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ABSTRACT 

!

Performance of likelihood ratio (LR) methods for evidence evaluation has been 

represented in the past using e.g. Tippett plots. We propose Empirical Cross-Entropy 

(ECE) Plots as a metric of accuracy based on the statistical theory of proper scoring 

rules, interpretable as information given by the evidence according to Information 

Theory, which quantify calibration of LR values. We present results with a case 

example using a glass database from real casework, comparing performance both with 

Tippett and ECE plots. We conclude that ECE plots allow clearer comparisons of LR 

methods than previous metrics, allowing a theoretical criteria to determine if a given 

method should be used for evidence evaluation or not, which is an improvement over 

Tippett plots. A set of recommendations for the use of the proposed methodology by 

practitioners is also given.  
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Statistical procedures for the evaluation of evidence are at the core of modern forensic 

science. Scientific methodologies based on databases and statistical analyses are 

becoming increasingly popular.  This is in agreement with the idea that, first, changes in 

the law and, second, the evidence of errors in disciplines assumed as error-free are 

motivating a fundamental shift in all procedures followed in forensic science. These 

ideas are being more accepted by the scientific community of forensic experts, 

practitioners and statisticians (1)(2)(3). Among the legal factors which have inspired 

more movements in the field are the American Daubert rules (4), which include the 

need for common procedures, scientific methods and a clear assessment of results 

(specifying potential performance in operational conditions) for any piece of evidence 

to be admitted by the U. S. Supreme Court. This is moving many disciplines to a critical 

change in procedures from reporting conclusions based on non-repeatable and 

subjective arguments mainly based on the experience of the expert to a probabilistic 

assessment of the value of the evidence based on representative databases and statistical 

analysis. 

 

In this changing paradigm, statistics plays a fundamental role for the establishment of 

scientific procedures. In the past, forensic statistics were focused on assumptions of 

uniqueness, distance measures and hypothesis testing (5). However, Bayesian methods 

for evidence evaluation are increasingly popular, since their first statement as a result of 

the Dreyfus case (6). Because of pioneering works such as (7), likelihood ratios LR 

began to be used for the evaluation of forensic evidence. Thanks to this so-called LR 

methodology, the forensic expert is able to measure statistically the value of the 

evidence. The LR expresses the degree of support of the evidence to the relevant 

propositions present in a given case (8). 
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Although statistical methods in general and the LR methodology in particular have been 

fundamental for the establishment of a rigorous framework for forensic evidence 

evaluation, they do not guarantee the quality of the methods in use. There are many 

problems which can lead to comparisons yielding LR values which provide support, 

sometimes strong support, for the wrong proposition. Examples of these problems are 

the variability of the evidential material, which can lead to erroneous models developed 

from a population which does not represent the control or recovered samples; or the 

sparsity of the data, which can lead to erroneous models if their robustness to data 

sparsity is poor. This would lead to evidence evaluation methods which are misleading 

to the court, in the sense that LR values will tend to support the wrong proposition in a 

case. Although this is a situation to be avoided, the extent to which this may happen 

should be assessed and documented by the forensic scientist, in agreement with the 

spirit of the Daubert rules in the USA concerning the scientific assessment of the 

performance of the methods; and also with proposals being made in other countries 

(2)(3)(4)(9). 

 

In this article we propose a framework for the scientific assessment of the performance 

of forensic evidence evaluation methods which express the value of the evidence in the 

form of a LR. This framework is based on Information Theory (10), a field which 

allows an intuitive interpretation of the results of the scientific assessment, which is a 

highly desirable characteristic when results have to be reported to a court of law. The 

proposed framework, based on a performance metric called Empirical Cross-Entropy 

(ECE), can be used with any LR-based evidence evaluation method at any level of the 

propositions stated in the case (source, activity or offence) (11). The main contribution 
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of this work is the full description of the assessment framework in a forensic context, 

and its generalisation to any forensic discipline. 

 

A convenient graphical representation of the performance is also proposed, namely ECE 

plots. Although ECE plots have been introduced in (12) in the context of forensic 

speaker recognition, this article presents novel contributions with respect to such work, 

with a significant extension at the methodological, application and experimental level. 

First, we generalise the use of ECE to any forensic field, not only forensic automatic 

speaker recognition.  This represents a fundamental advance in the applicability of the 

proposed framework, since each different forensic field presents particular types of data 

and models. In particular, automatic speaker recognition yields continuous, univariate 

data. On the other hand, glass analysis, as presented here, generates multivariate data. 

Secondly, this article contributes a set of recommendations for practitioners, which 

simulate typical scenarios for the use of the proposed assessment tools in daily forensic 

casework. To this end, the authors have developed publicly available free 

software implementing ECE plots as proposed in this article (available at 

http://arantxa.ii.uam.es/~dramos/software.html). The use of this methodology is 

exemplified by a case example using glass profiles obtained from real forensic cases, 

where several evidence evaluation methods are compared prior to their application to 

the case, in order to illustrate the recommendations given. 

 

A remark is in order here. Although we give recommendations for the use of ECE in 

court, we realize that meaningful interpretation of its value in a legal process seems 

currently unrealistic until a deeper understanding of the Bayesian approach has been 

established across all the actors participating in a forensic case. Nevertheless, as it has 
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been stated, ECE presents many other advantages as a performance metric that justify 

its use for validation purposes in forensic laboratories, even though its use in court 

reporting currently does not seem to be feasible. 

 

This article is organised as follows. First, the LR methodology for evidence evaluation 

is described. Secondly, the problem of the scientific assessment of LR-based evidence 

evaluation methods is introduced, with the presentation of several performance metrics, 

and the illustration of their main properties and drawbacks. Thirdly, the proposed 

information-theoretical assessment framework is described, the ECE metric is 

introduced, its interpretation is stated and its main properties are highlighted. This part 

also includes the description of the proposed representation of performance, namely the 

ECE plot, and the algorithms used for it. Fourthly, the proposed recommendations for 

forensic practitioners are described. A case example is discussed next. Finally, 

conclusions are given. 

 

Evaluation of the evidence using likelihood ratios 

 

The LR framework for forensic evidence evaluation is stated as follows. Consider the 

forensic evidence E, which includes a recovered sample of unknown origin and a 

control sample whose origin is known. The LR expresses the degree of support of the 

evidence to any of the relevant propositions in the case relative to one another. An 

example of a pair of propositions at source level (11) (13) is:   
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• θp (also known as the prosecution proposition): glass fragments recovered from 

a suspect's jacket come from a broken window in a burglary.  

• θd (also known as the defence proposition, or the alternative proposition): glass 

fragments recovered from a suspect's jacket do not come from the broken 

window in the burglary. 

 

The LR is then computed by the forensic examiner from the comparison of 

measurements of the control and recovered materials, and with measurements from a 

so-called population database, representing a relevant population for the case (13). For 

instance, for the pair of propositions above, the relevant population may consist of glass 

fragments from broken windows of the same type as the broken window in the burglary 

of the case, which will constitute a so-called population database. 

