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Re-vegetation is the main aim of ecological restoration projects, and in Mediterranean environments
native plants are desirable to achieve successful restoration. In 1998, the burst of a tailings dam flooded
the Guadiamar river valley downstream from Aznalcóllar (Southern Spain) with sludges that contained
elevated concentrations of metals and metalloids, polluting soils and waters. A phytoremediation
experiment to assess the potential use of native shrub species for the restoration of soils affected by the
spillage was performed from 2005 to 2007, with soils divided into two groups: pH < 5 and pH > 5. Four
native shrubs (Myrtus communis, Retama sphaerocarpa, Rosmarinus officinalis and Tamarix gallica) were
planted and left to grow without intervention. Trace element concentrations in soils and plants, their
extractability in soils, transfer factors and plant survival were used to identify the most-interesting
species for phytoremediation. Total As was higher in soils with pH < 5. Ammonium sulphate-extractable
zinc, copper, cadmium and aluminium concentrations were higher in very-acid soils, but arsenic was
extracted more efficiently when soil pH was >5. Unlike As, which was either fixed by Fe oxides or
retained as sulphide, the extractable metals showed significant relationships with the corresponding
total soil metal concentration and inverse relationships with soil pH. T. gallica, R. officinalis and
R. sphaerocarpa survived better in soils with pH > 5, while M. communis had better survival at pH < 5.
R. sphaerocarpa showed the highest survival (30%) in all soils. Trace element transfer from soil to
harvestable parts was low for all species and elements, and some species may have been able to decrease
trace element availability in the soil. Our results suggest that R. sphaerocarpa is an adequate plant species
for phytostabilising these soils, although more research is needed to address the self-sustainability of this
remediation technique and the associated environmental changes.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Trace element levels in soils have increased in many soils since
the beginning of human industrial activity. Trace element-contam-
inated soils can pose an environmental risk for humans and other
organisms: thus, reclamation activities are frequently recom-
mended (Mench et al., 2010). Pyritemines are amajor sourceof trace
elements and soils impacted by this activity can show high levels of
pollutants (Adriano, 2001). Phytoremediation is a promising tech-
nique for large areas of soil where the emphasis lies on the envi-
ronmental rather than the economic value. When contamination
exists in the top layer of the soil, plants can root in this zone and play
a role in pollutant immobilisation (Vangronsveld et al., 2009). In
1998, the burst of a tailing dam flooded the Guadiamar river valley
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downstream from Aznalcóllar (Southern Spain) with sludges that
contained elevated concentrations of metals and metalloids,
polluting top soils andwaters over an area ofw40 km2 (Simón et al.,
1999). After the initial treatmentof the spill, a restorationproject, the
Green Corridor of the Guadiamar River, was initiatedwith the aim of
re-vegetating the affected area with an open forest ecosystem
(Domínguez et al., 2008). However, the concentrations of trace
elements in soils remained above the background levels in some
sites and pyrite oxidation also promoted soil acidification. Re-
vegetation is the main aim of ecological restoration projects, and in
Mediterranean environments native plants are desirable to achieve
successful restoration (Moreno-Jiménez et al., 2008). Tracemetals in
soil can be transferred to the vegetation, but the uptake, trans-
location and phytoaccumulation will be intimately linked to plant
species. Phytoremediation techniques try to optimise the interac-
tions between soil and plants, in order to decontaminate soils and
improve the environmental quality of the site (Mench et al., 2009).
rranean shrubs for the phytoremediation of a soil impacted by pyritic
Management (2011), doi:10.1016/j.jenvman.2011.01.022
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The main aspect to be restored at the site that is the subject of the
work described here is the ecological value of the soil and, therefore,
phytoremediation is a better alternative than other, more-destruc-
tive techniques such as physical and chemical methods (Rodríguez
et al., 2009; Moreno-Jiménez et al., 2010a). Some phytor-
emediation experiments have been carried out at the study site;
however, most of them used crop species, and none of the species
that would be planted in an ecological restoration project have been
evaluated with regard to phytoremediation. Our field experiment
explores the potential of native shrub species for phytoremediation
under real conditions.

