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.

But then again pristine isolation might not be the best idea
It’s not good trying to inmortalize yourself

Lou Reed. From Begining of a great adventure,
included in New York (Sire Records, 1989)
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Abstract

This thesis deals with the interplay between structural and electronic properties
of two-dimensional materials such as graphene, and the novel and very interest-
ing phenomena, both from the point of view of fundamental Physics and potential
applications, which emerge when lattice distortions such as strains or superlattice
modulations are combined with the dynamics of the electrons confined in two spatial
dimensions. The main microscopic ingredient which is behind all these phenomena
is the spin-orbit interaction. On the one hand, we analyze in detail how the spin-orbit
interaction modifies the electronic structure of these materials, and on the other, how
structural changes affect the spin-orbit interaction suffered by the electrons of the
solid, then modifying its electronic response in a very peculiar manner due to the
entanglement of the spin and orbital degrees of freedom.

The contents of the thesis are divided in three blocks. The first part is devoted to study
the effect of out-of-plane (flexural) vibration modes on the electronic properties of
graphene. We examine in detail the influence of the electron-phonon coupling on
the mobilities of suspended graphene samples, and we compare our findings with
transport experiments, revealing that scattering by these phonon modes constitute the
main intrinsic limitation to electron mobilities. Then, we study how flexural phonons
contribute to enhance the spin-orbit coupling in graphene, which is in principle very
weak due to the lightness of carbon.

In the second part we analyze in detail different spin relaxation mechanisms mediated
by the spin-orbit interaction. We focus on the standard Elliot-Yafet and D’yakonov-
Perel’ mechanisms, and how such conventional theories are modified when spatially
varying spin-orbit fields are considered due to the presence of impurities or curva-
ture.

In the last part we propose novel platforms for engineering topological states of
matter based on the interplay between strain and superlattice perturbations in com-
bination with the spin-orbit interaction. Our first proposal relies on the application
of shear strain in monolayers of transition metal dichalcogenides in order to cretae
spin-polarized pseudo-Landau levels. The resulting system resembles a time rever-
sal invariant version of the quantum Hall effect. We also study a system consisting
on graphene grown on iridium with some monolayers of lead intercalated between
them. The experiments show that the local density of states develops a sequence of
regularly spaced sharp resonances due to the presence of the lead. These resonances
are attributed to the confinement due to spatially modulated spin-orbit fields created
by lead, which mimic the effect of a magnetic field.
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Resumen

Esta tesis trata de la interacción entre las propiedades estructurales y electrónicas de
materiales bidimensionales como el grafeno, y los fenómenos que emergen cuando
deformaciones de la red como las tensiones elásticas o las modulaciones produci-
das por super-redes se combinan con la dinámica de los electrones confinados en
dos dimensiones espaciales, muy interesantes tanto desde el punto de vista de la
Física fundamental como del de las aplicaciones. El ingrediente microscópico esen-
cial que está detrás de esta fenomenología es la interacción espín-órbita. Por un lado,
analizamos en detalle cómo la interacción espín-órbita modifica la estructura elec-
trónica de estos materiales, y por otro, cómo los cambios estructurales afectan a la
interacción espín-órbita experimentada por los electrones del sólido, modificando su
respuesta electrónica de una manera muy peculiar debido al entrelazamiento de los
grados de libertad orbitales y de espín.

Los contenidos de esta tesis están divididos en tres bloques. El primero está dedicado
al estudio del efecto de las vibraciones fuera del plano (flexurales) en las propiedas
electrónicas del grafeno. Examinamos en detalle la influencia del acoplo electrón-
fonón en las movilidades de las muestras de grafeno suspendido, y comparamos
nuestros hallazgos con experimentos de transporte que revelan que la dispersión
debida a estos modos de fonones constituye la principal limitación intrínseca de las
movilidades electrónicas. Estudiamos entonces cómo estos modos de fonones flexu-
rales conribuyen al aumento del acoplo espín-órbita en grafeno, que es en principio
muy débil debido al bajo número atómico del carbono.

En la segunda parte analizamos en detalle diferentes mecanismos de relajación de
espín mediados por la interacción espín-órbita. Nos centramos en los mecanismos
convencionales de Elliot-Yafet y D’yakonov-Perel’, y cómo éstos se modifican cuando
se incluye el efecto de campos espín-órbita que varían en el espacio debido a la
presencia de impurezas o curvatura.

En la última parte proponemos nuevas plataformas para el diseño de estados topológi-
cos de la materia basados en la combinación de tensiones y perturbaciones debido
a super-redes con la interacción espín-órbita. Nuestra primera propuesta se basa en
la aplicación de tensiones de cizalladura en monocapas de dicalcogenuros de met-
ales de transición con el objeto de crear pseudo-niveles de Landau polarizados en
espín. El sistema resultante recuerda a una versión invariante bajo inversión tem-
poral del efecto Hall cuántico. También estudiamos el sistema formado por grafeno
crecido sobre iridio con algunas monocapas de plomo intercaladas entre ambos. Los
experimentos muestran que la densidad local de estados desarrolla una secuencia
de resonancias muy nítidas y regularmente espaciadas debidas a la presencia del
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plomo. Estas resonancias se atribuyen al confinamiento debido a la modulación espa-
cial de campos espín-órbita creados por el plomo que imitan el efecto de un campo
magnético.
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1
Introduction

By two-dimensional (2D) crystals we denote a wide family of novel materials[1]

among which graphene[2] is the paradigm. Since the 70’s and thanks to the ultra-
high vacuum technology it has been possible to grow very thin crystals, even one
atom thick. However, these solids were metastable in the best scenario, which means,
essentially, that only could survive on the metallic substrate where they grew. Of
course, this prevented any potential application, and even a careful characterization.
The discovery of graphene in 2004,[3] a single layer of carbon atoms arranged in
a honeycomb lattice, constituted a complete revolution in this research line and a
milestone in Solid State Physcis.

Two different families are usually distinguished among the allotropes of carbon: dia-
mond, unique and very hard, which is a band insulator, and graphite, a semiconductor
with multiple applications which goes from pencils to nuclear reactors. Graphite is
composed of graphene layers weakly coupled by Van der Waals forces. Geim and
Novoselov and their collaborators in the University of Manchester were able to ex-
foliate graphite down to a single layer. This single layer is mechanically stable and
can be transferred to different substrates. Moreover, its transport properties improve
when part of the substrate is removed and a portion of the graphene sample remains
suspended.[4]

The graphene-like materials do not end with the single layer, and also bilayer graphene,[5]
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1. I N T R O D U C T I O N

trilayer graphene, etcetera, can be exfoliated. These graphene materials can be grown
not only by mechanical methods but also by Chemical Vapor Deposition (CVD) tech-
niques,[6] what allows a good control on the number of layers. As we will see, their
electronic properties depend not only on the number of layers, but also on the stack-
ing.

The family of atomically thin 2D crystals goes beyond the allotropes of carbon and al-
ready includes materials as silicene[7,8] (like graphene but made of silicon), graphane
C2H2,[9] gemanane Ge2H2,[10] monolayers of hexagonal boron nitride hBN,[11] or bi-
layers of gallium chalcogenides Ga2X2.[12] This thesis deals with transition metal
dichalcogenides.[13] Bulk transition metal dichalcogenides are composed of X-M-X
layers stacked on top of each other and also coupled by Van der Waals forces. Like
graphite, these materials can be exfoliated down to a single layer.[14] The transition
metal atoms (M) are arranged in a triangular lattice and each one is bonded to six
chalcogen atoms (X). From now on we denote these materials by its stoichiometric
formula, MX2.

Inspite of their different chemical composition, these crystals share honeycomb-like
lattice and several features in their electronic properties. As we will see, graphene is a
multivalley semiconductor: the Fermi level crosses the bands at the two inequivalent
corners of the hexagonal Brillouin Zone (BZ). These two points are connected by
a very important discrete symmetry, time reversal symmetry, which expresses the
invariance of the equations of the theory under the inversion of time t → −t. This
fact allows several physical mechanisms to break time reversal symmetry fictitiously
within each valley, leading to novel and very interesting phenomena. In the case of
MX2 we must distinguish between the materials with an odd number of electrons per
unit cell, such as Niobium or Tantalum compounds, which are metallic and whose
Fermi surface is very unstable due to the strong electronic correlations associated to
the orbital character of the bands crossed by the Fermi level,[15] and those with an
even number of electrons per unit cell, such as Molybdenum or Tungsten compounds,
which are semiconductors where, as in the case of graphene, the Fermi level lies
around the two inequivalent corners of the BZ. We focus on the semiconducting
compounds.

Despite the similarities just described, there are important differences between graphene
and MX2 regarding the SOC. In order to understand such differences, it is important
to keep the origin of the spin-orbit interaction in mind. In non-relavistic quantum
mechanics, the spin is introduced as an internal angular momentum that particles
possess as an intrinsic property. In some sense, it was introduced ad hoc in order
to understand some experiments in the early stages of quantum mechanics,[16] but
it was not fully understood until the fusion of quantum mechanics and special rel-
ativity, what we know as quantum field theory (QFT). Then, the spin emerges as a
property which reflects the invariance of the underlying theory under Lorentz trans-
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formations of special relativity. The Lie group associated to such transformations is
called the Lorentz group. An electron, which is a spin 1/2 particle, must be described
by a mathematical object which transforms non-trivially under this group. This is
precisely a spinor ψ, which transforms according to the spinorial representation of
the Lorentz group. In such representation the generators of the group are given by
the commutators of the gamma matrices γµ, which are elements of a Clifford algebra.
In 3 spatial dimensions, the simplest representation of the Clifford algebra is in terms
of 4× 4 matrices, so ψ is a 4-component object. The equation of motion deduced
from a relativistic action for ψ is the Dirac equation,[17]

�

iħhγµ∂µ −mc2
�

ψ= 0, (1.1)

where c is the velocity of light and m is the mass of the particle, an electron in

our case. If we assume a depence on time as ψ = e−iE t/ħh
�

χ
φ

�

, where χ, φ are

2-component objects, the stationary version of this equation reads

H0

�

χ
φ

�

= E
�

χ
φ

�

, with

H0 =
�

mc2 cσi p̂ j
cσi p̂i −mc2

�

. (1.2)

We have choosen the Dirac representation of γµ matrices, so σi are Pauli matrices.
Let’s assume that the electronic dynamics is also affected by a static potential V , so
the complete Hamiltonian readsH0 + V . Then, the spin-orbit interaction arises as a
relativistic correction to the electronic dynamics within the potential V . Our aim is to
rewrite Eq. (1.2) for the positive energy (particle) sector as a Schrodinger equation.
From Eq. (1.2) is clear that χ satisfies the equation

�

mc2 − E + V
�

χ + c2σi p̂i

�

E +mc2 − V
�−1

σ j p̂ jχ = 0. (1.3)

We define ε≡ E −mc2, which can be interpreted as the energy of the electron in the
non-relativistic limit. Then, Eq. (1.3) can be cast as

�

HS + V
�

χ = εχ where

HS = c2σi p̂i

�

ε+ 2mc2 − V
�−1

σ j p̂ j .

The next step is to expand
�

ε+ 2mc2 − V
�−1

in powers of (ε−V )/2mc2 (equivalently,

in powers of v2/c2, where v is the velocity of the electron defined as
p

2m(ε− V )):

�

ε+ 2mc2 − V
�−1
≈

1

2mc2

�

1−
ε− V

2mc2

�

+O
�

v4/c4
�

.
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1. I N T R O D U C T I O N

After a straightforward calculationHS reads

HS ≈
|p̂|2

2m
+ V −

1

4mc2 (ε− V ) |p̂|2 −
[V, p̂] · p̂
4m2c2 −

i

2ħhm2c2 ([V, p̂]× p) · s. (1.4)

The first two terms build the conventional Schrodinger-like Hamiltonian that we
would write in order to describe the dynamics of the electron in a non-relativistic
theory. The third and fourth terms are relativistic corrections to the kinetic and
potential energies that arise to the lowest order in v2/c2. The last one, however, is a
purely relativistic term, in the sense that it is non-diagonal in the internal degrees of
freedom of the spinor χ. An angular momentum operator si = ħhσi/2 can be defined.
This is the electron spin angular momentum, and it is coupled with the orbital degrees
of freedom. By expanding the conmutator we get

HSO =
1

2m2c2 (∇V × p) · s. (1.5)

The electron in a solid suffers in general such relativistic interaction, where V rep-
resents the potential created by the crystalline surrounding. If we model V as an
hydrogen-like potential of the form V (r) = −Z/r, where Z is proportional to the
mass of the atomic species of the solid, then we have

HSO =
Z

2m2c2r3 L · s, (1.6)

where L is the orbital angular momentum operator. This last equation tells us that,
in general, the spin-orbit effects increase with the mass of the atomic species of the
crystal, and its effect is lower for higher orbitals. Futhermore, since in a given atomic
orbital the typical distance between the electron and the nucleus of the atom is mea-
sured in units of the Bohr radius, which is inversely proportional to Z , we conclude
that the strength of the spin-orbit interaction scales approximately as Z4.

This fact explains the main difference regarding the SOC between graphene and
MX2. Carbon is a light material, and therefore, the SOC in graphene is expected to
be weak. This opens the door to many potential applications. Spintronics[18] takes
the advantage of the intrinsic spin degree of freedom of the electron in order to
encrypt and spread information, as the conventional electronics makes with the elec-
tron charge. A good solid-state platform must allow the possibility of manipulating
the electron spin at will. The weakness of the SOC and the near absence of C13

atoms (with non-vanishing nuclear spin which may lead to electron spin relaxation
through the hyperfine interaction) makes graphene an ideal candidate for spintronics
devices.

On the other hand, transition metals are heavy atoms, so the SOC in MX2 is expected
to be strong. However, the 2D nature of these materials, together with the lack of
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a center of inversion, makes them even more intersting from the point of view of
spintronics since the out-of-plane spin polarization is protected precisely by the SOC.
The absence of a center of inversion implies that the two out-of-plane spin polar-
izations are energetically separated around the BZ corners. Time reversal symmetry
imposes that this energy difference has opposite sign at each valley. In other words,
by tunning the Fermi level conveniently one can populate only one spin polarization
in one valley and the opposite one in the other. Such identification between the valley
and spin degrees of freedoms is the basis of very interesting phenomena,[19–22] some
of them will be described in detail in this thesis.

The SOC has deeper consequences on the band structure of some solids, something
which is in connection with a concept very common in the terminology of Condensed
Matter Physics nowadays: topological order.[23] Landau’s Fermi liquid and symmetry-
breaking theories are the traditional frameworks within which most of the phenom-
ena in Condensed Matter Physics and many-body theory are described. The concept
of order is introduced to characterize different states of matter. The definition of
order involves phase transitions. Two states have the same order if we can smoothly
change from one into the other without passing by a phase transition. Traditionally,
different orders are associated to different symmetries. Ginzburg-Landau theory,[24]

the standard theory for phase transitions, is based on this relation, introducing order
parameters associated to symmetries.

However, there are some systems whose description goes beyond this picture. The
quantum Hall effect (QHE) both in the integer (IQHE)[25] and fractional (FQHE)[26]

versions are examples of systems where the Landau’s theories paradigm breaks down.
Therefore, new ways of characterizing order are required. The concept of topolog-
ical order[27] arises in order to fill this gap in the theoretical description of phae
transitions.

In QFT, topological order is introduced associated to the topology of the fields seen
as continous mappings between topological spaces.[28] Two fields are topologically
equivalent if one can be continously deformed into the other. This amounts the
existence of a continous mapping (homotopy) between them which defines an equiv-
alence relation. The set of all topological equivalent classes of fields viewed as map-
pings forms the homotopy group. Then, each field can be uniquely assigned to a
certain homotopy class, and consequently, the functional integration defining the the-
ory can be organized as a sum over different topological sectors. The action for each
topological sector contains a topological term which depends only on the topologi-
cal class of the fields (topological charge). There exist different types of topological
actions, such as θ -terms or Chern-Simons theories,[29] which correspond to effective
low energy descriptions of the QHE liquid, as Ginzburg-Landau theory corresponds
to a continuum description of symmetry-broken phases.
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1. I N T R O D U C T I O N

In band theory of solids, the band structure defines a mapping from the crystal mo-
mentum k defined on a torus, the BZ, to the space of Bloch Hamiltonians H (k).
Then, topological order can be introduced for gapped band structures by consider-
ing the equivalent classes of H (k) that can be continously deformed into another
without closing the energy gap. Such topological information is not encrypted in the
eigenvalues but in the eigenvectors. It is then neccesary to introduce the concept
of Berry phase,[30] a phase picked up by the Bloch wave function

�

�un (k)
�

along an
adiabatic evolution path on the parameter space, the BZ in this case,

γn =

∫

C
dk ·An (k) , with An = i




un (k)
�

�∇k

�

�un (k)
�

. (1.7)

Here n labels the band. The Berry connection An (k) is gauge dependent, however,
for a closed path C , the Berry phase only can change by an integer multiple of 2π
under a gauge transformation in order to ensure that the Bloch wave function is
single valued. In that situation, Stokes theorem allows to write

γn =

∮

C
dk ·An (k) =

∫

S

d2k∇×An (k) |z . (1.8)

The Berry curvature Ωn (k) =∇×An (k) |z can be defined as a truly local (not associ-
ated to paths), gauge invariant property of the band which characterizes its topologi-
cal nature. This is more clear if we observe that the integration of the Berry curvature
over the entire BZ is an integer multiple of 2π,

Cn =
1

2π

∫

BZ

d2kΩn (k) ∈ Z, (1.9)

given that Ωn (k) is a 2-form and the BZ is a compact manifold. This integer index
Cn, the Chern number, is the topological charge associated to the band n.

The IQHE can be understood from this perspective. Although the original transla-
tional invariance is lost due to the presence of the magnetic field and the spectrum is
reorganized in Landau levels (LLs), if a new unit cell enclosing a magnetic flux quan-
tum is defined, then the invariance under traslations of this new magnetic lattice is
restored.[31] Therefore, the eigenstates can still be labeled by a crystal momentum k
in a folded BZ, and the previous discussion is applicable. The origin of the quantized
transverse conductivity does not reside in the formation of LL, but in their non-trivial
topological character. Futhermore, starting with the Kubo formula[32] one may see
that the transverse conductivity can be written as[33–36]

σx y =
e2

ħh

∑

n

∫

BZ

d2k

(2π)2
fnΩn (k) , (1.10)
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where fn is the occupation function of band n. At zero temperature σx y is quantized
in units of e2/h. The robustness of such quantization is implicit in the topological
nature of the Chern number, since it does not change when the Hamiltonian varies
smoothly.

It is clear that the breaking of time reversal symmetry plays a crucial role in the
QHE physics. Note that in the presence of time reversal symmetry we have Ωn (k) =
−Ωn (−k) and then Cn = 0. It is then when the SOC arises as a fundamental micro-
scopic ingredient in order to generate other non-trivial insulating phases essentially
different from the QHE in the sense that time-reversal symmetry is not broken. Let’s
imagine two fermionic species connected by time reversal symmetry, for instance,
the two spin polarizations, and an interaction which acts as an effective magnetic
field for each one but with opposite sign in order to preserve time reversal symme-
try. The SOC may play the role of such magnetic field. Under certain circunstances,
we may have a QHE for each partner. In that situation, we will have a zero Hall
conductivity, but non-zero quantized responses are still possible. In the example of
spin, it is clear that σx y = σ↑x y +σ

↓
x y = 0, but the spin Hall conductivity defined as

σSH = (ħh/2e)
�

σ↑x y −σ
↓
x y

�

will be proportional to the sum of Cs = C↑ − C↓ of the

occupied bands. This is the quantum spin Hall effect (QSHE).[37] Related ideas were
discussed previously in the context of the planar state of 3He.[38] The number Cs is
a Z2 topological invariant,[39] usually called the spin Chern number, which charac-
terizes the topological nature of time reversal invariant (TRI) bands of 2D systems
with well-defined spin polarization (for instance, in the out-of-plane direction). Un-
less spin is well defined C↑,↓ lose its meaning, although a Z2 topological invariant
can always be defined for time-reversal symmetric 2D systems.[39–47] In general the
topological index for a given system is determined by its dimensionality and the dis-
crete symmetries of the Bloch Hamiltonian.[48] The notion of time-reversal symmetric
topological insulators is not restricted to 2D system,[45,49,50] but interestingly, also in
3D the SOC is the main microscopic ingredient needed to generate such state.

The Z2 nature of the topological index in the QSHE can be understood from the bulk-
boundary correspondence.[51–53] According to this correspondence, at the boundary
between two insulators characterized by C1 and C2 Chern numbers there are C1− C2
chiral (in the sense that they propagate along the edge) modes within the gap con-
necting bulk conduction and valence bands. These modes are topologically protected
against disorder. In the TRI situation, the number of modes is twice, and they are dou-
bly degenerate at the TRI points of the 1D BZ, the center and the edge. In the middle,
the degeneracy is lifted in general by the SOC. There are two ways these states can
be connected at the TRI points. If pairwise, then these modes can be pushed out by
tunning the Fermi level. Otherwise, the Fermi level always intersect an odd number
of times. As result, the number of time reversal pairs of edge modes (asuming that
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one of the insulators is trivial, C = 0) is
�

C↑ − C↓
�

/2 mod 2. Each mode propagates
in opposite directions and has opposite spin polarizations. The technological interest
on the QSHE is obvious from the point of view of spintronics: in principle, it allows
to create pure spin currents protected against disorder.

Structure of the thesis

The thesis is divided in four blocks, including the present introductory part. This in-
cludes also a more technical chapter reviewing the basic model Hamiltonians, show-
ing how SOC is introduced both in tight-binding and low-energy effective models
and its relation with the QSHE.

Part 1 is devoted to the study of the effect of flexural vibration modes on the electronic
properties of graphene. This block is organized in two chapters. In the first chapter
the electron-phonon coupling is discussed, with particular emphasis on the acoustic
branch. The analysis is applied to the calculation of the resistivity limited by flexural
phonons within the Boltzmann equation framework. We compare our results with the
mobilities reported in suspended samples, which exhibit a clear quadratic dependence
on temperature, as predicted by the theory. The second chapter deals with the effect
of these phonon modes on the SOC. We compute their contribution to the Kane-Mele
gap, dominated by the optical modes. This phonon-mediated Kane-Mele coupling
is almost two orders of magnitude larger than the previously estimated one, so we
conclude that the effect of flexural phonons is remarkable.

Part 2 is devoted to spin transport in graphene and MX2. We analyze spin relaxation
mechanisms induced by the SOC in these materials. The contributions given by the
Elliot-Yafet and D’yakonov-Perel’ mechanisms are discussed in the first chapter. In
the second we analyze how these conventional pictures change when the effect of
curvature and flexural phonons is included.

We propose two different routes for engineering topological phases in Part 3. The first
one relies on the ability to generate pseudo-magnetic fields by applying strain in MX2
materials, described in the first chapter. The fact that these effective materials have
opposite sign at each valley, together with the opposite spin splitting of the valence
band, makes possible to realize the Bernevig-Zhang model in these materials. Also
we point out that a superlattice arising from a Moiré pattern can lead to topologically
non-trivial subbands in connection with Haldane-Kane-Mele model. The second chap-
ter is devoted to the discussion of a possible QSHE state induced in graphene by the
presence of lead. The existence of such state is suggested by STM-STS experiments
in graphene on iridium with intercalated lead islands. Intercalated lead induces spin-
orbit fields which can be interpreted as non-abelian gauge fields. Spatial variations
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of these fields lead to electron confinement and opens topologically non-trivial gaps
in the spectrum.

Finally, we conclude with a summary of the results of this thesis and prospects for
future work, followed by the bibliography.
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2
Model Hamiltonians for SOC and

connection with QSHE state

2.1 Introduction

In this introductory chapter we review briefly the basic electronic properties of the
2D crystals discussed through the thesis. We derive effective Hamiltonians around
high symmetry points of the BZ that will be employed as starting point in some of the
problems tackled in this thesis. We show how to include the SOC both in tight-binding
approaches and effective low energy models. Finally, we review the connection of
the SOC in graphene with the Haldane’s model and the QSHE state.

The physics discussed through the chapter is mostly at the single particle level, based
on group theoretical arguments[54] and tight-binding models.[55] Many-body effects
in graphene materials are nicely reviewed in Ref.56.
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Figure 2.1: Honeycomb lattice (A sublattice in blue, B sublattice in red) and graphene
BZ.

2.2 Basic electronic properties

2.2.1 Graphene

Graphene consists on a single layer of sp2 hybridized carbon atoms. The in-plane
px ,y orbitals and the s orbital participate in the strong σ bond which keeps carbon
atoms covalently attached forming a trigonal planar structure with a distance be-
tween atoms of a = 1.42 A. These σ electrons are the responsible for the structural
properties of graphene, in particular its stiffness. The remaining electron occupying
the pz orbital perpendicular to the graphene plane is free to hop between neighboring
sites, leading to the π bands responsible for the electronic properties.

The carbon atoms form a honeycomb lattice. The honeycomb lattice is a triangular
Bravais lattice with two atoms per unit cell, or equivalently, two interpenetrating
triangular sublattices (in this thesis both terminologies are equally employed). The
lattice vectors according to Fig. 2.1 are a1 = a/2

�p
3, 3
�

, a2 = a/2
�

−
p

3, 3
�

. The
BZ consists on an hexagon. As anticipated, in pristine graphene the Fermi level lies

at the two inequivalent corners of the BZ, K± = ±
�

4π
3
p

3a
, 0
�

, usually called valleys
or Dirac points for reasons that will be clear later on.

The point group of the graphene crystal is C6v (for notation, see Appendix A), which
contains 12 elements: the identity, five rotations and six reflections in planes per-
pendicular to the crystal plane. Instead of dealing with degenerate states at two
inequivalent points of the BZ one can enlarge the unit cell in order to contain six
atoms. Therefore, the folded BZ is three times smaller and the K± points are mapped
onto the Γ point. From the point of view of the lattice symmetries, this means that the
two elementary translations

�

ta1
, ta2

�

are factorized out of the translation group and
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2.2 Basic electronic properties

added to the point group, which becomes C ′′6v = C6v+ ta1
×C6v+ ta2

×C6v .[57]

This apparent complication is compensated by the fact that this approach allows to
treat electronic excitation at the corners of the BZ on the same footing, including also
possible inter-valley couplings. The Bloch wave function is given by a 6-component
vector which represents the amplitude of the pz orbitals at the 6 atoms of the unit cell.
This vector can be reduced as A1 + B2 + G′. The 1-dimensional irreducible represen-
tations (irreps) A1 and B2 correspond to the bonding and anti-bonding states at the
original Γ point, whereas G′ corresponds to the Bloch states at the original BZ corners.
Then, in order to construct the electronic Hamiltonian for quasiparticles around K±
points we must consider the 16 hermitian operators acting in a 4-dimesnional space.
These operators may be classified according to the transformation rules under the
symmetry operations of C ′′6v , taking into account the reduction

G′ × G′ ∼ A1 + A2 + B1 + B2 + E1 + E2 + E′1 + E′2 + G′.

In principle this can be done without specifying the particular basis over which these
operators act, see Appendix A. Nevertheless, in order to make the discussion more
clear we introduce the basis

�

ψA+,ψB+,ψA−,ψB−
�

, where each entry represents the
projection of the Bloch wave function around each valley K± on sublattice A/B. Then,
we introduce two inter-commutating Pauli algebras σi and τi associated to sublattice
and valley degrees of freedom respectively. The 16 possible electronic operators are
generated by considering the direct products of the elements of these algebras (and
the identity). Their symmetry properties are summarized in Tab. 2.1. We must take
into account also the time reversal operation, which is implementd by the antiunitary
operator T = τxK , where K represents the complex conjugation operation.

The effective low energy Hamiltonian is constructed as an expansion in powers of
the crystalline momentum q=

�

qx , qy

�

∼ E1 around K± points. Up to second order
in q we have

H = v
�

τzσxqx +σyqy

�

+
1

2m∗1

h�

q2
x − q2

y

�

σx − 2qxqyτzσy

i

+
1

2m∗2

�

q2
x + q2

y

�

I .

(2.1)

Here v (sometimes we employ vF ), m∗1 and m∗2 must be interpreted as phenomeno-
logical constant whose values depend on the microscopic details of graphene. The
first term is a Dirac Hamiltonian that describes the approximately conical dispersion
of the π bands around K±. These points are usually called Dirac points due to this
fact. The second one is the responsible for trigonal warping effects and starts to be
important quite away from the Dirac points. The third term introduces electron-hole
asymmetry in the spectrum.

15



2. M O D E L H A M I LT O N I A N S F O R SOC A N D C O N N E C T I O N W I T H QSHE S TAT E

A1 I (+)
A2 τz ⊗σz (-)
B1 τz (-)
B2 σz (+)

E1

�

τz ⊗σx
σy

�

(-)

E2

�

σx
τz ⊗σy

�

(+)

E′1

�

τx ⊗σx
τy ⊗σx

�

(+)

E′2

�

−τy ⊗σy
τx ⊗σy

�

(-)

G′











−τy
τx ⊗σz
−τy ⊗σz
τx











(+)

Table 2.1: Classification of the electronic operators (without spin) according to how
they transform under the symmetry operations of C ′′6v . The signs ± denote if the
operator is even or odd under time reversal.

The Hamiltonian of Eq. (2.1) can be easily inferred from a microscopic theory. In the
simplest tight-binding description π electrons are assumed to hop to both nearest
neighbor and next nearest neighbor sites. The Hamiltonian in second quantization
notation reads[58–60]

HT B =−t
∑

〈i, j〉
a†

i b j − t ′
∑

〈〈i, j〉〉

�

a†
i a j + b†

i b j

�

+H.C. (2.2)

Here ci

�

c†
i

�

annhilates (creates) an electron on site i at sublattice c = a, b, and



i, j
�

�



i, j
���

denotes (next) nearest neighbor sites i, j. By introducing the Fourier series
of the electronic operators,

ci =
1
p

Nc

∑

k∈BZ
eik·Ri ck,

where Nc is the number of unit cells, we can write the previous Hamiltonian as
HT B =

∑

kΨ
†
kHkΨk, with Ψk =

�

ak, bk
�

and

Hk =

 

−t ′
∑

~δ2
eik·~δ2 −t

∑

~δ1
eik·~δ1

−t
∑

~δ1
e−ik·~δ1 −t ′

∑

~δ2
eik·~δ2

!

. (2.3)
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Here ~δ1(2) are the vectors connecting (next) nearest neighbors:

~δ1 =

¨

a (0,1) , a

�p
3

2
,−

1

2

�

, a

�

−
p

3

2
,−

1

2

�«

,

~δ2 =
�

a1,−a1,a2,−a2,a1 − a2,a2 − a1
	

.

This model describes a semimetal, where the density of states goes linearly to zero
when approaching the intrinsic Fermi level,[61] and certain electron-hole asymmetry
introduced by t ′. By expanding the exponentials around K± we obtain the Hamilto-
nian in Eq. (2.1). The phenomenological constants are related with t and t ′ as:

v =
3ta

2
,

1

m∗1
=−

3ta2

4
,

1

m∗2
=−

9t ′a2

2
.

Typically 10−2 t ≤ t ′ ≤ 10−1 t,[62] so the electron-hole asymmetry and the third term
in Eq. (2.1) can be neglected. Note also that the trigonal warping term has the same
microscopic origin that the prefactor of the Dirac Hamiltonian, even so it comes from
a higher order expansion in q. Thus, it can be also neglected in first approximation.
Since t ≈ 3 eV[62] we get v ≈ 106 m/s (ħh = 1). Unless we mention expressly the
opposite, v (the Fermi velocity from now on) is the only parameter that we take
different from 0 in the effective low energy Hamiltonian of Eq. (2.1).

We have seen that graphene is a semimetal, where the intrinsic Fermi surface consists
on two points lying on opposite corners of the BZ (thus, connected by time reversal
symmetry), and approximately conical dispersion. The dynamics of long wavelength
electronic modes around the Dirac points is well described by a Dirac Hamiltonian
of the form

H =−iv~Σ · ∇, with ~Σ =
�

τσx ,σy

�

. (2.4)

Here τ = ±1 labels the valleys. The difference with respect to Eq. (1.2) is that the
matricial structure is not implied by the lorentzian invariance of the theory but due
to the double basis and C6v symmetry of graphene crystal. The wave function in
momentum space of the electronic excitations around Dirac points reads

ψτ,q =
1
p

2

�

e−τiθq/2

±τeτiθq/2

�

, (2.5)
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where θq = arctan
qy

qx
and the sign + (−) holds for the upper (lower) π band. At this

point, two important observations must be outlined:

1. The wave function in Eq. (2.5) has well defined helicity, defined as the projec-
tion of the sublattice operator ~Σ along the direction of motion ~Σ · q/|q|.

2. Under a complete rotation in momentum space, θq→ θq + 2π, the wave func-
tion changes sign, indicating that it acquieres a phase ±π. Actually, a straight-
forward calculation shows that the Berry curvature of upper/lower (+/−) band
states is ∓τ

2
δ(2) (q). Therefore, the wave function acquires a Berry phase of

∓τπ along paths which goes around the Dirac point.

Both observations confirm the spinorial nature of the wave function in Eq. (2.5). Note
also thatH is not invariant under rotation about z axis generated by −i∂θ (ħh= 1),
as it can be easily checked by computing the commutator

�

H ,−i∂θ
�

= v∇×~Σ|z 6= 0,
hence, the angular momentum operator must be completed with a purely spinorial
part, Lz =−i∂θ +

τ

2
σz .

The chiral nature of graphene π electrons is behind many transport and magneto-
transport properties of graphene. The Klein paradox,[63] or the perfect transparency
of potential barriers under normal incidence,[64–67] can be understood as a conse-
quence of helicity conservation. That is why confinement by electrostatic means is a
difficult task. Similarly, the ±π Berry phase of the electronic wave function would im-
ply weak antilocalization behavior and then positive magnetoresistance.[68] However,
this expectation is strongly affected by the presence of inter-valley disorder, trigonal
warping effects,[69] and more importantly, some types of disorder, as curvature of
the sample, whose coupling with graphene π electrons mimics the effect of magnetic
fields, tending to suppress the interference corrections to the conductivity.[70] As
mentioned previously, these pseudo-magnetic fields may emerge as a result of the
fictitous time reversal symmetry breaking which occurs at each valley.

The chiral nature of the quasiparticles is also clear in the sequence of Landau levels
(LLs). We consider the problem of an uniform magneic field B > 0 perpendicular
to the graphene plane within the Dirac theory. In the Landau gauge A =

�

−B y, 0
�

,
the previous Hamiltonian in the minimal coupling prescription admits solutions of
the form ψ = φ

�

y
�

eiqx , where φ satisfies the eigenvalue equation (ħh = c = e =
1)

ωc

�

0 a
a† 0

�

φ = Eφ at K+, and

−ωc

�

0 a†

a 0

�

φ = Eφ at K−.

The operators a, a† are usual ladder operators of the one-dimensional harmonic
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oscillator defined as a =
�

∂ζ + ζ
�

/
p

2, where the dimensionless coordinate ζ ≡
y/`B − `Bq is introduced. Here `B = B−1/2 is the magnetic length and ωc =

p
2v/`B

is the cyclotron frequency. The solutions read

φ =
�

ΨN−1 (ζ)
±ΨN (ζ)

�

at K+, and

φ =
�

ΨN (ζ)
∓ΨN−1 (ζ)

�

at K−,

where ΨN (ζ) are the solutions of the one-dimensional harmonic oscillator, and N =
0, 1,2... is a positive integer which labels the eigenergies, given by[71]

E =±ωc

p
N . (2.6)

This sequence of LLs was onfirmed experimentally.[72,73] There are two important
differences with respect to the LL sequence of a conventional 2D electron gas. First,
LLs are not equally distributed in energy due to the N1/2 dependence. Secondly, and
more importantly, the existence of a zero-energy LL, whose wave function reads as
φ =

�

0,Ψ0 (ζ)
�T at K+ and φ =

�

Ψ0 (ζ) , 0
�T at K−. The zero-energy LL is responsi-

ble for the non conventional sequence of plateaus of the transverse conductivity in
the QHE regime, in particular the absence of a plateau at N = 0. Note that in princi-
ple each LL is fourfold degenerate (spin and valley), so following Laughlin’s gauge
invariance argument[74] each LL contribute to the Hall conductivity with 4 times
the conductance quantum e2/h, excepting the zero-energy LL, which is shared by
electrons and holes. Therefore, the Hall conductivity reads σx y =±4 (N + 1/2) e2/h,
where N is the index of the last occupied LL and + (−) sign holds for electrons
(holes).

2.2.2 Bilayer graphene

The point group of bilayer graphene is D3d . The symmetry approach carried out for
graphene in order to deduce the form of the electronic Hamiltonian can be employed
in this case given that both groups are isomorphic D3d

∼= C6v . However, although the
Hamiltonian in Eq. (2.1) is formally valid, the meaning of the sublattice operators
σi must be clarified since now there are 4 atoms within the unit cell. We follow the
convention of Fig. 2.2. The bonding and anti-bonding combinations of pz orbitals in
the dimer A1-B2 belong, respectively, to the A2 and A1 irreps of the wave vector group
at K±, D3, whereas the orbitals in the remaining atoms of the unit cell belong to the
2-dimesnional E irrep. It can be easily seen that the A1 and A2 bands are away from
the intrinsic Fermi level an energy of the order of the inter-layer coupling between
the atoms of the dimer. The bands around K± correspond to the E doublet. Thus, the

19



2. M O D E L H A M I LT O N I A N S F O R SOC A N D C O N N E C T I O N W I T H QSHE S TAT E

A1

B1

A2

B2

Figure 2.2: Left: Bilayer graphene lattice, continuum line represents top layer, dashed
line bottom layer. Blue sites correspond to A sublattice, red sites to B sublattice. Right:
4 atoms unit cell of bilayer graphene and a few neighboring sites. The continuum
black line represents the intra-layer hopping parameter γ0. The dashed lines repre-
sents inter-layer hopping parameters γi=1,3,4 (γ1 in black, γ3 in blue, γ4 in red).

Hamiltonian of Eq. (2.1) describes the lowest energy bands, where now sublattice
and valley operators act on the basis

�

ψB1+,ψA2+,ψB1−,ψA2−
�

.

As before, the phenomenological Hamiltonian can be deduced from a microscopic
tight-binding model. For each layer, we consider the Hamiltonian of Eq. (2.2) with
γ0 = t and t ′ = 0 for simplicity, and additionally, the inter-layer hopping parameters
γ1, γ3, γ4 depicted in the right panel of Fig. 2.2. In reciprocal space, the Hamiltonian
in first quantization notation reads as the matrix

Hk =















0 −γ0

∑

~δ1
eik·~δ1 γ4

∑

~δ1
e−ik·~δ1 γ1

−γ0

∑

~δ1
e−ik·~δ1 0 −γ3

∑

~δ1
eik·~δ1 γ4

∑

~δ1
e−ik·~δ1

γ4

∑

~δ1
eik·~δ1 −γ3

∑

~δ1
e−ik·~δ1 0 −γ0

∑

~δ1
eik·~δ1

γ1 γ4

∑

~δ1
eik·~δ1 −γ0

∑

~δ1
e−ik·~δ1 0















.

(2.7)

In order to derive the effective Hamiltonian for the low energy sector (non-dimer sites
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B1, A2), note first that electronic Hamiltonian can be written in the block form

Hk =
�

Hd V
V † Hnd

�

, with

Hd =
�

0 γ1
γ1 0

�

,

Hnd =

 

0 −γ3

∑

~δ1
eik·~δ1

−γ3

∑

~δ1
e−ik·~δ1 0

!

,

V =

 

−γ0

∑

~δ1
eik·~δ1 γ4

∑

~δ1
e−ik·~δ1

γ4

∑

~δ1
eik·~δ1 −γ0

∑

~δ1
e−ik·~δ1

!

.

HereHd acts over on the subspace span by orbitals at the dimmer sites,Hnd on the
non-dimer sites, and V mixes them. Around the K± points, k = K± + q, we expand
in powers of q as before. We project out orbitals at dimer sites by a Schrieffer-Wolf
transformation.[75,76] We take the Green function G = (ε−H )−1, evaluate the block
Gnd associated to the low-energy sector, and use it in order to identify the low-energy

effective Hamiltonian. If we define G (0)(n)d =
�

ε−H(n)d
�−1

, then we can write

�

Gd Gd−nd
Gnd−d Gnd

�

=







�

G (0)d

�−1
−V

−V †
�

G (0)nd

�−1







−1

We obtain Gnd =
�
�

G (0)nd

�−1
+ V †G (0)d V

�−1

, so ε−G−1
nd =Hnd+V †G (0)d V . In the low

energy sector (ε≈ 0) the effective Hamiltonian reads:

H ≈Hd − VH −1
nd V †

Up to second order in q the Hamiltonian in Eq. (2.1) is obtained, where now the
phenomenological constants read:

v =
3γ3a

2
,

1

m∗1
=−

9
�

t2 + γ2
4

�

a2

2γ1
−

3γ3a2

4
,

1

m∗2
=

9tγ4a2

γ1
. (2.8)

The first thing that must be noted is that the low energy spectrum remains approxi-
mately electron-hole symmetric as in the case of graphene, given that it is governed
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by the inter-layer hopping γ4 ∼ 10−2γ0.[77] The main difference between single-
layer and bilayer graphene is, however, the different microscopic origin of v and m∗1
parameters. In bilayer graphene, the linear term in q comes from the inter-layer
hopping γ3 ∼ 10−1γ0,[77] whereas the quadratic term is governed by the intra-layer
hopping γ0, and it is the result of a second order process involving virtual transitions
to the higher bands localized at the dimer sites through the inter-layer hopping γ1.
As result of this, the quadratic term dominates the low energy physics, and the lin-
ear term introduces trigonal warping. Neglecting those, the effective Hamiltonian
reads[76]

H =









0 (τqx−iqy)
2

2m∗1
(τqx+iqy)

2

2m∗1
0









. (2.9)

The model describes a metal, since now the density of states at the intrinsic Fermi
level remains finite. Futhermore, now it is easy to open a gap in the spectrum by
breaking the inversion symmetry and turning the system into a semiconductor. This
can be done by applying an electric field perpendicular to the sample.[76,78,79] In the
tight-binding model, that is simulated by different values of the on-site energies at
sites B1 and A2. The ability to open a gap makes this system even more interesting
for technological applications.

The electronic quasiparticles are also chiral, but now the Berry phase picked up by the
wave function along closed paths around Dirac points is ±2π. This means that, for
instance, back-scattering is not suppressed as in the case of single-layer graphene.[67]

Therefore, negative magnetoresistance is expected as in conventional 2D electron
gas since weak localization effects are restored.[80] The chirality manifests itself in
the QHE plateaus, which are also non conventional. The problem in the Landau
gauge can be solved similarly to the case of single-layer. The sequence of LL read
(ħh= 1)[76]

E =±ωc

p

N (N − 1), (2.10)

where now the cyclotron frequency is ωc =
�

`2
Bm∗1

�−1
. The LLs are almost equally

distributed, and the energy separation depends lineraly on the applied magnetic field,
as in a conventional 2D electron gas. However, there exist a zero-enery LL, then there
is no plateau at zero energy. Moreover, the degeneracy of the zero-energy LL is twice
the degeneracy of the rest. Hence, applying the same arguments as before, we deduce
σx y =±4 (N + 1) e2/h.
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C3h = C3 ×σh E C3 C2
3 σh S3 S2

3

A′ 1 1 1 1 1 1
A′′ 1 1 1 -1 -1 -1

E′
1
1

w
w2

w2

w
1
1

w
w2

w2

w

E′′
1
1

w
w2

w2

w
−1
−1

−w
−w2

−w2

−w

Table 2.2: Character table of C3h, where w = ei 2π
3 .

2.2.3 Graphene multilayers

We have seen that there are important differences between single-layer and bi-layer
graphene regarding the electronic structure, although in both cases inversion (or sub-
lattice) symmetry imposes that the lowest energy bands touch at the Dirac points, and
the elementary excitations are described by chiral Hamiltonians, which is manifest,
for instance, in the sequence of Hall conductivity plateaus in the QHE regime. We can
consider also graphene stacks with an arbitrary number of layers, and importantly,
different stackings. Both the number of layers and the stacking determines the low
energy electronic structure. We examine the case of trilayer as a paradigm of what
happens in multilayers with an arbitrary number of layers.

