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Abstract

Calculation of likelihood ratios (LR) in evidence evaluation still presents major chal-

lenges in many forensic disciplines: for instance, an incorrect selection of databases,

a bad choice of statistical models, low quantity and bad quality of the evidence are

factors that may lead to likelihood ratios supporting the wrong proposition in a

given case. However, measuring performance of LR values is not straightforward,

and adequate metrics should be defined and used. With this objective, in this work

we describe the concept of calibration, a property of a set of LR values. We highlight

that some desirable behavior of LR values happens if they are well calibrated. More-

over, we propose a tool for representing performance, the Empirical Cross-Entropy

(ECE) plot, showing that it can explicitly measure calibration of LR values. We

finally describe some examples using speech evidence, where the usefulness of ECE

plots and the measurement of calibration is shown.
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1 Introduction

Despite the increasing acceptance of the likelihood ratio (LR) approach of

evidence evaluation in forensic science [1], computation of LR values still re-

mains a challenge. There are many factors that may lead to values of the LR

supporting the wrong proposition in a case, an effect known as misleading evi-

dence [2]. If this happens, the LR values are said to present bad performance.

Those factors may include sparsity of the databases used as populations [3,4],

mismatch in the conditions of the elements in the population databases and

in the evidence [5,6], degraded quality or quantity of the evidential materials

[7–9], and so forth.

Good performance of the LR is essential in casework. Otherwise, misleading

LR values in court may lead fact finders to wrong decisions. This idea is the

main motivation behind the establishment of validation procedures for evi-

dence evaluation methods, as a way to establish procedures to control and

allow the use of LR models in casework. These validation procedures of evi-

dence evaluation methods should be based on a careful process of performance

measurement.

Motivated by this critical problem, in this work we adopt a methodology for

the measurement of performance of LR methods in forensic science based on

so-called Strictly Proper Scoring Rules (SPSR) [10–12] that has solid grounds

on Bayesian statistics. The main contribution of this work is highlighting the

importance of a property of a set of LR values called calibration, and its

relationship with the desirable behavior that the LR should have. Also, al-

though the SPSR methodology is not new, we adapt it to the LR framework
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for forensic evaluation inference; and we describe a useful representation of

the performance of LR values in terms of SPSR and calibration: the Empir-

ical Cross-Entropy (ECE) plot. This methodology for measuring calibration

is not intended to replace other methods for measuring performance of the

LR, based on e.g. Tippett plots or other measurements over the numerator

and the denominator of the LR separately. Conversely, we show in this article

that measuring the calibration of the LR is an excellent complement to all

those methods, in order to have a deep analysis of the performance of the

LR with views to a validation process of LR computation in forensic science.

In this sense, the example shown in this article illustrate the adequacy and

complementarity of using ECE plots in addition to Tippett plots.

Calibration is understood here as a property of a set of LR values, which can

be measured. Although the term calibration has been recently used to denote

a process for obtaining likelihood ratios, we do not follow that meaning in this

article. Therefore, our proposal in this article is not about methods to compute

the LR, but a methodology to measure the performance and the calibration

of a set of LR values, no matter how they were computed. Thus, LR values

can be computed using e.g. widely accepted models which assign probabilities

separately to the numerator and the denominator of the LR (such as the ones

described in [13]), and the calibration of the LR values can be measured for

those LR values using the methodology proposed in this article.

The article is organized as follows. First, we present the performance assess-

ment methodology based on SPSR, particularizing in the classical example of

weather forecasting. Then, we intuitively define and describe the concept of

calibration. After that, we give reasons that reveal that it is not straightfor-

ward to directly apply this methodology to forensic science, and we describe
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the ECE plot as a solution to overcome those difficulties. Finally, we present

experimental examples in forensic speaker recognition where the properties

of well-calibrated likelihood ratios are highlighted, after which we draw some

conclusions.

2 Measuring performance of probabilistic assessments

In this work, we start by adopting a methodology for measuring performance

based on Strictly Proper Scoring Rules (SPSR) [10,12], which is not new and

has been studied for decades in Bayesian statistics. We begin with a classical

example that has motivated abundant research: the elicitation of probabilistic

assessments for weather forecasting [14,11].

