

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

Software & Systems Modeling 6.3 (2007): 317–347

DOI: http://dx.doi.org/10.1007/s10270-007-0051-2

Copyright: © 2007 Springer-Verlag

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1007/s10270-007-0051-2

Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Event-Driven Grammars: Relating Abstract and Concrete Levels of
Visual Languages

Esther Guerra1, Juan de Lara2?

1 Dept. Informática
Universidad Carlos III
Madrid, Spain
e-mail: eguerra@inf.uc3m.es

2 Escuela Politécnica Superior, Ing. Informática
Universidad Autónoma
Madrid, Spain
e-mail: jdelara@uam.es

Received: date / Revised version: date

Abstract In this work we introduce event-driven gram-
mars, a kind of graph grammars that are especially suited
for visual modelling environments generated by meta-
modelling. Rules in these grammars may be triggered by
user actions (such as creating, editing or connecting ele-
ments) and in their turn may trigger other user-interface
events. Their combination with triple graph transforma-
tion systems allows constructing and checking the con-
sistency of the abstract syntax graph while the user is
building the concrete syntax model, as well as managing
the layout of the concrete syntax representation.

As an example of these concepts, we show the def-
inition of a modelling environment for UML sequence
diagrams. A discussion is also presented of methodologi-
cal aspects for the generation of environments for visual
languages with multiple views, its connection with triple
graph grammars, the formalization of the latter in the
double pushout approach and its extension with an in-
heritance concept.

Key words Graph Grammars – Triple Graph Trans-
formation – Meta-Modelling – Visual Languages – Con-
sistency – UML

1 Introduction

Traditionally, visual modelling tools have been generated
from descriptions of the Visual Language (VL) given ei-
ther in the form of a graph grammar [2] or as a meta-
model [10]. The former approach requires the construc-

Send offprint requests to:
? This is a revised and extended version of a paper pre-

sented at the ICGT’04 conference, see [21]

tion of a creation or a parsing grammar. The first kind
of grammar gives rise to syntax directed environments,
where each rule represents a possible user action and the
user selects the rule to be applied. The second kind of
grammars (for parsing) tries to reduce the model into
an initial symbol in order to verify its correctness. Both
kinds of grammars are indeed encodings of a procedure
to check the validity of a model.

In the meta-modelling approach, the VL is defined by
building a meta-model. This is a kind of type graph [8]
with inheritance [3], multiplicities and other – possi-
bly textual – constraints. One of the most prominent
examples of the meta-modelling approach is the defini-
tion of the UML language by the OMG [31]. The meta-
modelling environment has to check that the model built
by the user is conformant to the meta-model. This can
be done by finding a typing morphism between model
and meta-model, and by checking the defined constraints
on the model. Most of the times, the concrete syntax is
given by assigning graphical appearances to both classes
and relationships in the meta-model [10]. For example,
in the AToM3 tool [10], this is done by means of a spe-
cial attribute that both classes and relationships have.
In this approach the relationship between concrete (the
appearances) and abstract syntax (the meta-model con-
cepts) is one-to-one. Therefore, it is difficult to provide
the meta-model with a concrete syntax that is struc-
turally different from the abstract syntax. Moreover, for
some applications, one is interested in having several
concrete syntax representations for a single meta-model.
For example, in the UML1.5 [31], sequence and collab-
oration diagrams are two different visualizations of the
same abstract syntax elements.

In this paper we present a novel approach for VLs
definition that combines the meta-modelling and the graph

2 Esther Guerra, Juan de Lara

grammar approaches. To overcome the restriction of a
one-to-one mapping between abstract and concrete syn-
tax elements, we define separate meta-models for both
kinds of syntax. In a general case, both kinds of models
can be very different. For example, in the definition of
UML 1.5 class diagrams [31], the meta-model defines ab-
stract syntax concepts Association and AssociationEnd1,
which are graphically represented together in a single
concrete syntax concept (a line). In general, one can have
abstract syntax concepts that are not represented at all,
represented with a number of concrete syntax elements,
and finally, concrete syntax elements without an abstract
syntax representation. To maintain the correspondence
between abstract and concrete syntax elements, we cre-
ate a correspondence meta-model whose nodes have pairs
of morphisms to elements of the concrete and abstract
meta-models.

In our approach, the concrete syntax part works in
the same way as in the pure meta-modelling approach,
but we define triple graph transformation rules [27,23] to
automatically build the abstract syntax model from the
concrete one, and check the consistency of both kinds
of models. The novelty is that we explicitly represent
the user interface events in the concrete syntax part of
the rules (creating, editing, connecting, moving, etc.).
Events can be attached to the concrete syntax elements
to which they are directed. In this way, rules may be trig-
gered by the events that the user generates when working
with the editor. These event-driven grammars are a very
useful specification technique for user interaction and di-
alog with the generated modelling environment [4].

Additionally, we take advantage of the inheritance
structure in the meta-model, and allow the definition of
inheritance-extended triple rules [3]. Some of the nodes
in these inheritance-extended rules may be instances of
classes with subtypes (i.e. classes from which a number
of children classes inherit). These rules are equivalent to
a number of concrete rules obtained from the valid sub-
stitutions of such nodes by instances of the sub-classes
in the meta-model. We extend this concept to allow re-
finement of relationships.

As a proof-of-concept, we present a non-trivial ex-
ample based on AToM3. We define the concrete and ab-
stract syntax of sequence diagrams, a grammar to main-
tain the consistency of both syntaxes, with additional
rules for concrete syntax layout, and consistency rules
to check the sequence diagram against other existing di-
agrams.

The main contribution of the paper is proposing a
formal method (based on graph transformation) to over-
come the limitations of current approaches to handle
concrete and abstract syntaxes, especially when they are
very different. Our approach has the advantage of being

1 In the UML2.0 version AssociationEnd is no longer
present, and the Property metaclass is used instead (see the
UML2.0 superstructure specification [31]).

graphical and formal, so there is no need to code in low-
level languages. In contrast, in other approaches [33], the
VL designer needs to know the implementation language
and the API (Application Program Interface) of the tool.
Moreover, in our approach, the behaviour of the tool it-
self is modelled by graph transformation rules (the event-
driven grammars), which promotes flexibility and makes
tool evolution easier. Thus, the user has the possibility
to change the tool behaviour, for example to support
the “action-object” paradigm of interaction (first select-
ing an operation and then the object to which the op-
eration is performed), or the “object-action”. Moreover,
the formal definition of graph transformation makes tool
behaviour subject to analysis. This can be useful to de-
tect for example if a given action (modelled by rules)
may yield different results or is terminating. Finally,
another important contribution of this work is the for-
malization and extension of triple graph grammars [27]
to triple graph transformation systems with node and
edge inheritance [23] as well as application conditions
using the double pushout approach (DPO) [13] to graph
transformation. This formal basis is essential, as triple
graph grammars are becoming increasingly popular for
expressing model transformation [28].

The rest of the paper is organized as follows. In sec-
tion 2 we introduce meta-modelling in the context of the
AToM3 tool. Section 3 presents triple graph grammars
with our extensions to include application conditions and
typing with respect to a type graph with node and edge
inheritance. This section introduces the concepts in an
intuitive way, by means of examples. The rigorous defi-
nitions of the theory are left to Appendix A. Section 4
introduces the main concepts of event-driven grammars,
while section 5 presents an example to define the ab-
stract and concrete syntax of sequence diagrams (accord-
ing to the UML 1.5 specification). Here we also present
layout and some consistency rules that check that the
elements in the diagram are consistent with already ex-
istent elements, defined in other diagrams. Section 6 dis-
cusses the implementation of the presented concepts in
the AToM3 tool. Section 7 compares the present work
with related research. Finally, section 8 ends with the
conclusions and future work. Two additional appendices
present the main concepts of the theory we have devel-
oped for triple graph transformation and event-driven
grammars. For a complete presentation of the theory,
the reader is referred to [23].

2 Meta-modelling in AToM3

AToM3 [10] is a meta-modelling tool that was developed
in collaboration with McGill University. The tool allows
the definition of VLs by means of meta-modelling and
model manipulation by means of graph transformation
rules. The meta-modelling architecture is linear, and a
strict approach is followed where each element of the

Event-Driven Grammars: Relating Abstract and Concrete Levels of Visual Languages 3

Fig. 1 The AToM3 Tool.

meta-modelling level n is an instance of exactly one ele-
ment of the level n+12 [1]. Starting from the meta-model
of a VL, and assigning visualization information to each
element in the meta-model, the tool is able to generate
a customized modelling environment for the VL.

As an example, the upper part of Fig. 1 shows the
AToM3 tool containing the meta-model of a subset of
sequence diagrams. We have included the main visual-
ization concepts of a sequence diagram (messages, ob-
jects, activation boxes, life lines) in the meta-model. We
have also added attributes to the concepts, including
their graphical representation. For example, the graph-
ical representation of an object is shown in the upper-
right window in the figure. The modelling environment
automatically generated from this definition is shown be-
low. Note that should we have used the meta-model pro-
posed in the UML 1.5 standard specification, it would
have been difficult to generate such environment using
meta-modelling. The reason is that the concepts in the
standard UML specification are quite different from the
real visualization. For example, there is no notion of ac-
tivation boxes or life lines in this standard meta-model.
In addition, in the standard meta-model, messages are
related through successor and activator relations, which
are not explicitly set by the user when using a tool with
the concrete-syntax elements. Similar problems arise in
the UML 2.0 [31] specification for sequence, time and
other diagrams.

2 This is not exactly true, as for implementation we allow
instances to inherit from some base classes (see Fig. 2) that
do not have a corresponding concept at the upper meta-level.

Next, we explain the AToM3 design structure con-
cerning meta-modelling, as it will be used in the fol-
lowing sections. Fig. 2 shows an example with three
meta-modelling levels. The upper part shows a meta-
metamodel for UML class diagrams, very similar to a
subset of the core package of the UML 1.5 standard
specification. It can be noted that Associations can also
be refined, and that the types of attributes are specific
AToM3 types. Instances at a lower meta-level of some
of the concepts in this meta-metamodel inherit from a
common class. This is the case of Class, Association and
AssociationEnd, whose instances inherit from ASGNode
and ASGConnection. Classes ATOM3AppearanceIcon, A-
TOM3AppearanceSegment and ATOM3AppearanceLink
are special types, which provide the graphical appear-
ance of classes, association ends and associations. Their
instances at a lower meta-level inherit from abstract
classes Entity, LinkSegment and Link. The user can de-
fine the visual appearance of these instances with a graph-
ical editor (such as the one shown in the upper-right
corner in Fig. 1). Instances of ATOM3AppearanceIcon
are icon-like, and they may include primitive forms such
as circles, lines and text, and show attribute values of
the object associated with the instance through relation-
ship Appearance. Instances of ATOM3AppearanceLink
are similar to the previous one, but are associated with
two ATOM3AppearanceSegment instances, which repre-
sent the incoming and outgoing segments to the link
(which is itself drawn in the center). Finally, the ATOM3-
Attribute class implements a special kind of attribute
type, which is used to define attribute types (relation
“type”). At a lower meta-level, the instance of an ATOM -
3Attribute is of the type pointed to by relation “type”
at the upper meta-level. As “type” may point to an
ATOM3Attribute, it is possible to have an arbitrary
number of meta-modelling layers.

The second level in Fig. 2 shows a part of the meta-
model presented in Fig. 1. In this second level we have
used an abstract syntax notation, instead of the common
graphical appearance of UML class diagrams that we
have used in the upper meta-metamodel. In this level,
nodes are labelled with the elements of the upper meta-
level from which they are instances. Only two classes
are shown, ActivationBox and Object, together with the
attributes for defining their appearances. In AToM3, by
default, the name of the appearance associated with a
class or association begins with “Graph ” followed by
the name of the class or association. In the case of an
AssociationEnd instance it is similar, but followed by an
“S” or “T”, depending if the end is source or target.

Finally, the lowest meta-level shows to the left (us-
ing an abstract syntax notation) a simple sequence dia-
gram model. To the right, the same model is shown us-
ing a visual representation, taking the graphical appear-
ances designed for Graph Object, Graph ActivationBox,
Graph ObjectLifeLine, Graph ObjectLifeLineS and Graph -
ObjectLifeLineT. The graphical forms are in a one-to-one

4 Esther Guerra, Juan de Lara

isSource: true

Generalization

ATOM3List

ATOM3String

ATOM3Type

ATOM3AppearanceLink

instance of ActivationBox

ABox1

GObject1
instance of Graph_Object

instance of Graph_ObjectLifeLineS

GLLS1

instance of Graph_ObjectLifeLineT

GLLT1

instance of Graph_ActivationBox

GABox1

A Sequence Diagram Model

Visual Representation
connections

segments

segments

connections

Object1

LLS1
instance of ObjectLifeLineS

LL1
instance of ObjectLifeLine

LLT1
instance of ObjectLifeLineT

instance of Graph_ObjectLifeLine

GLL1

instance of Object

EntityLink

instance of

Graph_ObjectLifeLineS

ATOM3AppearanceSegment

instance of Association

ObjectLifeLine
instance of

Graph_ObjectLifeLine

ATOM3AppearanceLink

instance of Class

ActivationBox

ASG

ASGNode

ASGConnection

instance of

Graph_ObjectLifeLineT

ATOM3AppearanceSegment

instance of

Graph_ActivationBox

ATOM3AppearanceIcon

ATOM3Attribute

1

se
gm

en
tA

pp
ea

ra
nc

e

A
pp

ea
ra

nc
e

child
0..* 0..*

parent
11

isAbstract : Boolean

GeneralizableContainer

0..*

1

1

participant

1

ATOM3AppearanceIcon

Class

Association

1

isSource: Boolean

multiplicity: Multiplicity

AssociationEnd

1

ATOM3Constraint
0..*

list_type1

0..*

constraints1

fe
at

ur
e

0..1

0..*

AToM3 Meta−metamodel (Partially shown)

ModelElement
name : String

ATOM3AppearanceSegment
1

1associationAppearance

2

connection

initialValue: Expression
1type

0..*

y: Integer
x: Integer

VisualObject

selected: Boolean=false

0..*

LinkSegment

direction: {e2l, l2e}

1 1

0..*

segments

connections

segmentAppearance

connection

connection

associationAppearance

instance of

Graph_Object

ATOM3AppearanceIcon
instance of Class

Object Appearanceparticipant

Meta−model for the Concrete Syntax of

participant Appearance

Base Classes for Visual Appearance

0..*

0..* out_connections

in_connections

0..*

0..*

Sequence Diagrams

non−Graphical Entities
Base Classes for

instance of
AssociationEnd

segmentAppearance ObjectLifeLineT
multiplicity: "0..1"
isSource: false

instance of
AssociationEnd

ObjectLifeLineS
multiplicity: "0..1"

Fig. 2 Meta-modelling Levels in AToM3.

correspondence with the non-graphical elements (Ob-
ject1, LL1, LLS1, LLT1 and ABox1). The non-graphical
elements can be seen as the abstract syntax model and
the graphical ones as the concrete syntax. Nonetheless,
as stated before, the one-to-one relationship is very re-
strictive. Therefore we propose building two separate
meta-models, one for the concrete syntax representa-
tion (whose concepts are the graphical elements that
the user draws on the screen) and another one for the

abstract syntax one. Both of them are related using a
correspondence graph. For example, in the case of UML
sequence diagrams, the abstract syntax meta-model con-
tains the standard UML 1.5 definition. In the concrete
meta-model we place visualization concepts such as acti-
vation boxes or life lines (as shown in the meta-model of
Fig. 1). The user builds the concrete syntax model, and a
(triple, event-driven) graph grammar builds and checks
the consistency of the abstract syntax model. The main

Event-Driven Grammars: Relating Abstract and Concrete Levels of Visual Languages 5

concepts of graph grammars and triple graph transfor-
mation systems are introduced in the following section.