 

In a forensic case, the unobserved variable of interest is the true proposition, θ={θp,θd}, 

because the fact finder ultimately wants to know its true value. These possible values θp 

and θd of the variable θ are complementary within the relevant population. The decision 

of the fact finder is based on the probability of a given value of θ, conditioned on all the 

available information in the case. Bayes' theorem relates probabilities before and after 

the analysis of the evidence:  

O θ p E, I( ) =
P E θ p , I( )
P E θd , I( )

×O θ p I( )        (1)  

where P denotes probability and I is the background information available in the case 

apart from the evidence E. The posterior odds are defined as the ratio of complementary 
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posterior probabilities, namely ( ) ( )
( )

,
,

,
p

p
d

P E I
O E I

P E I

θ
θ

θ
= ; and the prior odds, province 

of the fact finder, are defined as O θ p I( ) =
P θ p I( )
P θd I( )

. The likelihood ratio (LR), province 

of the forensic examiner (14), is defined as 

LR =
P E θ p , I( )
P E θd , I( )

! !        (2) 

 

It can be easily seen that: 

 

P θ p E, I( ) =
LR×

P θ p I( )
P θd I( )

1+ LR×
P θ p I( )
P θd I( )

=
LR×O θ p I( )
1+ LR×O θ p I( )

      

 (3) 

 

 

 

Empirical assessment of the performance of LR-based evidence evaluation 

methods 

 

Validation databases 
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A majority of assessment approaches of the performance of evidence evaluation 

methods, and in particular the ones reviewed and proposed here, are of an empirical 

nature. Prior to the use of any evidence evaluation method in casework, the forensic 

scientist should assess the performance of the evidence evaluation method to be used, 

according to the requirements of modern forensic science. In order to do so, typically a 

number of hypothetical cases will be simulated in conditions as alike as possible as for a 

typical case where the evidence evaluation method will be used. We define a validation 

database as the data needed to simulate those hypothetical cases. We use the term 

validation because the performance to be assessed will typically be considered for the 

validation of the evidence evaluation method prior to its use in casework. The true 

origin of the data must be known for the validation database, and therefore, in each 

hypothetical case is known whether θp or θd is actually true (ground-truth). 

 

It is important to distinguish between the population database and the validation 

database. The population database is used in a given case to model the variation of the 

evidential materials in each case in populations in order to compute the LR, as 

explained above. On the other hand, the validation database consists of hypothetical 

control and recovered samples that are used to simulate hypothetical cases in conditions 

similar to those in which the evidence evaluation method will be used. In fact, for each 

hypothetical case simulated using the validation database, for which a LR value is 

computed, a different population database may be used. However, these population 

databases used in the hypothetical cases will typically mimic those used in cases where 

the evidence evaluation will be used. 
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Once a validation database has been selected, a number of LR values may be generated 

for all the defined hypothetical cases. Denote this set of LR values generated from the 

hypothetical cases as a validation set of LR values. Those LR values will then be 

representative of the cases in which that method of evidence evaluation will be used, in 

the sense that the conditions of the evidence and the population in those cases and in the 

hypothetical cases were comparable. 

 

Depending on which of the values of the unknown proposition variable θ is true in each 

hypothetical case, the corresponding comparisons in each hypothetical case will be 

respectively referred to as true-θp and true-θd comparisons. Similarly, the validation LR 

resulting from the comparisons will be respectively referred to as true-θp and true-θd LR 

values. There will be Np true-θp LR values and Nd true-θd LR values in the validation set 

of LR values. 

 

It is important to highlight the fact that the validation of a given evidence evaluation 

method will be typically carried out before that method is used in a given case. Once the 

validation of the method has been performed, then the method can be used in 

subsequent cases in order to present results to a court, and the performance measured 

can be also reported for the sake of transparency. In relation to this, a validation method 

should consider the conditions of the materials to compare in the evidence evaluation 

process, of the population to be used, etc. For instance, if a validation process has been 

conducted for an evidence evaluation method, and a database of chemical profiles of 

glass from building windows has been used, it may not be an appropriate method for 

evidence in the form of chemical profiles of glass from containers. If so, another 

validation process should be considered before the use of the method in a case involving 
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the latter. These considerations are of critical importance in the context of the validation 

of evidence evaluation methods, but they are outwith the scope of this article. 

 

 

Once a set of true-θp and true-θd LR values have been generated with the validation 

database, a measure of performance is computed from those values, this measure will be 

representative of the performance of the evidence evaluation method in casework. Some 

of the most common ones are reviewed below.   

 

False positive and false negative error rates 

 

False positive and false negative error rates are a common measure for evaluating 

decisions in forensic science according to decision theory (15), see e.g. (16). In a LR 

context, it may be thought that a false negative error occurs when LR<1 for a true-θp 

comparison, and a false positive error occurs when LR>1 for a true-θd 

comparison. Under this approach the decision would be based only on the LR value. 

However, decisions in favour of θp or θd, have to be based on the posterior probabilities 

( ),pP E Iθ  and ( ),dP E Iθ , which represent the probabilistic opinion about the 

propositions considering all the relevant information of the case (15). Thus, decisions 

can only be made if the prior odds are known, which is not the case of the forensic 

examiner in general. In consequence, false positive and false negative rates should not 

be used as a metric for performance for LR in forensic science. Even though these error 

rates were represented as Receiver Operating Characteristic curves, they are measures 
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of discriminating power, as we will highlight below, and they are incomplete for the LR 

framework. 

 

Tippett plots 

 

Tippett plots have been classically used for empirical performance assessment. First 

used by (17) based on the work by (18), for each value of the logarithm of the 

likelihood ratio log10(LR), two values are plotted: the proportion of true-θp and of true-

θd LR values, respectively, in the validation set that are greater than a given log10(LR) 

value. Tippett plots also show the so-called rates of misleading evidence, defined as the 

proportion of LR values giving support to the wrong propositions (LR>1 when θd is true 

and LR<1 when θp is true). Note that these are similar to false positives and false 

negatives for a decision threshold at log10(LR)=0. An example of Tippett plots is shown 

in Figure 1, where the rates of misleading evidence for true-θp and true-θd LR values are 

highlighted.   

 

FIGURE 1 - Example of Tippett plots showing the proportion of  true-θp and true-θd LR 

values in the validation set greater than a given value. 

  

Although Tippett plots are useful and show many important performance indicators for 

a given validation set of LR values, we identify several problems: 

 

• Comparison among methods presenting different Tippett plots is 

sometimes difficult. An example of this situation may arise when a 
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forensic expert wants to compare two different background populations 

to compute a LR value for the comparison of two given fragments of 

glass (19). In the example in Figure 2, method M1 presents a lower rate 

of misleading evidence than M2 when θd is true, but a higher rate when θp 

is true. Moreover, the magnitudes of such rates of misleading evidence 

are not equal when θp is true and when θd is true. Under these 

circumstances, it is difficult for the scientist to decide which method is 

preferred for a given forensic case. 

 

FIGURE 2: Example of Tippett plots for two different methods of evidence evaluation. 

 

• The impact of misleading evidence is not explicitly measured. It 

is known that LR values much smaller than 1 when θp is true or much 

bigger than 1 when θd is true are undesirable, since they represent strong 

misleading evidence (20). Such LR values should have a higher negative 

impact than values of LR near LR=1. However, in Tippett plots this 

impact is not numerically measured.  