2.1 Probabilistic Weather Forecasting

Consider an unknown variable, say θ, whose value we want to know. Let θ be

binary, which means that it only can take one out of 2 values: either θ = θp

or θ = θd
1 . In the weather forecasting example we are going to assume that

the unknown variable θ refers to a particular day in the future. We therefore

denote θ(i) as the corresponding variable θ for day i. Thus, in that context the

values of θ(i) ∈ {θp, θd}, with the following meaning for day i:

• θp: it rains in day i.

• θd: it does not rain in day i.

1 We adopt this notation intentionally, because we ultimately aim at the forensic

inference problem
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A probabilistic weather forecaster, or simply a forecaster, is defined as some-

one who assigns probabilities for θ(i) = θp or θ
(i) = θd before the value of θ(i) is

known, aiming at predicting its value. The mechanism by which the forecaster

assigns probabilities does not need to be known, but it can be said that, as

any other probabilistic assignment, it must consider all the knowledge avail-

able to the forecaster, say K [15]. The probability that θ(i) = θp given K is

then denoted as P
(

θ(i) = θp

∣

∣

∣K
)

which, in words of the forecaster, should be

read the probability that it rains in day i in the future, given all my available

knowledge K. We denote K, the available knowledge, as an observed value, in

the sense that it is known and fixed. It may include the education, experience

and preferences of the forecaster; some data in which the forecaster is basing

their assessment; a statistical model; etc. All the resources that are known

to the forecaster and used in some way for the elicitation of the probabilistic

forecast are included in K, no matter their origin.

For simplicity and convenience, we will eliminate the reference to the day

i from the notation when it is clear from the context. Therefore, in those

cases we will denote θ(i) ≡ θ and P
(

θ(i) = θp
∣

∣

∣K
)

≡ P (θp|K). Moreover, by

definition of θp and θd, both values have to be complementary, i.e., P (θp|K) =

1− P (θd|K).

We assume that at the end of day i the actual value of θ(i) in day i and all

past days will be known. In other words, at the end of the current day the fact

of whether it rained or not in any day in the past will be known. Thus, the

forecaster will elicit forecasts for future days from day i, when θ is actually

unknown.
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Notice that P
(

θ(i) = θp

∣

∣

∣K
)

denotes a probability of the value of the variable

of interest (θ) given all the available, observed knowledge K. In Bayesian

inference, this is known as a posterior probability, and therefore probabilistic

weather forecasters assign posterior probabilities.

2.2 Performance of Probabilistic Assessments: Strictly Proper Scoring Rules

During decades, Bayesian statisticians have been seriously concerned about

the elicitation of probabilistic assessments [10,16,17], which can be understood

given the Bayesian interpretation of probability as a degree of belief [18,19]. In

this topic of research, one of the main questions under study has always been

the performance of the probabilistic assessments, that can be summarized as

follows: if someone is eliciting probability assessments (according to a given

model and data, or based on personal experience), how can we evaluate how

they perform?

Contextualizing to our weather forecasting example, we can get some intuition

about how to evaluate the performance of one single probabilistic assessment

of the forecaster. Imagine that the forecaster assigns a probability of raining

for tomorrow (day i) as P (θp|K) = 0.9. Then, after two days it turns out

that it did actually rain in day i, i.e. θ = θp. As the probability given by

the forecaster to the value of θ that actually occured (θp) is fairly high, then

for that particular probabilistic assessment the forecaster did a good work.

Therefore, if an external evaluator would assign a cost (or penalty) to that

particular forecast, that penalty should be low. However, if the forecaster

would have assigned P (θp|K) = 0.1, then that forecast would not have been

a good one, since the probability for what it actually happened (it rained,
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θp) would have been low. These examples suggest that, in order to evaluate a

single forecast, two elements are needed: the probability distribution of θ as

assigned by the forecaster (the probability of rain in day i, P (θp|K)), and

the actual value of the variable θ, that was unknown by the forecaster, but it

is known when performance is to be measured.