We consider first Bernal stacked trilayers. The unit cell is depicted in Fig. 2.3. Differ-
ently from the case of monolayer or bilayer, the system is not centrosymmetric. The
point group is D3h. Importantly, the wave vector group at the K± points, C3h (check
the character table in Tab. 2.2), only contains 1-dimensional irreps. Therefore, a gap
at the Fermi level is not precluded by any symmetry. Both the Bloch wave functions
of π orbitals at the central atom of the trimer (square in black) and the bonding
combination at the top and bottom sites of the trimer (blue and red circles) sites
belong to the A′′ irrep of C3h. These states can be hybridized in general and form the
highest energy bands at energies of order of the inter-layer hopping γ1 away from the
intrinsic Fermi level. The anti-bonding combination of orbitals at the top and bottom
layers in the trimer and non-trimer (blue and red squares) sites belong to the A′ and
E′ irreps respectively. States belonging to A′ and E′ irreps may be hybridized away
from the K±, but its degeneracy at these high symmetry points is purely accidental, in
the sense that is not protected by the crystal symmetries.[81] The same happens with
the bonding combination at non-trimer sites and the remaining π orbital Bloch state
at the non-trimer sites of the intermediate layer, which belong to the two different
(related by complex conjugation) E′′ irreps.

These symmetry considerations are confirmed by a simple tight-binding calculation
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Figure 2.3: Top: Hexagonal unit cell and electronic bands around K± points of trilayer
graphene in the Bernal stacking. Bottom: The same for rhombohedral stacking. The
notation is the same in both cases: in red and blue the atoms of the top and bottom
layer, in black atoms of the intermediate layer. Squares correspond to A sites, and
circles to B sites. The bands are computed within the tight-binding described through
the text with γ0 = 3.16 eV, γ1 = 0.381 eV.
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considering only non-zero γ0 and γ1 hopping terms, shown in Fig. 2.3. The states
belonging to A′′ irrep form the highest energy bands. The rest are degenerate at
the Dirac point, but these degeneracies can be completely removed by including
additional terms in the Hamiltonian consistent with the symmetries. In the absence of
such terms, it is easy to understand that the anti-bonding combination of the orbitals
at top and bottom layers form a Dirac cone, similarly to the case of single-layer
graphene. However, the inclusion of different on-site energies for trimer and non-
trimer sites of these layers opens a gap in the Dirac cone. Similarly, bands associated
to the bonding combination and the remaining orbital at the non-trimer site of the
intermediate layer look like the lowest energy bands of bilayer graphene. A layer-
dependent on-site energy (with the only restriction that it must be the same for
bottom and top layers) removes the degeneracy of these bands.

In the case of trilayer graphene with rhombohedral stacking, whose unit cell is shown
in Fig. 2.3, the point group is D3d . The bonding and anti-bonding combinations of
π orbitals at the central atoms of the unit cell (blue circle and red square) belong to
the A2 and A1 irreps of D3, the wave vector group at K±. The remaining orbitals at
top and bottom layers form a E doublet, similarly to the orbitals at the intermediate
layer. The E doublets, which are hybridized in general, form Dirac points away from
the intrinsic Fermi level, and these degeneracies are protected by the symmetries of
the crystal. The tight-binding calculation confirms this result. The A1 and A2 bands
are degenerate at zero-energy. Projecting out the orbitals belonging to E irreps by a
Schrieffer-Wolf transformation one finds that these bands disperse as |q|3. Even so,
this degeneracy is not protected. For instance, an inter-layer hopping between atoms
in the same sublattice of the top and bottom layer removes this degeneracy.

These results can be easily extrapolated to multilayers with an arbitrary number
of layers.[82,83] A Bernal stack with N layers, N even, posses D3d symmetry. It has
N/2 electronlike and N/2 holelike parabolic bands touching at zero-energy. These
degeneracies are protected by the D3d symmetry. The low energy bands can be seen
as N/2 copies of the low energy model of bilayer graphene. When N is odd, the point
group of the crystal is D3h. In the simplest description, an additional band with linear
(Dirac) dispersion emerges. However, none of these degeneracies is protected by the
crystal symmetries. Rhombohedral stacks (with D3d symmetry in all the cases) have
only two bands that touch at zero-energy. In the simplest tight-binding description,
the effective low enrgy Hamiltonina for these bands read

H ∝
γN

0

γN−1
1

 

0
�

qx + iqy

�N

�

qx − iqy

�N
0

!

These bands become surface states localized at the top and bottom layers when
N → ∞. The remaining 2N − 2 subbands of a rhombohedral stack become Dirac-
like.
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Figure 2.4: Top view of the lattice in real space of MX2 monolayers.

2.2.4 MX2

Bulk MX2 crystals show different polytypes which vary in stacking and atom coordi-
nation.[13,84] As mentioned at the begining, their electronic properties range from
metallic to semiconducting, depending, overall, on the transition metal. In this thesis
we focus on semiconducting monolayers[85,86] such as molybdenum disulfide (MoS2),
tungsten disulfide (WS2), molybdenum diselenide (MoSe2), or tungsten diselenide
(WSe2).

The main difference between the bulk and monolayer materials is that the bulk
structure is centrosymmetric, whereas the monolayer is not. The point group of the
monolayer crystal is D3h, which is the direct product of D3, formed by the identity, the
three-fold axis perpendicular to the atomic layers and 3 two-fold axes in the plane
defined by the transition metal atoms along the directions wich connect M and X
atoms in a top view of the lattice (see Fig. 2.4), and σh, the inversion about the same
plane. The lattice is a triangular Bravais lattice with three atoms (2 chalcogen and 1
metal) per unit cell. As in the case of graphene, the BZ consists on an hexagon and
the Fermi level lies around the two inequivalent corners K±.

Nevertheless, the orbital character of the conduction and valence bands is completely
different. These bands are dominated by d orbitals from the transition metal atoms,
even so, there is a non-negligible weight in the p orbitals form the chalcogens. The
symmetry properties of the Bloch wave functions at the BZ corners are summarized in
Tab. 2.3 by indicating the suitable combination of atomic orbitals and the associated
irreps of C3h, the wave vector group at these points. In the case of X atoms, both
bonding (b) and anti-bonding (ab) combinations of orbitals from the bottom and top
layers are considered. The second and third column contain the phases picked up by
the wave function when a 2π/3 rotation or a mirror reflection is performed.

As in the case of graphene, instead of dealing with degenerate states at inequivalent
points of the BZ one can triple the unit cell in such a way that the old K± points

26



2.2 Basic electronic properties

Irreps C3 σh M atom X atoms

A′ 1 1
1p
2

�

dx2−y2 ± idx y

�

,
1p
2

�

px ∓ ipy

�

1p
2

�

px ± ipy

�

(b)

A′′ 1 -1 1p
2

�

dxz ∓ idyz

�

1p
2

�

px ± ipy

�

(ab)

E′ w±1 1 d3z2−r2 , s 1p
2

�

px ∓ ipy

�

(b)

E′ w∓1 1
1p
2

�

dx2−y2 ∓ idx y

�

,
1p
2

�

px ± ipy

� pz (ab), s (b)

E′′ w±1 -1 pz
1p
2

�

px ∓ ipy

�

(ab)

E′′ w∓1 -1 1p
2

�

dxz ± idyz

�

pz (b), s (ab)

Table 2.3: Classification of the Bloch wave functions at the Brillouin zone corners
according to the irreps of C3h. The sign ± corresponds to ±K points. In the case
of X atoms, both bonding (b) and anti-bonding (ab) combinations of orbitals from
top and bottom layers are considered. The second and third column contain the
phases picked up by the wave function when a 2π/3 rotation or a mirror reflection
is performed.

are now equivalent to the Γ point. Then, we consider the new point group D′′3h =
D3h+ta1

×D3h+ta2
×D3h, whose character table can be found in the Appendix.

Since C3h does not contain 1-dimensional irreps, and given that the crystal fields
due to the different atomic species occupying the two triangular sublattices prevent
accidental degeneracies, the bands around K± remain gapped, with approximately
quadratic dispersion. However, we construct an effective model which describes con-
duction and valence bands at K± points simultaneously. The conduction band is
dominated by d3z2−r2 orbitals from M, with a smaller contribution from the bonding
combination of px∓ ipy orbitals from X atoms (∼ E′2 irrep), whereas the valence band
is mostly made of dx2−y2 ± dx y , with a smaller weight in the bonding combination
px ± ipy (∼ E′1 irrep). We consider the space of 4-vectors ∼

�

E′2, E′1
�

whose entries
represent the projection of the Bloch wave function at conduction and valence states
at these points, and construct an effective k · p Hamiltonian acting on it. We must
consider the possible 16 hermitian matrices acting on this space, whose reduction in
terms of irreps of D′′3h is inferred from:

�

E′2, E′1
�

×
�

E′2, E′1
�

∼ 2A′1 + 2A′2 + 2E′ + E′1 + E′2 + 2E′3.

As in the case of graphene, this space of electronic operators can be constructed
from two commutating Pauli algebras σi , τi asociated to conduction/valence and
valleys degrees of freedom. The definitions are summarized in Tab. A.8. The basis is
�

ψc+,ψv+,ψc−,ψv−
�

, where ψc,v± represents the wave function of the conduction
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Irrep t →−t invariant t →−t odd

A′1 I , σz

A′2 τz , τz ⊗σz

E′
�

σx
τz ⊗σy

� �

τz ⊗σx
σy

�

E′1

�

τx ⊗σz +τx
τy +τy ⊗σz

�

E′2

�

τx −τx ⊗σz
τy −τy ⊗σz

�

E′3

�

τx ⊗σx
τy ⊗σx

� �

−τy ⊗σy
τx ⊗σy

�

Table 2.4: Definitions of the electronic operators in the two bands effective model at
K± points.

or valence state at K± points, in such a way that the time reversal operation reads
iτxK . The Hamiltonian up to second order in q reads

H = v
�

τzσxqx +σyqy

�

+
∆
2
σz +

1

2m∗1

�

q2
x + q2

y

�

I +
1

2m∗2

�

q2
x + q2

y

�

σz+

+
1

2m∗3

h�

q2
x − q2

y

�

σx − 2qxqyτzσy

i

. (2.11)

This Hamiltonian looks like Eq. 2.1 with two additional terms proportional to σz . It
describes a semiconductor with a gap ∆. Parameters m∗1 and m∗2 are associated to the
different effective masses of electrons and holes. The third term introduces trigonal
warping of conduction and valence bands.

We may derive the Hamiltonian in Eq. 2.11 from a microscopic theory. We consider a
simplified tight-binding Hamiltonian acting on the subspace span by the symmetry-
adapted Bloch wave functions

�

�M d3z2−r2

�

,
�

�M dx2−y2 +τidx y

¶

,
�

�X (b) py + iτpx

¶

,

and
�

�X (b) py − iτpx

¶

. The model is strictly valid around Kτ points, where τ = ±1
labels the valleys. We consider the crystal field parameters:




M d3z2−r2

�

�HT B

�

�M d3z2−r2

�

=∆0,
¬

M dx2−y2 +τidx y

�

�HT B

�

�M dx2−y2 +τidx y

¶

=∆2,
¬

X (b) py ±τipx

�

�HT B

�

�X (b) py ±τipx

¶

=∆p,

and also the hopping integrals sketched in Fig. 2.5, which can be expressed in terms
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2.2 Basic electronic properties

of the two-center Slater-Koster parameters Vdpσ, Vdpπ
[55] as

t x =

p
3

2
Vpdσ cosϕ,

t y =−Vpdπ cosϕ,

tz = cosϕ
�

sin2ϕ−
1

2
cos2ϕ

�

Vpdσ −
p

3cosϕ sin2ϕVpdπ.

The angle ϕ is introduced in Fig. 2.4. The matrix elements between Bloch states of
orbitals of M and X atoms at k read




M d3z2−r2

�

�HT B

�

�X (b) py ± iτpx

¶

=
∑

δ̂

e−iak·δ̂ tz
�

ŷ ± iτ x̂
�

· δ̂,

¬

M dx2−y2 +τidx y

�

�HT B

�

�X (b) py ± iτpx

¶

=

=
∑

δ̂

e−iak·δ̂ t x
�

ŷ ± iτ x̂
�

· δ̂×
h

2
�

x̂ · δ̂
�2
− 2iτ

�

x̂ y · δ̂
�2
+ iτ− 1

i

+

+
∑

δ̂

e−iak·δ̂ t y
�

ŷ ± iτ x̂
�

· δ̂⊥ ×
�

2
�

δ̂ · x̂
��

δ̂⊥ · x̂
�

− 2iτ
�

δ̂ · x̂ y
��

δ̂⊥ · x̂ y
��

,

where we define the unit vectors:

x̂ = (1,0) ,
ŷ = (0, 1) ,

x̂ y =
1
p

2
(1,1) ,

and δ̂⊥ =
�

δy ,−δx

�

,

with δ̂ =
�

δx ,δy

�

, the three unit vectors in the direction connecting nearest neigh-
bors in the honeycomb lattice, previously introduced.

The bands deduced from this model in the case of MoS2 are shown in Fig. 2.6. The
values of the tight-binding parameters for MoS2 are summarized in Tab. 2.5. Next, we
derive the two-bands Hamiltonian in Eq. 2.11 from this tight-binding model.

At K± points the Hamiltonian in first quantization notation reads as the matrix

HK± =











∆0 0 3tz 0
0 ∆2 0 −3

�

t x + t y

�

3tz 0 ∆p 0
0 −3

�

t x + t y

�

0 ∆p











.
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Figure 2.5: Hopping integrals considered in the tight-binding model.

Tight-binding parameter Value (eV) Phenomenological parameter Value (eV)

∆0 -1.512 ∆ 1.41
∆2 -3.025 a−1v 1.19

∆p -1.276
�

a2m∗1
�−1

0.28

Vpdσ -2.619
�

a2m∗2
�−1

-0.03

Vpdπ -1.396
�

a2m∗3
�−1

0.04

Table 2.5: Left: Tight-binding parameters considered in the calculation and their
values for MoS2 taken from Ref.87. Right: Phenomenological parameters of Eq. (2.11)
deduced from the tight-binding model for MoS2. Here a is the lattice parameter, and
ϕ = arctan

p
3/2.

Good approximation

G K M G

0

5

-5

10

E
He

V
L

Figure 2.6: Bands calculated within the tight-binding model described in the text.
The model is only valid around Kτ points (highlighted in the figure). We take the
values summarized in Tab. 2.5 for MoS2.
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By diagonalizing this Hamiltonian we obtain the eigenvectors of the Bloch states
maximally localized at d3z2−r2 and dx2−y2 + iτdx y respectively, which define the con-
duction and band states respectively,

�

�ψc
�

=
1

p

1+ |α|2











1
0
α
0











,

�

�ψv
�

=
1

Æ

1+
�

�β
�

�

2











0
1
0
β











,

where

α=−
6tz

p

36t2
z + (∆p −∆0)2 +∆p −∆0

,

β =
6
�

t x + t y

�

q

36
�

t x + t y

�2
+ (∆p −∆2)2 +∆p −∆2

.

The k · p Hamiltonian is just

Hk·p =

�




ψc

�

�HT B

�

�ψc
� 


ψc

�

�HT B

�

�ψv
�




ψv

�

�HT B

�

�ψc
� 


ψv

�

�HT B

�

�ψv
�

�

. (2.12)

If we write k = Kτ + q and expand in powers of q up to first order we get the
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Hamiltonian of Eq. (2.11) with:

∆=
1

2

�

∆0 −∆2 −
q

36tz2 +
�

∆0 −∆p

�

)2 +
q

36
�

t x + t y

�2
+
�

∆2 −∆p

�

)2
�

,

v =

p
3a
�

α
�

t x − t y

�

+ β tz

�

2
p

1+ |α|2
Æ

1+
�

�β
�

�

2
,

1

m∗1
=

a2β
�

t x + t y

�

2
�

1+
�

�β
�

�

2
� −

a2αtz

2
�

1+ |α|2
� ,

1

m∗2
=

a2β
�

t x + t y

�

2
�

1+
�

�β
�

�

2
� −

a2αtz

2
�

1+ |α|2
� ,

1

m∗3
=

a2
�

β tz +αt y −αt x

�

4
p

1+ |α|2
Æ

1+
�

�β
�

�

2
. (2.13)

Numerical values for these parameters in the case of MoS2 are summarized in Tab. 2.5.
The model reproduces well the main features of the conduction and valence bands
around K± as compared with more sophisticated tight-binding[87–89] and first princi-
ples calculations.[90–95]

Conduction and valence band states are strongly hybridized away from K±, check

the value of a−1v in comparison with
�

a2m∗1
�−1

,
�

a2m∗2
�−1

,
�

a2m∗3
�−1

. Therefore,
a massive Dirac Hamiltonian (neglecting quadratic terms in Eq. (2.11)) is a good
approximation in order to describe both bands simultaneously. It is important to note
that the 2-component wave function in this case is not a spinor. Indeed, it can be
seen that the Berry curvature is not singular in this case:[19]

Ωτ,c/v
q =∓τ

2v2∆
�

∆2 + 4v2 |q|2
�3/2

. (2.14)

The Berry phase accumulated by electronic states at the conduction (+) or valence
(−) bands around K± is approximately ±τ2π µ+∆

2µ+∆
∼±τ2π (here µ is the chemical

potential measured from the bottom/top of the conduction/valence band), so we
expect negative magnetoresistance behavior[96] and a regular sequence of plateaus
in the QHE regime.

However, although non-singular, this non-zero Berry curvature produces an anoma-
lous term in the velocity operator of the electron in the presence of in-plane electric
fields which is the origin of the intrinsic contribution to the Hall conductivity.[97–99]
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2.3 SOC in 2D hexagonal crystals

Of course, this is zero due to time reversal symmetry, expressed in the fact that both
valleys contribute with opposite sign. When considering the SOC, we will see that the
Berry curvature of Eq. (2.14) is the origin of a non-zero (but not quantized) spin Hall
conductivity.[19,94,100] The SOC physiscs also affects the weak localization corrections
to classical conductivity.[101]

2.3 SOC in 2D hexagonal crystals

We discuss now how the electronic structure of these 2D materials changes when
the spin-orbit interaction is included, in particular the low energy physics around K±
points.

If we wanted to employ group theoretical arguments as in the previous section in
order to describe spinful bands, in principle we should adapt our basis of Bloch states
around high symmetry points of the BZ to the irreps of the double group associated
to the original point group of the crystal. The double group consists on the original
symmetry operations of the crystal plus the rotation by 2π, which is not longer
equivalent to the identity for a spin 1/2 particle. Due to the inclusion of this rotation,
the point group has now twice as many elements as before, however, the number
of irreps is not in general twice as many as before. Among the new irreps, we have
D1/2, the 2-dimensional irrep associated to the spinorial part of the wave function.
Microscopically, we have that, due to the inclusion of the SOC, the eigenstates of
the electronic Hamiltonian are not longer eigenstates of the spin operators si , so
the wave function becomes some linear combiantion of states with different spin
polarizations (at different bands). The way to decribe these states is in terms of the
product Γ× D1/2, where Γ is the irrep of the double group associated to the orbital
part of the wave function.

However, in the practice this approach can be simplified. The point is that typically
the strength of the spin-orbit interaction is much weaker than the energy separation
between states with different spin polarizations that are coupled by the SOC, there-
fore, the main orbital character of the bands does not change much. This is clearly
true in the case of graphene materials, where the SOC is weak due to the lightness
of carbon. But it is also true in the case of MX2, although the spin-orbit interaction is
much stronger, given that the energy separation between different bands is governed
by crystal fields of the order of several electron volts.

As consequence, we can construct the SOC terms by considering the previous analysis
and adding a new set of Pauli matrices

�

si
	

acting on the spin degrees of freedom.
In order to construct invariants, we must determine the transformation rules of such
operators. In order to do so, we must take into account that, on the one hand, spin
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s=
�

sx , sy , sz

�

is a 3D angular momentum operator, and on the other, all the systems
that we are going to study posses a mirror symmetry plane. Therefore, if we choose
sx ,y as the spin components in the mirror symmetry plane (in-plane components from
now on), it is clear that

�

sx , sy

�

will belong to a pseudo-vectorial irrep. Similarly, sz
will belong to a pseudo-scalar irrep.

Within the context of tight-binding models the SOC can be introduced by means of a
pure intra-atomic spin-orbit interaction of the form

HSO =∆SOL · s, (2.15)

where L is the atomic angular momentum operator and ∆SO represents the strength
of the spin-orbit interaction for the subspace of orbitals considered in the calculation.
In that sense, it may interpreted as additional tight-binding parameter.

2.3.1 Graphene materials

In the case of graphene it is not difficult to see that
�

−sy , sx

�

∼ E1, sz ∼ A2. Im-
portantly, since we are now introducing a pseudovector in 3D space and graphene
is truly a 2D system, we must distinguish between the SOC terms which contain sz ,
that are even under a reflection in the graphene plane (mirror symmetry operation,
z→−z), and the terms which contain the in-plane components, which are odd. This
mirror symmetry protects the out-of-plane spin polarization. Note also that the time
reversal operator, including the spin degree of freedom, reads now T = isyτxK . The
possible SOC terms at K± points and their symmetry properties are summarized in
Tab. 2.6.

The intrinsic SOC has the form of a mass term with opposite sign at different valleys
and spin projections,[37]

HKM =∆KMσz ⊗τz ⊗ sz . (2.16)

Therefore, it opens a gap in the spectrum. As it will be discussed in detail later on,
this gap posses topologically non-trivial properties.

If the mirror symmetry of the system is broken, for instance, by the presence of the
substrate or the application of an electric field perpendicular to the graphene sample,
then a Bychkov-Rashba term is generated,[37,102]

HBR =∆BR

�

σx ⊗τz ⊗ sy −σy ⊗ sx

�

. (2.17)

This term splits the double degeneracy of the bands, a manifestation of the inversion
symmetry breaking, and tends to close the Kane-Mele gap.
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Irrep z→−z symmetric z→−z asymmetric

A1 σz ⊗τz ⊗ sz σx ⊗τz ⊗ sy −σy ⊗ sx

A2 σx ⊗τz ⊗ sx +σy ⊗ sy

B2 τz ⊗ sz

E1

�

−σy ⊗ sz
σx ⊗τz ⊗ sz

� �

−σz ⊗τz ⊗ sy
σz ⊗τz ⊗ sx

�

E2

�

σx ⊗τz ⊗ sy +σy ⊗ sx
σx ⊗τz ⊗ sx −σy ⊗ sy

�

,
�

−τz ⊗ sy
τz ⊗ sx

�

E′1

�

−σy ⊗τy ⊗ sz
σy ⊗τx ⊗ sz

�

G′











−σy ⊗τy ⊗ sx
−σy ⊗τy ⊗ sy
σy ⊗τx ⊗ sy
σy ⊗τx ⊗ sx











Table 2.6: SOC terms within the low energy description of graphene.

Several ab initio[103–105] and tight-binding[106–108] studies in the recent years confirm
this analysis. The spin-orbit interaction in confined geometries as graphene nanorib-
bons[109–113] have been extensively studied also.

The minimal tight-binding model which captures spin-orbit effects should include
at least both π and σ orbitals. The simplest model consists on an extension of the
one presented in Eq. (2.2) with four orbitals

¦

s, px , py , pz

©

per carbon atom and only
nearest-neighbors hoppings,

HT B =
∑

i,λ

tλc†
i,λci,λ +







∑

〈i, j〉

∑

λ,λ′
t i j
λ,λ′ c

†
i,λc j,λ′ +H.C.






, (2.18)

where the latin indices label the sites of the carbon atoms and λ= s, px , py , pz labels
the orbitals considered in the calculation. For the on-site energies, we take ts = εs,
tpi
= εp. The two-center matrix elements can be computed within the Slater-Koster

approximation[55] as indicated in Tab. 2.7. The electronic bands computed within this
tight-binding approximation are shown in Fig. 2.7. We take the values summarized
in Tab. 2.7.[114,115]

In order to estimate the strength of the effective SOC terms within the low energy
sector of the electronic spectrum we include the spin-orbit interaction, Eq. (2.15),

35



2. M O D E L H A M I LT O N I A N S F O R SOC A N D C O N N E C T I O N W I T H QSHE S TAT E

TB parameter Value (eV)
tAB
s,s Vssσ εs -7.3

εp 0
Vssσ -3.63

tAB
s,pi

�

p̂i · ~δ
�

Vspσ Vspσ 4.2
Vppσ 5.38
Vppπ -2.24

tAB
pi ,p j

�

p̂i · ~δ
��

p̂ j · ~δ
�

Vppσ+

+
��

p̂i · p̂ j

�

−
�

p̂i · ~δ
��

p̂ j · ~δ
��

Vppπ

Table 2.7: Two-center matrix elements in the Slater-Koster approximation as function
of the tight-binding parameters (see the text). p̂i represents a unitary vector in the
direction of maximum amplitude of the orbital pi , and ~δ is the vector which connects
neighboring sites A and B.
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Figure 2.7: Electronic bands deduced from the tight-binding model of Eq. (2.18). The
values of the Slater-Koster parameters are summarized in Tab. 2.7.
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and we rewrite the complete Hamiltonian in the block form

HT B +HSO =
�

Hπ Hπσ
Hσπ Hσ

�

. (2.19)

Then, we project out σ orbitals by a Schrieffer-Wolf transformation[75] as we ex-
plained in the case of bilayer graphene when we reduced the 4-bands tight-binding
model to a 2-bands effective model. Then, in the low energy sector we have

H e f f
π ≈Hπ −HπσH −1

σ Hσπ. (2.20)

In the absence of a mirror symmetry breaking term which hybridizes π (odd under
a mirror reflection) and σ (even under a mirror reflection) orbitals, only the spin-
orbit interaction enters in the π−σ mixing blocks. The SOC term that appears to
the lowest order in the spin-orbit interaction strength has the form of a Kane-Mele
coupling, Eq. (2.16), with[106–108]

∆KM =
εs∆2

SO

18V 2
spσ

≈ 9 µeV. (2.21)

The coupling is quadratic on the spin-orbit interaction strength. The numerical esti-
mation has been performed assuming ∆SO = 20 meV.[116]

If the mirror symmetry is broken, then a SOC term linear in the spin-orbit interac-
tion strength is feasible. Obviously, this term should be proportional to the in-plane
components of spin, and in general it will be of the form of the Bychkov-Rashba term
of Eq. (2.17). The most handy example is the case of an electric field perpendicular
to the graphene sample. Assuming a dipolar interaction of the form Hd = eEz · z,
it is easy to see that transitions between s and pz orbitals are induced proportional
to λ ≡




s|z|pz
�

. If we include this perturbation in the previous scheme we obtain a
Bychkov-Rashba coupling, Eq. (2.17), with[106–108]

∆BR =
2eEzλ

3Vspσ
(2.22)

We have excluded higher energy orbitals, in particular d orbitals, from our analysis
because: i) they are very separated in energy from pz orbitals, so a possible hybridiza-
tion between them should be vey small, and ii) as Eq. (1.6) suggests, the spin-orbit
interaction for these orbitals should be weaker. However, since the intrinsic contri-
bution to the SOC is the result of a second order process and the coupling is then
quadratic on ∆SO as we have seen, where, indeed, ∆SO represents the lowest energy
scale of the problem, it is in principle necessary to reconsider our arguments.
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As it was pointed out first by Slonczewski and Weiss[60] in the context of graphite
and showed by recent ab initio calculations,[104] d orbitals contribute remarkably to
the Kane-Mele coupling. This is because there is a non-negligible contribution of a
certain combination of dxz and dyz orbitals to the π bands. Such combination,



















�

�

�

1p
2

�

dxz − idyz

�

, A,K+
E

�

�

�

1p
2

�

dxz + idyz

�

, B,K+
E

�

�

�

1p
2

�

dxz + idyz

�

, A,K−
E

�

�

�

1p
2

�

dxz − idyz

�

, B,K−
E



















∼ G′, (2.23)

belongs to the 4-dimensional irrep of C ′′6v . The weight of these orbitals on π bands is
proportional to 3Vpdπ/2

p
2εd .[108] Therefore, the contribution from these orbitals to

the Kane-Mele coupling would be[108]

∆(d)KM ∝
9V 2

pdπ∆
(d)
SO

8ε2
d

, (2.24)

where ∆(d)SO is the strength of the spin-orbit interaction in the subspace of d orbitals.
According to ab initio calculations,[104] ∆(d)KM ∼ 12 µeV.

As we have seen, the Kane-Mele gap induced by the spin-orbit interaction in graphene
is very weak, of the order of few µeV. However, that is not the complete story. As
Kane and Mele pointed out in their seminal paper,[37] electron-electron interactions
may help to stabilize this insulating phase by increasing the value of the gap. This
can be seen within the same renormalization group (RG) analysis which leads to
the renormalization of the Fermi velocity v.[117–120] We consider the effective action
associated to the Hamiltonian of Eq. (2.4) plus the SOC term of Eq. (2.16) and
the presence of long-range Coulomb interactions (we set the chemical potential
µ= 0):

S = S f ree + Sint ,

S f ree = S0 + Smass,
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where (ħh= 1)

S0 =

∫

d td2xΨ†(x)
�

i∂t + iv~Σ · ∇
�

Ψ(x),

Smass = τs∆KM

∫

d td2xΨ†(x)σzΨ(x),

Sint =

∫

d td2xd2x′
g

|x− x′|
Ψ†(x)Ψ(x)Ψ†(x′)Ψ(x′). (2.25)

We have introduced the valley τ = ±1 and spin s = ±1 indices. Of course, this
model is only valid for wavelenths bigger than Λ−1, where Λ is a certain ultraviolet
cutoff in momentum space. We have introduced a long-range Coulomb interaction,
where g = e2/ε is the Coulomb coupling. It is useful to introduce the effective
coupling

α=
g

v
. (2.26)

The coupling g is not renormalized by itself since it appears as the coefficient of a
nonanalytic term in the action.[121] Then, α is renormalized only through v. The free
part of the action set the dimensions of all the parameters of the model in units of
energy:

[Ψ] = 1,

[α] = 0,

[∆] = 1. (2.27)

We see that ∆KM is going to be amplified by the effect of the interactions, whereas
the effective coupling α is marginal at the classical level. We analyze the logarithmic
divergence of the first order contribution in g to the electronic self-energy (k =
(ω,k)):

Σ̂(1)
�

p
�

=

∫

d3q

(2π)3
Ĝ0
�

p+ q
� 2πg

|q|
, (2.28)

where Ĝ0 (k) is the propagator of the free theory,

Ĝ0 (k) =
ω+ v

�

τσx kx +σy ky

�

+τs∆KMσz

ω2 + v2 |k|+∆2
KM

. (2.29)

It is easy to check that there is no divergence in the frequency domain, meaning that
the wave function is not renormalized at one loop level. Eq. (2.28) can be written
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as

Σ̂(1) (p) = g

∫

d2q

(2π)2
1

|q|

∫ ∞

−∞
dε

v (p+ q) · ~Σ+τs∆KMσz

ε2 + v2 |p+ q|2 +∆2
KM

. (2.30)

We compute the first order contributions to the β-functions of v and ∆ as

δv

v
=
δΣ̂(1) (p)

δ
�

vp · ~Σ
� ,

δ∆KM

∆KM
=

δΣ̂(1) (p)
δ
�

τs∆KMσz
� .

For the former, we have

δv

v
= g

∫

d2q

(2π)2
1

|q|

∫ ∞

−∞
dε

ε2

�

ε2 + v2 |q|2
�2 = g

∫

d2q

(2π)2
π

2v |q|2
. (2.31)

The last integral is logarithmically divergent. The integral is regularized by introduc-
ing a sharp cut-off Λ. Then, the integration in |q| is performed between Λ and the
infrared cut-off Λ0 =Max (|p|,∆). The result reads

δv

v
=

g

4v
ln
�

Λ
Λ0

�

. (2.32)

For ∆KM we have

δ∆KM

∆KM
= g

∫

d2q

(2π)2
1

|q|

∫ ∞

−∞
dε

1
�

ε2 + v2 |q|2
�2 = g

∫

d2q

(2π)2
π

v |q|2
=

g

2v
ln
�

Λ
Λ0

�

.

(2.33)

This gives us directly the RG equations at one loop. When the high-momentum
degrees of freedom in the shell Λ` < |p|< Λ are integrated out from the theory one
obtains the corresponding changes in v and ∆KM proportional to ln

�

Λ/Λ`
�

≡ ` as
the above equations indicate. Here ` must be taken as the dimensionless parameter
that controls the RG flux. As deduced from the above calculation the RG procedure
should stop at Λ` ∼ Λ0. Therefore, the RG equations read

dv

d`
=

g

4
,

d∆KM

d`
=

g∆KM

2v
, (2.34)
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although it is more convenient to write the above equations in terms of α as

dα

d`
=−

α2

4
,

d∆KM

d`
=
α∆KM

2
. (2.35)

The first equation implies automatically that long range electron-electron interactions
in graphene are marginally irrelevant. The integration of the RG equations leads
to

α (Λ) =
α∗

1+ α∗
4

ln
�

Λ
Λ∗

� ,

∆KM (Λ) = ∆∗

�

1+
α∗

4
ln
�

Λ
Λ∗

��

, (2.36)

where α∗ ≡ α
�

Λ∗
�

, ∆∗ ≡ ∆KM
�

Λ∗
�

. The renormalized gap is determined by the
relation of consistency ∆R = ∆KM

�

∆R
�

. If we take Λ∗ = 1 eV, ∆∗ = 10 µeV and
α∗ = 0.1 (in agreement with the condition α � 1) we get ∆R ≈ 16 µeV. We see
that the enhancement provided by d orbitals in the single particle calculation is
approximately the same as the renormalization induced by long-range Coulomb
interaction.

In the case of bilayer graphene we have
�

−sy , sx

�

∼ Eg and sz ∼ A2g . The SOC terms
within the 2-bands effective model can be constructed phenomenologically similarly
to the case of single-layer graphene. The possible SOC terms are summarized in
Tabs. 2.8 and 2.9. Since the bands are quadratic we consider SOC terms up to linear
order in crystal momentum q. The instrinsic SOC reads[122–125]

H SO
bila yer =∆KMσz ⊗τz ⊗ sz +∆BRσz ⊗

�

qx sy − qysx

�

(2.37)

The first term is a Kane-Mele coupling, with the same properties as in the case of
single layer. The second term adopts the form of the usual Bychkov-Rashba coupling
for the 2D electron gas (∼ qx sy − qysx), but multiplied by a matrix σz . Note that
in the 2-bands effective model the two sublattices are localized in different layers,
therefore, this term is allowed by the symmetries of the crystal. In particular, note that
it does not break parity. Of course, such term is forbidden in single-layer graphene.
Another important difference is the different microscopic origin. By considering a
model with only π and σ orbitals it can be seen that both ∆KM and ∆BR are linear in
∆SO. The reason is that there is a non-zero hybridization between π and σ orbitals
localized in different layers, leading to a first order contribution to the SOC. From
ab initio calculations[125] taking into account also d orbitals we have ∆KM = 24 µeV,
∆BR ≈ 0.2 eV·A−1.
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Irrep SOC terms (q= 0)

A1g τz ⊗σz ⊗ sz

Eg

�

−σz ⊗τz ⊗ sy
σz ⊗τz ⊗ sx

�

A1u σx ⊗τz ⊗ sx +σy ⊗ sy

A2u τz ⊗ sz , σx ⊗τz ⊗ sy −σy ⊗ sx

Eu

�

−σy ⊗ sz
σx ⊗τz ⊗ sz

�

,
�

−τz ⊗ sy
τz ⊗ sx

�

�

σx ⊗τz ⊗ sx −σy ⊗ sy
σx ⊗τz ⊗ sy +σy ⊗ sx

�

E′u

�

−σy ⊗τy ⊗ sz
σy ⊗τx ⊗ sz

�

G′











−σy ⊗τy ⊗ sx
−σy ⊗τy ⊗ sy
σy ⊗τx ⊗ sy
σy ⊗τx ⊗ sx











Table 2.8: SOC terms in the 2-bands effective model of bilayer graphene at K±.

The analysis can be extended to graphene multilayers. It is important to note the im-
portance of inversion symmetry in the SOC physics. The bands of a centrosymmetric
solid will be double degenerate (spin degeneracy), although spin components will
not be well-defined in general due to the SOC, whereas in a non-centrosymmetric
solid the spin degeneracy will be splitted due to the SOC. This principle can be de-
duced trivially as a corollary of Kramers theorem: each partner of a Kramers pair lies
at points of the BZ related by parity.

Then, in the lowest bands of a centrosymmetric stack (D3d symmetry) only a Kane-
Mele coupling is permited at q= 0 (with the sublattice operators properly defined),
whereas in the case of non-centrosymmetric stacks (D3h symmetry) also a coupling
of the form ∼ τz ⊗ sz is allowed.[124] This term splits both out-of-plane spin polariza-
tions, which are still well-defined due to the mirror symmetry σh. Note also that this
splitting has opposite sign at each valley.

2.3.2 MX2

In the case of MX2 monolayers we may repeat the same procedure in order to obtain
the SOC terms within the 2-bands k · p theory. The SOC terms at the K± points are
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Irrep SOC terms (q 6= 0)

A1g σz ⊗
�

qx sy − qysx

�

A2g σz ⊗
�

qx sx + qysy

�

Eg

�

qxσz ⊗ sz
qyσz ⊗ sz

�

,
�

σz ⊗ (qx sx − qysy)
σz ⊗ (qx sy + qysx)

�

A1u qx sx + qysy , −qyσx ⊗ sz + qxσy ⊗τz ⊗ sz
�

qx sx − qysy

�

⊗σx −
�

qx sy + qysx

�

σy ⊗τz

A2u qx sy − qysx , qxσx ⊗ sz + qyσy ⊗τz ⊗ sz
σx ⊗ (qx sy + qysx) +σx ⊗τz ⊗ (qx sx − qysy)

Eu

�

−szqy
szqx

�

,
�

qysy − qx sx
qx sy + qysx

�

,
�

σx ⊗ (qx sx + qysy)
σy ⊗τz(qx sx + qysy)

�

�

σy ⊗τz ⊗ (qx sy − qysx)
σx ⊗ (qx sy − qysx)

�

,

� �

σxqy +σy ⊗τzqx

�

⊗ sz
�

σy ⊗τzqy −σxqx

�

⊗ sz

�

�

σx ⊗ (qx sx − qysy) +σy ⊗τz ⊗ (qx sy + qysx)
σy ⊗τz ⊗ (qx sx − qysy)−σx ⊗ (qx sy + qysx)

�

E′g

�

−τy ⊗σx(qx sy − qysx)
τx ⊗σx(qx sy − qysx)

�

,

�

sz ⊗
�

τx ⊗σzqy −τyqx

�

sz ⊗
�

τy ⊗σzqy +τxqx

�

�

�

−τx ⊗σz ⊗ (qx sx − qysy) +τy ⊗ (qx sy + qysx)
τy ⊗σz ⊗ (qx sx − qysy) +τx ⊗ (qx sy + qysx)

�

E′u

�

−τy ⊗σx ⊗ (qx sx + qysy)
τx ⊗σx ⊗ (qx sx + qysy)

�

,

�

−sz ⊗
�

τx ⊗σzqx +τyqy

�

sz ⊗
�

−τy ⊗σzqx +τxqy

�

�

�

−τx ⊗σz(qx sy + qysx)−τy(qx sx − qysy)
−τy ⊗σz(qx sy + qysx) +τx(qx sx − qysy)

�

G′













−τx ⊗
�

qx sx + qysy

�

−τy ⊗σz ⊗
�

qx sx + qysy

�

τx ⊗σz ⊗
�

qx sx + qysy

�

−τy ⊗
�

qx sx + qysy

�













,













τy ⊗σz ⊗
�

qx sy − qysx

�

−τx ⊗
�

qx sy − qysx

�

τy ⊗
�

qx sy − qysx

�

−τx ⊗σz ⊗
�

qx sy − qysx

�

























sz ⊗
�

−τx ⊗σzqx +τyqy

�

sz ⊗
�

−τx ⊗σzqy −τyqx

�

sz ⊗
�

τy ⊗σzqy −τxqx

�

−sz ⊗
�

τy ⊗σzqx +τxqy

�













,











τx ⊗σx ⊗ (qx sx − qysy)
−τx ⊗σx ⊗ (qx sy + qysx)
τy ⊗σx ⊗ (qx sy + qysx)
τy ⊗σx ⊗ (qx sx − qysy)





















τx ⊗σx ⊗ szqy
−τx ⊗σx ⊗ szqx
τy ⊗σx ⊗ szqx
τy ⊗σx ⊗ szqy











,











−τx ⊗σz ⊗ (qx sy + qysx) +τy ⊗ (qx sx − qysy)
−τx ⊗σz ⊗ (qx sx − qysy)−τy ⊗ (qx sy + qysx)
τy ⊗σz ⊗ (qx sx − qysy)−τx ⊗ (qx sy + qysx)
−τy ⊗σz ⊗ (qx sy + qysx)−τx ⊗ (qx sx − qysy)











Table 2.9: (Continuation) SOC terms in the 2-bands effective model of bilayer
graphene.
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Irrep SOC terms

A′1 σz ⊗τz ⊗ sz , τz ⊗ sz

A′′1 σx ⊗τz ⊗ sy −σy ⊗ sx

A′′2 σx ⊗τz ⊗ sx +σy ⊗ sy

E′
�

−σy ⊗ sz
σx ⊗τz ⊗ sz

�

E′′
�

σx ⊗τz ⊗ sy +σy ⊗ sx
σx ⊗τz ⊗ sx −σy ⊗ sy

�

,
�

−τz ⊗ sy
τz ⊗ sx

�

,
�

−σz ⊗τz ⊗ sy
σz ⊗τz ⊗ sx

�

E′′1

�

σy ⊗τx ⊗ sx −σy ⊗τy ⊗ sy
σy ⊗τx ⊗ sy +σy ⊗τy ⊗ sx

�

E′′2

�

σy ⊗τx ⊗ sx +σy ⊗τy ⊗ sy
σy ⊗τy ⊗ sx −σy ⊗τx ⊗ sy

�

E′3

�

−σy ⊗τy ⊗ sz
σy ⊗τx ⊗ sz

�

Table 2.10: SOC terms within the massive Dirac model for MX2.

classified according to the irreps of D3h in Tab. 2.10. The intrinsic SOC reads

Hint = λKMσz ⊗τz ⊗ sz +λSPτz ⊗ sz . (2.38)

The first term adopts the form of a Kane-Mele gap. Note that MX2 remains a trivial
insulator since ∆� λKM . The second term is present due to the lack of an inversion
center in the solid. Then, opposite out-of-plane spin polarzations are energetically
separated, with splittings in conduction (c) and valence (v) bands of λc,v = λKM ±
λSP .

However, although both bands are spin splitted, the splittings have different micro-
scopic origins due to the different orbital character. The processes which lead to the
splittings are shown in Fig. 2.8. Taking into account that the bands are dominated by
d orbitals from M atoms, we see that the splitting of the valence band is first order on
the intra-atomic spin-orbit interaction strength, whereas the splitting of the conduc-
tion band is second order. This picture agrees with ab initio calculations. Of course,
there is also a contribution from the chalcogen atoms, which is important for the
conduction band since the spin-orbit interaction in this case enters as a first order con-
tribution to the splitting. This contribution is relevant in the case of Se compounds,
whereas for Mo compounds can be neglected. For a complete tight-binding model
and a detailed discussion on the microscopic mechanisms that have influence in the
SOC of MX2 materials check Ref.126. Values extracted from DFT calculations[93–95]

are summarized in Tab. 2.11.

When the mirror symmetry σh is expressly broken by a substrate, electric fields,
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Figure 2.8: Sketch of the microscopic processes which lead to the effective SOC terms
discussed in the text. (a) First-order processes which lead to the splitting of the va-
lence band. (b) Second- order processes associated to the splitting of the conduction
band. (c) Second-order processes which lead to a Bychkov-Rashba coupling when σh
symmetry is broken.