2. Materials & methods

2.1. Field experiment

The experiment was performed in plot B2 (1000 m2) in the
experimental site “El Vicario” (Aznalcóllar, Spain), 7 km down-
stream of the toxic spill. The experimental plot has been described
by Vázquez et al. (2006), and has a wide range of pH (2e8), low
contents of organic matter (<2%), nitrogen (<0.1) and carbonates
(<0.1%) and a loamy-sandy texture.

This site has been the subject of different research experiments:
for instance, Clemente et al. (2005), Madejón et al. (2006) and Dary
et al. (2010). For this experiment, plants were selected from among
those used for the Green Corridor of Guadiamar River restoration
project (Domínguez et al., 2008). Four species were selected:
Myrtus communis L., Retama sphaerocarpa L., Rosmarinus officinalis
L. and Tamarix gallica L., which have been studied previously under
hydroponic conditions in order to understand their interaction
with trace elements (Moreno-Jiménez et al., 2008; 2009a). The
plants used were similar in size and aspect to those used in the re-
vegetation activities carried out in the area.

Because of the high pH variability in the study plot (1000 m2), it
was divided into subplots of 25 m2, grouping them into soils with
pH < 5 and soils with pH > 5. Eight subplots from each group were
used for the experiment. Each subplot was divided into 4 units of
Fig. 1. Experimental set-up in the plot at El Vicario (Aznalcóllar, South

Please cite this article in press as: Moreno-Jiménez, E., et al., Using Medite
wastes in Southern Spain: A field experiment, Journal of Environmental
1.5�1.5 m2, leaving a corridor of 50 cm between units and subplots
as a barrier to avoid interactions between them. In each unit, 16
plants of one species were transplanted, so that in each subplot all
the species were grown. Unplanted subplots were maintained as
control soils. A scheme of the experimental set-up is detailed
in Fig. 1.

The experiment lasted for two years, from December 2005 to
December 2007. Plants were grown under natural conditions;
neither agricultural practices nor irrigation were carried out. The
survival of the transplanted plants was monitored annually. Sur-
viving plants were those still present in the soil and with clear
visual symptoms of biological activity, such as green colour, fresh
tissues and turgid leaves or stems.
2.2. Soil and plant sampling, processing and analysis

In planted subplots, the plants were rooted out and the soil in
contact with the roots was collected. In control subplots, soils were
sampled from the top 5e30 cm. Once in the laboratory, roots were
initially cleaned by hand, removing all the adhering soil particles.
Afterwards, all plant material was rinsed for 5 min with tap water,
which was shaken off by hand. Finally, plant material was sub-
merged in distilled water for 2 min, dried at 60 �C for 3 days and
milled to a fine powder in a grinder. Soils were dried in a glasshouse
for 7 days and sieved to <2 mm.

Plant material (0.5 g) was digested in an autoclave (Autoester-G,
Selecta) with 3 mL HNO3 (65%), 2 mL H2O2 (33%) and 10 mL mili-Q
water, at 125 �C and 1.25 kPa for 30 min, filtered and diluted to
25 mL with mili-Q water (Lozano-Rodríguez et al., 1995).

Soil pH was measured in a 1:2.5 (soil:water) suspension (MAPA,
1994). Total element concentrations in soil samples were processed
after autoclave digestion (0.5 g) with 6 mL HNO3, 4 mL H2O2 and
6 mL of mili-Q water, filtration and dilution to 50 mL with mili-Q
water (Moreno-Jiménez et al., 2010a). Weakly-retained metals and
As in soil samples were determined after extraction with 0.1 M
(NH4)2SO4 (1:10 w:v) for 4 h (Vázquez et al., 2008).
ern Spain). Top right, plants at the beginning of the experiment.
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Metal concentrations were determined by AAS (Perkin Elmer
Analyst 800) for soil and plant extracts and arsenic by atomic
fluorescence (P S Analytical 10.055, Millenium Excalibur system).

Certified reference materials (CTA-VL2, tobacco leaves, 0.97 mg
As g�1; CMR048-050, soil, 150 mg kg�1) were also digested and
analysed. The recoveries in both materials were >88%, >84%, >87%
and >84% for As, Cd, Cu and Zn, respectively, with low coefficients
of variance (<6%).