3 Attributed Typed Triple Graph Grammars
with Node and Edge Inheritance

In this section, we show in an intuitive way the main ex-
tensions we have made to triple graph grammars in order
to be able to relate arbitrary concrete and abstract syn-
tax. The main concepts are presented in a theoretical
way in Appendix A. For a full description of the formal-
ization, the interested reader can consult [23].

Triple Graph Grammars (TGGs) were introduced by
Schürr [27] as a means to specify translators of data
structures, check consistency, or propagate small changes
of a data structure as incremental updates into another
one. TGGs manipulate triple graphs; therefore we in-
troduce this structure in subsection 3.1. Then, in sub-
section 3.2, we present the main ideas of triple graph
transformation with node and edge inheritance.

3.1 Attributed Typed Triple Graphs

TGG rules model the transformations of triple graphs
made of three separate graphs: source, target and cor-
respondence. As originally defined, nodes in the corre-
spondence graph had morphisms (mappings) to nodes
in the source and target graphs. We have extended the
notion of triple graph by allowing attributes on nodes
and edges (as for example in UML both classes and as-
sociations have attributes). Moreover, the relation be-
tween source and target graphs is more flexible, as we
allow the morphisms from nodes in the correspondence
graph to be undefined, or to lead either to a node or an
edge. Finally, we also provide triple graphs with a typing
by a triple type graph (similar to a triple meta-model),
which may contain inheritance relations between nodes
or edges.

Fig. 3 shows an example of an attributed typed triple
graph (short ATT-graph). The three graphs making the
triple graph are separated by dotted lines. The lower
graph is called source or concrete, the upper one is called
target or abstract, while the graph in the middle is called
correspondence and is used to relate elements in the
other two graphs. Nodes in the correspondence graph
are provided with two morphisms (called correspondence
functions) which can reach either a node or an edge of the
source and target graphs, or be undefined. For a precise
definition of ATT-graph, see definition 7 in Appendix A.

Using a UML-like notation, the lower graph in the
figure depicts a small sequence diagram that uses the vi-
sualization concepts shown in the meta-model of Fig. 1.
In particular, it shows two objects (“object1” and “ob-
ject2”) having an activation box each. The first activa-
tion box receives the start message “msg0” and sends
message “msg1” to the second one. Note that messages

are represented as links with attributes (i.e. attributed
edges). The upper graph uses concepts of the UML 1.5
meta-model (Stimulus, Object, Class, etc). The corre-
spondence graph in between relates the elements in both
graphs. More in detail, nodes with type CorrespondenceOb-
ject in the correspondence graph relate nodes of type Ob-
ject in the other two graphs, while CorrespondenceMes-
sage nodes relate messages of any kind (edges) with
Stimulus objects (nodes).

: CorrespondenceMessage : CorrespondenceObject : CorrespondenceMessage : CorrespondenceObject

: SynchronousInvocationAction

: Stimulus

name:"msg0"

: Message

name:"object1"

: Object

name:"class1"

: Class

: SynchronousInvocationAction

name:"msg1"

: Message

: Stimulus
name:"object2"

: Object

name:"class2"

: Class

: action

: conformingStimulus : classifier

: sender

: action

: conformingStimulus : classifier

: receiver : receiver

name:"object2"

: Object

class:"class2"

: ActivationBox

name:"object1"

: Object

class:"class1"

: ActivationBox

name:"msg1"

: Message

type:synchronousname:"msg0"

: StartMessage

: StartPoint

: objectLifeLine : objectLifeLine

Fig. 3 Attributed Typed Triple Graph Example.

Being able to relate links with both nodes and links
through correspondence graph nodes is crucial in our
approach. For example, suppose we have two attributed
edges with the same source and target nodes in the con-
crete graph, that we want to relate with other attributed
edges in the abstract graph. Relating only the source
and target nodes is not enough, as then we do not know
which edge in the concrete graph is related to which
one in the abstract graph. Therefore it is necessary to
be able to directly map edges. Moreover, sometimes it
is necessary to relate edges in one graph to nodes in
the other (and therefore a regular graph morphism from
the correspondence graph to the other two graphs is
not enough either). For example, in model transforma-
tion, if we translate state automata into Petri nets, we
may model automaton transitions as edges and Petri net
transitions as nodes. For this transformation, we map
states into places and state automaton transitions into
Petri net transitions. This kind of heterogeneous map-
ping has been necessary in many other cases, such as
in [24], where we transformed the structure of a web sys-
tem into a coloured Petri net, where hyperlinks (edges)
were mapped into Petri net transitions (nodes). Fig. 3 is
also an example of heterogeneous mapping.

On the other hand, as the user interacts with the
concrete graph, he may delete elements which are al-
ready related to elements in the abstract graph. When
such operation is performed, the mapping from the cor-
respondence node to the concrete graph node becomes

6 Esther Guerra, Juan de Lara

undefined. Keeping the correspondence node with just
one mapping is useful as we may later want to delete
the element in the abstract graph, and probably some
others related to it. Note that this feature facilitates
designing incremental transformations. Moreover, being
able to know that a mapping is undefined is a very useful
negative test in TGG rules.

The ATT-graph in Fig. 3 is typed over the attributed
type triple graph with inheritance (or meta-model triple)
shown in Fig. 4 (see definition 12 in Appendix A for
a precise definition of meta-model triple). The upper
part (abstract syntax) of the meta-model triple depicts
a slight variation of the UML 1.5 standard meta-model
proposed by OMG for sequence diagrams3 [31]. The low-
est meta-model in the figure declares the concrete ap-
pearance concepts and their relations. Its elements are
in direct relationship with the graphical forms that will
be used for graphical representation. Abstract class Con-
creteElement has two abstract edges AbsMessage and
AbsLifeLine. ConcreteElement has three children: Start-
Point, ActivationBox and Object. Message, StartMessage
and createMessage refine abstract edge AbsMessage. They
restrict the kind of ConcreteElement types that can be
connected through a message: StartPoint and Activa-
tionBox, ActivationBox with itself and ActivationBox
and Object. A similar situation happens for AbsLifeLine.

The correspondence meta-model specifies the possi-
ble relations between elements of the concrete and ab-
stract syntax. This is done by means of classes Correspon-
denceMessage and CorrespondenceObject. The correspon-
dence functions for the former node go to Stimulus and
AbsMessage. As the latter is an abstract edge, this means
that correspondence nodes with type Correspondence-
Message can have correspondence functions to each one
of the AbsMessage children edges. Note that including
the AbsMessage abstract edge simplifies the correspon-
dence graph. Otherwise we would need three node types
in the correspondence graph, to relate StartMessage, cre-
ateMessage and Message links with Stimulus objects.

Next subsection shows how ATT-graphs can be rewrit-
ten by means of TGG rules.

3.2 Attributed Typed Triple Graph Transformation with
Inheritance

This section presents the basic concepts of attributed
typed triple graph transformation in the DPO approach
in an intuitive way. See Appendix A.2 for an introduc-
tion to the basic theory, and [23] for a complete pre-
sentation. In [27] TGGs are defined following the single
pushout [13] (SPO) approach and are restricted to be

3 This has been changed in the 2.0 version of UML, as now
the concept of LifeLine is part of the meta-model. However,
similar problems remain for the ordering of messages. More-
over, sequence diagrams have become more complex with the
inclusion of combined fragments.

Asynchronous
InvocationAction

Create
ObjectAction

Destroy
ObjectAction

Synchronous
InvocationAction

Feature

visibility: enum = {private,
 public,protected}

name : string

name : string

Message

Action

Stimulus

Classifier

name : string

Class BehaviouralFeature

name : string

Object OperationInstance

Abstract Syntax Meta−Model

*

*

* action

* * sender

receiver

0..1 feature

activator

successor

conforming
Stimulus

1

* 0..1

*

1

1*

*

classifier
1..*

*

CorrespondenceMessage CorrespondenceObjectCorrespondence Meta−Model

name : string

Message

type : enum =
{ synchronous,
asynchronous,
destroy }

StartPoint

name : string

StartMessage

ActivationBox

class : string
name : string

Object

Concrete Syntax Meta−Model

*

0..1

 0..1

lifeLine

1

0..1

0..1

0..1

 0..1

 *
 *

ConcreteElement*AbsMessage AbsLifeLine

objectLifeLine

createMessage

 0..1

0..1

Fig. 4 A Meta-Model Triple Example.

monotonic (its LHS must be included in its RHS). Here
we use the DPO approach and do not take the restric-
tion of monotonicity. Moreover, we allow rules to have
application conditions.

The main idea in the DPO approach is that rules are
modelled using three components: L, K and R. The L
component contains the necessary elements to be found
in the graph (called host graph) to which the rule is ap-
plied. K (the kernel) contains the elements that are pre-
served by the rule application. Finally, R contains the
elements that should replace the identified part in the
structure that is being rewritten. Therefore, L −K are
the elements that should be deleted by the rule applica-
tion, while R−K are the elements that should be added.
In the DPO approach, graph transformation is formal-
ized using category theory. In this way, not only graphs
can be rewritten but objects in any (weak) adhesive HLR
category [14] such as graphs, hypergraphs, Petri nets or
triple graphs (see the end of Appendix A.1 and [23]). In
our case, L, K and R are ATT-graphs. In the figures of
the paper we omit the K component, and elements in L
and R are labelled with numbers. Elements having equal
numbers in L and R are preserved by the rule, and thus
belong to K. The upper part of Fig. 5 shows a triple rule
that connects one object and its classifier in the abstract
graph.

A triple rule can be applied to a host ATT-graph if an
occurrence (a match) of the rule’s left hand side (LHS)
is found in it. If such occurrence is found, then it can
be substituted by the rule’s right hand side (RHS). Such
rule application is called direct derivation. Fig. 5 shows
an example of direct derivation, in which a TGG rule
is applied to ATT-graph G, yielding graph H (written
G =⇒ H). Match m identifies the elements of the rule’s
LHS in G, and the occurrence is depicted using numbers.

Event-Driven Grammars: Relating Abstract and Concrete Levels of Visual Languages 7

m *m

name = "object_1"

: Object

: Correspondence
Object

: Correspondence
Object

name = "object_2"

: Object

class = "class_1"

name = "object_1"

: Object

class = "class_1"

name = "object_2"

: Object

3

2

4

G

name = "class_1"

: Class

1

to object
assign classifier

: Correspondence
Object

class = className

name = objectName

: Object

name = objectName

: Object

name = className

: Class

1

2

3

4

L

: Correspondence
Object

class = className

name = objectName

: Object

name = objectName

: Object

name = className

: Class

1

2

3

4

R

5

name = "object_1"

: Object

: Correspondence
Object

: Correspondence
Object

name = "object_2"

: Object

class = "class_1"

name = "object_1"

: Object

class = "class_1"

name = "object_2"

: Object

3

2

4

H

5

name = "class_1"

: Class

1

Fig. 5 A Direct Derivation Example.

In order to apply a rule, the DPO approach requires
two additional conditions. The first one is known as
“dangling edge” condition [13] and forbids rule appli-
cation if deleting a node causes some edge to become
dangling (i.e. the deleted node is the source or target of
an edge in the host graph, and the edge is not explic-
itly included in the rule’s LHS). The second requirement
is called the “identification condition”, and states that
if two different elements in the LHS are identified by
the match (through a non-injective matching) then they
should be preserved by the rule.

A triple graph grammar (TGG) is made of a set of
triple rules and an initial ATT-graph TriAS. The lan-
guage generated by the grammar are all possible ATT-
graphs derived from zero or more applications of the
rules in the set starting from TriAS, written L(TGG) =
{TriTAG|TriAS ⇒∗ TriTAG}.

In order to avoid creating twice the link between the
object and the classifier, the rule in Fig. 5 should also
check that the link has not been created before. This
kind of negative test can be done by providing rules with
application conditions, which further restrict rule appli-
cability. One of the most common kinds of application
conditions are negative application conditions (NACs).
They consist of an extra ATT-graph (related to the LHS)
that should not be present in the host ATT-graph (re-
lated to the LHS occurrence) for the rule to be applied.
Fig. 6 shows two rules with NACs. The first rule creates
an object in the abstract syntax (label 6) if an object
has been created in the concrete syntax. The rule can-
not be applied if the object in the concrete syntax (label
1) is already related to an abstract syntax object. This

additional condition is tested with the NAC. The second
rule connects an object with its classifier in the abstract
syntax. The rule cannot be applied if they are already
connected. The latter rule is in fact the complete version
of the one shown in Fig. 5.

Object Creation (post−rule)

:CreateEvent

y = yp

x = xp

type = ’Object’

:Object

name = objectName

class = className

:Graph_Object

LHS:

5

3 2

1

4

:Object

name = objectName

:Correspondence
Object

:CreateEvent

y = yp

x = xp

type = ’Object’

:Object

name = objectName

class = className

:Graph_Object

RHS:

8

6

7

9

5

3 2

1

4

:Object

name = objectName

:Correspondence
Object

:Object

name = objectName

class = className

NAC:

12

10

11

13 1

:Class

name = className

:Object

name = objectName

NAC:

8

1

2

:Correspondence
Object

:Class

name = className

:Object

name = objectName

:Object

name = objectName

class = className

LHS:

5

6

1

2

3

4

:Correspondence
Object

:Class

name = className

:Object

name = objectName

:Object

name = objectName

class = className

RHS:

5

7

6

1

2

3

4

Assign Classifier to Object
(post−rule)

Fig. 6 Example of TGG Rules with NACs.

In this paper we also use a more complex kind of
application conditions, made of an ATT-graph X and a
set of ATT-graphs Yj (see definition 11 in Appendix A).
In this case, a rule can be applied if, given a match of
the LHS, if an occurrence of X is also found, then an
occurrence of some Yj should also be found. NACs are
a particular case of this kind of conditions where the Yj

set is empty.
In order to benefit from the inheritance structure of

the meta-model triples, we allow triple rules to contain
instances of abstract classes (“abstract objects”) in the
LHS (following a similar approach to [3,16], but for triple
graphs and considering also edge inheritance). Of course
a host ATT-graph cannot contain abstract objects. How-
ever, abstract objects (and in general any object whose
classifier has children) in the rule’s LHS can be matched
to instances of any subclass of the abstract object classi-
fier. We call this kind of rule inheritance-extended triple
rules, or IE-triple rules. This kind of rules are indeed
equivalent to a number of concrete rules, resulting from

8 Esther Guerra, Juan de Lara

the valid substitutions of each node and edge in the IE-
triple rule by all the concretely typed nodes and edges in
its inheritance clan (i.e. subnodes and subedges). If the
set of equivalent rules of an IE-triple rule has cardinal-
ity greater than one, the IE-triple rule is called IE-triple
meta-rule. Therefore, this kind of rules allows express-
ing computations in a more compact way than regular
TGG rules. The application of an IE-triple meta-rule is
equivalent to the application of one of its concrete rules
(see [23] for details). Nodes and edges abstractly typed
are thus allowed to appear in the LHS of an IE-triple
rule. However, if an abstract node appears in the RHS,
then it must also appear in the LHS. That is, we do not
allow creating elements with an abstract typing. This
could be done in principle, and the meta-rule would be
equivalent to a number of concrete rules resulting from
the substitution of the elements with abstract types by
elements with concrete one in the inheritance clan. How-
ever, this could result in non-determinism when applying
the meta-rule, which we want to avoid. See definition 15
in Appendix A for a formal definition of IE-triple rule.

