.2 Group Fused Lasso

The GTV regularizer suggests an obvious extension of the FL model to a group framework, giv-

ing rise to the GFL model [Alaíz et al., 2013a]. Specifically, the regularizer of this linear model

is a mixture of the `2,1 norm penalization of GL and the GTV term. The double effect is an

intrinsic selection of the important groups, and also an alignment in the vectors which represent

adjacent groups; Figure 4.7 shows an example of GFL weights. Therefore, the regularization

term becomes R (w) = 1
d‖w‖2,1 + γ0

d GTV (w) and with the corresponding regularization pa-

rameter (defining γ1 and γ2 as before) γR (w) = γ1
d ‖w‖2,1 + γ2

d GTV (w). Hence the resultant

optimization problem is:

min
w∈Rd

{ 1
2n
‖Xw− y‖22 + γ1

d
‖w‖2,1 + γ2

d
GTV (w)

}
. (4.10)

In order to deal with the non-differentiable objective function through FISTA, F is separated

into the differentiable term, which is again the error term fsm(w) = Emse(w; Dtr), and the
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Figure 4.7: Example of the weights for a GFL model in a context with two features
per group. Some of the vectors are identically zero, and the others are piece-wise

constant in both components.

non-differentiable term composed by both regularizers:

min
w∈Rd

{ 1
2n
‖Xw− y‖22

︸ ︷︷ ︸
fsm(w)

+ γ1
d
‖w‖2,1 + γ2

d
GTV (w)

︸ ︷︷ ︸
fnsm(w)

}
.

Provided that the gradient of fsm(w) is given by Equation (3.2), the only requirement is to

compute the ProxOp of fnsm(w). The individual ProxOps are the group soft-thresholding of

Equation (A.4) for the `2,1 norm, and for the GTV regularizer it can be computed applying SPG

over Problem (4.9). In contrast to the FL model, where the ProxOp of the TV regularizer and

the soft-thresholding were separable, in this case both ProxOps are not. However, they can still

be mixed using PD, although this introduces an extra effort, since the two ProxOps have to be

computed several times in an inner loop for each iteration of FISTA. The whole procedure is

summarized in Figure 4.8.

Comparing the computational schemes of FL and GFL, the main difference is that, for the one-

dimensional case, FL does not need to merge the ProxOps through PD because both regularizers

(the `1 norm and the TV term) are separable and their ProxOps can be applied sequentially,

whereas for GFL the `2,1 norm and the GTV term are not, and PD is required even for one-

dimensional problems, representing an extra computational effort since each individual ProxOp

has to be solved several times in an inner loop. When applied to multidimensional problems,

both models have to use PD or PPD algorithms because both TV and GTV terms along different

dimensions are not separable, and consequently their ProxOps over each dimension have to be

mixed. In particular, in the case of GFL, the PPD algorithm also have to merge the ProxOp of

the `2,1 norm (this is why the number of terms is always greater than two, even for the two-

dimensional case, and so PPD has to be used instead of PD), whereas this is not needed for

FL, as the `1 norm is separable also from the multidimensional TV (and thus PD is used for

two-dimensional problems, and PPD for more than two dimensions).
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1
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2 + γ1
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Figure 4.8: Scheme of the computations of the one and two-dimensional GFL
model. First, the ProxOp of the individual one-dimensional GTV terms (using SPG)
and of the `2,1 norm (which is the group soft-thresholding) are computed. All these
ProxOps are then merged applying PD or PPD. Finally, the ProxOp of R and the

gradient of E are combined with FISTA.

4.3 Experiments

This section contains several experiments to illustrate the differences between the structured lin-

ear models defined above, and also to present an application of the GTV regularizer to denoising

tasks.

4.3.1 Synthetic Example: Structured Weights

Data structure may have two main sources. A first one would be in the patterns themselves,

in which there can exist a relation between the features based on some similarity among their

sources. Such a behaviour is illustrated in Section 4.3.2, including how the different structured

models can handle with it. A second possibility, which is considered here, is structure in the

generative models that is reflected into pattern structure.

Concretely, this example is a synthetic structured linear problem where the generative model

is defined by a structured vector of weights, in order to check if the different linear models
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are able to detect this underlying structure. In particular, pattern features are divided into 100
three-dimensional groups, that is, dg = 100 and dv = 3. Total dimension is, thus, d = 300.

The true model weights are generated randomly as four consecutive segments of 25 groups with

constant values for the three group coordinates. This defines a weights vector

wtr =
(
wtr

1 , . . . ,wtr
25︸ ︷︷ ︸

Block 1

,wtr
26, . . . ,wtr

50︸ ︷︷ ︸
Block 2

,wtr
51, . . . ,wtr

75︸ ︷︷ ︸
Block 3

,wtr
76, . . . ,wtr

100︸ ︷︷ ︸
Block 4

)>
, (4.11)

where the three components of any two groups belonging to the same block i are equal,

wtr
n = wtr

m = ci =




ci1

ci2

ci3


 ∀n,m ∈ Block i ;

ci is either identically zero, or all the three coordinates are different from zero. Therefore, wtr

is built in such a way that it makes the features of a group to be simultaneously either active

or inactive and in such a way that adjacent features have a block behaviour (the weights are

included in Figure 4.9a, where each colour represents a different feature within the group).

The true wtr is then perturbed to obtain a weight vector w̃ of the form w̃n,v = wtr
n,v + ηn,v with

η ∼ N (0; 0.1) white Gaussian noise with a standard deviation of 0.1. Random independent

patterns x(p) are then generated by a N (0; 1) distribution, and the values y(p) = w̃ · x(p) + η̂(p)

with η̂ ∼ N (0; 0.1) then define the targets to be fit by the regression models (therefore, the

outputs are generated by the perturbed vector w̃). The underlying spatial structure of the weights

of Equation (4.11) is reflected in the y(p) values. Moreover, if the number of generated training

patterns n is below the number of features (300), the problem will become ill-posed.

The regression problem is tackled considering 600, 300, 100 and 50 training patterns and using

five linear models: (i) Regularized Least Squares (RLS), (ii) LA, (iii) GL, (iv) FL; and (v) GFL.

In the latter two cases, the linear models applied are the complete one-dimensional FL and GFL

of Problems (4.6) and (4.10), thus including both regularization terms (the `1/`2,1 norm, and the

TV/GTV term). All the models are solved using FISTA with the proper ProxOps, except RLS,

which has the closed-form solution of Equation (3.5).

The corresponding regularization parameters are chosen over an initial data set so that the esti-

mated weights are closest to the true (structured) weights in the `1 distance. Once the optimal

parameters are fixed, 100 different experiment are generated (varying the random input patterns

and the perturbed weights, and consequently the outputs) in order to average the results.

Table 4.1 presents the results in terms of the distance between the recovered weights w and

the true weights wtr, both with the `1 distance, ‖w−wtr‖1 and the `2 one, ‖w−wtr‖2. The

superscripts denote the ranking of the models; the same rank is repeated if the differences are
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Distance between RecoveredWeights and StructuredWeights

Model n = 600 n = 300 n = 100 n = 50

`1 Distance

RLS 23.91(4)±1.04 137.12(5)±60.13 1337.56(5)±22.40 1387.48(5)±17.89
LA 23.72(3)±1.03 43.58(3)±9.47 1155.96(4)±92.45 1304.73(3)±53.44
GL 26.77(5)±1.55 55.28(4)±12.36 1121.88(3)±94.29 1319.27(4)±56.74
FL 9.42(2)±1.45 11.16(2)±1.76 18.03(2)±3.72 76.67(2)±34.72
GFL 8.32(1)±1.36 10.10(1)±1.60 16.68(1)±3.36 27.20(1)±7.58

`2 Distance

RLS 1.73(4)±0.07 9.89(5)±4.32 111.97(4)±3.09 124.45(3)±2.15
LA 1.72(3)±0.07 3.22(3)±0.70 111.96(4)±9.29 129.73(5)±4.97
GL 2.06(5)±0.11 4.15(4)±0.90 103.96(3)±9.03 128.34(4)±4.97
FL 0.74(2)±0.10 0.88(2)±0.13 1.46(2)±0.25 6.20(2)±2.77
GFL 0.65(1)±0.10 0.77(1)±0.12 1.31(1)±0.23 2.11(1)±0.58

Table 4.1: Distance between the original structured weights and the recovered ones,
training with 600, 300, 100 and 50 patterns. The superscript denotes the ranking.

not significant(i). As it can be seen, GFL achieves the lowest distances in all the cases for

both measures. Only FL is comparable, whereas RLS, LA and GL values are clearly worse

for the 600 and 300 pattern problems and markedly fail when used with few training samples.

The advantage of GFL increases as the problem gets more ill-posed. As reference value, the

distances of the perturbed weights to the true structured ones are ‖w̃−wtr‖1 = 23.93 ± 1.04
and ‖w̃−wtr‖2 = 1.73 ± 0.07. When the number of patterns is large enough, RLS obtains

comparable results as it has enough information to recover the perturbed weights. Meanwhile,

FL and GFL improves this base distance because they do not consider only the error, but also the

smoothness of the structure, attaining weights that are even closer to the true weights than the

perturbed ones. When the number of patterns decrease, the reference values are close to those

of FL and GFL, but far away from the RLS, LA and GL ones.

Moreover, Figure 4.9b shows how FL and GFL recover quite well the inherent structure of the

problem, obtaining constant weights, while RLS, LA and GL tend to the perturbed weights. As

the number of patterns gets smaller (Figure 4.9c), RLS, LA and GL lose the structured reference,

whereas FL and GFL always produce reasonably structured weights.

4.3.2 Synthetic Example: Structured Features

In the example of Section 4.3.1, the structure of the problem is imposed through the structured

lineal model given by the weights of Equation (4.11). Therefore, the underlying generator of

the target is, indeed, structured, and thus the GFL model can capture this nature. In the next

experiment, the problem structure is given by the relationship between the features. This is a
(i)Using a Wilcoxon signed rank test for zero median, with a significance level of 5%.
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(c) Results with 50 patterns.

Figure 4.9: Original weights wtr, perturbed weights w̃ and weights recovered by the
different linear models for the structured weights problem.
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more plausible framework, where some of the features are highly correlated for instance due

to some proximity on their location. Therefore, the structure is imposed through the inputs of

the problem, instead of through the underlying weights (indeed, as explained below, the true

weights are randomly generated, and consequently unstructured).

In particular, each input pattern x(p) has the following block structure:

x(p) =
(
x(p)

1 , . . . ,x(p)
25︸ ︷︷ ︸

Block 1

,x(p)
26 , . . . ,x

(p)
50︸ ︷︷ ︸

Block 2

,x(p)
51 , . . . ,x

(p)
75︸ ︷︷ ︸

Block 3

,x(p)
76 , . . . ,x

(p)
100︸ ︷︷ ︸

Block 4

)>
, (4.12)

with three-dimensional blocks where all the multidimensional features of the same block are

equal on their three coordinates. A generative vector of weights wtr is randomly generated

following a N (0, 1) and it is kept fixed for the whole experiment. The random independent

patterns x(p) are generated using a N (0, 1) distribution with the structure of Equation (4.12).

Then they are perturbed with white noise N (0, 0.01); thus the patterns are not perfectly piece-

wise constant. Finally, the target values are computed as y(p) = wtr · x(p) + η̂(p) with η̂ ∼
N (0, 0.25).

For this particular structured problem, a vector of structured weights w can be defined averaging

the true weights of each block. These weights could provide a more robust prediction, as the

resultant linear model would not rely in any particular representative feature of each group.

Formally, w can be computed substituting all the true weights of a block by the average of the

weights of that particular block:

wn = 1
25

∑

m∈Block i

wtr
m , ∀n ∈ Block i .

If there were no noise then these structured weights will lead to the same target as the original

ones given the constancy of the features.

Once the problem is defined, the same five linear models of Section 4.3.1 are compared, again

using 600, 300, 100 and 50 training patterns. The optimal regularization parameters are chosen

over an initial data set to minimize the Mean Absolute Error (MAE). A test set of nte = 1000
patterns is also generated and kept fixed; the experiment is repeated 100 times changing the

random input patterns.

An example of the weights obtained by each model is presented in Figure 4.10. The GFL and

FL models capture the underlying structure of the problem, whereas LA and GL attain a noisy

version of them. On the contrary, RLS fails to recover any structure, and it produces much more

complex weights.
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(a) True and structured weights.
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(b) Results with 600 patterns.
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(c) Results with 50 patterns.

Figure 4.10: Original weights wtr, structured weights w and weights recovered by
the different linear models for the structured features problem.
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Distance between RecoveredWeights and StructuredWeights

Model n = 600 n = 300 n = 100 n = 50

`1 Distance (·10)

RLS 1370.04(5)±53.61 1197.71(5)±61.02 589.82(5)±47.16 10.17(3)±1.25
LA 22.73(4)±1.04 22.83(3)±0.98 22.62(3)±1.06 24.40(5)±16.49
GL 15.26(3)±1.70 23.48(4)±1.06 23.74(4)±1.11 24.19(4)±25.09
FL 6.86(2)±0.82 7.01(2)±0.77 7.89(2)±0.90 8.28(2)±1.19
GFL 5.36(1)±0.75 2.11(1)±0.56 6.62(1)±0.87 7.11(1)±1.28

`2 Distance (·10)

RLS 99.21(5)±3.58 86.50(5)±4.29 42.68(5)±3.33 0.73(3)±0.09
LA 1.64(4)±0.08 1.65(3)±0.07 1.63(3)±0.07 1.79(4)±1.34
GL 1.18(3)±0.11 1.70(4)±0.08 1.71(4)±0.08 1.90(5)±2.26
FL 0.58(2)±0.07 0.58(2)±0.06 0.63(2)±0.07 0.66(2)±0.09
GFL 0.49(1)±0.07 0.17(1)±0.07 0.55(1)±0.06 0.56(1)±0.09

Table 4.2: Distance between the underlying structured weights and the recovered
ones, training with 600, 300, 100 and 50 patterns. The superscript denotes the rank-

ing, and the results are scaled by 10.

Table 4.2 quantifies the distance between the weights of each model and w. Using this mea-

sure(ii), it is clear that GFL recovers the structure with a higher precision than the rest of the

models; RLS performs worst when the number of training patterns is large, since this model

does not consider any structure and when there is sufficient information it tends to recover wtr.