• It is difficult to visualise the discriminating power, defined as the 

measurement of the degree of separation among true-θp and true-θd LR 

values. Discriminating power has been measured in the past by Receiver 

Operating Characteristic (ROC) or Detection Error Tradeoff (DET) 

curves (21), and its importance is fundamental for an assessment of the 

performance of evidence evaluation methods (22), (23). It is not easy to 

comparatively determine the discriminating power of a given technique 
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from a Tippett plot. An example of this is given in Figure 3, where two 

methods  M3 and M4 with the same discriminating power present very 

different Tippett plots. The discriminating power of both methods is 

exactly the same, because the LR values computed with M4 are just a 

linearly scaled version of those computed with M3, a transformation 

which does not change the discriminating power of a set of LR values 

(22)(23). 

 

FIGURE 3 - Example of Tippett plots for two different evidence evaluation methods 

having the same discriminating power. 

 

 

Assessment of posterior probabilities: calibration and refinement 

 

The concept of performance assessment of posterior probabilities is not new in the 

statistics literature (24)(25). In (25) it was introduced in order to evaluate and compare 

posterior probabilities in the context of weather forecasting. There, posterior 

probabilities were used as degrees of belief about a given proposition (for instance θr: 

tomorrow it will rain) against its opposite (for instance θnr: tomorrow it will not rain). 

This problem can be viewed as equivalent to a forensic case as proposed here, 

considering posterior probabilities ( ),pP E Iθ  and ( ),dP E Iθ  from Equation 1. 

 

The quality of such a forecaster can be assessed by means of strictly proper scoring 

rules. An example of a strictly proper scoring rule is the logarithmic scoring rule. See 
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(24) for more examples of strictly proper scoring rules. Given the evidence variable E in 

a forensic case, the logarithmic scoring rule takes the following values:   

 

( )
( )

2

2

true:    log ,

true:    log ,

p p

d d

P E I

P E I

θ θ

θ θ

−

−
        (4) 

 

where θp and θd are defined as in Section 2. The base of the logarithms is just a scaling 

factor, and will not have influence in the information-theoretical framework derived 

below. Here we take base-2 logarithms for convenience and coherence with respect 

to information-theoretical literature (10). As expressed here, strictly proper scoring rules 

may be viewed as loss functions which assign a penalty to a given value of the 

posterior probability. In this context, the penalty is the value of the rule in Equation 3 

and depends on: i) the value of the posterior probabilities, and ii) the true value of the 

proposition variable θ. For example, if a probabilistic forecast, expressed as a posterior 

probability, of raining tomorrow is high (value of the forecast) and tomorrow it does not 

rain (true value of the proposition variable), a strictly proper scoring rule will assign 

a high penalty to the forecast, and vice-versa. 

 

The overall measure of performance of a forecaster is defined as the average value of a 

strictly proper scoring rule over many different forecasts, for which the actual value of 

the proposition variable is known (24)(25). This is equivalent to a validation set of true-

θp and true-θd posterior probabilities. For instance, for the logarithmic scoring rule, this 

average would be the so-called logarithmic loss (L):  
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L = − 1
Np

log2 P θ p Ei , I( )
i∈true−θ p

∑ −
1
Nd

log2 P θd E j , I( )
j∈true−θd

∑    (5) 

 

where Np and Nd is the number of true-θp and true-θd forecasts in the validation set, and 

Ei and Ej are particular evidences for each of the forecasts in the validation set. 

Moreover, it is also demonstrated in (25) that such a measure of performance can 

be divided into two components: 

 

i. A calibration loss component, which measures how probabilistically 

interpretable are the values of the forecasts obtained (25). Low calibration 

loss means that for a given range of values of the forecast closely around 

( ),pP E Iθ ρ= , then the proportion of cases where θ = θp in the validation 

set tends to be ρ, and similarly where θ = θp.  

ii. A refinement loss component, which measures how discriminating the 

forecasts are. According to (25), and roughly speaking, low refinement loss 

means that if the calibration loss of the forecaster is low, for a given value of 

the forecast ( ),pP E Iθ  the relative frequency of trials where θ = θp in the 

validation set is either near 0 or near 1, and similarly where θ = θp. 

Refinement loss is related to the loss of performance due to a non-perfect 

discriminating power of the LR values in the validation set (23). 

 

Thus, the aim of a good evidence evaluation method will be to reduce the overall loss 

which consists of calibration loss plus refinement loss. It is important to highlight that 

calibration and refinement loss are not explicitly separated in Equation 5. In (25), a 
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decomposition of Equation 5 into refinement and calibration loss is given for the case 

where the values of the forecasts in the validation set are discrete (or discretized). 

However, this is not general. In this work, and following (23), we propose the use of an 

algorithmic solution, as explained below.  

 

Information-theoretical assessment of the performance of evidence evaluation 

methods 

 

An assessment framework is proposed which clearly shows the overall performance of 

the LR-based evidence evaluation methods under analysis in terms of their calibration 

and refinement components. Moreover, the proposed methodology has an attractive 

information-theoretical interpretation. Information theory is a wide area of knowledge 

which was proposed in the middle of the twentieth century as a framework for 

measuring and presenting information (26). After more than 50 years, the applications 

of information theory have been remarkable in many fields like physics, probability 

theory and economics (10). Under this framework, the uncertainty about an unknown 

variable is quantified by a magnitude called entropy, which is a function of a given 

probability distribution. It is known that probability is the best way of stating 

uncertainty about a given value of a variable, and entropy is a function of the 

probability distribution: it measures with a single number the amount of uncertainty in a 

probability distribution (10)(26).  Additional knowledge about the variables under study 

will give additional information about the unknown variable, and thus it will contribute 

to the reduction of the entropy. As a simple example, imagine that a fair coin is tossed, 

with probabilities of obtaining heads equal to the probability of obtaining tails, and 

equal to 0.5. Under these circumstances, there will be maximum uncertainty about the 
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outcome of the coin toss, and the entropy will be maximal. If we know that the coin is 

biased, the entropy of the probabilities of head or tails will reduce. In the limit, if we 

know that the coin has two heads, it is certain that the outcome of the coin toss will be 

heads, and the entropy will be zero, because the uncertainty is null. 

 

The proposed information-theoretical measure of performance of a validation set of LR 

values, namely Empirical Cross-Entropy (ECE) is stated as follows: 

( ) ( ) ( ) ( )2 2
true true

log log
p d

p d
p i d j

i jp d

P P
ECE P E P E

N Nθ θ

θ θ
θ θ

∈ − ∈ −

= − −∑ ∑ ! ! (6) 

 

where Ei and Ej denote the evidence in each of the comparisons in the validation set 

where θp or θd are respectively true. For simplicity, hereafter I will be eliminated 

from the notation, but it has to be remembered that it conditions every probability value. 

From Equation 3, it is straightforward that Equation 6 is equivalent to the following 

expression: 

 

ECE =
P θ p( )
Np

log2 1+
1

LRi ×O θ p( )
"

#

$
$

%

&

'
'

i∈true−θ p

∑ +
P θd( )
Nd

log2 1+ LRj ×O θ p( )( )
i∈true−θd

∑ (7) 

 

where LRi and LRj in Equation 7 denote a single LR value in the validation set for which 

θp or θd are respectively true. By comparison of Equations 5 and 6, it is easily seen that 

ECE is the average of the logarithmic scoring rule over all the posterior probabilities 

that would be obtained from the comparisons in the validation set, with an additional 
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weighting term given by the prior probabilities. Therefore, it is a proper measure of 

performance of posterior probabilities, according to (25). 