AbsMessage

: Correspondence
Message

: Correspondence
Message

name = m2

: Message

: Stimulus

name = m1

: Message

: Stimulus

: Concrete
Element

: Concrete
Element

: Concrete
Element

L 1

46

16

35

14 12 13

7 8 915 17

2

10 11

m

: Correspondence
Message

: Start
Point

: Activation
Box

: Activation
Box

: Correspondence
Message

: StartMessage

name = "start"

name = "start"

: Message

: Stimulus

name = "msg"

: Message

: Stimulus

: Message

name = "msg"

G

6

1612 13

2

7 15

10

8 17

11

9

1

5 3

14

4

: Correspondence
Message

: Start
Point

: Activation
Box

: Activation
Box

: Correspondence
Message

: StartMessage

name = "start"

name = "start"

: Message

: Stimulus

name = "msg"

: Message

: Stimulus

: Message

name = "msg"

H

6

1612 13

2

7 15

10

8 17

11

9

1

5 3

14

4

activator

18

AbsMessage

: Correspondence
Message

: Correspondence
Message

name = m2

: Message

: Stimulus

name = m1

: Message

: Stimulus

AbsMessage

: Concrete
Element

: Concrete
Element

: Concrete
Element

R 1

46

16

35

14 12 13

7 8 915 17

2

10 11

18

activator

m*

create
activator

AbsMessage

Fig. 7 An Example of IE-Triple Meta-Rule and Derivation.

The top row of Fig. 7 shows an IE-triple meta-rule
example. The rule identifies the activator message of an-
other one, creating an edge in the abstract graph (the
rule is simplified, we do not include application condi-
tions for clarity). Nodes 7, 8 and 9 and edges 10 and
11 of the concrete graph have an abstract typing. The
meta-rule is equivalent to four concrete rules. Node 7 can
take types StartPoint or ActivationBox in the concrete

rule, node 8 has to be an ActivationBox, and node 9 can
be an Object or an ActivationBox. Thus, four combina-
tions are possible, where the edge types are determined
by the choice of node types. The figure also shows a di-
rect derivation example, where abstract elements 7, 8, 9,
10 and 11 in the rule take concrete types StartPoint, Ac-
tivationBox, ActivationBox, StartMessage and Message
in the triple graph G.

Once we have defined the basic concepts regarding
triple graphs and triple rules, next section presents event-
driven grammars.

4 Event-Driven Grammars

In this section we present event-driven grammars as a
means to formalize some of the user actions and their
consequences when using a visual modelling tool. We
have defined event-driven grammars to model the effects
of editing operations in AToM3 [10], although the ap-
proach can also be applied to other tools. The actions a
user can perform in AToM3 are creating, editing, delet-
ing and moving an entity or a link, and connecting and
disconnecting two entities. All these events occur at the
concrete syntax level.

The main idea of event-driven grammars is to make
explicit these user events in the rules. This is very dif-
ferent from the syntax directed approach, where graph
grammar rules are defined for VL generation and the
user chooses the rule to be applied. In our approach, the
VLs are generated by means of meta-modelling, and the
user builds the model as in regular environments gener-
ated by meta-modelling. The events that the user gen-
erates may trigger the execution of some rules. In this
work, rules are IE-triple rules and are used to build the
abstract syntax model, to perform consistency checking
and for concrete syntax layout.

An event-driven grammar contains three sets of pre-
defined rules. The first one, called event-generator rules
(depicted as evt in Fig. 8) models the generation of events
by the user. Another set of rules (action rules, depicted
as sys-act in Fig. 8) models the actual execution of the
event (creating, deleting entities, etc.). Finally, an addi-
tional set of rules (called consume rules, depicted as del
in Fig. 8) models the consumption of the events once the
action has been performed. In addition, the VL designer
can define his own rules to be executed after an event is
generated by the user and before the execution of the ac-
tion rules (depicted as pre in Fig. 8), or after the action
rules and before the consume rules (depicted as post in
Fig. 8). These rules model pre- and post- actions respec-
tively. In the pre-actions, rules can delete the produced
events if certain conditions are met. This is a means
to specify pre-conditions for the event to take place.
Additionally, in the post-actions, rules can delete the
event actions, which is similar to a post-condition. The
working scheme of an event-driven grammar is shown in

Event-Driven Grammars: Relating Abstract and Concrete Levels of Visual Languages 9

Fig. 8. All the sets of rules (except the event-generator
rules in evt, which just produce a user event) are exe-
cuted as long as possible (note the asterisk on the deriva-
tion arrow).

Mi

evt

®¶

+3 +3 Mf

Mevt

pre∗ +3 Mevt−pre
sys−act∗ +3 Mact

post∗+3 Mact−post

del∗

KS

Fig. 8 Direct Derivation of Event-Driven Graph Grammar.

All the models in Fig. 8 Mi, Mevt, Mevt−pre, Mact,
Mact−post and Mf are attributed triple graphs typed
by a meta-model triple. However, the sets of rules evt,
sys − act and del are restricted to modify the concrete
graph only, which represents the concrete syntax. On the
other hand, rules in pre and post are unrestricted IE-
triple rules, which can be used to propagate the changes
due to user events to the abstract syntax model (abstract
graph). A direct derivation by an event-driven grammar
(caused by a user event) is depicted as Mi

+3 +3 Mf .

The formal definitions of event-driven grammar and deriva-
tion are given in definitions 16 and 17 in Appendix B.

Fig. 9 shows the AToM3 base classes for the concrete
syntax. We already showed some of these classes in the
second meta-level of Fig. 2. As stated before, all con-
crete syntax symbols inherit either from Entity (if they
are icon-like entities) or from Link (if they are arrow-like
entities). Both Entity and Link inherit from VisualOb-
ject, which has information about the object’s location (x
and y) and about if it is being dragged (selected). Links
are connected to Entities via LinkSegment objects. These
can go either from Entities to Links (e2l) or the other
way round (l2e).

receives

LinkEntity

ErrorEvent

msg: String

UserEvent

type: String DragEvent DropEvent

EditEvent

DeleteEvent

AToM3Event

MoveEvent

x: Integer
y: Integer CreateEvent

type: String
x: Integer
y: Integer

LinkSegment

direction: {e2l, l2e}

y: Integer
x: Integer

VisualObject

selected: Boolean=false

DisconnectEvent ConnectEvent

LinkEvent

which: {Source, Target}

0..*
connections

1 1

0..*
segments

0..1 0..*

Fig. 9 AToM3 Base Classes for Concrete Syntax Objects
and User Events.

Abstract class ATOM3Event in Fig. 9 models the
events that can be generated by the user, and can be
associated to a VisualObject. Some concrete events have

additional information, such as CreateEvent, which con-
tains the type of the VisualObject to be created and its
position. MoveEvent contains the position where the ob-
ject has been moved. When connecting two Entities, two
ConnectEvent objects are generated, one associated to
the source and another one associated to the target. Er-
rorEvent signals an error associated with a certain ob-
ject, in such a way that AToM3 presents the text of the
error and highlights the object. Finally, the UserEvent
class can be used to define new events.

From now on, we assume that the classes in Fig. 9
(together with classes ASGNode and ASGConnection,
see Fig. 2) are the base classes for the concrete syntax
graph of meta-model triples, in a similar way as in the
second meta-level of Fig. 2. In the following, we present
some event-driven rules for the evt, sys − act and del
sets. They model the behaviour of the AToM3 tool. As
the correspondence and abstract graphs are empty in
these rules, we omit them and show only the concrete
graph.

CONDITION

DropEvent

Drop

LHS 1 RHS 1

selected=true

VisualObject

selected=true

VisualObject

DragEvent

RHS 1

selected=false

VisualObject

Drag

LHS 1

selected=false

VisualObject

CreateEvent

type=oType
x=xp
y=yp

RHSLHS

Create(oType: String;
xp, yp: Integer)

Delete

LHS
VisualObject

RHS
VisualObject DeleteEvent

1 1

Entity

x=x1
y=y1

Entity

x=x2
y=y2

Entity

x=x1
y=y1

ConnectEvent

which=Source

1

CreateEvent

type=cType
x=(x1+x2)/2
y=(y1+y2)/2

ConnectEvent

which=Target

Entity

x=x2
y=y2

2LHS
Connect(cType: String)

1 2 RHSLHS

cType <> None

Fig. 10 Some of the Event-Generator Rules.

Fig. 10 shows some of the event-generator rules (de-
picted as evt in Fig. 8), which model the generation of
events by the user. The Create rule is triggered when
the user clicks on the button to create a certain entity,
and then on the canvas. The type of the object to be
created is given by the button that the user clicks, and
the x and y coordinates by the position of the cursor
in the canvas. In AToM3, a button is created for each
non-abstract class in the meta-model. The Delete rule is
triggered when the user deletes an object. Finally, the
Connect rule is invoked when the user connects two En-
tities. In AToM3 this is performed by clicking in the con-
nect button and then on the source and the target en-
tities. AToM3 infers (with the meta-model information)

10 Esther Guerra, Juan de Lara

the type of the subclass of Link that must be created in
between. If several choices exist, then the user selects one
of them. The type is then passed as a parameter of the
rule, and the corresponding creation event is generated.
On the other hand, if the entities cannot be connected,
then the type is empty (None), and the rule cannot be
executed (see the application condition). Note that all
these are meta-rules, as we do not care about the exact
type of the graphical elements. That is, these rules are
general, valid for any VL.

For simplicity, the event-generator rules presented in
this paper are triggered by a specific sequence of user
actions (e.g. by clicking a button and then the canvas
for the Create rule). However, in [4], it is shown how the
trigger action can be made explicit in the rules in order
to handle different interaction possibilities (e.g. the se-
lection of a menu option instead of a button click). Sup-
porting more complex interaction patterns as triggers is
up to future work.

1

type=oType

CreateEvent

x=xp
y=yp

1

type=oType

CreateEvent

x=xp
y=yp

x=xp
y=yp

"Graph_"+oType

RHSCreate LHS

1

oType

app.

1NAC

type=oType

CreateEvent

x=xp
y=yp

"Graph_"+oType

ASGNode

Link

CreateEvent

type=cType

ASGNode ASGNode

ConnectEvent

which=Source

Entity

ConnectEvent

which=Target

RHS

direction: l2e
3

5

98

TypeOf(n(10),n(11))

TypeOf(n(1),n(5))

direction: e2l

TypeOf(n(11),n(12))

TypeOf(n(5),n(2))Entity1

7 4

10 11 12

2

6

ConnectEvent

which=Target

Entity

CreateEvent

type=cType

ConnectEvent

which=Source

Entity

ASGNode ASGNode

Entity LinkSegment Link

Connect
LHS

469
8

3 7

Link1 5 2

10 11 12

14 1513

ASGNode

app. assoc.app. app.

NAC 1 5

13 15

14

DeleteEvent

LinkSegmentLink Entity

DeleteEvent

Link

ASGNode ASGNode

Entity

4

ASGNodeASGNode

3

12

4 3

12

DeleteConnectedLink
LHS

ASGConnection

RHS5
5

6
6

LHS 1

VisualObject

MoveEvent

x=xnew
y=ynew

x=xold
y=yold

Move

RHS 1

VisualObject

MoveEvent

x=xnew
y=ynew

x=xnew
y=ynew

CONDITION

2 23 3

((xnew<>xold) or (ynew<>yold)) and

(0<=xnew<=MAX_CANVAS+n(1).sizeX()) and

(0<=ynew<=MAX_YCANVAS+n(1).sizeY())

DeleteEvent

LinkSegmentEntity Link

DeleteEvent

Entity

DeleteEvent

Link

ASGNode ASGNode ASGNode ASGNode

3

12

4 3

12

4

DeleteConnectedEntity
LHS

ASGConnection

RHS5 6 5 6

DeleteEventASGNode

VisualObject

DeleteEvent

DeleteUnConnectedObject

RHS 1LHS

Fig. 11 Some of the Action Rules.

Fig. 11 shows some of the rules that model the real
execution of the events (depicted as sys-act in Fig. 8).
The first rule models the actual creation of an instance
(subclass of ASGNode, see Fig. 2), together with its
associated visual representation (whose type name is
the same as the non-visual instance, but starting by
“Graph ”). Three of the following rules model the exe-
cution of a delete event. In the first case (DeleteUnCon-
nectedObject rule) the object has no connections. The

rule is not applicable (due to the DPO dangling con-
dition4) if the ASGNode to be deleted has any connec-
tion. In the second case (DeleteConnectedEntity rule),
the icon-like object has connections, so a delete event is
sent to the connected link, and the segment is erased.
The third case (DeleteConnectedLink rule) models the
deletion of a link, which erases one of the associated seg-
ments. Please note that all the rules are executed as long
as possible (see Fig. 8). Therefore, when no more seg-
ments are connected to the link, the link itself is deleted
by rule DeleteUnConnectedObject, which can delete En-
tity and Link objects (as they are subclasses of Visu-
alObject).

The Connect rule models the connection of a link to
two entities. Rule Connect in Fig. 10 generates a Cre-
ateEvent for the link. In this way rule Create in Fig. 11
is executed first, creating the link with the correct type.
Next, rule Connect in Fig. 11 can be applied, as classes
Entity and Link are the base classes for all graphical ob-
jects. The appropriate types for the segments in between
links and entities are obtained (from the AToM3 API)
through function TypeOf, which searches the informa-
tion in the meta-model. The function takes two objects
as arguments and returns the type of the object that can
connect them.

The Move rule simply modifies the position attributes
of the object, in case the new position is valid in the can-
vas. The Move event does not need to be propagated to
the adjacent elements, as we have modelled links and
entities to be connected through segments, and these do
not hold position information, but are drawn from the
link to the entity. However, a propagation of the move
event from entities to links could also be modelled (by
adding several extra pre- and post- rules) if useful for cer-
tain VLs, or if we want to model a multiple selection and
then moving several graphical objects at the same time.
In fact, being able to express different tool behaviours
in a flexible way was one of the goals of the event-driven
grammars approach. In the same way, AToM3 allows ob-
ject overlapping. However, it could be possible to forbid
object overlapping by providing a negative application
condition for the Move rule. This NAC would contain
one VisualObject placed in a position that overlaps with
the new position of the object being moved. Modelling
other spatial relationships, such as containment or adja-
cency is also possible. This could be done by means of
post-rules created by the VL designer. The rules might
check that, when an object of some specific type has been
moved, all the connected objects of a certain type should
also be moved, in order to maintain them adjacent. An
example of this kind of rules is presented for sequence
diagrams in section 5.3, which shows how, when mov-
ing an object, all its activation boxes are moved as well.
These mechanisms to deal with spatial relations between

4 which forbids rule application if deleting a node produces
dangling edges, see [13].

Event-Driven Grammars: Relating Abstract and Concrete Levels of Visual Languages 11

graphical elements could be generalized by extending the
AToM3 meta-metamodel with special relations (in the
style of [5]) between VisualObjects, and adding the cor-
responding action rules. This is up to future work.

LHS

AToM3Event

LHS
VisualObject

1 RHS

AToM3Event

ConsumeEventConsumeEventFromObject
RHS

VisualObject

1

Fig. 12 All the Consume Rules.