Two soil samples, one from subplots with pH < 5 and another
from subplots with pH > 5, were selected for sequential extraction
of As. Arsenic fractionation in soil samples was assessed following
the procedure of Wenzel et al. (2001), with five steps: (1) 0.1 M
(NH4)2SO4-extractable fraction, (2) 0.05 M NH4H2PO4-extractable
fraction, (3) 0.2 M NH4-oxalateextractable, (4) 0.2 M NH4-oxalate
and 0.2 M ascorbic acid-extractable at 96 �C, and (5) residual phase
(digested with HNO3/H2O2 under 125 �C and 1.5 kPa).

2.3. Data processing and statistical analysis

Data were processed with Excel and SPSS. ANOVA and Duncan’s
test were used to study the influence of plants on the availability of
the elements in the soil. Two-way ANOVA was used for mean
comparison, with soil pH and plant species as factors. The transfer
factor (TF) was calculated as the ratio [TE]shoot:[TE]soil. The trans-
location rate was evaluated by the [TE]shoot:[TE]root ratio, where
TE ¼ trace element.

3. Results

3.1. Plot soils

Both pH and total trace element concentrations are shown in
Fig. 2. Subplots were grouped in pH< 5 and pH> 5, with the former
group ranging from pH 2.9 to 4.8 and the latter from 5.2 to 8.3. Total
Fig. 2. The total concentrations of trace elements (mg kg�1)

Please cite this article in press as: Moreno-Jiménez, E., et al., Using Medite
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metal concentrations in the different soils were within the same
range, whilst As concentrations were higher in the most-acidic
soils. The average concentrations of Al, Cd and Cu in soil were 2%
and 1.2 and 22 mg kg�1, respectively. The total Zn and As concen-
trations averaged 252 and 312 mg kg�1 and 87 and 46 mg kg�1, for
pH < 5 and pH > 5, respectively.

The ammonium sulphate-extractable concentrations of Zn and
Al were significantly higher than those of the other elements
(Fig. 3). Extractable metal concentrations were higher at pH < 5
than at pH > 5, while concentrations of extractable As were similar
or even higher in soils with pH > 5.

The percentages of extractable elements were calculated on the
basis of the total element in every single sample (Fig. Supplementary
Material). Arsenic, the only element presumably present in anionic
forms, showed the lowest extractability and a slight tendency to be
more mobile at pH > 5. Zinc and Cd were the most-soluble metals,
mainly in acidic soils. Aluminiumwas present in soluble forms only
at low pH.

In order to establish the relationships between the extractable
concentrations of the different elements in the soils ([TE]Ext) and
soil physicochemical properties, a linear regression analysis was
performed by both forwards and backwards methods and the
most-significant of the equations was selected for each element.
Significant regression equations were found for all the elements
except As:
[Al]Ext ¼ 136 � 18$pH; r ¼ 0.57; P < 0.001.

[Cd]Ext ¼ 0.27 � 0.05$pH þ 0.07$[Cd]T; r ¼ 0.52; P < 0.01.

[Cu]Ext ¼ 4.73 � 0.63$pH; r ¼ 0.46; P < 0.01.

[Zn]Ext ¼ 92 � 26$pH þ 0.23$[Zn]T; r ¼ 0.84; P < 0.001.
and pH in soils in the subplots of the experimental plot.

rranean shrubs for the phytoremediation of a soil impacted by pyritic
Management (2011), doi:10.1016/j.jenvman.2011.01.022

ER.5015404
Cuadro de texto
  



Fig. 3. The (NH4)2SO4-extractable concentrations (mg kg�1) of Al, As, Cd, Cu and Zn in the subplots.
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Since extractable As was not explained by the regression anal-
ysis, As fractionation in soil was assessed: the results are shown in
Table 1. Weakly-retained As (F1 and F2) in soils with pH < 5 was
lower than at pH > 5. Up to 60% of As in soils with pH > 5 was
extracted in F3 and 4, mainly associated with Fe oxides (Wenzel
et al., 2001). The residual fraction (F5) was higher for the soils
with low pH.
Table 1
Percentage (%) of As retained in the different fractions of the sequential extraction
and total concentration. Mean, n ¼ 2.