 

However, as it is explicitly stated in Equation 7, ECE depends on the prior odds, and it 

is not possible in general for the forensic scientist to compute its value for a given 

particular case, because the prior probabilities in such a case are the province of the fact 

finder. However, it is possible for the forensic scientist to compute and represent ECE 

for a range of values of the prior probability. Thus, the exact value of the prior may be 

taken as an unknown parameter by the forensic scientist, and ECE can be represented in 

a prior-dependent way. An example of such a representation can be seen in Figure 4. 

We use base-10 logarithms for the prior odds because they are typically used for 

evidence evaluation. However, base-2 logarithms will be used for information-

theoretical values, because they are commonly used in this field. Moreover, the Np and 

Nd values used in the computation of ECE should be indicated, in order to give an idea 

of the balance of the comparisons in the validation LR set, especially if there is a large 

difference in them. 

 

FIGURE 4 - ECE with respect to the base-10 logarithm of the prior odds. The lower its 

value, the better the performance of the evidence evaluation method in the given 

validation set of LR values. This performance will consist of discriminating power 

plus calibration. 

 

ECE has the following interpretation: it represents the mean additional information, 

after consideration of the evidence, that the fact finder still needs in order to know the 
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true value of the proposition variable θ. This mean value is computed as an average over 

the validation set of LR values. If the LR values given by the evidence evaluation 

method are misleading to the fact finder, then the ECE will increase, and more 

information on average will be needed to know the true value of the proposition 

variable θ. On the other hand, if the LR values given by the evidence evaluation 

methods tend to support the correct hypothesis, then ECE will decrease, representing 

the fact that the amount of information about the true value of the proposition θ in the 

given case has been improved. The term information here has a meaning of reduction of 

uncertainty, in accordance to Information Theory.  Thus small values of ECE are good 

in the sense that less additional information is needed in order to determine the true 

value of  θ. 

 

A detailed formal derivation of ECE, with a justification of its interpretation, can be 

found in (22) (Chapter 6, Section 6.4). 

 

 

Optimising ECE of a validation set of LR values: the PAV algorithm 

 

It is important to know the decomposition of ECE into refinement loss and calibration 

loss. Among other reasons, the discriminating power (related to the refinement) of an 

empirical set of opinions expressed as posterior probabilities is a desirable characteristic 

by itself, since it represents the usefulness of such opinions as highlighted by 

(25). Therefore, it is important to have a measure of the discrimination component of 

ECE to identify whether problems in the methods are because of a calibration 
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problem or a lack of discriminating power. In the former case, the evidence evaluation 

models can be re-defined in order to obtain better calibration. In the latter case, a better 

solution may be to explore other ways to extract useful features from the available data 

in the case, because good calibration will not be of help if good discriminating power is 

not obtained from the evidence. Moreover, knowing the refinement of a method allows 

the determination of the calibration of such a method (because both magnitudes are 

complementary for a given value of ECE), and therefore the calibration of the methods 

can be explicitly measured. 

 

There is a strategy for approximating the discriminating power of a set of posterior 

probabilities, proposed in (23), and which is achieved by the use of the so-called Pool 

Adjacent Violators (PAV) algorithm. The procedure essentially transforms a set of 

posterior probabilities into a more calibrated set of posterior probabilities, according to 

the definition of calibration given in (25). The transformation by PAV preserves the 

discriminating power of the set of LR values, and therefore, after its application, the 

value of ECE represents the loss approximately due to a non-perfect discriminating 

power, because the calibration component of ECE has been reduced to its minimum. 

 

The PAV algorithm is described in depth in (27)(28). 

 

 

Representing assessment results: the ECE Plot 
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In this work we propose a representation of ECE as a function of ( )pP Eθ  in an ECE 

plot. Posterior probabilities are computed using the validation set of LR values for each 

prior probability in a fine set of values of the [0,1] range. An ECE plot shows three 

comparative performance curves together (Figure 5):   

 

i. The solid curve is the ECE (average information loss) of the LR values in the 

validation set. The higher this ECE curve, the more information is needed in 

order to know the true propositions on average for the LR values in the 

validation set, and therefore the worse the method. This is the same 

representation as shown in Figure 4. 

ii. The dashed curve represents the comparative performance of the calibrated 

method. This curve is the ECE of the validation set of LR values after being 

transformed using the PAV algorithm. Therefore, this shows the 

performance of a method that has the same discriminating power as the 

original one, but optimises its calibration. This dashed curve can only be 

obtained if the correct values of θ are known, and therefore it represents a 

ceiling of performance rarely achievable in practice. 

iii. The dotted curve represents the comparative performance of a so-called 

neutral evidence evaluation method, defined as the one which always 

delivers LR=1 for each case. For this neutral method, ( )pP Eθ  is always 

equal to ( )pP θ , and the evidence has no value. 

 

FIGURE 5 - Example of ECE plot. 
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In an ECE plot, the two comparative performance curves play an important role. 

 

• The performance of the calibrated method represents the component of the ECE 

arising from the non-perfect discriminating power of the validation set of LR 

values under analysis, because the component of ECE due to calibration has 

been minimised. 

• Neutral method. If the ECE of the validation set of LR values under analysis is 

greater than the performance of the neutral method, then it will perform even 

worse than not using the evidence at all. 

 

Using ECE plots: recommendations for forensic scientists 

 

Several applications of ECE plots are reported in the form of recommendations for 

forensic scientists for different scenarios in casework. 

 

The proposed techniques are available for use by forensic scientist with a toolkit for 

drawing ECE plots in MatlabTM that has been developed by the first author of this work. 

The software is freely available, and can be downloaded from 

http://arantxa.ii.uam.es/~dramos/software.html. 

 

Deciding which evidence evaluation method to choose 
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In forensic practice, and prior to casework, it may be the case to have different methods 

for evaluating the same type of evidence. As examples two different software packages 

may be available for Automatic Fingerprint Identification; or two different selection 

strategies for populations may be available for glass analysis (19). 

 

Assume that the forensic examiner has available for use two different methods for 

evidence evaluation, M1 and M2, say. A validation database is then set-up in order to 

assess the accuracy of their methods prior to their use in casework. The scientist then 

computes the ECE for both methods using the common validation database. The ECE 

values are denoted ECEM1 and ECEM2 respectively. The question to answer is 

then: Which method should be used in subsequent casework? We identify the following 

scenarios in this context: 

 

• Assume that ECEM1 < ECEM2 for a region R1 of possible values of 

the prior odds, and ECEM1 > ECEM2 elsewhere. In this situation, the 

information in the case that is not related to the evidence and is 

summarised in the prior odds determines which method should 

be used. If the prior odds fall in R1 then M1 should be used, otherwise 

M2 should be used. If R1 is all possible values of the prior odds, then 

M1 will be preferred to M2. If the prior odds are not known, as it is 

usually the case, an option would be to evaluate the evidence using 

both methods, and to clearly inform the court about this.  

• ECEM1 = ECEM2 for all values of the prior odds. In this case, the 

value of ECE is the same for both methods for every value of 
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the prior probability. Either method can be used for subsequent 

casework, since their performance is the same. 

 

 

Deciding whether a given method is adequate to evaluate the evidence  

 

A typical scenario in forensic casework is the need to evaluate the evidence when the 

available materials are of poor quality (e.g., low-copy DNA profiles, extremely 

degraded fingermarks, too small an amount of glass from the suspect clothes or from the 

evidential clothing, etc.). In these cases, the practitioner may wonder whether there is 

any value at all in the evidence. 