Finally, a last set of predefined rules (shown in Fig. 12,
and depicted as del in Fig. 8) models the deletion of
the events. Rule ConsumeEventFromObject deletes any
event that is connected to a VisualObject. Rule Con-
sumeEvent deletes any unconnected event. Again, this
rule cannot be applied if the event is connected due to
the dangling edge condition.

Fig. 13 shows an example with a derivation sequence.
We use the meta-model triple of Fig. 4, which defines
the abstract and concrete syntax of sequence diagrams.
Some of the post-rules for the example are shown in
Fig. 6. Moreover, we assume the meta-model triple has
been created with AToM3. Thus, the elements in the
concrete part of the meta-model triple in Fig. 4 inherit
from the AToM3 base classes. Therefore they can receive
events, according to the meta-model in Fig. 9. The re-
sulting concrete graph of the meta-model triple is very
similar to the one found in the second meta-level of
Fig. 2.

The example starts with an empty concrete syntax
and assume there is an already defined class in the ab-
stract syntax (created by a class diagram). We model
the creation and editing of an object by the user. In the
first step, the user generates a creation event by click-
ing on the “create object” button of the user interface
and then on the canvas (at coordinates (10, 10)). Thus,
a CreateEvent object appears in the concrete syntax. As
there is no applicable “pre-” rule, the “sys-act” rules
can be applied. These rules implement the event seman-
tics, and therefore an object is created in the concrete
syntax in step 2. No additional “sys-act” rule is applica-
ble; consequently the grammar execution enters in the
“post-” rules step. Here, rule “Object Creation” (shown
in Fig. 6) can be applied. In this way, in the third step
an object is created in the abstract syntax, linked to
the object in the concrete syntax by a correspondence
object. No additional “post-” rule is applicable and the
execution enters in the “del” step. Thus, in step four,
the CreateEvent is deleted.

In step five, we model a user editing action on the
previously created object. This is performed by clicking
on the “Edit” button of the user interface and then on
the visual object to be edited. Thus, an EditEvent object

Object

:Class

name = ’class1’

y = 10
x = 10
type = ’Object’

:CreateEvent

:Class

name = ’class1’

:Object

name = ’ ’
class = ’ ’

y = 10
x = 10
type = ’Object’

:CreateEvent

:Graph_Object

y = 10
x = 10

:Class

name = ’class1’

:Correspondence
Object

:Object

name = ’obj1’
class = ’class1’

:Graph_Object

y = 10
x = 10

:EditEvent

:Object

name = ’obj1’

:Class

name = ’class1’

:Correspondence
Object

:Object

name = ’obj1’
class = ’class1’

:Graph_Object

y = 10
x = 10

:EditEvent

:Object

name = ’obj1’

:Class

name = ’class1’

:Correspondence
Object

:Object

name = ’obj1’
class = ’class1’

:Graph_Object

y = 10
x = 10

:Object

name = ’obj1’

:Class

name = ’class1’

(Step 1)

Create
(evt)

(Step 2)

Create
(sys−act)

:Correspondence
Object

:Object

name = ’ ’
class = ’ ’

y = 10
x = 10
type = ’Object’

:CreateEvent

:Graph_Object

y = 10
x = 10

:Object

name = ’ ’

:Class

name = ’class1’

(Step 3)

Object
Creation

(post)

:Correspondence
Object

:Object

name = ’ ’

:Object

name = ’ ’
class = ’ ’

:Graph_Object

y = 10
x = 10

:Class

name = ’class1’

:Correspondence
Object

:Class

name = ’class1’

:Object

name = ’ ’
class = ’ ’

:Graph_Object

y = 10
x = 10

:Object

name = ’ ’

:EditEvent

(Step 4)

Consume

(del)

Event from
Object

:Correspondence
Object

:Class

name = ’class1’

:Object

name = ’ ’

:Object

name = ’obj1’
class = ’class1’

:Graph_Object

y = 10
x = 10

:EditEvent

(Step 5)

(evt)
Edit

(Step 6)

(sys−act)
Edit

(Step 8)

Assign
Classifier
to Object
(post)

(Step 9)

Consume
Event from
Object
(del)

(Step 7)

Editing
(post)

Fig. 13 A Fragment in the Execution of an Event-Driven
Grammar.

is created and connected with the selected visual object.
In step six, we model the execution of such editing ac-
tion. Thus, the value of the attributes (name and class)
changes in the object associated to the visual representa-
tion. Then a “post-” rule is triggered, that modifies the
name attribute of the abstract syntax object. Moreover,
in step eight, an additional “post-” rule (“Assign Clas-
sifier to Object” in Fig. 6) is executed that associates
the object with its classifier at the abstract syntax. Fi-
nally, the execution reaches the “del” step, where rule
“Consume Event from Object” is fired. The rule erases
the EditEvent object.

5 Example: Sequence Diagrams

As an example of the developed techniques, we describe
an environment to define the abstract and concrete syn-
tax of UML sequence diagrams. We use the meta-model
triple in Fig. 4, and assume – as in the previous ex-
ample – that the elements of the concrete graph of the
meta-model triple inherit from the AToM3 base classes.
Starting from this triple meta-model, AToM3 generates
a tool where the user can build models according to the
concrete syntax. The user creates the diagrams at the
concrete syntax level, therefore some automatic mech-
anism to generate the abstract syntax of the diagrams

12 Esther Guerra, Juan de Lara

and support its mutual coherence has to be provided.
With this aim we have built a set of event-driven rules
triggered by user actions. Additionally, another set of
event-driven rules models specific spatial relations be-
tween the elements drawn in the concrete syntax layout
(such as the automatic alignment of the activation boxes
that belong to the same object). Finally, a set of triple
rules checks the consistency between the sequence dia-
gram and existing diagrams. The three different sets of
rules are presented in the following subsections; but first,
we briefly present our approach to the visual modelling
of systems with multiple views (such as UML).

5.1 Multi-View Modelling

In order to cope with the complexity of system mod-
elling, one may have to use partial views for the specifica-
tion of their different aspects (structure, behaviour, etc.).
A different modelling language is usually used for the
specification of each view. This is the case of UML [31],
where system structure and behaviour can be described
using several modelling notations. Although these no-
tations can be independently used, they were defined
and related by a single meta-model, to complement each
other. Thus, one can refer to the same concept in dif-
ferent diagrams, and model different aspects of a given
entity. For example, a class may appear in several class
diagrams, it can be assigned a statechart, and then be
referenced as the classifier of a number of instances in
object or sequence diagrams.

<<instance−of>>

Class Diagrams
Meta−Model for

Concrete Syntax
Sequence Diagrams
Meta−Model for

Concrete Syntax
Statecharts
Meta−Model for

Concrete Syntax

C
on

cr
et

e
S

yn
ta

x
A

bs
tr

ac
t

S
yn

ta
x

C
on

cr
et

e
S

yn
ta

x

Complete VL

Correspondence

...

"M
et

a−
M

od
el

s"
 le

ve
l

User−Defined

"Glued" System
Model (repository)

Correspondence
Graphs

Partial Views

......

Class Diagram−1 Class Diagram−2 Statechart−1Sequence
Diagram−1

......

"M
od

el
s"

 le
ve

l

Meta−Model

Graphs

...
Collaboration Diagrams
Meta−Model for

Concrete Syntax

S
yn

ta
x

A
bs

tr
ac

t

<<instance−of>>

<
<

in
st

an
ce

−
of

>
>

<<instance−of>>

<<instance−of>>

Fig. 14 Modelling a Multi-View System with UML
(instance-of relations of correspondence graphs are omitted
for clarity).

This situation is depicted in Fig. 14. The figure shows
how the user can model a system using several views and

the different concrete syntaxes of the views at the “Mod-
els” level. Each view is specified with a diagram type,
using a given concrete syntax, and being conformant to
its corresponding meta-model. The latter is represented
with the relation instance-of in the figure. In addition,
each view has also an associated abstract syntax. The
different views are related at this abstract syntax rep-
resentation. In fact, it is possible to obtain a unique
abstract syntax model (called repository), which is the
result of “gluing” the abstract syntax of the different
views. Thus, fragments of the abstract syntax obtained
from each concrete syntax view may overlap. Methods
should be provided to connect and assure consistency
between the different views at the abstract syntax level.
Here we propose using triple graph transformation for
this purpose. We use it in combination with event-driven
grammars to build the abstract syntax model. Moreover,
we can use it for consistency checking, in order to make
sure that the new elements added by a concrete syntax
view are consistent with the already existing elements
at the abstract syntax. An example is shown in sub-
section 5.4. Note that in order to build an environment
for UML with this approach, at the abstract syntax one
should provide the full UML meta-model, while at the
concrete syntax different meta-models for each of the di-
agram types should be given. Fig. 4 presented only the
abstract syntax of a small part of the UML meta-model
(together with its concrete syntax) relevant for sequence
diagrams.

5.2 Abstract and Concrete Syntax of Sequence
Diagrams

We have defined the abstract and concrete syntax of se-
quence diagrams using the meta-model triple in Fig. 4.
In this subsection, we provide event-driven rules to con-
struct the abstract syntax from the user actions at the
concrete level. These rules manage the creation, editing
and deletion of Objects, the creation, editing and dele-
tion of Messages, and the creation and deletion of Life
Lines. The graphical actions that do not change the ab-
stract syntax (like creating an Activation Box or moving
an element) do not need the definition of extra rules
apart from the ones provided by AToM3 (Figs. 10, 11
and 12). In addition, we have provided some rules for
layout management, which are shown in section 5.3.

Rules for the creation, editing and deletion of Ob-
jects are the simplest of the set. These rules create, edit
and delete Objects at the abstract syntax level (once the
user generates the corresponding event at the concrete
level). Objects at the abstract syntax are related to the
concrete syntax Objects (which received the user event)
through an element in the correspondence graph. Rules
for creating objects (both post- actions) are shown in
Fig. 6. The top-most rule creates the object at the ab-
stract syntax level, while the rule below connects (at the

Event-Driven Grammars: Relating Abstract and Concrete Levels of Visual Languages 13

abstract syntax level) the object with its corresponding
class. If the second rule cannot be applied, it means that
such class has not been created in any class diagram
yet. This inconsistency is tolerated at this moment (we
do not want to put many constraints in the way the user
builds the different diagrams), but we have created some
rules to check and signal inconsistencies. These rules are
explained in subsection 5.4 and can be executed at any
moment in the modelling phase. For the deletion of an
object (rules not shown in the paper), we ensure that it
has no incoming or outgoing connection. This is done by
a pre- action rule that erases the delete event on an ob-
ject and presents an error message if it has some connec-
tion. This is the main idea of pre- action rules: checking
if some condition is not met, and in that case, inhibiting
the event execution by deleting the event itself.

The creation of a message is equivalent to connecting
two elements belonging to the concrete syntax (Concre-
teElement, see Fig. 4) by means of a relationship of type
AbsMessage. Obviously users cannot instantiate neither
abstract entities nor abstract relationships, but only con-
crete ones. Therefore, at the user level, the action to
create messages includes three concrete cases: the con-
nection of two ActivationBoxes by means of a Message
relation, the connection of a StartPoint to an Activa-
tionBox by means of a StartMessage relation, and the
connection of an ActivationBox to an Object by means
of a createMessage relation. The event-driven rules for
managing the first two concrete cases are very similar.
That is, we should have a first rule to create a Mes-
sage relationship if its source and target are activation
boxes and another similar one except for the relationship
type (StartMessage) and its source (StartPoint). Since
the two rules have the same structure, we use instead
the IE-triple meta-rule shown in Fig. 15. The rule gen-
erates the abstract syntax of a new message created by
the user, adding a relation between the concrete syntax
of the new message and its respective abstract syntax.
In this particular case the message concrete syntax is
related to more than one abstract syntax entity: three
abstract syntax entities (one Message, one Stimulus and
one Action) are graphically represented using a single
symbol on the concrete syntax. On the other hand, the
same rule has to process the relations between the newly
created abstract syntax message and the rest of the ab-
stract syntax model. That is, the successor, predecessor
and activator messages of the created one have to be
computed (relations successor and activator, see Fig. 4),
as well as the objects sending and receiving the mes-
sage (relations sender and receiver in the same figure).
Additionally, we have to check if the new message ac-
tivates in its turn another block of messages. To make
easier such complex process, we have broken down the
creation event in a set of six user-defined events, each
performing one step. The user events are created in the
RHS of the rule, and are processed by some additional
rules. Processing a createMessage cannot be included in

this meta-rule, as in the abstract syntax a CreateObjec-
tAction object should be created, whereas in the meta-
rule of Fig. 15 a SynchronousInvocationAction object is
created for both Messages and startMessages. Therefore
an additional, similar rule is needed for processing cre-
ateMessage objects.

Message Creation (post−rule)

:ConnectEvent

which = Source

:Entity

:AbsMessage

:CreateEvent

type = cType

:Link

:ConnectEvent

which = Target

ActivationBox

:Graph_

LHS:

5

2

9

1

6

3

10

8

11

4

7

:AbsMessage

ActivationBox

:Graph_

:Message

name = ’’

:Stimulus
InvocationAction

:Synchronous

:CorrespondenceMessage

:Entity

:CreateEvent

type = cType

:Link

:UserEvent

type = ’Process
 Successor’

:UserEvent

type = ’Process
 Predecessor’

:UserEvent

type = ’Process
 Sender’

:UserEvent

type = ’Process
 Activator’

:UserEvent

type = ’Delete
 Activator’

:UserEvent

type = ’Process
 Receiver’

31 1

4

RHS: 24
25

27 28

26

30

29

2

6
10

8 3

18

21

20

19

12

13

14

15

23

22

17

16

Fig. 15 Meta-Rule for Creating Messages and startMes-
sages.

Fig. 16 shows the rule for processing the user event
“Process Successor”. The successor of a message is the
next message in the same activation block of an object.
An activation block is made of one or more ActivationBox
objects linked through life lines. The first activation box
has an incoming message, and the rest have at most one
outgoing message and no incoming messages. The acti-
vation block is visually represented by gluing together
all the activation boxes. Note that the user event is as-
sociated to the activation box which is source of the mes-
sage. Thus, given a message for which its successor has
to be calculated, the rule searches for a message going
out from the next activation box in the same life line.
The next activation box of “1” in the rule’s LHS is the
object labelled with “8”, and its outgoing message is la-
belled with “11”. In addition, the second activation box
has to be in the same activation block, that is, it can-
not be the beginning of a new activation block (i.e. it
cannot receive an incoming message). This is checked by
NAC2, which forbids an incoming message to the second
activation box. Finally, the NAC1 checks that a succes-
sor relation does not exist yet. If all these conditions
are met, the rule creates a successor relation (label 36)
between the first message and the following one at the
abstract syntax, and deletes the user event. The rule for
handling the user event “Process Predecessor” is very

14 Esther Guerra, Juan de Lara

similar to this, but in this case the previous message in
the same block of activation is searched, not the next.