Material λ (meV)

e-MoS2 3
h-MoS2 140
h-WS2 430

h-MoSe2 180
h-WSe2 460

Table 2.11: Spin splitting in the conduction (e) and valence (h) bands in several MX2
materials.[93–95]
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etcetera, then the SOC term belonging to the A′′1 irrep can be generated. This term
adopts the form of a Bychkov-Rashba coupling of the form

HBR =∆BR

�

σx ⊗τz ⊗ sy −σy ⊗ sx

�

. (2.39)

The possible processes which lead to such coupling are also sketched in Fig. 2.8. An
electric field perpendicular to the sample would induce dipolar transitions between
the Mo d3z2−r2 orbitals of the conduction band and Mo pz orbitals of bands at much
higher energies. Then, the spin-orbit interaction would induce transitions between
these states and the valence band flipping the spin. However, the orbital weight
of the valence band in Mo p orbitals is very small, so this coupling is expected to
be very weak. Nevertheless, this picture changes if orbitals from S atoms are also
taken into account. For instance, if we consider the application of a gate voltage
Vgate, which is necessary in order to induce charge carriers in this system, then we
would have different on-site energies for the p orbitals of the top and bottom S
atoms. This turns into a non-zero hybridization between valence-band states and dxz ,
dyz orbitals associated to higher bands proportional to Vgate. Then, the spin-orbit
interaction induces transitions between dxz , dyz orbitals of these bands and d3z2−r2

of the conduction band, flipping the spin. This kind of process is the one depicted in
Fig. 2.8 (c). Since the orbital weight of S p orbitals in these bands is less than the
20%, we can estimate an upper limit for this coupling of the form

∆BR ≤
0.2Vgate∆SO

ε∗
, (2.40)

where ε∗ represents the energy of the complex conjugated combination of dx2−y2 ,
dx y (A′′) orbitals involved in the calculation.

This coupling induces the relaxation of the out-of-plane spin component, which is a
good quantum number if the mirror symmetry is not broken. Note that the intrinsic
SOC tends to stabilize this spin component. Indeed, the splitting of the valence band
protects the out-of-plane spin in such a way that any relaxation mechanism induced
by a breaking of the mirror symmetry is much less efficient for hole dopings, as we
will see.

Futhermore, the splitting of the bands has opposite sign at each valley, as imposed
by time reversal symmetry. This observation plays a central role in spintronics and
optoelectronics applications. Since the magnitude of the splitting is remarkable, par-
ticularly in the case of the valence band, for a broad range of dopings only one spin
component is populated at each valley. Such identification of valley and spin degrees
of freedom is usually called spin-valley coupling in the literature.[19] As an example
of its potential application, the spin-valley coupling allows to control the valley pop-
ulation by optically exciting the monolayer MX2 samples with circularly polarized
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light.[20–22] Note that the absence of a center of inversion is crucial for this, and that
is the reason why the monolayer is more interesting than the bilayer or the bulk
material.

Another consequence is the non-zero (but not quantized) spin Hall conductivity,[19]

given by

σSH = e
∑

n

∫

d2q
�

fn,↑Ω
+,n
q,↑ − fn,↓Ω

+,n
q,↓

�

, (2.41)

where n labels the band and the integration is performed around K± points (the valley
degeneracy is already taken into account). From Eq. (2.14) we deduce, for moderate
hole doping (the Fermi level lying between the splitted valence bands),

σSH =
eµ

2π
�

∆−λ− 2µ
� ≈

eµ

2π∆
6= 0, (2.42)

where the chemical potential µ is measured from the top of the band. Note that this
Hall conductivity is not topologically protected in the sense of the QSHE, and it is
sensible to the ocurrence of Rashba-like fields or other sources of disorder which
relax the out-of-plane spin component.

Similarly, when inter-valley disorder dominates electron mobilities then a positive
magnetoresistance behavior is expected. The weak antilocalization correction to the
classical conductivity arises due to the spin-rotational symmetry breaking originated
by the opposite spin polarizations of the valleys. Of course, this picture may change
if the σh symmetry is also broken. The presence or absence of this symmetry in
2D hexagonal crystals could be detected in general in quantum transport experi-
ments.[101]

2.3.3 Heavy adatoms

As mentioned before, and for reasons that will become clear in next section, the gap
opened due to the SOC in graphene has non trivial consequences in the topology of
the π bands. That is why there is an interest in enhancing the SOC in graphene. A
possible route is via heavy adatoms deposition.[127,128] Of course, attached impurities
break the z → −z mirror symmetry, so in principle both Kane-Mele and Bychkov-
Rashba couplings would be generated. A predominance of the latter would close the
gap and constitute an extrinsic source of spin relaxation.[129,130] However, in some
circunstances it can be proved that the Rashba coupling is smaller or even suppressed,
so graphene could be tuned into a QSHE state. This situation corresponds to the
most symmetric arrangement of the adatoms, when they occupy the center of the
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graphene hexagons. Depending on the orbitals of the adatom leading to the SOC
enhancement, it can be easily proved that the Bychkov-Rashba coupling at the K±
points is suppressed.

In order to illustrate these ideas, let’s consider the situation when the adatoms occupy
the central position of the hexagon. In the limit of complete coverage, when there is
an impurity at the center of all the hexagons, it is clear that the z→−z symmetry is
broken but the C6v symmetry is restored. The strength of the Kane-Mele and Bychkov-
Rashba couplings, Eqs. (2.16) and (2.17) respectively, is dominated by the spin-orbit
interaction in the orbitals of the heavy adatom, which will be hybridized with π
states at the K±. Therefore, the effective SOC in the π bands subspace is understood
as the result of virtual transitions into the impurity orbitals, where the electrons
feel the strong spin-orbit interaction. The symmetry of the orbitals involved in such
processes is crucial in order to determine which coupling is favored. If we denote by
m the angular momentum quantum number (in the z direction) of the orbital at the
impurity which forms the Bloch wave function at K± points, we see that

if |m|= 0 (mod 6), then ∼ E′1,

if |m|= 3 (mod 6), then ∼ E′2,

otherwise ∼ G′.

Then, in the cases of |m|= 0,3 (mod 6), orbitals at the impurity are not hybridized
with the π Bloch states. The consequences of this observation on the SOC is crucial.
For instance, in elements which exhibit partially filled p shells, so only these orbitals
participate actively in the tunneling processes from graphene to the impurity and
back, the Bychkov-Rashba coupling at the K± points is expected to be strongly sup-
pressed. Since the hopping between the pz orbital at the impurity and graphene π
electrons is cancelled at K± points, only spin conserving tunneling processes through
px ,y orbitals are allowed. Then, the Bychkov-Rashba coupling of Eq. (2.17) is 0, and
the Kane-Mele coupling is enhanced. If we denote by tad the hopping between px ,y
orbitals at the adatom and graphene π orbitals, εad the difference of on-site ener-
gies, and ∆ad the spin-orbit interaction strength of the adatom, then we obtain a
contribution to the Kane-Mele coupling of the form

∆KM =
9∆ad t2

ad

4ε2
ad

. (2.43)

According to first principles calculation,[127] among the elements in the 5th and 6th
rows of the periodic table, which are expected to induce an enormous spin-orbit
interaction, indium and thallium tends to occupy the centre of the hexagon and
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exhibit non-magnetic behavior. Both species belong to the 13th column, with partially
filled p shells, what ensures the absence of the Bychkov-Rashba coupling at the K±
points. A partial covering around 6% seems to be enough to produce Kane-Mele gaps
of the order of 10 meV.

2.4 Topological aspects

The Dirac points in graphene are topologically protected by the symmetries of the
honeycomb lattice in combination with time-reversal symmetry.[81] Depending on
the broken symmetries, we end up with gapped band structures belonging to different
topological sectors. In this sense, pristine graphene (in the absence of SOC) could be
interpreted as a topological critical point.

In the absence of SOC and assuming that translational symmetry is respected, there
are two ways of opening a gap in the spectrum: by breaking the sublattice equiva-
lence, which generates a mass term of the form σz ∼ B2, or by breaking the inversion
symmetry planes σv , σ′v and time-reversal symmetry and then generating a term of
the form τz ⊗σz ∼ A2.

In the former case, we are reducing the original point group C6v to C3v . The situation
remains exactly as in MX2. The system is a trivial insulator where the non-zero Berry
curvature of the bands around each valley has opposite sign. The second case can
be realized if a coupling with an out-of-plane magnetic field Bz ∼ A2 is considered.
In that case, since the gap has opposite sign at each valley the Berry curvature has
the same sign and it is not compensated. Therefore, the valence bands possess a non-
zero Chern number. This is the famous Haldane model,[131] a QHE system without
LLs. The most interesting situation occurs when the SOC is considered. A Haldane
mass with opposite sign for each spin component is naturally generated by the SOC.
The total Chern number is zero, but the spin Chern number previously discussed is
non-zero. Therefore, graphene is ideally a QSHE insulator.

2.4.1 Haldane model

We have already shown that including second nearest neighbors hoppings in the
tight-binding description of graphene only breaks the non-protected electron-hole
symmetry of the spectrum, which remains gapless. Nevertheless, this is true only for
real hoppings, not for complex ones. Let’s examine the problem. Fig. 2.9 shows hop-
ping directions within the unit cell for which we introduce the amplitudes t ′eiφ . For
φ = nπ, n an integer, the C6v symmetry is respected, otherwise the reflection planes
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Figure 2.9: Top: Electronic bands of a graphene strip with a 20 unit cells width and
armchair edges. Left: Only nearest neighbors hopping t. Middle: Staggered potential
M = 0.6

p
3t. Right: Haldane second nearest neighbors hopping t ′ = 0.2t, φ = π/2.

Bottom: On the left, graphene unit cell where the arrows mark the directions of
positive phase hopping. On the right, sketches of the edge states in the QHE and
QSHE phases.

σv , σ′v are absent and the point group is reduced to C6. Also time reversal symmetry
is broken. The new point group only contains 1-dimensional irreps, therefore the
spectrum is gapped in general. Moreover, the mass term adopts the form of τz ⊗σz
(which belongs to A irrep of C6, whereas σz belongs to B irrep). The Hamiltonian
around K± points read, up to linear terms in q, as

H = v
�

τzσxqx +σyqy

�

+∆Hτzσz , with ∆H = 3
p

3t ′ sinφ. (2.44)

Physically, the phase φ is associatd to a magnetic field perpendicular to the graphene
plane with the full symmetry of the lattice that is zero on average over the unit
cell. Such magnetic field is incorporated by means of the Peierls substituion,[132]

t i j → t i je
i e
ħh

∫ R j
Ri

dr·A
. Since the total magnetic flux through the unit cell is zero the first

neighbors hoppings t are unaffected, whereas the second nearest neighbors hoppings
acquire a phase φ = 2π/3×Φ/Φ0, where Φ0 = h/e is the flux quantum and Φ is the
flux through the triangle inside the unit cell defined by the red or alternatively blue
lines in Fig. 2.9.

If we also consider a sublattice imbalance or staggered potential then the point group
is reduced to C3 and then a mass term of the form Mσz is added to Eq. (2.44).
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A straightforward calculation shows that the Chern number of the valence band
inferred from the Hamiltonian in Eq. (2.44) in the presence of Mσz is just

C =
1

2π

∫

d2q







v2 �M +∆H
�

2
�

�

M +∆H
�2 + v2 |q|2

�3/2
−

v2 �M −∆H
�

2
�

�

M −∆H
�2 + v2 |q|2

�3/2






=

=







+1 if |M |<∆H and φ ∈ (0,π) ,
−1 if |M |<∆H and φ ∈ (−π, 0) ,
0 if |M |>∆H ,

(2.45)

where the integration is performed around K± points. According to this result, in
the situation when time reversal symmetry is broken, sinφ 6= 0, the ratio |M |/∆H
controls a topological transition from a QHE state for |M |/∆H < 1 characterized by
a Hall conductivity σx y =±e2/h (when the Fermi level is within the gap) to a trivial
insulator state for |M |/∆H > 1 with σx y = 0. At the critical value |M |/∆H = 1, the
massless low energy theory of the model simulates a relativistic QFT exhibiting the
so-called parity anomaly.[133]

From the definition of the Chern number, Eq. (1.9), it is clear that the topological
character of a band is a global property, defined in the entire BZ, so to infer topological
properties of a system from an effective theory which is valid only around certain
points of the BZ is always dangerous. Note, however, that the Berry curvature is
peaked at the Dirac points, which justifies the result of Eq. (2.45). The analysis is
confirmed by a tight-binding calculation, shown in Fig. 2.9. The bands of a graphene
strip with armchair edges are computed. In the absence of second nearest neighbors
hoppings the spectrum remains gapless. The Dirac point lies at the center of the
folded BZ (note also that the lattice spacing of the 1D system is 3a), and no edge
states exist, as it can be deduced from topological arguments.[134] When a staggered
potential is introduced then a gap is opened. When instead of a staggered potential
a imaginary t ′ hopping is introduced then a gap is opened in the bulk spectrum,
but two sub-bands within the bulk gap appears connecting conduction and valence
bands. These sub-bands correspond to chiral modes propagating along the edges of
the ribbon, as shown in the sketch of Fig. 2.9, whose origin is purely topological as
inferred from the bulk-boundary correspondence previosuly discussed.

2.4.2 QSHE in graphene

The physical implementation of the Haldane model is in principle a difficult task. In
his seminal paper, Haldane proposed a possible route considering magnetic dipoles
at the center of the hexagons ordered ferromagnetically perpendicular to the plane.
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However, if the SOC in graphene is taken into account, then a Haldane mass∼ τz⊗σz
is naturally generated, where the out-of-plane spin component plays the role of the
perpendicular magnetic field. The spin-orbit interaction mediates the second nearest
neighbors complex hoppings of the Haldane model, through the σ orbitals in the
case of pristine graphene, or heavy adatoms placed at the center of the hexagons as
we have seen in the previous section. Hence, the Kane-Mele SOC term consists on
two copies of the Haldane mass with opposite sign for each spin flavour. The total
Chern number is zero, but the spin Chern number is Cs =

�

C↑ − C↓
�

/2 = ±1. The
Kane-Mele model is a QSHE system, with spin-polarized edge modes as sketched in
Fig. 2.9, responsible for the quantized spin Hall conductivity σSH = e/2π (note that
the spin current is defined as Js = (ħh/2e)

�

J↑ − J↓
�

).

This discussion seems to rely on the conservation of the out-of-plane spin. However,
this is not the crucial symmetry. The edge states in the QSHE are robust, even when
spin conservation is absent, due to their crossing at the center of the 1D BZ, protected
by time reversal symmetry. Thus, the QSHE is a topological phase protected by time
reversal symmetry and chracterized by a Z2 invariant.

Although originally proposed in graphene,[37,39] the weakness of the SOC and the
subsequent narrowness of the non-trivial gap makes difficult to stabilize such topo-
logical phase. The QSHE has been theorized to exist in 2D semiconductor systems
with uniform strain gradients,[135] and also predicted to exist[136] and observed in
HgCdTe[137] quantum wells.
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3
Electron-phonon coupling and electron

mobility in suspended graphene

3.1 Introduction

It has been found that the intrinsic mobility µ of charge carriers in graphene can
exceed 20 m2/Vs at room temperature.[138,139] So far, such high values have not
been achieved experimentally, because extrinsic scatterers limit µ. The highest µ was
reported in suspended devices[140,141] and could reach ∼ 12 m2/Vs at 240 K.[166]

This however disagrees with the data of Ref.140 where similar samples exhibited at
room mobilities close to 1 m2/Vs, the value that is routinely achievable for graphene
on a substrate.

Vibrations of the atoms of the crystal around their equilibrium positions is a very im-
portant source of electron scattering. We show in this chapter that electron-phonon
coupling constitutes an important scattering mechanism in suspended graphene and
the likely origin of the above disagreement, and their contribution should be sup-
pressed to allow ultra high µ. This can be done by applying strain.

Out of plane vibrations lead to a new class of low energy phonons, the flexural
branch.[142,143] In an ideal flat suspended membrane symmetry arguments show
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that electrons can only be scattered by two flexural phonons simultaneously.[138,150]

Despite the weakness of this quadratic coupling, the low frequencies of these modes
characterized by a quadratic dispersion relation makes them very easy to excite. As a
result, the resistivity due to flexural phonons rises rapidly at high T where it can be
described as elastic scattering by thermally excited intrinsic ripples.[144] Explicitly, at
experimentally relevant T , the non-strained samples show quadratic in T resistivity
with logarithmic correction, % ∼ T 2 ln(T ), and constant mobility. Electron scattering
by two flexural phonons gives the main contribution to the resistivity in this case,
and is responsible for the T 2 dependence. However, applying strain tends to linealize
the dispersion relation of flexural phonons, then suppressing its density of states at
low momenta. This manifests in the annihilation of scattering by flexural phonons.
Therefore, temperature-dependent mobilities in strained samples are expected to be
dominated by in-plane phonons.

In this chapter we give a detailed description of low energy phonon modes in
graphene, with special emphasis in the flexural branch. We construct the electron-
phonon coupling both for monolayer and bilayer graphene in the context of the low
energy description of the electronic spectrum around Dirac points. Then, we employ
this Hamiltonians in order to compute the resistivity due to scattering by phonons
in the doped regime, when a semi-classical description of transport in terms of the
Boltzmann equation is justified. We analyze the behavior of resisitivity as a function
of temperature, carrier concentration and strain, and we try to explain available data
in suspended samples, where scattering by flexural phonons is expected to dominate
transport.

3.2 Phonon modes in graphene

Phonon modes of graphene within the tripled unit cell can be classified acording to
the irreps of C ′′6v as shown in Tabs. 3.1 and 3.2. The modes belonging to the valley-
diagonal irreps correspond to the acoustic and optical modes at the original Γ point,
according to which atoms of different sublattices oscilate in phase or out-of-phase
respectively. The modes belonging to the valley off-diagonal irreps correspond to the
modes at the K± points, in particular, real linear combinations of displacements at
both valleys.

In this chapter we are interested on the effect of phonons in DC transport. There-
fore, we only consider for the moment the lowest energy modes, and those are the
acoustic branches around Γ, both in-plane (∼ E1) and out-of-plane or flexural (∼ A1).
The dynamics of such low energy modes are governed by the elastic constants of
the solid, and a long-wavelength description in terms of a theory in the continuum
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is valid since we focus on in-phase displacements only. The mechanics of solids, re-
gardes as continuous media, constitute the theory of elasticity,[142,145] which can be
constructed by purely geometrical means. The unit cells of the graphene crystal can
be seen as points on a surface embeded in R3, each of them labeled by a 3D vector
r. Graphene is then as example of a crystalline membrane.[143] Two different forms
allow to describe both intrinsic and extrinsic properties of the embeded surface. The
first fundamental form is nothing but the pull-backed metric of the embedding space
projected onto the surface,

gαβ = ∂αr · ∂βr, (3.1)

where ∂α, α = 1,2, is the derivative with respect to the internal coordinates which
parametrize the surface. Note that this is a complete intrinsic quantity and does
not depend on the embedding. Such information, as changes from point to point of
the normal vector to the surface, n = ∂1r× ∂2r/|∂1r× ∂2r|, is given by the second
fundamental form,

Fαβ = n · ∂α∂βr. (3.2)

As we are going to see, the elastic energy of the graphene membrane can be written
in terms of scalars made of this two forms.

3.2.1 In-plane modes

Let’s assume that carbon atoms in the equilibrium occupy positions labeled by r0 =
�

x0, y0, 0
�

. Then, we consider deviations from these equilibrium positions given by
a vector of displacements r = r0 + u. The displacements are fields which depend
on the position of the unit cell, u

�

x0, y0
�

. This is the Monge representation, where
x0, y0 correspond to the intrinsic coordinates that parametrizes the surface, so we
substitute the greek indices by latin indices from now on. Then, the first fundamental
form is given by

gi j = δi j + 2ui j , (3.3)

where ui j is the strain tensor

ui j =
1

2

�

∂iu j + ∂ jui + ∂iuk∂ juk

�

. (3.4)

Here repeated indices imply summation.

For the moment, we consider only in-plane displacements u =
�

ux , uy , 0
�

, and we
estimate the energy cost due to stretching. In general, the elastic energy for a solid is
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E1 E2 E′1 E′2 G′

Table 3.1: Classification of in-plane phonon modes according to the irreps of C ′′6v .
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quadratic in the strain tensor components,[142,145]

Fst =

∫

d2r Ci jklui jukl , (3.5)

where Ci jkl is a tensor of the elastic constants. Since ui j = u ji by definition, in
principle there are only 6 independent elastic constants in a 2D solid. Additionally,
the elastic energy density must be invariant under the point group symmetries of the
crystal.

Note that for isotropic media only two elastic constants are independent. Since in that
case the response of the solid must be independent of the direction, the only tensor
available to construct higer order tensors is the Kronecker delta δi j . The only 4-rank
tensors formed by δi j satisfying the symmetries of Ci jkl are δi jδkl and δikδ jl+δilδ jk,
therefore

Ci jkl =
λ

2
δi jδkl +

µ

2

�

δikδ jl +δilδ jk

�

, (3.6)

where λ, µ are the Lamé coefficients. In 2D, this is precisely the case of hexago-
nal crystals. In particular, for C6v symmetry, the 3 independent components of ui j
transform according to

ux x + uy y ∼ A1
�

ux x − uy y
−2ux y

�

∼ E2 (3.7)

Then, among the 6 independent combinations of the form ui jukl , only 2 belongs to
A1 irrep. This is inferred from the reductions

A1 × A1 ∼ A1,

A1 × E2 ∼ E2,

E2 × E2 ∼ A1 + A2 + E2, (3.8)

and note that the combination belonging to A2 irrep is exactly zero. Therefore, for
crystals with C6v there are only 2 independent elastic constants corresponding to the
Lamé coefficients, λ, µ. As a final remark, note that the energy term in Eq. (3.5) is not
a complete invariant under coordinate transformations since for that the integration
measure should be completed with the factor det

p
g ≈ uii . The description in the

continuum of a 2D crystal is essentially different from a fluid or any continuous media
in the sense that the action must not be invariant under diffeomorphisms given that
the atoms in the solid defines a special coordinate system.[146]
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The elastic energy due to the stretching of the graphene crystals reads

Fst =
1

2

∫

d2r
�

λ
�

uii
�2 + 2µui jui j

�

. (3.9)

Then, the Lagrangian describing the dynamics of in-plane phonon modes is just

L =
1

2

∫

d2r
�

ρu̇i u̇i −λ
�

uii
�2 − 2µui jui j

�

, (3.10)

where ρ is the mass density of graphene. In the harmonic approximation we keep
only linear terms in the displacements for the strain tensor, therefore the Euler-
Lagrange equations are just

ρüi −λ∂i∂ ju j −µ
�

∂ j∂ jui + ∂i∂ ju j

�

= 0. (3.11)

By introducing Fourier series of the form

ui (r) =
1
p

N

∑

q

uqeiq·r, (3.12)

and decomposing in longitudinal uL and transverse uT components as usual, uq =
uL

q
q
|q| +uT

q
êz×q
|q| , we obtain usual lineal dispersion relation for in-plane phonon modes,

ωL,T
q = vL,T |q|, with

vL =

r

λ+ 2µ

ρ
,

vT =

r

µ

ρ
. (3.13)

3.2.2 Out-of-plane (flexural) modes

Let’s allow now out-of-plane displacements of the unit cell, u =
�

ux , uy , h
�

. The
first consequence is that the normal to the surface is not globally defined since
n ≈

�

−∂xh,−∂yh, 1
�

to the lowest order in h. Assuming smooth out-of-plane dis-
placements, the leading contribution to the second fundamental form is just

Fi j ≈ ∂i∂ jh. (3.14)

To stabilize the solid with respect to fluctuations in the out-of-plane direction an
extrinsic term must be added to the elastic energy. Such term reflects the energy cost
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A1 B2 G′

0

1-1

0

1-1

1 � 2 ´

2

-1-1
-2

11

1� 12 ´

1

11
1

11

1� 6 ´

1

11
-1

-1-1

1� 6 ´

0

1-1

0

-11

1 � 2 ´

2

-1-1
2

-1-1

1� 12 ´

Table 3.2: Classification of flexural phonon modes according to the irreps of C ′′6v .

due to the bending of graphene, and depends explicitly on the embedding, so on the
components of the second fundamental form. Two scalars may be constructed, the
mean extrinsic curvature,Fii , and the intrinsic or gaussian curvature det F , but note
that the latter is a purely geometrical term which does not affect the equations of
motion. The former enters quadratically as a manifestation of the z→−z symmetry
of the system, hence[143]

Fb =
κ

2

∫

d2r
�

Fii
�2 ≈

κ

2

∫

d2r
�

∇2h
�2

. (3.15)

Here κ is the bending rigidity. The dispersion relation is now quadratic,

ωF
q =

r

κ

ρ

�

�q
�

�

2
. (3.16)

This fact has dramatic consequences on the mechanics of graphene. These modes
are so easy to excite that the graphene membrane is mechanically unstable at this
level. This can be seen from the normal-normal correlation function. Classically, we
have

¬

�

n
�

x1
�

− n
�

x2
��2¶≈

KB T

πκ

∫

dq
1− J0

��

�x1 − x2

�

�q
�

q
∼

KB T

πκ
× ln

 �

�x1 − x2

�

�

a

!

,

(3.17)
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when |x1−x2|
a
� 1. This large

�

�x1 − x2

�

� behavior is the signature of a high temperature
rough phase.

Nevertheless, the coupling with in-plane modes tends to stabilize the flat phase. Such
coupling comes from including quadratic terms in the strain tensor. In particular, if
we include only the lowest powers in ui and h we have

ui j =
1

2

�

∂iu j + ∂ jui + ∂ih∂ jh
�

. (3.18)

The mechanical stabilization due to the coupling with in-plane modes can be seen
even in a quasi-harmonic approximation. Let’s consider that the crystal is under
tension. Then, a static deformation configuration is expected at the equilibrium. We
assume that both in-plane and out-of-plane displacements have dynamic components
that add to their static background, so we write ui = ust

i + ud yn
i , h= hst + hd yn. For

simplicity, we assume that the static background is spatially uniform. The dynamics
of in-plane phonon modes are not affected by the presence of such static components,
however, for the flexural modes the harmonic Lagrangian reads now

L =
1

2

∫

d2r
�

ρ
�

ḣd yn
�2
−κ

�

∇2hd yn
�2
−λust

ii ∂ jh
d yn∂ jh

d yn − 2µust
i j∂ih

d yn∂ jh
d yn
�

,

(3.19)

so the Euler-Lagrange equation for hd yn is just

ρḧd yn +κ∇4hd yn −λust
ii∇

2hd yn − 2µust
i j∂i∂ jh

d yn = 0. (3.20)

From this equation we deduce the dispersion relation

ωF
q =

r

κ

ρ

�

�q
�

�

4
+ ust

ii

λ

ρ

�

�q
�

�

2
+

2µ

ρ
ust

i j qiq j . (3.21)

Note that this is enough to stabilize the crystal since the linearization of the dispersion
at low |q| suppresses the logarithmic divergence of

¬

�

n
�

x1
�

− n
�

x2
��2¶, so now

¬

�

n
�

x1
�

− n
�

x2
��2¶ ∼ constant when |x1 − x2|/a� 1. Latter on, when discussing

transport in the presence of strain, we will take an approximate isotropic dispersion
relation of the form

ωq =

r

κ

ρ
|q|4 + ūv2

L |q|
2. (3.22)
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3.3 Electron-phonon coupling

We study now the electron-phonon coupling in the long-wavelength approximation.
From now on, we are going to describe simultaneously both single-layer and bilayer
graphene. Note that as long as we do not deal with optical modes, we may regard
the bilayer graphene as a thick membrane with mass density and elastic constants
twice as high as those for single-layer.[147] On the other hand, the electronic Hamil-
tonian in second quantization notation can be written as H =

∑

kΨ
†
kHkΨk, where

Ψk =
�

ak, bk,
�T , ck = ak, bk (c†

k) annihilate (creates) electronic quasiparticles with
momentum k in sublattice a, b (at different layers in the case of bilayer graphene),
and

Hk = ħhvF

�

0 kx − iky
kx + iky 0

�

(3.23)

in the case of single-layer, whereas for bilayer graphene

Hk =
ħh2

2m

 

0
�

kx − iky

�2

�

kx + iky

�2
0

!

. (3.24)

This is only the effective description around a single valley. Since we neglect inter-
valley scattering, we concentrate only in one valley and we double the degeneracy of
fermionic species, gd = gs × gv = 4.

The electron-phonon coupling may be constructed phenomenologically. For single-
layer graphene (the discussion is similar in bilayer since C6v

∼= D3d) the strain tensor
components transform as indicated in Eq. (3.7). Therefore, two different couplings
must be considered

HA1
= gA1

uiiI , and

HE2
= gE2

��

ux x − uy y

�

σx − 2ux yτzσy

�

. (3.25)

The first coupling is the so called deformation potential, induced by the local con-
traction/dilation of the lattice. The bare deformation potential constant is typically
gA1
≡ g0 ≈ 20− 30 eV.[148] Since we are interested in doped systems, we must take

into account screening by substituting g0 in the Fourier transformed potential with
g0/ε (q), where we take a Thomas-Fermi-like dielectric function

ε (q) = 1+
e2D

�

EF
�

2ε0q
, (3.26)
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with D
�

EF
�

being the density of states at the Fermi level, which reads within the
effective description as

D
�

EF
�

=

(

2EF

πħh2 v2
F

for single-layer graphene,
2m
πħh2 for bilayer graphene.

(3.27)

It is convenient to define g ≡ g0/ε(kF ) for single layer graphene, which gives a
density independent screened deformation potential

g ≈
g0

e2/(πε0ħhvF )
≈

g0

8.75
≈ 2− 3.5 eV. (3.28)

Note that the value just obtained is in complete agreement with recent ab initio
calculations which give g ≈ 3 eV.[158] It will become clear later on that g as defined
in Eq. (3.28) is the relevant deformation potential electron-phonon parameter in
single layer graphene. For bilayer graphene g(q) = g0/ε(q) gives

g(kF )≈
g0

e2m/(πε0ħh2kF )
≈

g0

11.25

p
n≈ (2− 3)

p
n eV, (3.29)

with n in 1012 cm−2. We may then write a q dependent deformation potential electron-
phonon parameter which has the form gM (q) = gq/kF for monolayer graphene, and
gB(q) = għhq/

�

mvF
�

for bilayer.

The second coupling in Eq. (3.25) may be interpreted as gauge potential with opposite
sign at each valley. Microscopically, it comes from changes in the hopping t due to
the displacements of the atoms. In general, the hopping between atoms at positions
rα and rβ is modified (up to first order in the displacements) as

tαβ → tαβ +
∂ tαβ
∂ r

δ
�

�rα − rβ
�

� , (3.30)

where δ
�

�rα − rβ
�

� expresses the change in the distance between α and β sites. Up to
first order in in-plane displacements and second order in out-of-plane displacements
we have

δ
�

�rα − rβ
�

�≈ ~δαβ ·

�

~uα − ~uβ
�

a
+

�

hα − hβ
�2

2a2 . (3.31)

In the continuum approximation we take

~uα − ~uβ ≈
�

~δαβ · ~∂
�

~u,

hα − hβ ≈ ~δαβ · ~∂ h. (3.32)
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Hence, the change in the hopping along the direction ~δ can be written as

δt~δ ≈
β

a2 tδiδ jui j , (3.33)

where β ≡ −∂ ln t/∂ ln a is the Grüneisen parameter associated to the hopping t.
Since at the Dirac points we have

−
∑

~δ

δt~δ × e±iK·~δ ≈
3t

4

�

ux x − uy y ± 2iux y

�

, (3.34)

we obtain the effective gauge field (here e is the electric charge)

A=±
β

2ea

�

ux x − uy y
−2ux y

�

. (3.35)

Note that in both cases the coupling with out-of-plane distortions is quadratic due to
the z→−z symmetry of the system.

Quantizing Fourier transformed displacement fields[149] and introducing usual annihi-
lation and creation operators dν=L,T

q and (dν=L,T
q )† for longitudinal (L) and transverse

(T) in-plane phonons, we can write the q component of the in-plane displacement
as

uL/T
q =

È

ħh
2Mωνq

h

d L/T
q + (d L/T

−q )
†
i

. (3.36)

Similarly, for flexural phonons we introduce the bosonic fields d F
q and (d F

q )
†, and

write the q component of the out-of-plane displacement as

hq =

È

ħh
2MωF

q

h

d F
q + (d

F
−q)

†
i

. (3.37)

The electron-phonon interaction Hamiltonian may then be written either in mono-
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layer or bilayer graphene as

Hep =
∑

k,k′

�

a†
kak′ + b†

k bk′
�

(

∑

ν ,q

V ν1,q

h

dνq + (d
ν
−q)

†
i

δk′,k−q+

+
∑

q,q′
V F

1,q,q′

h

d F
q + (d

F
−q)

†
ih

d F
q′ + (d

F
−q′)

†
i

δk′,k−q−q′







+

+
∑

k,k′







∑

ν ,q

V ν2,qa†
k bk′

h

dνq + (d
ν
−q)

†
i

δk′,k−q +
∑

q,q′
+

+V F
2,q,q′a

†
k bk′

h

aF
q + (a

F
−q)

†
ih

aF
q′ + (a

F
−q′)

†
i

δk′,k−q−q′ +H.C.
o

. (3.38)

For monolayer graphene the matrix elements read

V L
1,q =

g0

ε(q)
iq

È

ħh
2MωL

q

,

V F
1,q,q′ = −

g0

ε(|q+ q′|)
qq′ cos(φq −φq′)

ħh

4M
Æ

ωF
qω

F
q′

,

V L
2,q =

ħhvFβ

2a
iqei2φq

È

ħh
2MωL

q

,

V T
2,q = −

ħhvFβ

2a
qei2φq

È

ħh
2MωT

q

,

V F
2,q,q′ = −

ħhvFβ

4a
qq′ei(φq−φq′ )

ħh

2M
Æ

ωF
qω

F
q′

. (3.39)

Note that V T
1,q = 0 (see also Refs. 150, 151). In the case of bilayer graphene the

matrix elements are the same except for the gauge potential coupling, becoming
dependent on fermionic momenta k and k′. This is due to the fact that the microscopic
origin of this coupling resides in changes in the intra-layer hopping t as we have
seen, whereas the operator associated to different sublattices are also associated
to different layers. On the other hand, the changes in the inter-layer hopping for
acoustic deformations are in principle negligible. We may obtain straightforwardly
the couplings of Eq. (3.38) by the minimal coupling prescription in Eq. (3.24) and
expanding up to linear order in the in-plane displacements and second order in the
out of plane displacements. Thus, the matrix elements take exactly the same form as
in Eq. (3.39) with the replacement vF → ħh(ke−iθk + k′e−iθk′ )/(2m).
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3.4 Variational approach to semi-classical transport

Our aim here is to study the T dependent resistivity as a result of the electron-
phonon interaction derived in the previous section. We assume the doped regime
EF � ħh/τ, where 1/τ is the characteristic electronic scattering rate (due to phonons,
disorder, etc). The doped regime immediately implies k−1

F � vFτ ≡ `, where ` is
the characteristic mean-free path, thus justifying the use of Boltzmann transport
theory (even though graphene’s quasiparticles are chiral the semiclassical approach
still holds away from the Dirac point[152,153]).

The Boltzmann equation is an integro-deferential equation for the steady state prob-
ability distribution fk.[154] It can be generally written as

ṙ · ∇r fk + k̇ · ∇k fk = ḟk
�

�

scatt, (3.40)

where the terms on the left hand side are due to, respectively, diffusion and exter-
nal fields, while on the right hand side scattering provides the required balance at
the steady state. The Boltzmann equation is quite intractable in practice, and its
linearized version is used instead,

ṙ · ∇r f (0)k + k̇ · ∇k f (0)k = δ ḟk
�

�

scatt, (3.41)

where δ ḟk
�

�

scatt is the linearized collision integral. Expanding the distribution proba-

bility around its equilibrium value f (0)k = 1/{exp[(εk −µ)/kB T] + 1},

fk = f (0)k −
∂ f (0)k

∂ εk
Φk, (3.42)

and using the equilibrium property that ḟ (0)k

�

�

scatt = 0, it can be seen that δ ḟk
�

�

scatt is
linear in Φk, see Appendix B, and that it can be written as a linear application in
terms of the linear scattering operator Pk,

δ ḟk
�

�

scatt = PkΦk ≡−
∑

k1,...,kn

Pk,k1,...,kn

�

Φk ±Φk1
· · · ±Φkn

�

, (3.43)

where Pk,k1,...,kn
is a generalized transition rate per unit energy.[154] Writing the lin-

earized Boltzmann equation, Eq. (3.41), in the form

Xk = PkΦk,

and defining the inner products,

〈Φ, X 〉=
∑

k

Φk

�

ṙ · ∇r f (0)k + k̇ · ∇k f (0)k

�

, (3.44)
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and

〈Φ, PΦ〉=
∑

k,k1,...,kn

ΦkPk,k1,...,kn

�

Φk ±Φk1
· · · ±Φkn

�

=

=
1

(n+ 1)

∑

k,k1,...,kn

�

Φk ±Φk1
· · · ±Φkn

�2
Pk,k1,...,kn

, (3.45)

the variational principle asserts that of all functions Φk satisfying 〈Φ, X 〉= 〈Φ, PΦ〉, the
solution of the linearized Boltzmann equation gives to the quantity 〈Φ, PΦ〉/{〈Φ, X 〉}2
its minimum value.[154] In particular, the resistivity % can be written as

% =
A
gd
×

〈Φ, PΦ〉

{
¬

Φ, X (E = 1,∇r f (0) = 0)
¶

}2
, (3.46)

being thus expected to be a minimum for the right solution.[154] HereA is the area
of the graphene sample. The quantity X (E = 1,∇r f (0) = 0) refers to the left hand
side of Eq. (3.41) in a unit electric field and no spatial gradients (for example, zero
temperature gradient). It is easy to show that 〈Φ, X 〉= E · J, where

J=
∑

k

evkΦk

∂ f (0)k

∂ εk
(3.47)

is the current per non-degenerate mode (per spin and valley in monolayer and bilayer
graphene).

A well known solution to the Boltzmann equation exists when scattering is elastic, the
Fermi surface isotropic, and the transition rate can be written as Pk,k′ =P (k,θk,k′),
where θk,k′ = θk − θk′ is the angle between k and k′.[154] Under these conditions the
solution reads,

Φk = vk ·
�

eE−
εk

T
∇T
�

τ(k),

where τ(k) is the isotropic scattering rate, and we have written∇r f (0)k = ∂ f (0)k /∂ εk∇T .
Clearly, the later solution for Φk can be cast in the form Φk ∝ k · u,[154] where u is a
unit vector in the direction of the applied fields. So, in more complicated cases where
there is a departure from the isotropic conditions and/or from elastic scattering, it is
a good starting point to use Eq. (3.46) with Φk ∝ k · u to get an approximate (from
above) result for the resistivity. Note that the coefficient multiplying k · u is unim-
portant as it cancels out. This variational method is equivalent to a linear response
Kubo-Nakano-Mori approach with the perturbation inducing scattering treated in the
Born approximation.[155]
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3.5 Phonon limited resistivity

We use the variational method to get the T dependent resistivity in monolayer and
bilayer graphene due to scattering by acoustic phonons. Using the quasi-elastic ap-
proximation, δ ḟk

�

�

scatt can indeed be cast in the form of Eq. (3.43) (see Appendix B
for details),

δ ḟk
�

�

scatt =−
∑

k′
Pk,k′

�

Φk −Φk′
�

, (3.48)

where for scattering by one in-plane phonon

Pk,k′ =
2π

ħh

∑

q,ν

wν(q,k,k′)ωνq
∂ nq

∂ωνq

∂ f (0)k

∂ εk
δk,k′+qδ(εk − εk′), (3.49)

and for scattering by two flexural phonons

Pk,k′ =−
2π

ħh2 kB T
∂ f (0)k

∂ εk

∑

q,q′
wF (q,q′,k,k′)

∂ nq

∂ωF
q

∂ nq′

∂ωF
q′
×

×

 

ωF
q +ω

F
q′

1+ nq + nq′
−
ωF

q −ω
F
q′

nq − nq′

!

δk,k′+q+q′δ(εk − εk′), (3.50)

with nq = 1/[exp(ħhωq/kB T) − 1] the equilibrium phonon distribution. The ker-
nel quantities wν(q,k,k′) and wF (q,q′,k,k′) are related to the matrix elements in
Eq. (3.39). For monolayer graphene in the case of one phonon process we have

wν(q,k,k′)≈
�

�

�V ν1,q

�

�

�

2
(1+ cosθk,k′) +

�

�

�V ν2,q

�

�

�

2
, (3.51)

with a similar expression for two phonon processes wF (q,q′,k,k′) with V νq → V F
q,q′ .

For bilayer graphene,

wν(q,k,k′)≈
�

�

�V ν1,q

�

�

�

2
(1+ cos 2θk,k′) +

�

�

�Ṽ ν2,q

�

�

�

2 �
k2 + k′2 + 2kk′ cosθk,k′

�

(3.52)

for one phonon processes, where Ṽ2 means the matrix elements given in Eq. (3.39)
for the gauge potential without the term (ke−iθk + k′e−iθk′ ), and as before a similar
expression for two phonon processes wF (q,q′,k,k′) with V νq → V F

q,q′ .

By using the setting given above the resistivity is conveniently written as

% =
A
gd

1
2

∑

k,k′
�

Φk −Φk′
�2Pk,k′

�

�

�

�

e
∑

kΦkvk
∂ f (0)k

∂ εk

�

�

�

�

2 ≈
A
8e2

∫

dkdk′ (K · u)2Pk,k′
�

�

�

�

∫

dkk · uvk
∂ f (0)k

∂ εk

�

�

�

�

2 , (3.53)
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Figure 3.1: Kinematics of electron scattering by: (a) in-plane phonons, (b) non-
strained flexural and (c) strained flexural phonons.

where we changed from summation over k−space to integration, and defined K =
k−k′. The integral in the denominator can be done immediately assuming εF � kB T .
The result reads the same for monolayer and bilayer graphene,

�

�

�

�

�

∫

dkk · uvk

∂ f (0)k

∂ εk

�

�

�

�

�

≈
πk2

F

ħh
, (3.54)

and hence the resistivity reads

% =
V ħh2

8π2e2k4
F

∫

dkdk′ (K · u)2Pk,k′ . (3.55)

In order to proceed analytically with the remaining integral we have to specify the T
regime. For each scattering process (one or two phonon scattering) we may identify
two different T regimes, low and high T , related to whether only small angle or every
angle are available to scatter from

�

�k
�

to
�

�k′
�

. Recall that since we are dealing with
quasielastic scattering both k and k′ sit on the Fermi circle, see Fig. 3.1, and

�

�k
�

and
�

�k′
�

are adiabatically connected through a rotation of θk,k′ in momentum space.
Large angle scattering is only possible if phonons with high enough momentum are
available to scatter electrons. The characteristic Bloch-Grüneisen temperature TBG
separating the two regimes may thus be set by the minimum phonon energy necessary
to have full back scattering,

kB TBG = ħhω2kF
. (3.56)

For scattering by in-plane phonons TBG takes the value

T (L)BG ≈ 57
p

n K and T (T )BG ≈ 38
p

n K, (3.57)
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for longitudinal and transverse phonons respectively, with density n in units of
1012 cm−2. When scattering is by two non-strained flexural phonons, the crossover
between low and high T regimes is given by

TBG ≈ 0.1n K, (3.58)

with n again measured in 1012 cm−2, while in the presence of strain, using the approx-
imated strained flexural phonon dispersion ωq ≈ q

p

α2q2 + ūv2
L , with α =

p

κ/ρ

and vL =
p

�

λ+ 2µ
�

/ρ, we get

TBG ' 28
p

nū K. (3.59)

It is obvious from Eqs. (3.58) and (3.59) that the high-T regime is the relevant one
for flexural phonon scattering.

3.5.1 In-plane phonons

A sketch of the scattering process in momentum space involving one phonon is
shown in Fig. 3.1(a). The monolayer case has been discussed extensively in the litera-
ture.[150,151,156,157] Here we discuss both monolayer and bilayer cases simultaneously.
Inserting Eq. (3.49) for Pk,k′ into Eq. (3.55) we get

%in =
Aħh

4πe2k4
F

∫

dkdk′ (K · u)2 ×
∑

ν

wν(K,k,k′)ωνK
∂ n(0)K

∂ωνK

∂ f (0)k

∂ εk
δ(εk − εk′), (3.60)

where we have already performed the sum over q. We can simplify the integral above
by integrating over k and k′ noting the presence of δ(εk−εk′) and ∂ fk

∂ εk
≈−δ(εF−εk).

