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Abstract 9 

Background & goal: 10 

The mobility of arsenic in soils and its transfer to other environmental components present significant 11 

environmental risks. The management of polluted land is determined by the availability, mobility and 12 

transfer of inorganic pollutants to different ecosystem compartments. In this paper, the fate of arsenic at 13 

this mining site has been evaluated to determine future management practices to minimise such risk. 14 

Materials & methods: 15 

In a field study carried out in the area adjacent to a mining site at Bustarviejo (North Madrid, Spain), 16 

samples of soils, plants and water were collected from areas adjacent to the core of the former mining 17 

activity. The following parameters were investigated in soil samples: pH, organic matter, pseudo-total As, 18 

P and Fe and labile As and P, and a sequential extraction procedure was performed to investigate As 19 

speciation in soil. Plant materials were analysed for both As and P. Arsenic concentrations in water 20 

samples (surface and soil pore water collected in the field) were also measured. Results are considered in 21 

tandem with previous data on metal concentrations in soils and plants from this site. 22 

Results:  23 
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Despite high As concentrations in soils impacted by former mining activities (spoil accumulation and 24 

drainage from spoil heaps resulted in concentrations of up to 3000 mg kg-1), it was not present in a labile 25 

form. Sequential extraction revealed that arsenic was mainly retained by Al- and Fe-(oxihydr)oxides (up 26 

to 80%). Therefore, only a small proportion of the total soil pool was potentially available for plant 27 

uptake (0.3 and 7% extracted by (NH4)2SO4 and NH4H2PO4, respectively). There was very limited 28 

transfer of arsenic from soil to plants and concentrations of arsenic in shoot tissues were relatively low (< 29 

8 g g-1). There was no evidence of phytotoxic effects in the flora that had colonized this site, indicating 30 

that a sustainable ecosystem had been established.  31 

Discussion: 32 

High levels of arsenic occur at this site, but arsenic mobility appears to be primarily controlled by the 33 

presence of amorphous and crystalline Fe and Al hydrous oxides. Although a low labile As fraction was 34 

extracted, concentrations of arsenic in both surface and soil pore water are of concern. The risk of arsenic 35 

remobilisation by plant uptake or transfer to the food chain via plant consumption is relatively low in 36 

these soils. Large amounts of metals and arsenic remain at the site and potential risks need to be 37 

monitored. Some possible remediation strategies that take into account the presence of both arsenic and 38 

heavy metals will be suggested. 39 

Recommendations: 40 

Natural attenuation and phytostabilisation processes are taking place in several parts of the study area.  41 

These natural processes could be enhanced by application of both compost and a suitable Fe-based 42 

amendment. This augmentation of the re-vegetation of the affected area could act to promote both arsenic 43 

and metal stabilization in mine tailings with additional benefits for further vegetation establishment. 44 

 45 

Keywords: arsenic, sequential extraction, soil pollution, trace element, phytoavailbility, native plants 46 

47 
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INTRODUCTION 48 

Arsenic is a widely distributed trace element in nature as a constituent of some minerals, but the 49 

release of arsenic has been promoted by anthropogenic activities, such as mining and carbon combustion 50 

(Adriano 2001). Sulphide deposits are the main mineral source of As, in which the element can be present 51 

in high concentrations (Milton and Johnson 1999; Smedley and Kinniburgh 2002). These ores have been 52 

extensively exploited for some centuries, inducing a wide legacy of arsenic in many soils and mine spoils 53 

(Clemente et al. 2006; Strawn et al. 2002; Ongley et al. 2007; Ernst 2005). In Spain there are now many 54 

historic derelict mines (Loredo et al. 1999; Clemente et al. 2003; Conesa et al. 2007; Domínguez et al. 55 

2008; Rufo et al. 2008). At the Mónica mine (NW of Comunidad de Madrid, Spain), silver was extracted 56 

since 15th century but the mine was finally closed in 1980. A Geological Museum and visitor centre has 57 

now been created at the site of the former mine. There are still several areas with abundant pyritic wastes 58 

and the presence and distribution of metals in soils and plants has been recently monitored in this area 59 

(Moreno-Jiménez et al. 2009). The arsenic-bearing mineral commonly found there is arsenopyrite 60 

(FeAsS), with matildite (AgBiS) appearing as small grains associated with it (Jiménez et al. 2004). There 61 

is a need to monitor the presence and behaviour of arsenic because the whole area is now classified as a 62 

leisure site inside an environmental reservoir proposed for the ecological network Natura 2000, following 63 

the environmental directives of the European Union (92/43/CEE Directive).    64 

The presence of arsenic in soils may have hazardous consequences but the mechanisms 65 

controlling As mobility in soils are not well-understood. Arsenic geochemistry is complex and many 66 

variables play a role in determining speciation and hence mobility (Fitz and Wenzel 2002; Gulz et al. 67 

2005; Kumpiene et al. 2007; Madejón and Lepp 2007). As a general rule, arsenate is the predominant 68 

species present in aerobic soils (Sadiq 1997; Strawn et al. 2002). Arsenate mobility in soils is governed 69 

by the presence of iron and manganese hydroxides, organic matter, pH and phosphate. The weakly 70 

retained fractions of As, rather than total soil concentrations, are most useful for current risk assessment 71 

procedures, mainly for crops and native flora (Fayiga et al. 2006; Gulz et al. 2005; Anawar et al. 2008; 72 