(post−rule)

:Graph_ActivationBox

:LinkSegment

direction = l2e

:Link

:AbsMessage

NAC2:

8

3841

42
39

4043

:Message

name=n2

:Message

name=n1

NAC1: 25

26
37successor

:Stimulus :Message

name=n1

:Message

name=n2

 Message
:Correspondence

 Message
:Correspondence

:Graph_ActivationBox :Link :AbsMessage

:LinkSegment

direction = l2e

:Graph_ActivationBox

:LinkSegment

direction = e2l

:Graph_LifeLine

:LinkSegment

direction = e2l

:Link

:LinkSegment

direction = e2l

type = ’ProcessSucessor’

:UserEvent

:AbsMessage

32

28
24

34

:Stimulus
29

27

33

25 26LHS:

30 31

1

13 14

3

15

4

16

19 8

7

5

17
6

10

9

20 21

2

18

23

11
22

3512

:Stimulus :Message

name=n1

:Message

name=n2

 Message
:Correspondence

:Graph_ActivationBox :Link :AbsMessage

:LinkSegment

direction = l2e

:Graph_ActivationBox

:LinkSegment

direction = e2l

:Graph_LifeLine

:LinkSegment

direction = e2l

:Link

:LinkSegment

direction = e2l

:AbsMessage

 Message
:Correspondence

24
28

32

36

successor

34

:Stimulus
29

2725 26

33

13 14 15

16

19 8

7

5

17
6

10

9

20 21

2

18

1 3 4 35

22
11

30

RHS:

31

Successor
Process

Fig. 16 Meta-Rule for Assigning Message Successors.

A total of 15 rules have been defined to manage the
creation, editing and deletion of Objects and Messages.
Some other rules, similar to the previous ones, manage
the creation and deletion of lifeLines. In this way, some
of the user events shown in Fig. 15 (and their corre-
sponding rules) have been reused. Thus the number of
rules has been highly reduced. Due to space limitation,
we do not show all the rules, which are 38 in total.

Note that starting from the meta-model triple, it
could be possible to automatically generate a skeleton
for some of these rules. Full generation for all the rules
was achieved in [22], but in the restricted case in which
the concrete graph of the meta-model triple is a restric-
tion (a subset) of the abstract syntax part of the meta-
model, and thus the relation between concrete and ab-
stract elements is one-to-one. The problem we are deal-
ing with in this article is more general as we do not

have such restriction. However, we can generate a skele-
ton for the creation, editing and deletion rules. We just
have to generate such rules for each connected elements
in the concrete and abstract meta-models through a cor-
respondence node. Nonetheless, rules generated in this
way are not fully complete as in general we cannot know
how the attribute mapping is done. Moreover, often not
only an element should be created in the abstract syn-
tax, but it also has to be connected to other elements (as
rule Assign Classifier to Object in Fig. 6 does). In addi-
tion, sometimes these skeletons should also be completed
with additional elements as, for example, an element in
the concrete syntax may be related to more than one
element in the abstract syntax (as in the case of rule
Message Creation in Fig. 15).

5.3 Concrete Syntax Layout

Event-driven grammars can also be used to model the
behaviour of the tool in the concrete syntax layout. They
can help in handling complex spatial relations between
the elements in a model, such as adjacency, containment
or alignment. Obviously, in these cases rules should only
modify the concrete syntax model, although its applica-
tion could be restricted by certain conditions taking into
account both abstract and concrete syntax elements. As
an example, Fig. 17 shows a couple of rules to maintain
aligned in the same vertical line all the activation boxes
corresponding to the same object (that is, those related
through a life line relation).

The first rule, “Aligned Life Lines Connection”, is a
pre-rule. It will be tried when connecting an object with
its first activation box through an objectLifeLine rela-
tion, or two activation boxes of the same object through
a lifeLine relation. In order to be able to treat both cases,
the LHS of the rule contains the abstract class Entity
(labelled as “1”) that is source of the new relation. This
can be matched either to an Object or to an Activa-
tionBox concrete object. Any other possible matching is
forbidden by the condition, which prevents the applica-
tion of the rule when the creation event is neither for
an objectLifeLine nor for a lifeLine relation. If the rule
is applied, the life line relation and the target activation
box are aligned in the same x coordinate as the source
entity (centered in the middle of the width of the source
entity).

The second rule, “Aligned Life Lines Movement”, is
also a pre-rule. Its purpose is to maintain aligned an
object with all its activation boxes when the user moves
any of them in the concrete syntax. Thus, the LHS of the
rule detects entities related through a life line, where one
of them has received a MoveEvent. The abstract class
AbsLifeLine (labelled as “3”) can be matched to both
concrete objectLifeLine and lifeLine links. In this way,
we compress in only one rule the cases of moving an
object and moving an activation box. The RHS of the

Event-Driven Grammars: Relating Abstract and Concrete Levels of Visual Languages 15

Aligned Life Lines Movement (pre−rule)

:Link

y = y_lnk

x = x_lnk

:MoveEvent

y = any_y_lnk

x = any_x_lnk

NAC1:

4

19 18

:Entity

y = y_ent

x = x_ent

:MoveEvent

y = any_y_ent

x = any_x_ent

21 20

6

NAC2:
:Link

y = y_lnk

x = x_lnk

:MoveEvent

y = ynew

x = xnew

:Entity

y = y_ent

x = x_ent

:LinkSegment

:Entity

:LinkSegment

y = y_ent

x = (xnew + n(1).sizeX() − sizeX()) / 2

:MoveEvent

:MoveEvent

y = y_lnk

x = (xnew + n(1).sizeX()) / 2

:AbsLifeLine

RHS:

4

7

6

17

15

2

5

12

11

9

8

13
1

16

14

3

10

:LinkSegment

:LinkSegment

:MoveEvent

y = ynew

x = xnew

:Entity

y = y_ent

x = x_ent

:Entity

:AbsLifeLine:Link

y = y_lnk

x = x_lnk

LHS:

2

5

7

6

1

3
10

4

13

8

9

11

12

:MoveEvent

y = any_y

x = any_x

11 10

 ActivationBox

y = yt

x = xt

:Graph_ :ConnectEvent

which = Source

:CreateEvent

y = yl

x = xl

type = cType

:ConnectEvent

which = Target

 ActivationBox

y = yt

x = xt

:Graph_

:Entity

y = ys

x = xs

 ActivationBox

y = yt

x = xt

:Graph_
:ConnectEvent

which = Target

:MoveEvent

y = yt

x = (xs + n(1).sizeX() − sizeX()) / 2

:Entity

y = ys

x = xs

:ConnectEvent

which = Source

:CreateEvent

y = yl

x = (xs + n(1).sizeX()) / 2

type = cType

CONDITION
(cType == objectLifeLine) or
(cType == lifeLine)

Aligned Life Lines Connection (pre−rule)
NAC: LHS: RHS:

2

7

3

4

5
2

1

6

9 8

7

5

1

6

3

4

2

Fig. 17 Rules for the Alignment of Life Lines.

rule propagates the MoveEvent properly to the related
link and entity. The rule can be executed in an iterative
way (as long as possible), so the event is propagated
to all the activation boxes in the same life line. Besides,
since the rule does not restrict the link segment direction
(e2l or l2e), the event will be propagated up and down
the row of activation boxes. That is, it does not matter
whether the entity that received the MoveEvent is source
or target of the life line relation. Finally, the NACs forbid
applying the rule twice to the same entity. Note that this
rule will also be tried after applying the rule “Aligned
Life Lines Connection”. In this way, if the activation box
source of the connection has a row of already connected
activation boxes, all of them will get aligned with the
newly connected element.

Additional layout rules control the adjacency (in the
vertical direction) of all the activation boxes making an
activation block. Note that for the running example we
use a simplified concrete syntax meta-model for UML
1.5 sequence diagrams (see Fig. 4). In particular, we do
not allow the branching of life lines, as the cardinality

of the lifeLine relation is 0 or 1. However, this feature
could be modelled with additional event-driven rules.

5.4 Consistency Checking

Triple rules can be used not only to maintain coherence
between concrete and abstract syntax, but also to check
consistency between different diagrams. The present work
is part of a more general project with the aim to for-
malize the dynamic semantics of UML [20] by means
of transformations (at the abstract syntax) into seman-
tic domains (up to now Petri nets). Before translation,
consistency checking should be performed between the
defined diagram (in this case a sequence diagram) and
existing ones, such as class diagrams.

As stated before, while the user builds the concrete
syntax of a sequence diagram, some event-driven rules
add abstract syntax elements to a unique abstract syn-
tax model (the repository). In this way, one has a unique
abstract syntax model and possibly many concrete syn-
tax models, one for each defined diagram (of any kind).
Using triple rules we can perform consistency checking
between the sequence diagram and the existing abstract
syntax model generated by previously defined diagrams.
For example, we may want to check that the classes of
the objects used in a sequence diagram have been de-
fined in some of the existing class diagrams; that if an
object invokes a method of another object, the method
should have been defined in the class of the invoked ob-
ject; and in addition, that such invoked method should
be visible from the calling class and there should be a
navigable relationship between both object classes.

We have defined consistency triple rules in such a
way that their LHSs contain conditions sought in the de-
fined diagram (a sequence diagram in our case), possibly
in both the concrete and abstract parts. They contain
application conditions as patterns to be sought in the
complete abstract syntax model with which we want to
check consistency. If the rule is applied, its RHS sends
an event of type ErrorEvent to some of the concrete
objects matched by the LHS. As an example, Fig. 18
shows a couple of consistency triple rules. Rule “Check
Classes” displays an error if the class specified for an
object in the sequence diagram has not been defined in
some class diagram, so it is not present in the abstract
syntax model (NAC). Note that this inconsistency was
allowed during the modelling phase since we want flex-
ible environments. However it is an error so it must be
pointed out and fixed. Similarly, rule “Check Methods”
displays an error if the classifier of the object that re-
ceives a method invocation does not define the corre-
sponding Operation. This is modelled in the NAC (i.e.
the rule cannot be applied and therefore the error is not
given if the class defines such operation). Moreover, if
the visibility of the operation is private, the classifier of
the sender object should be the same as the classifier of

16 Esther Guerra, Juan de Lara

Check Methods

:Object

name = objectName

class = className

:Graph_Object

LHS:

1

3 2

:Class

name = className

NAC: 6

:Object

name = objectName

class = className

:Graph_Object "is not defined"
msg = "Class"+className+

:ErrorEvent

RHS:

1

3 2
5

4

Check Classes

:Class

name = className

NAC:

:Operation

20

visibility = anyVisibility

name = messageName

21

1

:Class

name = className

X1: 1

:Operation

22

visibility = ’private’

name = messageName

23

:Class

name = className

:Stimulus

:Object

name = objectName

Y1: 1

:Operation

22

visibility = ’private’

name = messageName

23

4

24

25

26sender

:Class

name = className

:Object

name = objectName

:Message

name = messageName

:Stimulus

:CorrespondenceMessage

:AbsMessage :Graph_ActivationBox

:LinkSegment

direction = l2e

:Link

LHS: 1 2

3 12 4

16

5

15

14

13

17

8
9

76

receiver

10

11

:Class

name = className

:Object

name = objectName

:Message

name = messageName

:Stimulus

:CorrespondenceMessage

:AbsMessage :Graph_ActivationBox

:Link
:LinkSegment

direction = l2e

:ErrorEvent

"not accesible in"+className
msg = "Method"+messageName+

RHS:

3
4

1 2

16

5

6

15

14

17

9
8

13

19

18

7

receiver

10

11

12

Fig. 18 Some Triple Rules for Consistency Checking.

the receiver object (labelled as “1”). This is modelled in
the application condition (X1 → Y1). Please notice that,
at the concrete level, only a message (AbsMessage) and
its target activation box (Graph ActivationBox) are se-
lected. Thus the rule is applicable to messages of types
createMessage and Message. That is, we do not want
to consider createMessage objects, as we assume each
class has at least a default constructor.

6 Implementation in AToM3

A prototype implementation of triple graph transforma-
tion was built in AToM3. In this way, AToM3 can now
work either with regular graphs or with triple graphs.
The user can define meta-model triples. In any compo-
nent (abstract, concrete or correspondence) the user can
edit a class diagram or load an existing one. Thus, reg-
ular meta-models can be reused in meta-model triples.
From a meta-model triple, an environment is generated
that allows the user to manipulate any of the three graphs.
Nonetheless, the correspondence and the abstract graphs
can be hidden to the user, who is then only able to use
the concrete syntax elements.

Fig. 19 shows a picture of the generated environment
from the meta-model triple in Fig. 4. The three compo-
nents of the graph are visible and can be edited using

the corresponding set of buttons to the left. However,
the correspondence and abstract graphs are usually hid-
den, and user interaction takes place only in the concrete
graph. In the picture, the concrete syntax graph shows a
simple model where msg0 is the starting message, which
is received by object object1, and then sends message
msg1 to object object2.

With respect to the presented graph transformation
techniques, AToM3 already allowed the possibility to de-
fine graph grammar rules with the inheritance concept
defined in [3]. Nonetheless, the tool did not allow the
graphical modelling of application conditions. They had
to be encoded as Python code. We have provided rules
with application conditions as defined in [25]. Thus, they
are available for regular and triple graph grammars. We
have implemented the same scheme used in the paper
to simplify the conditions. In this way, as the morphism
from LHS to X (and from X to each Yi) is total, if any
element in the LHS (resp. X) does not have an image in
X (resp. Yi), it is copied and appropriately connected in
the X (resp. Yi) graph (but this is kept transparent to
the user).

Fig. 20 shows a snapshot of AToM3 being used to edit
the TGG rules for consistency checking. In particular,
one of the application conditions of rule Check Methods
(the one labelled as Y1 in Fig. 18). The main AToM3

window is shown in the background. The dialog above is
used to declare the rules of the grammar (in this case,
named CheckConsistencySD) and shows two rules in the
list. Note that with this dialog we can define a graph
grammar or a parallel rule [9] amalgamating all the rules
in the list. In the dialog above, rule Check Methods is
being edited. Here we have specified that we want to
use the inheritance concept (check button labelled as
“Subtypes Matching”). Then, in the dialog above, we
have declared two application conditions for this rule:
“Exists Operation” and “Private Operation”. The latter
condition is being edited in the above dialog, where we
have declared a “consequent graph” (the Yi graph in the
definition) named “Same Classifier”. The next dialog is
used to edit this graph. It has two buttons to edit the
graph and the attribute conditions. Finally, the actual
graph is shown at the bottom.

7 Related Work

At a first glance, the present work may resemble the
syntax directed approach for the definition of a VL. In
this approach a rule is defined for each possible editing
action, and the user builds the model by selecting the
rules to be applied. Our approach is quite different, as
we use a meta-model for the definition of the VL. The
meta-model (which may include some constraints) pro-
vides all the information needed for the generation of the
VL. The user builds the model by interacting with the
user interface, and some events are produced as a result

Event-Driven Grammars: Relating Abstract and Concrete Levels of Visual Languages 17

Fig. 19 Generated Environment with AToM3 for Sequence Diagrams.

Fig. 20 Modelling the Application Condition of Rule Check Methods.

18 Esther Guerra, Juan de Lara

of such interaction. In our approach we explicitly repre-
sent these events in the rules. Rules are triggered by the
events, but the user may not be aware of this fact. In
the examples, we have shown the combination of event-
driven grammars with triple graphs to build the abstract
syntax model, to perform consistency checks and for lay-
out management.

The present paper improves previous work of the au-
thors. For example in [11], we proposed to build visual
front-ends for OOCSMP (an object-oriented simulation
language) using AToM3, and concentrated in generating
OOCSMP code from visual models (indeed using graph
grammars). However, that work did not consider event-
driven grammars, triple graph transformation or multi-
ple views (however, we allowed attributes of entities to
be models). Therefore in these previous works, the con-
crete syntax of the environment had to be in one-to-one
correspondence with the abstract syntax. Moreover, the
new concept of event-driven grammars allows the speci-
fication of much richer interaction possibilities with the
modelling environment [4].