Nevertheless, with the small training size (50 patterns) it also gets structured weights as a col-

lateral effect, because for undetermined problems RLS finds the minimum norm solution, which

in the case of indistinguishable features assigns the same weight to all of them.

The results over the test set are shown in Table 4.3. As reference, a prediction using the genera-

tive true weights wtr obtains a MAE of 1.95, and a Mean Squared Error (MSE) of 0.61, whereas

using w the errors are 2.32 and 0.84 respectively. It is worth noting that, although the true and

the structured weights are very different, as shown in Figure 4.10a, they produce similar outputs

since the underlying problem is ill-posed (the features of the same block are almost the same).

The best error rates, for both the MAE and MSE, are attained by RLS when the number of pat-

terns is large enough, because RLS tend to the unstructured but true weights wtr, whereas the

other models build a more structured solution, but with a slightly higher error. When the number

of patterns gets smaller, the differences vanishes because RLS also obtains a structured solution,

since there is no information to get a complex one. Nevertheless, the differences are small, and

all the models perform quite similarly.

Finally, it is worth commenting that the piece-wise constant weights of GFL and FL suggest

the use of a hierarchical model of just 12 features, namely the four three-dimensional features
(ii)The different scale with respect to Table 4.1 is because the entries of w are averages of the original weights,

which are randomly generated with zero mean; therefore the entries of w are near zero.
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Test Error for the Structured Data Problem

Model n = 600 n = 300 n = 100 n = 50

MAE (·10)

RLS 2.19(1)±0.03 2.28(1)±0.04 2.48(1)±0.09 2.82(3)±0.25
LA 2.38(4)±0.03 2.39(3)±0.03 2.57(3)±0.10 2.79(2)±0.26
GL 2.39(5)±0.03 2.38(2)±0.03 2.52(2)±0.09 2.80(2)±0.24
FL 2.35(2)±0.02 2.39(4)±0.03 2.52(2)±0.09 2.75(1)±0.23
GFL 2.35(3)±0.02 2.38(2)±0.03 2.51(2)±0.09 2.78(2)±0.24

MSE (·10)

RLS 0.75(1)±0.02 0.81(1)±0.03 0.96(1)±0.07 1.25(3)±0.24
LA 0.87(4)±0.02 0.89(3)±0.02 1.03(3)±0.08 1.23(2)±0.25
GL 0.88(5)±0.02 0.88(2)±0.02 0.99(2)±0.07 1.23(2)±0.22
FL 0.86(2)±0.01 0.89(4)±0.02 0.99(2)±0.07 1.19(1)±0.21
GFL 0.86(3)±0.01 0.88(2)±0.02 0.99(2)±0.07 1.21(2)±0.22

Table 4.3: Test MAE and MSE for the structured data problem, training with 600,
300, 100 and 50 patterns. The superscript denotes the ranking, and the results are

scaled by 10.

x(p)
bi

that result for averaging each one of the blocks, x(p)
bi

= 1
25
∑
n∈Block i x

(p)
n . In fact, this is

exactly what these two models are doing, considering these meta-features instead of the original

ones. Although the experiment of Section 4.3.1 also resulted into structured weights, in that case

the structure was induced by the underlying weights, while in this experiment, the features are

actually structured, and therefore a sensible approach is to average all those which are similar.

4.3.3 Image Denoising

The GTV regularizer can also be applied to denoise colour images, as they have a natural spatial

structure, because pixels change smoothly and can be considered nearly constant in nearby

regions (except in object borders).

In fact, TV regularization has been extensively used for this task [Bioucas-Dias and Figueiredo,

2007] on gray level images, in the form of the denoising model

min
Prc

{1
2
∥∥∥Prc − P̃

∥∥∥
2

2
+ γTV 2d(Prc)

}
, (4.13)

for a noisy image P̃ and some two-dimensional form of TV, whose block structure permits

abrupt changes and thus the preservation of the borders of the images. The parameter γ deter-

mines the balance between the similarity to the observed noisy image P̃ and the smoothness

of the recovered image. By definition, the solution of Problem (4.13) is just the ProxOp of the

regularizer TV 2d with step δ = γ.
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When dealing with colour images a possible option is to apply TV denoising independently to

each of the three RGB layers, resulting in the problem:

min
Prc





1
2
∥∥∥Prc − P̃

∥∥∥
2

2
+ δ

3∑

n3=1
TV 2d

(
P̃[·,·,n3]

)


 , (4.14)

where
(
P̃[·,·,1], P̃[·,·,2], P̃[·,·,3]

)
are the three colour layers of the noisy image P̃ (each layer

P̃[·,·,n3], obtained varying the first two indices and fixing the third one, is a matrix with the

same dimensions as the image). Because the three regularizers apply to different coordinates,

Problem (4.14) can be solved applying the ProxOp of TV 2d independently to each one of the

colour layers, that is, denoising each layer like a gray level image. However, using this approach

the relation between the different layers is ignored, whereas in natural images the change in the

three colours tends to occur at the same point.

A group approach is thus a natural strategy, as each pixel can also be considered a three-

dimensional feature. Therefore, GTV fits in this problem as it denoises using the whole of

the problem structure. Specifically, the ProxOp of the two-dimensional GTV can be employed,

which is defined and solved as explained in Section 4.2.1:

min
Prc

{1
2
∥∥∥Prc − P̃

∥∥∥
2

2
+ δGTV 2d

(
P̃
)}

. (4.15)

In the experiments that follow these two denoising approaches, which correspond to Prob-

lems (4.14) and (4.15), are applied to five different colour images with different noise models

(which represent different effects, as discussed in Bovik [2000]):

Peppers. This image is perturbed with additive Gaussian noise, with P̃ = Ptr + η, where

η ∼ N (0; 0.05). This type of noise usually models thermal noise and, also, the limiting

behaviour of other noises that arise during acquisition of images and their transmission.

House. Perturbed with speckle noise, that is, multiplicative uniform noise, with P̃ = Ptr+ηPtr,

where η is uniform with 0 mean and variance 0.25, η ∼ U(0; 0.25). The speckle noise

arises in coherent light imaging (like radar images) mainly due to random fluctuations in

the return signal.

Lena. Perturbed with Poisson noise, where each perturbed pixel is generated from a Poisson

distribution with mean the original pixel, P̃ ∼ P(Ptr). This noise represents variations in

the number of photons sensed at a given exposure level.

Mandrill. Perturbed with salt and pepper noise, which for grey images sets at random some of

the pixel to either black or white. In this case, it is adapted so approximately the 10% of

the pixels of each colour layer is set to the minimum or the maximum value. This type of

noise is related with errors in the analogue to digital conversion and bit errors.
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SNR of the Original and Recovered Images

Model Original TV GTV

Peppers 8.72±0.01 17.25±0.36 19.46±0.22
House 7.94±0.01 16.74±0.07 17.20±0.07
Lena 21.99±0.01 25.48±0.11 26.63±0.25
Mandrill 9.94±0.04 15.51±0.19 16.81±0.12
Squares 8.35±0.01 22.87±0.15 23.93±0.16

ISNR of the Recovered Images

Model TV GTV

Peppers 8.53(2)±0.37 10.74(1)±0.22
House 8.80(2)±0.06 9.25(1)±0.07
Lena 3.49(2)±0.11 4.65(1)±0.25
Mandrill 5.57(2)±0.21 6.87(1)±0.13
Squares 14.52(2)±0.15 15.58(1)±0.16

Table 4.4: SNR and ISNR of the recovered images for the five proposed examples,
using TV and GTV as recovering algorithms. The superscript denotes the ranking

considering significant differences between the means.

Squares. Perturbed with both additive Gaussian and Poisson noises with the same distributions

as before.

The goal here is to compare the potential advantages of the two-dimensional signal recovery

using GTV over that of TV. Therefore, for each image the optimal TV and GTV penalties are

selected as the ones that give the best Improvement in Signal to Noise Ratio (ISNR) [Afonso

et al., 2010] over a single perturbed sample, where the ISNR of a recovered image Prc, from a

noisy perturbation P̃ of an original image Ptr, is defined as:

Isnr

(
Prc; P̃; Ptr

)
= 10 log10

∥∥∥P̃−Ptr
∥∥∥

2

2
‖Prc −Ptr‖22

.

This is equivalent to the difference between the Signal to Noise Ratio (SNR) of the recovered

image, Snr(Prc; Ptr) and the SNR of the noisy image, Snr

(
P̃; Ptr

)
, where

Snr
(
P; Ptr) = 10 log10

‖Ptr‖22
‖P−Ptr‖22

.

Once the optimal parameters are obtained, they are used to test TV and GTV denoising over 25
other different perturbations that follow the same distributions.

Numerically, in all cases GTV performed better than TV, as shown in Table 4.4, where the

superscripts denote that all the means are significantly different(iii).
(iii)Using a Wilcoxon signed rank test for zero median, with a significance level of 5%.
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Figures 4.11 to 4.15 (included at the end of the chapter for the sake of clarity, Pages 88 to 92)

show, for each experiment, the original image, an example of the noisy image and the image

recovered using both TV and GTV (the images displayed are those over which the optimal

parameters are estimated).

In all the images the GTV recovery is visually better, except Squares (Figure 4.15). In this case,

TV seems to provide a cleaner image, but its ISNR is lower than that of GTV because GTV is

able to preserve better the original colours. Indeed, the regularization of the GTV is lower than

that of TV, because the regularization parameter is chosen according to the ISNR. In addition,

Figure 4.16 shows the three different channels for the original and the recovered images. The

difference between TV and GTV is better appreciated there, as both in the original image and in

the GTV recovery the eight colour regions can be distinguished in the three channels, whereas

TV, specially for the second channel, mix some regions. The reason for this is that GTV is

exploiting the whole structure of the image, considering only changes in the three channels at

the same time, whereas TV treats each layer independently (and there are very similar regions

in each separated layer).

4.4 Conclusions

This chapter has introduced the Group Total Variation (GTV) regularizer, which combines the

multidimensional group features of the Group Lasso (GL) regularizer with the block spatial

structure of the Total Variation (TV) penalty used by Fused Lasso (FL). This regularizer en-

forces a set of multidimensional feature to be piece-wise constant at the group level, being

adjacent groups equal in all the different variables at the same time. In order to deal with this

regularizer, a method to compute its Proximity Operator (ProxOp) has been derived, as it is the

basic tool to apply it, both independently and with other regularizers. Giving its nature, the

GTV regularizer appears as a useful tool to reconstruct multidimensional patterns with a spatial

structure that reflects smooth changes along the group features. Colour image denoising fits

nicely in this framework and, as it has been shown with the experiments, for a variety of noise

models GTV performs better than the simpler TV approach of applying one-dimensional TV

independently on each colour. Moreover, and although not done in this work, image deconvo-

lution can also be tackled using the proposed GTV regularizer. In particular, there are methods

such as Split Augmented Lagrangian Shrinkage Algorithm (SALSA) [Afonso et al., 2010] and

Two-Step Iterative Shrinkage/Thresholding Algorithm (TwIST) [Bioucas-Dias and Figueiredo,

2007] which can generalize a denoising method to address also deconvolution problems.

Furthermore, this GTV regularizer can be merged with a GL term and an error term, leading

to the linear model called Group Fused Lasso (GFL). The associated optimization problem for

training this model can be solved using the Fast Iterative Shrinkage–Thresholding Algorithm
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(FISTA) and the ProxOp of GTV and GL, with the same approach as in Chapter 3. Some

synthetic examples have illustrated how GFL effectively captures block structure when present,

and makes use of it to address linear ill-posed problems with a number of features much larger

than the sample size.

This kind of spatial structure can be found in other real-world problems, particularly those for

which the underlying data features are associated to geographical locations. Any sensible lin-

ear regression models for such problems should assign similar weight values to spatially close

features, which is exactly the behaviour that GFL enforces.
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Original Noisy

TV Recov. GTV Recov.

Figure 4.11: Example of the image denoising results for Peppers.
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Original Noisy

TV Recov. GTV Recov.

Figure 4.12: Example of the image denoising results for House.
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Original Noisy

TV Recov. GTV Recov.

Figure 4.13: Example of the image denoising results for Lena.
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Original Noisy

TV Recov. GTV Recov.

Figure 4.14: Example of the image denoising results for Mandrill.
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Original Noisy

TV Recov. GTV Recov.

Figure 4.15: Example of the image denoising results for Squares.
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Original TV Recov. GTV Recov.

Figure 4.16: Example of the image denoising results for Squares for each one of the
three colour channels.





Chapter 5

CorrelationMatrix Nearness under Uncertainty

This chapter introduces two new approaches to deal with observation uncertainty in problems of

matrix nearness, which constitute the second main contribution of this thesis. In particular, the

first approach invokes the framework of Robust Optimization to construct low error solutions

that are immune to worst-case uncertainty in the input. The second approach takes a less pes-

simistic view on uncertainty, and considers a situation where instead of the worst one, it suffices

to consider any matrix in the uncertainty set. Both approaches can be formulated as convex

optimization problems, whose structure can be exploited to obtain efficient iterative first-order

algorithms.

The structure of the chapter is as follows. Section 5.1 introduces the framework of problems

under uncertainty, which is then instantiated in Section 5.2 for the particular case of the Nearest

Correlation Matrix problem, where the two new approaches are also presented. The correspond-

ing algorithms for solving the different problems are derived in Section 5.3, and the various

approaches are numerically compared in Section 5.4. Finally, the chapter ends with some con-

clusions in Section 5.5.

5.1 Introduction: Problems under Uncertainty

Real applications never have access to perfect data: noise, imprecision, and incompleteness per-

petually complicate matters. Since uncertainty is unavoidable, it is important to design models

95
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and algorithms that account for it, preferably without being too sensitive to minor variations in

data. This viewpoint is pragmatic and rings particularly true for matrix nearness and completion

problems [Higham, 1989], since these involve a noisy, possibly incomplete matrix of uncertain

observations that must be processed to fulfil desired properties such as symmetry, semidefinite-

ness...