The result reads

%in ≈−
Aħh

4πe2k4
F

×
∫

dθkdθk′ (K · u)
2
∑

ν

w̃ν(K, kF êk, kF êk′)ω
ν
K

∂ n(0)K

∂ωνK
, (3.61)

with K= kF (êk − êk′) and the modified kernel defined as

w̃ν(K, kF êk, kF êk′) = wν(K, kF êk, kF êk′)×







k2
F

ħh2 v2
F

for monolayer,
m2

ħh4 for bilayer.
(3.62)

Making use of the matrix elements in Eq. (3.39) we get

w̃ν(K, kF êk, kF êk′)≡ w̃ν(K) =

�

Dν(K/kF )
�2 k2

F K2

2Aρv2
Fħhω

ν
K

, (3.63)
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where we have used the relation K = 2kF sin(θk,k′/2), and we define

Dν(y) =







�

2g2 y2
�

1− y2

4

�

δν L +
ħh2 v2

Fβ
2

4a2

�1/2

for monolayer,
�

2g2 y2
�

1− y2

2

�2
δν L +

ħh2 v2
Fβ

2

4a2

�

1− y2

4

�
�1/2

for bilayer.
(3.64)

The kernel depends only on θk,k′ , or equivalently K (the norm of K), as is the case
of the rest of factors in the integrand of Eq. (3.61) but for (K · u)2. The latter can
be written as (K · u)2 = K2 cos2 γ, and the angular integration is then conveniently
done by integrating over γ keeping θk,k′ = θk − θk′ ≡ θ constant, and integrate

over θ afterward, or equivalently K . Using dθ = dK/
p

k2
F − K2/4, the resistivity

becomes

%in ≈−
Aħh

2e2k4
F

∑

ν

∫ 2kF

0

dK
K2w̃ν(K)ωνK
p

k2
F − K2/4

∂ n(0)K

∂ωνK
. (3.65)

Inserting Eq. (3.63) for the kernel w̃ν(K) into Eq. (3.65) we readily obtain

%in ≈
8ħhk2

F

e2ρv2
F kB T

∑

ν

∫ 1

0

d x [Dν(2x)]2
x4

p

1− x2

exzν

(exzν − 1)2
, (3.66)

where zν = ħhων2kF
/kB T . Typical T dependent resistivity due to scattering by in-plane

phonons is shown in Fig. 5.1. In agreement with the analytical results that we are
going to disclose next, there is no qualitative difference between monolayer and
bilayer graphene.

In the low T regime, T � TBG , we have zν � 1, so that the integrand in Eq. (3.66)
is only contributing significantly for x � 1. Since we have

Dν(y � 1) =

�

2g2 y2δν L +
ħh2v2

Fβ
2

4a2

�1/2

, (3.67)

the resistivity reduces to

%in ≈
∑

ν

�

g2 3Γ(6)ζ(6)
Γ(4)ζ(4)

�

T

TBG

�2

δν L +
ħh2v2

Fβ
2

4a2

�

×
Γ(4)ζ(4)(kB T )4

e2ρħh4v2
F v5
ν k3

F

, (3.68)

where Γ(n) = (n − 1)! is the gamma function and ζ(n) is the Riemann zeta func-
tion. The result is valid both for monolayer and bilayer cases. We have obtained the
expected T 4 behavior at low T for coupling through gauge potential, which is the
2–dimensional analogue of the T 5 Bloch theory in 3–dimensional metals.[154,156] The
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Figure 3.2: Resistivity due to scattering by in-plane phonons as a function of temper-
ature (in blue, monolayer graphene, in red, bilayer). In both cases n = 1012 cm−2

and we take g = 3 eV and β = 3.

scalar potential contribution comes proportional to T 6 due to screening. It can be ne-
glected in the low T regime; even though 3Γ(6)ζ(6)/[Γ(4)ζ(4)]≈ 50, it is strongly
suppressed by T/TBG � 1.

In the high T regime, T � TBG , the inequality zν � 1 holds, so ezν x/(ezν x − 1)2 ≈
1/(zν x) in Eq. (3.66). The usual linear in T resistivity for one phonon scattering is
then recovered,

%in ≈
πkB T

4ħhρe2v2
L v2

F

×







2g2 + ħh
2 v2

Fβ
2

2a2

v2
L

v̄2 for monolayer,

7g2 + ħh
2 v2

Fβ
2

8a2

v2
L

v̄2 for bilayer,
(3.69)

where 1/v̄2 = 1/v2
L + 1/v2

T . Note that, at odds with the low T regime, now the scalar
potential contribution is higher than the gauge potential one for the typical coupling
values discussed before.

A final remark regarding the temperature dependent resistivity due to in-plane
phonons has to do with the value of the electron-phonon coupling parameters β
and g. While β is expected to be restricted to the range β ∼ 2 − 3, the value of
the deformation potential parameter g is debated in the literature. Phenomenology
gives g ∼ 10− 30 eV;[148,156] recent ab initio calculations provide a much smaller
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value g ∼ 3 eV.[158] On the other hand, experiments seem to confirm the higher
values, giving g ∼ 15− 25 eV.[139,159] Our claim here is that all these values make
sense, if properly interpreted: phenomenology gives essentially unscreened deforma-
tion potential, which should take values of O (10) eV; screening effects suppress the
deformation potential to O (1) eV, as we have seen within the Thomas Fermi approx-
imation, in good agreement with ab initio results where screening is built in; the fact
that transport experiments give a much higher deformation potential is a strong in-
dication that phonon scattering through gauge potential, usually not included when
fitting the data,[139,159] is at work. Indeed, using the monolayer version of Eq. (3.69),
we readily find that the fitting quantity in Refs. 139 and 159 should be replaced
by

D̃ =

�

2g2 +
v2

Fħh
2β2

2a2

�

1+
v2

L

v2
T

��1/2

, (3.70)

which keeping g ∼ 3 eV takes values D̃ ∼ 10 − 20 eV for β ∼ 2 − 3, in excellent
agreement with experiments. Moreover, since the gauge potential is not screened
it provides a natural explanation for the T 4 resistivity behavior recently reported
at low T in Ref. 159, where the expected T 6 contribution due to scalar potential is
absent.[160]

3.5.2 Flexural phonons

We analyze now the case of flexural phonons. Inserting Eq. (3.50) for Pk,k′ into
Eq. (3.55) we get

%F =−
A kB T

4πe2k4
F

∫

dkdk′ (K · u)2
∑

q

wF (q,K− q,k,k′)×

×
∂ nq

∂ωF
q

∂ nq′

∂ωF
q′

∂ f (0)k

∂ εk
δ(εk − εk′)

 

ωF
q +ω

F
K−q

1+ nq + nK−q
−
ωF

q −ω
F
K−q

nq − nK−q

!

, (3.71)

where we have already performed the sum over q′. We can simplify the integral above
by integrating over k and k′ noting the presence of δ(εk−εk′) and ∂ fk

∂ εk
≈−δ(εF−εk).

The result reads,

%F ≈
A kB T

4πe2k4
F

∫

dθkdθk′ (K · u)
2
∑

q

w̃F (q,K− q, kF êk, kF êk′)×

×
∂ nq

∂ωF
q

∂ nK−q

∂ωF
K−q

 

ωF
q +ω

F
K−q

1+ nq + nK−q
−
ωF

q −ω
F
K−q

nq − nK−q

!

. (3.72)
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The modified kernel is defined as before

w̃F (K, kF êk, kF êk′) = wν(K, kF êk, kF êk′)×







k2
F

ħh2 v2
F

for monolayer,
m2

ħh4 for biayer,
(3.73)

with V νq → V F
q,q′ . Inserting the matrix elements in Eq. (3.39) it takes the explicit

form

w̃F (q,K− q, kF êk, kF êk′)≡ w̃F (q, K , |K− q|) =
�

DF (K/kF )
�2 q2k2

F |K− q|2

24A 2ρ2v2
Fω

F
qω

F
|K−q|

, (3.74)

where we have used the relation K = 2kF sin(θk,k′/2), and DF (x) is given by

DF (y) =







�

g2 y2
�

1− y2

4

�

+ ħh
2 v2

Fβ
2

4a2

�1/2

for monolayer,
�

g2 y2
�

1− y2

2

�2
+ ħh

2 v2
Fβ

2

4a2

�

1− y2

4

�
�1/2

for bilayer.
(3.75)

In deriving Eq. (3.74) we have used cos2(φ − φ′) = [1 + cos(2φ − 2φ′)]/2 and
dropped the oscillatory part. The sum over q can be replaced by an integral,

∑

q→
A
(2π)2

∫

qdqdφ, and owing to the relation Q2 ≡ |K−q|2 = K2+q2−2qK cosφ we can
write the resistivity as

%F ≈
A 2kB T

8π3e2k4
F

∫

dθkdθk′ (K · u)
2

∫ ∞

0

dq q
∂ nq

∂ωF
q

×

×
∫ |K+q|

|K−q|
dQ

Qw̃F (q, K ,Q)
Ç

q2K2 −
�

K2 + q2 −Q2
�2
/4

∂ nQ

∂ωF
Q

 

ωF
q +ω

F
Q

1+ nq + nQ
−
ωF

q −ω
F
Q

nq − nQ

!

,

(3.76)

where we have used dφ = dQQ/

Ç

q2K2 −
�

K2 + q2 −Q2
�2
/4. As before, the an-

gular integration over θk and θk′ is conveniently done by integrating over γ, with
(K · u)2 = K2 cos2 γ, keeping θk,k′ = θk−θk′ ≡ θ and q and |K− q| ≡Q constant, and

75



3. E L E C T R O N - P H O N O N C O U P L I N G A N D E L E C T R O N M O B I L I T Y I N S U S P E N D E D

G R A P H E N E

integrate over θ afterward, q and Q. The resistivity may then be written as

%F ≈
kB T

26π2e2ρ2v2
F k2

F

∫ 2kF

0

dK

�

DF (K/kF )
�2 K2

p

k2
F − K2/4

×

×
∫ ∞

0

dq
q3

ωF
q

∂ nq

∂ωF
q

∫ |K+q|

|K−q|
dQ

Q3

ωF
Q

Ç

q2K2 −
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K2 + q2 −Q2
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/4

×

×
∂ nQ

∂ωF
Q

 

ωF
q +ω

F
Q

1+ nq + nQ
−
ωF

q −ω
F
Q

nq − nQ

!

, (3.77)

where dθ = dK/
p

k2
F − K2/4 has been used, and we used Eq. (3.74) for the ker-

nel.

In the absence of strain the dispersion of flexural phonons reads ωF
q = αq2. Af-

ter rescaling momentum as x → x̃ = x(ħhα/kB T)1/2 we can rewrite the resistivity
as

%F ≈
(kB T )2

26π2ħhe2ρ2v2
F k2

Fα
4

∫ 2k̃F

0

dK̃
[DF (K̃/k̃F )]2K̃2

p

k̃2
F − K̃2/4

×

×
∫ ∞

0

dq̃q̃nq̃(nq̃ + 1)

∫ |K̃+q̃|

|K̃−q̃|
dQ̃

Q̃nQ̃(nQ̃ + 1)
Ç

q̃2K̃2 −
�

K̃2 + q̃2 − Q̃2
�2
/4

×
�

q̃2 + Q̃2

1+ nq̃ + nQ̃
−

q̃2 − Q̃2

nq̃ − nQ̃

�

.

(3.78)

The integral over Q̃ is infrared divergent, dominated by the contribution K̃ ∼ q̃.
Defining the small quantity δx = |K̃ − q̃|, and noting that for Q̃� 1 we have nQ̃ ∼
1/Q̃2 � 1, it is possible to identify the dominant contribution in the Q̃ integral
as

∫ |K̃+q̃|

|K̃−q̃|
dQ̃

Q̃nQ̃(nQ̃ + 1)
Ç

q̃2K̃2 −
�

K̃2 + q̃2 − Q̃2
�2
/4

×
�

q̃2 + Q̃2

1+ nq̃ + nQ̃
−

q̃2 − Q̃2

nq̃ − nQ̃

�

∼ 2K̃2

∫ 2K̃

δx

dQ̃
nQ̃ + 1

K̃
∼

2K̃

δx
.

It is now obvious that the q̃ integral has a logarithmic divergence for q̃ ∼ K̃ . Note,
however, that in the present theory phonons have an infrared cutoff, so that min |K̃−
q̃| = q̃c , where q̃c � 1 is either due to strain or anharmonic effects. The dominant
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Figure 3.3: Resistivity due to scattering by out-of-plane phonons as a function of
temperature (in blue, monolayer graphene, in red, bilayer). The logarithmic factor
in Eq. (3.79) is dropped. Dashed lines show resistivity due to in-pIane phonons,
previously discussed. In both cases n= 1012 cm−2 and we take g = 3 eV and β = 3.

contribution to the q̃ integral is then coming from the maximum of 1/|K̃ − q̃|, from
which we obtain

2K̃

∫ ∞

0

dq̃ q̃nq̃(nq̃ + 1)
1

|q̃− K̃ |
∼ −2πK̃2nK̃(nK̃ + 1) ln(q̃c).

The resistivity may finally be written as a simple integral over K̃ . Expressed in dimen-
sionless variables, we just have

%F ≈
ħhk2

F

2πe2ρ2v2
Fα

2
ln

�

kB T

ħhαq2
c

�
∫ 1

0

d x
[DF (2x)]2
p

1− x2

x4ezx2

(ezx2 − 1)2
, (3.79)

where z = ħhωF
2kF
/kB T . The numerical evaluation of this equation is shown in Fig. 3.3.

As before, there are not substantial differences between monolayer and bilayer cases.
The logarithmic correction, expected to be of order unity in the relevant T range, has
been ignored. Scattering by flexural phonons dominates the contribution to resistivity
in non-strained samples at both low and high T , except for the crossover region for
in-plane phonons where T ∼ TBG .

In Fig. 3.1(b) a sketch of the two phonon scattering process in momentum space
is provided. It shows that one of the two phonons involved in the scattering event
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always has momentum q′ → 0. This is a consequence of the quadratic dispersion
of flexural phonons, which leads to a divergent number of modes with momentum
q′ → 0.[2] This divergence is responsible for the logarithmic factor in Eq. (3.79),
which stems from the existence of an infrared cutoff qc for the dispersion. This cutoff
is to be identified with the onset of anharmonic effects,[161] or unavoidable built in
strain.

In the low T regime, T � TBG , one has z� 1, so that the integrand in Eq. (3.79) is
only contributing for x � 1. The generalized electron-phonon coupling becomes

DF (y � 1)≈
�

g2 y2 +
ħh2v2

Fβ
2

4a2

�1/2

, (3.80)

and the resistivity is then

%F ≈
�

g2 6Γ(6)ζ(6)
Γ(4)ζ(4)

�

T

TBG

�2

+
ħh2v2

Fβ
2

4a2

�

×
Γ(4)ζ(4)ħhk2

F

24πe2ρ2v2
Fα

2

�

kB T

ħhαk2
F

�5/2

ln

�

kB T

ħhαq2
c

�

.

(3.81)

A similar result has been derived in Ref. 150. Owing to the same arguments for
one phonon scattering we can neglect the deformation potential contribution at low
T .

At high T , i.e. T � TBG , we have z� 1, so that exp(zx2)/[exp(zx2)−1]2 ≈ 1/(zx2)
in Eq. (3.79). The bilayer graphene resistivity becomes

%F ≈
(kB T )2

64ħhe2ρ2v2
Fα

4k2
F

ln

�

kB T

ħhαq2
c

�

×







g2

2
+ ħh

2 v2
Fβ

2

4a2 for monolayer,

g2 + ħh
2 v2

Fβ
2

8a2 for bilayer.
(3.82)

We have obtained that the resistivity due to flexural phonons is proportional to T 2/n,
which implies mobility independent of the carrier density n. A similar result has been
obtained in the context of microscopic ripples in graphene.[144,162]

Strain changes completely this picture. Applying strain breaks the membrane rota-
tional symmetry inducing linear dispersion at low momentum, as we have seen. A
new energy scale appears in the problem,

ωF
q∗ =
p

2ūv2
L/α≈ 104ū(K), (3.83)

separating two regimes: linear dispersion below and quadratic dispersion above. The
associated momentum scale, q∗ =

p
ūvL/α ≈ 4.5

p
ū A−1, together with kF and the

thermal momentum qT given by ħhωF
qT
= kB T , define all regimes where analytic
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treatment can be employed. In particular, in the low T regime where qT � kF we
may always take q∗� qT and use a linear dispersion for flexural phonons; otherwise
the non strained case considered previously would be the appropriate starting point.
In the high T regime we can distinguish between low strain for q∗ � qT and high
strain for q∗ � qT . Note that at high T relevant phonons scattering electrons have
momentum q in the range kF ® q ® qT . Therefore, when strain is present in the high
T regime we may always assume q∗� kF ; the opposite limit, q∗� kF , would again
be identified with the non-strained case considered previously.

The resistivity due to strained flexural phonons can be cast in the form of a triple
integral over rescaled momenta,

%F ≈
(kB T )6

26π2ħh5e2ρ2v2
F v8

L ū4k2
F

∫ 2k̃F

0

dK̃
[DF (K̃/k̃F )]2K̃2

p

k̃2
F − K̃2/4

∫ ∞

0

dq̃
q̃3

ωq̃
nq̃(nq̃ + 1)×

×
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|K̃−q̃|
dQ̃

Q̃3nQ̃(nQ̃ + 1)

ωQ̃

Ç

q̃2K̃2 −
�

K̃2 + q̃2 − Q̃2
�2
/4

�

ωq̃ +ωQ̃

1+ nq̃ + nQ̃
−
ωq̃ −ωQ̃

nq̃ − nQ̃

�

, (3.84)

where the rescaled dispersion reads ω x̃ ≈
p

γ2 x̃4 + x̃2, with γ =
p

2ωF
qT
/ωF

q∗ . The
kinematics of the scattering process is schematically shown in Fig. 3.1(c).

In the low T case, T � TBG , we have only small angle scattering with K � kF . The
argument of the generalized electron-phonon coupling becomes small, K/kF � 1,
and it can be written as before, Eq. (3.80). Since the inequality qT � kF , q∗ holds,
relevant phonons have linear dispersion ωF

q ≈
p

ūvLq and the rescaled Fermi momen-

tum obeys k̃F ≈ kF/qT � 1. We may take K̃ →∞ as the upper limit in the K̃ integral
in Eq. (3.84), and the resistivity is then approximated by

%F ≈
�

g2
�

qT

kF

�2

K4 +
ħh2v2

Fβ
2

4a2 K2

�

(kB T )7

26π2ħh6e2ρ2v2
F v9

L ū9/2k3
F

, (3.85)

where

Kn =

∫ ∞

0

dK̃ K̃n

∫ ∞

0

dq̃ q2nq̃(nq̃ + 1)×
∫ |K̃+q̃|

|K̃−q̃|
dQ̃

Q̃2nQ̃(nQ̃ + 1)
�

q̃+Q̃
1+nq̃+nQ̃

− q̃−Q̃
nq̃−nQ̃

�

Ç

q̃2K̃2 −
�

K̃2 + q̃2 − Q̃2
�2
/4

.

(3.86)

It can be shown numerically that K2 ≈ 4485 and K4 ≈ 496850. The large ratio
K4/K2� 1 is, however, compensated by qT/kF � 1 and the fact that g < ħhvFβ/(2a).
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As in the case of scattering by in-plane phonons, also here the gauge potential contri-
bution to resistivity dominates at low T .

Now we consider the high T regime, T � TBG . At odds with the non-strained case,
see Fig. 3.1(b), now phonons with momentum q in the range kF ® q ® qT provide
most of the scattering. We start by writing the Q̃ integral in Eq. (3.84) as

I (γ, K̃ , q̃)≡
∫ |K̃+q̃|

|K̃−q̃|
dQ̃

Q̃3nQ̃(nQ̃ + 1)
Ç

q̃2K̃2 −
�

K̃2 + q̃2 − Q̃2
�2
/4

×

×
1

p

γ2Q̃4 + Q̃2





p

γ2q̃4 + q̃2 +
p

γ2Q̃4 + Q̃2

1+ nq̃ + nQ̃
− −

p

γ2q̃4 + q̃2 −
p

γ2Q̃4 + Q̃2

nq̃ − nQ̃



 ,

(3.87)

with γ =
p

2ωF
qT
/ωF

q∗ . Having in mind that high T implies K̃ � 1, we consider the
integration in Eq. (3.87) in two limiting cases: when q̃ ® K̃ � 1 and for q̃� K̃ . In
the former case, since q̃� 1 and Q̃� 1 hold, we can linearize the dispersion relation
and approximate the Bose-Einstein distribution function by nq̃ ≈ 1/q̃ and nQ̃ ≈ 1/Q̃.
The integral over Q̃ in Eq. (3.87) may then be approximated by

I (γ, K̃ , q̃)≈
∫ |K̃+q̃|

|K̃−q̃|
dQ̃

2q̃Q̃
Ç

q̃2K̃2 −
�

K̃2 + q̃2 − Q̃2
�2
/4

, (3.88)

and the integral can be done as

I (γ, K̃ , q̃)≈
∫ |K̃+q̃|

|K̃−q̃|
dQ̃

4q̃Q̃
p

Y (q̃, Q̃, K̃)
= 2q̃ arctan





q̃2 + K̃2 − Q̃2

p

Y (q̃, Q̃, K̃)





|K̃+q̃|

|K̃−q̃|

= 2πq̃ ≡ I (q̃),

(3.89)

where we have defined

Y (q̃, Q̃, K̃) =−(q̃− K̃ − Q̃)(q̃− K̃ + Q̃)(q̃+ K̃ − Q̃)(q̃+ K̃ + Q̃). (3.90)

On the other hand, for q̃� K̃ the integration region is concentrated around q̃. We may
then write the integral in Eq. (3.87) as a slowly varying function, which we can take
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out of the integral, multiplied by an integral of the form of that in Eq. (3.88),

I (γ, K̃ , q̃)≈
q̃2nq̃(nq̃ + 1)
p

γ2q̃4 + q̃2


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2
p
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

× (3.91)

×
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≈ (3.92)
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2
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+

1

nq̃(nq̃ + 1)



≡ I (γ, q̃). (3.93)

Since for q̃ ® K̃ the later result reduces to 2πq̃, as in Eq. (3.89), we can use I (γ, q̃) in
Eq. (3.93) to approximate the Q̃ integral, Eq. (3.87), in the full region q̃ ® K̃ � 1 to
q̃� K̃ . This has been tested numerically to be a good approximation as long as K̃ � 1.
The q̃ integral in Eq. (3.84) may then be cast in the K̃ independent form

G (γ) =
∫ ∞

0

dq̃
q̃5n2

q̃(nq̃ + 1)2
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2
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+

1
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

 , (3.94)

being easily evaluated numerically. The resistivity can then be written as

%F ≈
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for bilayer.

(3.95)

When γ � 1, or equivalently qT � q∗ (high strain), the function G (γ) behaves as
G (γ� 1) ≈ 18ζ(3)− 93ζ(5)/8. For γ� 1, or equivalently qT � q∗ (small strain),
it gives G (γ � 1) ≈ 1/γ2. In these asymptotic regimes one can obtain analytic
expressions for the resistivity in Eq. (3.95). For monolayer graphene we have:

%F ≈
�

2g2 +
ħh2v2

Fβ
2

a2

�

1

27ħh3e2v2
F

×







�

18ζ(3)− 93
8
ζ(5)

�

(kB T )4

ρ2 v6
L ū3 for kF � qT � q∗,

ħh2(kB T )2

ρκv2
L ū

for kF � q∗� qT .
.

(3.96)

Eq. (3.96) also holds for bilayer graphene with
�

2g2 + ħh
2 v2

Fβ
2

a2

�

→
�

7g2 + ħh
2 v2

Fβ
2

4a2

�

.
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3.5.3 Asymptotic behaviors

Scattering by in-plane and flexural phonons are always at work simultaneously. How-
ever, the two mechanisms provide completely different T dependent resistivity, and
therefore we expect them to dominate at different temperature regimes.

When strain is absent, scattering by flexural phonons dominate. Using Eqs. (3.69)
and (3.82) valid in the high T regime we get

%F

%in
≈

KB T
�

λ+ 2µ
�

πκ2k2
F

, (3.97)

We expect a crossover between in-plane to flexural phonon dominated scattering
given by

T ≈ 1× n[cm−2] K, (3.98)

which is lower than TBG for in-plane phonons, Eq. (3.57), so we deduce that flexural
phonons always dominate at high temperatures. Using the low T approximation for
%in, Eq. (3.68), we obtain the ratio

%F

%in
≈

ħh3ρkF

64κ2Γ(4)ζ(4)
�

KB T
�2 �v−5

L + v−5
T

� , (3.99)

from which we expect a crossover from flexural phonon to in-plane dominated scat-
tering at

Tc ≈ 6× (n[cm−2])1/4 K, (3.100)

as T increases. We conclude that scattering by flexural phonon always dominates
over scattering by in-plane ones, except for the intermediate regime Tc � T � TBG .
This is clearly seen in Fig. 3.3.

The presence of strain changes this picture. It can easily be shown that the crossover
from in-plane to flexural phonon dominated scattering always occurs in the low
strain regime, q∗ � qT . We have seen previously that the crossover temperature T
separating high strain from low strain behavior is given by γ =

p
2ωF

qT
/ωF

q∗ ≈ 1.
Using Eq. (3.83) we get a crossover temperature T ∗ ≈ 104ū K. On the other hand,
using the low strain approximation for the resistivity due to flexural phonons given
in Eq. (3.96) and the resistivity due to in-plane ones in Eq. (3.69) we obtain

%F

%in
≈

kB T

32πκū
. (3.101)
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Figure 3.4: Different asymptotic behaviors of resisitivity in the absence (left) and
at the presence of non-negligible (right) strain. Dashed blue line represents TBG for
in-plane phonons, and dashed blue line corresponds to Tc in both cases.

The corresponding crossover Tc then reads

Tc ≈ 106ū K. (3.102)

Clearly Tc � T ∗, justifying our low strain approximation. An important conclusion
may be drawn. While in the non-strained case scattering by flexural phonons is the
dominant contribution to the resistivity, it can be seen from Eq. (3.102) that applying
small amounts of strain is enough to suppress this contribution at room T . The
asymptotic behaviors of the resisitivity at different regimes of temperature, carrier
density and strain are summarized in Fig. 3.4.

3.6 Comparison with experiments

We compare our theoretical findings with available data from transport experiments
in two-terminal suspended devices provided by A. Geim’s group in Manchester. Typ-
ical changes in the resistance R as a function of the gate induced concentration n
are shown in Fig. 3.5 (a). The devices exhibited µ∼ 1 m2/Vs but, after their in situ
annealing by electric current, µ could reach above 100 m2/Vs at low T . To find the
mobilities µ shown in Fig. 3.5 (b), the standard expression R = R0 + (l/w)(1/neµ)
was used, where R0 describes the contact resistance plus the effect of neutral scat-
terers, and both R0 and µ are assumed n-independent.[138,139] The devices had the
length l ≈ 1−2 µm and the channel width w of 2−4 µm (see the inset in Fig. 3(b)). At
T > 100 K, the above expression describes well the functional form of the experimen-
tal curves, yielding a constant µ over the whole range of accessible n, if R0 is allowed
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where the index i label the phonon mode. Results for the
resistivity in different regimes are shown in Fig. 2.

Experimental results.—We have fabricated two-terminal
suspended devices following the procedures introduced in
Refs. [5,6]. Typical changes in the resistance R as a func-
tion of the gate-induced concentration n are shown in
Fig. 3(a). The as-fabricated devices exhibited !!
1 m2=Vs but, after their in situ annealing by electric
current, ! could reach above 100 m2=V s at low T. To
find !, we have used the standard expression R ¼ R0 þ
ðl=wÞð1=ne!Þ, where R0 describes the contact resistance
plus the effect of neutral scatterers, and both R0 and ! are
assumed n independent [3,4]. Supplementary material pro-
vides examples of using this formula to analyze our ex-
perimental data [23]. Our devices had the length
l & 1–2 !m and the channel width w of 2–4 !m [see
the inset in Fig. 3(b)]. At T > 100 K, the above expression
describes well the functional form of the experimental
curves, yielding a constant ! over the wide range of
accessible n, if we allow R0 to be different for electrons
and holes [23]. This is expected because of an n' p
barrier that appears in the regime of electron doping due
to our p-doping contacts [5,6]. At T < 100 K, the range of
n over which the expression fits the data rapidly narrows.
Below 20 K, we can use it only for n <(1010 cm'2

because at higher n we enter into the ballistic regime (the
mean free path, proportional to !n1=2, becomes compa-
rable to l). In the ballistic regime, graphene’s conductivity
" is no longer proportional to n [5,6] and the use of ! as a
transport parameter has no sense. To make sure that !
extracted over such a narrow range of n is also correct, we
have crosschecked the found ! against the quantum mobi-
lities inferred from the onset of Shubnikov–de Haas oscil-
lations at low T [5,6,24] (also, see [23]). For all our devices
with! ranging from!1–100 m2=Vs, we find good agree-
ment between transport and quantum mobilities at liquid-
helium T, in agreement with earlier conclusions [6,24].

Figure 3(b) shows the T dependence of !. It is well
described by the quadratic dependence 1=! ¼ 1=!ðT !
0Þ þ #T2. Surprisingly, we find the coefficient # to vary by
a factor of !2 for different devices [we measured eight
suspended devices; data for three of them studied in detail
are shown in Fig. 3(b)], which is unexpected for an intrin-
sic phonon contribution. Such variations are however ex-
pected if strain modifies electron-phonon scattering as
discussed below. Note that ! falls down to 4–7 m2=V s
at 200 K [see Fig. 3(b)] and the extrapolation to room T
yields ! of only 2–3 m2=Vs, which is significantly lower
than the values reported in Ref. [6] but in agreement with
Ref. [5]. The disagreement between these two reports can
also be reconciled by a strain suppressing the electron-
phonon scattering.
Discussion.—The density independent ! ) 1=%en in-

dicates that experiments are in the nonstrained regime
where FPs dominate. From Eq. (6) 1=$F ! T2=kF, and
using Eq. (10) %! T2=n. The coefficient # is readily

seen to be given by # & D2k2B
64%e@&2v2

F
lnðkBT@!c

Þ, where the infra-
red cutoff is the only free parameter [25]. Experiment gives
# & 6:19* 10'6 V s=ðmKÞ2 for the sample with lower
mobility and # & 3:32* 10'6 V s=ðmKÞ2 for the higher
mobility one. Neglecting the logarithmic correction of
order unity, the analytic expression gives # & 3*
10'6 V s=ðmKÞ2 without adjustable parameters.
The difference between samples may be understood as

due to a different cutoff under the logarithm due to strain.
In nonstrained samples there is a natural momentum cutoff
qc & 0:1 !A'1 below which the harmonic approximation
breaks down [22]. Strain increases the validity range for the
harmonic approximation, making qc strain dependent, thus
explaining different cutoff at different strain. A rough
estimate of the expected strains is obtained by comparing
qc & 0:1 !A'1 with q+ ¼ vL

ffiffiffi
"u

p
=', which gives "u!

10'4 ' 10'3, consistent with the strain reported in
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FIG. 2 (color online). (a) Contribution to the resistivity from
flexural phonons (blue full line) and from in-plane phonons (red
dashed line). (b) Resistivity for different strain. The in-plane
contribution (broken red line) shows a crossover from a low to a
high—T regime. In both cases, the electronic concentration is
n ¼ 1012 cm'2.

FIG. 3 (color online). (a) Electron transport in suspended
graphene. Graphene resistivity % ¼ Rðw=lÞ as a function of
gate-induced concentration n for T ¼ 5, 10, 25, 50, 100, 150,
and 200 K. (b) Examples of !ðTÞ. The T range was limited by
broadening of the peak beyond the accessible range of n. The
inset shows a scanning electron micrograph of one of our
suspended device. The darker nearly vertical stripe is graphene
suspended below Au contacts. The scale is given by graphene
width of about 1 !m for this particular device.

PRL 105, 266601 (2010) P HY S I CA L R EV I EW LE T T E R S
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31 DECEMBER 2010

266601-3

Figure 3.5: (a) Electron transport in suspended graphene. Graphene resistivity % =
R(w/l) as a function of gate-induced concentration n for T = 5, 10, 25, 50, 100, 150
and 200 K. (b) Examples of µ(T ). The T range was limited by broadening of the peak
beyond the accessible range of n. The inset shows a scanning electron micrograph of
one of our suspended device. The darker nearly vertical stripe is graphene suspended
below Au contacts. The scale is given by graphene width of about 1 µm for this
particular device.

to be different for electrons and holes. This is expected because of an n− p barrier
that appears in the regime of electron doping due to the p-doping contacts.[140,141]

At T < 100 K, the range of n over which the expression fits the data rapidly narrows.
Below 20 K, we can use it only for n < ±1010 cm−2 because at higher n we enter
into the ballistic regime. To make sure that µ extracted over the narrow range of n
is also correct, they crosschecked the found µ against quantum mobilities inferred
from the onset of Shubnikov-de Haas oscillations.[140,141] For all the devices with µ
ranging from ∼ 1− 100 m2/Vs, they found good agreement between transport and
quantum mobilities at liquid-helium T . Fig. 3(b) shows the T dependence of µ. It is
well described by the quadratic dependence 1/µ= 1/µ(T → 0) + γT 2. Surprisingly,
they found the coefficient γ to vary by a factor of ∼ 2 for different devices, which
is unexpected for an intrinsic phonon contribution. Such variations are however ex-
pected if strain modifies electron-phonon scattering as discussed below. Note that µ
falls down to 4− 7 m2/Vs at 200 K (see Fig. 3(b)) and the extrapolation to room T
yields µ of only 2− 3 m2/Vs, which is significantly lower than the values reported in
Ref.141 but in agreement with Ref.140.

The density independent µ indicates that experiments are in the non-strained regime,
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S
H1L

= +

0

Figure 3.6: First order self-energy diagrams. The dashed line represents the phonon
propagator, and the straight line the 4-point vertex. Note that the first diagram is 0
since the q= 0 component of the vertex is integrated out.

where ρF ∝ T 2/n. Here flexural phonons completely dominate and the coefficient γ
defined above is given by

γ≈
D2k2

B

64πeħhκ2v2
F

ln
�

kB T

ħhωc

�

, with D2 =
g2

2
+
ħh2v2

Fβ
2

4a2 , (3.103)

where the infrared cutoff is the only free parameter. Experiment gives γ ≈ 6.19×
10−6 Vs/(mK)2 for the sample with lower mobility and γ≈ 3.32×10−6 Vs/(mK)2 for
the higher mobility one. Neglecting the logarithmic correction of order unity, the ana-
lytic expression gives γ≈ 3× 10−6 Vs/(mK)2 without adjustable parameters.

The difference between the two samples may be understood as due to a differ-
ent cutoff under the logarithm due to strain. In non-strained samples there is a
natural momentum cutoff qc ≈ 0.1 A−1 below which the harmonic approximation
breaks down.[161] Strain increases the validity of harmonic approximation, making
qc strain dependent, thus explaining different cutoff at different strain.[163] Compar-
ing qc ≈ 0.1A−1[161] and q∗ gives u ∼ 10−4 − 10−3 as the strain involved in these
experiments. Such small strain can be present even in slacked samples (where strain
induced by gate and T is negligible) due to, for example, the initial strain induced by
the substrate and remaining unrelaxed under and near metal contacts. A complete
theory would require the treatment of anharmonic effects in transport theory, which
is beyond the scope of this thesis. Here we only analyze perturbatively the effect of
anharmonic effects on the dispersion relation of flexural phonons, and the effect of
strain on such correction.

Since the free energy in Eq. (3.9) is quadratic in the in-plane displacements we can
integrate them out to obtain the effective free-energy for the out-of-plane degree of
freedom[164]

F e f f =
1

2
κ

∫

d xd y
�

∇2h
�2
+

1

2

∫

d xd yRi j,kl∂
ih∂ jh∂ kh∂ lh, (3.104)
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Figure 3.7: The infrared cutoff qc as a function of the applied strain u for monolayer
(in red dashed line) and bilayer graphene (in blue). In both cases T = 300 K.

where the four-point-coupling fourth-order tensor can be written as Ri j,kl =
K0

4
PT

i j PT
kl ,

the operator PT
i j is the transverse projector PT

i j =
�

∇2
�−1

εikε jl∂
k∂ l , and K0 =

4µ(µ+λ)
2µ+λ

. In order to include the effect of strain, we add to Eq. (3.104) the simplest
term which breaks rotational symmetry,

1

2
γ

∫

d xd y (∇h)2 ,

where γ is a sample-dependent coefficient with units of tension which can be re-
lated with the strain of the sample. This approach follows the spirit of the effective
isotropic dispersion relation of flexural phonons introduced before. If we add this
term to the free energy and then we integrate out the in-plane degrees of freedom,
we obtain a new two-point vertex whose contribution to the renormalization of the
bending rigidity is weak and can be neglected.[163] We are going to study the Fourier
component of the height-height correlation function,

G (q) =
¬

|h(q)|2
¶

=
1

Z

∫

Dh(q) |h(q)|2 eSe f f [h(q)],

where obviously Z =
∫

Dh(q) eSe f f
is the partition function, the effective action is

nothing but Se f f [h(q)] =−βF e f f [h(q)], and the Fourier transformed effective free
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energy reads

F e f f [h(q)] =

∫

d2q

(2π)2

�κ

2
q4 +

γ

2
q2
�

|h(q) |2+

+
1

2

∫ 4
∏

i=1

d2qi

(2π)8
qi

1q j
2qk

3ql
4Ri j,kl

�

q1 + q2
�

hq1
hq2

hq3
hq4
δ(2)

�

q1 + q2 + q3 + q4
�

,

(3.105)

where Ri j,kl (k) =
K0

4
PT

i j (k) P
T
i j (k), and the Fourier transformed transverse projector

reads PT
i j (k) = k−2εikε jl k

kkl = δi j −
ki k j

k2 . It is important to note that the q = 0
Fourier component of the transverse projector is integrated out during the Gaussian
integration of the in-plane modes.[164] In the harmonic approximation and in the
absence of strain (γ= 0), the (free) correlator is given by

G(0) (q) =
KB T

κq4 . (3.106)

When we assume a quadratic dispersion relation we are taking this correlator as
the proper one. This approximation is obviously affected by the presence of strain
and anharmonicities, which renormalizes the bending rigidity κ. Then, we can write
G−1 (q)∝ κ (q)q4 and study the renormalization of κ from the Dyson equation,

G−1 (q) =
�

G(0) (q)
�−1
+Σ(q) , (3.107)

where now the correlator in the harmonic theory, including the effect of strain, is
given by

G(0) (q) =
KB T

κq4 + γq2 . (3.108)

In order to estimate the anharmonic effects we compute the first order diagrams
for self-energy, showed in Fig. 3.6. Only the rainbow-like diagram gives a non-zero
contribution,

Σ(1) (q) = 4β

∫

d2k

(2π)2
qiq jqkqlRi j,kl (k)G

(0) (q− k) . (3.109)

Replacing this result in equation Eq. (3.107) we obtain

κ (q) = κ+
γ

q2 + KB T K0

∫

d2k

(2π)2

�

1− (q·k)
2

q2k2

�2

κ|q− k|4 + γ|q− k|2
. (3.110)
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Follow the Ginzburg criterion,[165] we estimate the cutoff of the theory nothing but
comparing each correcting term of Eq. (3.110) with the bare value of κ. As we have
already mentioned, there are two different cutoffs, the one given by strain in the
harmonic approximation, and the other one associated to anharmonic effects. The
first one is given by the second term of Eq. (3.110), and it is nothing but q∗,

q∗ =
Ç

γ

κ
. (3.111)

Identifying this result with the momentum scale defined by Eq. (3.83), we deduce
the relation between γ and u,

γ=
�

λ+ 2µ
�

u.

The cutoff of the harmonic theory is also affected by strain. Following the same
criterion, its value comes from the solution to the equation

κ=
KB T K0

(2π)2 κ

∫ 2π

0

dθ

∫ ∞

0

dk
k sin4 (θ)

�

k2 + q2 − 2kq cos (θ)
�2 +

�

q∗
�2 �k2 + q2 − 2kq cos (θ)

�

.

(3.112)

In the absence of strain, we have qc =
Æ

3KB T K0

16πκ2 , which gives at T = 300 K the value
qc = 0.178 A−1 in the case of monolayer, and qc = 0.126 A−1 in the case of bilayer
graphene. Its dependence on the applied strain is shown in Fig. 3.7. It is clear that
qc decreases as the strain increases, so the unavoidable little strain present in real
samples increases the validity of the harmonic approximation.

3.7 Conclusions

We have studied the effect of acoustic phonon modes on the low energy electronic
excitations of monolayer and bilayer graphene, in particular its effect on charge
transport. According to our analysis, mobilities in suspended samples are strongly
affected by flexural vibrations, which constitutes a very important source of electron
scattering. This mechanism predicts mobilities µ ∝ T 2, independent of the carrier
concentrations, as reported in the experiments. The changes from sample to sample
can be attributed to strain. In general, strain tends to suppress the high density of
flexural phonon modes at low momenta, reducing significantly its contribution to
resistivity. As final remark, note that the data in Ref. 166 show higher mobilities
than those in Fig. 3.5. This suggests that the samples of Ref.166 are probably under
strain.
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4
Effect of flexural phonons on SOC

4.1 Introduction

In this chapter we analyze the SOC-assisted electron interaction with flexural phonons.
The motivation is double. On the one hand, flexural phonon modes constitute an
intrinsic source of spin relaxation.[167] Like in the resisitivity, studied in the previous
chapter, it is natural to think that the interaction with flexural modes constitutes the
main limitation to spin transport in suspended samples. It is important, however, to
determine exactly the form and the strength of such couplings in order to deduce
not only the magnitude but also the parametric dependence of the spin relaxation
times on carrier concentration or temperature. On the other, flexural modes can con-
tribute to enhance the intrinsic Kane-Mele coupling due to the mixing of π and σ
orbitals caused by out-of-plane displacements of the atoms, leading to a first order
contribution. In this sense, phonon modes contribute to stabilize a topological phase,
contrary to the common belief that increasing temperature always destabilizes topo-
logical phases.[168] According to our estimates, the ZO branch contributes remarkably
to the Kane-Mele gap.

The chapter is organized in 4 sections. First we discuss the form of the spin-phonon
couplings on symmetry grounds. Then we estimate the strength of such couplings
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from a tight-binding model. We apply this analysis to study the effect of flexural
phonons on the Kane-Mele gap. Finally, we summarize the results of this chapter and
we explore possible routes to stabilizes a topological phase by softening the flexural
modes of graphene.

4.2 Spin-phonon coupling in graphene

We analyze the coupling with phonon modes around Γ and K± points of the BZ. The
Hamiltonian reads in general

Hs−ph =HA1
+HB2

+HG′ . (4.1)

As mentioned in the previous chapter, in the lattice with 6 atoms per unit cell the
amplitude of a flexural phonon mode at Γ (≡ K±) is given by a 6-component vector
whose entries are associated to the displacements of the atoms at each sublattice,
|h〉 = (hA1, hB1, hA2, hB2, hA3, hB3). This vector belongs to a 6-dimensional representa-
tion of C ′′6v which can be reduced as A1+B2+G′. The polarization vectors associated
to the 1-dimensional irreps correspond to the acoustic (ZA) and optical (ZO) modes
at the original Γ points, whose polarization vectors in the 6 atoms basis read

�

�A1
�

=
1
p

6
(1,1, 1,1, 1,1),

�

�B2
�

=
1
p

6
(1,−1,1,−1, 1,−1). (4.2)

The 4-dimensional irrep corresponds to the 4 degenerate modes at K± points,

�

�A,K+
�

=
1
p

3
(1,0, ei 2π

3 , 0, e−i 2π
3 , 0),

�

�B,K+
�

=
1
p

3
(0,1, 0, ei 2π

3 , 0, e−i 2π
3 ),

�

�A,K−
�

=
1
p

3
(1,0, e−i 2π

3 , 0, ei 2π
3 , 0),

�

�B,K−
�

=
1
p

3
(0,1, 0, e−i 2π

3 , 0, ei 2π
3 ). (4.3)

Note that
�

�A/B,K−
�

=
��

�A/B,K+
�

�∗
, as implied by time reversal symmetry. In order

to construct the couplings it is advisible to consider the real linear combinations of
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the vectors of Eq. (4.3) which transforms according to G′. These are

|1〉=
i

2

�

−
�

�AK+
�

+
�

�AK−
�

−
�

�BK+
�

+
�

�BK−
�

�

,

|2〉=
1

2

��

�AK+
�

+
�

�AK−
�

−
�

�BK+
�

−
�

�BK−
�

�

,

|3〉=
i

2

�

−
�

�AK+
�

+
�

�AK−
�

+
�

�BK+
�

−
�

�BK−
�

�

,

|4〉=
1

2

��

�AK+
�

+
�

�AK−
�

+
�

�BK+
�

+
�

�BK−
�

�

. (4.4)

The polarization vectors of Eqs. (4.2) and (4.4) form a symmetry adapted basis,
in such a way that the displacement vector of a flexural mode can be written as
|h〉= uA1

�

�A1
�

+ uB2

�

�B2
�

+ u1 |1〉+ u2 |2〉+ u3 |3〉+ u4 |4〉, where ui are the symmetry
adapted (real) displacement fields. The results of this analysis was summarized in
Tab. 3.2.