Vázquez et al. 2008) but also for mammals (Sarkar et al. 2007). The most important factor is the rate of 73 

change in the proportion of As that moves from the total soil pool into those fractions that are most 74 

accessible by living organisms. Whilst the factors that regulate the rate of this change are poorly 75 

understood, such processes can be monitored by the use of sequential extractions (Onken and Adriano 76 
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1997; Wenzel et al. 2001; Shiowatana et al. 2001). These are useful tools in long-term management of 77 

polluted sites.  78 

Data concerning As uptake by natural vegetation growing on As-polluted soils are not abundant, 79 

despite the fact that this can be a good way of monitoring As bioavailability and transfer into the food 80 

chain (Milton and Johnson 1999; Madejón et al. 2006). Plant responses to arsenic in the soil should 81 

always be investigated for the particular soil–plant system (Kabata-Pendias 2004). Arsenic concentrations 82 

in plants are generally found to be low in above-ground tissues (Anawar et al. 2006; Madejón and Lepp 83 

2007; Domínguez et al. 2008), in agreement with a low translocation rate to shoots (Moreno-Jiménez et 84 

al. 2008). Many authors have used different calculations to evaluate this transfer from the soil to plant, 85 

such as transfer or bioaccumulation factors (Kloke 1984; Huang et al. 2006). Once inside plant cells, 86 

arsenate phytotoxicity has been widely demonstrated, mainly under hydroponic conditions (Hartley-87 

Whitaker et al. 2000; Mascher et al. 2002; Moreno-Jiménez et al. 2008), but field studies on this topic are 88 

infrequent. It is particularly well-known that phosphate can inhibit arsenate uptake in plants and alleviate 89 

its toxicity (Esteban et al. 2003), and from this point of view phosphate concentration will alter arsenate 90 

toxicology in the soil.  91 

The objectives of the present study were (1) to characterise the fate and dispersal of arsenic in 92 

soils around a former mining area, (2) to measure arsenic levels in the wild flora and (3) to evaluate the 93 

transfer and availability of arsenic in the soil-plant system. In summary, we address an initial strategy to 94 

manage arsenic risk in this site that also takes into account the presence of significant concentrations of 95 

heavy metals.  96 

MATERIALS AND METHODS 97 

Study site and plant and soil collection 98 

The Mónica mine is within a high valley, wooded at the bottom and with shrubby vegetation on 99 

the upper slopes (Moreno-Jiménez et al. 2009). Soils and plants were sampled in the surrounding of the 100 

mine around 200000 m2 between the following UTM coordinates: 30T - X = 0438606, Y = 4524302; X = 101 

0437797, Y = 4523518. Sampling was carried out between May and June 2006. Shoots of several plant 102 

species were collected, as well as representative soil samples from the soil directly adjacent to the 103 
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sampled plants (0–30cm, topsoil layer), obtaining a total of 43 soil samples and 95 shoot samples. Plant 104 

species were selected on the basis of their abundance in each vegetation unit of each plant group (ferns, 105 

herbaceous plants, shrubs and trees). Water samples were collected in May from the La Mina and La 106 

Barranca streams that flow through the site. One of the water samples was collected upstream the spoil 107 

heaps and the other five were collected downstream the mine. Sampling points were georeferenced by 108 

GPS and sampling points for the soils were divided into three groups: (1) soils close to mining dumps 109 

(SCMD), (2) soils affected by mine drainage (SAMD) and (3) potentially unaffected soils (UAS). Further 110 

details (sampling map and plant species collected) of the site are described by Moreno-Jiménez et al. 111 

(2009). Pore water was sampled in spring 2009, using rhizon samplers sited 15 cm below the soil surface, 112 

following the methods described by Clemente et al. (2008) in five representatives places: one in a non-113 

polluted soil, two in the soils affected by the mine drainage and two at the mining spoils. 114 

Analytical procedures 115 

Bulk soil samples were air dried for 7 days, sieved to 2 mm. and homogenised. Organic matter 116 

was determined by dichromate oxidation and pH was measured in a soil water suspension 1:2.5 (MAPA 117 

1994). For weakly-retained As, 2 g of soils were mixed with 20 ml of (NH4)2SO4 0.1 M, shaken for 4 118 

hours and the resultant suspension filtered (Vazquez et al. 2008). Soils were extracted by HNO3:H2O2 119 

digestion in autoclave prior to determination of pseudo-total element concentrations (Wenzel et al. 2001). 120 

Arsenic fractionation was also studied in four randomized soil samples selected from each group 121 

of soils. Five sequential extraction steps were performed with 1 g of soil following Wenzel et al. (2001): 122 

1) 25 mL 0.05 M (NH4)2SO4. Shaken for 4 h and decanted. F1: non-specifically sorbed. 123 

2) 25 mL 0.05 M NH4H2PO4. Shaken for 16 h and decanted. F2: specifically sorbed. 124 

3) 25 mL 0.2 M NH4-oxalate buffer, pH=3.25. Shaken for 4 h and decanted. F3: amorphous oxides of Fe 125 

and Al.  126 

4) 25 mL 0.2 M NH4-oxalate buffer+ascorbic acid, pH=3.25. Shaken for 30 min at 96ºC and decanted. 127 

F4: crystallized oxides of Fe and Al. 128 
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5) Digestion of soil with HNO3/H2O2 in closed containers under 1500 Pa and 125 ºC for 30 min. Mixture 129 

was filtered and diluted to 50 mL. F5: residual phase. 130 

All extractions were performed in duplicate.  131 

Arsenic in liquid samples was measured by atomic fluorescence spectroscopy (Millennium 132 