A classical way to model uncertainty is via probability theory, as it is notably done in stochastic

programming [Dantzig, 1955; Shapiro et al., 2009], which takes a probabilistic approach to deal

with uncertainty by modelling input data as random variables. Although attractive and elegant,

probabilistic approaches can be impractical: precise knowledge of probability distributions is

rare, and even when such distributions are accessible, the associated mathematical models can

be computationally prohibitive. This viewpoint is developed more deeply by Bertsimas and

Thiele [2006], who advocate Robust Optimization (RO) [Ben-Tal et al., 2009] as an alternative

approach to cope with uncertainty. Indeed, RO offers a powerful framework that accounts for

observation uncertainty and strives to obtain solutions that are worst-case optimal.

Notation

Without loss of generality, all matrices considered are real. The operator [x]+ := max
(
x, 0

)

denotes the nonnegative part of x, and sgn (x) is the sign of x. The set of symmetric matrices

is denoted by S d ⊂ Rd×d, and by S d
+ := {X ∈ S d | X � 0} the convex cone of symmetric

and positive semidefinite matrices. Let S d
d := {X ∈ S d | xn,n = 1, n = 1, . . . , d} be the set

of matrices with unitary diagonal. Using this notation, the set of correlation matrices is defined

as C d := S d
+ ∩ S d

d . Although the entries of a correlation matrix are in the box
[
−1, 1

]
,

this constraint is automatically satisfied by the other two, since if X is symmetric and positive

semidefinite (and thus, ∀u ∈ Rd, u>Xu ≥ 0) and it has ones on its diagonal, then

u>Xu =
∑

n,m
unumxn,m =

∑
n6=m unumxn,m +

∑
n
u2
n ≥ 0 ,

where the last equality uses that xn,n = 1. The inequality is satisfied for all u, and thus taking

um = un = 1, and zero for the rest of the entries, results in xm,n = xn,m ≥ −1, whereas setting

um = 1, un = −1 implies xmn = xn,m ≤ 1.

Coming back to the notation, the Frobenius norm is denoted by ‖X‖F =
√∑

n,m xn,m
2, the

induced 2-norm by ‖X‖2 = σmax(X) (largest singular value of X, which coincides with the

square root of the largest eigenvalue of X>X, σmax(X) =
√
λmax(X>X)), and for matrices X

and Y of the same dimension, X ◦Y denotes their Schur (element-wise) product.
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5.2 Nearest Correlation Matrix under Uncertainty

5.2.1 Background

The basic Nearest Correlation Matrix (NCM) problem of [Higham, 2002] starts with an d ×
d real symmetric matrix C, which may fail to be a correlation matrix (a symmetric positive

semidefinite matrix with ones on the diagonal) due to measurement errors, noise, or otherwise.

To fix this deficiency, NCM seeks the nearest matrix in the set C d. Higham [2002] casts NCM

as the following orthogonal projection task:

min
X∈C d

{
‖X−C‖2F

}
. (5.1)

This formulation, however, has a limitation: it requires the observation matrix C to be available

exactly. But C contains measurements that might have different levels of uncertainty; in fact,

some of its entries might be even missing. One way to deal with such uncertain C is to consider

a W-weighted version of NCM [Higham, 2002]

min
X∈C d

{
‖W ◦ (X−C)‖2F

}
,

where W is a matrix of nonnegative weights that expresses the confidence in the measurements.

From a practical standpoint however, it is not always clear how to set the weights W in a

principled manner because obtaining these weights may itself be a difficult estimation problem.

The main difficulty of this approach is that the observation matrix C might be an arbitrary sample

from some uncertainty set U . It seems therefore inappropriate to find the nearest correlation

matrix to an arbitrary C that has been observed. It seems more sensible to look for a conservative

solution that works well for the entire uncertainty set U . The RO paradigm [Ben-Tal et al., 2009;

Bertsimas and Thiele, 2006] translates this wish into a problem designed to protect against the

worst-case, namely,

min
X∈C d

{
max
C∈U

{
‖X−C‖2F

}}
. (5.2)

This problem encompasses the original NCM Problem (5.1) if there are exact observations. In

this case, the uncertainty set U is the singleton {C}, whereby the inner maximization in Prob-

lem (5.2) disappears. More realistically, U 6= {C}, and in this case, unless U has a convenient

structure, the inner maximization in Problem (5.2) may be intractable. Thus, a proper balance

between faithful modelling of uncertainty and computational practicality should be found.

Complementary to the robust paradigm, the uncertainty can be introduced with another model:

instead of a worst-case optimal solution, look for a best-case solution by solving the problem

min
X∈C d

{
min
C∈U

{
‖X−C‖2F

}}
,
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which is based on an exploratory uncertainty model. The key idea behind this model is that

sometimes it is not clear which uncertainty set to use. A possible approach is to start with a

crude uncertainty set U , obtain the best-case solution under it, and perhaps use this solution to

refine the uncertainty set. Thus, this approach to handling uncertainty is called an exploratory

approach. Such exploration is also helpful if the (uncertain) observation matrix is expected to

lie in the uncertainty set.

With the two basic approaches defined, an uncertainty model has to be selected. A convenient

and easy to interpret one is just a collection of intervals. More precisely, the observation matrix

C is assumed to lie in the uncertainty set given by the box

Ubox := {Y ∈ S d | L ≤ Y ≤ U} , (5.3)

where L,U ∈ S d specify lower and upper bounds on entries of C (inequalities are to be

understood element-wise).

Other possible uncertainty sets may include the spectral ball:

Usball := {Y ∈ S d | ‖Y‖2 ≤ r} ,

for some radius r > 0. More generally, uncertainties in the spectrum of the observation matrix

may be considered, although such models might be somehow less interpretable than the box.

Both the robust and exploratory approaches are discussed next under an optimization point of

view.

5.2.2 Robust Approach

Under the interval based uncertainty model of Equation (5.3), Problem (5.2) becomes

min
X∈C d

{
max

C∈Ubox

{
‖X−C‖2F

}}
, (5.4)

which is called the Robust Nearest Correlation Matrix (R-NCM) problem.

Albeit convex, Problem (5.4) is not in a form conducive to efficient optimization. Lemma 5.1

shows how to transform it into an equivalent, but more convenient convex optimization problem.

Lemma 5.1 (Convex Formulation for the R-NCM Problem). Let Ubox be as given by Equa-

tion (5.3). Let M and R be matrices that denote the midpoints and radii of the uncertainty
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intervals, respectively, that is

M := L + U
2 ; mn,m := ln,m + un,m

2 ,

R := U− L
2 ; rn,m := un,m − ln,m

2 .

Then, Problem (5.4) has a unique optimal solution Xop, obtainable by solving the convex opti-

mization problem

min
X∈C d

{
‖X−M‖2F + 2‖R ◦ (X−M)‖1

}
. (5.5)

Proof. The inner maximization in Problem (5.4) can be eliminated using the definition of the

Frobenius norm. Since ‖X−C‖2F = ∑
n,m (xn,m − cn,m)2, this maximization separates into

scalar problems of the form

max
cn,m∈R

{
(xn,m − cn,m)2

}
s.t. ln,m ≤ cn,m ≤ un,m ,

for 1 ≤ n,m ≤ d. A brief calculation shows that the optimal value of cn,m, which is just the

further point to xn,m in the range
[
ln,m, un,m

]
, is given by

cop
n,m =




un,m if xn,m < mn,m ,

ln,m if xn,m ≥ mn,m .
(5.6)

Equation (5.6) can be compactly written as

cop
n,m = mn,m − sgn (xn,m −mn,m)rn,m ,

using which the value of the objective function for the scalar problem becomes

(
xn,m − cop

n,m

)2
= (xn,m −mn,m + sgn (xn,m −mn,m)rn,m)2

= (xn,m −mn,m)2 + 2|xn,m −mn,m|rn,m + r2
n,m .

Therefore, using matrix notation:

‖X−Cop‖2F =
∑

n,m

(
xn,m − cop

n,m

)2

=
∑

n,m

(
(xn,m −mn,m)2 + 2|xn,m −mn,m|rn,m + r2

n,m

)

= ‖X−M‖2F + 2‖R ◦ (X−M)‖1 + ‖R‖2F .

Dropping constant terms results into Problem (5.5).
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Problem (5.5) is convex, and well solvable by a variety of techniques. But unlike the ordinary

NCM problem, it is non-differentiable, which makes it harder to solve. Nevertheless, as it is

shown in Section 5.3, it fits nicely under the paradigm of Proximal Methods (PMs).

5.2.3 Exploratory Approach

While in general conservative robust models might be preferred, when exploring different un-

certainty models (different boxes Ubox in the particular case of Equation (5.3)) it may be more

natural to first compute the “best” matrices in the intersection of Ubox and C d. If this intersec-

tion is empty, it is interesting to find the point in Ubox closest to C d. These matrices can be

computed solving:

min
X∈C d

{
min

C∈Ubox

{
‖X−C‖2F

}}
. (5.7)

Typically, Problem (5.7) admits multiple solutions: there can be several pairs (Xop,Cop) that

minimize the objective function. To ensure uniqueness, this problem can be regularized by

adding a penalty based on departure from an initial guess G:

min
X∈C d

{
min

C∈Ubox

{
‖X−C‖2F

}
+ γ‖X−G‖2F

}
. (5.8)

Problem (5.8) is called the Exploratory Nearest Correlation Matrix (E-NCM) problem.

The penalty term in Problem (5.8) has the following impact. As γ → ∞, it turns the problem

into the projection of G onto C d, that is, to the original NCM problem. If γ = 0, the problem

may have multiple solutions, while for γ > 0, the problem has a unique exploratory solution

nearest to the input guess G. This means that γ controls the region of exploration. If no initial

guess G is available, an alternative is to set G = 0, so the penalty term reduces to classical

Tikhonov regularization.

The solution of Problem (5.8) is independent of the order of minimization, which can therefore

be swapped, but the chosen formulation allows to recast Problem (5.8) into a form that eliminates

the inner minimization and is thus easier to analyse.

Lemma 5.2 (Convex Formulation for the E-NCM Problem). Let M and R be defined as in

Lemma 5.1. Then, Problem (5.8) is equivalent to the following convex optimization problem

min
X∈C d

{∥∥∥[|X−M| −R]+
∥∥∥

2

F
+ γ‖X−G‖2F

}
, (5.9)

where the projection [·]+ and absolute value |·| operators are applied element-wise.
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Proof. As the inner minimization in Problem (5.8) is separable and the regularization term is

constant with respect to C, it suffices to consider first the scalar case

min
cn,m∈R

{
(xn,m − cn,m)2

}
s.t. ln,m ≤ cn,m ≤ un,m ,

for 1 ≤ n,m ≤ d, where the regularization term is removed for being constant with respect to

cn,m. The optimal value of cn,m, which is the nearest point to xn,m in the range
[
ln,m, un,m

]
, is

easily seen to be

cop
n,m = max

(
ln,m,min

(
un,m, xn,m

))
, (5.10)

which can also be expressed as

cop
n,m = xn,m + sgn (mn,m − xn,m) [|xn,m −mn,m| − rn,m]+ ,

Substituting this value, the objective function over cop
n,m becomes

(
xn,m − cop

n,m

)2
= [|xn,m −mn,m| − rn,m]2+ .

Thus, in matrix notation the objective function is

‖X−Cop‖2F =
∥∥∥[|X−M| −R]+

∥∥∥
2

F
,

which combined with Problem (5.8) immediately yields the convex formulation given in Prob-

lem (5.9). Moreover, if γ > 0, the problem is strictly convex, which ensures uniqueness.

5.2.3.1 Matrix Completion

The E-NCM framework also allows to consider matrix completion problems as a special case.

These problems consists in, provided a matrix C with missing entries, fill-in these entries to

complete C to a correlation matrix. In general, such a completion might not exist because the

entries of C might enforce constraints that do not intersect with C d. However, the E-NCM

problem can still be solved to tackle this case in a natural way: setting the uncertainty bounds

ln,m = un,m = cn,m for the observed entries, and ln,m = −1 and un,m = 1 for the unknown

entries.

If a unique solution is mandatory, on the one hand, the problem can be regularized towards

G = 0 by choosing a tradeoff parameter γ > 0. Although this results into the classical Tikhonov

regularization, it expresses a preference towards correlation matrices with low `2 norms. This

can be convenient or not depending on the application framework. On the other, if there ex-

ists some actual meaningful initial guess G 6= 0, and a small enough γ is used, then E-NCM

approximates the original NCM problem with some fixed entries.
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Figure 5.1: Scalar objective functions for the NCM variants, for different weights w
(5.1a) or different radii of uncertainty r (5.1b to 5.1d); the lowest uncertainty with
w = 1/r = 0 [ ] and the highest uncertainty with w = 0/r = 1 [ ]. The objective

of R-NCM and E-NCM is further detailed in 5.1e and 5.1f, respectively.

5.2.4 Discussion

5.2.4.1 Derived Distance Measures

For the different NCM variants considered, the resulting optimization problems can be simplified

to a general expression of the form

min
X∈C d

{F (X)} ,

where F defines an objective function which represents, in some sense, the distance of the

projected matrix X to the original observed matrix (for the classical NCM and its weighted

variant) or to the uncertainty set Ubox. In particular, for the previous variants this objective can

be separated over the different entries of the matrix, F (X) = ∑
n,m F̃ (xn,m), where F̃ stands

for the scalar version of F .

In Figure 5.1, a comparative between the different scalar objective functions is displayed:
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Figure 5.1a. W-Weighted NCM; the objective function is just the weighted squared distance,

F̃ncw(x) = w(x − g)2 ,

a parabola whose width depends on w.

Figure 5.1b. R-NCM; using Lemma 5.1, the scalar objective, as a function of the distance to

the midpoint, becomes:

F̃ncr(x) = (x −m)2 + 2r|x −m| ,

which is a parabola without the centre region, corresponding to
[
−r, r

]
(the arms of the

parabola, as shown in Figure 5.1e).

Figure 5.1c. E-NCM without regularization (γ = 0); in this case, Equation (5.10), allows to

express F̃nceur as

F̃nceur(x) = (x − cop)2 = max
(
l − x, x − u, 0

)2
, (5.11)

which can be rewritten using the midpoint and radius:

F̃nceur(x) = max
(
(x −m)− r,−(x −m)− r, 0

)2
.