This analysis, together with the SOC terms introduced in Tab. 2.6, allows us to identify
the spin-orbit assisted electron coupling with flexural phonons at the center and the
corners of the BZ. The spin-phonon interaction Hamiltonian can be expanded in
powers of the phonon displacement fields and their derivatives, in such a way that
they are paired with the electronic operators corresponding to the same irrep taking
into account that these combinations must be even under the operation z→−z. Next
we disclose the spin-phonon couplings corresponding to the leading terms in such
expansion.

Since a uniform translation of the crystal cannot affect the electron motion, it is
clear that the coupling with acoustic phonons only contains spatial derivatives of
the corresponding displacement field. Moreover, being interested on the first order
contribution in the spin-orbit interaction strenght due to the mixing of the bands,
the coupling with ZA modes only depends on the extrinsic curvature of graphene
viewed as a surface embedded in R3. This implies that the leading term must de-
pend on second derivatives ∂i∂ juA1

. Since ∂i∂
iuA1

transforms according to A1, and
�

∂ 2
x uA1

− ∂ 2
y uA1

,−2∂x∂yuA1

�

forms a doublet which transforms according to E2, in
principle three different couplings are allowed by the symmetries. We have

HA1
= g1

�

τz ⊗σx ⊗ sy −σy ⊗ sx

�

∂i∂
iuA1
+ g2[τz ⊗ sy

�

∂ 2
x uA1

− ∂ 2
y uA1

�

+

+2τz ⊗ sx∂x∂yuA1
] + g3[

�

τz ⊗σx ⊗ sy +σy ⊗ sx

�

�

∂ 2
x uA1

− ∂ 2
y uA1

�

+

+2
�

τz ⊗σx ⊗ sx +σy ⊗ sy

�

∂x∂yuA1
]. (4.5)

In the case of optical phonons at the center of the BZ, note that there is no term
which transforms according to the B2 irrep in the column of z → −z asymmetric
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operators, which means that the leading term must be quadratic on the phonon
displacement fields. Since B2 × B2 ∼ A1 we obtain a Kane-Mele-like coupling term of
the form

HB2
= g4τz ⊗σz ⊗ sz(uB2

)2. (4.6)

Finally, in the case of flexural phonons at the corners of the BZ, where both acoustic
and optical branches are degenerate, the coupling reads as

HG′ = g5[(−σy ⊗τy ⊗ sx)u1 + (−σy ⊗τy ⊗ sy)u2−
−(σy ⊗τx ⊗ sy)u3 − (σy ⊗τx ⊗ sx)u4]. (4.7)

4.3 Tight-binding estimation

Values for the phenomenological constants g1...5 introduced in Eqs. (4.5)-(4.7) can
be deduced from the tight-binding model discussed before with 4 orbitals per carbon
atom, Eq. (2.18). As before, once the low energy sector of π orbitals is identified,
the effective Hamiltonian defined in such subspace is obtained by projecting out σ
orbitals by means of a Schrieffer-Wolf transformation.[75] Now both the spin-orbit
interaction and the out-of-plane distortions enter in the π−σ mixing blocks. In the
case of B2 phonons we must consider the effect of a vertical displacement of one
sublattice respect to the other. If the calculation is performed with the 6 atoms unit
cell one can identify the coupling with flexural phonons at K± (G′). In the case of A1
phonons, since the coupling depends on the second derivatives of the phonon field,
the calculation is not so straightforward.

4.3.1 Phonons at Γ

As we mentioned before, the coupling with ZA phonons can be inferred from the
effect of extrinsic curvature of the graphene sample on the electronic degrees of
freedom. The approach that we present here is quite similar to the calculation of the
SOC in carbon nanotubes.[106,169] The crucial fact is how to choose the basis of π
and σ orbitals. In carbon nanotubes the σ orbitals are chosen in such a way that they
follow the shape of the nanotube, and the π orbital is chosen in the radial direction.
Geometrically, this way of introducing the orbital basis has the following meaning.
As we saw in the previous chapter, in the limit of long-wavelength distortions the
graphene crystal can be described within a continuum theory. As before, we assume
that the position of the carbon atoms lie on a smooth surface. Then, this way of
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φ

a) b)

pz δ

θ

pi

Figure 4.1: a) Definition of the angle φ. b) Sketch for the calculation of the new
hoppings between pz and pi orbitals.

introducing the basis for p orbitals is uniquely determined if we assume that the
bent graphene surface is isometric to a plane. This means that a diffeomorphism f
from a flat graphene surface (S f lat) to a curved graphene surface (Scurv) exists in
such a way that the metric on the bent surface is pull-backed to the flat one. Thus,
the isomorphism f defines an unique way to introduce a local basis for the px and
py atomic orbitals. Note that this is true in the case of nanotubes since a cylinder
is isometric to a plane. Consider graphene in a flat configuration. We introduce
unitary vectors p̂x , p̂y in the direction of maximum amplitude of the orbitals px ,
py respectively. From a geometrical point of view, these vectors are elements of
the tangent bundle associated to S f lat .

[28] At the same time, the axis of maximum
localization of the pz orbital verifies p̂z = p̂x × p̂y . Now consider a curved graphene
which is related to the flat graphene by a isomorphism f . The push-forward of f
maps the tangent bundle of S f lat to the tangent bundle of Scurv , which means that
the vectors p̂x , p̂y at any position of the bent graphene are uniquely determined by
the action of the push-forward of the isomorphism on the original p̂x , p̂y defined in
the flat configuration. And of course, p̂z in the bent graphene surface is given by the
vectorial product of the new p̂x , p̂y . This way of introducing the local basis in the bent
graphene has two advantages: 1) we recover "smoothly" the original basis when we
restore the curved graphene to the original flat configuration; 2) we keep the notion
of parallelism by imposing f to be an isomorphism instead of just a diffeomorphism.
Note that this apparent restriction does not affect the estimation of the spin-orbit
assisted electron coupling with flexural phonons, since we are introducing extrinsic
curvature and setting the Gaussian curvature to zero.
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We know how to choose the orbital basis and then calculate the two-center matrix
elements, at least locally, using the Koster-Slater parametrization. For simplicity, we
consider a curved graphene surface with a constant curvature along a given direction
(a cylinder), so essentially the same problem as a carbon nanotube. Thus, we have
two parameters, the radius of curvature R and the angle φ between the direction
of curvature and the x-axis (essentially the chiral angle in a nanotube), see Fig. 4.1
a). The new hoppings between π and σ orbitals can be calculated following the
prescription of Tab. 2.7. These are function of the angle θ defined in Fig. 4.1 b).
Assuming that R� a, we have to the leading term in a/R

θ ≈

�

�δx cos(φ) +δy sin(φ)
�

�

R
, (4.8)

where δx ,y are the components of the vector ~δ which connects nearest neighbors.
After a straightforward calculation, the block Hamiltonian that mixes π and σ states
at K± can be written as the matrix

Hσπ =
3a

8R



















0 −Vspσeiτ2φ

−Vspσe−iτ2φ 0
0 iτ

�

V1 + e−iτ2φV2

�

iτ
�

V1 + eiτ2φV2

�

0
0 V1 − e−iτ2φV2

−V1 + eiτ2φV2 0



















, (4.9)

where V1 = Vppσ + Vppπ, V2 =
�

Vppσ + 3Vppπ

�

/2, and τ = ±1 labels the valley
K±.

This expression is exact to the leading order in a/R assuming a constant R and φ
along the graphene surface. Now we perform a local approximation, valid at long
wavelengths: we assume that R and φ depends slightly on the position. Hence, they
can be related with the second derivatives of the height profile, since the second
fundamental form in the Monge’s parametrization is just Fi j ≈ ∂i∂ jh to the leading
order in the out-of-plane displacements. At the same time, note that within the
continuum description of graphene, the height profile h should be identified with the
flexural acoustic phonon field at long wavelengths, uA1

. Then, the local R and φ can
be related with the second derivatives of uA1

as

∂x∂xuA1
≈−R−1 cos2φ,

∂y∂yuA1
≈−R−1 sin2φ,

∂x∂yuA1
≈−R−1 sinφ cosφ. (4.10)
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By projecting out the σ electronic states we arrive at the electron-phonon coupling
of Eq. 4.5 with

g1 =
aεs∆

�

Vppσ + Vppπ

�

12V 2
spσ

≈ 3 meV ·A,

g2 =
aVppπ∆

2
�

Vppσ − Vppπ

� ≈ 4 meV ·A.

(4.11)

Importantly, within the present Koster-Slater approximation we have to extend the
tight-binding calculation to second-nearest neighbors in order to obtain a non-zero
g3 coupling. In that case we obtain

g3 =
a∆
�

3Vppπ + Vppσ

�

�

V (2)ppσ + V (2)ppπ

�

8
�

Vppσ − Vppπ

�2 , (4.12)

where V (2)ppσ and V (2)ppπ are new second-nearest neighbors hopping parameters.

In order to estimate the coupling with optical phonons we have to consider the ef-
fect of a vertical displacement of one sublattice with respect to the other, similarly
to the case of silicene.[170] Processes which involve only one phonon give a van-
ishing contribution as expected from symmetry considerations. We can repeat the
same scheme as before by considering virtual processes mediated by two phonons
(∝ H f lex

πσ H
−1
σ H

f lex
σπ , note that Hσ also contains the SO interaction). We identify

the Kane-Mele-like coupling with flexural optical phonons at Γ, whose strength
reads

g4 =
2ε2

s∆
�

Vppπ − Vppσ

�2

9a2V 4
spσ

≈ 20 meV ·A−2. (4.13)

4.3.2 Phonons at K±

We estimate now the coupling with phonons at the corners of the BZ. We simplify
the tight-binding model in order to treat the problem analytically. We consider the
model described in Ref.171 and adapted in Ref.172 in order to describe the acoustic
phonon modes in graphite. It contains only two parameters: Von, which is the on-
site energy of the σ orbitals, and Vhop, which is the hopping between σ orbitals at
nearest neighbors when the orbitals are maximally localized in the direction which
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links the two atoms, otherwise the hopping is taken to zero. These parameters can
be estimated from the Slater-Koster parameters as

Von =
εs − εp

3
,

Vhop =
Vssσ − 2

p
2Vspσ − 2Vppσ

3
. (4.14)

This model was employed in Ref.106 in order to estimate the SOC in graphene and
carbon nanotubes. The Kane-Mele coupling reads∆ f lat

I = 3Von∆2/(4V 2
hop)within this

model for flat graphene, in agreement with Ref.106. Note also that this estimation is
numerically very close to the one of Ref.107.

We perform the calculation in the unit cell with 6 atoms. We can estimate the terms
that mix π and σ states by considering the vertical displacement of one lattice respect
to the other as indicated by Eqs. (4.3)-(4.4). By projecting out theσ orbitals we arrive
to a 6x6 effective Hamiltonian for the π electronic states at the new Γ, which can be
seen as a matrix expressed in the monoelectronic basis

�

|ΓA1π〉, |ΓA2π〉, |ΓA3π〉, |ΓB1π〉, |ΓB2π〉, |ΓB3π〉
�

.

In order to identify the effective Hamiltonian in the low energy sector we have to
express this matrix in the monoelectronic basis associated to the lattice with 2 atoms
per unit cell,

�

|ΓAπ〉, |ΓBπ〉, |K+Aπ〉, |K+Bπ〉, |K−Aπ〉, |K−Bπ〉
�

.

Both basis are related by the unitary transformation

U =
1
p

3





















1 0 1 0 1 0
1 0 ei 2π

3 0 e−i 2π
3 0

1 0 e−i 2π
3 0 ei 2π

3 0
0 1 0 1 0 1
0 1 0 ei 2π

3 0 e−i 2π
3

0 1 0 e−i 2π
3 0 ei 2π

3





















. (4.15)

By doing so, we identify the strength of the coupling with phonons at the corner of
the BZ as

g5 =

p
3Von∆

�p
2Vppσ −

p
2Vppπ + Vspσ

�

2
p

2aV 2
hop

≈ 4 meV ·A−1. (4.16)
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Figure 4.2: Effective Kane-Mele mass induced by the coupling with flexural phonons.
In red (lower curve) the estimation neglecting the acoustic branch and the dispersion
of the optical one. In blue (upper curve) the calculation within the model described
in Appendix B.

4.4 Kane-Mele gap enhancement

One of the most interesting consequences of this analysis is the effect of the coupling
in Eq. 4.6 on the electronic spectrum. The contribution of flexural phonons to the
Kane-Mele coupling can be written as

∆ph = g4

¬

(uB2
)2
¶

, (4.17)

where the brackets express the thermal average over the entire BZ. A rough estimate
consists on neglecting the contribution from the acoustic branch and the dispersion
of the optical mode. Since ħhωZO

Γ ≈ 110 meV[173] temperature plays no role, see the

red curve in Fig. 4.2. However, the zero-point motion contribution ∆0 =
ħhg4

2MωZO
Γ
≈

0.03 meV is non-negligible as compared to the intrinsic value (here M is the mass of
the carbon atom).

This is a very crude approximation, since the identification of uB2 with the ZO mode
is strictly true at the Γ point. The entire BZ contributes to the average, so away from
Γ both flexural acoustic (ZA) and optical branches enter. We can use the symmetry-
adapted basis |A1〉 and |B2〉 phonons as a basis in order to describe the polarizations
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of the ν = ZA,ZO phonons,

|ν〉= ηνA1
(q) |A1〉+ηνB2

(q) |B2〉. (4.18)

Note that η (q) =
�

η (−q)
�∗ due to time reversal symmetry. Thus, we have

¬

(uB2
)2
¶

≈
1

N

∑

q∈BZ

∑

ν

�

�

�ηνB2
(q)
�

�

�

2
�

�

�

�uνq

�

�

�

2
�

T
, (4.19)

where

uνq =
1
p

N

N
∑

i=1

uν
�

Ri
�

e−iq·Ri (4.20)

is the Fourier transform of the phonon displacement field in branch ν , and the brack-
ets denote thermal average.

We need a model in order to describe the deviations of the polarizations vectors and
the frequencies of both branches in the entire BZ. We consider the simpler nearest-
neighbor forces model where the elastic energy of the lattice can be written as

E =
α

a2

∑

i














hAi −

1

3

∑

〈i j〉

hB j







2

+






hBi −

1

3

∑

〈i j〉

hAj







2








. (4.21)

Here a is the carbon-carbon distance and α is a constant with units of energy which
can be related with the bending rigidity κ of graphene in the continuum description
shown in the previous chapter. This model leads to the dynamical matrix

D (q) =
2α

3a2

 

3+ | f (q)|
2

3
−2 f (q)

−2 f (q)∗ 3+ | f (q)|
2

3

!

, (4.22)

where f (q) =
∑

α eiq·~δα , and the sum is extended to nearest-neighbors. The frequen-
cies read

ω± =

s

2α

3Ma2

�

3+
| f (q) |2

3
± 2| f (q) |

�

, (4.23)

with polarization vectors |±〉 = 1p
2

�

f (q)
| f (q)| ,∓1

�T
. The two branches in Eq. (4.23)

are plotted in Fig. 4.3. The upper branch ω+ must be identified with the optical one,
whereas ω− corresponds to the acoustic one.
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Figure 4.3: Dispersion of flexural phonons computed within the nearest-neighbor
force model described in the text with α= 8.5 eV. In red (upper curve) the dispersion
for the optical branch, in blue (lower curve) the acoustic branch.

The model reproduces very well the dispersion of flexural phonons. At q ∼ Γ we
have

ω+ ≡ωZO
q ≈

r

8α

Ma2 −

r

αa2

8M
q2,

ω− ≡ωZA
q ≈

Ç

α

8Ma−2 q2. (4.24)

Note that the dispersion relation of ZA phonons is quadratic, as expected from
symmetry considerations. On the other hand, both branches are degenerate at K±
(ωZA

K±
= ωZO

K±
= ωZO

Γ /2), as expected from symmetry arguments. When we compare
this model with the theory of elasticity we deduce the relation

α= 6
p

3κ. (4.25)

We set the value of α from the frequency of the flexural optical phonon at Γ. We
obtain α= 8.5 eV. By using the relation of Eq. (4.25) we obtain κ≈ 0.8 eV, which is a
very reasonable value for the bending rigidity of graphene. This agreement confirms
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the reliability of the model. Additionally, we have

�

�

�ηZO
B2
(q)
�

�

�

2
=

1

2

 

1+
ℜ f (q)
�

� f (q)
�

�

!

,

�

�

�ηZA
B2
(q)
�

�

�

2
=

1

2

 

1−
ℜ f (q)
�

� f (q)
�

�

!

, (4.26)

where ℜ f denotes the real part of f .

We compute the induced Kane-Mele mass from Eqs. (4.17) and (4.19) within this
model. The results are shown in Fig. 4.2 (blue curve). Remarkably, the Kane-Mele
gap induced by phonons 2∆ph is of the order of 0.1 meV even at low temperatures
due to the zero-point motion contribution.

4.5 Conclusions

We have constructed the spin-phonon coupling in graphene from symmetry consid-
erations and computed their strengths within a tight-binding model. In comparison
with previous works,[106,174] our analysis sheds light on the microscopic origin of
all the possible couplings induced by curvature that are allowed by the symmetries
of the graphene crystal. This analysis is particularly useful in order to study spin
transport limited by flexural phonons, where in principle both intra- and inter-valley
processes could be considered.

We have applied this analysis to the study of the effect of flexural phonon modes
on the Kane-Mele gap. We have found a remarkable contribution 2∆KM ∼ 1 K,
an order of magnitude larger than the intrinsic gap including also the effect of d
orbitals.[104,108] Of course, this value is still negligible for practical purposes. Never-
theless, this mechanism of enhancing the Kane-Mele gap may be exploited with strain
engineering. The flexural modes are softened by applying compression.[175–177] This
softening is consistent with the negative Grüneisen coefficients reported in the litera-
ture.[178–181] Although other failure mechanisms for graphene under tension cannot
be discarded,[182] it is natural to think that graphene under compressive stress may
develope a sp3-like buckled phase, similarly to silicene. Such distortions under stress
have been observed in STM experiments.[183] We conclude that this mechanism resid-
ing on the π-σ orbitals mixing would be stabilized in compressed graphene samples,
leading to higher values of the Kane-Mele gap.
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5
SOC-mediated spin relaxation

5.1 Introduction

When a spin polarized current is injected in a device its spin polarization decays
during the diffusive propagation of electrons. The time scale which characterizes
this decay is what we call spin lifetime τs. In general, defining rigourosly τs is a
difficult task. Indeed, two different quantities are usually introduced:[18] T1 and T2.
The former is the spin relaxation time, whereas the latter is the dephasing time. These
quantities are formally defined through the Bloch-Torrey equations for magnetization
dynamics,[184–186] which describe the diffusion of the magnetization, M, treated as
a classical magnitude. In the presence of a magnetic field B(t) = B0 + B1(t) these
equations read

∂Mi=x ,y

∂ t
= γ (M×B)i=x ,y −

Mi=x ,y

T2
+ D∇2Mi=x ,y ,

∂Mz

∂ t
= γ (M×B)z −

Mz −M0
z

T1
+ D∇2Mz , (5.1)

where the static component B0 is taken in the ẑ direction for convenience. The
precession frequency reads γ= µB g/ħh, where µB and g are the Bohr magneton and
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electron gyromagnetic factor respectively. Here D is the diffusion constant. These
equations describe, in a phenomenological way, the dynamics of itinerant electron
spins. In order to determine T1, T2 microscopically, we need a model for the dynamics
of the spin system, from which the dynamics for the magnetization can be derived
and compared with the Bloch-Torrey equations in order to determine T1, T2.

The kinetic spin Bloch equation (KSBE) provides a semi-classical description of the
dynamics of the spin system. The KSBE can be understood as a spin-dependent
version of the Boltzmann equation. The KSBE has been applied to the problem of spin
relaxation in single-layer[187–190] and bilayer[191] graphene, and more recently in MX2
materials.[192,193] In the former studies a random Rashba field was considered as the
main source of spin relaxation. Such assumption is justified since in the experiments
the samples are placed on a substrate, which is by itself one of the possible sources
of this random Rashba field,[194] as well as resonant impurities or vacancies.[129]

The studies on MX2 were focused on the role of the intrinsic SOC in combination
with different types of disorder. An alternative approach, full quantum mechanical,
is based on the Mori-Kawasaki formula,[195,196] first applied to the study of the spin
relaxation in graphene in Ref.197.

In graphene-based spin valves, spin lifetimes are obtained from Hanle precession
experiments in the so called non-local geometry,[198] although alternative geometries
have been proposed.[199] This has been a very active field of research in the last few
years.[200–216] These are the main features of spin transport in graphene:

1. The reported spin lifetimes go from 100 ps to 1 ns, much shorter than the
theoretically expected ones.

2. Spin relaxation time and momentum scattering time show approximately the
same behavior as a function of the carrier concentration, both growing as∼

p
n.

Therefore, spin relaxation and momentum scattering seem to be correlated.

3. Despite 2., it has been recently reported[217–220] that spin relaxation times in-
crease when disorder is introduced in the sample. This observation is even more
surprising in the case of heavy adatoms depostion,[217] or hydrogenation,[220]

when the SOC is expected to be enhanced.

4. Recently, the behavior of spin lifetimes as a function of applied magnetic field
has been studied, revealing the role of magnetic moments as an important
source of spin relaxation.[221] Importantly, this is only observed after hydro-
genation, being the magnetic moments associated to such defects, in apparent
contradiction with 3.

Four mechanisms are usually discussed for spin relaxation in semiconductors:[18] the
Elliot-Yafet,[222,223] D’yakonov-Perel’,[224,225] Bir-Aronov-Pikus,[226] and hyperfine-
interaction mechanisms.[227] The latter, which accounts for the interaction between
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the magnetic moments of electrons and nuclei, is negligible in the diffusive regime
due to the itinerant nature of the electrons. The hyperfine interaction with the nuclei
spins is dynamically narrowed since the electrons move fast through nuclei with ran-
dom spins, averaging to zero their action. The Bir-Aronov-Pikus mechanism accounts
for electron spin-flip processes mediated by the electron-hole exchange interaction,
and it is typically relevant in heavily p-doped semiconductors.[226,228] For itinerant
carriers, the main contributions to the spin relaxation are due to the entanglement
of the spin and orbital degrees of freedom through the SOC.

The Elliot-Yafet (EY) mechanism takes into account the change in the spin polariza-
tion of a Bloch electron due to momentum scattering. This mechanism is the domi-
nant one in the case of centrosymmetric systems. It is characterized by a linear rela-
tion between the spin relaxation time and momentum scattering time, τ−1

s = ατ
−1
p ,

where α can be interpreted as the spin-flip probability during a momentum relax-
ation event. Elliot deduced this relation by using a perturbative approach. Due to the
SOC, Bloch states with well-defined spin polarization are not longer eigenstates of
the complete Hamiltonian. However, in the case of systems with a center of inversion,
at each point of the BZ two degenerate states can still be defined,[222]

�

ak (r) | ↑〉+ bk (r) | ↓〉
�

eik·r, (5.2)
�

�

a−k (r)
�∗ | ↓〉 −

�

b−k (r)
�∗ | ↑〉

�

eik·r. (5.3)

These states are connected by spatial inversion and time reversal symmetries and
may be identified with spin-up and spin-down states because typically |b| � 1. Since
the spin-orbit interaction couples electronic states with opposite spin projections in
different bands, perturbation theory gives |b| ≈ ∆SO/∆E, where ∆E is the energy
difference between the two bands involved. The spin flip amplitude during the scat-
tering by an obstacle with no spin degrees of freedom itself can be computed using
the Born approximation, leading to α ≈

¬

|b|2
¶

where the symbol 〈〉 expresses an
average over the Fermi surface. These arguments are quite general and do not de-
pend on the nature of the scatterers. Realistic calculations can be done in some cases,
for instance in the case of III-V semiconductors.[228,229] The Elliot relation holds
experimentally for most conventional metals.[230]

The D’yakonov-Perel’ (DP) mechanism accounts for the spin dephasing in between
momentum scattering events, and it is relevant in non-centrosymmetric materials,
where the form of the Bloch states are not longer as Eqs. (5.2)-(5.3) dictate. When
inversion symmetry is broken the doubly degeneracy of the bands is lifted. In this
situation, a new contribution to spin relaxation must be taken into account due to
the precession of electron spin in between scattering events. The SOC can be under-
stood as an effective magnetic field which makes the electron spin to precess. Note
that this effective magnetic field is momentum-dependent, so momentum scattering
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randomizes the process. Therefore, the spin lifetime scales inversely as the momen-
tum scattering time. In between scattering events the electron spin precess an angle
δ, which can be estimated from the natural frequency defined through the Rashba
coupling ∆R. Then, δ ∼ ∆R/ħh× τp. As result of the motional narrowing,[231,232]

after N collisions the precession angle is about δ ∼ ∆R/ħh× τp ×
p

N . The spin life-
time may be defined as the time scale τs after which the precession angle is δ ∼ 1.
After N = τs/τp collisions we have δ ∼ ∆R/ħh× τp ×

p

τs/τp ∼ 1, so we deduce
τ−1

s ∼∆
2
R/ħh

2 ×τp.

The fact that the spin relaxation times and the momentum scattering times behave
similarly as a function of the carrier concentration in the experiments suggests that
the EY mechanism limits spin transport in graphene. Such short spin lifetimes are
also an indication of an extrinsic source of spin relaxation. However, some other
experimetal evidences as the increasing of the spin lifetimes under hydrogenation
put several restrictions to the origin of such SOC enhancement.

In this chapter we study in detail conventional EY and DP mechanisms in graphene
and MX2 materials. From our estimates we conclude that EY mechanism cannot
explain spin transport in graphene. Then, we analyze the problem of the spin-flip
induced by an impurity which enhances locally the SOC. We consider the case of a
resonant impurity, such as hydrogen, which induces a sp3-like distortion of the lattice
coordination, leading to an enhancement of the SOC. Our results indicate a strong
anisotropy in spin relaxation, since this relaxation mechanism seems to be much
more efficient for in-plane spins.

5.2 EY and DP mechanisms in graphene and MX2

In this section we compute the spin relaxation rates due to EY and DP mechanisms
with the Mori-Kawasaki formula. Our starting point is the phenomenological Hamil-
tonian valid around the Dirac points,

H = v
�

τzσx kx +σy ky

�

+
∆
2
σz . (5.4)

We describe simultaneously graphene and MX2. For the former, we must take ∆= 0.
For the intrinsic SOC terms, in the case of graphene we take a Kane-Mele coupling,
whereas for MX2 we take

HSO =
λ

2
τzsz

�

I −σz
�

. (5.5)
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We neglect the splitting of the conduction band since it is the result of second order
processes as we saw before.

For SOC mediated spin relaxation mechanisms a relevant parameter of the theory
is the amount of disorder Γ = ħh/τp, where τp is the lifetime of the quasiparticles
with momentum p. Disorder is introduced in the calculation in a phenomenological
manner, by adding the imaginary self-energy iΓ/2 to the Matsubara Green’s operator
associated to the free Hamiltonian (5.4),

Ĝ(k, iω) =
1

2

∑

α=±1

Gα(k, iω)
�

I +α
�

atk · ~σ+
∆
2
σz

�

/εk

�

, (5.6)

where we define

Gα(k, iω) =
1

iω−αεk +µ+ iΓ/2
. (5.7)

Here εk =
p

v2|k|2 +∆2/4 is the dispersion relation of conduction (α = +1) and
valence (α = −1) bands of our effective model and µ is the chemical potential.
Note that the valley is omitted since we do not consider short-range scatterers which
could connect both valleys. We also neglect the momentum dependence of Γ, so
it enters just as a parameter which in principle can be determined from transport
experiments.

5.2.1 Mori-Kawasaki formula

We compute the spin relaxation rates by using the Mori-Kawasaki formula.[195,196]

Originally, the Mori-Kawasaki formula was deduced in order to compute the broaden-
ing of the signal peak in an electron spin resonance experiment due to the breaking
of the SU(2) spin symmetry of the system. As it has been shown recently,[233] it can
be related with the inverse of the spin lifetime Γs = ħh/τs. The Mori-Kawasaki formula
treats the SOC terms as perturbations to the electronic Hamiltonian, something that
in principle is valid since in our model the strength of the SOC terms are at least one
order of magnitude smaller than the other energy parameters of the model, namely
the gap ∆ and the bandwidth 2v/a. The spin lifetime is computed as

Γs =−
1

χ
lim
ω→0

Im
χAA † (ω)

ω
, (5.8)

where χ is the spin susceptibility and χAA † (ω) is the Fourier transform of the
response function

χAA †(t) =−iθ(t)
¬�

A (t),A †(0)
�¶

, (5.9)
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with A =
�

H SO, s+
�

and s± = (sx ± isy)/2. The spin susceptibility is defined
as

χ =
1

gµB

�

∂ 〈sz〉
∂ H

�

H=0
, (5.10)

where H is the field strength associated to a Zeeman term in the HamiltonianHZ =
−gµBHsz .

[234] The expectation values in Eqs. (5.9) and (5.10) are referred to the
Hamiltonian without the SOC terms. The expectation value of the z-component of
spin is

〈sz〉=
1

N

∑

k

(nk↑ − nk↓), (5.11)

where N is the number of unit cells and nks is the occupation number of quasiparticles
with momentum k and spin s in the presence of the Zeeman term HZ . This can be
calculated in terms of the spectral functions Aα(k,ω), defined from the retarded
version of the Green’s functions of Eq. (5.7) as

Aα (k,ω)≡−2 ImGR
α(ω,k) =

Γ
�

ω−αεk +µ
�2 + Γ

2

4

. (5.12)

Then, we can write

nks = 2
∑

α=±1

∫ ∞

−∞

dω

2π
nF (ω)Aα(k,ω+ sgµBH), (5.13)

where nF (ω) is the Fermi-Dirac distribution function and the factor 2 accounts for
the valley degeneracy. From the definition of Eq. (5.10) we get

χ = 4
∑

α=±1

1

N

∑

k

∫ ∞

−∞

dω

2π
Aα(k,ω)

�

−
∂ nF (ω)
∂ω

�

. (5.14)

In the zero temperature limit (T � TF , where TF is the Fermi temperature) we can
approximate − ∂ nF (ω)

∂ω
≈ δ(ω). The sum in k can be written as an integral through

the standard procedure 1
N

∑

k→
Ac

(2π)2

∫

d2k, where Ac is the area of the unit cell. The
isotropy of the dispersion relation allows to integrate in angles straightforwardly and
to write down the remaining integral in |k| as an integral in energies. At this point,
it is necessary to introduce an energy cutoff D for the effective model, which can be
related with the area of the unit cell as D = v

p

π/Ac . After some algebra the spin
susceptibility can be written as

χ =
Γ
πD

∑

α=±1

∫ 1

∆
2D

d x
x

�

x −α µ
D

�2
+ Γ2

4D2

. (5.15)
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If we drop logarithmically small terms that appear in Eq. (5.15) after integration in
x , we obtain a simple analytical formula for χ which is valid for µ� D,

χ ≈
2µ

πD

∑

α=±1

arctan
�

2µ−α∆
Γ

�

. (5.16)

We compute now the numerator of Eq. (5.8). The calculation is easily performed in
the Matsubara frequency domain. We can write

χAA †(iω) =
1

βN

∑

k

∑

iν

∑

α,α′
fαα′ (k)Gα (k, iω+ iν)Gα′ (k, iν) , (5.17)

where β is the usual thermal factor and fαα′ (k) is defined as

fαα′ (k) =
1

2
Tr



A ·

 

I +α
atk · ~σ+ ∆

2
σz

εk

!

· A † ·

 

I +α′
atk · ~σ+ ∆

2
σz

εk

!

 .

(5.18)

The trace is performed in the space of 2-components Bloch functions, and the val-
ley degeneracy has already been taken into account in this definition. The sum in
frequencies can be performed easly by using the Lehmann representation in terms
of the spectral functions introduced before. After the sumation and the analytical
continuation we have for the imaginary part of χAA † (ω),

−ImχAA † (ω) =
1

N

∑

k

∑

α,α′
fαα′ (k)×

∫ ∞

−∞

dε

4π
Aα (k,ε+ω)Aα′ (k,ε)

�

nF (ε)− nF (ε+ω)
�

.

(5.19)

Hence, in the ω→ 0 limit we obtain

lim
ω→0
−Im

χAA † (ω)
ω

=
1

N

∑

k

∑

α,α′
fαα′ (k)×

∫ ∞

−∞

dε

4π
Aα (k,ε)Aα′ (k,ε)

�

−
∂ nF (ε)
∂ ε

�

.

(5.20)

After the same approximations as before we can write, in the zero temperature
limit,

Γs =
1

4πχ

Ac

(2π)2
∑

α,α′

∫

d2k fαα′ (k)Aα (k, 0)Aα′ (k, 0) . (5.21)

The remaining part of the section is devoted to the estimation, using Eq. (5.21), of
the spin relaxation for graphene and MoS2.
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5.2.2 Graphene

We consider first in-plane spin relaxation induced by the intrinsic Kane-Mele SOC
in graphene. We have A = 2∆KMσzs+, leading to fαα′ (k) = 4∆2

KMδα′,−α. Only
inter-band processes contribute. This is a manifestation of the inversion symmetry of
the system. For the same reason, we expect that only the EY mechanism is present.
Therefore, we conclude that inter-band processes within the Mori-Kawasaki formal-
ism leads to the EY mechanism, in agreement with Elliot’s argument. According
to it and taking ∆E ≈ 2µ, the energy separation between electronic states cou-
pled by the Kane-Mele coupling, our expectation for the spin relaxation rate reads
Γs ≈∆2

KM/
�

2µ
�2 ×Γ. More formally, we have

Γs =
∆2

KMΓ
2

πχD4 Iinter , (5.22)

where we define

Iinter =

∫ 1

0

d x
x

h

(x − µ

D
)2 + Γ2

4D2

ih

(x + µ

D
)2 + Γ2

4D2

i . (5.23)

In the limit D� µ,Γ, the integral can be approximated by

Iinter ≈
D2

µΓ
arctan

�

2µ

Γ

�

. (5.24)

As expected, the spin relaxation rate is just

Γs ≈
∆2

KM

4µ2 Γ. (5.25)

The picture changes if we consider a Bychkov-Rashba SOC term. In that case, we
haveA =−2i∆BRσ+sz , leading to fαα′(q) = 4∆2

BR. We see that, due to the inversion
symmetry breaking, both inter-band and intra-band processes enter. The latter are
expected to be dominant. We have now

Γs =
∆2

BRΓ
2

πχD4

�

Iinter + Iint ra
�

, (5.26)

where we define

Iint ra =
1

2

∑

α=±1

∫ 1

0

d x
x

h

(x −α µ
D
)2 + Γ2

4D2

ih

(x −α µ
D
)2 + Γ2

4D2

i . (5.27)
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In the limit D� µ,Γ, the integral can be approximated by

Iint ra ≈
4µD2

Γ3 arctan
�

2µ

Γ

�

. (5.28)

Then, we obtain for the spin relaxation rate in this case

Γs ≈
∆2

BR

4µ2 Γ+
∆2

BR

Γ
. (5.29)

We have seen with this calculation that intra-band processes lead to the DP contri-
bution to the spin relaxation rate. Note that the DP mechanism is expected to be
dominant since for typical carrier concentrations |µ| � Γ.

This result is against the experimental observation: neither the DP mechanism nor
the EY mechanism can explain the experiments. The former predicts a inversely
proportional relation between τs and τp. On the other hand, if the EY mechanism
were operating and given that τp ∝

p
n, then we would have τs ∝ n3/2. However,

the dependence of τs on n is clearly sublinear in the experiments. Note that this
unusual dependence on the carrier concentration ultimately arises from the absence
of a energy gap between the conduction and valence π bands and can be expected
also in narrow gap semiconductors in the doped regime, where the Fermi energy is
larger than the gap.

5.2.3 MX2

We start by computing the in-plane spin relaxation rate due to the intrinsic SOC. For
this, we use Eq. (5.21) withA = λint

�

I −σz
�

s+, leading to

fαα′ (k) = 2λ2

�

1− (α+α′)
∆

2εk
+αα′

∆2

4ε2
k

�

. (5.30)

As before, in-plane relaxation rate can be written as the sum of two contributions, one
coming from intra-band transitions and the other from inter-band transitions,

Γs =
λ2Γ2

2πχD4

�

Iint ra + Iinter
�

, (5.31)
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Figure 5.1: In-plane spin lifetimes as a function of the carrier concentration. Left:
Electron doping. Right: Hole doping. Dashed black line corresponds to Γ = 0.001 eV,
dotted blue to Γ = 0.01 eV, and solid red Γ = 0.1 eV. Inset: In-plane spin lifetimes for
electron concentrations in double logarithmic scale. Notice the different time scale
in the top and bottom panels.

where

Iint ra =
1

2

∑

α=±1

∫ 1

∆
2D

d x
x −α∆

D
+ ∆2

4x D2
h

�

x −α µ
D

�2
+ Γ2

4D2

ih

�

x −α µ
D

�2
+ Γ2

4D2

i ,

Iinter =

∫ 1

∆
2D

d x
x − ∆2

4x D2
h

�

x − µ

D

�2
+ Γ2

4D2

ih

�

x + µ

D

�2
+ Γ2

4D2

i . (5.32)

As we have seen before, the intra-band transitions account the DP processes, whereas
the inter-band term leads to the EY contribution. In the present case this is more
clear in the doped regime |µ|>∆/2. If we drop logarithmic corrections in the above
integrals, as we did in order to get Eq. (5.16), we arrive at

Γint ra
s ≈

λ2

2Γ









1−
∆
µ
+
∆2
�

µ2 + 3Γ2

4

�

4
�

µ2 + Γ
2

4

�2









,

Γinter
s ≈

λ2Γ
8µ2









1−
∆2
�

µ2 − Γ
2

4

�

4
�

µ2 + Γ
2

4

�2









. (5.33)

The inter-band transitions lead to an EY contribution characterized by the linear
scaling between the spin lifetime and momentum scattering time Γinter

s ∝ Γ. The intra-
band transitions, however, leads to the DP mechanism, characterized by Γint ra

s ∝ Γ−1.
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Figure 5.2: Out-of-plane spin lifetimes as a function of the carrier concentration. In
black (dashed) Γ = 0.001 eV, in blue (dotted) Γ = 0.01 eV, in red Γ = 0.1 eV. In all the
cases ∆BR = 10−2λ. Inset: Spin lifetime for hole concentrations where the correction
given by Eq. (5.37).

This mechanism is clearly the dominant one as expected. Assuming that Γ� µ,∆
we have

Γint ra
s

Γinter
s

≈
1− ∆

2µ

1+ ∆
2µ

·
�

µ

Γ/2

�2

, (5.34)

and therefore Γint ra
s /Γinter

s � 1 unless the chemical potential lies at the bottom of the
conduction band. It is important to note that the DP mechanism is clearly electron-
hole asymmetric due to the different spin splittings of the conduction and valence
bands.

These features are clearly shown in Fig. 5.1, where the in-plane spin lifetime is com-
puted numerically. We see that the DP mechanism is clearly dominant for hole dop-
ings. From mobilities reported in transport experiments[235–237] we deduce Γ≈ 0.02
eV, and therefore τin ∼ 2ħhΓ/λ2 ≈ 5 fs. For electron concentrations, it is interesting
to note the crossover from DP to EY dominated regimes when the concentration is
decreased, as it can be seen in the inset of the top panel of Fig. 5.1. Such crossover
is possible when the strength of disorder is comparable with the chemical potential
measured with respect to the bottom of the band. In this case the spin lifetimes are 3
orders of magnitude larger than in the case of hole doping. Note that in the electron
doped regime a more realistic calculation should take into account also the spin
splitting of the conduction band.

We compute now the out-of-plane spin relaxation rate due to a Bychkov-Rashba
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coupling. In this case we haveA =−2i∆BRσ+sz , leading to

fαα′ (k) = 4∆2
BR

�

1− (α−α′)
∆

2εk
−αα′

∆2

4ε2
k

�

. (5.35)

The calculation is formally identical to the previous one. In the doped regime we
have the approximate results

Γint ra
s ≈

∆2
BR

Γ









1−
∆2
�

µ2 + 3Γ2

4

�

4
�

µ2 + Γ
2

4

�2









,

Γinter
s ≈

∆2
BRΓ

4µ2









1+
∆2
�

µ2 − Γ
2

4

�

4
�

µ2 + Γ
2

4

�2









. (5.36)

In Fig. 5.2 the numerical computation of the spin lifetime as a function of the car-
rier concentration is shown. We take ∆BR = 10−2λ, which is the correct order of
magnitude given that this coupling is the result of second order processes as we
explained previously. The spin lifetimes are in this case electron-hole symmetric and
clearly dominated by the DP mechanism. The 1/n behavior is expected from the first
expression in Eq. (5.36). For µ ≥ ∆/2 we have τout ∼ ħhΓ∆2/(4πλ2

BRa2 t2n), so for
Γ = 0.02 eV and n= 1012 cm−2 we obtain τout ≈ 1− 2 ns.

Note that the spin splitting of the valence band is not taken into account in this
calculation, but its effect is relevant since it tends to stabilize the out-of-plane spin
polarization, in a similar way as an applied magnetic field in the out-of-plane direction
does. We can take into account this effect by correcting the spin relaxation rate for
hole concentrations as[197,225]

Γ(holes)
s ≈ Γout ×

1

1+
�

2λ
Γ

�2 , (5.37)

where 2λint can be interpreted as the Zeeman splitting created by an effective mag-
netic field whose origin is the intrinsic SOC. Therefore, for Γ = 0.02 eV and n= 1012

cm−2 we expect:

τ
(holes)
out ≈ 60×τout ≈ 50− 100 ns (5.38)

This correction is taken into account in the calculation shown in the inset of Fig. 5.2.
It is interesting to notice that our results quantitatively agree with the experimental
measurements of Mak et al., who have reported spin lifetimes exceeding 1 ns in single
layers of MoS2.[21]
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5.3 Beyond EY mechanism in graphene: SOC scatter-
ers

We have seen in the previous section that conventional EY mechanism is not able
to explain spin relaxation in graphene. However, the similar behaviors of τs and τp
suggests that momentum scattering and spin-flip processes are correlated somehow
or other. There are several candidates which could explain these experiments. The
most relevant ones are (i) spin flip induced by impurities covalently attached to
graphene carbon atoms,[129] (ii) the effect of a fluctuating Rashba field created by
ripples,[238] and (iii) scattering by local spins.[221,239] In the first two cases, the spin-
flip process is induced in regions where the SOC is locally enhanced. Next chapter
is devoted to study the effect of ripples and curvature on spin relaxation. For the
moment, we focus on resonant impurities.

In this section we study the problem of a single impurity which enhances locally the
SOC, therefore, opening new channels for spin-flip processes. We focus on the case
of impurity which induces a distortion of the lattice from a sp2 to a sp3 coordination,
such as hydrogen.[129] We consider the low-energy effective theory for graphene
π electrons, consisting in two copies of the massless Dirac Hamiltonian at each
inequivalent corner of the Brillouin zone. We neglect inter-valley scattering, which
is justified for defects of order equal to or larger than the lattice spacing. We model
the impurity as showed in Fig. 5.3. Far away from the impurity no SOC is induced,
and then the spin polarization is asymptotically well-defined. Then, we are going
to consider as in-coming wave function a Bloch-state with momentum k and spin-
polarization s,

ψ̂in = eikx ûk ⊗ |s〉, (5.39)

where ûk =
1p
2

�

1, eθk
�T

and

|s〉=

 

cos φs

2

sin φs

2
eiθs

!