According to this intuition in Bayesian statistics the performance of proba-

bilistic assessments has been classically addressed by the use of Strictly Proper

Scoring Rules (SPSR) [10–12]. A SPSR is a function both of a probability dis-

tribution assigned to a given unknown variable, and the actual value of the

variable. The value of the SPSR will be interpreted as a loss or a cost given

to the probability distribution depending on the actual value of the variable.

In this work we will use the logarithmic SPSR, which is defined as follows 2 :

C (P (θp|K) , θ) =































− log2 (P (θp|K)) if θ = θp;

− log2 (1− P (θp|K)) if θ = θd.

(1)

where C (P (θp|K) , θ) represents the SPSR as a function of P (θp|K) and

the actual value of θ. The intuition behind SPSR will be exemplified with

the representation of the logarithmic SPSR in Figure 1. The figure shows

the two possible values of the logarithmic SPSR depending on the actual

value of θ, as a function of P (θd|K). According to Equation 1, if θ = θp (it

actually rained in day i), the SPSR assigns a high penalty to low values of

2 There are strong reasons to prefer the logarithmic scoring rule to other SPSR,

but they are out of the scope of this work, see [20,21] for details. The base of the

logarithm is irrelevant for the expositions. We use base-2 logarithms for information-

theoretical reasons, that are explained in [22].
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P (θd|K), and vice-versa. This corresponds to the fact that, if the weather

forecaster expressed a high probability of rain in day i (high P (θd|K)), and

it actually rained (θ = θp), then the penalty should be low, and vice-versa. In

the limit, if the forecaster expressed a categorical probability of P (θd|K) =

0 (i.e., it is impossible that tomorrow it will rain), and it actually rained,

the penalty will be infinite for the logarithmic SPSR 3 . From Figure 1, an

analogous reasoning can be followed for the case where θ = θd (it did not rain

in day i), where forecasts expressing high probability of rain (high P (θd|K))

are severely penalized by the logarithmic SPSR, and vice-versa.

Stricly Proper Scoring Rules measure the goodness of a single forecast from

the forecaster. However, an overall performance of a given set of forecasts

from a given forecaster should be given. In order to do that, we will firstly

need a set of forecasts from the forecaster, with their corresponding actual

values of θ for each forecast in the set. We denote the latter the ground-truth

labels. The whole set of forecasts with their corresponding ground-truth labels

will be denoted a validation set of posterior probabilities. In the context of

weather forecasting, the validation set of posterior probabilities can be drawn

from an archive of past forecasts from a given forecaster, and the ground-truth

labels can be obtained from weather databases where registries of whether it

rained those days or not will be available. We use the term validation for

this set because we assume that the measurement of performance will lead

to a validation process where it will be decided whether or not something or

someone should be valid for their purpose. In our weather forecaster example,

3 This is, in fact, one desirable property of the logarithmis SPSR, if it is assumed

that someone who categorically expresses a wrong judgement should be the worst

possible forecaster.
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Fig. 1. Representation of the logarithmic Strictly Proper Scoring Rule.

the validation process would yield a decision of whether a given forecaster is

valid for a given task or not.
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In order to measure the accuracy of a validation set of posterior probabilities

from the forecaster, the following procedure has been proposed [11]:

LC = −
1

Np

∑

θ(i)=θp

log2
[

P
(

θ(i) = θp
∣

∣

∣K
)]

−
1

Nd

∑

θ(j)=θd

log2
[

1− P
(

θ(j) = θp
∣

∣

∣K
)]

(2)

where LC is the accuracy of the validation set of posterior probabilities, and Np

and Nd are the number of forecasts where θ is respectively θp or θd. Roughly

speaking, for the wheather forecaster example, the accuracy of the valida-

tion set is the average of the SPSR for the days where it rained, namely

− 1
Np

∑

θ(i)=θp

log2
[

P
(

θ(i) = θp
∣

∣

∣K
)]

; plus the average of the SPSR for the days

where it did not rain, namely − 1
Nd

∑

θ(j)=θd

log2
[

1− P
(

θ(j) = θp

∣

∣

∣K
)]

.