The objective function is, therefore, a parabola with an additional flat region equal to 0
between

[
−r, r

]
(illustrated in Figure 5.1f).

Figure 5.1d. E-NCM with a small regularization; assuming g = m (which seems a sensible

first choice), the objective function is:

F̃nce(x) = max
(
(x −m)− r,−(x −m)− r, 0

)2 + γ(x −m)2 ,

which is the same as for Figure 5.1c with an additional squared term that avoids the flat

region.

Figure 5.2 shows a simplified illustration of R-NCM and E-NCM, where the set C d is repre-

sented by a plane. The projection of Ubox over C d, U ′
box = PrC d (Ubox), is depicted as a dark

shadowed region over the plane C d (this projection can be interpreted as the set of possible

solutions, because for any observation matrix in Ubox its NCM belongs to this set). E-NCM

minimizes the distance to the uncertainty set, and therefore yields the pair of points Xop
E ∈ C d

and Cop
E ∈ Ubox whose distance is minimum. By contrast, R-NCM minimizes the worst-case

scenario, so the solution is given by the point Xop
R ∈ C d such that the distance to the furthest

point Cop
R ∈ Ubox (the worst-case distance) is minimum.
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Robust Setting

C d

Ubox

U ′
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Xop
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E

Xop
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(a)

Exploratory Setting

C d

Ubox

U ′
box

Cop
R

Xop
R

Cop
E = Xop

E

(b)

Figure 5.2: Schematic representation of the two variants of the NCM problem. In
5.2a the conservative approach R-NCM is preferable, while in 5.2b E-NCM finds

the solution that lies inside the box.

In Figure 5.2a, the solution provided by E-NCM is close to the border of U ′
box, while R-NCM

gives a solution close to the centre. In contrast, Figure 5.2b shows a situation where the solution

of E-NCM and R-NCM are at about the same distance to the border of U ′
box. In this case the

sets Ubox and C d intersect, therefore E-NCM finds a solution contained in Ubox.

5.3 Optimization

The two uncertainty based versions of NCM have been formulated as convex optimization prob-

lems. Although a general-purpose convex optimization solver could be used, it is important to

derive customized algorithms for the new formulations. In fact, a carefully designed optimiza-

tion procedure is known to help significantly even for the standard NCM problem [Borsdorf and

Higham, 2010; Higham, 2002; Qi and Sun, 2006, 2010]. In order to develop such customized

algorithms, two non-trivial issues have to be solved: (i) the projection onto the set C d; and

(ii) the non differentiability of the objective function (in the case of the R-NCM problem). Both

issues can be addressed using the PMs framework, in particular, using the Douglas–Rachford

(DR) algorithm.

5.3.1 Approach: DR for NCM with Uncertainty

In order to apply the DR idea to the NCM variants, the corresponding objective functions should

be split conveniently. In matrix notation, the objective function for the R-NCM problem be-

comes:

Fncr(X) := ‖X−M‖2F + 2‖R ◦ (X−M)‖1 ,
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whereas for E-NCM is

Fnce(X) :=
∥∥∥[|X−M| −R]+

∥∥∥
2

F
+ γ‖X−G‖2F .

By introducing the indicator function of the correlation matrix set, Problems (5.5) and (5.9) can

be rewritten as

min
X∈S d

{
Fncr(X) + ι{C d}(X)

}
, (5.12)

min
X∈S d

{
Fnce(X) + ι{C d}(X)

}
. (5.13)

The key question is how to separate the objective functions of Problems (5.12) and (5.13) before

invoking DR. Simply decomposing the task into proximity of Fncr (or Fnce) and ι{C d} is not

practical, since the Proximity Operator (ProxOp) for the indicator function requires solving

the basic NCM projection problem, and in the course of solving the overall Problems (5.12)

and (5.13) this process might be repeated many times. This undue cost should be avoided(i)

while specializing DR to solve Problems (5.12) and (5.13).

In the light of this discussion, a more practical splitting is required. Let the first function f1 be

the indicator of S d
+, and let the second f2 be the sum of the appropriate convex function (Fncr

or Fnce) and the indicator function of S d
d . Formally:

f1 = ι{S d
+} ,

f2 =





Fncr + ι{S d
d } for R-NCM ,

Fnce + ι{S d
d } for E-NCM .

This splitting is valid since C d = S d
+ ∩S d

d , whereby

ι{C d} = ι{S d
+} + ι{S d

d } .

The ProxOp of f1, detailed in Section A.1.3, is nothing but the orthogonal projection onto S d
+.

Such projection can be performed by using the eigenvector decomposition X = QXΛXQ−1
X ,

truncating the negative eigenvalues to 0, and then recomposing the matrix with the non-negative

eigenvalues, namely

PrS d
+

(X) = QX [ΛX]+ Q−1
X .

The ProxOp of f2 can be computed by first evaluating the ProxOp of Fncr or Fnce , and then

projecting the result onto S d
d . Expressions for the ProxOp of Fncr or Fnce are given below;

projection onto S d
d can be computed by simply setting the diagonal entries to 1.

(i)There is also a theoretical reason for this choice: the basic DR algorithm requires ProxOps to be exact, whereas
projection onto C d can be computed only inexactly, as it lacks a closed form solution.
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5.3.2 Proximity Operators

Given the separability of both Fncr and Fnce , it is sufficient to derive the ProxOps for the scalar

cases F̃ncr and F̃nce , since the ProxOps of the matrix versions can be recovered by applying the

scalar versions to every matrix entry.

5.3.2.1 Proximity Operator of Fncr

Using Equation (5.6), the scalar objective function F̃ncr can be written as

F̃ncr(x) = (x − cop)2 = max
(
u − x, x − l

)2
.(ii)

which is a more convenient expression to compute the ProxOp for R-NCM. Therefore, the prob-

lem to be solved is

prox
δF̃ncr

(x) = arg min
x̂∈R

{1
2(x̂ − x)2 + δF̃ncr(x̂)

}

= arg min
x̂∈R

{1
2(x̂ − x)2 + δmax

(
u − x̂, x̂ − l

)2
}
. (5.14)

The optimum x̂op will be achieved when zero belongs to the subdifferential of the objective

function of Problem (5.14), which is non-differentiable for u − x̂ = x̂ − l, that is, when x̂ =
u+l

2 = m. In particular, the subdifferential coincides with the derivative for x̂ 6= m, whereas

for x̂ = m it is the derivative of the distance term plus the subdifferential of the maximum. This

latter subdifferential is given in this case by the set of all the slopes between that of the parabolæ

(u − x̂)2 and (x̂ − l)2 evaluated at that point (this is intuitively clear in Figure 5.1e). Formally:

∂x̂

(1
2(x̂ − x)2 + δmax

(
u − x̂, x̂ − l

)2
)

= x̂ − x + δ∂x̂
(
max

(
u − x̂, x̂ − l

)2)

= x̂ − x +





−2δ(u − x̂) if x̂ < m ,
[
−2δr, 2δr

]
if x̂ = m ,

2δ(x̂ − l) if x̂ > m .

There are thus three different cases:

(i) If x̂op < m, then

0 = x̂op − x − 2δ(u − x̂op) =⇒ x̂op = x + 2δu
1 + 2δ ,

which is valid for x̂op = x+2δu
1+2δ < m, that is x < m(1 + 2δ)− 2δu = m − 2δr.

(ii)Indeed, in this expression there is a missing term −r2 comparing to the objective of Problem (5.5), but it is
constant with respect to x and therefore it shall be omitted for clarity.
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(ii) The equality x̂op = m is satisfied when

0 ∈ x̂op − x +
[
−2δr, 2δr

]
= m − x +

[
−2δr, 2δr

]
=⇒ m − 2δr ≤ x ≤ m + 2δr .

(iii) Finally, if x̂op > m, then

0 = x̂op − x + 2δ(x̂op − l) =⇒ x̂op = x + 2δl
1 + 2δ ,

which is valid for x̂op = x+2δl
1+2δ > m, that is x > m(1 + 2δ)− 2δl = m + 2δr.

Therefore, the ProxOp of F̃ncr is:

prox
δF̃ncr

(x) =





x+2δu
1+2δ if x ≤ m − 2δr ,

m if m − 2δr ≤ x ≤ m + 2δr ,

x+2δl
1+2δ if m + 2δr ≤ x ,

(5.15)

which is a convex combination of the initial point x and the furthest point in the uncertainty set,

or directly the midpoint if it is near enough.

5.3.2.2 Proximity Operator of Fnce

The ProxOp for E-NCM can be easily computed using the expression of Equation (5.11) for

F̃nce and adding the regularization term

F̃nce(x) = (x − cop)2 = max
(
l − x, x − u, 0

)2 + γ(x − g)2 ,

which results in the problem

prox
δF̃nce

(x) = arg min
x̂∈R

{1
2(x̂ − x)2 + δF̃nce(x̂)

}

= arg min
x̂∈R

{1
2(x̂ − x)2 + δ

(
max

(
l − x̂, x̂ − u, 0

)2 + γ(x̂ − g)2
)}

.
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In this case, although piece-wise defined, the objective function is differentiable, and so the

optimum is found by equalling its derivative to zero. This derivative is given by the expression:

d

dx̂

(1
2(x̂ − x)2 + δ

(
max

(
l − x̂, x̂ − u, 0

)2 + γ(x̂ − g)2
))

= x̂ − x + 2δγ(x̂ − g) + δ
d

dx̂
max

(
l − x, x − u, 0

)2

= x̂ − x + 2δγ(x̂ − g) +





−2δ(l − x̂) if x̂ < l ,

0 if l ≤ x̂ ≤ u ,

2δ(x̂ − u) if x̂ > u .

There are again three possible scenarios:

(i) If x̂op < l, then

0 = x̂op − x + 2δγ(x̂op − g)− 2δ(l − x̂op) =⇒ x̂op = x + 2δl + 2δγg
1 + 2δ + 2δγ ,

which is valid for x̂op = x+2δl+2δγg
1+2δ+2δγ < l, that is x < l + 2δγ(l − g).

(ii) For l ≤ x̂op ≤ u, the equation is:

0 = x̂op − x + 2δγ(x̂op − g) =⇒ x̂op = x + 2δγg
1 + 2δγ ,

valid for l ≤ x̂op = x+2δγg
1+2δγ ≤ u, that is l + 2δγ(l − g) ≤ x ≤ u + 2δγ(u − g).

(iii) Finally, if x̂op > u, then

0 = x̂op − x + 2δγ(x̂op − g) + 2δ(x̂op − u) =⇒ x̂op = x + 2δu + 2δγg
1 + 2δ + 2δγ ,

which is valid for x̂op = x+2δu+2δγg
1+2δ+2δγ > u, that is x > u + 2δγ(u − g).

Consequently, the ProxOp of F̃nce becomes:

prox
δF̃nce

(x) =





x+2δl+2δγg
1+2δ+2δγ if x ≤ l + 2δγ(l − g) ,

x+2δγg
1+2δγ if l + 2δγ(l − g) ≤ x ≤ u + 2δγ(u − g) ,

x+2δu+2δγg
1+2δ+2δγ if u + 2δγ(u − g) ≤ x ,

(5.16)

which is a convex combination of the initial point x, the nearest point in the uncertainty set (this

term disappears if x is already on the uncertainty set), and the initial guess.
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5.3.3 Algorithms

With the ProxOps derived above, and the DR algorithm of Section 2.5.5, the only remaining

detail is the stopping criterion, for which the absolute normalized change may be used:

1
d
‖X[t] −X[t−1]‖F < εstop ,

where εstop is a small constant, and the normalization term 1
d allows to compare the behaviour

for different matrix sizes d. This criterion coincides (up to a constant) with the residual of the

nonlinear fixed-point equation iterated by DR. Nevertheless, and for ensuring more stability, the

previous criterion is combined with the normalized change of the other DR sequence:

max
(1

d
‖X[t] −X[t−1]‖F ,

1
d
‖Y[t+1] −Y[t]‖F

)
< εstop .

The overall algorithms are described in Algorithm 5.1 for R-NCM, and in Algorithm 5.2 for

E-NCM.

5.3.4 Weighted Variants of R-NCM and E-NCM

Both uncertainty based models R-NCM and E-NCM can be extended to W-weighted versions:

min
X∈C d

{
max

C∈Ubox

{
‖W ◦ (X−C)‖2F

}}
, (5.17)

min
X∈C d

{
min

C∈Ubox

{
‖W ◦ (X−C)‖2F + γ‖W ◦ (X−G)‖2F

}}
, (5.18)

where the weights wn,m represents the confidence on that particular entry(iii). Although an

effect that is similar to the presence of weights can be obtained by varying the widths of the

box constraints (as illustrated in Figure 5.1, deviations of the entries with higher uncertainty are

more penalized by R-NCM and less penalized by E-NCM than that of the other entries, and

vice-versa), the weighted variants are shortly described next for completeness.

Lemmas 5.1 and 5.2 can be adapted to Problems (5.17) and (5.18) to obtain the convex formu-

lations:

min
X∈C d

{
‖W ◦ (X−M)‖2F + 2‖W ◦R ◦ (X−M)‖1

}
, (5.19)

min
X∈C d

{∥∥∥W ◦ [|X−M| −R]+
∥∥∥

2

F
+ γ‖W ◦ (X−G)‖2F

}
. (5.20)

(iii)The regularization term in Problem (5.18) has been also weighted (more confidence in the entry should imply
more confidence in the initial guess), but a model without weighting this second term can be defined straightfor-
wardly.
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DR Algorithm for Robust Nearest CorrelationMatrix

Input: L,U ∈ S d ;

Definition: Ubox := {Y ∈ S d | L ≤ Y ≤ U}.

Output: X[t] ' arg minX∈C d

{
maxC∈Ubox

{
‖X−C‖2F

}}
;

Initialization: Y[0] ∈ S d ; ε ∈
(
0, 1
)

; δ > 0 ;

1: for t = 0, 1, . . . do

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ProxOp of f2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2: X[t] ← ProxRob(Y[t], L, U, δ) ; I ProxOp of Fncr (Equation (5.15)).

3: x
[t]
n,n ← 1, for n = 1, . . . , d ; I Projection over S d

d .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Step size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4: set γ[t] ∈
[
ε, 2− ε

]
;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ProxOp of f1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5: T← 2X[t] −Y[t] ;

6: QTΛTQ−1
T ← T ; I Eigenvector decomposition.