. (5.40)

The incoming current can be defined as

Jin ∝ ψ̂
†
in~σψ̂in = û†

k~σûk =
1

|k|
�

kx , ky

�

. (5.41)

In order to write down the suitable form of the out-going waves, consider first the
Lippman-Schwinger equation,

ψ (r) =ψin (r) +

∫

d2r′Ĝ
�

ε, r− r′
��

Ĥ0 + εÎ
�

U
�

r′
�

ψ
�

r′
�

, (5.42)
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where

Ĝ (ε, r) =
�

(ε+ i0)2 −Ĥ 2
0

�−1
. (5.43)

The Green function (5.43) has a trivial structure in spin and sublattice indices,
Ĝ (ε, r) = G (ε, r)I , where

G (ε, r) =
1

(2π)2

∫

d2q
eiq·r

(ε+ i0)2 −
�

ħhvF q
�2 =−

i

4
�

ħhvF
�2 H(1)0 (kr) (5.44)

determines the asymptotic form of the scattered wave function. Note that G (ε, r) is
nothing but the 2D Klein-Gordon propagator (H(1)n are the Hankel functions of first
kind). The asymptotic form of the Green function is just

G (ε, r)≈−
�

ħhvF
�−2

p
−i8πkr

· eikr . (5.45)

As result, we can write the out-going wave function in the asymptotic limit as the
superposition of two radial waves with opposite spin polarizations s and s̄ of the
form

ψ̂out =
fs (θ) eikr

p
−ir

ûθ ⊗ |s〉+
fs̄ (θ) eikr

p
−ir

ûθ ⊗ |s̄〉, (5.46)

where ûθ =
1p
2

�

1, eθ
�T

and

|s̄〉=

 

sin φs

2

− cos φs

2
eiθs

!

. (5.47)

Proceeding as before, we can define the scattered current as

Jscat t ∝ ψ̂†
out ~σψ̂out =

�

� fs (θ)
�

�

2
+
�

� fs̄ (θ)
�

�

2

r
û†
θ
~σûθ =

�

� fs (θ)
�

�

2
+
�

� fs̄ (θ)
�

�

2

r
(cosθ , sinθ) ,

(5.48)

which can be interpreted as the sum of the scattered currents at s and s̄ channels.
Then, we can define the differential scattering cross section as

dϑsc

dθ
=

r|Jscat t |
|Jin|

= | fs (θ) |2 + | fs̄ (θ) |2, (5.49)

and in the same way, the differential cross section at the s̄ channel, what we are going
to call the spin-flip cross section,

dϑs f

dθ
= | fs̄ (θ) |2. (5.50)
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Figure 5.3: Geometry of the scattering problem.

In order to compute the scattering amplitudes fs and fs̄, we model the defect as
follows. Consider the geometry of Fig. 5.3. We describe the defect as a circular void of
radius R1 (in red in Fig. 5.3), which is of the order of the lattice constant, surrounded
by a region of radius R2, where the SOC is induced. We assume that the wave function
vanishes at r ≤ R1.[240] We can use the cylindrical geometry of the problem in order
to decompose the solutions at each region in partial waves, taking into account that
the free Dirac Hamiltonian and the SOC entangle the orbital motion and the spin
dynamics with the pseudospin, in such a way that the global symmetry of the problem
is the generalized angular momentum operator Jz = `z +

ħh
2
σz +

ħh
2
sz , where σ and s

represents the pseudospin and spin degree of freedoms and `z is the third component
of the orbital angular momentum operator `z =−iħh

�

x∂y − y∂x

�

.

In region I, if we suppose that both intrinsic Kane-Mele ∆KM and Bychkov-Rashba
∆BR couplings are induced, the Hamiltonian reads

H =−iħhvF ~σ · ∇+∆Iσz ⊗ sz +∆BR (~σ×~s)z . (5.51)

The most general wave function solution with well-defined J = l + 1 and energy ε
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reads

ψ̂I
ε,J = Al

+

��

Jl
�

k+r
�

eilθ

ic+Jl+1
�

k+r
�

ei(l+1)θ

�

⊗ | ↑〉−
�

c+Jl+1
�

k+r
�

ei(l+1)θ

iJl+2
�

k+r
�

ei(l+2)θ

�
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�

+

+Al
−

��

Jl
�

k−r
�

eilθ

ic−Jl+1
�

k−r
�

ei(l+1)θ

�

⊗ | ↑〉+
�

c−Jl+1
�

k−r
�

ei(l+1)θ

iJl+2
�

k−r
�

ei(l+2)θ

�

⊗ | ↓〉
�

+

+Bl
+

��

Yl
�

k+r
�

eilθ

ic+Yl+1
�

k+r
�

ei(l+1)θ

�

⊗ | ↑〉−
�

c+Yl+1
�

k+r
�

ei(l+1)θ

iYl+2
�

k+r
�

ei(l+2)θ

�

⊗ | ↓〉
�

+

+Bl
−

��

Yl
�

k−r
�

eilθ

ic−Yl+1
�

k−r
�

ei(l+1)θ

�

⊗ | ↑〉+
�

c−Yl+1
�

k−r
�

ei(l+1)θ

iYl+2
�

k−r
�

ei(l+2)θ

�

⊗ | ↓〉
�

,

where Jl (x) and Yl (x) are Bessel functions of first and second kind, c± =
ε−∆I

ħhvF k±
,

and

ħhvF k± =
p

ε2 −∆2
I ∓ 2∆Rε± 2∆I∆R. (5.52)

In region II we have just "free" graphene. We can write the solutions with well-defined
ε= ħhvF |k| and J = l + 1 as

ψ̂I I
ε,J =

cos φs

2
e−ilθk (i)l
p

2

�

Jl (kr) eilσ

iJl+1 (kr) ei(l+1)σ

�

⊗ | ↑〉+

+
sin φs

2
eiθs e−i(l+1)θk (i)l+1

p
2

�

Jl+1 (kr) ei(l+1)σ

iJl+2 (kr) ei(l+2)σ

�

⊗ | ↓〉+

+C l
+

�

Hl (kr) eilσ

iHl+1 (kr) ei(l+1)σ

�

⊗ | ↑〉+ C l
−

�

Hl+1 (kr) ei(l+1)σ

iHl+2 (kr) ei(l+2)σ

�

⊗ | ↓〉 (5.53)

where Hl (x) = Jl (x) + iYl (x) are Hankel functions Note that with this choice, if
we consider the superposition of all the partial waves, from the first two terms we
recover the in-coming Bloch state with spin polarization |s〉, and then the out-coming
wave must be given by

ψ̂out =
∞
∑

l=−∞

�

C l
+

�

Hl (kr) eilσ

iHl+1 (kr) ei(l+1)σ

�

⊗ | ↑〉+ C l
−

�

Hl+1 (kr) ei(l+1)σ

iHl+2 (kr) ei(l+2)σ

�

⊗ | ↓〉
�

.

(5.54)

Taking into account the asymptotic behavior of the Hankel functions, Hl (x)≈
Æ

−2i
πx
(−i)l ei x ,

the scattering amplitudes fs and fs̄ can be easily written in terms of the coefficients

118



5.3 Beyond EY mechanism in graphene: SOC scatterers

C l
±as

fs (θ) =
2
p
πk

∞
∑

l=−∞

�

cos
φs

2
(−i)l−1 eilθC l

+ + sin
φs

2
e−iθs (−i)l ei(l+1)θC l

−

�

, (5.55)

fs̄ (θ) =
2
p
πk

∞
∑

l=−∞

�

sin
φs

2
(−i)l−1 eilθC l

+ − cos
φs

2
e−iθs (−i)l ei(l+1)θC l

−

�

. (5.56)

The total scattering cross section and spin-flip cross section after integrating over the
angle θ read

ϑsc =
8

k

∞
∑

l=−∞

�

�

�C l
+

�

�

2
+
�

�C l
+

�

�

2
�

, (5.57)

ϑs f =
8

k

∞
∑

l=−∞

�

�

�

�

sin
φs

2
C l−1
− − cos

φs

2
e−iθs C l

+

�

�

�

�

2

. (5.58)

By imposing matching conditions for each partial wave at r = R2 zig-zag boundary
conditions at r = R1,[241] we obtain a system of 6 equations for each l which com-
pletely determines the unknowns, in particular C l

+, C l
−. These equations read

Al
+Jl
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�
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−Jl
�
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+Yl
�
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�
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�
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�
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�
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�
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�
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�
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�
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�
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=
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�
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�
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�
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=
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�
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�
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�
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. (5.59)
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Figure 5.4: Scattering cross section as a function of the carrier concentration.

When no enhancement of the spin-orbit is induced, it is clear from these equations
that no spin-flip is produced. In that case, it is easy to see that the scattering cross
section is given by

ϑsc =
4

k

∑

l

�

�

�

�

Jl
�

kR1
�

Hl
�

kR1
�

�

�

�

�

2

, (5.60)

as expected for resonant scatterers.

According to recent ab initio calculations,[130] we take ∆KM = 0.21 meV, ∆BR = 0.33
meV. The sp3 distortion is essentially local, as well as the SOC due to the dispersion
of the involved σ bands. In the calculations we take R1 = a, R2 = 2a. The results are
shown in Figs. 5.4-5.6.

The total scattering cross section is unaffected by the SOC. Its dependence as a
function of the carrier concentration is shown in Fig. 5.4, and it follows Eq. (5.60).
From this we deduce the relation τp ∝ kF ∝

p
n, as expected for resonant impuri-

ties.

The spin-flip cross sections are shown in Figs. 5.5 and 5.6 for out-of-plane and in-
plane polarizations respectively. They show completely different monotonies, and the
in-plane spin-flip cross section is (note the units in both plots) 3 orders of magnitude
larger. These differences are due to the presence of the Kane-Mele coupling.

In the light of these results, we conclude that spin transport experiments in graphene
may not be explained by this model. The order of magnitude of the spin-flip cross
sections lead to spin relaxation times of the order of 100 ns in the most favourable
scenario (in-plane polarization), at least 2 orders of magnitude larger than the ob-
served ones. On the other hand, the out-of-plane spin-flip cross sections goes like

120



5.3 Beyond EY mechanism in graphene: SOC scatterers

out - of - plane

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

n H1012 cm-2L

Σ
sf

H1
0-

10
nm

L

Figure 5.5: Spin-flip cross section for out-of-plane spin polarization as a function of
carrier concentration.
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Figure 5.6: Spin-flip cross section for in-plane spin polarization as a function of
carrier concentration.
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∝ kF , in contradiction with the experiments. This observation is general and does
not depend on the magnitude of the induced SOC or the extension of the defect,
therefore, the same behavior is expected for heavy adatoms or other sources for the
SOC enhancement. Nevertheless, note that the model does not include the effect
of local magnetic moments created by the defects, which is expected for resonant
impurities or vacancies.[242,243]

5.4 Conclusions

We have studied the SOC-mediated spin relaxation mechanisms in graphene and
MX2 materials. Whereas for the latter DP mechanism leads to spin lifetimes in agree-
ment with recent optical experiments,[21] in the case of graphene, neither DP nor EY
mechanisms explain spin transport experiments. The values of the experimental spin
lifetimes suggest extrinsic sources of spin relaxation. However, it is difficult to find an
explanation based on a single mechanism given the amount of experimental features
that seem to be contradictory each other in some cases. We have seen that the hy-
pothesis according to which spin transport would be limited by adatoms increasing
locally the SOC seems to be insufficient by itself in order to explain the experiments.
On the other hand, the formation of local magnetic moments associated to these
defects seem to play a role according to recent experiments.[221] Other sources of
spin relaxation are the ferromagnetic contacts due to the conductivity mismatch prob-
lem.[244] Spin injection efficiency in graphene-based spin valves has been also a very
active field of research,[245–248] although its effect on spin transport measurements is
still under debate.
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6
Spin-lattice relaxation

6.1 Introduction

As mentioned in the previous chapter, conventional EY and DP mechanisms seem to
be insufficient in order to explain spin transport experiments in graphene. Addition-
ally, we have shown that extrinsic curvature and flexural phonons couple to electron
spin and constitute an intrinsic source of spin relaxation mediated by the SOC. In this
chapter we analyze the role of flexural phonons and curvature in disorder-assisted
spin relaxation in 2D hexagonal crystals. In particular, we apply our findings to dis-
cuss spin relaxation in MX2 materials.

In principle, we must distinguish two different contributions to the spin-lattice cou-
pling Hamiltonian. On the one hand, an electron-phonon contribution arises as result
of the modification of the orbital composition of the Bloch states by out-of-plane
displacements of the atoms in the lattice. This coupling depends on the local cur-
vature since the tilting of the crystal does not change the orbital composition of
electronic states as we justified in Chapter 4. On the other hand, the absence of a
global quantization axis induces relaxation with respect to an external probe defining
a global frame for spin dynamics. The origin of this relaxation is purely geometrical,
therefore, it does not depend on the microscopic details of the bands. This is usually
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6. S P I N - L AT T I C E R E L A X AT I O NQualitative picture in the diffusive regime
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Figure 6.1: Two different situations for spin relaxation in the presence of a non-
uniform SOC. When `�L , the situation resembles the conventional DP mechanism,
whereas for `�L the same scaling as for the EY mechanism is obtained.

called deflection coupling, introduced in carbon nanotubes,[249] and studied also in
graphene quantum dots.[250]

The effective SOC terms generated by the presence of curvature, phonons, etc, con-
tributes to spin relaxation, but in a slightly different way as compared to the conven-
tional SOC-mediated mechanisms due to the spatial variations of the SOC. We must
take into account two different length scales in our estimates, as sketched in Fig. 8.6.
The motional narrowing is governed by the mean free path ` ∼ vFτ (here vF is the
Fermi velocity of the spin carriers), but now we must take into account additionally
the typical length scale L over which the SOC varies.

In a region of radius L we can take the SOC strength approximately uniform. If
L � ` we are in the same situation as in the case of uniform SOC. If we denote
by ∆R the approximate constant value of the SOC strength in this region we obtain
the same scaling relation as in the conventional DP mechanism, τ−1

s ∼ ∆
2
R/ħh

2 × τ.
However, for L � ` the situation is not longer as in the uniform case. The spatial
variations of the SOC adds another source of randomization which tends to compite
with the motional narrowing. This can be seen by repeating the previous estimate,
taking into account that now the dephasing between scattering events is governed
by the averaged value of the SOC strength, which can be approximated as

q

¬

�

∆R (r)
�2¶∼∆R ×

L
`

.
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We end up with δ ∼∆R×L / (ħh`)×τ=∆R×L /
�

ħhvF
�

, which does not depend on
τ. Hence, we obtain a Elliot-like relation of the form τ−1

s ∼ ∆
2
RL

2/
�

ħh2v2
F

�

× τ−1.
We see that, in some sense, the ratioL /` interpolates between DP and EY-dominated
regimes.

In this chapter we formalize this crossover within the framework of diagramatic
perturbation theory for disordered systems.[251] Since spin relaxation times limited
by flexural phonons in graphene are of the order of microseconds,[167] whereas
the experiments give values in the range of hundreds of picoseconds up to few
nanoseconds, we focus our analysis on MX2 materials, where this mechanism is
expected to be more relevant. The structure of the chapter is the following. First we
review the spin-phonon coupling from a geometrical point of view, and we determine
the model Hamiltonian that we are going to employ through the calculation. Then, we
analyze in detail the spin relaxation induced by curvature, distinguishing two cases:
static wrinkles and flexural phonon modes. We pay special attention to the parametric
dependence of the spin lifetimes on adjustable parameters as temperature. Finally, we
conclude with some numerical estimates in experimentally relevant scenarios.

6.2 Spin-lattice coupling: geometrical perspective

In this section we construct the spin-lattice coupling in the long wavelength limit for
general 2D crystals with hexagonal symmetry. Due to the mirror symmetry of these
2D materials we can write in general

H
�

K± + p
�

=Hband
�

K± + p
�

+ εzL̂z ŝz . (6.1)

The first term describes the electron/hole orbital motion in the band, and the second
term takes into account the SOC. The microscopic form of the angular momentum
operator L̂z depends on the particular symmetry of the system. As we have seen, for
centrosymmetric point groups as C6v (graphene), D3d (bilayer graphene or silicene),
L̂z = τzσz , whereas for non-centrosymmetric groups as D3h (MX2) we have L̂z = τz .
The size of the coupling constant εz depends on the material and band-specific orbital
composition of the electron Bloch states. In all the cases the out-of-plane direction
defines as global quantization axis for electron spin. The lack of a global definition
of the normal to the crystal makes the electron spin to relax.

In general, spin-lattice coupling between electrons and wrinkles can be incorporated
in Eq. (6.1) by treating the crystal as a flexible membrane, as we did in the case of
graphene. We introduce the local vertical displacements h(x , y). The local normal
vector is just n≈

�

−∂xh,−∂yh, 1
�

to the leading order in h. Then, we use the global
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coordinate system for the 3D electron spin s to write down its coupling to the local
angular momentum oriented along n(x , y),

HSO = εzL̂z ŝ · n≈ εzL̂z ŝz +δHg ; (6.2)

δHg ≈−εzL̂z

�

∂xhŝx + ∂yhŝy

�

.

Here, the inhomogenous term δHg is responsible for spin-lattice relaxation, whereas
the first term εzL̂zsz sets a global quantization axis for the electron spin. Additionally,
we take into account contributions towards spin-phonon coupling arising from the
modification of the orbital composition of the Bloch states of electrons, due to the mix-
ing of bands (and corresponding atomic orbitals) by mutual displacements of atoms
in the lattice. Such couplings depend on the components of the second fundamental
form Fi j ≈ ∂i∂ jh rather than n, as we justified in Chapter 4. Phenomenologically,
such additional couplings,

δHo = λ‖
�

2∂x∂yhŝx +
�

∂y∂yh− ∂x∂xh
�

ŝy

�

L̂z +ħhβ (v× s)z∇2h+

+ħhβ̃[
�

v̂x ŝy + v̂y ŝx

��

∂x∂xh− ∂y∂yh
�

+ 2
�

v̂y ŝy − v̂x ŝx

�

∂x∂yhx y], (6.3)

appear as invariants of the point group of the crystal, C6v for graphene and D3h =
D3×σh for MX2, built from the components of the electron spin operator sx ,y , velocity
operator, and components of the second fundamental form to the leading order in
h. Note that the terms in the first row of Eq. (6.3) can be written as λ‖L̂ · ŝ, where

L̂ =±
�

2∂x∂yh,∂ 2
y h− ∂ 2

x h
�

for K± has the properties of an in-plane component of
atomic angular momentum operator, and the other two terms are similar to Bychkov-
Rashba[102] and Dresselhaus[252] SOC terms. In those bands where electrons originate
from atomic px ,y and dx y,x2−y2 orbitals (e.g., valence band in MX2), the influence of
δHo should be less than that of δHg . In the bands where electrons originate from s,
pz or dz2 orbitals, SOC arises from their weak mixing with high energy orbitals, and
hence δHg and δHo should be treated on equal footing.

As they stand in Eqs. (6.2)-(6.3), the spin-lattice coupling terms δHg,o can be used to
evaluate the rate of spin relaxation of electrons due to the short-wavelength ripples
with a Fourier spectrum hq in the range of wave numbers q� εz/v. To describe spin
of electrons flying accross such short-wavelength ripples, we use a spin-coordinate
frame related to the median orientation of the crystal, averaged over many ripples
periods. In contrast, it is more practical to analyze the influence of long-wavelength
wrinkles, with q < εz/v, in the local, adiabatically varying spin frame, adjusted to the
local flake orientation. The electron spinor states in the global and local frames are
related by the non-Abelian gauge transformation Û = e

i
2
ν ·ŝ, ν =

�

∂yh,−∂xh
�

, which
diagonalizes Eq. (6.2) into HSO = εzL̂z ŝz , but also produces an additional smaller
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perturbation,

ÛHband
�

K± + p
�

Û† ≈Hband
�

K± + p
�

+δH̃g , where

δH̃g =
1

2

�

∂Hband

∂ p
, Û (−iħh∂ ) Û†

�

=
ħh
2

h

v̂y ŝx∂
2
y h− v̂x ŝy∂

2
x h+

�

v̂x ŝx − v̂y ŝy

�

∂x∂yh
i

.

Note that, upon gauge transformation Û , spin-lattice coupling δHo remains almost
unchanged (only terms in the higher order in qhq can appear), hence δH̃g is the
leading term in the Taylor expansion of ÛHband Û† −Hband in small qhq.

This gauge transformation allows us to expresses all the couplings in the local spin
frame, in such a way that only the components of the second fundamental form may
appear. The geometrical origin of δH̃g becomes evident within this formulation. Note
that:

1. δH̃g has the same structure as a combination of Bychkov-Rashba and Dres-
selhaus terms in the phenomenological Hamiltonian of Eq. (6.3), with the
universal (non material dependent) coupling constants β = β̃ =−1/4. There-
fore, in the following analysis of spin relaxation induced by smooth ripples, we
combine δH̃g and δHo by redefining the coupling constants β and β̃ .

2. Such combination of Bychkov-Rashba and Dresselhaus terms corresponds to
the situation where spin relaxation is maximum along the direction of bending,
and it is absent in the orthogonal direction.

This last statement can be checked straightforwardly. By setting the gaussian curva-
ture to 0, we can define locally the direction of bending forming an angle φ with the
x axis. Then, the curvature is locally determined by the radius of curvature along
such direction, R. If we write the velocity operator v as v= vF (cosθ , sinθ), then we
have

δH̃g ≈
ħhvF

2R

�

cosφŝy − sinφŝx

�

cos
�

φ − θ
�

. (6.4)

Hence, spin relaxation is maximum when θ = φ (mod π), and it is absent for θ =
φ +π/2 (mod π).

6.3 Spin-lattice relaxation

Spin-lattice relaxation of electrons is determined by the cumulative contribution of
both short- and long-wavelength lattice deformations, which produces the sum τ−1

s =
τ−1

d + τ
−1
b of diffusive spin relaxation assisted by disorder and ballistic contribution
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Figure 6.2: The three diagrams which contribute to Π operator to the lowest order
in the spin-lattice coupling.

determined by a simultaneous momentum |p − p′| ∼ q and spin transfer to the
ripples.

The diffusive contribution to the spin relaxation rate can be estimated using the
framework of diagrammatic perturbation theory applied to the analysis of a dis-
order averaged spin-density matrix of electrons, 1

2
~ρ · ~σ. Diagramatically, Fig. 6.2,

spin-lattice coupling is incorporated in the polarization operator Π, which governs
spin diffusion, [∂t − Π]~ρ(t) = ~ρ(0)δ(t). Without spin-lattice coupling, Π ≈ D∇2,
where D = 1

2
v2

Fτ =
1
2
`vF , τ and ` stands for the electron diffusion coefficient, scat-

tering time and mean free path, respectively. Valley-dependent spin splitting, ±εzsz ,
generates independent precession of ~ρ± in K± valleys. Spin-lattice relaxation of elec-
trons, assisted by disorder, is incorporated into Π via three diagrams, Fig. 6.2, where
solid lines indicate the disorder averaged electron Green functions, the dashed lines
are correlators 〈h(r)h(r′)〉 and dots are spin-lattice coupling vertices cosrresponding
to Eqs. (6.2)-(6.3). The kinetics of spin polarization of carriers is then described
by

�

∂t − D∇2
�

~ρ± ±λZ2
nz × ~ρ± +τ−1

d ~ρ = ~ρ±(0)δ(t), (6.5)

where ± identifies K± valley, and we have neglected the difference between the in-
plane and out-of-plane spin relaxation rates, regarding the fact that, in all possible
regimes, it should be superceeded by a faster spin precession due to εz term in
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Eq. (6.1). The three diagrams in Fig. 6.2 lead to
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q2β2
SO v2 q < εz

ħhv
ε2

z/ħh
2 q > εz

ħhv

withM
�

q
�

=
1+ `2q2 + τ2ε2

z

ħh2

1+ 2
�

`2q2 + τ2ε2
z

ħh2

�

+
�

`2q2 − τ2ε2
z

ħh2

�2 ,

and β2
SO ≡ β

2 + β̃2 +
λ2
‖

ħh2v2
. (6.6)

The above expressions link together DP and EY regimes. Indeed, for q`� 1 spin re-
laxation takes place over several momentum scattering events while electron diffuses
in an interval of space with almost homogeneous SOC which causes its spin to pre-
cess randomly. Therefore, the spin relaxation rate is expected to obey the DP relation
τ−1

d ∝ τ. On the contrary, for q` > 1 spin flips take place over single scattering events
involving external disorder, and spin relaxation is expected to obey the Elliot relation
τ−1

d ∝ τ
−1.

The ballistic contribution is determined by a simultaneous momentum, |p− p′| ∼ q,
and spin transfer to the lattice upon electron scattering off the ripples. From the
Fermi’s golden rule we estimate

τ−1
b =

2π

Nħh

∑

q

e−
1
q`
�

�〈p+ q ↑
�

�δHg

�

�p ↓〉
�

�

2
δ
�

ε↑p+q − ε
↓
p

�

.

Here, a factor e−
1
q` takes into account the fact that this contribution does not involve

any externally promoted momentum transfer. This contribution is generated by the
short-wavelength flexural deformations hq with q > εz/ħhv, which permit electron’s
scattering between isoenergy lines separated by εz/ħhv on the momentum plane near
the K± points, where the local spin quantization axis is defined as a normal to the
median plane averaging wrinkles over ħhv/εz scale.

Next, we apply this analysis to the cases of static wrinkles and flexural phonon
modes.

6.3.1 Static wrinkles

We analyze spin relaxation of electrons produced by static wrinkles characterized by
lateral size q−1 and height

p




h2
�

. We distinguish two asymptotic regimes character-
ized by the ratio q`, see Fig. 6.3. For q`� 1, the ballistic contribution is exponen-
tially suppressed, and τs can be understood as result of the DP mechanism in the

129



6. S P I N - L AT T I C E R E L A X AT I O N

q-1

q-1

Adiabatic

AdiabaticΤs
-1

~

Εz
2 q Yh2]

Ñ
2 v

Τs
-1

~

Εz
2 q2 Yh2] Τ

Ñ
2

Τs
-1

~

Βso
2

Ñ
2 v2 q4 Yh2]

Εz
2

Τ

Τs
-1

~

Βso
2

Ñ
2 v2 q4 Yh2]

Εz
2

Τ

Ñvq Ñ�Τ

Ñ�Τ Ñvq

Log ΕZ

L
og

Τ
s-

1

Figure 6.3: Schematic behavior of spin relaxation induced by wrinkles of typical size
q−1 and height

p




h2
�

. The top and bottom lines correspond to q` > 1 and q` < 1,
respectively. The experimental situation[235–237,253] for electrons and holes in MoS2
is denoted by a dot and a star, respectively.

presence of an effective Zeeman term εz . Asymptotic formulas for τs are summarized
in Fig. 6.3.

In the case of q` > 1 we expect a EY behavior for the diffusive contribution, in partic-
ular, if we distinguish between long-wavelength and short-wavelength modes,

τ−1
d ≈







ħh2β2
SO v2q4

D

|hq|2
E

ε2
zτ

if εZ � ħhvq,

ε2
Z

D

|hq|2
E

ħh2 v2τ
if εZ � ħhvq.

(6.7)

When εz � ħhvq the ballistic contribution is absent, whereas in the short-wavelength
regime,

τ−1
b ≈

2π

ħh
ε2

z q2
D

�

�hq

�

�

2
E

×
∫

dθq

2π
δ
�

ε↑p+q − ε
↓
p

�

=
εzq
D

�

�hq

�

�

2
E

ħh2v
. (6.8)

Note that in that case spin relaxation is dominated by the ballistic contribution
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since

τ−1
b

τ−1
d

∼ q`� 1.

As before, asymptotic formulas are summarized in Fig. 6.3. Note that a non-monotonic
dependence of τ−1

s on εz is expected due to a double role it plays: on the one hand
εz determines the strength of the spin-lattice coupling according to Eq. (6.2), and on
the other it represents the intrinsic SOC splitting leading to a pseudo-Zeeman field
which protects spin polarization.

6.3.2 Flexural phonons

Spin relaxation due to flexural phonons is evaluated taking into account their quadratic
dispersion, ωq =

Æ

κ

ρ
|q|2 (where κ is the bending rigidity of the system and ρ =

M/Ac the mass density) and the resulting low frequencies allow us to treat them as
quasi-static deformations parametrized by spectral density 〈

�

�hq

�

�

2〉,

D

�

�hq

�

�

2
E

=
ħh

2Mωq

�

2nB

�ωq

T

�

+ 1
�

,

where nB is the Bose-Einstein distribution function.

For the sake of convenience, we introduce two characteristic temperature scales
associated to ` and εz through the dispersion relation,

T` ≡
p

κ/ρ×
ħh
`2KB

,

TZ ≡
p

κ/ρ×
ε2

z

ħhv2KB
. (6.9)

For T � TZ , spin relaxation is dominated by long wavelength (q < εz/ħhv) phonons,
whereas at T � TZ , short wavelength modes dominate. On the other hand, at T < T`
only modes with q < `−1 contribute to spin relaxation. At low temperatures DP
behavior is expected if T` > TZ , whereas for T` < TZ the Elliot relation τs ∝ τ is
anticipated. At high temperatures, however, the analysis is not so straightforward
since also the ballistic contribution must be taken into account. Two regimes of
disorder are defined by the ratio TZ/T`, which controls the relative importance of
both contributions.
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The dependence on temperature of τd can be easily inferred from Eq. (6.6). The
integration over flexural phonon modes, after the substitution 1

N

∑

q→
Ac

4π2

∫

BZ
d2q,

whereAc is the area of the unit cell, can be expressed as
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8πτκT`
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,

(6.10)

where we distinguish the contributions from long- and short-wavelength modes,
respectively, and

M (x) =
1+ T

T`
x + TZ

T`

1+ 2
�

T
T`

x + TZ
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�

+
�

T
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�2 . (6.11)

After the integration over thermally excited flexural phonon modes, we find
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(6.12)

Among all these regimes, only the asymptotic of T � TZ � T` is dominated by
ballistics, whose contribution can be written as

τ−1
b =

2εTZ

ħhκ
· f
�

TM

T
,

Tm

T
,

T`
T

�

. (6.13)

Here TM ,m are temperature scales associated to energy-momentum conservation
constrains, given by

TM ,m =
4εTZ

εz

�
p

ε/εz ±
p

ε/εz − 1
�2

, (6.14)

and the function f (X , x , z) is defined as

f (X , x , z)≡
∫ X

x

d y

2π

e y+1
e y−1
× e−
p

z/y

p

�
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��
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. (6.15)
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Figure 6.4: Spin relaxation induced by flexural phonons for different regimes of
temperature and disorder. Red dashed line represents T`.
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If z� X , x then f is exponentially supressed. When z� X , x we have

f ≈
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Æ
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X x
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Æ
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For T > TM > T`, we find that
τ−1

b

τ−1
d
∼ 2πτεz

ħh � 1, otherwise the ballistic contribution

is exponentially small and the diffusive one dominates. Thus, having compared both
contributions and combined them in τ−1

s = τ
−1
d + τ

−1
b , we summarize the resulting

behaviors in Fig. 6.4.

6.4 Conclusions

We have derived the general form of the spin-lattice coupling in 2D hexagonal crystals.
We distinguish two different contributions: the deflection coupling, whose origin is
purely geometrical, and the spin-phonon coupling due to changes in the orbital
composition of electronic Bloch states as result of out-of-plane displacements of the
atoms in the crystal. We have applied this theory to the study of spin relaxation
induced by static wrinkles and flexural phonon modes in MX2 materials. We have
analyzed both diffusive and ballistic contributions to spin relaxation, and studied its
parametric dependence on external disorder (exppresed in τ or alternatively `), spin
splitting of the occupied bands εz , and temperature in the case of phonons. Next, we
try to perform numerical estimates in experimentally relevant situations.

In currently available MoS2-based devices, the mobilities extracted from transport
experiments[235–237] indicate that it is the diffusive contribution that limits spin life-
times of electrons and holes in this material. The experimental situation in both cases
is indicated on Fig. 6.3. For wrinkles with a typical height of 1 nm and lateral length
scale of 10 nm, as reported in Ref.253, and SOC splitting of εZ = 3 (140) meV for
conduction (valence) bands respectively, we find

τ−1
s ≈







ε2
z q2〈h2〉τ
ħh2 ∼ 1 ns for electrons,

β2
SOħh

2 v2q4〈h2〉
ε2

zτ
∼ 10 ns for holes.

(6.17)

In the case of holes we have taken β2
SO =

1
16

(note that in addition the spin-phonon
coupling Eq. (6.3)) should be included in β2

SO).
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For perfectly flat MoS2, flexural vibrations thermally activated at room temperature
would also produce spin relaxation. We describe a MoS2 monolayer as a plate of
thickness δ ≈ 6.75 A, where δ is the inter-layer distance in bulk MoS2.[254] Then, we
estimate the bending rigidity of a single layer as[142]

κ=
Yδ3

24
�

1−σ2
� ≈ 27 eV, (6.18)

where Y = 0.33 TPa is the Young modulus[255] andσ = 0.125 is the Poisson ratio.[256]

Thus, for electrons we estimate T` ∼ 10 K and TZ ∼ 10−3T`, so for the spin relaxation
time we have

τ−1
s ≈

TZ T

4πτκT`
ln
�

T`
TZ

�

∼ 5 ns. (6.19)

For holes, since TZ ∼ 3000 K, we estimate

τ−1
s ≈

πβ2
SO T 2

24τκTZ
∼ 20 ns. (6.20)

The latter estimates are produced without taking into account that an atomically flat
substrate will quench bending modes,[257] so that we expect MoS2-hBN structures to
exhibit longer spin memory of charge carriers and therefore offer a perfect platform
for spintronics devices. Regardless, the above estimates constitute the upper limit to
spin lifetimes in MoS2, and it can be extrapolated to other MX2 systems by choosing
the suitable values for the material dependent parameters.
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7
QSHE in MX2 monolayers

7.1 Introduction

As we have seen in Chapters 1 and 2, the SOC may lead to a novel state of matter
which resemble a TRI version of the QHE rather than a symmetry broken phase within
the Landau’s paradigm. We showed how graphene promised the perfect laboratory to
explore this phenomena, however, the weakness of the SOC prevents the stabilization
of such topological phase. Even so, MX2 monolayers share a similar crystal structure
and some common electronic properties, but with the big advantage of its much larger
SOC, the microscopic basis for the emergence of TRI topological phases.

In this chapter, we present a proposal for engineering the QSHE in strained 2D crystals
and heterostructures made using MX2 materials. Strain is known to induce pseudo-
magnetic fields in 2D crystals.[258–261] These fields have been predicted[259] and
experimentally found[260,261] to produce LLs in the electronic spectrum of graphene.
As explained below, it is also possible to exploit these pseudo-magnetic fields to
engineer TRI topological phases in other 2D crystals such as MX2 monolayers.

This approach has several attractive features. Using MoS2 as an example, we find
that gaps between LLs scale as ħhωc/kB ' 2.7 B0[T] K, where B0[T] is the strength of
the pseudo-magnetic field in Tesla. In the case of graphene, fields B0[T]∼ 10− 102
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T have been experimentally demonstrated,[259–261] which in the case of MX2 could
lead to LL gaps of up to ≈ 100 K. A more accurate estimation should take into
account the maximum tensile strength of these materials. We argue that LL gaps of
20 K can be realistically achieved in strained MoS2 samples. By comparison, the gaps
achievable by straining GaAs are in the range of tens of mili-Kelvin.[135] However, in
multi-valley systems like graphene, strain only leads to (spin) unpolarized LLs. What
sets monolayers of MX2 apart is the SOC that produces a large spin splitting of the
valence (and to a smaller extent, the conduction) band due to the lack of a center
of inversion in the crsytal structure, as we have seen. For small doping, this leads to
spin-polarized LLs in different valleys, which opens the possibility of realizing TRI
topological phases. Furthermore, given that the valence and conduction band of MX2
have strong d character, along with the poor screening of the Coulomb interaction in
2D, electron interactions can have interesting effects on properties of the topological
phases realized in MX2 monolayers.

Alternatively, we show how a superlattice can be used to create, within each valley,
a band with non trivial topological properties. If we neglect trigonal warping, each
valley has a fictitious time-reversal-like symmetry. This symmetry is broken by "gauge"
terms proportional to σx and σy which can arise from strain or from virtual hopping
processes to the substrate. A suitable combination of periodic scalar and a gauge
potentials can[262] separate the lowest leading subbands from the rest by opening a
gap at the edges of the superlattice BZ, and give a total Chern number of ±1 to the
subbands arising at the K± valleys, respectively.

The chapter is organized as follows. In the first part we discuss the possibility of
engineering a QSHE phase in strained MX2 monolayer crystals. We infer how strain
modifies the band structure of such materials from group theory and the simpli-
fied tight-binding model presented in Chapter 2. Then, we discuss the experimental
consequences for a particular realization considering a pure shear strain configura-
tion. In the second part, we speculate about the possibility of creating topologically
non-trivial subbands with superlattice potentials.

7.2 QSHE created by strain

In this section we analyze the emergence of a QSHE state in strained MX2 monolayers.
We discuss first how strain affects the dynamics of electrons at K± valleys. Then, we
show explicitly, for a pure shear strain configuration, how the system resembles a
realization of the Bernevig-Zhang model for the QSHE,[135] and we conclude with
some general remarks on the experimental consequence and theoretical implications
of the present proposal.
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Irrep TR Even TR Odd

A′1 1,σz ,
∑

α uαα -
A′2 - τz , sz

E′ (σx ,τzσy), (ux x − uy y ,−2ux y) (τzσx ,σy), p= (px , py)
E′′ - (sx , sy)

Table 7.1: Symmetry classification of the electronic operators within the 2 bands
effective model and strain tensor components according to the irreps of D3h and time
reversal operation.

7.2.1 Strain in MX2 monolayers

In order to turn a MX2 monolayer into a TRI topological insulator, we consider the
effect of strain on the band structure. As we have seen previously when discussing
the electron-phonon coupling in graphene, in the theory of elasticity strain is de-
scribed by a rank-2 tensor, ui j ≈

1
2
(∂iu j + ∂ jui + ∂ih∂ jh), where u= (ux , uy , h) is the

displacement of the unit cell in the long-wave length limit. In the present case, the
three components of ui j can be split according to irreps of D3h as shown in Table 7.1.
Thus, within the 2-bands effective model the coupling with strain reads

Hstrain = β0 tuii + β1 tuiiσz + β2 t
��

ux x − uy y

�

σx − 2ux yτzσy

�

. (7.1)

The trace of the strain tensor generates scalar potentials of different strength in the
valence and conduction bands. In addition, strain can be introduced in the 2-bands
Hamiltonian as a minimal coupling p→ p− eA to a vector potential

eA=
ħhβ2

a
τ

�

uy y − ux x
2ux y

�

. (7.2)

Here τ = ±1 labels the valleys K±. The pseudo-magnetic field has opposite sign on
different valleys, which is necessary as strain does not violate time reversal symme-
try.

Microscopically, the origin of these couplings can be understood as the change in
the hybridization between d orbitals from M atoms and p orbitals from X atoms
due to the distortion of the lattice. Note that, additionally, in the case of the cou-
plings with the trace of the strain tensor, β0,1, the coupling is also affected by the
deformation potential due to local changes of the area of the unit cell, which could
be incorporated in a tight-binding description as changes in the associated crystal
field parameters. However, being interested in the gauge field term, which is not
affected by the deformation potential, we neglect these changes. Therefore, in our
microscopic tight-binding model the phenomenological constants β0,1,2 are related
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with the Grüneisen parameters[258] associated to the hopping amplitudes previously
considered, t x ,y,z (see Fig. 2.5). In order to see this, we repeat the calculation out-
lined in Chapter 2 by considering the change in the hopping integrals t x ,y,z due to
the displacement of the atoms. For the hopping integral between atoms at sites α, β
we have

tαβ → tαβ +
∂ tαβ
∂ r

�

uα − uβ
�

, (7.3)

where uα(β) is the displacement of the atom at site α (β). For small displacements
we can approximate

uα − uβ ≈
a
p

3

�

δ̂αβ · ~∂
�

u. (7.4)

In the spirit of the two-center Slater-Koster approximation, we assume that the hop-
ping only depends on the distance between neighboring sites, tαβ (|r|), as we did in
the case of graphene. Then we have

∂ tαβ
∂ r
≈
∂ tαβ
∂ a

r

|r|
=

p
3

a
tαββαβ δ̂αβ , (7.5)

where βαβ ≡−∂ ln |tαβ |/∂ ln a is the Grüneisen parameter associated to tαβ . There-
fore, in the the matrix elements we have to consider now

t x ,y,z → t x ,y,z

�

1+ βx ,y,zδiδ jui j

�

, (7.6)

where ui j are the compnents of the strain tensor. By repeating the previous calculation
at Kτ we obtain the Hamiltonian in Eq. (7.1) with:

tβ0 =
3

2

 

cβz tz

1+ |c|2
−

v
�

βx t x + βy t y

�

1+ |v|2

!

,

tβ1 =
3

2

 

cβz tz

1+ |c|2
+

v
�

βx t x + βy t y

�

1+ |v|2

!

,

tβ2 =
3
�

cβx t x − cβy t y − vβz tz

�

4
p

1+ |c|2
p

1+ |v|2
. (7.7)

From now on, we focus on the effect of the gauge field term on holes.

7.2.2 Realization of the Bernevig-Zhang model

We assume that the system is doped with holes and therefore the Fermi level crosses
the valence band. Integrating out the conduction band to leading order in ∆−1 yields
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Figure 7.1: (a) Low-energy spectrum of a semiconducting transition metal dical-
chogenide around the K± points of the BZ described by the continuum-limit Hamilto-
nian in Eq. (7.8). The inset shows the orientation of the stress tensor field discussed
through the text with respect to the lattice. (b) Schematic representation of the
Landau Levels (LLs) induced in the valence band when strain is applied.

at each valley

H(τ)v =−
Π(τ)+ Π

(τ)
−

2m∗
+ U(r) +τλSOsz , (7.8)

where m∗ =∆/2v2 ' 0.5m0, U(r) = g(ux x + uy y) with g = t
�

β0 − β1
�

, and

Π(τ)± = (τpx ± ipy)− e(τAx ± iAy),

which obey the commutation relation
h

Π(τ)+ ,Π(τ)−
i

= 2eħhτB(r), where B(r) = ∂xAy−

∂yAx . Corrections of O
�

∆−2
�

are also obtained and can lead to mixing of the LLs,
but they can be neglected as for typical parameters ħhωc ® 10−2∆.

In the absence of strain (A = U = 0), Eq. (7.8) describes the Bloch states at the
top of the valence band near K± points. Owing to the SOC, for small hole doping,
|εF | � λSO, the spin and valley quantum number of the holes are locked to each other,
then only holes with either (K+,↑) or (K−,↓) can exist, see Fig. 7.1. This feature is
crucial for the realization of a TRI topological phase, as we argue below.

Applying a pure shear strain, then ux x + uy y = 0 (U = 0), and ux x = −uy y = −C y,
ux y =−C x , we have B(r) = ∂xAy − ∂yAx =−τB0, with

B0 =
4Cħhβ2

ea
.
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We assume C > 0. The Hamiltonian in (7.8) can be diagonalized after introducing
the operators

aτ =
Π(τ)−

p

2eħhB0

,

leading to

H(τ) =−ħhωca
†
τaτ +τλSOsz , (7.9)

whereωc = eB0/m
∗. As stated above, even for the largest achievable pseudo-magnetic

fields (B0 ∼ 102 T) ħhωc � λSO, and therefore, provided |εF | � λSO, LLs at different
valleys are occupied by holes with opposite spin. The resulting model has been shown
by Bernevig and Zhang[135] to display the QSHE, meaning that the Hall conductivity
σ

x y
H is zero but the spin-Hall conductivity σx y

SH is quantized in units of e/2π.