Excalibur System, PSAnalytical) using a matrix of HCl 25% (v/v) + ascorbic acid 0.2 % (w/v) + KI 2%, 133 

and a reductant (NaBH4 0.9% + NaOH 0.4%) (Vázquez et al. 2008). The detection limit of the As 134 

determination was 0.01 g l-1. P concentration in liquid extracts was measured spectrophotometrically 135 

and Fe was analysed by atomic absorption spectrometry (MAPA 1994). 136 

Plant samples were carefully washed initially with tap water and subsequently with distilled 137 

water, dried at 50ºC for 7 days and ground to 0.5 mm. A known weight of plant material (0.5 g) was 138 

digested with 10 mL of mili-Q H2O, 2 mL of H2O2 and 3 mL of HNO3 in an autoclave at 1500 Pa and 125 139 

ºC for 30 min. The resultant solution was filtered and made up to constant volume with 25 ml with water. 140 

Arsenic and P in plant extracts were measured in the same way as for soil extracts.  141 

Certified reference materials (CTA-VL2, tobacco leaves, 0.97 g As g-1; CMR048-050, soil, 150 142 

mg kg-1) were also digested and analysed. These were found to contain 0.94 g As g-1 and 133 mg As g-1 143 

respectively, with a coefficient of variance of < 5 %. 144 

Statistical analysis and data processing 145 

The data were analysed using SPSS 14.0® for Windows. Statistical differences between soil 146 

groups were determined using the non-parametric Kruskal–Wallis or Wilcoxon tests. Linear regression, 147 

simple and bivariate correlations for the soil parameters were also performed. Sequential extractions were 148 

compared using Tukey’s test. ArcGIS 9.0® was used to geoprocess As-concentrations in soils. Principal 149 

component analysis (PCA) was performed on soil and plant analysis data, including data on heavy metals 150 

from Moreno-Jiménez et al. (2009, with permission). Transfer factor (TF) and bioaccumulation factor 151 

(BAF) were calculated as follows: TF = [As]shoot/[As]pseudo-total; BAF = [As]shoot/[As]ammonium sulphate-extractable 152 

As. 153 

RESULTS  154 
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3.1 As distribution in soils  155 

Three soil groups were distinguished in the study area: soils close to the mining dumps, soils 156 

affected by drainage water from the mine tailings and unaffected soils. Organic matter, pH, pseudo-total 157 

Fe and pseudo-total and available As and P were measured in samples from each of the three soil groups 158 

(Table 1). All soils had an acid pH, no significant differences were observed despite the fact that 159 

arsenopyrite oxidation can sharply decrease soil pH (Clemente et al. 2006). No differences were found in 160 

organic matter content between soil groups, with values ranging from 0.69 to 13 %. Total Fe content was 161 

high due to the presence of iron in the geochemical background, but highest concentrations were present 162 

in samples from the mining dumps (P<0.01), where arsenopyrite minerals are abundant. Total As levels 163 

were also very high in the mining dumps (>600 mg kg-1) and in some of the soils affected by mine 164 

drainage. Significant differences between soil groups were observed for both total and (NH4)2SO4-165 

extractable As (P<0.001 for both). Ammonium sulphate extracted between 0.02 and 0.68% of total 166 

arsenic from the soil samples. The soils affected by mine drainage showed higher levels of total P 167 

(P<0.05), but no significant differences were observed for (NH4)2SO4-extractable P. 168 

Bivariate correlation analysis between soil variables was used to determine the best correlated 169 

variables with As distribution in the soil (Table 2). Total and extractable As were well correlated 170 

(P<0.001), with the highest Pearson’s coefficient (r = 0.840), suggesting that in this particular case labile 171 

As is closely related to the total arsenic concentrations in soils. However, several other variables, such as 172 

Fe, total P and available P were also significantly correlated with (NH4)2SO4-extractable arsenic in these 173 

soils. 174 

A linear regression was performed to identify important factors affecting As extractability. Some 175 

parameters (pH and organic matter) were removed from the model without significant variations. The 176 

resulting equation was:  177 

[As]Ext = -0.86 + 0.001·[As]Tot + 4,5·10-5·[Fe]Tot + 0.024·[P]Ext + 0,001·[P]Tot; F = 29.4 (P<0.001), R2
adj = 178 

0.74. The significance of the parameters was <0.001 for total As and Fe, <0.005 for available P and <0.05 179 

for total P. 180 
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When arsenic data was included in the PCA carried out by Moreno-Jiménez et al. (2009, with 181 

permission) with the soil parameters, As was associated with other pollutants from past mining, such as 182 

Cd, Cu, Fe and Zn, in factor 1 (factor loadings higher than 0.77, data not shown), which is associated with 183 

pollution. However, P, Mn, organic matter and pH had higher loadings in factor 2 (not related to the 184 

pollution). 185 

Figure 1 describes the concentration of arsenic in soils using geographic information system 186 

(GIS) tools to clarify the dispersion of arsenic within the valley. The zones with abundant mining spoils 187 

showed the highest As levels, appearing as a hot-spot (dark grey polygon). There is also a remarkable 188 

pollution plume of arsenic associated with the runoff flow (intermediate greys), but many areas with low 189 

levels of arsenic were also present (in lightest grey colour).  190 

Sequential extraction of soil samples was performed to clarify the fractionation of arsenic in 191 

these soils (Table 3). The percentage of arsenic extracted by the two first steps (ammonium sulphate and 192 

phosphate extractable fractions respectively) did not show significant differences (3-7%). Steps 3 and 4 193 

(associated to amorphous and crystalline hydrous oxides of Fe and Al) extracted most of the arsenic in the 194 

unaffected soils (more than 80%), but also an important portion in polluted soils (41-59%). Finally, the 195 

residual step extracted higher significant percentages of arsenic in polluted soils (38-55%).  196 