 

ECE plots help answer this question, because they establish a theoretical limit for what 

is understood as a minimum performance. After selecting a proper validation database in 

conditions comparable to the materials in the cases where some evidence evaluation 

method is to be used, comparisons are generated using the database. The corresponding 

validation set of LR values is then computed, and the corresponding ECE plot can be 

also be computed. There may be a region of prior probabilities where the value of ECE 

is greater than the performance of the neutral method (the dotted curve in the ECE plot). 

If this happens, the evidence evaluation method at hand performs even worse in terms 

of information (in an Information-Theoretical sense) than not evaluating the evidence at 

all (neutral method). In the regions of prior probabilities of an ECE plot where that 

happens, the performance of the evidence evaluation method is deemed inadequate, 

because using the method is worse than not evaluating the evidence (neutral method). 
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This gives practitioners advice as to whether or not it is worthwhile to use the given 

evidence evaluation method in some casework scenario. 

 

In the case where the ECE is lower than the neutral method for all the values of the prior 

probabilities, then the performance of the evidence evaluation method being evaluated 

is better than the neutral method, independently of the value of the prior probabilities. 

This is the aim of all evidence evaluation methods, since the prior probabilities are 

usually unknown to the forensic scientist, and therefore methods should perform in this 

manner for all possible prior probabilities. Thus, this situation should be encouraged in 

forensic practice as a condition for the validation of the methods in use. This is an 

advantage of the use of the proposed evidence evaluation framework over other 

approaches such as tippet plots, because it allows the practitioner to assess whether this 

condition holds. 

 

 

Detecting problems in evidence evaluation methods 

 

ECE can be used effectively to detect certain LR values that degrade the overall 

performance of a given validation set. This is especially useful to identify outliers in the 

set and to investigate possible causes in order to seek possible problems in the evidence 

evaluation methods used in casework. 

 

Because of the averaging process in ECE (see Equation 7), each LR value obtained 

from a single comparison performed using a validation database contributes to the 
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overall value of ECE. This allows the impact on the ECE of each of the LR values to be 

identified, and to detect certain LR values which represent a higher degradation of the 

value of the ECE. Figure 6 shows an example with artificial data, where the analysis of 

the individual contributions to ECE enables detection of the LR values which highly 

degrade performance. The dataset used to generate Figure 6 is artificial for the purpose 

of illustration. A single true-θd comparison was generated with a very high LR value to 

simulate an outlier. In Figure 6(a) and 6(b) the Tippett plots and ECE plots of this 

validation set of LR values are shown. From the Tippett plots, the impact of a non-

negligible proportion of true-θd LR values of around LR=1000 (log10(LR)=3) is not 

easily shown. In Figures 6(c) and 6(d) the individual contribution of each LR value to 

ECE is shown respectively for true-θp and true-θd comparisons. Figure 6(d) clearly 

shows that there is a single comparison contributing to ECE much more strongly 

than the rest. Thus, a single LR value which degrades the performance has 

been detected. The forensic scientist can then investigate that result in more detail in 

search of the causes of problems. 

 

FIGURE 6 - Detection of single LR values in the validation set which seriously 

affect performance. For all cases, Np=Nd=1000. In Tippet plots (a) the impact of some 

high LR values when θd is true is not highlighted. However, ECE plots (b) show a bad 

behaviour in the area of lower absolute values of the prior odds (ECE is over the neutral 

LR set in that area). The analysis of the individual contribution of LR values for true-θp 

(c) and true-θd (d) cases,  shows that the bad behavior is caused by a single true-θd LR. 

In vertical axes, the ECE of each value is multiplied by the number of LR values 

respectively for true-θp (c) and true-θd (d) cases in order to make the representation of 

the individual contributions insensitive to the sample size. 



28 

!

  

 

Reporting performance of evidence evaluation methods to court 

 

Once it is decided that it is worth using a given evidence evaluation method in 

casework, it may be necessary to report the validation results in court. In this situation, 

the information-theoretical interpretation of ECE could be used. Imagine a case in court 

where control and recovered materials are presented as evidence. The fact finder asks 

for the forensic evaluation of such evidence. The forensic scientist compares the control 

and recovered materials with respect to a relevant population and computes a LR value 

using a given method. 

 

Now assume that the fact finder asks for the performance of the evidence evaluation 

method used in the case. Suppose that the fact finder has a prior probability ( )pP θ  for 

the prosecutor proposition θp before the analysis of the evidence. Thus, the ECE 

value in the plot at the given value of ( )pP θ  should be stated as the average 

information, once the evidence under consideration has been analysed, that the fact 

finder still needs in order to know which proposition is actually true in the case, for the 

given value of the prior probabilities. This means that the smaller the value of the ECE, 

the better the method, because the fact finder needs less information after the evidence 

evaluation. Moreover, the ECE should be as lower as possible than the neutral method. 

 

For instance, imagine that in a given case at trial the ECE of the validation set of LR 

values is 0.6 in the ECE plot, and the ECE of the neutral method is 1 (its maximum 
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value). That means that the amount of information about the case once the evidence is 

known has increased by 40% compared with the situation before the evidence was 

presented. 

 

In the previous example, the exact expression of ECE with values equal to 0.6 or 1 is 

only possible if the prior odds are known. As a report to the court is usually explained 

by the practitioner at trial, information about the prior probabilities can be given there to 

the forensic practitioner. However, in many cases such prior probabilities are not even 

stated by the fact finder. In this case, we remark that the information-theoretical 

interpretation of ECE can be expressed for any possible value of the prior. But the use 

of evidence evaluation methods that perform better than the neutral method for all 

possible values of the prior probabilities is highly recommended, in order to be able to 

report informative results in court regardless of whether the prior odds are stated or not. 

 

Again, we highlight that the current methodology will be only possible to use in court 

when judges and advocates will be ready to understand the meaning of the likelihood 

ratio paradigm with respect to all the rest of elements in a decision framework. Despite 

the efforts to that respect, we do not consider this possibility in the short-term. 

 

Case example: evaluation of glass evidence 

 

Here we present a case example with forensic glass analysis, which illustrates the 

proposed methodology and the recommendations given to practitioners with the 

methods and databases used in real forensic practice. The objective of this section is to 
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show the use of the proposed assessment methodology in comparison to Tippett plots. 

To this end, we use several evidence evaluation methods previously proposed in the 

literature. 

 

The importance of glass as evidence was recognised many years ago as very small glass 

fragments (of linear dimension 0.1 - 0.5 mm) that arise during car accidents, burglaries, 

fights, etc., could be carried on the clothes, shoes and hair of participants (29). Because 

of their very small size they are analysed by the application of various analytical 

methods which give reliable data for small objects and yield various kinds of 

physicochemical information. Scanning Electron Microscopy coupled with an 

Energy Dispersive X-ray spectrometer (SEM-EDX) is one of these methods and this is 

routinely used in many forensic institutes for solving various forensic problems. Results 

of glass analyses by the application of this method were used here. 