The strain configuration described above can be created by the methods described
in Ref.259. For a MX2 flake under trigonal strain (see the inset in Fig. 7.1 (a)), one
concern is the sample size. The latter is limited by the maximum tensile strength of
the MX2 crystals, Tmax. The stress tensor σi j is related with the strain tensor by the

thermodynamic relation σi j =
�

∂ F
∂ ui j

�

T
. For pure shear strain, these relations read

just σi j = 2µui j . Considering a circular geometry for simplicity, the previous strain
configuration can be achieved by a applying a tension on the border of the form
T=−µC L (sin2θ , cos 2θ), where L is the diameter. From the above thermodynamic
relations we estimate the maximum diameter L where this strain configuration can
be performed before breaking the crystal, L = Tmax

µC
. The values of Tmax ' 16.5 N/m

and µ' 50.4 N/m can be obtained from DFT calculations.[263] The latter is estimated
from the Young’s modulus E = 130 N/m and Poisson’s ratio ν = 0.29 as µ = E

2(1+ν)
.

This yields a relation between the maximum pseudo-magnetic field (in Tesla) and
the sample size L in µm: B0[T] ≈ 8/L[µm]. Using ħhωc/kB = 2.7 B0[T] and taking
L ≈ 1µm, we estimate ħhωc/kB ' 20 K for MoS2.

For small strained MX2 flakes, it is necessary to take into account the effect of an
inhomogeneous pseudo-magnetic field resulting from a non-uniform strain distribu-
tion. In this regard, we note that the lowest LL eigenfunctions are null eigenvectors
of Π(τ)− ,

Π(τ)− ψ(r) = 0. (7.10)

Therefore, following Ref.264, we write A(r) = τ
�

ẑ×∇χ(r) +∇φ(r)
�

, which allows
to solve Eq. (7.10) as

ψ(r) = f (x , y)e
2π
Φ0
(χ(r)+iτφ(r)). (7.11)
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From Eq. (7.10) we see that f (x , y) satisfies the equation
�

∂x − iτ∂y

�

f (x , y) = 0,
therefore f (x , y)≡ f (x − iτy) is an entire function (anti-holomorphic at valley K+,

holomorphic at valley K−). Since
�

∂ 2
x + ∂

2
y

�

χ = τB (r) = −B0 (r), and the funda-
mental solution (propagator) of the Laplacian in 2D is ln |r|/2π, we have

χ(r) =−
∫

dr′

2π
ln(|r− r′|)B0(r

′). (7.12)

Asymptotically,χ (r)∼− Φ
2π

ln(|r|) as |r| →∞, and thereforeψ (r)∼ f
�

x − iτy
�

|r|−
Φ
Φ0 ,

where Φ =
∫

dr B0(r) > 0 is the total flux, assumed to be positive in consistency
with the previous choice of C > 0, and Φ0 = h/e is the flux quantum. Thus, we
conclude that f (z) is a polynomial of maximum degree N = [Φ/Φ0]. Hence, the
wave-function describing N↑ = N↓ = N (non-interacting) electrons in the lowest LL
read[264,265]

Φ0({riτ}) = eS
∏

i< j

(z∗i+ − z∗j+)(zi− − z j−), (7.13)

where S({riτ}) =
2π
Φ0

∑N
i=1,τ=±1

�

χ(riτ) + iτφ(riτ)
�

.

Larger sample sizes can be achieved by other methods such in 2D crystal bub-
bles.[259–261] A periodic array of such bubbles will lead to periodic modulation of
strain and pseudo-magnetic field, which allows to create topologically non-trivial
band structures.[259,266]

7.2.3 Experimental consequences

Next, we discuss some experimental consequences of our predictions. For the previous
strain configuration, the wave-function for spin +1/2 holes (at valley K+), apart
from the confining factor, is anti-holomorphic as discussed previously, therefore, their
Hall conductivity is expected to be quantized in units of −e2/h. For spin -1/2 holes
at the opposite valley, the wave-function is holomorphic, so the Hall conductivity
is quantized in units of +e2/h. Both contributions are cancelled out, but the spin
Hall conductvity is expected to be quantized in units of −e/2π. However, if the
total sz is not a good quantum number this picture is not longer valid and the spin
Hall conductivity is not exactly quantized. Instead, charge transport through the
(helical) edge channels provides a clearer signature of existence of a topological
phase.[137,267]

Nevertheless, we must be careful in qualifying the strained 2D crystal as a topo-
logical insulator for arbitrary LL filling. This is because adatoms, the substrate, a
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perpendicular electric field, out of plane deformations, etc. break the mirror symme-
try about the 2D crystal plane, which induces a Bychkov-Rashba SOC as we have
seen, leading to spin-flip processes and therefore the possibility of backscattering
between counter-propagating edge channels. For an odd number of occupied LLs, an
odd number of Kramers’ pairs of edge modes cross the Fermi energy and, for weak
to moderate electron-electron interactions, the integrity of at least one Kramers’ pair
of edge modes against TRI perturbations is always ensured.[268,269] Thus, for 2n+ 1
(with n integer) occupied LLs, the system is a protected topological phase and a
two-terminal measurement of the conductance will yield at least −2e2/h and at most
−2(2n+ 1)e2/h, depending of degree of edge disorder and other sz non-conserving
perturbations.

On the other hand, if the number of occupied LLs is even (= 2n), there will an
even number of pairs of edge modes crossing the Fermi level and this situation
is no longer protected against Bychkov-Rashba-type disorder potential[268,269] (al-
though edge modes survive for strong enough electron-electron interactions[268,269]).
However, in sufficiently clean samples and provided that interactions are weak, quan-
tized conductance of 4ne2/h may be observable. Furthermore, the existence of bulk
LLs can be detected by means of scanning tunneling microscopy as in the case of
graphene.[260,261]

Finally, let us discuss the possible effect of interactions. The strong d character of the
valence and conduction bands means that electron correlations can have a important
effect on the topological phases, especially on the edge states.[268,269,271] Indeed, for
MoS2 the short-range part of the interaction (the Hubbard U) has been estimated
in Ref.270 to be U ∼ 2− 10 eV. Thus, MoS2 may present a scenario comparable to
the Iridates.[271] However, the QSH effect in the MX2 monolayers may allow for a
more complete understanding of the interplay between electron correlation and QSH
physics, since correlation effects decrease as the metal atom M is varied from the 4d
series (as in MoS2) to 5d series (as in WS2).

7.3 Alternative route: superlattice potentials

In this section we show how a superlattice can be used to induce subbands with
topological properties in a doped MX2 monolayer. We approximate the bands of the
homogeneous system by the 2 bands effective Hamiltonian, whose eigenvalues and
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eigenfunctions read (around valley K±)

εk =±

r

∆2

4
+ (v|k|)2,

|k+〉=







cos
�

θk

2

�

sin
�

θk

2

�

eiφk






,

|k−〉=







sin
�

θk

2

�

− cos
�

θk

2

�

eiφk






, (7.14)

where θk = arctan[2vF |k|/∆] and φk = arctan(ky/kx). The ± signs correspond to
conduction and valence bands respectively.

A superlattice potential hybridizes states |k〉 and |k+G〉 where the vectors G de-
fine the superlattice. We consider the six lowest vectors G, see Fig. 7.2, with |G| =
(4π)/(

p
3L), where L = Na is the lattice constant of the N × N superlattice. We

assume that v|G| � ∆ and that the superlattice potential, VG, is such that VG �
(v|G|)2/(2∆), so that perturbation theory in VG applies. We also assume that the
lattice potential is sufficiently smooth, |G| � |K+ −K−|, where K± are the corners of
the original BZ of the MX2 lattice, and neglect intervalley scattering. Therefore, we
focus the discussion on a single valley.

Using first order perturbation theory, each set of three points at one valley connected
by superlattice reciprocal vectors, κ=

�

κ1,κ2,κ3
	

and κ′ =
¦

κ′1,κ′2,κ′3
©

points, leads
to a 3× 3 matrix of the form

Hκ,κ′ ≡













εκ,κ′ ± v̄kx Vκ,κ′ V ∗
κ,κ′

V ∗
κ,κ′ εκ,κ′ ± v̄

�

− kx

2
+
p

3ky

2

�

Vκ,κ′

Vκ,κ′ V ∗
κ,κ′ εκ,κ′ ± v̄

�

− kx

2
−
p

3ky

2

�













,

(7.15)

where εκ,κ′ = ε0 = (v|κ|)2/∆, v̄ ≈ (2v2|κ|)/∆, and the two signs correspond to the
κ and κ′ points respectively. For Vκ,κ′ =

�

�Vκ,κ′
�

� eiφκ,κ′ , the energies and eigenfunctions
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Figure 7.2: Sketch of the effect of the BZ in a superlattice, and states mixed by the
superlattice potential.

at the κ and κ′ points in the basis used to write Eq. (7.15) are:

εa = ε0 + 2
�

�Vκ,κ′
�

� cos
�

φκ,κ′
�

|a〉=
1
p

3
(|1〉+ |2〉+ |3〉)

εb = ε0 + 2
�

�Vκ,κ′
�

� cos
�

2π

3
+φκ,κ′

�

|b〉=
1
p

3

�

|1〉+ e2πi/3 |2〉+ e−2πi/3 |3〉
�

εc = ε0 + 2
�

�Vκ,κ′
�

� cos
�

4π

3
+φκ,κ′

�

|c〉=
1
p

3

�

|1〉+ e−2πi/3 |2〉+ e2πi/3 |3〉
�

(7.16)

In the case of φκ,κ′ = 0,π, then Vκ,κ′ real, an expansion in powers of |k| shows that
states |b〉 and |c〉 define an effective 2× 2 Dirac Hamiltonian with velocity v̄/2. The
degeneracy of these Dirac points is lifted for complex values of Vκ,κ′ . The problem is
equivalent to a gapped Dirac equation with gap ∆κ,κ′ = 2

p
3|Vκ,κ′ | sin

�

φκ,κ′
�

, with
φκ,κ′ defined mod 2π/3. If φκ and φκ′ have different signs, the two gaps also have
opposite signs, leading to a lowest subband with a Chern number equal to 1. This is
a realization of Haldane’s model.[131]

The superlattice potential is a 2 × 2 matrix in the space span by conduction and
valence band states, and can be divided into scalar, mass and vector components,
which, in turn, can be even or odd under spatial inversion. Following Ref. 272 we
define the functions:

f1 (r) =
∑

m=0...5

eiGm·r,

f2 (r) = i
∑

m=0...5

(−1)meiGm·r.

(7.17)
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Then, we can construct the inversion-symmetric superlattice potentials as

Vs = v |G|∆s f1 (r) ,
Vm = v |G|∆m f1 (r)σz ,

Vg = v∆g

�

σx ,τzσy

�

· (ẑ×∇) f2 (r) . (7.18)

The coefficients ∆s,m,g in these expressions are dimensionless phenomenological
constants with the energy scale set by v |G|= 4πtp

3N
.

We focus on valence band states. The scalar potential has matrix elements




k+Gm

�

�Vs |k〉= v |G|∆s

�

sin

�

θk+Gm

2

�

sin
�

θk

2

�

+

+ cos

�

θk+Gm

2

�

cos
�

θk

2

�

ei(φk−φk+Gm)
�

, (7.19)

and equivalently for the mass potential,




k+Gm

�

�Vm |k〉= v |G|∆m

�

sin

�

θk+Gm

2

�

sin
�

θk

2

�

−

− cos

�

θk+Gm

2

�

cos
�

θk

2

�

ei(φk−φk+Gm)
�

. (7.20)

The edges of the first subband are determined by the shifts in the energies of the
corners of the superlattice BZ. We assume that |k| = |k+ Gm| = κ = (4π)/(3Na),
hence,




k+Gm

�

�Vs,m |k〉 ≈ ±v |G|∆s,mei(φk−φk+Gm)
�

1−
v2κ2

∆2

�

1∓ ei(φk+Gm−φk)
�

�

. (7.21)

For the gauge potential we have




k+Gm

�

�Vg |k〉= i (−1)m v |G|∆g

�

cos

�

θk+Gm

2

�

sin
�

θk

2

�

ei(φGm−φk+Gm)−

− sin
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2

�

cos
�

θk

2

�

ei(φk−φGm)
�

≈

(−1)m+1 2vκ

∆
v |G|∆g ei

φk−φk+Gm
2 cos

�

mπ

3
−
φk +φk+Gm

2

�

. (7.22)

149



7. QSHE I N MX2 M O N O L A Y E R S

The same can be done with the inversion-asymmetric superlattice potentials, defined
as

Ṽs = v |G| ∆̃s f2 (r) ,

Ṽm = v |G| ∆̃m f2 (r)σz ,

Ṽg = v∆̃g

�

σxτzσy

�

· (ẑ×∇) f1 (r) . (7.23)

By repeating the same calculation we obtain




k+Gm

�

� Ṽs,m |k〉 ≈ ±i (−1)m v |G|∆s,mei(φk−φk+Gm)
�
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∆2
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�

�

,
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�
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2vκ

∆
v |G| ∆̃g ei

φk−φk+Gm
2 cos

�

mπ

3
−
φk +φk+Gm

2

�

. (7.24)

From this analysis it is clear that inversion-asymmetric potentials are needed in order
to induce a topological subband structure. To the leading order in vκ/∆, considering
scalar potentials only, we have

Vκ =



κ1 = κ2 +G4

�

�Vs + Ṽs

�

�κ2
�

= v |G| e
i2π
3

�

∆s + i∆̃s

�

,

Vκ′ =
¬

κ′1 = κ
′
2 +G1

�

�Vs + Ṽs

�

�κ′2

¶

= v |G| e
i2π
3

�

∆s − i∆̃s

�

. (7.25)

So Vκ,κ′ = v |G|
p

∆2
s + ∆̃

2
s × e

i2π
3
±i arctan

�

∆̃s
∆s

�

. Hence, the gap is ∆κ,κ′ =±2
p

3v |G| ∆̃s.
The highest valence subbands derived from the bands at the spin polarized valley
K+ in the band structure of the MX2 monolayer have a Chern number C↑ = 1. This
Chern number is compensated by the opposite value from the other valley K− due to
time-reversal symmetry, C↓ =−1. Therefore, Cs =

�

C↑ − C↓
�

/2= 1, so the system is
effectively a realization of the Kane-Mele model.[37]

7.4 Conclusions

We propose to engineer TRI topological insulators in monolayers of MX2 taking advan-
tage of the huge SOC provided by transition metal atoms and the lack of an inversion
center in the crystal structure. At low doping, monolayers of MX2 under shear strain
will develop spin-polarized Landau levels residing in different valleys with opposite
spin polarization. As a result, the edge transport becomes quantized, which can be
probed in multi-terminal devices using strained 2D crystals of these materials. The
strong d character of valence and conduction bands may also allow for the investiga-
tion of the effects of electron correlations on the topological phases.
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7.4 Conclusions

Alternatively, we propose to employ superlattice potentials in order to create sub-
bands with topological properties. This approach, which relies on a effective peri-
odic magnetic field with zero average, leads to a Quantum Hall insulator[273] in the
absence of a global magnetic flux.[131] The periodicity of the potential should be
such that the width of the subbands is smaller than the spin splitting in each valley.
Large enough periodicities where subbands can be resolved have been achieved for
graphene on Boron Nitride.[274–277] Finally, note that a different scheme leading to
the QSH effect based on a Moiré pattern in a single valley semiconductor like GaAs
has been recently suggested in Ref.278.
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8
Electronic confinement in graphene due

to spatially varying SOC

8.1 Introduction

The electronic band structure of a material may acquire interesting topological prop-
erties in the presence of a magnetic field, or due to the SOC as we have already seen.
At the same time, hybrid structures made up of different two dimensional layers can
have properties different from each of their components. In this chapter we study
graphene on iridium (Ir), with islands of an ordered lead (Pb) monolayer interca-
lated between graphene and the Ir surface. Experiments performed by the group of
Rodolfo Miranda show that, while the graphene layer is structurally unaffected by
the presence of the Pb layer, its electronic properties change dramatically, appearing
regularly spaced resonances in the local density of states (LDOS).

The linear dispersion of the graphene bands allows for the existence of a variety of
mechanisms which can induce gauge fields[258,279–281] other than strains. Hopping be-
tween two graphene layers, for instance, can be formulated as a non abelian field,[281]

and this approach can be generalized in a straightforward way to the Bychkov-Rashba
SOC in graphene. We show in this chapter that the existence of a strong and non
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uniform SOC is consistent with the existence of sharp resonances observed experi-
mentally. Electrons from graphene tunneling through the Pb atoms can feel the large
SOC characteristic of these heavy atoms.[282] A non-uniform spatial change of the
strength of the SOC generated by going from the Pb intercalated graphene to the
one directly grown on Ir leads to a spatial modulation of the non-abelian gauge field,
which, in turn, leads to a pseudo magnetic field confining Dirac electrons. We argue
that the peaks present at the STS spectra are, thus, due to electronic confinement
induced by spatially varying SOC fields. In spite of the local character of SOC, the
effect is detected at long distances from the physical edge of the Pb-intercalated is-
lands. Note that the gauge fields associated to the SOC are more complex than the
abelian field induced by strains, leading to novel structures not observable in real
magnetic fields or in the presence of strains.

The structure of the chapter is the following: first of all, we summarize the experi-
mental results that we try to explain with our theory. Then, we present the model
and the tight-binding calculations which qualitatively agree with the experiments,
and finally we comment on additional implications of the theory.

8.2 STM/STS experiments on graphene on Ir(111) with
intercalated Pb

Graphene can be grown on Ir(111) by CVD techniques, in this case by direct decom-
position of 8× 10−8 Torr of ethylene at 1000 0C on the Ir surface as explained in
Refs.283, 284. The bonding between graphene and Ir(111) is weak. The graphene
overlayer presents a well known incommensurate 9.3 x 9.3 moiré superstructure, see
Fig. 8.1, with a small corrugation of 20 pm,[285] arising from the lattice mismatch
with respect to the iridium substrate. In addition, the graphene overlayer is weakly p-
doped by charge transfer to the substrate with the Dirac energy at +100 meV (above
the Fermi level), and it displays the conical band dispersion characteristic of free
standing graphene.

Intercalation of Pb under the graphene monolayer is achieved by evaporating Pb onto
the graphene/Ir(111) sample kept at 800 K. The graphene/Ir regions present a hexag-
onal network that corresponds to the already mentioned moiré pattern, whereas the
intercalated regions present a negligible corrugation. Some Pb intercalated islands
appear in the terraces (frequently close to graphene wrinkles), but most of them are
located at the step edges. The Pb coverage has been selected so that the lateral size
of the islands ranges from 5 to 15 nm and their average separation from 20 to 40 nm.
The thickness of Pb intercalated below graphene is strictly one monolayer, according
to the measured apparent height of the islands.
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Figure 8.1: Left: 9.3× 9.3 moiré structure formed by graphene grown directly on
Ir(111). Right: Original moiré unit cell in the intercalated region where the atoms in
yellow correspond to the Pb atoms.
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According to Low Energy Electron Diffraction (LEED) patterns and Fourier Transforms
of large scale atomically resolved STM images, neither graphene nor iridium lattice
parameters change upon lead intercalation, so that the 9.3 x 9.3 moiré pattern is
maintained. In the interlayer Pb atoms form a rectangular lattice commensurate with
Ir and, therefore, incommensurate with graphene, see Fig. 8.1. The Dirac point for
the Pb intercalated graphene can be estimated to be at ±110± 20 meV according
to the diameter of the inter-valley scattering half-moon rings observed in the STM
Fourier Transforms. The density of Pb atoms in the intercalated layer is relatively
high, i.e. 1/7 of the density of carbon atoms in graphene.

The LDOS at the graphene regions intercalated with Pb was measured locally by
STS at 4.6 K. The differential conductance spectrum measured on a 10 nm-wide Pb
intercalated island that appears in Fig. 8.2 (red cross on panel A and red curve on
panel C) shows up to 10 clearly defined, intense and sharp peaks in a ∼ 3 eV wide
region. The (rather featureless) spectra recorded on the pristine graphene/Ir(111)
surface do not show this series of sharp states. Plotting the estimated Dirac point
at -110 meV below the Fermi energy (orange line in Fig. 8.2, the Pb-intercalated
graphene is slightly n-doped), the peaks appear to be symmetrically distributed above
and below it. The separation between peaks is nearly constant, ∆ ∼ 340 meV. The
effect is observed in all graphene/Pb islands, and it is robust, independent of the
detailed shape of the Pb islands and of the defects present at the edges (or interior)
of the islands. The peaks can be clearly detected even at 80 K.

The recorded STS spectra when going from the Pb intercalated graphene region (red
cross on panel A and red curve on panel C) into the graphene/Ir area (blue cross
on panel A and blue curve on panel C) show that all the peaks shift, essentially in a
rigid fashion. The quantized levels (labelled from 1 to 6 starting at the Dirac point)
appear in both regions with the same energy separation, ∆ ∼ 340 meV, but shifted
in energy by near 200 meV, which is close to the difference in Dirac energy between
both regions (-110 meV for gr/Pb and +100 meV for gr/Ir). The smooth shift of the
quantized levels can be clearly seen in the central part of panel C, where we show
(in inverted grey scale) the spatial map of the dI/dV intensity along the green arrow
of panel A. The shift follows strictly the variation of the Dirac point when moving
between the two regions (in fact there is an exception, namely the unlabelled peak
between peaks 5 and 6 that shifts by near 300 meV). All the peaks are clearly visible
even at 10 nm away from the physical edge of the Pb island into the gr/Ir region (i.e.
at the position signalled by the blue cross). Fig. 8.2 D shows the energy position of
the quantized levels as a function of their quantum number, n. A lineal dependence
that intersects at the respective Dirac points is evident for both graphene/Pb/Ir(111)
and graphene/Ir(111) data sets.
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Text%comes%here..

!
Figure'2:'Electron'confinement'in'the'Dirac'cone.'
A:' STM% topograph% acquired% over% a% G/Pb/Ir% area% surrounded% by% G/Ir.% Underneath% the% right% G/Ir% area% there% is% an%

addi?onal%substrate%atomic%layer,%as%shown%schema?cally%in%the%model%of%panel%B.%Red%and%blue%crosses%mark%the%spots%

of%the%spectra%shown%in%panel%C,%while%the%green%arrow%indicates%the%path%corresponding%to%the%dI/dV%intensity%map%

also%shown%in%panel%C.%

B:% Schema?c% side%view%ball%model%describing% the% situa?on%going%on% in% the% image%of%panel%A.%Gray%and%yellow%balls%

represent%iridium%and%lead%atoms%respec?vely.%Blue,%red%and%green%balls%represent%carbon%atoms%of%the%graphene%sheet%

above%iridium,%lead%and%transi?on%regions%respec?vely.%

C:'STS% spectra%acquired%over% the%G/Pb/Ir%area% (red)%and%moving% towards% the% right%G/Ir%area% (blue)%across% the%green%

arrow,%as%indicated%in%the%image%of%panel%A.%In%inverted%grayscale,%the%dI/dV%intensity%map%through%the%green%arrow%is%

shown%between%both%spectra.%The%Dirac%points%of%G/Pb/Ir% (from%the%es?ma?on%shown% in%figure%1)%and%G/Ir% (already%

known%from%photoemission)%are%marked%in%orange%and%blue%respec?vely.%All%spectra%show%a%set%of%evenly%spaced%peaks%

that%extends%through%all%the%measurement%range,%from%O2%to%1.3%eV.%When%moving%from%G/Pb/Ir%to%G/Ir%the%set%shiSs%up%

in%energy%by%near%200%meV,%amount%that%matches%the%change%in%the%Dirac%point.%Assigning%a%quantum%number%to%each%

peak%as%shown%in%the%graph%leads%to%panel%D.%

D:'Energy%VS%quantum%number%plot%for%G/Pb/Ir%(red)%and%G/Ir%(blue).%Both%datasets%can%be%easily%fiVed%by%straight%lines%

that%intersect%at%the%respec?ve%Dirac%points,%as%shown%by%the%red%and%blue%lines.
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Figure 8.2: Courtesy of Fabián Calleja. A) STM topograph over a graphene/Pb/Ir area
located next to a monoatomic step of the Ir(111) substrate. B) Schematic model of
the atomic arrangement on the Pb intercalated island. C) Differential conductivity of
graphene/Pb/Ir(111) (in red) and graphene/Ir(111) (in blue) at the points indicated
by the crosses in panel A. The dI/dV intensity map recorded along the highlighted
line in panel A is shown between the spectra at the extremes. D) Energy positions of
the peaks as a function of the assigned quantum number n.
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8.3 Phenomenological model

The sharp resonances described in the previous section imply the existence of quasi-
localized states. The scale of the confinement can be inferred from the gaps ∆ be-
tween resonances, `≈ vF/∆≈2-3 nm. The confinement of electrons in graphene by
potential energy barriers (e.g. at the island edges) over lengths much greater than the
interatomic distance is prevented by the Klein tunneling associated to the chirality
of the wavefunctions, and localized states are typically only found in the presence
of defects at the Dirac energy. Furthermore, although the n-p barriers (≈ 200 meV)
at the interfaces between graphene/Pb/Ir(111) and graphene/Ir(111) can confine
electrons it is hard to imagine that the confinement can extend to states that have en-
ergies of several electron volts as observed here. On the other hand, the confinement
could be associated to the out-of-plane direction, however, steps instead of sharp
resonance peaks are expected in that case.

As we have seen, the most common sources of confinement at arbitrary energies are
gauge fields. The effective magnetic field required to generate the observed gaps is
B(T) ≈ (25/`(nm))2 ≈ 80− 100 T. The graphene layer studied here does not show
appreciable strains, however. If we assume that the observed confinement is induced
by a varying strain which changes by ū over a distance of the order of the size of
the Pb island, R ≈ 10 nm, we obtain ū ≈ aR/(β`2) ≈ 0.05− 0.2, t ≈ 3 eV is the
hopping between nearest neighbors atoms and β the Gruneisen parameter previously
introduced. The graphene layer studied here is flat and uniform, and there is no hint
of strains like the ones estimated earlier.

On the other hand, the spin-flipping SOC terms can be interpreted as non-abelian
gauge fields. Electrons tunneling from graphene to Pb monolayer and back feel the
enormous SOC characteristic of this material. The SOC is a very local interaction,
however, for irregular shapes of the Pb islands we expect that the strength of the SOC
decays smoothly from the center with a characteristic length determined by the size
of the islands.

As we mentioned in the previous chapter in the case of the 2 bands effective model
for MX2 monolayers, superlattice perturbations enter in the k ·p Hamiltonian around
K± points as scalar (∼ I ), mass (∼ σz) and gauge potentials (∼ (σx ,±σy)). Since
we assume that the Pb layer induces a strong SOC in graphene, manifesting as spin-
dependent superlattice potentials, now we must take into account, additionally, sx ,y,z
operators acting on the spinorial part of the wave function. We deduce the form of
such potentials from group theory arguments.

The point group of graphene on an incommensurate substrate is the intersection of
the original hexagonal group C6v with the point group of the substrate. In this case,
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8.3 Phenomenological model

Σv '

Σv

Figure 8.3: Unit cells of the hexagonal (C6v) graphene crystal and rectangular (or-
thorhombic, C2v) substrate of Pb atoms.

Irrep TR Even TR Odd

A1 σx -
A2 - sz

B1 - τz , sy

B2 σz σy , sx

Table 8.1: Classification of electronic operators according to the irreducible repre-
sentations of C2v and time reversal (TR) operation.

being interested only on the effect of Pb, and given that Pb atoms form a rectangular
lattice, we conclude that the symmetry group of the substrate is orthorhombic, C2v ,
which is a subgroup of C6v . Therefore, only the symmetry operations of the original
group contained in C2v survive. Those are the C2 rotation about the axis orthogonal
to the graphene plane and inversion operations about the vertical planes defined
by the dashed and dotted lines in Fig. 8.3. Now the electronic operators must be
classified according to the irreducible representations of C2v as shown in Tab. 8.1.
Only complete scalars (∼ A1) which are even under time reveral symmetry may
appear in the Hamiltonian. Such combinations containing sx ,y.z operators are τzσzsz ,
τzsy , τzσx sy , and σysx .

This can be checked straightforwardly by considering the unitary operators that im-
plement the symmetry operations of C2v and time inversion in the Hilbert space of the
Bloch wave functions at the K± points. As explained in Appendix A, the orbital part of
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Irreps of C2v
double group E Ē 2C2 2σv 2σ′v

A1 1 1 1 1 1
A2 1 1 1 -1 -1
B1 1 1 -1 1 -1
B2 1 1 -1 -1 1

D1/2 2 -2 0 0 0

Table 8.2: Character table for C2v double group.

the wave function can be written as a vector of the formΨ=
�

ψA,+,ψB,+,ψA,−,ψB,−
�T

,
belonging to the 4-dimensional irrep G of C6v , where each entry ψA/B,± represents
the amplitude of the wave function on sublattice A/B at valley K±. The matrices of
C2v and time reversal operations in this basis are:

C2 : τxσx

σv : σx

σ′v : τx

T : τxK (8.1)

Note that the operators of C2, σv and σ′v operations commute each other since
C2v is abelian. With this and the character table of the group we classify valley
diagonal operators σx ,y,z and τz according to the irreducible representations of C2v
as indicated in Tab. 8.1.

The spinorial part of the wave function transfoms according to the 2-dimensional
irreducible representation D1/2 of the C2v double group, check the character table in
Tab. 8.2. In such representation the symmetry operations read:

C2 : isz

σv : sy

σ′v : sx

T : isyK (8.2)

The transformation properties of si matrices are trivially inferred from the reduc-
tion

D1/2 × D1/2 ∼ A1 + A2 + B1 + B2,

or equivalently from the transformation of si matrices under the operations of C2v
double group in the D1/2 representation. Note that now these operators do not
commute each other because the double group is not longer abelian.
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Then, one may form invariants using Tabs. 8.1 and 8.2, obtaining the mentioned SOC
terms. It is very easy to check that such terms transforms trivially under the matrices
of the G× D1/2 representation:

C2 : iτxσx sz

σv : σx sy

σ′v : τx sx

T : iτx syK (8.3)

Thus, the phenomenological Hamiltonian valid around the BZ corners read

H = vF ~Σ · (−i∇+A)± A0sy ±∆KMσzsz , (8.4)

where ~Σ =
�

±σx ,σy

�

, A=
�

Ax sy , Aysx

�

, and ± holds for valleys K±. It can be easily
checked that the Hamiltonian in Eq. (8.4) is invariant under the symmetry operations
of Eq. (8.3), and it represents the most general effective Hamiltonian at valleys K±
containing all the possible SOC terms with the only constrain of the reduced C2v
symmetry of the system.

We have the Kane-Mele coupling, also present (although negligible) in the absence of
the Pb layer, which can be interpreted as a mass potential, and new SOC terms which
can be interpreted as a gauge field A and a scalar field A0 which sets the y-component
as the quantization axis for spin. At this level, the fields A0,x ,y are phenomenological
couplings associated to the three independent SOC terms that emerge due to the
presence of the Pb layer. For the particular case when the Pb monolayer is completely
commensurate with graphene is possible to perform some analytical estimates based
on tight-binding, see Appendix C.

The gauge field A is non-abelian since in general
�

Ai , A j

�

6= 0. This situation is
formally identical to the one in the context of twisted bilayer graphene,[281] where
the inter-layer couplings can be also interpreted as components of non-abelian gauge
fields, but in that case the additional internal degrees of freedom is the layer instead
of the spin. As in that case, a non-uniform spatial dependence of these fields could
lead to electronic confinement.

8.4 Tight-binding simulation

8.4.1 Two-bands tight-binding model

In order to simulate the Hamiltonian of Eq. 8.4 at K± points, we consider the usual
tight-binding description of graphene in terms of first-neighbors hopping t between
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Figure 8.4: Hopping terms which lead to A at the ±K points.
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Figure 8.5: Hopping terms which lead to ∆KM (left) and A0 (right) at the ±K points.
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π orbitals. The SOC terms are then introduced by considering the suitable spin-
dependent hoppings. The first neighbors complex hoppings shown in Fig. 8.4 gener-
ate the gauge field A=

�

Ax sy , Aysx

�

. In second quantization notation these read

HA = iλ1

∑

〈i j〉

c†
i

�

~s× δ̂i j

�

z
c j − iλ2

∑

〈i j〉

c†
i

�

~s∗ × δ̂i j

�

z
c j , (8.5)

with ~s =
�

sx , sy

�

, ~s∗ =
�

sx ,−sy

�

, and c†
i =

�

c†
i↑, c†

i↓

�

, where c†
is (cis) creates (annihi-

lates) an electron at site i with spin s =↑,↓. The hopping λ1 respects the original C6v

symmetry and leads to the Bychkov-Rashba coupling, 3λ1

2

�

τzσx sy −σysx

�

, which is
nothing but the antisymmetric combination of x and y components of A. The easiest
way to reduce the symmetry down to C2v is to consider the complex conjugate hop-
pings, leading to the symmetric combination 3λ2

2

�

τzσx sy +σysx

�

. Therefore, the

components of A=
�

Ax sy , Aysx

�

read

Ax =
λ1 +λ2

ta
,

Ay =
λ2 −λ1

ta
. (8.6)

Similarly, we must consider hoppings between second nearest neighbors in order to
generate the scalar and mass (Kane-Mele) terms. The Kane-Mele coupling is associ-
ated to the hoppings resembling the Haldane’s model represented in the left panel of
Fig. 8.5. Such hoppings (note that the hoppings in the left panel of Fig. 8.5 reverse
their sign for the ↓ component of spin and for hoppings within atoms of the other
sublattice) respect the original C6v symmetry of graphene. In second quantization
notation the Hamiltonian reads

HKM = iλKM

∑

〈〈i j〉〉

νi jc
†
i szc j , (8.7)

where νi j =
2p
3

�

δ̂1 × δ̂2

�

z
=±1, and δ̂1, δ̂2 are the nearest neighbors vectors along

the two bonds that the electron traverses going from j to i site. This Hamiltonian
leads to the Kane-Mele coupling with∆KM = 3

p
3λKM . The hoppings between second

nearest neighbors shown in the right panel of Fig. 8.5 are not compatible with C6v ,
and actually reduce the symmetry down to C2v . In second quantization notation we
have

HKM = iλ0

∑

〈〈i j〉〉

νi j

�

a†
i sy a j − b†

i sy b j

�

, (8.8)

leading to A0 = 3
p

3λ0.
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Figure 8.6: Translation invariance in the zig-zag direction is assumed. The problem
for each kx can be mapped to a 1 dimensional tight-binding chain with 2 atoms per
unit cell. A finite chain (the region where the SOC changes) is connected to two semi-
infinite leads (where the SOC is taken as a constant). The effect of the semi-infinite
leads is incorporated to the Green operator of the chain by means of a self-energy,
which is computed from the solution of the Dyson equation for the leads.

8.4.2 Scheme of calculation

The transition from graphene/Ir(111) to graphene/Pb/Ir(111) is modeled as a region
where the SOC change from 0 to a certain finite value. For simplicity, we assume that
the SOC changes in the armchair direction (y). Translation invariance in the direction
along the border between the two regions is assumed, so the crystaline momentum
(kx) along the zig-zag direction is conserved. For each kx , the problem can be mapped
to a generalized tight-binding chain with two atoms per unit cell with kx -dependent
inter-cell hoppings, see Fig. 8.6. We compute the retarded Green function at the sites
of the chain where the SOC changes, modeled as a finite chain connected to semi-
infinite leads where the SOC is taken as a constant. The spatial variation of the SOC is
introduced in the modulation of the spin-dependent hoppings previously introduced.
The effect of the leads are incorporated as a self-energy, which is computed from the
Dyson equation for the leads. Then, the Green operator for the chain is calculated,
and from this we have the LDOS for each kx . Finally we integrate in kx .

8.4.3 Results

In all the cases the modulation of the spin-dependent hoppings follows the profile
shown in Fig. 8.7 (a), consisting in an error function spread in 60 unit cells of
graphene along the armchair direction,

λ
�

y
�

=
λmax

2

�

erf
� y

L

�

+ 1
�

, (8.9)

where y is referred to the center of the chain. Here λmax is the maximum strength of
the spin-dependent hopping and L is the length scale that characterizes the decay, a
certain fraction of the typical size of the islands. In all the results shown in this section
we take L = 15a. The LDOS is computed at the center, y = 0. The main result of this
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Figure 8.7: (a) Spatial evolution of the SOC across the border of the Pb intercalated
regions. The non-uniform SOC profile follows an error function spread in 60 unit cells
of graphene along the armchair direction, and the results shown in (b) correspond to
the LDOS in the middle. The inset shows a Pb island with its physical edge in black,
and the in-plane spin-polarized counter-propagating modes expected at the edges
of the region where the SOC changes. The color of the arrows indicates opposite in-
plane spin polarizations. (b) LDOS calculated for gr/Pb/Ir(111). A non-uniform SOC
with a maximum strength of λ1 = λ2 = 0.5t is assumed. The parameters correspond
to Ax(y) = 2λ(y)/at, Ay = 0, and we assume A0 = 0.06

p
3t (≈ 0.3 eV). Here t is the

first neighbor hopping parameter of graphene (3 eV) and a is the distance between
carbon atoms.

investigation is shown in Fig. 8.7 (b), where the computed LDOS qualitatively agrees
with the STS spectra. Next, we disclose the steps that lead us to this result.

We consider first the effect of the spatially varying gauge field A. The results when
only λ1, λ2 hoppings are included are shown in Fig. 8.8. The LDOS develops peaks
for considerable strong SOC, λ1,λ2 ≥ 0.1t. The more advantageous situation corre-
sponds to the case of λ1 ∼ λ2, when more peaks appear. In that case, the spectrum
resembles the one of graphene LLs.

In order to obtain a sequence of peaks qualitatively more similar to the ones obtained
in the experiments we must include the scalar potential A0, i.e. λ0 hoppings. The
calculation shown in Fig. 8.7 (b) corresponds to an uniform value of λ0 = 0.02t.
If the same profile as for λ1,2 is taken for λ0 then we obtain a similar result, see
Fig. 8.9 (left). However, the inclusion of a Kane-Mele coupling destroys completely
the sequence of peaks. For a certain value of the maximum λKM all the resonances
disappear and a gap around ω= 0 is opened.
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Figure 8.8: LDOS when only the gauge potential Â is considered (λ1 and λ2 hop-
pings). The values in the legend refer to the maximum value at the center of the Pb
islands.
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Figure 8.9: Left: LDOS when both the gauge Â and scalar Â0 potentials are considered.
The profile is the same in both cases. The maximum values of the couplings are
λ1 = λ2 = 0.5t, λ0 = 0.02t. Right: LDOS for different values of a non-uniform
Kane-Mele coupling.
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8.5 Interpretation

As shown in the previous section, spatially varying SOC fields may lead to electronic
confinement. According to the tight-binding calculation, the resonances are more
clear when λ1 and λ2 are of the same order, and they seem to follow the same
sequence as the LLs of the Dirac Hamiltonian. In that case, the gauge field reduces
to

A
�

y
�

=

 

2λ(y)
ta

sy

0

!

. (8.10)

Note that this field, under a U(2) (global) transformation of the form

U = exp



i
π

4
I − i

π

3
p

3

∑

x ,y,z

si



 , (8.11)

it is equivalent to an abelian gauge field with opposite sign for each spin compo-
nent,

Â
�

y
� U(2)
−−−→ UÂ

�

y
�

U† =

 

2λ(y)
ta

sz

0

!

. (8.12)

Therefore, under this U(2) transformation the Hamiltonian is mapped to two copies
of the Dirac equation in the presence of an out-of-plane magnetic field with opposite
sign for each spin projection. This situation resembles the quantum valley hall state
proposed in graphene, where strain generates pseudo-magnetic fields with opposite
sign at each valley,[259] but in this case the valley degree of freedom is replaced by
spin. Moreover, the present model consists on two copies of the QSHE state proposed
by Bernevig and Zhang,[135] one for each valley. Thus, surrounding Pb regions we
expect a situation qualitatively similar to the one discussed in the previous chapter
for strained MX2. As depicted in the inset of Fig. 8.7 (a), we assume that the Pb
islands induce a strong SOC in graphene, which decays as we get away from the
islands. Surrounding the region where the SOC changes, symbolized by the colour
gradient, we expect spin-polarized counter-progating edge states. Note that the spin
polarization is in-plane (in the simulation, along the armchair direction), which
makes these spin currents more difficult to be detected in a spin-polarized STM/STS
experiment.

Interestingly, the scalar field A0 separates in energy the sequence of Landau peaks
associated to each Kramers pair (different valley numbers) for which the system is a
Z2 topological insulator. This energy separation allows to populate an odd number
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of LLs. In that situation, an odd number of Kramers pairs of edge modes cross the
Fermi level, and therefore, at least one pair of the counter propagating edge channels
is topologically protected by time-reversal symmetry. The characteristic decay length
of these modes into the region where the SOC changes goes like `∼ 3tap

2∆
, where ∆ is

the energy separation between pseudo-LLs. From the experiments we have roughly
∆∼ 0.1t, so we expect `∼ 20a, which is less than the characteristic length (∼ 60a)
over which the spin-orbit changes in the numerical calculation.

Finally, the robustness of this picture is discussed. First of all, in the previous dis-

ertation we assumed λ1 = λ2. If λ1 6= λ2, then we have Ây
�

y
�

=
λ1(y)−λ2(y)

ta
sx .

This component of the field can be gauged away by the local U(2) transformation
U
�

y
�

= ei
∫ y

dζÂy (ζ), then

Â
�

y
�

→ U
�

y
�

�

−i∇+ Â
�

y
�

�

U† �y
�

=

 

λ1(y)+λ2(y)
ta
0

!

⊗

�

cos

�

2

ta

∫ y

dζλ1 (ζ)−λ2 (ζ)

�

sy + sin

�

2

ta

∫ y

dζλ1 (ζ)−λ2 (ζ)

�

sz

�

. (8.13)

The x component of the gauge field oscillates in spin space during the characteristic
length L = πta

〈λ1−λ2〉
, where the brackets denote the mean value. The problem is not

longer equivalent to two copies of the Dirac equation in the presence of a magnetic
field with opposite sign for each spin projection. The precession in spin space is the
manifestation of the non-abelian nature of the gauge field. Nevertheless, for slow
precession, `/L � 1, the LLs are expected to survive, as shown in the numerical
calculation. Given that the Landau gaps remain open the survival of the topological
properties of the system are guaranteed. Similarly, the Kane-Mele coupling mixes
the two in-plane spin polarizations, tending to suppress the LL peaks. On the other
hand, such coupling opens a bulk gap with non-trivial properties. Therefore, the
Kane-Mele coupling drives a topological transition from a Landau-Bernevig-Zhang to
a Haldane-Kane-Mele QSHE phase.

8.6 Conclusions

The sharp resonances observed in graphene grown on Ir(111) with intercalated Pb
islands may be interpreted as pseudo-LLs originated due to spatially varying SOC
fields. Microscopically, the SOC is provided by the intercalated Pb monolayer. For
irregular shapes of the Pb islands, we expect the induced SOC in the graphene layer
to decay from the center of the islands to the graphene grown directly on Ir with a
characteristic length scale determined by the size of the islands.
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Such spatial modulations of the SOC generate pseudo-magnetic fields which confine
graphene electrons. Note that in the tight-binding simulation the maximum strength
of the induced SOC giving the best qualitative agreement with the experiments is
λmax = 0.5t ≈ 1.4 eV, which is compatible with the SOC in Pb.[282] Such large SOC
is expected to be induced at the center of the Pb-intercalated regions, and to be
independent of the size of such regions due to the local nature of the SOC. On the
other hand, the length scale over which the SOC profile varies visibly, L, is expected
to be proportional to the size of the irregular Pb islands. This is also compatible with
the experiments, which show that the confinement (measured by the gaps between
resonances ∆) is larger for smaller sizes of the Pb islands.

According to this model, the regions surrounding the borders of the islands re-
semble a topological state of matter similar to the one proposed by Bernevig and
Zhang.[135] At the edges of the regions where the SOC varies we expect in-plane
spin-polarized counter-propagating modes . However, in this case the polarization is
in-plane, what makes these states difficult to be detected by spin-polarized STM/STS
experiments.
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Conclusions

Both stretching and bending deformations of 2D crystals have dramatic consequences
on the electronic structure of these materials when combined with spin-orbit effects.
We have discussed the manifestation of such phenomena in transport properties
or STM/STS probes, so either our theoretical findings try to explain experimental
observations or we propose possible routes to test our predictions.

We have shown in Chapter 3 that scattering by flexural phonons constitute the main
limitation to electronic transport in suspended graphene samples, characterized by
mobilities which show a quadratic dependence on temperature, independently of the
carrier concentration. The changes from sample to sample are attributed to residual
strain, which eventually suppresses this scattering mechanism.