In the approach of [6], a restricted form of Statecharts
was defined using a pure graph grammar approach (no
meta-models). For this purpose, they used a low level
(LLG, concrete syntax) and a high level (HLG, abstract
syntax) representation. To verify the correctness, the
LLG had to be transformed into an HLG (using a regular
graph grammar), and a parsing grammar had to be de-
fined for the latter. Another parsing approach based on
constraint multiset grammars is the one of CIDER [26].

In [5], a set of meta-models was identified for the
definition of classes of VLs. The approach is based on a
core meta-model with the basic elements regarding visu-
alization. They extended this meta-model for different
families of VLs by refining the graphical elements and
by adding spatial relations (like containment) between
them. Note how, our approach can be a complement to
this idea, as we can define by means of rules the seman-
tics of these spatial relations.

In [19], an approach to the rewriting of partial alge-
bras and its application to VLs is presented. The idea
is to have an internal algebra rewriting, and arbitrary
external components. The abstract syntax of the VLs
is transformed by rewriting rules (the internal algebra
rewritings), while the concrete syntax layout is obtained
using a constraint solver (the external component). Our
approach is somehow more general in its application to
VLs, as we do not restrict the abstract elements to be
in one-to-one correspondence with concrete syntax ele-
ments. Moreover, we do not follow a syntax-directed ap-
proach, but represent interaction events explicitly, and
these are handled by the rules.

Other approaches for the definition of environments
for the different UML diagrams usually concentrate ei-
ther on the concrete or the abstract syntax, but not on
both. For example, in [7], graph transformation units are
used to translate from sequence diagrams into collabo-

ration diagrams. As both kinds of diagrams share the
same abstract syntax, in our case a translation is not
necessary, but we have to define triple rules to build the
abstract syntax from the concrete one.

With respect to triple graph grammars, they were
originally proposed in [27] as a means to derive lower-
level, operational rules to perform forward or backwards
translations, incremental updates or so called consis-
tency observing analyzers. In the present paper, we pro-
vide a richer graph concept and a formalization of triple
graph transformation in the DPO approach. However,
the algorithms for derivation of operational rules for
these richer graphs we propose are up to future work.

In the area of multi-view modelling, the ViewPoints
approach [17] proposes a method for the integration of
multiple perspectives in system development. A View-
Point is an agent with partial knowledge about the sys-
tem and has a style (the used notation); a domain (the
area of concern); the actual specification and the work
plan (available actions to build the specification). In par-
ticular, two of the work plans are In- and Inter- View-
Point check actions. These are used to validate the con-
sistency of a single ViewPoint or between multiple View-
Points. The ViewPoint approach has been formalized us-
ing distributed Graph Transformation [18]. In our ap-
proach a common meta-model relates the different mod-
elling notations that can be used, and the work plans are
indeed graph transformation rules. The In- and Inter-
ViewPoint check actions can be expressed as rules sim-
ilar to the ones presented in section 5.4. The Pounamu
tool [33] supports multiple views, which are related to a
“glued” model via events (whose semantics are encoded
in Java). This approach is quite similar to ours, but they
don’t consider abstract/concrete levels and is less formal
as they do not use graph grammars, but the observer de-
sign pattern. Other very recent tool proposals [32] also
consider structures similar to triple graphs in order to
handle concrete and abstract syntax (e.g. the “bridge
models” in [32]). The recent GMF (Graphical Model-
ing Framework) project [12] under Eclipse also considers
different meta-models for concrete and abstract repre-
sentations, together with an additional static model for
mapping both syntaxes. This mapping also takes into
account a tool model (which defines a buttons palette).
In our approach, the mapping is richer, as in addition
to a correspondence graph meta-model, the designer can
specify triple rules to specify domain-specific behaviours.
Moreover, we believe our work may serve as a theoretical
foundation for other approaches.

Finally, note that although we have presented an ex-
ample using the 1.5 version of the UML standard, these
techniques are also applicable to UML 2.0, as similar
problems can be found in many of the proposed dia-
grams.

Event-Driven Grammars: Relating Abstract and Concrete Levels of Visual Languages 19

8 Conclusions

In this paper we have presented event-driven grammars
in which user interface events are made explicit, and sys-
tem actions in response to these events are modelled as
graph grammar rules. Their combination with IE-triple
meta-rules and meta-modelling is an expressive means
to describe the relationships between concrete and ab-
stract syntax models (formally defined through meta-
models). Rules can model pre- and post- conditions and
actions for events to take place. Furthermore, we can
use the information in the meta-models to define meta-
rules, which are equivalent to a number of concrete ones,
where nodes and edges are replaced by each element in
its inheritance clan. In this work, we have formalized
triple graph grammars in the DPO approach, adapted
the original work in [3] (regarding inheritance) to triple
graphs, and extended it to allow edge refinement and ap-
plication conditions (see Appendix A). These ideas are
naturally applicable to the processing of VLs with mul-
tiple views.

The applicability of these concepts has been shown
by an example, in which we have defined a meta-model
triple for the abstract and concrete syntax of sequence
diagrams (according to the UML 1.5 specification). Ad-
ditionally, we have presented some rules to check the con-
sistency of sequence diagram models with an existing ab-
stract syntax model, generated by the previous definition
of other diagrams. Event-driven rules have also been use-
ful for layout management at the concrete syntax level.
Besides event-driven grammars and the theoretical con-
cepts, we have also presented other novel contributions
from a practical point of view, such as an implemen-
tation of application conditions, inheritance concepts in
rules, and triple rules in the AToM3 environment.

Regarding future work, we want to derive validation
techniques for triple, event-driven grammars. We also
plan to use triple graph grammars to describe heuristics
for the creation of UML diagrams, and improve the auto-
matic generation of environments for VLs with multiple
views. The extension of the AToM3 meta-model with
spatial relations (in the style of [5]) is under consider-
ation, also taking into account the OMG meta-model
proposal for diagram definition and interchange [30].

Acknowledgements: This work has been partially spon-
sored by the Spanish Ministry of Education and Science
with projects MOSAIC (TSI2005-08225-C07-06) and MOD-
UWEB (TIN 2006-09678). The authors gratefully thank
the referees for their useful and detailed suggestions.

References

1. Atkinson, C., Kühne, T. 2002. Rearchitecting the UML
infrastructure. ACM Transactions on Modeling and
Computer Simulation, Vol 12(4), pp.: 290-321.

2. Bardohl, R. 2002. A Visual Environment for Visual Lan-
guages. Sci. of Computer Programming 44, pp.: 181-203.

3. Bardohl, R., Ehrig, H., de Lara J., and Taentzer, G.
2004. Integrating Meta Modelling Aspects with Graph
Transformation for Efficient Visual Language Definition
and Model Manipulation. Proc. ETAPS/FASE’04, LNCS
2984, pp.: 214-228. Springer.

4. Bottoni, P., Guerra, E., and de Lara, J. 2006. Metamodel-
based Definition of Interaction with Visual Environ-
ments. Proc. of the MDDAUI’06, pp.: 43-46.

5. Bottoni, P., Costagliola, G. 2002. On the Definition
of Visual Languages and their Editors. Proc. DIA-
GRAMS’02, LNAI 2317, pp.: 305-319. Springer.

6. Bottoni, P., Taentzer, G., Schürr, A. 2000. Efficient Pars-
ing of Visual Languages based on Critical Pair Analysis
and Contextual Layered Graph Transformation. Proc. of
VL’2000, pp.: 59–60.

7. Cordes, B., Hölscher, Kreowski, H-J. 2004. UML Inter-
action Diagrams: Correct Translation of Sequence Dia-
grams into Collaboration Diagrams. Proc. AGTIVE’03,
LNCS 3062, pp.: 275-291. Springer.

8. Corradini, A., Montanari, U., Rossi, F. 1996. Graph Pro-
cesses. Fundamenta Informaticae, vol. 6(3-4), pp.: 241-
265. IOS Press.

9. de Lara, J., Ermel, C., Taentzer, G., Ehrig, K. 2004.
Parallel Graph Transformation for Model Simulation ap-
plied to Timed Transition Petri Nets. Proc. GT-VMT’04,
Electronic Notes in Theoretical Computer Science 109,
pp.: 17-29. Elsevier.

10. de Lara, J., Vangheluwe, H. 2002. AToM3: A Tool for
Multi-Formalism Modelling and Meta-Modelling. Proc.
ETAPS/FASE’02, LNCS 2306, pp.: 174 - 188. Springer.
See the AToM3 page: http://atom3.cs.mcgill.ca

11. de Lara, J., Vangheluwe, H., Alfonseca, M. 2004. Meta-
modelling and graph grammars for multi-paradigm mod-
elling in AToM3. Software and System Modeling 3(3),
pp.: 194-209.

12. Eclipse Graphical Modeling Framework (GMF) home
page at: http://www.eclipse.org/gmf/

13. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.
1999. Handbook of Graph Grammars and Computing by
Graph Transformation. (1). World Scientific.

14. Ehrig, H., Habel, A., Padberg, J., Prange, U. 2004. Ad-
hesive High-Level Replacement Categories and Systems
Proc. ICGT’04. LNCS 3256, pp.: 144-160. Springer.

15. Ehrig, H., Prange, U., Taentzer, G. 2004. Fundamental
Theory for Typed Attributed Graph Transformation Proc.
ICGT’04. LNCS 3256, pp.: 161-177. Springer.

16. Ehrig, H., Ehrig, K., Prange, U. and Taentzer, G. 2005.
Formal Integration of Inheritance with Typed Attributed
Graph Transformation for Efficient VL Definition and
Model Manipulation. Proc. 2005 IEEE VL/HCC, pp.: 71-
78. Dallas (USA).

17. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein,
L., and Goedicke, M. 1992. ViewPoints: A Framework
for Integrating Multiple Perspectives in System Develop-
ment, Int. Journal of Software Engineering and Knowl-
edge Engineering, vol. 2(1), pp.: 31-57.

18. Goedicke, M., Enders, B.E., Meyer, T., Taentzer, G.
1999. Towards Integrating Multiple Perspectives by Dis-
tributed Graph Transformation Proc. AGTIVE’99, LNCS
1999, pp. 369-377, Springer.

20 Esther Guerra, Juan de Lara

19. Grosse-Rhode, M., Bardohl, R., Simeoni. M. 2001. Inter-
active Rule-based Specification with an Application to Vi-
sual Language Definition, Proc. WADT’01, LNCS 2267,
pp. 1-20, Springer.

20. Guerra, E., de Lara, J. 2003. A Framework for the Verifi-
cation of UML Models. Examples using Petri Nets. Proc.
JISBD’03. Alicante. Spain. pp.: 325-334.

21. Guerra, E., de Lara, J. 2004. Event-Driven Grammars:
Towards the Integration of Meta-Modelling and Graph
Transformation. Proc. ICGT’04, LNCS 3256, pp.: 54-69.
Springer.

22. Guerra, E., Dı́az, P., de Lara, J. 2005. Supporting
the Automatic Generation of Advanced Modelling En-
vironments with Graph Transformation Rules. Proc.
JISBD’05. pp.: 67-74. Thomson.

23. Guerra, E., de Lara, J. 2006. Attributed Typed Triple
Graph Transformation with Inheritance in the Double
Pushout Approach. Technical Report UC3M-TR-CS-06-
01 of the Universidad Carlos III (Madrid). Available at
http://www.ii.uam.es/∼jlara/investigacion/
techRep UC3M.pdf

24. Guerra, E., de Lara, J. 2006. Model View Manage-
ment with Triple Graph Transformation Systems. Proc.
ICGT’06, LNCS 4178, pp.: 351-366. Springer.

25. Heckel, R., Wagner, A. 1995. Ensuring consistency of
conditional graph rewriting - a constructive approach
Proc. SEGRAGRA 1995, ENTCS Vol 2, 1995.

26. Jansen, A.R, Marriott, K. and Meyer, B. 2003. CIDER:
A Component-Based Toolkit for Creating Smart Diagram
Environments. Proc. 9th Conference on Distributed and
Multimedia Systems. pp.: 353-359.

27. Schürr, A. 1994. Specification of Graph Translators with
Triple Graph Grammars. In LNCS 903, pp.: 151-163.
Springer.

28. Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel,
L., Levendovszky, T., Prange, U., Varró, D., and Varró-
Gyapay, S. 2005. Model Transformation by Graph Trans-
formation: A Comparative Study. Model Transformation
in Practice workshop at MODELS’05. Jamaica.

29. Taentzer, G., Rensink, A. 2005. Ensuring Structural Con-
straints in Graph-Based Models with Type Inheritance.
Proc. of FASE’05, LNCS 3442, pp. 64-79.

30. Unified Modeling Language: Diagram Inter-
change version 2.0 June 2005. Available at:
http://www.omg.org/docs/ptc/05-06-04.pdf

31. UML specification at the OMG’s home page:
http://www.omg.org/UML.

32. Vargas, F., Roda, J. L., Estévez, A., Avila, O.,
Sánchez, E. V. 2006. Generación de Editores Gráficos
de Modelos para una Herramienta MDA. Proc.
DSDM’06 workshop at JISBD’06. Sitges (Spain).
http://www.dsic.upv.es/workshops/dsdm06

33. Zhu, N., Grundy, J.C. and Hosking, J.G., 2004.
Pounamu: a meta-tool for multi-view visual language en-
vironment construction Proc. IEEE VL/HCC, pp.: 254-
256.

A Appendix: Theoretical Concepts of Triple
Graph Transformation with Node and Edge
Inheritance

This Appendix introduces the main theoretical concepts
of triple graph transformation with node and edge in-
heritance in the DPO approach. For a full presentation,
see [23].

A.1 Attributed Typed Triple Graphs

In order to define triple graphs, we start by using the
concept of E-graph (extended graph) proposed in [15],
which allows graphs to be attributed in their nodes and
edges. Attribute values are stored in set VD, and in ad-
dition to graph edges, two additional kind of edges are
introduced to model attributes: node and edge attribu-
tion edges. The first ones allow nodes to have attributes,
while the second ones model edge attributes.

Definition 1 (E-graph) An E-graph is a tuple G = (VG,
VD, EG, ENA, EEA, (sourcej , targetj)j∈{G,NA,EA}), where
VG and VD are sets of graph and data nodes respec-
tively; EG is a set of graph edges; ENA and EEA are
sets of node and edge attribution edges; finally, sourcej

and targetj are functions defining the source and target
of edges, defined as follows:

– sourceG : EG → VG, targetG : EG → VG.
– sourceNA : ENA → VG, targetNA : ENA → VD.
– sourceEA : EEA → EG, targetEA : EEA → VD.

Fig. 21 shows a diagrammatic representation of an E-
graph, which depicts a sequence diagram (similar to the
one in Fig. 1) containing two objects with an activation
box each.

objectLifeLine1

"msg1"

"object1" "class1"

class1oname1

Object1

"msg0" synchronous

"object2" "class2"

class2oname2

Object2

Edge Attribution

EA Edges (E)

Data Nodes (V)D

Graph Edges (E)G

Node Attribution

NAEdges (E)

Graph Nodes (V)G

startMessageStartPoint ActivationBox1 message

name type

ActivationBox2

objectLifeLine2
mname

Fig. 21 An E-graph.

In addition to E-graphs, we also define mappings be-
tween two E-graphs. An E-graph morphism is a tuple
of set morphisms, one for each set component in the E-
graph (VG, VD, EG, ENA, EEA). In addition, the struc-
ture of the E-graph should be preserved, that is, the
sourcej and targetj functions must commute with the
morphisms.