F1 (%) F2 (%) F3 (%) F4 (%) F5 (%) Total (mg As kg�1)

pH ¼ 3,3 0.11 8.8 14.3 31.2 45.6 148
pH ¼ 6,4 0.50 10.2 15.8 44.1 29.8 55

Fig. 4. The extractable arsenic and zinc concentrations in soils with and without plants. N
officinalis; T.g.: Tamarix gallica. Mean � SE, n ¼ 3e8. Significant differences between means
pH > 5.

Please cite this article in press as: Moreno-Jiménez, E., et al., Using Medite
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As an example of the influence of plant establishment on trace
element extractability, the ammonium sulphate-extractable As and
Zn concentrations are shown in Fig. 4, for both planted and control
soils. Significant differences (p < 0.10) were observed only in soils
with pH < 5, where both R. sphaerocarpa and M. communis
decreased the extractable fraction of As. In the case of Zn, some
plants showed a tendency to decrease its extractability, but the high
variability of the results meant that significant differences did not
exist.
3.2. Plants grown in the experimental plot

Plant survival decreased during the experiment (Table 2). At the
end, survival was low, as plants had been exposed to pollution,
P: non-planted; M.c.: Myrtus communis; R.s.: Retama sphaerocarpa; R.o.: Rosmarinus
(p < 0.1) are indicated by different letters. No data were obtained for M. communis at
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Table 2
Survival rate (%) of plants in the different subplots after 2 years of field experiment.
Mean � SE, n ¼ 8; n.s. ¼ not significant, * ¼ p < 0.05, ** ¼ p < 0.01.

Species (Sp) Plant survival (%)

pH < 5 pH > 5

Myrtus communis 13.8 � 8.9 0.8 � 0.9
Retama sphaerocarpa 23.8 � 8.7 34.4 � 9.0
Rosmarinus officinalis 10.2 � 4.9 27.8 � 6.2
Tamarix gallica 3.1 � 1.4 16.7 � 6.8

ANOVA pH Sp pH*Sp
n.s. ** *

Table 4
Shoot:root ratio ([TE]shoot/[TE]root) and transfer factor (TF¼ [TE]PA/[TE]soil) for metals
and As in the plants growing in the experimental. Mean, n ¼ 3e8. M.c.: Myrtus
communis; R.o.: Rosmarinus officinalis; R.s.: Retama sphaerocarpa; T.g.: Tamarix
gallica. n.a.: no analysed.

[TE]shoot/[TE]root TF

Al As Cd Cu Zn Al As Cd Cu Zn

pH < 5
M.c. 2.35 1.53 0.51 0.37 1.96 0.009 0.026 0.19 0.29 0.73
R.s. 0.74 0.31 0.33 0.71 0.87 0.006 0.018 0.10 0.45 0.46
R.o. 1.50 0.50 0.95 1.02 1.68 0.007 0.016 0.10 0.53 0.32
T.g. 2.48 0.43 8.80 1.46 2.04 0.010 0.008 0.58 0.46 0.57
pH > 5
M.c. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
R.s. 5.43 0.98 0.20 0.76 0.66 0.007 0.027 0.05 0.37 0.17
R.o. 2.69 0.98 0.89 0.85 2.10 0.007 0.017 0.18 0.40 0.25
T.g. 3.98 0.63 1.96 1.01 0.86 0.007 0.021 0.24 0.47 0.15
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drought, occasional flooding by the river and animal disturbance.
R. sphaerocarpa showed the highest success in both soils (pH < 5
and > 5). R. officinalis showed good survival at pH > 4, while the
survival of T. gallica and M. communis was generally low.

The Al, As, Cd, Cu and Zn concentrations in plant organs are
detailed in Table 3. The levels of metals were slightly higher in
subplots with pH < 5. Arsenic levels in M. communis shoots were
higher than in the other plants. As a general rule, the concentrations
of trace elements in both roots and shoots were of the same order of
magnitude.

The transfer factor was generally below 1, indicating a low
transfer of contaminants to shoots. The shoot:root ratio ranged
between 0.1 and 10, being in many cases >1 (Table 4).