7: T← QT [ΛT]+ Q−1
T ; I Projection over S d

+.

. . . . . . . . . . . . . . . . . . . . . . . Update and stopping criterion. . . . . . . . . . . . . . . . . . . . . . . .

8: Y[t+1] ← Y[t] + γ[t](T−X[t]) ;

9: if max
( 1

d ‖X[t] −X[t−1]‖F , 1
d ‖Y[t+1] −Y[t]‖F

)
< εstop then

10: return X[t] ;

11: end if

12: end for

. . . . . . . . . . . . . . . . . . . . ProxOp of Fncr (additional function). . . . . . . . . . . . . . . . . . . . .

1: function ProxRob(Y, L, U, δ)

2: M← L+U
2 ; R ← U−L

2 ;

3: for n,m = 1, . . . , d do

4: if yn,m ≤ mn,m − 2δrn,m then

5: xn,m ← yn,m+2δun,m
1+2δ ;

6: else if yn,m < mn,m + 2δrn,m then

7: xn,m ← mn,m ;

8: else

9: xn,m ← yn,m+2δln,m
1+2δ ;

10: end if

11: end for

12: return X ;

13: end function

Algorithm 5.1: DR for solving the Robust Nearest Correlation Matrix problem.
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DR Algorithm for Exploratory Nearest CorrelationMatrix

Input: L,U ∈ S d ; G ∈ S d ; γ ∈ R ;

Definition: Ubox := {Y ∈ S d | L ≤ Y ≤ U}.

Output: X[t] ' arg minX∈C d

{
minC∈Ubox

{
‖X−C‖2F + γ‖X−G‖2F

}}
;

Initialization: Y[0] ∈ S d ; ε ∈
(
0, 1
)

; δ > 0 ;

1: for t = 0, 1, . . . do

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ProxOp of f2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2: X[t] ← ProxExpl(Y[t], L, U, G, γ, δ) ; I ProxOp of Fnce (Equation (5.16)).

3: x
[t]
n,n ← 1, for n = 1, . . . , d ; I Projection over S d

d .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Step size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4: set γ[t] ∈
[
ε, 2− ε

]
;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ProxOp of f1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5: T← 2X[t] −Y[t] ;

6: QTΛTQ−1
T ← T ; I Eigenvector decomposition.

7: T← QT [ΛT]+ Q−1
T ; I Projection over S d

+.

. . . . . . . . . . . . . . . . . . . . . . . Update and stopping criterion. . . . . . . . . . . . . . . . . . . . . . . .

8: Y[t+1] ← Y[t] + γ[t](T−X[t]) ;

9: if max
( 1

d ‖X[t] −X[t−1]‖F , 1
d ‖Y[t+1] −Y[t]‖F

)
< εstop then

10: return X[t] ;

11: end if

12: end for

. . . . . . . . . . . . . . . . . . . . ProxOp of Fnce (additional function). . . . . . . . . . . . . . . . . . . . .

1: function ProxExpl(Y[t], L, U, G, γ, δ)

2: for n,m = 1, . . . , d do

3: if yn,m ≤ ln,m + 2δγ(ln,m − gn,m) then

4: xn,m ← yn,m+2δln,m+2δγgn,m
1+2δ+2δγ ;

5: else if yn,m < un,m + 2δγ(un,m − gn,m) then

6: xn,m ← yn,m+2δγgn,m
1+2δγ ;

7: else

8: xn,m ← yn,m+2δun,m+2δγgn,m
1+2δ+2δγ ;

9: end if

10: end for

11: return X ;

12: end function

Algorithm 5.2: DR for solving the Exploratory Nearest Correlation Matrix problem.
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The DR algorithm can still be applied using the same splitting as for the unweighted problems.

In particular, the ProxOps of Problems (5.19) and (5.20) are also applied element-wise, and they

only differ in a constant from those of Equations (5.15) and (5.16). Thus, the weighted ProxOps

required in Problems (5.19) and (5.20) for a component xn,m with a weight wn,m and a step

δ̂ can be computed using Equations (5.15) and (5.16) with step δ = δ̂wn,m. The rest of the

algorithms will remain the same.

5.4 Experiments

This section presents several experiments to compare the computational costs of the R-NCM

and E-NCM with that of the original NCM problem, and to illustrate the behaviour of these

three approaches under different conditions.

5.4.1 Computational Time

The focus of this first experiment is to compare both variants of the NCM problem with the

original one in terms of the computational time and number of iterations, in order to estimate

how much additional effort they suppose.

For this experiment, random correlation matrices are generated in a manner similar to Qi and

Sun [2011]. In concrete, using the gallery function of Matlab with some eigenvalues close to

zero; these matrices are then perturbed with random noise(iv) and truncated to ensure that their

entries lie in
[
−1, 1

]
. The uncertainty box is centred over the corresponding perturbed correla-

tion matrix, so that its entry-wise width is given by a uniformly distributed random uncertainty

matrix, with about the 20% of its entries equal to zero (so the 20% is considered reliable, without

uncertainty). The box is then truncated to lie into
[
−1, 1

]d. For each size, 100 random examples

are generated. The stopping threshold is εstop = 10−4, and since E-NCM requires choosing

a regularization parameter γ, the results are shown for three values at different scales, namely

10−3, 10−2 and 10−1.

Figure 5.3 compares the computational time and the number of iterations in function of the

matrix sizes for R-NCM, E-NCM, and the original NCM problem. Unsurprisingly, the original

NCM is the fastest problem to solve as it is the least restrictive. R-NCM is the hardest problem,

while for E-NCM, the smaller the parameter γ, the slower it becomes. This happens since,
(iv)The Matlab code (for a matrix of size n) is:

G=10.\^{}[-4:4/(n-1):0];
G=gallery(’randcorr’,n*G/sum(G));
G=0.9*G+0.1*(2*rand(size(G))-1); G=(G+G’)/2;
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Figure 5.3: Computational time and number of iterations with respect to the size
for the original NCM problem, R-NCM and E-NCM. The error bars represent one

standard deviation.

for small γ, the gradient of the regularization term contributes a small amount, which makes

the problem to depend more on the non-smooth part. When γ � 0, E-NCM tends to the

original NCM problem, which is much easier to solve. The same remarks apply to the number

of iterations, which seems to stabilize as the size grows, again with NCM requiring the fewest

iterations, and R-NCM the most.

5.4.2 Evolution of the Residual

The main DR residual is used as part of the stopping criterion of the algorithms. Figure 5.4 plots

this residual versus the number of iterations for two matrices of sizes 50× 50 and 250× 250. In

addition, lighter colours represent the residuals of the other sequence in the DR algorithm.

As before, the easiest problem is NCM, whose residual achieves rapidly the machine epsilon

limit in both cases, while R-NCM lies between NCM and E-NCM in speed (considering the

main DR sequence). Although there is no reason to expect monotonic descent, the results show

a fairly stable descent, except for R-NCM for the smaller matrix. Nevertheless, there does not

seem to be any severe ill effects of fluctuation.
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Figure 5.4: Evolution of the residual of DR (dark colours) and the residual of the
alternative sequence (light colours) for a 50×50 matrix (upper row) and a 250×250

matrix (lower row).

5.4.3 Application to NCM with Prescribed Entries

The following example shows how to apply the E-NCM variant to the NCM problem with fixed

entries avoiding the use of hard constraints. This means that, even when the prescribed entries

do not correspond to any correlation matrix (and therefore the constraints cannot be satisfied),

the problem of E-NCM would still be solvable. In this context, R-NCM cannot be applied, as

it does not consider any initial guess (as E-NCM does), but it is only based on optimizing the

worst-case error.

In particular, the next 5 × 5 NCM problem comes from [Qi and Sun, 2010]. This example

requires computing the NCM to the matrix

C =




1.00 −0.50 −0.30 −0.25 −0.70
1.00 0.90 0.30 0.70

1.00 0.25 0.20
1.00 0.75

1.00




,
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such that the bold entries remain fixed. This is equivalent to the following NCM problem with

additional equality constraints





min
X∈C d

{
‖X−C‖2F

}

s.t. x1,2 = c1,2 , x1,4 = c1,4 , x1,5 = c1,5 , x2,3 = c2,3 .
(5.21)

In order to tackle this constrained NCM problem as an instance of E-NCM, the lower and upper

bound matrices L and U are set to −1 and 1 for the unknown (uncertain) entries, and to the

corresponding values of C for the fixed (prescribed) ones:

L =




1.00 −0.50 −1.00 −0.25 −0.70
1.00 0.90 −1.00 −1.00

1.00 −1.00 −1.00
1.00 −1.00

1.00




,

U =




1.00 −0.50 +1.00 −0.25 −0.70
1.00 0.90 +1.00 +1.00

1.00 +1.00 +1.00
1.00 +1.00

1.00




.

With this particular configuration of the E-NCM problem, the changes in the uncertain entries

are only penalized by the regularization term of Problem (5.8) (the width of the uncertainty box

is maximum for these entries, and thus the distance to the box is zero), whereas the variation in

the fixed entries are penalized by both terms (the width of the box is zero, and thus any deviation

is penalized). Therefore, and depending on the regularization parameter γ, the unknown entries

will be much more flexible than the prescribed ones.

The corresponding solution obtained with parameters γ = 10−4 and εstop = 10−10 is

Xop =




1.0000 −0.5000 −0.2830 −0.2500 −0.7000
1.0000 0.9000 0.3391 0.6134

1.0000 0.2179 0.2710
1.0000 0.7198

1.0000




.

This solution is the same as the one reported in Qi and Sun [2010]. But the point worth noting

here is that the E-NCM approach does not impose any hard constraints on the problem, and as

stated before, if there were no correlation matrix with the prescribed fixed entries (as it would

happen if the intersection between the box and C d were empty), this approach would still pro-

vide a correlation matrix near the box, whereas when formulated as a constraint problem like
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Problem (5.21), it would not have any feasible solution (and thus, depending on the implemen-

tation, it may not converge).

5.4.4 Matrix Completion

The previous experiment illustrates how to apply the E-NCM problem to the NCM problem

with fixed entries. The next two experiments aim to show the behaviour of NCM, R-NCM

and E-NCM when tackling the problem of completing matrices, in which a correlation matrix

should be recovered from a set of uncertain observations. In the first experiment the uncertainty

box is generated randomly without the presence of a true correlation matrix, whereas in the

second experiment the box is determined by a certain amount of random perturbations of a real

correlation matrix.

For both experiment, the original NCM problem is solved by projecting the medium point of

the box, which seems a sensible approach (it is, indeed, the projection of the averages of all the

matrices in the box). It is compared with the solution of R-NCM and of E-NCM with γ = 10−4

(and the centre of the box as initial guess). The experiments are repeated generating 100 different

random boxes, with a stopping threshold of εstop = 10−4, in order to average the results.

Three different error measures are presented for a recovery matrix Xrc with respect to a true

observation Ctr into the uncertainty box Ubox:

(i) The normalized distance from the recovered matrix to the real observation matrix, namely

the completion error:

Ecom
(
Xrc; Ctr) = 1

‖Ctr‖F

∥∥Xrc −Ctr∥∥
F .

(ii) The normalized maximum distance to any point of the box, the so called robust error:

Erob
(
Xrc; Ctr) = 1

‖Ctr‖F
max

C∈Ubox
{‖Xrc −C‖F } .

(iii) The normalized minimum distance to the box, the exploratory error:

Eexp
(
Xrc; Ctr) = 1

‖Ctr‖F
min

C∈Ubox
{‖Xrc −C‖F } .

The two latter errors are just the objective function of R-NCM (the error in the worst-case

scenario) and E-NCM (the error in the best-case scenario) respectively.
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5.4.4.1 Random Uncertainty Box

In this first experiment, a random matrix is generated as the centre of an uncertainty box, whose

radius is varied from zero to two (at its maximum width, the box covers all the possible cor-

relation matrices independently of its initial centre). Inside each box, a random matrix Ctr is

generated as the real unknown observation matrix. Therefore, in this case there is no true corre-

lation matrix associated with the uncertainty box.

Figure 5.5 depicts the errors obtained in function of the uncertainty, and the ratios between the

errors of R-NCM and E-NCM and the error of NCM (thus, a ratio below one indicates that the

model outperforms the classical approach of NCM).

Obviously, R-NCM achieves the best worst-case error, as it is precisely the objective of the R-

NCM minimization problem(v). Considering the distance to the observation matrix into the box

Ctr, R-NCM performs slightly worse than mere projection of the middle point. On the other

side, E-NCM performs worse than the other two approaches for the first two errors, because this

model considers the nearest point of the box to C d, but in this case the box, in principle, may not

intersect with C d, and there is no reason to think that nearest points into the box are more likely

to be the true observation (in fact, in this experiment the observation is generated randomly with

independence of the distance to C d). As expected, it performs better in the exploratory error

since it is its objective function. The differences in all the measurements disappear when the

uncertainty is zero, since in that case all the methods obtain as the solution the projection of

the unique matrix in the box over C d, and when the uncertainty is maximum, because in such a

degenerate case the box covers all the matrices in between
[
−1, 1

]d×d, so its centre is the matrix

identically zero, and the three recovery correlation matrices are the identity (which seems the

more sensible guess when there is no information).

5.4.4.2 Box from Perturbed Observations

In this second example, 100 different random boxes are generated as follows: a real correlation

matrix Ctr is built randomly, and then 10 different random perturbations of it are made to define

a box as the minimum one that covers all these perturbations, whose bounds are the minimum

and maximum element-wise of these matrices. This framework is more realistic, as there exists

a true (although unknown) correlation matrix but the only available information are perturbed

observations of it.

The same three measurements are used here but in this case the completion error is called recov-

ery error, because Ctr is indeed a real correlation matrix (thus this error represents the difference
(v)Although the worst-case error increase with the uncertainty, the normalization produces the small decrease in

the final region of the graphic.
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Figure 5.5: Results for the first completion experiment (random box): completion,
maximum (robust) and minimum (exploratory) error as functions of the uncertainty
(radius of Ubox), and ratio with respect to the error of NCM. The error bars represent

one standard deviation.

between the recovered correlation matrix and the real one). The perturbations are obtained

adding white Gaussian noise where the standard deviation is varied as an indicator of the uncer-

tainty.