 

 

Description and context of the case 

 

A burglary has occurred. A window has been broken to get into a house. There are no 

eyewitnesses. The police has been advised by an anonymous informant, and shortly 

after the burglary a suspect has been arrested close to the scene of the crime. Some 

fragments of glass are recovered from the jacket of the suspect, in an appropriate 

amount and size elemental composition may be successfully measured using the SEM-

EDX method. The suspect gives an interview without comments; under such 

circumstances the scientist considers that he is unable to address activity- or offence-
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level propositions. He therefore concentrates on establishing source-level propositions 

relating the fragments recovered on the suspect and a control glass from the broken 

window at the scene of the crime. The following propositions are stated: 

 

• θp: the glass recovered from the suspect comes from the broken window 

in the scene of the crime. 

• θd: the glass recovered from the suspect comes from another window 

with similar physicochemical characteristics as the broken window at the 

scene of the crime. 

 

The forensic scientist will compute a LR to express the value of the evidence in the case 

at hand. In order to compute the LR, there are three different models that may be used, 

these are identified as MVLR-Full, MVLR-NaSiCa and GMF and are described below. 

The forensic scientist wants to select the best model for the case at hand.  

 

Validation of evidence evaluation methods in the context of the case 

 

We assume that the forensic laboratory in charge of evidence evaluation of the case at 

hand has never conducted a validation experiment in order to determine the 

performance of the evidence evaluation methods to be used in a case such as this. 

Therefore, the practitioner needs to conduct such a validation experiment if they want to 

know which is the best method to be used in the case. It is important to highlight that 

this will not be the typical case in forensic practice, where the validation procedure may 

have been conducted before the methods are even considered to be used in casework. 
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However, for the sake of illustration here, knowing the case in which the evidence 

evaluation methods are to be used will be useful in order to describe the selection of a 

proper validation database.  

 

Prior to their use in casework the forensic practitioner decides to use Empirical Cross-

Entropy as the criterion to establish the best evidence evaluation method. He then needs 

to select a proper validation database. The steps needed to do this are described in the 

following sections. 

 

 

Available data 

 

For the given case, the data available to the forensic scientist are as follows (the data 

used in this paper have been collected at the Institute of Forensic Research in Krakow, 

Poland): they consist of 165 glass-objects, namely 87 car windows and 78 building 

windows. Four glass fragments from each glass object were analysed by the SEM-

EDX method. Each of the four glass fragments selected for analysis was measured three 

times and the mean of the three measurements was taken for each fragment. Therefore, 

each glass object was described by four vectors (one for each fragment) of elemental 

composition of oxygen (O), sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), 

potassium (K), calcium (Ca) and iron (Fe). For each measurement, the logarithm to the 

base 10 of various elemental concentrations divided by the concentration of oxygen 

were analysed, leading to seven variables: Na', Mg', Al', Si', K', Ca' and Fe' (e.g., 
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Na'=log10(Na/O)). More information about the SEM-EDX procedure can be found in 

(30). 

 

 

Selection of a population database 

 

As explained above, a population database will be used for the case under investigation. 

The database will be used to help determination of the parameters of the evidence 

evaluation models for the LR computation using the given control and recovered data. 

The model parameters will be determined from this population database; after that the 

statistics from the control and recovered data will be used for the computation of the 

LR. 

 

As the alternative proposition θd states that the potential sources of the recovered glass 

are windows of similar physicochemical characteristics as the broken window in the 

scene of the crime, the forensic scientist selects a database of glass fragments from car 

and building windows, which are known to present similar physicochemical properties 

as the broken window at the scene of the crime, and which are known to behave 

similarly when analyzed with SEM-EDX methods (31). Thus, the forensic scientist 

decides that the population database will consist of all the available data described 

above. 

 

 

Selection of a proper validation database 
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The validation database will be selected prior to the LR computation in the case at hand. 

As previously described, the aim of the validation database is to generate hypothetical 

cases by the use of hypothetical control and recovered data, for which θp and θd, 

respectively, will be true. Then, true-θp and true-θd LR values are computed from those 

hypothetical cases to generate a validation set.  

 

As a consequence, the forensic scientist should establish the conditions of the control 

and recovered glass, in which will then be used to generate appropriate data for the 

validation database. In this case example, the forensic scientist knows the 

physicochemical characteristics of the control materials, because their origin is known. 

For the recovered materials, the forensic scientist may consider the circumstances of the 

case and any statements of the suspect (defence proposition) to determine the conditions 

of the recovered glass fragments. In a case like this one, for which the type of the 

recovered materials is not clear, the forensic scientist may establish the type of the 

recovered glass by the use of classification methods, which have been demonstrated to 

have high accuracy for SEM-EDX analysis in order to distinguish car and building 

windows from other glass types (31)(32). The forensic scientist uses glass classification 

techniques to determine that the conditions of the recovered glass fragments are clearly 

most likely to be those of car and building windows. Then, they assume these 

conditions in the recovered glass in order to select a proper validation database. In some 

other forensic disciplines, the procedure to establish the type of the recovered materials 

may be different, but the aim is similar. For instance, for speech evidence the 

transmission channel of the recovered materials can be obtained from police 
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information, and the noise conditions can be determined from the analysis of the speech 

itself. 

 

Therefore, each comparison performed with the hypothetical cases generated with the 

validation database will have to be done with hypothetical control and recovered 

materials coming from car or building windows. The forensic scientist considers that, 

using all the available data described above, the hypothetical cases necessary to 

compute the ECE plots can be properly simulated, according to the comparison protocol 

described below. Therefore, the validation database will be the whole dataset described 

above. 

 

Notice that the population and the validation database in this example are the same 

dataset. In general, this will not be the situation: the validation database will be used to 

measure performance before casework, and then a different population database will be 

used for each particular case. We clarify the reasons for this below in next section. 

 

 

Defining the comparison protocol to generate the validation LR set 

 

As the available data in the validation database for this example are sparse, a so-called 

cross-validation procedure is used to perform the necessary comparisons. The procedure 

is described as follows, depending on whether true-θp or true-θd LR values are 

generated: 
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• For each true-θp hypothetical case, a single glass object is taken from the 

database, and the hypothetical control and recovered samples are selected 

from the SEM-EDX profiles for this object. The population database 

used with such a hypothetical case will consist of the rest of the glass 

objects in the database. The process is repeated for all the objects in the 

validation database, i.e., a hypothetical case is simulated for each object 

in the validation database, with the appropriate population database on 

each occasion begin the remainder of the objects. 

• For each true-θd hypothetical case, two different glass objects are 

selected from the database. The hypothetical control sample is taken 

from one of the objects, the hypothetical recovered sample is selected 

from the other. The population database used with such a hypothetical 

case will consist of the rest of the glass objects in the database. The 

process is repeated for all possible combinations of two glass objects in 

the validation database, i.e., a hypothetical case is simulated for each 

possible combination of two different glass objects in the validation 

database, with the appropriate population database on each occasion 

being the remainder of the objects after removal of the two objects to act 

as control and recovered objects. 

 

In particular, for true-θp comparisons, LR values in each hypothetical case were 

calculated using two of the four fragments of the elemental composition from each 

object as control data, and the other two fragments of the elemental composition were 

used as recovered data. Therefore, the number of hypothetical cases simulated equals 

the number of objects M=Np=165 present in the database. For true-θd comparisons the 
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first two fragments of the elemental composition of each object were used as control 

and recovered data, respectively. The number of hypothetical cases simulated is 

therefore the combination without replacement of the total number of pairs of different 

objects M, i.e., 1 13530
2d

MN M −
= × = , where M = 165. 