4. Discussion

4.1. Trace element contamination in soils

The total As and Zn concentrations in soils exceeded the toxic
thresholds that could be hazardous for the biota (Ross, 1994); As
exceeded the permitted level of 100 mg kg�1 for soils in natural
areas of Andalucía (Aguilar et al., 2004). In fact, 30% of the soils with
pH < 5 and 5% of the soils with pH > 5 were above this latter limit.
Although the levels of Znwere not alarming, they can be considered
of environmental concern. The total concentrations of trace
elements are in the range reported by Aguilar et al. (2004) for the
same area; they seem to have decreased over time in the experi-
mental plot if our data are compared to previous studies just after
the mine spill, in very-close plots at the same site (Clemente et al.,
2006; Madejón et al., 2006). The high heterogeneity of the soils of
this area (Vanderlinden et al., 2004) may contribute to this, as may
Table 3
Metals and As concentrations (mg g�1) in shoots (S) and roots (R) of plants growing in the
officinalis; R.s.: Retama sphaerocarpa; T.g.: Tamarix gallica. n.d.: non detected; n.a.: non a

Al As

pH<5
M.c. S 226 (169e333) 2.56 (1.60e4.57)

R 96 (35e205) 1.67 (0.64e3.82)
R.s. S 137 (81e182) 1.53 (0.46e2.12)

R 186 (47e398) 4.99 (3.98e5.76)
R.o. S 177 (139e202) 0.78 (0.74e0.83)

R 118 (93e205) 1.57 (1.23e1.83)
T.g. S 147 (118e183) 0.79 (0.50e0.93)

R 15 (6.8e44) 1.84 (0.73e3.82)
pH>5
M.c. S n.a. n.a.

R n.a. n.a.
R.s. S 153 (123e180) 0.82 (0.66e0.95)

R 28 (4.1e76) 0.84 (0.48e1.56)
R.o. S 148 (83e196) 0.67 (0.43e0.83)

R 55 (6e136) 1.16 (0.37e2.97)
T.g. S 134 (103e170) 0.71 (0.43e0.83)

R 54 (23e83) 1.13 (0.70e1.84)

Please cite this article in press as: Moreno-Jiménez, E., et al., Using Medite
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either natural attenuation or pollutant dispersion to adjacent soils/
waters. Further studies are desirable to ensure that deeper layers of
soils or adjacent soils or waters are not being impacted by the
mobility of the contaminants.

If we calculate the fraction of extractable trace elements in the
soil in relation to the total in the same sample, these values are
consistent with other reports (Fellet et al., 2007; Beesley et al.,
2010; Moreno-Jiménez et al., 2009a,2010a), following generally
this order: Cd w Zn > Cu >> Al > As. In the case of metals, the
percentage of extractable element was higher when soil pH
decreased, while As extractability was slightly higher in soils with
pH> 5. Total element concentration, pH, oxides, organicmatter and
texture are main variables affecting metal (loid) extractability
(Adriano, 2001). In the studied soils, a narrow range of organic
matter content (1e2%), Fe content (2e5%), Al content (1.2e2.7%)
and texture (loamy-sand) was found, but total concentration and
pH varied widely. This variability of the two latter factors makes
them useful for explanation of differences in extractability in soils,
using linear regression analysis. Both pH and total element
concentration explained to a high degree the extractable metal
concentrations in soils. All the metals (Al, Cd, Cu and Zn) showed
lower extractability as soil pH increased, which corresponds with
previous findings (Adriano, 2001; Kabata-Pendias, 2004; Moreno-
Jiménez et al., 2009b). Arsenic was analysed in the same way as
the metals, but no relationship existed between the extractable As
concentration and the pH and total As concentration in the linear
experimental plot. Mean (range), n ¼ 3e8. M.c.: Myrtus communis; R.o.: Rosmarinus
nalysed.