We have seen in Chapter 4 that these phonon modes contribute remarkably to the
Kane-Mele SOC term, however, the strength of the atomic SOC is very weak due
to the lightness of carbon, making this effect difficult to be detected. Nevertheless,
applying compression is a suitable strategy in order to generate buckled regions of
graphene where such effects may be observed.

In Chapter 5 we discussed conventional SOC-mediated spin relaxation mechanisms
assisted by external disorder. The main conclusion of this work is that neither Elliot-
Yafet nor D’yakonov-Perel’ mechanisms are able to explain the observed spin relax-
ation times in graphene-based spin valves. We have examined different possibilities
going beyond these standard theories. As we have seen, impurities may enhance the
SOC locally, but this seems to be insufficient in order to reproduce spin transport
experiments. An important prospect for future work is to include in these models the
effect of the formation of local magnetic moments associated to such defects, which
seem to play a role in spin transport as inferred from recent experiments.

In Chapter 6 we introduced the effect of a spatially varying SOC associated to the
presence of curvature in the sample due to static wrinkles or flexural phonons. We
applied this theory to the case of MX2 monolayers, where there are not experiments
on spin transport yet, but our estimations are at least in agreement with recent optical
experiments.

We have proposed in Chapter 7 a route to create a QSHE state in MX2 monolayers
by applying tension. Shear strain couples to electronic quasiparticles as an effective
magnetic field with opposite sign for different valley excitations. At the same time,
the lack of a center of inversion in the crystal structure and the large SOC provided by
the transition metal atoms split the electronic bands with opposite sign at each valley.
These fictitious time reversal symmetry breaking allows to create a state analogous to
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the QHE, previously proposed by Bernevig and Zhang in a different semiconducting
compound. The strong d character of the MX2 bands estimulates the search for
correlation effects on this topological phase, for instance on the edge states, which is
an interesting line of research for the future.

We have developed a model in order to explain the sequence of sharp resonances in
the STS spectra recorded in graphene grown on Ir(111) with intercalated Pb islands.
The model relies on spatially modulated SOC fields induced by the Pb monolayer,
which agrees qualitatively with the experiments. The irrefutable evidence in favor of
the model would be the vanishing of the peaks at the center of large Pb islands. Un-
fortunately, it is not possible to control the size of these islands in practice. This work
opens the door to the study of different hybrid structures combining the mechanical
stability and good electronic properties of graphene with materials with large SOC.
In particular, Pb is a good candidate given that it can be tuned into a superconducting
state at low temperatures.

Finally, it is unavoidable to emphasize the importance of controlling the electron’s
spin degree of freedom for potential aplications which go from solid state platforms
for quantum computation to novel electronics based on this property. The ability to
contol these features by mechanical means instead of applying large magnetic fields is
a great goal for present and future technologies in Condensed Matter systems.
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Conclusiones

Tanto las deformaciones de estiramiento como las de pandeo tienen consecuencias
dramáticas en la estructura electrónica de los materiales 2D cuando se combinan con
los efectos de la interacción espín-órbita. Hemos discutido la manifestación de dichos
fenómenos en las propiedades de transporte o en pruebas STM/STS, por lo que bien
nuestros hallazgos teóricos tratan de explicar observaciones experimentales o bien
proponemos posibles rutas para comprobar nuestras predicciones.

Hemos visto en el Capítulo 3 que la dispersión por fonones flexurales constituye la
mayor limitación para el transporte electrónico en muestras de grafeno suspendido,
caracterizado por movilidades que muestran una dependencia cuadrática en la tem-
peratura independientemente de la concentración de portadores. Los cambios de
muestra a muestra son atribuidos a tensiones residuales que eventualmente supri-
men este mecanismo de dispersión.

Hemos visto en el Capítulo 4 que estos modos de fonones contribuyen remarcable-
mente al témino espín-órbita de Kane y Mele, sin embargo, la magnitud del acoplo
espín-órbita atómico es tan débil debido al bajo número atómico del carbono que
este efecto es difícil de detectar. No obstante, una posible estrategia es aplicar com-
presión para generar regiones corrugadas de tal forma que estos efectos puedan ser
observados.

En el Capítulo 5 discutimos los mecanismos convencionales de relajación de espín
mediados por el acoplo espín-órbita y asistidos por el desorden. La conclusión princi-
pal de este trabajo es que ni el mecanismo de Elliot-Yafet ni el de D’yakonov-Perel’ son
capaces de explicar los tiempos de relajación de espín en válvulas de espín basadas
en grafeno. Hemos examinado diferentes posibilidades más allá de estas teorías
convencionales. Como hemos visto, las impurezas pueden aumentar la interacción
espín-órbita localmente, pero esto parece insuficiente para reproducir los experimen-
tos de transporte de espín. Una posibilidad de trabajo para el futuro consiste en
incorporar en estos modelos el efecto de la formación de momentos magnéticos aso-
ciados a dichos defectos, lo que parece jugar un papel en el transporte de espín a la
luz de experimentos recientes.

En el Capítulo 6 introdujimos el efecto de acoplos espín-órbita variables en el espacio
asociados a la presencia de curvatura en la muestra debida a arrugas o fonones
flexurales. Aplicamos esta teoría al caso de monocapas de dicalcogenuros de metales
de transición, donde no hay experimentos de transporte de espín aún, pero nuestras
estimaciones son al menos compatibles con experimentos ópticos recientes.

Hemos propuesto en el Capítulo 7 una ruta para crear un efecto Hall cuántico de
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espín en monocapas de dicalcogenuros de metales de transición aplicando tensiones.
Las tensiones de cizalladura se acoplan de manera efectiva a las cuasi-partículas
electrónicas como un campo magnético con signo opuesto para excitaciones en torno
a diferentes valles. Al mismo tiempo, la ausencia de un centro de inversión en la
estructura cristalina y el acoplo espín-órbita tan grande provisto por los átomos del
metal de transición separan las bandas de energía con signo opuesto en cada valle.
Esta ruptura ficticia de la simetría de inversión temporal premite crear un estado
análogo al del efecto Hall cuántico, propuesto anteriormente por Bernevig y Zhang
en un compuesto semiconductor diferente. El carácter orbital de las bandas de los
dicalcogenuros de metales de transición estimula el estudio de los efectos de las cor-
relaciones electrónicas en esta fase topológica, por ejemplo en los estados de borde,
lo que constituye una muy interesante línea de investigación para el futuro.

Hemos desarrollado un modelo para tratar de explicar la secuencia de resononacias
en los espectros STS registrados en muestras de grafeno crecidas sobre la cara (111)
de iridio con islas de plomo intercaladas. El modelo se basa en la modulación espacial
de campos espín-órbita inducidos por la presencia de las monocapas de plomo, lo
que concuerda cualitativamente con los experimentos. La evidencia irrefutable en
favor del modelo sería la desaparición de los picos en el centro de islas de plomo muy
grandes. Desafortunadamente, no es posible controlar el tamaño de estas islas en
la práctica. Este trabajo abre la puerta al estudio de diferentes estructuras híbridas
que combinen la estabilidad mecánica y las buenas propiedades electrónicas del
grafeno con materiales que aporten un acoplo espín-órbita grande. En particular, el
plomo es un buen candidato dado que puede inducirse un estado superconductor a
temperaturas muy bajas.

Por último, es necesario destacar la importancia que tiene poder controlar el grado de
libertad de espín del electrón en aplicaciones que van desde las plataformas de estado
sólido para computación cuántica hasta la electrónica basada en esta propiedad, la
espintrónica. El control del espín por medios mecánicos en lugar de aplicando campos
magnéticos supone una gran ventaja para tecnologías presentes y futuras en sistemas
de Materia Condensada.
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A
Point groups

Symmetry is probably the most important concept in Physics. Generally speaking,
physical processes are governed by selection rules that are the consequence of sym-
metry constrains. In modern Physics, the manifestation of underlying symmetries
is even more profound. For example, our understanding of the fundamental forces
in nature is based on the existence of some local (gauge) symmetries of the action
describing the dynamics of matter fields.

Symmetry transformations form an algebraic structure defined as a group. The defi-
nition of a group with respect to a certain internal operation is of course axiomatic.
A set of elements with an internal operation form a group when i) such internal
operation fulfills the associative law, ii) when there exists a unit element (usually
denoted by E) such that the product of E with any group element leaves that element
unchanged, and iii) when for every element there exists an inverse element, such that
the product of an element and its inverse is equal to E. In this appendix we review
some basic properties of finite groups which are used through the thesis.

The concept of representation is probably the most useful tool in group theory. A
representation of a certain group is basically a group of square matrices which is
isomorphic to the original one. The dimensionality of the representation is equal
to the dimensionality of each of its matrices. Of course, the representations are
not unique. By an unitary transformation we generate a new set of matrices which
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provides an equally good representation. If all the matrices in the representation of
a group can be made to acquire the same block form by an unitary transformation,
then the representation is said to be reducible, otherwise it is irreducible. Thus, an
irreducible representation (irrep) is the simpler one in the sense that it cannot be
exppresed in terms of representations of lower dimensionality.

Another important concept is the conjugacy class. An element B conjugate to A is by
definition B ≡ XAX−1, where X is an arbitrary element of the group. A conjugacy class
is the totality of elements which can be obtained from a given element by conjugation.
An important result is that the number of irreps of a group is equal to the number
of conjugacy classes, which can be deduced from a central theorem in group theory
(based on the Schur’s lemma), the wonderful orthogonality theorem.

Given the arbitrariness in the definition of representations, the trace (invariant under
an unitary transformation) is introduced. The character of the representation of a
given element of the group is the trace of the associated matrix. The character for
each element in a class is the same. For many applications it is sufficient to know
just the character table without the actual matrix representation in a particular basis.
The character table is a square table whose rows correspond to the irreps and whose
columns correspond to the conjugacy classes; the entries consist of the characters of
the representations. Importantly, in most cases the character tables of a certain group
can be inferred from simple rules implied by the Schur’s lemma and the wonderful
orthogonality theorem.

Transformations which appear in the symmetry group of a body of finite dimensions
must be such that at least one point of the body remains fixed when the symmetry
transformations are applied. This means that all axes and planes of symmetry must
have at least one common point of intersection. Symmetry groups having this prop-
erty are called point groups. In the case of a crystal lattice we concern about its space
group, which consists of both discreet translational symmetry operations and point
group symmetry operations. Both kind of operations leave the electronic Hamiltonian
invariant. Consequently, by virtue of Wigner’s theorem, the eigenstates of the Hamil-
tonian are arranged in multiplets of the space group. In reciprocal space, this means
that Bloch states are arranged according to the irreps of the point group of the crystal.
Sometimes one must deal with the wave vector group at points of the BZ different
than Γ. Nevertheless, in many cases one can use tricks, as enlarging the unit cell of
the crystal, in such a way that high symmetry points of the BZ are mapped onto the
Γ point due to the BZ folding. From the point of view of the lattice symmetries, this
means that the two elementary translations of the crystal are factorized out from the
translational group and added to the point group.

The point groups of the 2D crystals that this thesis deals with can be easily determined
in a systematic way. There is always an axis of symmetry of order n perpendicular to
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the crystal plane. If we add to this axis a plane of symmetry passing through it, this
automatically generates another n− 1 planes intersecting along the axis at angles of
π/n. This is the way to obtain the Cnv group, which contains 2n elements: n rotations
about the axis of order n, and n reflections σv in vertical planes. The point group of
graphene is precisely C6v .

However, if we add to an axis of symmetry of order n an axis of second order per-
pendicular to it, this involves the appearance of n− 1 additional axes of this type
intersecting at angles π/n. The resulting group is Dn, which contains 2n elements:
n rotations about an axis of n order and n rotations through an angle π about hori-
zontal axes. If we add to this group a horizontal plane of symmetry passing through
the n axes of second order, n vertical planes automatically appear, each of them pass-
ing through the vertical axis and one of the horizontal axis. The resulting group is
Dnh, which can be written as the direct product of Dn and the group associated to
the horizontal plane of symmetry σh: Dnh = Dn × σh. Hence, the new group con-
tains 4n elements: the 2n elements of Dn, n reflections σv and n rotary-reflection
transformations. This is the point group of monolayers of MX2.

There is another way of adding planes of symmetry to Dn: by considering vertical
planes through the axis of order n, midway between each adjacent pair of horizontal
axes of the second order. The adding of one such plane again involves the appearance
of another n− 1 planes.. The resulting group is Dnd , which contains 4n elements: to
the 2n elements of Dn we add n reflections in the vertical planes σd and n transfor-
mations made of one of these reflections followed by a rotation through an angle π
about horizontal axes. This is the point group of bilayer graphene D3d .

A.1 C6v

The point group of the graphene crystal is C6v . The character table of this group is
shown in Tab. A.1. The wave vector group at K± is C3v , since the rotations Cπ/3,π,5π/3
and reflections σ′v that swap the two valleys are absent. However, instead of dealing
with degenerate states at two inequivalent points of the BZ one can enlarge the
unit cell in order to contain six atoms, in such a way that the folded BZ is three
times smaller and the K± points are mapped onto the Γ point. The new point group
C ′′6v = C6v + ta1

× C6v + ta2
× C6v contains 36 elements in total. The character table

is shown in Tab. A.2. Three new irreducible representations (2-dimenional E′1 and
E′2 and 4-dimensional G′) must be considered now. The Bloch wave function is now
represented by a 6-component vector which represents the pz orbitals at the 6 sites
within the enlarged unit cell. This vector belongs to a 6 dimensional representation
which can be reduced as A1+ B2+G′. The 1-dimensional irreducible representations
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C6v E C2 2C3 2C6 3σv 3σ′v
A1 1 1 1 1 1 1
A2 1 1 1 1 -1 -1
B1 1 -1 1 -1 1 -1
B2 1 -1 1 -1 -1 1
E1 2 -2 -1 1 0 0
E2 2 2 -1 -1 0 0

Table A.1: Character table of C6v group.

C ′′6v E T 2C3 T2C3 3σv T3σv C2, TC2 2C6, T2C6 3σ′v , T3σ′v
A1 1 1 1 1 1 1 1 1 1
A2 1 1 1 1 -1 -1 1 1 -1
B1 1 1 1 1 1 1 -1 -1 -1
B2 1 1 1 1 -1 -1 -1 -1 1
E1 2 2 -1 -1 0 0 -2 1 0
E2 2 2 -1 -1 0 0 2 -1 0
E′1 2 -1 2 -1 -2 1 0 0 0
E′2 2 -1 2 -1 2 -1 0 0 0
G′ 4 -2 -2 1 0 0 0 0 0

Table A.2: Character table of C ′′6v group.

A′1 and B2 correspond to the bonding and anti-bonding states at the original Γ point,
whereas G′ corresponds to the Bloch states at the original BZ corners. Then, in
order to construct the electronic Hamiltonian for quasiparticles around K± points
we must consider the 16 hermitian operators acting in a 4-dimensional space. These
operators may be classified according to how they transformation under the symmetry
operations of C ′′6v , taking into account the reduction:

G′ × G′ ∼ A1 + A2 + B1 + B2 + E1 + E2 + E′1 + E′2 + G′.

This can be done without specifying the particular basis over which these opera-
tors act. The simplest way to introduce these operators is to express the 16 matri-
ces in terms of two inter-commuting Pauli algebras. We introduce 4 × 4 matrices
¦

Σx ,Σy ,Σz

©

and
¦

Λx ,Λy ,Λz

©

. The matrices from the same set satisfy the Pauli-
matrix algebra, while matrices from different sets commute. The 16 possible elec-
tronic operators are generated by considering the products of the elements of these
algebras (and the identity). We identify Σx ,y matrices with the valley diagonal irreps
and Λx ,y matrices with the valley off-diagonal irreps. By definition

�

Σx ,Σy

�

∼ E1,
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A1 A2 B1 B2 E1 E2 E′1 E′2 G′

I Σz Λz ΣzΛz

�

Σx
Σy

� �

ΛzΣx
ΛzΣy

� �

ΣzΛx
ΣzΛy

� �

Λx
Λy

�











ΛxΣy
−ΛxΣx
ΛyΣx
ΛyΣy











Table A.3: Classification of the electronic operators (without spin) according to how
they transform under the symmetry operations of C ′′6v .

and then
�

Σx ,Σy

�

∼ A2 since E1 × E1 ∼ A1 + A2 + E2, so then Σz ∼ A2. At the same
time, since E2 × E2 ∼ A1 + A2 + E2 it is clear that the matrices of E2 doublet and Σz
form a Pauli algebra so then

�

ΛzΣx ,ΛzΣy

�

∼ E2. Since B1 × E1 ∼ E2 is clear that

Λz ∼ B1, and therefore ΛzΣz ∼ B2. This is consistent, since C2v =
¦

E, C2,σv ,σ′v
©

is
an abelian subgroup of C6v and hence the matrices belonging to the 1-dimensional
irreps must commute. On the other hand, since E′2× E′2 ∼ A1+B1+ E′2, it is clear that
�

Λx ,Λy

�

∼ E′2. The same can be repeat with Λx , Λy . All definitions are summarized
in Tab. A.3.

In the main text the basis Ψ = (ψA,K+ ,ψB,K+ ,ψA,K− ,ψB,K−)
T is employed, where

ψA/B,K± represents the amplitude of the Bloch wave function at K± points on sublat-
tice A/B. Then, the matrices Σi , Λi are given by:

Σx ,y = τz ⊗σx ,y ,

Σz = I ⊗σz ,

Λx ,y = τx ,y ⊗σz ,

Λz = τz ⊗I . (A.1)

In some references a different basis is employed, where the order of the projection of
the Bloch functions at each sublattice in different valleys is inverted, and also a minus
sign is introduced: Ψ= (ψA,K+ ,ψB,K+ ,ψB,K− ,−ψA,K−)

T . This basis is very convenient
because the notation is simplified. In this basis the operators Σi , Λi are related with
the matrices acting in subalattice and valley indices as

Σi = I ⊗σi ,

Λi = τi ⊗I . (A.2)

The notation is simplified essentially because in this basis the time reversal operation
is implemented by T = ΣyΛyK , in such a way that all the matrices are odd under
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E T 2C3 T2C3 3C ′2 T3C ′2 i, Ti 2iC3, T2iC3 3iC ′2, T3iC ′2
A1g 1 1 1 1 1 1 1 1 1
A2g 1 1 1 1 -1 -1 1 1 -1
Eg 2 2 -1 -1 0 0 2 -1 0
A1u 1 1 1 1 1 1 -1 -1 -1
A2u 1 1 1 1 -1 -1 -1 -1 1
Eu 2 2 -1 -1 0 0 -2 1 0
E′g 2 -1 2 -1 -2 1 0 0 0
E′u 2 -1 2 -1 2 -1 0 0 0
G′ 4 -2 -2 1 0 0 0 0 0

Table A.4: Character table for group D′′3d .

the action of T :

Σi
T−→ ΣyΣ

∗
iΣy =−Σi ,

Λi
T−→ ΛyΛ

∗
iΛy =−Λi , (A.3)

and then the possible SOC terms are constructed from products of a spin matrix si
with Σi or Λi .

A.2 D3d

The point group of the bilayer graphene crystal is D3d , which can regarded as a direct
product of the rhombohedral group D3 and the inversion group Ci . Since D3d and
C6v are isomorphic, the analysis carried out before can be straightforwardly applied.
In particular, the charcater table for D′′3d = D3d + ta1

× D3d + ta2
× D3d , shown in

Tab. A.4, can be easily obtained from the one for C ′′6v .

Now we must take into account that the π orbitals wave function in the tripled
unit cell is represented by a 12-component vector, which can be reduced as 2A1g +
2A2u + E′u + E′g + G′. A2g and A1g irreps correspond to the bonding and anti-bonding
combinations of pz orbitals at the original Γ point. E′g and E′u irreps correspond to
the Bloch wave function at K± points associated, respectively, to the bonding and
anti-bonding combinations of orbitals localized in the dimer sites. The Bloch wave
function at K± associated to the non-dimer sites belong to the G′ irrep, and constitute
the low energy bands of the model as explained in the main text. Similarly to the
case of C6v , the 16 Hermitian operators acting on the low energy subspace can be
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A1g A2g Eg A1u A2u Eu E′g E′u G′

I Σz

�

ΛzΣx
ΛzΣy

�

Λz ΣzΛz

�

Σx
Σy

� �

Λx
Λy

� �

ΣzΛx
ΣzΛy

�











ΛxΣy
−ΛxΣx
ΛyΣx
ΛyΣy











Table A.5: Classification of the electronic operators (without spin) according to how
they transform under the symmetry operations of D′′3d

D3h = D3 ×σh E 2C3 3C ′2 σh 2S3 3σv

A′1 1 1 1 1 1 1
A′2 1 1 -1 1 1 -1
A′′1 1 1 1 -1 -1 -1
A′′2 1 1 -1 -1 -1 1
E′ 2 -1 0 2 -1 0
E′′ 2 -1 0 -2 1 0

Table A.6: Character table of D3h.

classified according to the irreps of D3d taking into account the reduction:

G′ × G′ ∼ A1g + A2g + A1u + A2u + Eg + Eu + E′g + E′u + G′.

All the definitions are summarized in Tab. A.5.

A.3 D3h

The point group of MX2 monolayers is D3h, which can be regarded as a direct product
of the rhombohedral group D3 and the mirror symmetry group σh. The character
table is shown in Tab. A.6. As in the previous examples, we consider the tripled
unit cell containing 3 M atoms and 6 X atoms. The group D′′3h = D3h + ta1

× D3h +
ta2
× D3h contains 24 new elements and 6 additional conjugacy classes, which leads

to 6 new 2-dimensional irreps (denoted by E′1,2,3 and E′′1,2,3), the valley off-diagonal
representations. The character table of D′′3h is shown in Tab. A.7.

In the main text, Tab. 2.3, the Bloch wave function at K± are classified according to
the irreps of C3h, the wave vector group at these points. In the tripled unit cell, the
doublets formed by a certain combination of orbitals at one valley and the complex
conjugated combination at the other belong to the valley off-diagonal representations
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D′′3h E 2T σh 2Tσh 2C3 2T C3 2T C2
3 2S3 2TS3 2TS2

3 9T C ′2 9Tσv

A′1 1 1 1 1 1 1 1 1 1 1 1 1
A′2 1 1 1 1 1 1 1 1 1 1 -1 -1
A′′1 1 1 -1 -1 1 1 1 -1 -1 -1 1 -1
A′′2 1 1 -1 -1 1 1 1 -1 -1 -1 -1 1
E′ 2 2 2 2 -1 -1 -1 -1 -1 -1 0 0
E′′ 2 2 -2 -2 -1 -1 -1 1 1 1 0 0
E′1 2 -1 2 -1 2 -1 -1 2 -1 -1 0 0
E′′1 2 -1 -2 1 2 -1 -1 -2 1 1 0 0
E′2 2 -1 2 -1 -1 2 -1 -1 2 -1 0 0
E′′2 2 -1 -2 1 -1 2 -1 1 -2 1 0 0
E′3 2 -1 2 -1 -1 -1 2 -1 -1 2 0 0
E′′3 2 -1 -2 1 -1 -1 2 1 1 -2 0 0

Table A.7: Character table of D′′3h.

of D′′3h according to the following rules (on the left irreps of C3h, on the right irreps
of D′′3h):

(A, A)∼ E1,
�

E, E∗
�

∼ E2,
�

E∗, E
�

∼ E3.

The conduction band at these points is mostly made of d3z2−r2 orbitals from M (E′2
irrep), whereas the valence band is mostly made of dx2−y2 ± dx y (E′1 irrep). We may
consider the space of 4-vectors ∼

�

E′2, E′1
�

whose entries represent the projection
of the Bloch wave function at conduction and valence states at K± points. We must
consider the possible 16 hermitian matrices acting on this space, whose reduction in
terms of irreps of D3h is inferred from:

�

E′2, E′1
�

×
�

E′2, E′1
�

∼ 2A′1 + 2A′2 + 2E′ + E′1 + E′2 + 2E′3.

As before, this space of electronic operators can be constructed from two inter-
commutating Pauli algebras Σi ,Λi . The definitions are summarized in Tab. A.8
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Irrep Operators

A′1 I , ΛzΣz

A′2 Σz , Λz

E′
�

−ΛzΣy
ΛzΣx

�

,
�

Σx
Σy

�

E′1

�

ΣxΛy +ΣyΛx
ΣxΛx +ΣyΛy

�

E′2

�

ΣxΛy −ΣyΛx
ΣxΛx −ΣyΛy

�

E′3

�

−ΣzΛx
ΣzΛy

�

,
�

Λx
Λy

�

Table A.8: Definitions of the electronic operators in the two bands effective model at
K± points.
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B
Collision integral for

scattering by phonons

The rate of change of fk due to scattering, the so-called collision integral ḟk
�

�

scatt ap-
pearing on the right hand side of the Boltzmann equation, Eq. (3.40), is the difference
between the rate at which quasiparticles enter the state

�

�k
�

and the rate at which
they leave it,

ḟk
�

�

scatt =
∑

k′

�

fk′(1− fk)W k
k′ − fk(1− fk′)W k′

k

�

, (B.1)

whereW f
i is the scattering probability between state

�

�i
�

and
�

� f
�

. Here we use Fermi’s
golden rule, which reads

W f
i =

2π

ħh

�

�

�




f
�

�Hint

�

�i
�

�

�

�

2
δ(E f −Ei), (B.2)

equivalent to rest upon the Born approximation for the differential scattering cross-
section.

The crucial step to get ḟk
�

�

scatt is finding the scattering probability for a quasi-particle
in state |k〉 to be scattered into state

�

�k′
�

, i.e. W k′
k (since the process is quasi-elastic
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interband transitions are not allowed). The scattering mechanism is encoded in
the interaction Hint , which in the present case is given by Hep in Eq. (3.38). It
is readily seen that scattering occurs only through emission or absorption of one
phonon or emission/absorption of two phonons. The initial and final states are
thus tensorial products of the form |i〉 = |k〉 ⊗

�

�nq

¶

or |i〉 = |k〉 ⊗
�

�nq, nq′
¶

, and
�

� f
�

=
�

�k′
�

⊗
�

�nq ± 1
¶

,
�

� f
�

=
�

�k′
�

⊗
�

�nq ± 1, nq′ ± 1
¶

or
�

� f
�

=
�

�k′
�

⊗
�

�

�nq ± 1, nF
q′ ∓ 1

E

,

where
�

�nq

¶

and
�

�nq, nq′
¶

represent one and two phonon states in the occupation
number representation,[150] and the electron like quasiparticle state is written as
|k〉 = (e−iθk/2a†

k |0〉+ eiθk/2 b†
k |0〉)/

p
2 in the case of monolayer, and with the substi-

tution θk/2→ θk in the case of bilayer. Electron-hole symmetry guarantees that the
result is the same for both electron and hole doping.

In order to obtain
�

�




f
�

�Hep |i〉
�

�

2
, with |i〉 and

�

� f
�

as given above, we take the following
steps:

1. Terms of the form V1V2, where V1 stands for scalar potential and V2 for gauge
potential induced matrix elements in Eq. (3.39), are neglected. It is easy to
show that such terms come proportional to oscillatory factors e±iθk or e±iθk′ (in
bilayer graphene e±i2θk or e±i2θk′ ). These terms can safely be neglected in doing
the summation over the direction of k and k′ in the numerator of Eq. (3.53),
keeping θk,k′ fixed. The resistivity is then the sum of two independent con-
tributions, originating from scalar and gauge potentials, well in the spirit of
Matthiessen’s empirical rule.[154]

2. The scalar potential contribution is proportional to the overlap of states belong-
ing to the same band. For monolayer graphene,

�

�

�

�

�

V ν1,q

ei(θk′−θk)/2

2
+ V ν1,q

e−i(θk′−θk)/2

2

�

�

�

�

�

2

=
�

�

�V ν1,q

�

�

�

2 1+ cosθk,k′

2
, (B.3)

whereas for bilayer,
�

�

�

�

�

V ν1,q

ei(θk′−θk)

2
+ V ν1,q

e−i(θk′−θk)

2

�

�

�

�

�

2

=
�

�

�V ν1,q

�

�

�

2 1+ cos2θk,k′

2
. (B.4)

The same manipulation holds for two phonon terms, with V ν1,q→ V F
1,q,q′ .

3. For the gauge potential contribution there are oscillatory terms which, owing
to the argument of point 1., can be neglected. For monolayer graphene,

�

�

�

�

�

V ν2,q,k,k′
ei(θk′+θk)/2

2
+
�

V ν2,−q,k,k′

�∗ e−i(θk′+θk)/2

2

�

�

�

�

�

2

'
�

�

�V ν2,q

�

�

�

2
, (B.5)
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and for bilayer,

�

�

�

�

�

V ν2,q,k,k′
ei(θk′+θk)

2
+
�

V ν2,−q,k,k′

�∗ e−i(θk′+θk)

2

�

�

�

�

�

2

'
�

�

�Ṽ ν2,q

�

�

�

2
�

k2

2
+

k′2

2
+ kk′ cosθk,k′

�

.

(B.6)

A similar manipulation holds for two phonon terms, with V ν2,q→ V F
2,q,q′ .

Finally, summing over phonon momenta and doing the thermal average, we can write
W k′

k as follows. When scattering is via one phonon we have

W k′
k =

π

ħh

∑

q

wν(q,k,k′)nqδk′,k+qδ(εk′ − εk −ħhωνq)+

+
π

ħh

∑

q

wν(q,k,k′)(nq + 1)δk′,k−qδ(εk′ − εk +ħhωνq), (B.7)

where the first term is due to absorption and the second to emission of a single
phonon. When scattering involves two phonons we obtain

W k′
k =

π

ħh

∑

q,q′
wF (q,q′,k,k′)nqnq′ ×δk′,k+q+q′δ(εk′ − εk −ħhωF

q −ħhω
F
q′)+

+
π

ħh

∑

q,q′
wF (q,q′,k,k′)(nq + 1)(nq′ + 1)×δk′,k−q−q′δ(εk′ − εk +ħhωF

q +ħhω
F
q′)+

+
2π

ħh

∑

q,q′
wF (q,q′,k,k′)(nq + 1)nq′ ×δk′,k−q+q′δ(εk′ − εk +ħhωF

q −ħhω
F
q′), (B.8)

where the first term is due to absorption of two flexural phonons, the second to
emission of two flexural phonons, and the last one comes from absorption of a single
flexural phonon and emission of another one. The collision integral may finally be
put in the form

ḟk
�

�

scatt =
π

ħh

∑

k′

∑

q,ν

wν(q,k,k′)×

×
¦�

fk′(1− fk)nq − fk(1− fk′)(nq + 1)
�

δk,k′+qδ(εk − εk′ −ħhωνq)

+
�

fk′(1− fk)(nq + 1)− fk(1− fk′)nq

�

δk,k′−qδ(εk − εk′ +ħhωνq)
o

, (B.9)
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for one phonon scattering processes, and

ḟk
�

�

scatt =
π

ħh

∑

k′

∑

q,q′
wF (q,q′,k,k′)×

×
¦�

fk′(1− fk)(nq + 1)(nq′ + 1)− fk(1− fk′)nqnq′
�

δk,k′−q−q′δ(εk − εk′ +ħhωF
q +ħhω

F
q′)

+
�

fk′(1− fk)(nq + 1)nq′ − fk(1− fk′)nq(nq′ + 1)
�

δk,k′−q+q′δ(εk − εk′ +ħhωF
q −ħhω

F
q′)

+
�

fk′(1− fk)nqnq′ − fk(1− fk′)(nq + 1)(nq′ + 1)
�

δk,k′+q+q′δ(εk − εk′ −ħhωF
q −ħhω

F
q′)

+
�

fk′(1− fk)nq(nq′ + 1)− fk(1− fk′)(nq + 1)nq′
�

δk,k′+q−q′δ(εk − εk′ −ħhωF
q +ħhω

F
q′)
o

,

(B.10)

for scattering through two flexural phonons.

Now we derive the linearized version of the collision integrals given in Eqs. (B.9)
and (B.10). We start by expanding electron and phonon probability distributions
around their equilibrium values,

fk = f (0)k +δ fk, nq = n(0)q +δnq,

where the variations can be written as δ fk = −
∂ f (0)k

∂ εk
ϕk [see Eq. (3.42)] and δnq =

−
∂ n(0)q

∂ (ħhωq)
χq. The linearized collision integral δ ḟk

�

�

scatt is then obtained by expanding

ḟk
�

�

scatt up to first order in the variations.[154,286]

The one phonon scattering case follows closely the steps outlined in Ref. 286, and
for the case of monolayer graphene it has been derived in Ref. 151. Since the dif-
ference between monolayer and bilayer amounts to a different kernel wν(q,k,k′) in
Eqs. (B.9), which does not play any role in the linearization, we can directly apply the
result of Ref.151 to the present case. In order to set notation for the more elaborated
case of two phonon scattering, we outline the main steps of the derivation in the
following.

We first note that at equilibrium detailed balance implies ḟ (0)k

�

�

scatt = 0, from which
we get the relation

f (0)k′ (1− f (0)k )n
(0)
q = f (0)k (1− f (0)k′ )(n

(0)
q + 1), (B.11)

which can be easily verified by direct calculation.[286] Therefore, in order to get the
linearized collision integral it is enough to calculate the variation

δ
�

fk′(1− fk)nq − fk(1− fk′)(nq + 1)
�

. (B.12)

190



A P P E N D I X B

Note first that

δ
�

fk′(1− fk)nq − fk(1− fk′)(nq + 1)
�

=

(1− f (0)k )(1− f (0)k′ )(n
(0)
q + 1)δ

�

fk′

1− fk′

nq

nq + 1
−

fk
1− fk

�

. (B.13)

The variations appearing on the second line of Eq. (B.13) can be computed easily by
noting that

δ

�

f

1− f

�

=
δ f

(1− f (0))2
and δ

� n

n+ 1

�

=
δn

(n(0) + 1)2
. (B.14)

At the same time we can rewrite δ fk and δnq as

δ fk = f (0)k (1− f (0)k )
ϕk

kB T
, δnq = n(0)q (n

(0)
q + 1)

χq

kB T
. (B.15)

Using these expressions and the detailed balance condition it is straightforward to
check that

δ
�

fk′(1− fk)nq − fk(1− fk′)(nq + 1)
�

=
1

kB T
f (0)k (1− f (0)k′ )(n

(0)
q + 1)

�

ϕk′ +χq −ϕk

�

.

(B.16)

If we consider phonons at equilibrium by taking χq ≈ 0, so that nq ≈ n(0)q , valid at

not too low temperatures,[154] and also quasielastic scattering, with εk,εk′ � ħhωq,
then the linearized collision integral reads

δ ḟk
�

�

scatt =−
2π

ħh

∑

k′

∑

q,ν

wν(q,k,k′)ωνq×

×
∂ nq

∂ωνq

∂ f (0)k

∂ εk
(ϕk −ϕk′)δk,k′+qδ(εk − εk′), (B.17)

so Eq. (B.17) can be put in the form of Eq. (3.43),

ḟk
�

�

scatt =−
∑

k′
Pk,k′(ϕk −ϕk′), (B.18)

where Pk,k′ is given in Eq. (3.49).

Now we proceed with the linearization of the collision integral in Eq. (B.10), originat-
ing from scattering processes involving two flexural phonons. At equilibrium detailed

191



A P P E N D I X B

balance is guaranteed, ḟ (0)k

�

�

scatt = 0, and the following two relations hold,

f (0)k′

1− f (0)k′

=
f (0)k

1− f (0)k

n(0)q

n(0)q + 1

n(0)q′

nq′ + 1
,

f (0)k′

1− f (0)k′

n(0)q′

n(0)q′ + 1
=

f (0)k

1− f (0)k

n(0)q

n(0)q + 1
. (B.19)

In order to get the linearized collision integral it is easy to see that we only need the
following two variations,

δ
�

fk′(1− fk)(nq + 1)(nq′ + 1)− fk(1− fk′)nqnq′
�

, (B.20)

and

δ
�

fk′(1− fk)(nq + 1)nq′ − fk(1− fk′)nq(nq′ + 1)
�

, (B.21)

the other two possibilities being related with these ones by a minus sign and k→ k′.
Note first that

δ
�

fk′(1− fk)(nq + 1)(nq′ + 1)− fk(1− fk′)nqnq′
�

=

(1− f (0)k )(1− f (0)k′ )(n
(0)
q + 1)(n(0)q′ + 1)×δ

�

fk′

1− fk′
−

fk
1− fk

nq

nq + 1

nq′

nq′ + 1

�

,

(B.22)

and

δ
�

fk′(1− fk)(nq + 1)nq′ − fk(1− fk′)nq(nq′ + 1)
�

=

(1− f (0)k )(1− f (0)k′ )(n
(0)
q + 1)(n(0)q′ + 1)×δ

�

fk′

1− fk′

nq′

nq′ + 1
−

fk
1− fk

nq

nq + 1

�

.

(B.23)

The variations appearing on the second lines of Eqs. (B.22) and (B.23) can be com-
puted easily by using Eq. (B.14). Then, we arrive at the variations

δ
�

fk′(1− fk)(nq + 1)(nq′ + 1)− fk(1− fk′)nqnq′
�

= (B.24)

(1− f (0)k ) f
(0)

k′ (n
(0)
q + 1)(n(0)q′ + 1)

�

ϕk′ −ϕk −χq −χq′
�

kB T
, (B.25)

and

δ
�

fk′(1− fk)(nq + 1)nq′ − fk(1− fk′)nq(nq′ + 1)
�

= (B.26)

(1− f (0)k ) f
(0)

k′ (n
(0)
q + 1)n(0)q′

�

ϕk′ +χq′ −ϕk −χq

�

kB T
, (B.27)

192



A P P E N D I X B

where we used Eq. (B.15) and the detailed balance condition. It is convenient to
express the quantity (1− f (0)k ) f

(0)
k′ in terms of the difference ( f (0)k′ − f (0)k ). For that we

use the relation

(1− f (0)k ) f
(0)

k′ =
f (0)k′ − f (0)k

1− exp[(εk′ − εk)/kB T]
, (B.28)

which can be easily verified by direct calculation. For the case of Eq. (B.25), where
εk′ − εk = ħhωF

q +ħhω
F
q′ holds, we have

1

1− exp[(εk′ − εk)/kB T]
=−

n(0)q n(0)q′

1+ n(0)q + n(0)q′

, (B.29)

while in the case of Eq. (B.27), where εk′ − εk = ħhωF
q −ħhω

F
q′ , we get

1

1− exp[(εk′ − εk)/kB T]
=

n(0)q (1+ n(0)q′ )

n(0)q − n(0)q′

. (B.30)

The variations in Eqs. (B.22) and (B.23) may then be cast in the form

δ
�

fk′(1− fk)(nq + 1)(nq′ + 1)− fk(1− fk′)nqnq′
�

= (B.31)

−( f (0)k′ − f (0)k )
∂ n(0)q

∂ (ħhωF
q)

∂ n(0)q′

∂ (ħhωF
q′)

kB T
�

ϕk′ −ϕk −χq −χq′
�

1+ nq + nq′
, (B.32)

and

δ
�

fk′(1− fk)(nq + 1)nq′ − fk(1− fk′)nq(nq′ + 1)
�

= (B.33)

( f (0)k′ − f (0)k )
∂ n(0)q

∂ (ħhωF
q)

∂ n(0)q′

∂ (ħhωF
q′)

kB T
�

ϕk′ +χq′ −ϕk −χq

�

nq − nq′
. (B.34)

Then we introduce the same approximations as before considering phonons to be
in equilibrium, χq ≈ 0, so that nq ≈ n(0)q , and assuming quasielastic scattering. The
linearized collision integral then reads

δ ḟk
�

�

scatt =−
2π

ħh2 kB T
∂ fk
∂ εk

∑

k′

�

ϕk′ −ϕk
�

×

∑

q,q′
wF (q,q′,k,k′)

 

ωF
q +ω

F
q′

1+ nq + nq′
−
ωF

q −ω
F
q′

nq − nq′

!

×

∂ nq

∂ωF
q

∂ nq′

∂ωF
q′
δk,k′+q+q′δ(εk − εk′). (B.35)

It can be written in the form of Eq. (B.18), with Pk,k′ as given in Eq. (3.50).
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C
Electronic structure of graphene

commensurate with a Pb monolayer

In this appendix we examine the particular example of a rectangular Pb monolayer
completely commensurate with graphene. In that case, which does not correspond
with the experimental situation analyzed in Chapter 8, it is possible to perform an-
alytical estimations of the strength of the potentials deduced from the reduced C2v
symmetry of the system.

We consider the situation depicted in Fig. C.1. The super-cell of the system is 4
times bigger than the original unit-cell of graphene. Our approach to the problem
is the following: we add to the standard nearest-neighbors tight-binding model of
graphene possible hoppings to Pb orbitals; then, we integrate out Pb orbitals, so we
get an effective tight-binding model for graphene with additional hoppings within
the 8-atoms unit cell as result these virtual processess; finally, we treat these new
hoppings as perturbations to the original Hamiltonian, and we estimate its effect on
the low energy spectrum by using second order perturbation theory.

The Hamiltonian of the system in first quantization notation can be written as the
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Figure C.1: Left: Real space lattice of graphene on an commensurate Pb monolayer.
The unit cell of the system is highlighted within dashed lines. The blue circles repre-
sent the Pb atoms. Right: Original hexagonal BZ of graphene and the reduced BZ of
graphene commensurate with Pb. The dots represent the folding of high symmetry
points of the original BZ.

block matrix

HG/Pb =
�

HG V †

V HPb

�

, (C.1)

where V contains possible hoppings from graphene π orbitals to Pb orbitals. As men-
tioned before, we assume thatHG is the nearest neighbors tight-binding Hamiltonian
of graphene, where t is the hopping paratmer. Following Ref.127, we assume a sim-
plified Hamiltonian for the 4 outer-shell electrons of Pb in s, px , py and pz orbitals.
We introduce 3 parameters, εs, εp and ∆. The first two represent the on-site energies
of s and p orbitals respectively, and ∆ is the strength of the spin-orbit interaction in
the L · S approximation. Finally, the possible hoppings from graphene π orbitals to
Pb orbitals can be expressed in terms of 3 independent parameters, t0, tz , and t in,
which parametrize the hoppings to s, pz and px ,y orbitals of Pb respectively.

By projecting out the Pb orbitals by a Schrieffer-Wolf transformation[75] we obtain
an effective tight-binding Hamiltonian for graphene π orbitals,

He f f ≈HG − V †H −1
Pb V. (C.2)

The second term of this equation introduces the effective hoppings within the 8-
atoms unit cell depicted in Fig. C.2. On the one hand, we have the spin-independent
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Figure C.2: New hopping terms within the 8 atoms unit cell generated after the
integration of the Pb orbitals.

on-site and hopping energies,

V =−
t2

in + t2
z

εp
−

t2
0

εs
,

t1 =−
t2

in + 2t2
z

2εp
−

t2
0

εs
,

t2 =
t2

in − 2t2
z

2εp
−

t2
0

εs
,

t3 =
t2

in − t2
z

εp
−

t2
0

εs
, (C.3)

and on the other hand, the spin-dependent hopping energies (up to first order in
∆),

∆KM =

p
3∆t2

4ε2
p

,

∆R =
∆t in tz

2ε2
p

.

(C.4)

From now on, we focus on the low energy description around the original K±. Note
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that these new hoppings meadiated by the Pb atoms couple Bloch states at K± points
with modes at K± ± B1, K± ± B2 as result of the folding of the BZ, see Fig. C.1,
where B1,2 are the reciprocal lattice vectors of the super-structure. If we treat these
terms as weak perturbations toHG we can project out the modes by using the same
perturbative scheme as before. If we do so and retain only the first order terms on ∆
we obtain the SOC terms

HSO =∆intτzσzsz +∆0τzsy +∆1

�

τzσx sy −σysx

�

+∆2

�

τzσx sy +σysx

�

, (C.5)

with

∆int =
3
p

3∆KM

4

�

1+
5t2

in

2tεp

�

,

∆2 =∆0 =
27t2

in∆R

32εp t
,

∆1 = 0. (C.6)

Note that the Hamiltonian of Eq. C.5 has the structure imposed by C2v symmetry.
Note also that ∆1 = 0 within this model due to the symmetry of the Pb orbitals
considered in the calculation as it was pointed out in Ref.127.
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