 

With this cross-validation procedure, for each hypothetical case involving two glass 

objects, the rest of the objects in the validation database were used as the population 

database. In this way, the available database is used efficiently to simulate the 

comparison conditions in the actual case. Moreover, the control and the recovered 

materials in each hypothetical case are of similar physicochemical conditions as the 

materials in the actual case, and the population database used in each hypothetical case 

is similar to the one used in the actual case (it will differ on only one or two glass 

objects). Therefore, this procedure for generating a validation set of LR values complies 

with the requirements of a proper empirical assessment of performance, as described 

earlier. 

 

The reason for using a cross-validation procedure is because the size of the available 

dataset in this glass example is small. For cases or disciplines where a much bigger 

dataset will be available, the use of a cross-validation procedure may not be necessary, 

and both the population and the validation database may be taken as different subsets of 

the whole database. The cross-validation procedure enables the same database to be 

used for the two purposes of a validation database and a population database. 
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Evidence evaluation methods for comparison 

 

The forensic scientist wants to compare the performance of three evidence evaluation 

methods, MVLR-Full, MVLR-NaSiCa and GMF. These evidence evaluation methods 

will each be used on the whole validation set to obtain three sets of LR values. 

 

For simplicity, the methods are not described in detail; the interested reader can study 

the references given for further detail. The three methods for comparison are as follows. 

 

• The first two methods are different versions of a Multivariate LR 

(MVLR) method, proposed by (33). The method assumes a multivariate 

model for all the SEM-EDX variables. Further details can be found in 

(33). In this work we compare the use of this approach for two methods 

using a different number of variables (dimensions): 

o The whole set of seven variables in the database are modelled. 

This method will be referred to as MVLR-Full. 

o  A reduced set of 3 variables, namely Na', Si' and Ca' are 

considered. This method will be referred to as MVLR-NaSiCa. 

• The third method will be referred to as Graphical Model Factorisation 

(GMF), and has been proposed by (30). The aim of the approach is a 

reduction in the dimensionality of the model while still using all 

the available variables.  This may be done with a graphical model. 

Further details can be found in (30).  
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LR values close to zero affect the factorisation of the models.  In order to avoid any 

associated problems, the minimum value given to all LR values will be limited to 10−12 . 

 

 

Comparative analysis of the performance of evidence evaluation methods: deciding 

which evidence evaluation method to choose 

 

As a preliminary analysis, the forensic scientist draws Tippett plots with the validation 

set of LR values, in order to compare the proposed methods, namely MVLR-NaSiCa, 

MVLR-Full and GMF; see Figure 7. It can be seen that the MVLR-NaSiCa method 

(Figure 7(a)) presents limited rates of misleading evidence with a moderate value of 

strong misleading evidence. Rates of misleading evidence have been defined before in 

the introduction of Tippett plots as the proportion of LR values supporting the wrong 

proposition. Strong misleading evidence is defined as LR values strongly supporting the 

wrong proposition. On the other hand, MVLR-Full and GMF methods (Figures 7(b) and 

(c) respectively) present lower rates of misleading evidence in general, but they also 

present a much higher proportion of very strong misleading evidence. In this scenario, it 

is not clear which of the proposed methods is better. Moreover, the discriminating 

power of the methods cannot be easily compared. 

 

The forensic scientist then compares the three methods with ECE plots, as shown 

in Figure 8, where the following conclusions can be drawn: 
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• The method with the lowest value of ECE (solid curve) for the entire 

range of prior probabilities is the MVLR-NaSiCa method, followed by 

the GMF and finally the MVLR-Full method. This means that the 

method that performs best is MVLR-NaSiCa. This can be justified 

because the data used for evidence evaluation, namely the control and 

recovered samples and the population database, are too sparse for a high-

dimensional multivariate problem. Data sparsity is known to affect the 

reliability of the performance seriously when the dimensionality of the 

problem increases (the so-called curse of dimensionality). The MVLR-

NaSiCa model uses only 3 variables, compared to the dimensionality of 7 

of the MVLR-Full and the product of several two- and lower-

dimensional distributions in the GMF model. Therefore MVLR-NaSiCa 

is more robust for data sparsity conditions. As the validation database has 

been designed to mimic the conditions of the LR computation process in 

the case, the forensic scientist is justified in concluding that the MVLR-

NaSiCa method should be chosen for this case. 

 

• The GMF method is much better than the MVLR-Full method, because 

its value of ECE is much lower. This is due to the strong requirements of 

data of the MVLR-Full method in high dimensionality. On the other 

hand, GMF reduces the dimension of the model. Thus, when 

the dimensionality increases, reliability in the performance of the 

MVLR-Full method can decrease. In contrast,  the GMF performance is 

more reliable, using distributions with only one or two variables and thus 

being less susceptible to the curse of dimensionality. 
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• The discriminating powers (dashed curve obtained using the PAV 

algorithm) of the GMF and MVLR-Full methods are similar, 

outperforming that of the MVLR-NaSiCa method. This means that the 

GMF and MVLR-Full methods are better at extracting 

discriminating information from the evidence.  This is a reasonable 

conclusion, since they use seven variables (sources of information) rather 

than the three variables used by MVLR-NaSiCa. This justifies the use of 

as much information (variables) as possible for evidence evaluation and 

also supports the use of dimensionality reduction techniques such as the 

GMF model to handle calibration problems. 

 

• Although there is good discriminating power (dashed curve), the GMF 

and MVLR-Full methods present a high value of ECE curve (solid curve) 

which means a bad overall performance. This indicates a 

calibration problem. For the MVLR-Full model, there is a clear cause of 

such a problem, since the model is highly sensitive to data 

sparsity. However, in the case of GMF such results indicate the need for 

more research in order to adapt the model to situations with sparse data, 

situations which are beyond the scope of this paper. 

 

 

FIGURE 7 - Tippett plots for the proposed methods MVLR-NaSiCa (a), MVLR-Full (b) 

and GMF (c). For all plots, Np=165, Nd=13530. 
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FIGURE 8 - ECE plots for the proposed methods MVLR-NaSiCa (a), MVLR-Full (b) 

and GMF (c). For all plots, Np=165, Nd=13530. 

 

The  ECE plots in Figure 8 illustrate a maximum value of ECE=1. This is because the 

maximum value of the ECE of the neutral method is 1, and therefore any value for the 

ECE of any validation set of LR values above 1 for any range of the prior probabilities 

means that the evidence evaluation method is deemed inadequate in such a range as it is 

worse than the neutral method. Thus, it will be less interesting in general to analyze the 

ECE performance above the value of 1. Moreover, this allows a clearer representation 

of the performance when the value of ECE is between 0 and 1, which is the ECE range 

where the evidence can yield meaningful information. 

 

It can be observed in Figure 7, Tippett plots present a stair-wise shape for the true-θd 

curve, which is due to the small size of the database: as Np is only 165, the cumulative 

distributions show that effect, because variation in the x-axis make cumulative 

distributions vary only in occurrences of a LR in the validation set. It is not the case of 

ECE plots in Figure 8, because the variation of ECE in the x-axis is in the prior-log-

odds range, and therefore it is not affected by the small sample size (see Equation 7). 

 

As it can be seen, ECE plots allow forensic practitioners to extract much more useful 

conclusions than Tippett plots about the comparative performance of evidence 

evaluation methods in a case. Moreover, they provide a more thorough analysis of the 
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strengths and the weaknesses of the methods under analysis, which is of great value in 

forensic practice. 