Cd Cu Zn

0.29 (0.23e0.41) 6.3 (5.4e8.3) 196 (84e290)
0.57 (n.d.-1.22) 17.0 (6.8e35.5) 100 (61e141)
0.17 (0.05e0.38) 8.4 (6.4e11.7) 149 (90e249)
0.53 (0.24e0.75) 11.8 (10.2e14.3) 172 (133e196)
0.15 (0.12e0.19) 13.1 (11.3e15.6) 90 (82e100)
0.16 (n.d.-0.29) 12.8 (9.1e19.2) 54 (46e68)
0.32 (0.18e0.59) 9.2 (8.9e9.4) 114 (71e196)
0.04 (n.d.e0.11) 6.3 (5.1e7.1) 56 (33e85)

n.a. n.a. n.a.
n.a. n.a. n.a.
0.07 (0.04e0.10) 6.4 (4.7e9.0) 61 (44e73)
0.33 (0.02e0.67) 8.4 (5.8e9.6) 92 (32e133)
0.19 (0.07e0.34) 11.9 (10.4e14.4) 66 (42e88)
0.12 (0.06e0.34) 14.1 (8.6e20.8) 32 (20e50)
0.31 (0.20e0.41) 10.3 (8.2e12.3) 43 (33e52)
0.16 (n.d.e0.42) 10.2 (9.0e14.4) 50 (29e83)
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regression analysis. In fact, the highest extractable As concentra-
tions were observed with pH < 3 and pH > 6. For the former case,
this can be attributed to the protonation of As(V) in soils to arsenic
acid, which is poorly retained in soils as it is uncharged (Zhang and
Selim, 2008). For the latter, OH� can competewith As anions for the
retention sites of the soil, releasing As from the exchangeable anion
fraction (Smith et al., 1999; Fitz and Wenzel, 2002). The sequential
extraction of As from the soils demonstrates the low availability
(<11% in the first two fractions) of this metalloid in these mine-
impacted soils. It was retained primarily in the most-insoluble soil
fractions: bound by oxides, as precipitated salts and as sulphur
salts. The role of oxides controlling the solubility of As in these Fe-
enriched soils may be predominant (La Force et al., 2000). The
results are similar to those reported for soils in other pyritic mine
sites (Conesa et al., 2008; Moreno-Jiménez et al., 2010a).

4.2. Plantesoil interactions and phytoaccumulation of trace
elements

Plant survival after two years was low (<40%), which was
attributed to the harsh climatic conditions and the lack of agro-
nomic practices or protection for the plants. R. sphaerocarpa
showed the highest survival rate, standing out as the most-suitable
species for the re-vegetation of these soils under the experimental
conditions.

Plant establishment had effects on contaminant availability.
When the ammonium sulphate-extractable concentrations were
compared for soils from planted and unplanted plots (Fig. 4), As
extractability was significantly depleted only when R. sphaerocarpa
and M. communis were growing in soils with pH < 5. Similar
depletions in available metal concentrations were also observed in
some other planted plots, but these differences were not signifi-
cant, likely due to the variability of the results. For instance, plants
decreased the average extractable Zn concentrations, but not
significantly so. This depletion of the available fraction is one of the
main goals of phytoremediation, since it decreases the environ-
mental risk associated with the contamination. Plant accumulation
may partly explain this effect (Mench et al., 2009), but the amount
of contaminant retained in plant tissues in our experiment was low
in comparison with the available pool in the soil. So, reductions in
the available fraction can be attributed to rhizosphere processes,
such as chelation by plant exudates and immobilisation by root-
associated microorganisms (Mench et al., 2009; Kidd et al., 2009).

The transfer factors showed this order: Zn > Cdw Cu > As > Al,
which, to some extent, reflects the extractability of these elements
in the soils. This agrees with previous reports (Domínguez et al.,
2008). Trace element transfer from soil to the harvestable parts
was low for all species and elements (always lower or much lower
than 1). Therefore, none of the studied species are useful for phy-
toextracting metal(loid)s from these soils. However, as the main
aim of phytoremediating these soils would be the preservation of
the ecological quality of the environment, phytostabilisation may
provide a good alternative: these plants do not accumulate large
amounts of trace elements in their edible parts, therefore posing
a low risk for food chain transfer. These results agree with those of
Domínguez et al. (2008), who described phytomanagement as
a good option for this site.