Figure 5.6 shows the errors in function of the uncertainty (the standard deviation of the per-

turbations). In this experiment E-NCM outperforms the other two approaches in terms of the

recovery error for most of the uncertainty levels. The main difference with the previous experi-

ment is that, in this case, there is a true correlation matrix that is “near” to the uncertainty box

(by construction, with 10 perturbations a particular entry of Ctr will belong to the uncertainty
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Figure 5.6: Results for the second completion experiment (perturbation box): recov-
ery, maximum (robust) and minimum (exploratory) error as functions of the uncer-
tainty (deviation of the perturbations), and ratio with respect to the error of NCM.
The last ratio is omitted because it is distorted by values near zero; the errorbars

represent one standard deviation.

box with a probability of 1− 1
29 , that is, one minus the probability of having all the perturbations

below/above the true entry), and by definition E-NCM looks for the correlation matrix nearest

to the box, and thus the approach of E-NCM benefits from this framework. R-NCM performs

worse than NCM when the uncertainty is moderate, but it has a lower recovery error for higher

perturbation levels (even beating E-NCM for extreme noises). Considering the other two mea-

sures, R-NCM attains the best robust error, and E-NCM the best exploratory error, with NCM

in a middle position for both errors. The exploratory error is very near zero as the box is likely

to intersect with C d, and therefore the entries of the solutions are also, in many cases, in Ubox.
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5.4.4.3 Discussion

Although both variants of NCM can be used for completing correlation matrices, there are some

differences between them. R-NCM can be applied to protect against the worst-case scenario,

providing estimations comparable to those of NCM even when the uncertainty box is random.

On the other side, when the uncertainty box is more reliable and it corresponds to perturbations

of a real correlation matrices, then E-NCM performs best, estimating the unknown correlation

matrix with the lowest error. NCM obtains intermediate results between E-NCM (more recovery

error for both types of perturbation but more robustness) and R-NCM (less recovery error for

moderate uncertainty but also less robustness).

5.5 Conclusions

This chapter has presented two extensions of the original Nearest Correlation Matrix (NCM)

problem of Higham [2002] which are based on allowing uncertainty in the input data. More

precisely, the uncertainty model was specified by a box (a set of intervals) that contained the

data matrix.

Within this model of uncertainty, the Robust Nearest Correlation Matrix (R-NCM) problem

is based on the theory of robust optimization, which involves optimization of the worst-case

scenario. In other words, it seeks to minimize the maximum distance of the solution to any

possible data matrix from within the uncertainty region. The experiments support the robust

approach, showing it to be useful even when minimizing the distance to an unknown data matrix;

this set-up also allows to apply the method to the basic correlation matrix completion problem.

The second variant of NCM, namely Exploratory Nearest Correlation Matrix (E-NCM), looks

for the minimum distance between the box and the set of correlation matrices. This problem can

be used as an approximation to the NCM problem with fixed entries, and it can solve the NCM

problem using an ε-insensitive error induced by the box, something that is also useful in matrix

completion tasks. Moreover, this approach can be applied to estimate a true correlation matrix

from an uncertainty box built upon perturbations of it.

Both variants are formulated as convex optimization problems, which can be subsequently

solved efficiently using an iterative method based on Douglas–Rachford (DR) operator split-

ting.

Finally, it is worth mentioning that the presented variants yield as special cases some of the

previously studied versions of NCM problems (both problems, R-NCM and E-NCM, tend to the

original NCM problem when the uncertainty tends to zero; moreover, the W-weighted NCM,

with W binary, can be seen as a particular instance of the E-NCM problem where the uncertainty
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interval of each entry is either
[
−1, 1

]
or a singleton). Also, since the new variants are easy to

interpret, they might prove helpful to an end user. In particular, E-NCM can be used to tackle

the problem of matrix completion, or NCM with fixed entries, imposing the constraints in a soft

manner.





Chapter 6

Conclusions

6.1 Discussion and Conclusions

Optimization problems are ubiquitous in real life as human behaviour often aims to follow strate-

gies that minimize (or maximize) a certain cost (or benefit).

In this thesis some optimization problems have been addressed and solved using algorithms

that belong to the framework of Proximal Methods (PMs). These methods allow to deal with

non-differentiable optimization problems, provided that their objective functions can be split

into several terms which can be locally minimized. This minimization step is done using the

gradient, if the term is differentiable, or the Proximity Operator (ProxOp), if it is not.

Therefore, the basis of the PMs is to utilise the structure of the problem at hand, dividing the

objective into several terms, which can be further divided if needed, until arriving to simple

expressions which can be minimized individually, generating kind of a hierarchical structure.

As these methods are iterative, it is worth realising that nesting several of them is a strategy that,

although it potentially allows to solve a vast variety of problems, may produce a large increase

on the computational complexity of the algorithm.

Turning the attention to the field of Machine Learning (ML), and in particular to supervised

learning, models are built to fit some observed data and they are intended to capture the under-

lying relationship between some input variables and the corresponding outputs (or targets). In

123
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particular, this process of data fitting can be most of the times formalized as an optimization

problem, in which the different parameters that define the model are adjusted to the particular

problem at hand. Moreover, and considering regularized models, their objective function is usu-

ally composed by two different terms: on the one hand, an error term that only considers how

well the model fits the data, and on the other hand a regularization term which can have two

main objectives, namely imposing desirable properties (such as structure, sparsity, interpretabil-

ity...) and, also, penalizing the complexity of the model to prevent the over-fitting that occurs

when the model learns the noise.

ML is, thus, a natural domain for applying PMs, whose structure permits to mix different reg-

ularization terms to design new models, which can be then trained if the ProxOps are known.

In this line, the classical sparse model Lasso (LA) and its group-variant Group Lasso (GL)

can be solved using the Fast Iterative Shrinkage–Thresholding Algorithm (FISTA) and alternat-

ing a gradient descent step with a ProxOp step (in this case, through the soft-thresholding and

group soft-thresholding operators). Without any additional consideration, these two models can

be extended to add an `2 penalization just modifying slightly the gradient, resulting into the

Elastic–Network (ENet) and Group Elastic–Network (GENet) models. As shown in Chapter 3,

these models can be applied to the problem of wind energy forecast, providing not only accurate

predictions but also valuable information about the relevant nodes (which are identified thanks

to the sparsity of the models).

Following with this approach, the Total Variation (TV) regularizer (which imposes piece-wise

constancy) can also be easily applied, both by itself and as part of a complete linear regression

model (called Fused Lasso (FL)), once its ProxOp can be computed efficiently. A strategy for

doing this is provided in Barbero and Sra [2011], where a dual formulation of the problem that

defines the ProxOp is used. With the same idea, in Chapter 4 a new regularizer called Group

Total Variation (GTV) is defined as a generalization of the TV but for multidimensional features

(hence, based on the `2,1 norm instead of the `1 one). The dual problem can be solved using

Spectral Projected Gradient (SPG), and thus the new GTV regularizer can be applied in two

ways: either using directly its ProxOp as a method to denoise multidimensional signals, such

as colour images, or building a linear model using the GTV term, an error term and an `2,1
penalization, what results in a group extension of the FL model, namely the Group Fused Lasso

(GFL) model.

Another important family of optimization problems is that of projection problems, in which the

nearest point to a (possibly observed) reference point has to be found, but with the restriction

that the solution has to lie in a certain set. Since PMs are designed to deal with non-smooth

functions, this constraint can be eliminated by adding an indicator function to the objective

function. In this context the Nearest Correlation Matrix (NCM) problem, that is, the problem

of finding the correlation matrix nearest to an observed one, can benefit from the PMs, as the
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correlation matrix set is defined by the intersection of two sets (the set of positive semidefinite

matrices and the set of matrices with ones on the diagonal), and the projections over each set

has a closed-form solution. Therefore, alternating both projections (as the projection onto a

convex set is, indeed, the ProxOp of the indicator function of that set) through a PM leads to

an algorithm to solve this problem. Although this algorithm is not as efficient as others (it is of

first order), it has the advantage that it can be easily extended to solve two alternative problems

introduced in Chapter 5 and that deal with uncertainty: the Robust Nearest Correlation Matrix

(R-NCM) problem (which minimizes the worst-case scenario) and the Exploratory Nearest Cor-

relation Matrix (E-NCM) problem (which, on the other side, minimizes the best-case scenario).

Both methods have different advantages depending on context and purpose, and they provide

different approaches to solve the problem of NCM when the observed matrix is substituted by

an uncertainty set.

6.2 Further Work

Concerning the sparse models in general, which are trained in this thesis using the PMs theory,

the `1 norm is many times used as a substitution of the `0 norm (which is defined as the number

of non-zero elements). Indeed, in order to isolate the effect of a feature selection regularizer

with that of a complexity penalization, this is the more adequate norm as it does not impose any

regularization on the value of the coefficients, but just on the number of features selected (an

additional `2 norm penalization using the idea of the ENet model could be added to deal with

possible over-fitting issues). Although a sparse model based on the `0 norm, namely the Garrote

(GA) of Breiman [1995], has already been proposed, the main drawback of this regularizer

is that it is non-convex, and thus the corresponding optimization problem suffers from local

minima. As a continuation of the study presented here, a GA model could be trained using the

ProxOp of the `0 norm (which is trivial) and trying to build a regularization path that iteratively

moves from a convex approximation of the GA problem to the real one, alleviating in this way

the issue of local minima.

With regards to the GFL model of Chapter 4, it offers an advantage in problems where the fea-

tures have both a multidimensional structure and a certain spatial location. There are several

real-life problems where such a structure exists, an important example being regression tasks

based on Numerical Weather Predictions (NWPs), where each feature is located over a grid

point, and it has as many dimensions as meteorological variables. As further work, the advan-

tages of GFL in such a kind of problems can be studied, something that would require the use

of the complete two-dimensional GFL model. In addition, a detailed analysis of the numerical

complexity of the proposed models can be done, investigating possible ways to improve it.
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Presumably, the strong regularizer effect of the GTV term can negatively affect the predictive

performance of the model; in that case, building a hierarchical model over the structure revealed

by a GFL model could yield an improvement and it is a topic worth of further attention.

Furthermore, the resultant structure of a GFL (or FL) model can also reveal clusters on the

features, but not in the classical unsupervised sense, but instead with clusters built oriented to

the specific targets. The regularization parameter of the GTV term should, in this case, determine

the number of clusters: if this parameter is zero, then there will be as many clusters as meta-

features (since no constancy is imposed), whereas if the parameter tends to infinity, then there

will be only one cluster (because all the groups will take the same value). For instance, and as

explained above, the wind energy forecast problem described in Chapter 3 is a natural domain

of application of the GFL model. Once a model is built, its vector of weights should be piece-

wise constant at group level (the sparsity can be obviated for this example, assuming that the

parameter of the `2,1 norm is equal to zero), and thus there should be regions over which the

weights are equal. Each one of these regions can be considered as a cluster, which has been built

taking into account not only that the meteorology over those points is similar (this would be the

point of view of classical clustering) but also that the points behave similarly with respect to the

target, in this case, the wind energy. A detailed study on the analytic utility of the GFL model

in this and other examples could be done following these ideas.

Finally, it is also worth mentioning that the derivations done for the GTV regularizer only con-

sider the `2,1 norm; a general `p,1 GTV regularizer should be explored, using as a basis the `p
TV regularizer of Barbero and Sra [2011]. Moreover, in a presumably much more ambitious

objective, the general `p,q norm could also be studied.

With respect to the work done along Chapter 5 on correlation matrices under uncertainty, differ-

ent ways of modelling uncertainty could also be explored, such as ellipsoids instead of boxes,

although an efficient way of computing the ProxOp of the robust or exploratory objective func-

tions would have to be designed, as this is easy in the case of the uncertainty box, but it can be

harder for more complex sets.

In addition and regarding the application to real-world problems, in the original formulation of

Higham [2002] the NCM problem is motivated in the field of stock research, where correla-

tion matrices are constructed from vectors of stock returns in order to use them for predictive

purposes. Since often when an observation is made not all the stocks of interest are available,

the correlation matrix is usually built computing, for each pair of stocks, their correlation over

all those observations where that pair is available, which results in just approximate correlation

matrices because the data used is inconsistent. As further work on the variants of the NCM prob-

lem, it would be interesting to study whether correcting the sample correlation matrices with the

R-NCM approach results into financial models that are also robust and that protect against the
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worst-case scenarios. In the same line, the E-NCM problem could provide a more accurate re-

covery of the correlation matrix depending on the particular case, and thus both variants should

be compared using real data.





Capítulo 6

Conclusiones

6.1 Discusión y Conclusiones

Los problemas de optimización se encuentran en todas las facetas de la vida real ya que el

comportamiento del ser humano trata muchas veces de seguir estrategias que minimicen (o

maximicen) un cierto coste (o beneficio).

En esta tesis se han abordado algunos problemas de optimización y se han resuelto usando

algoritmos que pertenecen al marco de los Métodos Proximales (PMs). Estos métodos permiten

tratar con problemas de optimización no-diferenciables, siempre que su función objetivo pueda

ser dividida en varios términos localmente minimizables. Este paso de minimización se hace

utilizando el gradiente si el término es diferenciable, o el Operador de Proximidad (ProxOp) si

no lo es.

Por tanto, la idea básica de los PMs es explotar la estructura del problema en cuestión, dividiendo

el objetivo en varios términos que pueden ser a su vez divididos si es necesario, hasta llegar

a expresiones lo suficientemente simples como para minimizarlas individualmente, generando

una especie de estructura jerárquica. Como estos métodos son iterativos, hay que destacar que

anidar varios de ellos es una estrategia que, aunque potencialmente permite resolver una amplia

variedad de problemas, puede producir un gran incremento en la complejidad computacional del

algoritmo.
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Pasando al campo del Aprendizaje Automático (ML), y en particular al del aprendizaje supervi-

sado, los modelos se construyen para ajustarse a unos datos observados, con lo que se pretende

que capturen la relación subyacente que existe entre unas ciertas variables de entrada y las co-

rrespondientes variables de salida (u objetivos). En particular, este proceso de ajuste a los datos

se puede formalizar en la mayoría de los casos como un problema de optimización, en el que

los diferentes parámetros que definen el modelo se adaptan al problema concreto que se está

tratando. Asimismo, en el caso de modelos regularizados la función objetivo está compuesta en

general por dos términos diferentes: el primero es un término de error que sólo tiene en cuenta

cómo de bien ajusta los datos el modelo, y el segundo es un término de regularización que suele

tener dos objetivos principales, a saber, inducir ciertas propiedades deseables (como estructura,

dispersión, interpretabilidad...) y penalizar la complejidad para prevenir el sobreajuste que tiene

lugar cuando el modelo aprende el ruido.