Event-Driven Grammars: Relating Abstract and Concrete Levels of Visual Languages 21

Definition 2 (E-graph morphism) Given two E-graphs
G1 and G2, an E-graph morphism f : G1 → G2 is a tu-
ple (fVG

, fVD
, fEG

, fENA
, fEEA

) with fVi
: V 1

i → V 2
i and

fEj : E1
j → E2

j with i ∈ {G, D}, j ∈ {G,NA, EA},
where f commutes for all source and target functions.

E-graphs together with E-graph morphisms form cat-
egory EGraph. Next, we use E-graphs to build our no-
tion of triple graphs (TriE-graph).

TriE-graphs are made of three E-graphs (source, cor-
respondence and target) and two correspondence func-
tions c1 and c2. The correspondence functions are de-
fined from the nodes in the correspondence graph to
a node or an edge in the other two graphs. In addi-
tion, the functions can be undefined, and this is mod-
elled with a special element in the codomain (named
“·”). Therefore, we have extended the previous notion of
triple graphs [27] in several ways. First, we use a defi-
nition that contemplates attributes in nodes and edges.
Second, our correspondence functions are more flexible,
as the co-domain includes nodes and edges, and the spe-
cial element for modelling that the function is undefined.

Definition 3 (TriE-graph) A TriE-graph TriG = (G1,
G2, GC , c1, c2) is made of three E-graphs Gi = (VGi , VDi ,
EGi , ENAi , EEAi , (sourceji , targetji)j∈{G,NA,EA}) for i ∈
{1, 2, C}, with VD1 = VD2 = VDC and two functions
cj : VGC → VGj ∪ EGj ∪ {·} (for j = 1, 2).

Graph G1 is called source or concrete, graph G2 is
called target or abstract, and GC is called correspon-
dence. Functions c1 and c2 are called source and target
correspondence functions respectively. We use the aux-
iliary sets edgesi = {x ∈ VGC

|ci(x) ∈ EGi}, nodesi =
{x ∈ VGC |ci(x) ∈ VGi} and undefi = {x ∈ VGC |ci(x) =
·} for i = 1, 2. The latter set is used to denote that
the correspondence function ci for an element x is un-
defined. The previous two sets are used to denote that
the codomain of the correspondence function ci for an
element x are edges or nodes, respectively. Morphisms
c1 and c2 represent m-to-n relationships between nodes
and edges in G1 and G2 via GC in the following way:
x ∈ VG1 ∪ EG1 is related to y ∈ VG2 ∪ EG2 ⇐⇒ ∃z ∈
VGC

| x = c1(z) and y = c2(z).
Fig. 22 shows a TriE-graph, which contains the ab-

stract and concrete syntax of a UML sequence diagram.
The target graph G2 in the upper part corresponds to
the abstract syntax, the source graph G1 in the lower
part corresponds to the concrete syntax, and the cor-
respondence graph GC in the middle contains elements
relating both by means of the correspondence functions.
Although the three E-graphs making a TriE-graph have
the same data sets VDi , we have repeated the elements
in each E-graph for clarity (i.e. element “class1” in VG1

and VG2 is the same). Moreover, we have only shown
those data elements used for attribution.

Mappings between two TriE-graphs are made of three
E-graph morphisms plus additional constraints regard-
ing the preservation of the correspondence functions.

SynchronousInvocationAction1

Message1

Stimulus1

"object1"

Object1

"class1"

Class1

"msg0"

Message2

Stimulus2

Class2

"class2"

"object2"

SynchronousInvocationAction2

"msg1"

Object2

action1

receiver1

conformingStimulus1

oname1

cname1

classifier1

mname1

action2

receiver2

conformingStimulus2

mname2

oname2

cname2

classifier2

sender

Corr_StartMessage Corr_Object1 Corr_Message Corr_Object2

Object1

"object1" "class1"

Object2

"object2" "class2"

synchronous"msg1"

ActivationBox1

"msg0"

ActivationBox2StartPoint

class1oname1

objetcLifeLine1

class2oname2

typemname

startMessage

name

message

objetcLifeLine2

Fig. 22 TriE-graph with the Abstract and Concrete Syntax
of a Sequence Diagram.

Definition 4 (TriE-graph morphism) Given two TriE-
graphs TriG1 and TriG2, a TriE-graph morphism
f : TriG1 → TriG2 is a tuple f = (f1, f2, f c) made of
three E-graph morphisms f i : G1

i → G2
i (i ∈ {1, 2, C})

such that:

– f i
VGi

◦ c1
i |nodes1

i
= c2

i ◦ fC
VGC

|nodes1
i

for i = 1, 2 5.
– f i

EGi
◦ c1

i |edges1
i

= c2
i ◦ fC

VGC
|edges1

i
for i = 1, 2.

– c1
i |undef1

i
= c2

i ◦ fC
VGC

|undef1
i

for i = 1, 2.

TriE-graphs and TriE-graph morphisms form cate-
gory TriEGraph (see [23]), where the former are the ob-
jects, and the latter the arrows. It is indeed a category, as
the identity arrow is the identity TriE-graph morphism,
and the composition of TriE-graph morphisms is asso-
ciative. Now, we provide TriE-graphs with an algebra
over a suitable signature, in order to provide a structure
to the data values (an organization into sorts) as well as
operations.

Definition 5 (Attributed Triple Graph) Given a data
signature DSIG = (SD, OPD) which contains sorts for
attribution S′D ⊆ SD, an attributed triple graph TriAG =
(TriG, D) consists of a TriE-graph TriG = (G1, G2, GC ,
c1, c2) and one algebra D of the given DSIG signature
with

⊎
s∈S′D

Ds = VDi for i ∈ {1, 2, C}.
Mappings between two attributed triple graphs are

made of a TriE-graph morphism and an algebra homo-
morphism. Again, attributed triple graphs together with
attributed triple morphisms form the category TriA-
Graph (see [23]).

Now, we provide a typing to triple graphs by defining
a triple type graph (similar to a meta-model triple). This

5 c1
i |A is the restriction of function c1

i of TriGi to the ele-
ments in set A.

22 Esther Guerra, Juan de Lara

is a special attributed triple graph, where the algebra is
final. That is, the carrier set for each sort has a unique
element, the sort name.

Definition 6 (Attributed Type Triple Graph) An attributed
type triple graph is an attributed triple graph TriATG =
(TriTG, Z), where Z is the final algebra of the DSIG
signature with carrier sets Zs = {s} ∀s ∈ SD.

i = {1, 2, C}

String

ActivationBoxStartPoint Object

MessageType

name message

startMessage createMessage

objectLifeLine

typemname

lifeLine

class

oname

Corr_StartMessage Corr_Message Corr_CreateMessage Corr_Object

String

Message

SynchronousInvocationAction

AsynchronousInvocationAction

CreateObjectAction

DestroyObjectAction

Stimulus Object Class

oname cnameconformingStimulus

mname

activator

successor

action_del

action_crea

action_async

action_sync

sender

receiver

classifier

Types for
Graph Nodes (V)G i

Data Nodes (V)D i

Graph Edges (E)G i

Node Attribution

NAEdges (E)i

Edge Attribution

EA Edges (E)i

Correspondence
Functions (c1, c2)

Fig. 23 Attributed Type Triple Graph for the Abstract and
Concrete Syntax of Sequence Diagrams.

Fig. 23 shows an attributed type triple graph for
the definition of both abstract and concrete syntax of
UML sequence diagrams. The data signature is given by
DSIG = Char + String + MessageType, where Char
is an auxiliary sort, and only String and MessageType
are used for attribution. The target graph in the upper
part of the triple graph corresponds to the abstract syn-
tax (similar to the UML standard definition), the source
graph in the lower part contains the concrete syntax, and
the correspondence graph in the middle relates concepts
of both sides. There are edge types in the concrete syn-
tax (such as startMessage, message and createMessage)
which are related to node types in the abstract syntax.
Moreover, ActivationBox, lifeLine and StartPoint in the
concrete syntax do not have an associated abstract syn-
tax element. Finally, there are elements in the abstract
syntax, such as Message (and the successor and activa-
tor edge types) and all the actions, which do not have
an associated concrete element.

The typing of a triple graph is represented as a mor-
phism from the graph to the type graph. That is, from
now on, we work with objects that are tuples, storing in-
formation about the graph and the typing. This in fact
can be formalized as a slice category.

Definition 7 (Attributed Typed Triple Graph) An at-
tributed typed triple graph (short ATT-graph) over TriATG
is an object TriTAG = (TriAG, t) in the slice category
TriAGraph/TriATG, where TriAG = (TriG,D) is
an attributed triple graph and t : TriAG → TriATG is
an attributed triple graph morphism called the typing of
TriAG.

Fig. 24 shows an ATT-graph over the attributed type
triple graph in Fig. 23. In this figure, we use a UML-like
notation, in which nodes and edges are labelled with
their type (in the usual UML notation for instances), and
their attributes are shown in a box. This is the notation
that was used throughout the paper and that will be
used in the remaining of the Appendix.

: Corr_StartMessage : Corr_Object: Corr_Message: Corr_Object

oname:"object2"

: Object

class:"class2"

: ActivationBox

oname:"object1"

: Object

class:"class1"

: ActivationBox

mname:"msg1"

: message

type:synchronousname:"msg0"

: startMessage

: StartPoint

: objetcLifeLine: objetcLifeLine

: SynchronousInvocationAction

: Stimulus

mname:"msg0"

: Message

oname:"object1"

: Object

: SynchronousInvocationAction

oname:"object2"

: Object
: Stimulus

mname:"msg1"

: Message

cname:"class1"

: Class

cname:"class2"

: Class

: action

: conformingStimulus : classifier

: sender

: action

: receiver : receiver

: conformingStimulus : classifier

Fig. 24 Attributed Typed Triple Graph, with respect to the
Attributed Type Triple Graph in Fig. 23.

Mappings between ATT-graphs (called ATT-morphis-
ms) are like mappings between attributed triple graphs,
but the morphism has to preserve the typing of the
source triple graph. ATT-graphs over an attributed type
triple graph TriATG, together with ATT-morphisms,
form category TriAGraphTriATG (see [23]).

Category TriAGraph is indeed isomorphic to a co-
mma-category ComCat(V1,V2; Id), where V1 and V2

are forgetful functors. The first one goes from category
TriEGraph to category Set and “forgets” the triple
graph structure, taking just the set of data values of one
of the graphs (as all the VDi sets are equal). The second
functor V2 goes from category DSIG−Alg to Set, plac-
ing together in a set the elements of the carrier sets for
attribution (disjointly). The resulting comma-category

Event-Driven Grammars: Relating Abstract and Concrete Levels of Visual Languages 23

has objects (TG, D, op : V1(TG) → V2(D)) which sat-
isfy V1(TG) = V2(D) and op = id. This category, and
therefore TriAGraphTriATG, can be proved to be an
adhesive HLR category [23]. This means that we can
use the main results of graph transformation theory, as
they have been lifted from graphs to adhesive HLR cat-
egories [14].

A.2 Attributed Typed Triple Graph Transformation

This section presents the main concepts and definitions
of attributed typed triple graph transformation in the
DPO approach. We start by defining the concept of triple
rule.

Definition 8 (Triple Rule) Given an attributed type triple
graph TriATG with data signature DSIG, a typed at-
tributed triple graph rule (triple rule in short), p = (L l←
K

r→ R) consists of three ATT-graphs L, K and R (typed
over TriATG) with a common DSIG-algebra TDSIG(X)
(which is the DSIG-termalgebra with variables X), and
injective ATT-morphisms l : K → L, and r : K → R.

In order to apply a triple rule p to an ATT-graph
G (called host ATT-graph), an occurrence of the LHS
should be found in the graph. That is, an ATT-morphism
m : L → G needs to be found. Once the morphism is
found, the rule is applied in two steps. In the first one,
the elements in m(L−l(K)) are deleted from G, yielding
graph D. In the second step, the elements from R−r(K)
are added to D, resulting in graph H. These two steps
are modelled by two pushouts. A pushout is the gluing
of two structures through some common elements. In
TriAGraph and TriAGraphTriATG pushouts are built
componentwise, by calculating the pushout of each set
in each one of the three E-graphs (see [23]).

Definition 9 (Direct Derivation) Given a triple rule p =
(L l← K

r→ R), an ATT-graph TriTAG and an ATT-
morphism m : L → G (called match), a direct deriva-
tion G

p,m
=⇒ H from G is given by the double pushout

(DPO) diagram in category TriAGraphTriATG shown
in Fig. 25, where (1) and (2) are pushouts.

L

m

²²
(1)

K
loo r //

d

²²
(2)

R

m∗

²²
G D

l∗oo r∗ // H

Fig. 25 Direct Derivation as DPO Construction.

Fig. 26 shows an example of direct derivation. The
rule is typed over the attributed type triple graph shown
in Fig. 23. It simply connects an object with its corre-
sponding class, creating an edge (labelled “5” in R and

H) in the abstract syntax model. For this purpose, the
rule’s LHS locates a class in the abstract syntax named
as attribute “class” of the object in the concrete syntax.

r

l *

m

: Corr_Object

cname = className

: Class

oname = objectName

: Object

class = className

oname = objectName

: Object

3

2

1L

4

oname = "object2"

: Object

: Corr_Object

class = "class1"

oname = "object2"

: Object

: Corr_Object

class = "class1"

oname = "object1"

: Object

oname = "object1"

: Object

cname = "class1"

: Class

3

4

G
1

2

oname = "object1"

: Object

: Corr_Object

class = "class1"

oname = "object1"

: Object

cname = "class1"

: Class

oname = "object2"

: Object

: Corr_Object

class = "class1"

oname = "object2"

: Object

D

3

4

1

2

oname = "object1"

: Object

: Corr_Object

class = "class1"

oname = "object1"

: Object

cname = "class1"

: Class

oname = "object2"

: Object

: Corr_Object

class = "class1"

oname = "object2"

: Object

2

H

5

1

3

4

: Corr_Object

cname = className

: Class

oname = objectName

: Object

class = className

oname = objectName

: Object

3

4

2

1K

: Corr_Object

R

cname = className

: Class

oname = objectName

: Object

class = className

oname = objectName

: Object

5

3

4

2

1

m*d

r*

= =

l

Fig. 26 A Direct Derivation Example.

Next, we define the concept of grammar and lan-
guage.

Definition 10 (Triple Graph Grammar and Language)
A triple graph grammar TGG = (DSIG, TriATG,P,
TriAS) is made of a data signature DSIG, and at-
tributed type triple graph TriATG, a set P of triple
rules, and an initial ATT-graph TriAS, typed over
TriATG. The language generated by TGG is given by
L(TGG) = {TriTAG|TriAS ⇒∗ TriTAG}.

In addition, we provide triple rules with application
conditions, in the style of [25]. We first define conditional
constraints on ATT-graphs. An application condition is
then a conditional constraint on the L component of the
triple rule.

Definition 11 (Triple Conditional Constraint) A triple
conditional constraint cc = (x : L → X,A) over an ATT-
graph L consists of an ATT-morphism x and a set A =
{yj : X → Yj} of ATT-morphisms. An ATT-morphism
m : L → G satisfies a constraint cc over L, written m |=L

cc, iff ∀n : X → G with n ◦ x = m ∃o : Yj → G (where
yj : X → Yj ∈ A) such that o ◦ yj = n (see Fig. 27).

Yj

o
ÃÃ@

@@
@@

@@
X

n

²²

yjoo L
xoo

m
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ

G

Fig. 27 A Triple Conditional Constraint Satisfied by m.