Arsenic concentrations in pore water were non detectable (in an unpolluted soil), 0.002, 0.117, 197 

0.062 and 2.901 (just below a spoil heap, close to the main drainage from the heap) mg l-1. Meanwhile the 198 

concentrations in the stream waters were 0.054 (the furthest sampling point downstream the mine), 0.115, 199 

0.147, 0.166, 0.244 (the nearest) mg As l-1. Upstream the main core of the mine, arsenic concentration in 200 

the stream water was 0.028 mg l-1, which could be indicative of the local geochemical background.  201 

3.2 Plants 202 

P and As concentrations in shoots are given in Table 4, as well as transfer factors (TF) and 203 

bioaccumulation factors (BAF) to evaluate arsenic transfer to plants. Means of As content in different 204 

plant groups were compared (seedless vascular, herbaceous and woody plants). Significant differences 205 

were observed (P<0.05) and As and P concentrations in shoots showed similar tends: herbs>ferns>woody 206 

plants. Seedless vascular plants tended to accumulate less than 2 mg kg-1 in shoots, despite the three 207 
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species being sampled from soils with high total As levels; and all species showed a similar behaviour. 208 

Transfer factors for the seedless vascular plants were <0.01, meaning that plants are inefficient As 209 

accumulators. The BAF ranged between 1 and 2. Herbs showed the highest As concentration in their 210 

aboveground tissues (1.44 mg As kg-1). Of all the plant species that were sampled, Glyceria fluitans had 211 

the highest As concentration (3 mg As kg-1), followed by Diplotaxis euricoides (2 mg As kg-1). In some 212 

species As was not detected in shoots (i.e. Hypericum perforatum and Daucus carota). The highest BAF 213 

was found for Digitalis thapsi and the highest TF for D. euricoides. Woody plants had low As 214 

concentrations in shoots. Salix atrocinerea had the highest values (with a mean of 1.93 mg kg-1), while 215 

Genista cinerascens and Erica arborea had the lowest (0.20). Depending on the species, shoots were 216 

divided into leaves and stems and significant differences were observed, with As concentration clearly 217 

higher in leaves (data not shown). The TF and BAF varied considerably within this group, ranging from 218 

0.0001-0.02 and 0.1-14 respectively. Betula pendula showed the lowest values of TF and BAF, S. 219 

atrocinerea the highest TF and Cytisus scoparius the highest BAF.  220 

Total and (NH4)2SO4-extractable As concentrations were correlated with arsenic concentrations 221 

in the shoots of the dominant plant species (Table 5). This relationship was separately evaluated for each 222 

plant species. High and significant positive correlations were generally obtained for plant arsenic 223 

concentrations and their (NH4)2SO4-extractable fraction in soils, while this correlation was frequently 224 

non-significant when the total As concentration was the other variable.  225 

 226 

Discussion 227 

Arsenic in soils 228 

Table 1 shows that about 30% of the soils contained levels of arsenic 30-125 times higher than 229 

the limit of 24 mg As kg-1 for soils. This is the standard threshold in the Community of Madrid for human 230 

health protection that requires a toxicological assessment (BOCAM 2007). Whilst arsenic exceeded the 231 

threshold value to larger extent (up to 125 times) but values for Cd, Cu and Zn were only around 10, 8 232 

and 2 times higher, respectively (Moreno-Jiménez et al. 2009). Within the site boundaries, an area of 233 

more than 20000 m2 had soil As concentrations that exceeded 1000 mg kg-1 (Figure 1).  However, total 234 
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element concentration is not a good indicator of As mobility, availability and, subsequently, risk 235 

(Sheppard 1992; Adriano 2001). Concentrations determined by chemical analysis using soft extractant 236 

agents and sequential extractions are more suitable to evaluate As transfer from soils to other ecosystem 237 

compartments (such as plants, animals or water) than total As (Madejón et al. 2006; Menzies et al. 2007; 238 

Clemente et al. 2008; Vázquez et al. 2008). Thus, levels of easily extractable As in soil and As in plants 239 

(Table 3) are actually very low in comparison with total amounts in the soils. Weak neutral salt solutions 240 

seem to be adequate to assess the impact of trace elements on plants and soil biological activity (Kabata-241 

Pendias 2004), and (NH4)2SO4-extractable As has been successfully used as an indicator of As 242 

availability (Vázquez et al. 2008). This method was also successfully used with metals in field 243 

experiments (Moreno-Jiménez et al. 2009) and with multipolluted soils in controlled experiments 244 

(Vázquez et al. 2008). In the present study there were no significant correlations between organic matter 245 

or pH with either total or extractable As concentrations in soil. The bivariate analysis and the linear 246 

regression model showed the influence of total As on extractable arsenic in this particular case (with the 247 

highest significance in bivariate correlation and in the regression linear model), but also other parameters 248 

were also shown to influence the model (P and Fe). In the same soils, total metal concentrations were also 249 

the main factor controlling the extractable metal fraction (Moreno-Jiménez et al. 2009). The influence of 250 

available P was particularly interesting but, despite its significance, it was not as important as total As or 251 

Fe. There was a negative correlation between (NH4)2SO4-extractable P and extractable As, but the 252 

corresponding parameter is positive in the linear regression model. This means that P could mobilise As 253 

from soils, but, in this case, soils with a high extractable As content also had low concentrations of labile 254 

P. The effect of phosphate on arsenate mobility in soils is well known, as they compete to be absorbed in 255 

the same soil constituents (Peryea and Kammereck 1997; Cao et al. 2003). The proportion of the total soil 256 