El ML es, por tanto, un dominio natural de aplicación de los PMs, cuya estructura permite mez-

clar diferentes términos de regularización para diseñar nuevos modelos, que pueden ser entrena-

dos si los ProxOps involucrados son conocidos. En esta línea, el modelo disperso clásico Lasso

(LA) y su variante Lasso Grupal (GL) pueden resolverse utilizando el Algoritmo Fast Iterative

Shrinkage–Thresholding (FISTA), alternando un paso de descenso por gradiente con un paso de

ProxOp (en este caso, a través de los operadores de soft-thresholding y group soft-thresholding).

Estos dos modelos pueden extenderse fácilmente para añadir una penalización `2 modificando

ligeramente el gradiente, resultando en los modelos Elastic–Network (ENet) y Elastic–Network

Grupal (GENet). Como se muestra en el Capítulo 3, estos modelos pueden aplicarse a proble-

mas de predicción de energía eólica, obteniéndose no sólo predicciones precisas sino también

información valiosa sobre los nodos relevantes (que son identificados gracias a la dispersión de

los modelos).

Siguiendo con esta aproximación, el regularizador de Variación Total (TV) (que induce cons-

tancia a trozos) puede aplicarse cómodamente, tanto individualmente como formando parte de

un modelo lineal de regresión completo (llamado Fused Lasso (FL)), siempre que su ProxOp

pueda ser calculado eficientemente. En Barbero and Sra [2011] se presenta una estrategia para

su cálculo, donde se utiliza una formulación dual del problema que define el ProxOp. Con la

misma idea, en el Capítulo 4 se define un nuevo regularizador, llamado Variación Total Grupal

(GTV), que es una generalización del regularizador de TV para características multidimensiona-

les (por tanto, basado en la norma `2,1 en lugar de en la `1). El problema dual puede resolverse

utilizando Gradiente Proyectado Espectral (SPG), y por tanto el nuevo regularizador de GTV

puede aplicarse de dos formas diferentes: bien utilizando directamente su ProxOp como una

forma de eliminar ruido en señales multidimensionales, como por ejemplo imágenes a color, o

bien construyendo un modelo que utilice el término de GTV, un término de error y una penali-

zación `2,1, lo que resulta en una extensión grupal del modelo FL llamada Fused Lasso Grupal

(GFL).
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Otra familia importante de problemas de optimización son los problemas de proyección, en los

que se busca el punto más cercano a un punto de referencia (que suele ser una observación), pe-

ro con las restricción de que la solución tiene que estar contenida en un cierto conjunto. Ya que

los PMs están diseñados para lidiar con funciones no suaves, esta restricción se puede eliminar

añadiendo a la función objetivo una función indicadora. En este contexto, el problema de Ma-

triz de Correlación Próxima (NCM), esto es, el problema de encontrar la matriz de correlación

más cercana a una observada, puede beneficiarse de los PMs, ya que el conjunto de matrices

de correlación puede definirse como la intersección de dos conjuntos (el conjunto de matrices

semidefinidas positivas y el conjunto de matrices con unos en la diagonal), y la proyección sobre

cada uno de estos conjuntos tiene una solución en forma cerrada. Por tanto, alternando ambas

proyecciones (la proyección sobre un conjunto convexo es, de hecho, el ProxOp de la función

indicadora de dicho conjunto) a través de PMs se obtiene un algoritmo para resolver este proble-

ma. Aunque este algoritmo no es tan eficiente como otros (ya que es de primer orden), tiene la

ventaja de que se puede extender fácilmente para resolver dos problemas alternativos descritos

en el Capítulo 5 y que tienen en cuenta la incertidumbre en las observaciones: el problema de

Matriz de Correlación Próxima Robusta (R-NCM) (que minimiza el caso peor) y el problema de

Matriz de Correlación Próxima Exploratoria (E-NCM) (que, por el contrario, minimiza el caso

mejor). Ambos métodos tiene diferentes ventajas dependiendo del contexto y del propósito, y

proporcionan dos aproximaciones diferentes para el problema de NCM cuando se sustituye la

matriz de observación por un conjunto de incertidumbre.

6.2 Trabajo Futuro

Respecto a los modelos dispersos en general, que en esta tesis se entrenan bajo el marco de los

PMs, la norma `1 muchas veces es utilizada como sustituto de la norma `0 (que se define como

el número de elementos distintos de cero). De hecho, para separar el efecto de un regularizador

de selección de características del de una penalización de la complejidad, ésta es la norma más

adecuada ya que no induce ninguna regularización sobre el valor de los coeficientes, sólo sobre

el número de características seleccionadas (se podría añadir una penalización `2 adicional al

estilo de ENet para solventar posibles problemas de sobreajuste). Aunque ya se ha propuesto

un modelo disperso basado en la norma `0, el Garrote (GA) de Breiman [1995], el principal

problema de este regularizador es que no es convexo, y por tanto el problema de optimización

correspondiente tiene mínimos locales. Como una posible ampliación del estudio presentado

aquí, se podría entrenar un modelo GA utilizando el ProxOp de la norma `0 (que es directo)

e intentado construir un camino de regularización para pasar de una aproximación convexa del

GA al problema real, para de ese modo solventar la cuestión de los mínimos locales.
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En cuando al modelo GFL del Capítulo 4, esta aproximación ofrece ventajas en problemas en

los que las características tienen tanto una estructura multidimensional como una cierta locali-

zación espacial. Hay diversos problemas en la vida real en los que esta estructura está presente,

siendo un ejemplo importante las tareas de regresión basadas en Predicciones Numéricas de

Meteorología (NWPs), donde cada característica está localizada sobre un nodo de una rejilla, y

tiene además tantas dimensiones como variables meteorológicas. Como trabajo futuro se pue-

den estudiar las ventajas de GFL en este tipo de problemas, lo que requeriría el uso del modelo

GFL bidimensional completo, realizar un análisis detallado de la complejidad numérica de los

modelos propuestos y buscar posibles formas de mejorar esta complejidad.

Es de esperar que el fuerte efecto regularizador del término de GTV afecte negativamente al

rendimiento predictivo del modelo; en ese caso, construir un modelo jerárquico sobre la estruc-

tura revelada por el modelo GFL podría suponer una mejora, y es por tanto un tema que merece

atención.

Además, la estructura resultante del modelo GFL (o FL) puede revelar también agrupaciones

(clusters) en las características, pero no en el sentido clásico no supervisado, sino agrupaciones

orientadas a objetivos específicos. El parámetro de regularización del término de GTV debería,

en ese caso, determinar el número de agrupaciones: si el parámetro es cero habrá tantas como

meta-características (ya que no se induce ninguna constancia), mientras que si el parámetro

tiende a infinito habrá sólo una agrupación (porque todos los grupos de coeficientes tomarán el

mismo valor). Por ejemplo, y como se ha mencionado anteriormente, el problema de predicción

de energía eólica descrito en el Capítulo 3 es un dominio de aplicación natural del modelo GFL.

Una vez que se ha construido el modelo, su vector de pesos debería ser constante a trozos a

nivel de grupo (se puede obviar la dispersión para este ejemplo, asumiendo que el parámetro de

la norma `2,1 es igual a cero), y por tanto debería de haber regiones sobre las que los pesos fueran

iguales. Cada una de estas regiones podría considerarse una agrupación, que se ha construido

considerando no sólo que la meteorología sobre esos puntos sea similar (que sería el enfoque

de agrupamiento clásico) sino también que los puntos se comporten de forma similar respecto a

los objetivos, en este caso, la energía eólica. Se podría hacer un estudio detallado acerca de la

utilidad analítica del modelo GFL en este y otros ejemplos siguiendo estas ideas.

Finalmente, hay que mencionar que las derivaciones para el regularizador GTV sólo consideran

la norma `2,1; se podría explorar un regularizador GTV general `p,1, utilizando como base el

regularizador TV `p de Barbero and Sra [2011]. Además, y como un objetivo presumiblemente

mucho más ambicioso, podría estudiarse la norma general `p,q.

Con respecto al trabajo desarrollado a lo largo del Capítulo 5 acerca de matrices de correla-

ción bajo incertidumbre, podrían explorarse distintas formas de modelar la incertidumbre, por

ejemplo usando elipsoides en lugar de cajas, aunque habría que diseñar una forma de calcular el
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ProxOp de las funciones objetivo robusta y exploratoria, lo que es fácil en el caso de la caja de

incertidumbre, pero puede ser difícil para conjuntos más complejos.

Además y respecto a la aplicación a problemas reales, en la formulación original de Higham

[2002] el problema de NCM se motiva en el área del estudio de activos financieros, donde se

construyen matrices de correlación a partir de vectores de valores para utilizarlos luego con

propósitos predictivos. Dado que muchas veces en el momento de la observación no están dis-

ponibles todos los activos de interés, la matriz de correlación se suele construir calculando, para

cada par de activos, su correlación sobre todas las observaciones donde dicho par está disponi-

ble, lo que resulta en matrices de correlación aproximadas porque los datos utilizados no son

consistentes. Como trabajo futuro sobre las variantes propuestas del problema de NCM, sería

interesante estudiar si al corregir las matrices de correlación observadas utilizando la aproxima-

ción R-NCM se obtienen modelos financieros que también son robustos y protegen contra el

caso peor. En esta misma línea, el problema de E-NCM podría proporcionar correcciones más

precisas de la matriz de correlación en según qué casos, y por tanto se deberían comparar ambas

variantes utilizando datos reales.





Appendix A

AdditionalMaterial

A.1 Explicit Proximity Operators

Some classical Proximity Operators (ProxOps) are derived next. In particular, the ProxOps

of the `1 and `2 norms, which have a closed-form expression and that are extensively used in

Chapters 3 and 4, and the ProxOp of the indicator function, which appears in the optimization

problems proposed in Chapter 5.

A.1.1 `1 Norm

For the case of the `1 norm, ‖x‖1 with x ∈ Rd, only the scalar case f (x) = |x| (with x ∈ R)

is considered, since the resultant ProxOp can be extended to the multidimensional case using

Proposition 2.6.

Subdifferential. The function f is differentiable for all x 6= 0, with f ′(x) = sgn (x), so the

only point to be considered is x = 0. By definition, any subgradient of f at 0, ξ0 ∈ ∂f (0),

satisfies:

f (y)− f (x) ≥ ξ0 · (y − x) =⇒ |y| ≥ ξ0y ,

for all y ∈ R. The right-hand term is maximized when both terms have the same sign, sgn (ξ0) =
sgn (y); in that particular case (because the previous inequality has to be satisfied for every y)
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ξ0y = |ξ0||y| and thus:

|y| ≥ |ξ0||y| =⇒ |ξ0| ≤ 1 .

Therefore, ξ0 ∈
[
−1, 1

]
, and the subdifferential of f (x) = |x| is:

∂f (x) =





−1 if x < 0 ,
[
−1, 1

]
if x = 0 ,

1 if x > 0 .

(A.1)

Proximity Operator. In this case, it is more convenient to derive the ProxOp from Defini-

tion 2.18, as
(
Id +δ∂f

)−1
, where δ is the step of the ProxOp. Using Equation (A.1), the

identity plus the subdifferential,
(
Id +δ∂f

)
is given by:

(
Id +δ∂f

)
(x̂) = x =





x̂ − δ if x̂ < 0 ,
[
−δ, δ

]
if x̂ = 0 ,

x̂ + δ if x̂ > 0 ,

which has to be inverted as x̂ = proxδf (x). There are three scenarios:

(i) If x̂ < 0 then x = x̂ − δ, thus x̂ = x + δ. In particular, the condition is satisfied if

x + δ < 0, that is, x < −δ. Therefore:

x̂ = proxδf (x) = x + δ if x < −δ .

(ii) If x̂ = 0 then x ∈
[
−δ, δ

]
:

x̂ = proxδf (x) = 0 if x ∈
[
−δ, δ

]
.

(iii) If x̂ > 0 then x = x̂ + δ, thus x̂ = x − δ. In particular, the condition is satisfied if

x − δ > 0, that is, x > δ. Therefore:

x̂ = proxδf (x) = x − δ if x > δ .

Thus the ProxOp of the `1 norm, known as the soft-thresholding operator, is:

proxδf (x) = softδ (x) = sgn (x) [|x| − δ]+ =





x + δ if x ≤ −δ ,

0 if − δ ≤ x ≤ δ ,

x − δ if x ≥ δ .

(A.2)

All these results are illustrated in Figure A.1.
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Absolute Value Subdifferential

−1

1

Subdifferential + Identity

−1

1

soft-thresholding

−1 1

Figure A.1: Illustration of the absolute value: the original function, its subdifferen-
tial, its subdifferential plus the identity (the inverse of its resolvent) and its ProxOp.

A.1.2 `2 Norm

Since the `2 norm f (x) = ‖x‖2 (for x ∈ Rd) is not separable, the multidimensional case has to

be studied to derive its ProxOp.

Subdifferential. The function f is differentiable for all x 6= 0, with ∇f (x) = x
‖x‖2

. A

subgradient of f at 0, ξ0 ∈ ∂f (0), satisfies:

f (y)− f (x) ≥ ξ0 · (y− x) =⇒ ‖y‖2 ≥ ξ0 · y ,

for all y ∈ Rd. The right-hand term is maximized when both terms have the same direction,

ξ0 ‖ y; in that particular case (because the previous inequality has to be satisfied for every y)

ξ0 · y = ‖ξ0‖2‖y‖2 and thus:

‖y‖2 ≥ ‖ξ0‖2‖y‖2 =⇒ ‖ξ0‖2 ≤ 1 .
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Therefore, ξ0 ∈ Bd
2(1), and the subdifferential of f (x) = ‖x‖2 is:

∂f (x) =





x
‖x‖2

if x 6= 0 ,

Bd
2(1) if x = 0 .