The trace element concentrations in plants exceeded the normal
levels reported by Kabata-Pendias and Pendias (1992), but they
were below the toxicity threshold concentrations described by
other authors (Álvarez et al., 2003; Gardea-Torresdey et al., 2005).
Only As slightly exceeded the limit of 3mg kg�1 reported by Chaney
(1989). Domínguez et al. (2008) reported similar ranges of trace
element concentrations in native re-vegetated plants within the
Green Corridor of the Guadiamar River. The levels of trace elements
Please cite this article in press as: Moreno-Jiménez, E., et al., Using Medite
wastes in Southern Spain: A field experiment, Journal of Environmental
in plants reported in the current work correspond to plants
growing in contaminated soils for two years; Domínguez et al.
(2008) found higher concentrations in mature plants than in
young ones. Therefore, monitoring plants in the long-term is
desirable, to ensure low concentrations of contaminants in plants.
Alexandre (2003) carried out a field trial in a nearby plot, reporting
higher concentrations of Cd, Cu and Zn in the aerial parts of Lupinus
angustifolius, Helianthus annuus, and Zea mays than in our work
with Mediterranean shrubs. Clemente et al. (2005) also found, in
the same site, concentrations of Zn, Cu, Cd and As in above-ground
tissues of Brassica juncea that were higher or much higher than in
our species. Although Domínguez et al. (2008) recently measured
trace elements in the shoots of some of the species studied in the
current experiment, as far as we know there are no data reported
about trace element concentrations in the roots of plants grown
under field conditions in these soils.

Trace element exclusion is a widespread mechanism for plant
resistance (Dahmani-Muller et al., 2000; Clemens et al., 2002), and
this excluder behaviour was reported before for the studied
Mediterranean shrubs (Moreno-Jiménez et al., 2008; 2009a).
Focussing on As, the studied plant species showed lower shoot:root
ratios of As concentration under hydroponic conditions than in the
field. This could be explained partly by a previous observation: the
higher the As dose in the nutrient solution, the lower the shoot:root
ratio of its concentration since more As is retained by the roots
(Moreno-Jiménez et al., 2010b). Studies with lupin showed the
same pattern, with higher ratios under field conditions for As and
Cd (Vázquez, 2004). These differences between water- and soil-
based cultures can be due to the high availability of trace elements
in hydroponic cultures compared to soil (Moreno-Jiménez et al.,
2010b). The sampling procedure might also explain these differ-
ences: only old, coarse roots can be sampled in the field, while
in hydroponics both fine and coarse roots are easily accessible.
Vamerali et al. (2009) found the highest concentrations and accu-
mulation of trace elements in fine roots, so field sampling can
underestimate contaminant concentrations in roots if the whole
root system is not obtained.

4.3. Concluding remarks and future research

The ability to survive under the prevailing environmental
conditions, depletion of contaminant availability in soils, native
character and a low soil-to-shoot transfer of the contaminant(s)
are the most-important plants traits for the application of phy-
tostabilisation (Mench et al., 2009; Kidd et al., 2009). We high-
light the native species R. sphaerocarpa as a promising candidate
for the successful re-vegetation and stabilisation of the studied
site. A previous experiment to evaluate the feasibility of phy-
tostabilisation with Mediterranean shrubs demonstrated that As-
loaded roots did not increase the risk of As remobilisation during
their mineralisation in these soils (Moreno-Jiménez et al., 2009c).
This finding supports our recommendation. Future work should
determine the environmental sustainability of phytostabilisation,
by assessing the soil health and the primary ecological succession
in the reclaimed soil over time, and monitoring the long-term
availability of trace elements in the soil and their transfer
to biota.

5. Conclusions

Arsenic solubility in the soils of Aznalcóllar was low, but metal
extractability was higher in those soils with low pH. Although very-
acid pH was toxic for plants, some species were resistant to trace
element toxicity and soil acidity in the experimental plot, with
a low transfer of contaminants from soils to plants: this makes
rranean shrubs for the phytoremediation of a soil impacted by pyritic
Management (2011), doi:10.1016/j.jenvman.2011.01.022
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phytostabilisation the best alternative. Among all the tested
species, R. sphaerocapra showed the highest survival rate and may
help to decrease As availability in these soils.
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