As pool extracted with (NH4)2SO4 was always <0.7%. This is in agreement with other studies on As-257 

polluted soils (Anawar 2008; Vázquez et al. 2008; King et al. 2008), but contrasts with some experiments 258 

carried out with As-spiked soils where NaNO3- or (NH4)2SO4-extractable As were around 1-3% and 8-259 

20% respectively (Gulz et al. 2005; Carpena et al. 2008), knowing that NaNO3 extracts As with a 50% 260 

less efficiency than (NH4)2SO4 (Vázquez et al. 2008). Although many studies have used As-spiked soils 261 

(Fitz and Wenzel 2002), artificially spiked soils are unrepresentative of As geochemistry in mine tailings 262 

(Ko et al. 2008), as arsenic extractability was excessive after the spiking. Plants growing on spiked soils 263 

usually show unrealistic As uptake. The low mobility of As in the studied soils is particularly evident if 264 
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we compare arsenic data with other metals in this site (Moreno-Jiménez et al. 2009). The best correlation 265 

using (NH4)2SO4-extractable fraction than total As in soils was found with As concentrations in shoots 266 

(Table 5) indicating that phytoavailability is better predicted by the ammonium sulphate-extractable 267 

fraction of As than by the total concentrations. When taken together with previous findings both under 268 

controlled and under field conditions (Vázquez et al. 2008; Moreno-Jiménez et al. 2009), these data 269 

support the use of (NH4)2SO4 extraction as a robust indicator for the phytoavailable fraction of trace 270 

elements present in multi-polluted soils. Percentages of (NH4)2SO4-extractable Cd are at least 20 times 271 

higher than As ones. Moreover, when we extracted with phosphate (F2 in Table 3) the values were always 272 

lower than 7% of the total arsenic. The extraction of Cd using (NH4)2SO4   is much more efficient  than 273 

for As in these soils. In addition, ammonium phosphate extraction removes <7% of the total soil As pool. 274 

This fraction has also been used as an indicator of phytoavailable As (Huang et al. 2006). Arsenic 275 

mobility in soils is known to be dependent on absorption by iron, aluminium and manganese hydroxides, 276 

clay minerals and mineral oxyanions such as phosphates, carbonates and sulphates (Aguilar et al. 2007; 277 

Gulz et al. 2005). The sequential extraction of these soils indicated a principal role of Fe- and Al-278 

(oxyhydr)oxides in As geochemistry in soils (Table 3). Arsenic in fractions 3 and 4 is mainly associated 279 

with amorphous and crystalline hydrous oxides of iron and aluminium (Wenzel et al. 2001), and up to 60-280 

80% of As was retained in these fractions. This is in clear agreement with previous findings for different 281 

soils (Wenzel et al. 2001; Fitz and Wenzel 2002; Kumpiene et al. 2007; Clemente et al. 2008), and 282 

arsenate absorption onto Fe oxides is a frequent phenomenon after mineral oxidation in pyritic soils 283 

(Strawn et al. 2002). The residual step extracted higher significant percentages of arsenic in polluted soils 284 

(in SCMD and SAMD samples), probably due to the presence of As-minerals such as arsenopyrite and 285 

matildite (Jiménez et al. 2004). Finally arsenic in pyritic soils was associated with Fe both in pyrite 286 

minerals and in (oxyhydr)oxides, resulting in a high correlation between total Fe and As. Arsenic retained 287 

in these fractions is not readily available or mobile, although it could be released if environmental 288 

conditions change. Moreover, in highly polluted soils, As is also a constituent of the least soluble fraction, 289 

i.e. as a constituent of minerals (arsenopyrite). Thus, more than 70-90% of arsenic in soils could be in the 290 

most inert fractions in mining-affected soils (Conesa et al. 2008). According to Rodríguez et al. (2003), 291 

who demonstrated that the arsenic fraction bound to Fe and Mn oxides can be dissolved in the stomach, 292 

there are arsenic risks associated with soil ingestion at this site. Soil ingestion is a major pathway of 293 

metals into livestock grazing in polluted lands (Thornton and Abrahams, 1983). Cattle and horses are 294 
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frequently feeding in the studied zone and they are directly exposed to vegetation and soil particles 295 

ingestion. Regarding to humans, soil can be also voluntarily or involuntarily ingest soil particles, but there 296 

are also other possible pathways involving the risk assessment of trace elements in these soils such as soil 297 

particles inhalation or dermal absorption (Abrahams, 2002). There are still many mine spoils uncovered 298 

of vegetation in the studied site and subsequently the dump particles can be easily disturbed by wind and 299 

transported to the atmosphere, enhancing the risk of mining spoils. 300 

Transference of arsenic to plants and waters 301 

The risk assessment was completed with data concerning plants and waters as receptors of soil 302 

pollution. All the data in our study supported the low mobility of arsenic in acidic soils. The majority of 303 

plant species preferentially store As in roots, as opposed to shoots (Moreno-Jiménez et al. 2008), with the 304 

exception of As-hyperaccumulators (Zhang et al. 2002). Despite the high concentrations in soil, arsenic in 305 

plants is usually below the toxicity threshold for aboveground tissues of 3-10 mg kg-1 dry weight (Chaney 306 

1989). Arsenic concentrations in shoots of many plants exceeded the value of 1-1.7 mg kg-1 quoted for 307 

shoots of plant growing in unpolluted soils (Kabata-Pendias and Pendias 1992), but this could also be 308 

attributed to incomplete removal of surface-borne As-containing particulates by the washing procedure. 309 