(A.3)

Proximity Operator. The ProxOp is again derived as
(
Id +δ∂f

)−1
. Using Equation (A.3),

the identity plus the subdifferential,
(
Id +δ∂f

)
is given by:

(
Id +δ∂f

)
(x̂) = x =





x̂ + δ x̂
‖x̂‖2

if x̂ 6= 0 ,

Bd
2(δ) if x̂ = 0 .

This expression is inverted as x̂ = proxδf (x), considering two different cases:

(i) If x̂ 6= 0 then x = x̂ + δ x̂
‖x̂‖2

= x̂
(
1 + δ

‖x̂‖2

)
. For this expression, it is clear that x̂ ‖ x,

that is, x̂ = kx for some scalar constant k ≥ 0. Solving for k:

x̂ = kx =⇒ x = kx
(

1 + δ

k‖x‖2

)

=⇒ ‖x‖2 = k‖x‖2

(
1 + δ

k‖x‖2

)

=⇒ ‖x‖2 = k‖x‖2 + δ

=⇒ k = 1− δ

‖x‖2
.

This is satisfied if k = 1− δ
‖x‖2

≥ 0, which means ‖x‖2 ≥ δ. Therefore:

x̂ = proxδf (x) = kx = x
(

1− δ

‖x‖2

)
if ‖x‖2 ≥ δ .

(ii) If x̂ = 0 then x ∈ Bd
2(δ):

x̂ = proxδf (x) = 0 if ‖x‖2 ≤ δ .

Thus the ProxOp of the `2 norm, known as the group soft-thresholding operator, is:

proxδf (x) = gsoftδ (x) = x
[
1− δ

‖x‖2

]

+
=





x
(
1− δ

‖x‖2

)
if x ≥ δ ,

0 if ‖x‖2 ≤ δ .
(A.4)

It is worth noting that these results include those of Section A.1.1 for the particular case of

d = 1, although they have been derived separately for the sake of clarity.
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Moreover, since the `2,1 norm f (x) = ‖x‖2,1 (for x ∈ Rd = Rdv·dg with the group structure

introduced in Section 3.3.2) is the `1 norm of the `2 norm of the groups, its ProxOp can be

computed composing the group soft-thresholding over each group because of Proposition 2.6.

A.1.3 Indicator function

In the case of the indicator function of a closed convex set C ⊂ E, f (x) = ι{C }(x), the

associated problem to compute its ProxOp using the alternative definition of Proposition 2.5

turns out to be:

proxf (x) = arg min
x̂∈E

{1
2‖x̂− x‖22 + f (x̂)

}

= arg min
x̂∈E

{1
2‖x̂− x‖22 + ι{C }(x)

}

= arg min
x̂∈C

{1
2‖x̂− x‖22

}

= PrC (x) ,

where PrC (x) denotes the projection of x onto C (Definition 2.6). The reason for this is that

minx̂∈C

{
‖x̂− x‖22

}
is the distance from x to C , namely dC (x), so the minimizer is the

projection by definition.

Moreover, as for every δ > 0, ι{C }(x) = δι{C }(x), the previous result is independent of any

step:

proxδf (x) = PrC (x) .

A.2 Some Required Fenchel Conjugates

Some important Fenchel Conjugates (FCs) are derived next, using for this Definition 2.7, which

characterize the FC of an Extended Real Function (ERF) f on E as:

f ∗(x) = sup
x̂∈E

{
〈x̂,x〉 − f (x̂)

}
. (A.5)

These FCs are needed to derive the dual formulation of the optimization problems for comput-

ing the ProxOps of the Total Variation (TV) and Group Total Variation (GTV) regularizers in

Sections 4.1 and 4.2.
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A.2.1 `2 Norm

The FC of the `2 norm, f (x) = ‖x‖2, with x ∈ Rd, is derived next. Using Equation (A.5), the

associated problem becomes:

f ∗(x) = sup
x̂∈Rd

{x̂ · x− ‖x̂‖2} .

By Cauchy–Schwarz inequality, the expression to be maximized has the following bound:

x̂ · x− ‖x̂‖2 ≤ ‖x̂‖2‖x‖2 − ‖x̂‖2 = ‖x̂‖2(‖x‖2 − 1) .

This bound is achieved when x and x̂ are linearly dependent, thus:

f ∗(x) = sup
x̂∈Rd

{x̂ · x− ‖x̂‖2}

= sup
x̂∈Rd

{‖x̂‖2(‖x‖2 − 1)}

=





0 if ‖x‖2 ≤ 1 ,

∞ if ‖x‖2 > 1 .
(A.6)

The last equality comes because, for ‖x‖2 ≤ 1, ‖x̂‖2(‖x‖2 − 1) is negative, and thus its supre-

mum is 0; on the other side, when ‖x‖2 > 1, the expression ‖x̂‖2(‖x‖2 − 1) is positive, and

the supremum becomes∞.

Equation (A.6) can be compactly written as the indicator function of the unitary ball:

f ∗(x) = ι{Bd
2(1)}(x) . (A.7)

Moreover, a factor γ multiplying x can be integrated into the radius of the ball:

f ∗(γx) = ι{Bd
2(1)}(γx) = ι{

Bd
2
(

1
γ

)}(x) .

A.2.2 `2,1 Norm

The FC of the `2,1 norm, f (x) = ‖x‖2,1 (for x ∈ Rd = Rdv·dg with a group structure as that

presented in Section 3.3.2), can be computed using the previous result. In particular, and by
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Equation (A.5), the corresponding problem is:

f ∗(x) = sup
x̂∈Rd

{
x̂ · x− ‖x̂‖2,1

}

=
dg∑

n=1
sup

x̂n∈Rdv
{x̂n · xn − ‖x̂n‖2}

=
dg∑

n=1
ι{Bdv

2 (1)}(xn) ,

where the FC of the `2 norm, included in Equation (A.7), has been used.

Since the sum of indicators is the indicator of the intersection, f ∗ becomes:

f ∗(x) = ι{Bdv·dg
2,∞ (1)}(x) ,

which takes the value of ∞ if any group has a norm greater than one, and the value of zero

otherwise.

Again, a factor γ can be integrated into the radius of the ball:

f ∗(γx) = ι{Bdv·dg
2,∞ (1)}(γx) = ι{

B
dv·dg
2,∞

(
1
γ

)}(x) .

A.2.3 Euclidean Distance

Another important case to consider is the squared Euclidean distance to a reference point r ∈
Rd, f (x) = 1

2‖x− r‖22, which is needed for Sections 4.1 and 4.2. For this particular case,

Equation (A.5) turns into:

f ∗(x) = sup
x̂∈E

{
x̂ · x− 1

2‖x̂− r‖22
}
. (A.8)

The solution of Problem (A.8) is straightforwardly obtained by taking derivatives and equalling

to zero:

x− (x̂op − r) = 0 =⇒ x̂op = x + r .

Substituting back into the objective of Problem (A.8), the FC becomes:

f ∗(x) = (x + r) · x− 1
2‖(x + r)− r‖22

= 1
2‖x‖

2
2 + r · x .
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A.3 The Intercept Term of Linear Models

All the linear models defined in Chapters 3 and 4 are homogeneous, in the sense that they do not

consider any intercept (or bias) term. When this term b is used, the linear prediction becomes

ŷ = x · w + b, and usually b is not considered when penalizing the complexity of the model

(thus the regularizer R is independent of b). Moreover, the optimum intercept bop, in function

of the optimum weights wop, is:

bop = 1
n

n∑

p=1
y(p) −


1

n

n∑

p=1
x(p)


 ·wop .

Therefore, if the mean of the targets y(p) and the mean of all the features x(p)
n are zero, then

bop = 0 independently of wop. Consequently, the intercept term can be omitted just by centring

the features and the targets around zero. However, there are situations in which it is convenient

to include such a term, for example to respect some natural scaling of the features or targets.

The regularized linear models of Chapters 3 and 4 can be easily adapted to include this bias term

with the following modifications. The input matrix X is extended to include a constant entry,

Xb =
(
1 X

)
,

where 1 ∈ Rn is the column vector equal to one. The Mean Squared Error (MSE) using these

extended patterns is:

Emse(b,w; Dtr) = 1
2n

∥∥∥∥∥∥
Xb


 b

w


− y

∥∥∥∥∥∥

2

2

. (A.9)

The following adjustments remain to adapt the models so that the intercept term is not penalized:

(i) For Regularized Least Squares (RLS), the closed-form solution of Equation (3.5) be-

comes: 
 bop

wop


 =


Xb

>Xb + γn
d


0 0

0 I





−1

Xb
>y .

(ii) For Lasso (LA), Group Lasso (GL), Fused Lasso (FL) and Group Fused Lasso (GFL), the

gradient of fsm is

∇b,wEmse(b,w; Dtr) = 1
n


Xb

>Xb


 b

w


−Xb

>y


 ,

which is the gradient of the MSE of Equation (A.9).
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(iii) For Elastic–Network (ENet) and Group Elastic–Network (GENet), the gradient of fsm is

modified to:

∇b,wfsm(b,w) = 1
n


Xb

>Xb


 b

w


−Xb

>y


+ γ2

d


 0

w


 ,

so the intercept depends only on the error term, and not on the regularization term.

(iv) Finally, for LA, ENet, GL, GENet, FL and GFL, the ProxOps of fnsm are applied to all

the weights w, but not to the intercept term, b.





Appendix B

List of Publications

This appendix contains a relation of the different articles published during the realization of the

thesis, including a brief summary and a short explanation of their connection with the research

described here.

Structured Linear Models

The following two publications are the basis of Chapter 3:

Sparse Methods for Wind Energy Prediction [Alaíz et al., 2012a]

International Joint Conference on Neural Networks (IJCNN 2012).

In this work some regularized linear regression models were applied to the problem of

wind energy forecast, in particular to the prediction of the global energy production

in Spain. The non-differentiable models Lasso (LA), Group Lasso (GL) and Elastic–

Network (ENet) were trained using the Fast Iterative Shrinkage–Thresholding Algorithm

(FISTA). Moreover, the sparsity imposed by these models allowed to analyse the impor-

tance of each geographical node for the problem at hand.

Sparse Linear Wind Farm Energy Forecast [Alaíz et al., 2012b]

International Conference on Artificial Neural Networks (ICANN 2012).

This is an extension of the previous work, but for the wind energy forecast of a single
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farm. Moreover, the Group Elastic–Network (GENet) model was introduced as a straight-

forward extension due to the modularity of the Proximal Methods (PMs). In addition, the

Numerical Weather Prediction (NWP) data used had several different pressure layers, and

the sparse models helped to shed light on the importance of each layer.

On the following publication is based Chapter 4:

Group Fused Lasso [Alaíz et al., 2013a]

International Conference on Artificial Neural Networks (ICANN 2013).

In this work the Group Total Variation (GTV) regularizer was introduced. Its Proxim-

ity Operator (ProxOp) was easily computed using a dual formulation, and it was also

successfully applied to the problem of colour images denoising. Furthermore, this regu-

larizer was extended to the Group Fused Lasso (GFL) model, which could also be solved

using FISTA.

This next article is an additional publication made in collaboration with the Centro Nacional de

Investigaciones Cardiovasculares (CNIC):

Cell-Based Fuzzy Metrics Enhance HCS Assay Robustness [Azegrouz et al., 2013]

Journal of Biomolecular Screening.

In this work a series of cell-based evaluation metrics were defined, and they were used

as features that significantly improved the separability of the classes in some problems of

cell phenotype classification. In particular, a Logistic Regression (LR) model using an `1
penalization was used to measure the enhancement in accuracy; this model was trained

using FISTA with the standard gradient of LR and the ProxOp of the `1 norm.

Nearest Correlation Matrix Problem

The publication shown below is the foundation of Chapter 5:

Correlation Matrix Nearness and Completion under Uncertainty [Alaíz et al., 2013b]

IMA Journal of Numerical Analysis.

In this article the Nearest Correlation Matrix (NCM) problem was extended to deal with

observation uncertainty, defining two new problems, a robust variant called Robust Near-

est Correlation Matrix (R-NCM) and an exploratory variant called Exploratory Nearest

Correlation Matrix (E-NCM). Both resultant problems can be solved using the Douglas–

Rachford (DR) algorithm with a proper split of the objective functions.
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Additional Research

The following publications correspond to other lines of research, which are not directly related

with this thesis:

High Wind and Energy Specific Models for Global Production Forecast [Alaíz et al., 2009]

European Wind Energy Conference (EWEC 2009).

In this work the wind energy forecast problem was tackled using regime-specific Multi-

layer Perceptrons (MLPs) [Haykin, 1994] models. The different regimes were identify

with two approaches, using a threshold on the NWP of the wind speed or with a thresh-

old on the production forecasts of a global full operation range model. This approach

improved the results of a single model.

On the Learning of ESN Linear Readouts [Alaíz and Dorronsoro, 2011]

Spanish Association for Artificial Intelligence Conference (CAEPIA 2011).

zThis article is a continuation of the master’s thesis Alaíz [2010]. In particular, different

approaches to estimate the linear readout of a Recurrent Neural Network (RNN) under the

paradigm of Echo State Networks (ESNs) [Jaeger, 2001] were compared.

Diffusion Maps and Local Models for Wind Power Prediction [Fernández et al., 2012]

International Conference on Artificial Neural Networks (ICANN 2012).

In this work the wind energy forecast problem was undertaken using cluster-specific mod-

els, where the clusters were computed on a Diffusion Maps (DMps) [Coifman and Lafon,

2006] embedding.

Diffusion Maps for Wind Power Ramp Detection [Fernández et al., 2013a]

International Work Conference on Artificial Neural Networks (IWANN 2013).

The prediction of wind energy ramps was studied in this work, using Anisotropic Dif-

fusion (AD) [Singer and Coifman, 2008] to identify nearest neighbours and estimate the

short-term variation in wind energy.

Local Anisotropic Diffusion Detection of Wind Ramps [Fernández et al., 2013b]

Workshop on Machine Learning for Sustainability of the NIPS Conference (NIPS 2013).

This work is a continuation of the previous one, but using more information to identify

the ramps, additional approaches and a more detailed evaluation technique.
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