24 Esther Guerra, Juan de Lara

Roughly, the constraint is satisfied by morphism m
if no occurrence of X is found in G, or if some is found,
then an occurrence of some Yj should also be found. If
the set A is empty, then we have a negative applica-
tion condition (NAC), where the existence of an ATT-
morphism n implies m 2L cc. Morphisms x and yj are
total, but we use a shortcut notation. In this way, the
subgraph of L (resp. X) that does not have an image in
X (resp. Yj) is isomorphically copied into X (resp. Yj)
and appropriately linked with their elements.

We assign triple rules a set AC of triple conditional
constraints (called application condition). For a rule to
be applicable at a match m, it must satisfy all the appli-
cation conditions in the set. Fig. 6 shows an example of
two triple rules with NACs (the set A in the application
condition is empty). Following the mentioned shortcut
notation, in the NAC only the additional elements to
the LHS and their context have been depicted.

A.3 Edge and Node Inheritance for Triple Graph
Transformation

For the approach to be useful in meta-modelling envi-
ronments, we extend attributed type triple graphs with
inheritance relations. We use a similar approach to the
one shown in [3] and [16], but we have adapted it to
ATT-graphs, and extended it with edge inheritance. The
extended type triple graphs with inheritance are defined
like a normal type triple graph with two additional graphs
for the node and edge inheritance hierarchies, and two
sets of abstract nodes and edges. For technical reasons
related to the inheritance of the correspondence func-
tion, multiple inheritance (for nodes) is forbidden in the
correspondence graph. As in [29], we only allow an edge
to inherit from another one, if the source and target
nodes of the child edge belong to the children nodes of
the source and target nodes of the parent edge. For this
purpose, we use the notion of clan (see definition 13),
which is a function that applied to a node or edge re-
turns the set of all its children nodes or edges, including
itself.

Definition 12 (Attributed Type Triple Graph with In-
heritance) An attributed triple type graph with inheri-
tance (short meta-model triple) TriATGI = (TriATG,
(V Ii, EIi, AVi, AEi)i∈{1,2,C}), consists of:

– An attributed type triple graph TriATG = (TriTG, Z).
– Three node inheritance graphs6 V Ii = (V Ii

V , V Ii
E ,

vsi : V Ii
E → V Ii

V , vti : V Ii
E → V Ii

V) with V Ii
V = V i

G,
for i ∈ {1, 2, C}. Multiple inheritance is forbidden
in the correspondence graph, therefore ∀n ∈ V IC

V ,
|{e ∈ V IC

E |vsC(e) = n}| ≤ 1.
– Three edge inheritance graphs EIi = (EIi

V , EIi
E ,

esi : EIi
E → EIi

V , eti : EIi
E → EIi

V) with EIi
V = Ei

G

6 A graph is made of a set of nodes (V), a set of edges (E)
and source and target functions for the edges (s and t).

for i ∈ {1, 2, C}. Moreover ∀e, e′ ∈ EIi
V , x ∈ EIi

E

such that esi(x) = e′ and eti(x) = e (i.e. e′ inherits
from e), we have sourceGi(e

′) ∈ clanV Ii(sourceGi(e))
and targetGi

(e′) ∈ clanV Ii(targetGi
(e)).

– Three sets AVi ⊆ V Ii
V , for i = {1, 2, C}, called ab-

stract nodes.
– Three sets AEi ⊆ EIi

V , for i = {1, 2, C}, called ab-
stract edges.

Fig. 4 shows an example meta-model triple, which
is an extension of the attributed type triple graph in
Fig. 23. We have collapsed each graph TGi, node inher-
itance graph V Ii and edge inheritance graph EIi in a
unique graph. The edges of the inheritance graphs are
shown with hollow edges (following the usual UML no-
tation) and the elements in AVi and AEi are shown in
italics. We treat “composition” edges (the ones with a
black diamond) as any other edge.

Having meta-model triples, it is still possible to use
the theory developed so far by “flattening” the attributed
type triple graph with inheritance. This flattening oper-
ation makes explicit the semantic meaning to both kinds
of inheritance (for nodes and edges) and leads to a nor-
mal attributed type triple graph. As usual, edges and at-
tributes are inherited by subclasses, while only attributes
are inherited by subedges. Thus, in the flattening oper-
ation, the inherited elements are explicitly copied down
the inheritance hierarchy. In the current theory there is
no support for attribute overriding, although in the cor-
respondence graph we allow overriding of the correspon-
dence functions. In this way, if a correspondence function
is undefined for some node in the correspondence graph,
then its value is obtained from the nearest node in the
(node) inheritance path for which the function is defined.

But in order to use this approach, we do not want
to use the flattened version of the type graphs. Instead,
we have defined the typing directly from attributed triple
graphs to meta-model triples (in a similar way as in [16]).
These typing morphisms are no longer attributed triple
morphisms, but a more general kind of morphism called
triple clan morphism. These morphisms take into ac-
count the node and edge inheritance relations and cor-
respond uniquely to the typing by the flattened type
graph. We only define formally the inheritance clan con-
cept; the interested reader can consult [23].

Definition 13 (Node and Edge Inheritance clan) Given
a meta-model triple TriATGI = (TriATG, (V Ii, EIi, AVi,
AEi)i∈{1,2,C}), the node inheritance clan for each node
n ∈ V Ii

V , is defined as clanV Ii(n) = {n′ ∈ V Ii
V | ∃ path

n′ ∗→ n in V Ii} ⊆ V Ii
V with n ∈ clanV Ii(n). In a sim-

ilar way, for each edge e ∈ EIi
V , the edge inheritance

clan is defined as clanEIi(e) = {e′ ∈ EIi
V | ∃ path e′ ∗→

e in EIi} ⊆ EIi
V with e ∈ clanEIi(e)

For example, in Fig. 4, the node inheritance clan of
node ConcreteElement is clanV I1(ConcreteElement)
= {ConcreteElement, ActivationBox, StartPoint,Object}.

Event-Driven Grammars: Relating Abstract and Concrete Levels of Visual Languages 25

The edge inheritance clan for AbsMessage is clanEI1

(AbsMessage) = {AbsMessage, createMessage,Mes-
sage, StartMessage}.

Then, we can extend triple rules with the inheritance
concept. We call these rules inheritance-extended triple
rules, or IE-triple rules. In this way, nodes and edges in
an IE-triple rule can be typed by node and edge types
(also called classes and associations) in the meta-model
triple, which may be refined by a number of sub-classes
and sub-associations. As mentioned in section 3.2, an
IE-triple rule typed in that way is equivalent to a set of
concrete IE-triple rules, resulting by the valid substitu-
tions of each node and edge in the IE-triple rule by all
the concretely typed nodes and edges in its inheritance
clan. If the set of equivalent rules of an IE-triple rule has
cardinality greater than one, the IE-triple rule is called
IE-triple meta-rule. We first define type refinement and
then define IE-triple rules.

Definition 14 (Type Refinement) Given attributed triple
graph TriAG = (TriG, D) with TriG = (G1, G2, GC , c1, c2)
and Gi = (V G

Gi
, V G

Di
, EG

Gi
, EG

NAi
, EG

EAi
, (sourceG

ji
,

targetGji
)j∈{G,NA,EA}) for i ∈ {1, 2, C}, and two clan

morphisms type : TriG → TriATGI and type′ : TriG →
TriATGI, type′ is called a type refinement of type, writ-
ten type′ ≤ type7 if:

– type′iVG
(n) ∈ clanV Ii(typei

VG
(n)), ∀n ∈ V G

Gi
, for i ∈

{1, 2, C}.
– type′iEG

(n) ∈ clanEIi(typei
EG

(n)), ∀n ∈ EG
Gi

, for i ∈
{1, 2, C}.

– type′iX = typei
X , for X ∈ {VD, ENA, EEA}, i ∈ {1, 2, C}.

– type′D = typeD.

Definition 15 (Inheritance-Extended Triple Rule) An
inheritance-extended triple rule (short IE-triple rule), is
a triple rule typed by a meta-model triple TriATGI =
(TriATG, (V Ii, EIi, AVi, AEi)i∈{1,2,C}) and is given by

p = (L l←− K
r−→ R, type,AC). The first element is an

attributed triple graph rule (l and r are attributed triple
morphisms); type = (typei : i → TriATGI)i∈{L,K,R} is
a triple of typing triple clan morphisms, one for each part
of the triple rule; AC = {cci = (xi : L → Xi, typeXi , Ai =
{(yij : Xi → Yij , typeYij)})} is a set of application condi-
tions where typeXi : Xi → TriATGI and typeYij : Yij →
TriATGI are triple clan morphisms, such that the fol-
lowing conditions hold:

– typeL ◦ l = typeK = typeR ◦ r (the type of the pre-
served elements is the same in L, K and R).

– typei
R,VG

(V ′R
Gi

)∩AVi = ∅, where V ′R
Gi

:= V R
Gi
−ri

VG
(V K

Gi
),

for i ∈ {1, 2, C} (no new node in R is abstractly
typed).

– typei
R,EG

(E′R
Gi

) ∩ AEi = ∅, where E′R
Gi

:= ER
Gi
−

ri
EG

(EK
Gi

), for i ∈ {1, 2, C} (no new edge in R is
abstractly typed).

7 we say that type′ is finer than type

– typeYij ◦ yij ≤ typeXi and typeXi ◦ xi ≤ typeL for
all cci ∈ AC (the typing of Yij is finer than the typing
of Xi, and this is finer than the typing of L).

– typei
L,VG

◦ cL
i ◦ lC

V C
G
|nodesK

i
= typei

K,VG
◦ cK

i |nodesK
i

=

typei
R,VG

◦ cR
i ◦ rC

V C
G
|nodesK

i
for i = 1, 2 where cK

i ,

cL
i and cR

i are the correspondence functions of K, L
and R (the typing of the target nodes of the corre-
spondence functions in K are the same in L and R).

– typei
L,EG

◦ cL
i ◦ lC

V C
G
|edgesK

i
= typei

K,EG
◦ cK

i |edgesK
i

=

typei
R,EG

◦ cR
i ◦ rC

V C
G
|edgesK

i
for i = 1, 2 (the typing of

the target edges of the correspondence functions in K
are the same in L and R).

– The datatype part of L, K, R, Xi and Yij is TDSIG(X),
the term algebra of DSIG with variables X, and lD, rD,
xiD

, yijD
are identities (data preserving).

The top row of Fig. 28 shows a simple IE-triple meta-
rule example (a detailed version of the one shown in
Fig. 7). The rule identifies the activator message of an-
other one, creating an edge in the abstract graph. Nodes
7, 8 and 9 and edges 10 and 11 of the concrete graph
have an abstract typing. The meta-rule is equivalent to
four concrete rules. Node 7 can take types StartPoint or
ActivationBox in the concrete rule, node 8 has to be an
ActivationBox, and node 9 can be an Object or an Activa-
tionBox. Thus, four combinations are possible, where the
edge types are determined by the choice of node types
(see the comments for the simplified rule in section 3.2).

=m d

: Correspondence
Message

: Start
Point

: Activation
Box

: Activation
Box

: Correspondence
Message

: StartMessage

name = "start"

name = "start"

: Message

: Stimulus

name = "msg"

: Message

: Stimulus

: Message

name = "msg"

D

6

1612 13

2

7 15

10

8 17

11

9

1

5 3

14

4

m*

: Correspondence
Message

: Start
Point

: Activation
Box

: Activation
Box

: Correspondence
Message

: StartMessage

name = "start"

name = "start"

: Message

: Stimulus

name = "msg"

: Message

: Stimulus

: Message

name = "msg"

H

6

1612 13

2

7 15

10

8 17

11

9

1

5 3

14

4

activator

18

: Correspondence
Message

: Start
Point

: Activation
Box

: Activation
Box

: Correspondence
Message

: StartMessage

name = "start"

name = "start"

: Message

: Stimulus

name = "msg"

: Message

: Stimulus

: Message

name = "msg"

G

6

1612 13

2

7 15

10

8 17

11

9

1

5 3

14

4

l * *r

l r

AbsMessage AbsMessage

: Correspondence
Message

: Correspondence
Message

name = m2

: Message

: Stimulus

name = m1

: Message

: Stimulus

: Concrete
Element

: Concrete
Element

: Concrete
Element

L 1

46

16

35

14 12 13

7 8 915 17

2

10 11
AbsMessage AbsMessage

: Correspondence
Message

: Correspondence
Message

name = m2

: Message

: Stimulus

name = m1

: Message

: Stimulus

: Concrete
Element

: Concrete
Element

: Concrete
Element

K 1

46

16

35

14 12 13

7 8 915 17

2

10 11
AbsMessage

: Correspondence
Message

: Correspondence
Message

name = m2

: Message

: Stimulus

name = m1

: Message

: Stimulus

AbsMessage

: Concrete
Element

: Concrete
Element

: Concrete
Element

R 1

46

16

35

14 12 13

7 8 915 17

2

10 11

18

activator

=

Fig. 28 An Example of IE-Triple Meta-Rule and Derivation.

In order to apply an IE-triple meta-rule to a triple
graph, a structural match with respect to the untyped
rule has to be found. The typing of the match should
be concrete and finer than the type of the rule’s LHS.
Moreover, the typing of the target of the correspondence
functions in the host graph should also be finer than in

26 Esther Guerra, Juan de Lara

the rule’s LHS. Finally, the match should satisfy the ap-
plication conditions. The direct derivation can be built
by first constructing the double pushout in TriAGraph,
yielding the attributed triple graph H. Then, the typ-
ing is added. The preserved elements by the rule do not
change their type. The new elements take their type from
R, as the elements added by the rule should have a con-
crete typing. Fig. 28 shows a direct derivation example,
where abstract elements 7, 8, 9, 10 and 11 in the rule
take concrete types StartPoint, ActivationBox, Activa-
tionBox, StartMessage and Message in graph G.

The application of a meta-rule is equivalent to the
application of one of its concrete rules. Moreover, it is
possible to show that the language generated by an IE-
extended triple graph grammar is the same as the lan-
guage generated by a triple graph grammar without in-
heritance. The latter grammar uses as the type graph
the flattening of the meta-model triple, and as rules the
concrete rules of each meta-rule in the former grammar
(see [23] for the details).

B Appendix: Formal Definitions for
Event-Driven Grammars

This appendix shows the precise definitions of event-
driven graph grammar and derivation that was used in
section 4.

Definition 16 (Event-Driven Graph Grammar) An event-
driven graph grammar edGG = (DSIG, TriATGI, evt, pre,
sys−act, post, del, Mi) is made of a data signature DSIG,
a meta-model triple TriATGI, five sets of IE-triple rules
and an initial attributed triple graph Mi typed by TriATGI.
The following constraint holds: ∀p = (L l←− K

r−→
R, type,AC) ∈ evt∪ sys− act∪ del, XL

j = XK
j = XR

j =
∅, for X = {VG, EG, ENA, EEA}, j ∈ {2, C}. That is,
the abstract and correspondence graphs of rules in evt,
sys− act and del are empty.

Definition 17 (Event-Driven Graph Grammar Deriva-
tion) Given an event-driven graph grammar edGG =
(DSIG, TriATGI, evt, pre, sys−act, post, del, Mi), a di-
rect event-driven graph grammar derivation starting from
Mi is depicted as Mi

+3 +3 Mf , and consists in the

composition of the attributed typed triple derivations shown
in Fig. 8. An event-driven graph grammar derivation is
depicted as Mi

∗ +3 +3 Mf and consists of zero or more

direct event-driven graph grammar derivations.