Because of the very elevated concentrations of As found in some of the mine spoils at this site, a small 310 

volume of unremoved particulates could have a significant influence on shoot As concentrations. No 311 

phytotoxic symptoms were observed in plants growing at the site even in Glyceria fluitans and Salix 312 

atrocinerea, which had shoot concentrations of 7 and 3 mg kg-1 respectively. The low transfer factors 313 

calculated from the data suggest insignificant movement of As to plant shoots in this ecosystem.  The TF 314 

values fluctuated between 0 and 0.037, all within the range of 0.0001-0.1 reported as normal (Kloke et al. 315 

1984; Warren et al. 2003). Previous studies have commonly reported low transfer of arsenic from soil to 316 

plant shoots (Bunzl et al. 2001; Jung et al. 2002; Anawar et al. 2006; Fellet et al. 2007; Domínguez et al. 317 

2008), which progressively decreased when total soil As concentrations increased (Huang et al. 2006). 318 

Warren et al. (2003) found out differences between this transfer factor depending on the source of As in 319 

soils. In the current study, we were studying a mining site with elevated As concentrations in soils and a 320 

significant proportion of the total soil As pool in non-labile fractions and, in consequence, a low TF was 321 

expected. If we compare this with other trace elements at the site, the TF for As is between 1 – 3 orders of 322 

magnitude lower than those calculated for Cd, Cu or Zn (Moreno-Jiménez et al. 2009), following the 323 
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same trend as the percentage of (NH4)2SO4-extractable As and metals in these soils. Not only is the low 324 

mobility of As in soils determining a low transfer rate to aboveground tissues, but some physiological 325 

factors could also be affecting the low concentrations of arsenic in shoots, such as limited trans-326 

membrane mobility of arsenate in comparison to other metals such as Hg or Cd (Esteban et al. 2003 and 327 

2008; Esteban et al. unpublished data), arsenate-phosphate interactions (Esteban et al. 2003) and low As 328 

translocation from roots (Moreno-Jiménez et al. 2008). The BAF, based on (NH4)2SO4-extractable As, 329 

was also calculated. This coefficient reduces the contribution of soil-related differences in mobility, 330 

emphasizing differences in the ability of plant species to concentrate As into target organs (Huang et al. 331 

2006). P. aquilinum, D. thapsi and C. scoparius were the species with the highest BAF found in ferns, 332 

herbs and woody plants respectively. The main aspects of the risk to the environment through arsenic 333 

uptake by plants are: (1) introduction into the food chain, (2) loss of vegetation cover induced through 334 

phytotoxicity, (3) cycling of metals to surface soil horizons by tolerant plants to induce toxic effects on 335 

flora and fauna (Kabata-Pendias 2004).  As a result, arsenic and metals at a site must be monitored over 336 

the long-term in order to monitor changes in environmental risk. Milton and Johnson (1999) found that 337 

low levels of arsenic in plants were associated with low transfer to the food chain. There is also clear 338 

evidence for sustainable As-phytostabilisation in some natural habitats (Madejón and Lepp 2007). Annual 339 

plant shoots (i. e., G. fluitans and D. eurocoides) and leaves of trees showed higher As concentrations 340 

than other plants or aboveground tissues respectively. Both are principal components of litter fall, which 341 

could play a role in remobilisation of trace elements in soils (Mertens et al. 2004). Nevertheless, its 342 

influence on arsenic biogeochemistry in soils seemed to be low in this particular case due to the low As 343 

concentrations in plant shoots in comparison with total As in soil. In agreement with previous reports 344 

(French et al. 2006; Madejón and Lepp 2007), woody plants had the lowest concentrations in shoots, 345 

supporting them as good candidates for As-phytostabilisation. 346 

Stream waters contained elevated concentrations of As, exceeding legal limits for surface and 347 

potable waters (BOE 2000; Steinmaus et al. 2006). There is abundant literature showing high levels of As 348 

in waters impacted by sites with As geological backgrounds (Smedley and Kinniburgh 2002), arsenate 349 

being the predominant species (Williams 2001). There is a need for additional hydrogeological studies 350 

taking into account sources and discharges of surface and ground waters in this area before a suitable risk 351 

assessment can be formulated. Pore water provides a realistic picture of the mobility of trace elements in 352 

the soil (Clemente et al. 2008). Up to 3 ppm (40 M) of As was detected in pore water from one sample 353 
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site, but at other sites, concentrations of < 1.6 M confirmed the low mobility of As despite the high total 354 

concentrations present. This agrees with Wenzel et al. (2002), who estimated < 2.3 M arsenate in soil 355 

solution, and with Clemente et al. (2008), who found levels of up to 1.6 M As in pore water under field 356 

conditions.  357 

Proposals for soil management in this site 358 

At this site, arsenic mainly affected water quality, while Cd and Zn were more labile in soils and 359 

showed significant soil-plant transfers (Moreno-Jiménez et al., 2009). The dispersal of mine wastes is the 360 

main source of arsenic and metals to soils. Subsequently plants and surface waters are also affected. 361 

Techniques commonly used in soil remediation such as sanitary disposal, on-site or ex-situ soil leaching 362 

disturb soil functions and ecological equilibrium. Here, where maintaining ecological equilibria is a 363 

priority objective, environmentally-friendly alternatives should be adopted to conserve the ecosystem 364 

during any reclamation procedure. Mine wastes are difficult to treat with phytotechnologies: their 365 

properties do not allow plant establishment and toxic elements are also leached to deeper layers (Ernst 366 