 

 

Comparative analysis of the performance of evidence evaluation methods: checking the 

adequacy of evidence evaluation methods 

 

Tippett plots, as in Figure 7, do not provide a clear measure on whether a particular 

evidence evaluation is adequate or not to be used in casework. However, from ECE 

plots in Figure 8 the forensic scientist can reason as follows: 

 

• MVLR-NaSiCa: for this method (Figure 8(a)) the value of ECE (solid 

curve) is higher than the value of the neutral method (dotted curve) for 

all values of the prior-log-odds axis above 0.6. This evidence evaluation 

method will not be adequate if the base-10 logarithm of the prior odds is 

higher than 0.6. 

• MVLR-Full: this method (Figure 8(b)) yields a poor performance, with a 

value of ECE much higher than the neutral method for all prior odds 

greater than 1 (log prior odds greater than 0), and with a similar 

performance to the neutral method for prior odds less than 1. This means 

that, in the best of cases, this method will be almost the same as not 

evaluating the evidence at all, and it can be even worse if the logarithm 

of the prior odds is higher than 0. Therefore, it seems clear that the 

method is not suitable for evidence evaluation in these conditions. 
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• GMF: for the GMF method (Figure 8(c)), the value of ECE is higher than 

the value of the neutral method (dotted curve) for all values of the prior-

log-odds above 0.3. Therefore, if the base-10 logarithm of the prior odds 

is higher than 0.3 the method provides no useful information for 

evidence evaluation. 

 

It is worth noting that no method from the three analysed has achieved a better 

performance than the neutral method over the whole range of prior probabilities. This 

means that, if the prior odds are not known by the forensic scientist, as it happens in 

many cases, there will be no way to determine if a method is appropriate for evidence 

evaluation in this case. We highlight two facts in relation to this. First, this circumstance 

should be stated in court if the technique is going to be used in the case, because the fact 

finder must know that the technique may be misleading in some situations (some values 

of the prior odds). Second, and more important, it is recommended that the forensic 

practitioner only consider the use of evidence evaluation methods that provide useful 

information for a wide range of values of the prior odds. Thus, in the given case 

example, further work is required to improve the calibration of the methods used so that 

the value of ECE may be reduced to be lower than the neutral method for a wider range 

of prior probabilities. Without the aid of the ECE methodology proposed, this important 

weakness of the methods in use would have been much more difficult to detect and 

characterize. 
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Comparative analysis of the performance of evidence evaluation methods: detecting 

problems in evidence evaluation methods 

 

Figure 9 shows the contribution of each LR value in the validation set to the total value 

of ECE, for the three methods analysed. It can be seen that for all methods the 

contribution of true-θd LR values follows a comparable trend, with no one being 

strongly misleading. However, for true-θp comparisons all the methods present some LR 

values which strongly contribute to the final value of ECE compared with the majority 

of comparisons, especially for the MVLR-Full and GMF methods. This suggests that 

the models working at a higher dimension (7 rather than 3) tend to produce more 

strongly misleading true-θp LR values. Furthermore, a deeper analysis of such 

comparisons (which is outwith the scope of this work) may lead the forensic scientist 

to identify outliers or problems with the models in use, as a first step to improve their 

methodologies. The use of the proposed ECE methodology has eased the detection of 

these sources of problems and the measurement of their impact in the performance. 

FIGURE 9 - ECE plots with the individual contribution of each comparison in the 

validation set of LR values, for the proposed methods MVLR-NaSiCa (a), MVLR-Full 

(b) and GMF (c). For all plots, Np=165, Nd=13530. Comparisons of glass objects 

yielding the highest contributions to ECE are labelled in the figure. 

 

Discussion 

 

Although the use of a wealth of validation databases to determine the performance of 

methods is common practice in forensic fields such as forensic speaker recognition (34) 
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or forensic biometric systems (35), the impulse of the requirements of the so-called 

coming paradigm shift is motivating their use in other disciplines where classically 

performance assessment of comparison methods was not so popular or typical. In the 

United States in particular, the need of the measurement of the performance in realistic 

forensic conditions motivated by the Daubert rules is fostering the development of the 

construction of these validation databases and protocols. It is the case, for example, of 

the field of fingerprint identification, where, for instance, the FBI has recently 

conducted a massive campaign for measuring the performance of an important number 

of fingerprint experts across the United States (16). As a part of this initiative, a 

validation database consisting of fingermarks and prints in forensic realistic conditions 

has been built, with a detailed protocol that tries to mimic simulated forensic cases in 

realistic conditions. Although in such a work the standard procedures for fingerprint 

identification do not generally consider the use of a population database for any kind of 

statistical procedure, the philosophy in the construction of a validation database follows 

the same ideas as described in this work. The development of such validation corpora 

will play a critical role in the establishment of scientific procedures for the analysis of 

evidence evaluation methods in the future. 

 

The construction of validation databases is also affected by the amount of data in the 

forensic laboratory. Evidence evaluation using a likelihood ratio approach needs a 

population database in order to model the alternative proposition in a given case.  It is 

hoped that the chosen database is a sufficiently large size that reliable estimates of 

parameters for the models may be made. If a validation database is also to be used to 

measure performance of the methods at hand, then the forensic scientist has to choose 

how to use the available data in the laboratory to build validation databases that are 
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representative of the cases in which the evidence evaluation methods will be used. 

However, if these data are sparse, then the data division of the validation data to 

simulate populations in hypothetical cases might lead to database sizes that are not large 

enough to give significant measures of performance. This is of course solved by the 

provision of more data in the laboratory, an obvious desire for any scientific procedure. 

However, in cases where data collection is time-consuming or expensive, the use of 

cross-validation methods, as in the example above, may be of help until more data are 

available.  

 

Conclusions 

 

The need for the assessment of the performance of evidence evaluation methods is 

increasing, as exemplified by the requirements of what has been dubbed the coming 

paradigm shift in forensic science (1). In agreement with such ideas, this work has 

presented a methodology for the assessment of the performance of forensic evidence 

evaluation methods which express the value of the evidence in the form of likelihood 

ratios (LR). The proposed framework constitutes a step forward with respect to other 

popular assessment techniques such as Tippett plots, giving much more useful 

information about the quality of the LR values and their impact on the performance of 

the methods. This provides forensic scientists with a more useful tool to assess the 

performance of their methods, and also to identify problems in statistical models for 

evidence evaluation. The proposed methodology is based on information theory, and 

allows the interpretation of performance in terms of information. The main contribution 

of the work is the proposed performance metric, namely Empirical Cross-Entropy 

(ECE), its use in a LR-based evidence evaluation context, and also several useful tools 
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derived from it, such as ECE plots. Recommendations are also provided for forensic 

scientists in order to use the proposed performance assessment methodologies in a 

variety of scenarios. The method is illustrated with a case example, where a database of 

glass chemical profiles collected from real cases is used. The example illustrates how 

the best method among several options may be selected for evidence evaluation by the 

forensic scientist for the case at hand. The usefulness of the recommendations proposed 

in this work is also illustrated.  Future work includes the use of the proposed assessment 

methodology in other forensic disciplines, and considering propositions at different 

levels (activity or offence), in order to show its adequacy to different casework 

scenarios. Moreover, this methodology assumes the definition of two mutually 

exclusive propositions, which may not be the general case. The exploration of more 

general frameworks is considered as a future line of research. 
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