2005). Treating multi-polluted soils with soil amendments is complex (Kumpiene et al. 2008) and many 367 

edaphic and ecological factors must be evaluated. Mine wastes should be amended to improve soil 368 

fertility and stability, but also to immobilise toxic elements. One type of amendment that could fulfil 369 

these criteria is composted materials (Mench et al. 2003; Gadepalle et al. 2007; Tandy et al. 2008). The 370 

amendment would reduce metal dispersion (Gadepalle et al. 2007), that is taken place in the studied soils 371 

as well (Moreno-Jiménez et al., 2009). However, some controversial results have been reported after 372 

compost supply in As-polluted soils: some authors reported As immobilisation (Gadepalle et al. 2007), 373 

but some other authors reported an increase of the labile-As fraction due to compost supply (Mench et al. 374 

2003; Kumpiene et al. 2008; Hartley and Dickinson 2009). Thus, compost might be carefully used in As-375 

polluted soils because there are scientific evidences of mobilisation of arsenic from soil after compost 376 

supply and monitoring the soil could support the safety successful of the amendment. On the other hand, 377 

compost amendment can improve the fertility on multi-polluted soils and can facilitate the establishment 378 

of a healthy vegetation cover (Bernal et al. 2006). In order to reduce As availability there are some 379 

available alternatives such as iron amendments (Warren et al. 2003; Hartley et al. 2004), but they can 380 

release metals from soils. A combination of both, compost (5%) and iron grit (1%), was successfully used 381 

as a compromise option to treat spoils from an abandoned gold mine (Mench et al. 2003), in order to 382 
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assure the low mobility of As. Re-vegetation is a good and cheap solution to use in derelict areas (French 383 

et al. 2006; Robinson et al. 2006) and has been successfully used in polluted Mediterranean areas 384 

(Domínguez et al. 2008). Plant establishment in gold mine waste was also improved after compost plus 385 

iron grit supply (Mench et al. 2003). Finally, the vegetation cover would prevent soil ingestion and re-386 

entrainment (Vamerali et al. 2009) and metalloid mobility and leaching in soils (Robinson et al. 2006). 387 

Nowadays, many authors doubt the current feasibility of phytoextraction because many questions are still 388 

open, but trace element phytostabilisastion (natural or anthropogenic) could be a competitive technology 389 

(Ernst 2005; Robinson et al. 2006; Madejón and Lepp 2007). In places with low vegetation cover, S. 390 

atrocinerea or C. scoparius could be suitable candidates for reforesting, depending on the humidity of the 391 

soils. The presence of perennial plants will definitively play an important landscape and ecological role 392 

(Vamerali et al. 2009). 393 

This site presents three potential hazards (large amounts of trace elements in mine spoils, arsenic 394 

in waters and cadmium in plants) that need to be remediated by soil amendments and site 395 

phytostabilisation. In this context, the area should be carefully monitored in order to detect changes in the 396 

long-term risk due to the presence of elevated concentrations of trace elements in soils. Toxicological 397 

tests and risk assessment will also be carried out with highly polluted soils from this site to evaluate the 398 

actual environmental risk of trace elements and their transfer to the food chain. 399 
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Figure captions: 562 

Figure 1. Dispersion of As in surface soils across the valley. The shading categories were defined using 563 

ArcGIS 9.0 ® software (spatial interpolation of inverse distance weighted was applied with 12 564 

neighboring samples for estimation of each grid point).  565 
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Table 1. pH, organic matter (OM), iron, arsenic and phosphorus concentrations in soils 568 

surrounding Mónica mine (Bustarviejo, Spain). Mean, standard error (SE), median and 569 

range (n=12-16). Significant differences in chemical parameters between soil groups 570 

using Kruskal-Wallis’ test (K-W): ***=P<0.001; **=P<0.01; *=P<0.05; n.s.=non 571 

significant. n.d.=non detectable (0.001 mg As kg-1; 0.1 mg P kg-1). 572 

  Soils close to mining 

dumps 

Soils affected by mine 

drainage 

Unaffected soils K-

W 

  Mean 

(SE)  

Median Range Mean 

(SE) 

Median Range Mean 

(SE) 

Median Range 

pH 4.87  

(0.25) 

4.17 3.89-

5.99 

5.27 

(0.13) 

5.20 4.24-

6.09 

5.08 

(0.11) 

5.16 4.01-

5.90 

n.s. 

OM 

(%) 

4.33 

(1.00) 

3.19 0.69-

8.61 

5.91 

(0.94) 

5.41 1.83-

13.04 

6.28 

(0.70) 

6.62 2.11-

11.66 

n.s. 

Pseudo-

total Fe 

(%) 

2.02 

(0.01) 

1.86 1.32-

3.38 

2.16 

(0.02) 

2.03 1.01-

3.45 

1.36 

(0.01) 

1.42 0.94-

1.65 

** 

Pseudo-total element (mg kg-1) 

  As 1,544 

(209) 

1,719 686-

3003 

638.2 

(168.2) 

561.4 26.3-

1907.0 

38.1 

(8.2) 

27.5 3.6-

107.7 

*** 

P  283.4 

(64.5) 

244.0 59.3-

878.0 

540.1 

(83.0) 

561.7 216.7-

1,166 

283.6 

(26.9) 

281.4 108.8-

592.4 

* 

(NH4)2SO4-extractable element (mg kg-1) 

 As 2.84 

(0.53) 

2.33 1.17-

6.55 

1.71 

(0.27) 

1.59 0.11-

3.18 

0.05 

(0.02) 

0.01 n.d.-

0.24 

*** 
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P 3.72 

(1.00) 

3.65 n.d.-

9.60 

4.07 

(1.17) 

5.48 n.d.-

12.35 

3.24 

(0.76) 

5.03 n.d.-

11.87 

n.s. 

 573 

 574 
Table 2. Bivariate correlation analyses (Pearson´s coefficient) in data from soils: pH, organic matter, 575 

pseudo-total (T) and extractable (E) concentration of arsenic and phosphorus, (n=41; *=P<0.05; 576 

**=P<0.01; ***=P<0.001). Only significant correlations were shown. 577 

 pH OM [Fe]T [As]T [P]T  [As]E  

OM 0,366*      

[As]T   0,651***    

[P]T  0,389* 0,448** 0,608***    

[As]E   0,719*** 0,840*** 0,327*  

[P]E   -0,552*** -0,556*** -0,336* -0,500*** 

 578 
 579 

Table 3. Percentage (%) of As retained in the different fractions of the sequential extraction and total 580 

concentration (mg As kg-1 soil). Mean  SE (n=4), different letters mean significant differences between 581 

soil groups (P<0.05, Tukey’s test). Range for total As. Each soil sample was extracted by duplicate. 582 

  As fractions Pseudo-

total 
  F1 F2 F3 F4 F5 

Soil 

groups 

SCMD 0.17  0.09 

a 

3.68  0.68 

a 

18.0  3.5 a 23.7  5.2 a 54.2  7.6 b 776-

2,137 

SAMD 0.27  0.07 

a 

3.78  0.81 

a 

29.3  3.9 

ab 

 28.5  3.4 

a 

38.7  7.7 b 209-

1,229 

UAS 0.25  0.15 

a 

6.78  2.09 

a 

39.8  1.4 b 43.9  2.2 b 6.65  3.2 a 26-105 

 583 
 584 



26 

 

Table 4. P and As concentrations in shoots of plants growing in the areas surrounding the Mónica mine, 585 

mean (range), n=2-12. For plant groups (seedless vascular plants, woody plants and herbs) mean ± SE are 586 

showed and different letters mean significant differences between groups after Tukey’s test (P<0.05). 587 

Transfer factor (TF, As in shoots divided by pseudo-total As in the soil) and bioaccumulation factor 588 

(BAF, As in shoots divided by (NH4)2SO4-extractable As in soil) were calculated for As. 589 

Plant species P (µg g-1) As (µg g-1) TF BAF 

Seedless vascular plants 683 ± 196 ab 0.89 ± 0.27 ab - - 

Equisetum ramosissimum 870 (783-957) 1.78 (1.65-1.90) 6.72·10-3 1.45 

Pteridium aquilimum 564 (98.8-1403) 0.26 (n.d-0.96) 1.17·10-3 2.00 

Athyrium filix-femina 837 (129-1940) 1.84 (1.77-1.90) 3.61·10-3 1.01 

Annual and perennial herbs 870 ± 106 b 1.44 ± 0.32 b - - 

Centaurea nigra 336 (268-398) 0.88 (0.09-1.78) 5.10·10-3 19.4 

Hypericum perforatum 334 (238-353) n.d. - - 

Digitalis thapsi 867 (438-1713) 1.57 (0.25-1.90) 3.19·10-3 99.8 

Aira caryophyllea 1038 (1017-1061) 1.81 (0.97-2.65) 4.85·10-3 1.71 

Glyceria fluitans 1047 (886-1225) 3.52 (1.68-7.10) 2.40·10-3 0.87 

Diplotaxis erucoides  

  

1100 

(643.2-1423)  

2.06 (1.94-2.15)  5.40·10-3 2.05 

Daucus carota 1442 

(1031-1852) 

n.d. - - 

Silene latifolia  1137 

(446.7-2172)  

1.47 (0.0216-1.91) 5.01·10-3 2.20 

Woody plants 475.4 ± 47.6 a 0.58 ± 0.10 a - - 

Cytisus scoparius 431 (129-670) 0.30 (0.06-1.05) 5.44·10-3 14.1 

Cytisus oromediterraneus 302 (113-672) 0.60 (0.00-1.94) 6.43·10-4 0.17 

Genista cinerascens 306 (100-598) 0.20 (n.d-1.05) 3.91·10-4 0.36 

Adenocarpus complicates 837 (459-1060) 0.28 (0.16-0.36) 8.37·10-4 0.23 

Thymus mastichina 279 (198-438) 0.25 (n.d-0.75) 2.15·10-2 7.74 

Santolina rosmarinifolia 697 (642-752) 0.52 (0.52-0.51) 0.27·10-3 0.19 

Frangula alnus 590 (376-884) 0.87 (0.42-1.19) 1.57·10-3 0.47 
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Betula pendula 582 (507-656.6) 0.20 (0.15-0.25) 1.79·10-4 0.10 

Erica arborea 536 (293-1095) 0.22 (n.d-0.71) 2.54·10-4 0.15 

Salix atrocinerea 601 (171-2148) 1.93 (0.52-2.86) 1.93·10-2 4.02 

 590 

Table 5. Pearson’s coefficient (r) between metal concentrations in shoots and soils ((NH4)2SO4-591 

extractable and pseudo-total) for the dominant plant species (n=5-12; *=P<0.05; **=P<0.01; 592 

***=P<0.001). 593 

 Available As  Pseudo-total As 

S. atrocinerea 0.75*  0.54 

C. scoparius 0.73**  0.34 

G. cinerascens 0.95***  0.79* 

E. arborea 0.68*  0.75* 

P. aquilinum 0.72*  0.47 

C. oromediterraneus 0.97**  0.67 

F. alnus 0.79*  0.70 

Mean r 0.79  0.61 

 594 

 595 