2.3 Interpretation as Accuracy

Accuracy is defined as the closeness of a given magnitude to its true value. We

illustrate the accuracy interpretation of LC in Equation 2 as follows. We define

a perfect or oracle forecaster as the one who assigns probability distributions

to θ each day in the light of the true value of θ. Thus, such an oracle forecaster

assigns P (θp|K) = 1 if θ = θp and P (θp|K) = 0 if θ = θd. For each forecast,

the accuracy of the oracle forecaster will be the best possible, and because of

that we call it perfect accuracy. Also, the SPSR for the oracle forecaster would

be always 0 (see Equation 1 and Figure 1). For a forecaster that is not the

oracle one, the true value of θ will be unknown for a given day i, and therefore

their forecast P (θp|K) will not present perfect accuracy as explained before.

Then, the penalty assigned by the SPSR depends on the deviation of the non-
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perfect forecaster from the behavior of the oracle forecaster, and therefore the

latter it is a measure of the accuracy for the given forecast.

There are other desirable properties of SPSR as measures of accuracy that

are out of the scope of this article. Interested readers will find an appropriate

formal introduction to the topic in [10,12].

2.4 Calibration

The so-called property of calibration of a set of probabilistic assessments has

been extensively studied in the past by Bayesian statisticians [14,11]. An intu-

itive definition of calibration can be reproduced from [16] in the same context

as in our weather forecaster example:

[...] If the metheorologist is using the scale properly, however, we would

expect that rain would occur in two-thirds of the days to which he assigns

a rain probability of 2/3. This criterion is called calibration [...].

Considering our notation, calibration can be defined as follows. If a fore-

caster elicits probabilistic assessments about raining in some days, namely

P
(

θ(i) = θp

∣

∣

∣K
)

with i ∈ {1, 2, ..., N}, then, for all probabilistic assessments

for which P
(

θ(i) = θp

∣

∣

∣K
)

= p the proportion of days where θ = θp will be p.

This definition is only useful if it is possible to compute proportions of cases

where θp is true in the validation set of posterior probabilities for each of

the value of such probabilities. That is generally possible if the values of the

probabilities that the forecaster can assign is discrete (as it happens in [11]).

If the forecaster can elicit any continuous value in the [0, 1] range, then the

11



definition should consider some kind of partition (or binning) of such a range.

Then, we can say that a set of probabilistic assessments is well calibrated 4 if,

for all assessments P
(

θ(i) = θp
∣

∣

∣K
)

with their values within a region (or bin)

defined by p±∆, with ∆ not too large, the proportion of cases where θ = θp

is close to p.

According to the definition of calibration, we can visualize whether the calibra-

tion of a set of probabilistic assessments is good or bad by means of so-called

empirical calibration plots. Figure 2(b) shows one of this plots. It represents

a histogram of the proportion of cases where it actually rained with respect

to the total number of cases, as a function of the value of the probabilistic

assessment. For the sake of illustration, in Figure 2(a) the histograms of the

probabilistic assessments in the set respectively when θ = θp and when θ = θd

are represented. Notice that the empirical calibration plot in Figure 2(b) is

obtained by bin-by-bin dividing the number of cases in the histogram where

θ = θp over the total number of cases in both histograms in Figure 2(a).

Thus, in the empirical calibration plot, for all the days where the probabilistic

assessment of the forecaster fell into a given range of values in the x-axis (i.e.

a given bin), the y-axis represents the proportion of days where it actually

rained. From the definition of calibration, for a well-calibrated set of proba-

bilistic assessments, the value of the x- and y-axes should tend to be equal,

and then the x = y line is represented in the empirical calibration plot. Figure

2 shows an example of a well calibrated validation set of probabilities, whereas

4 Notice that, due to this definition of calibration for continuous probabilistic as-

sessments, calibration is not treated as something that is present or absent. Con-

versely, calibration is used as a continuous metric, and we will rather talk about

probabilistic assessments that are well calibrated or badly calibrated.
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Fig. 2. Well-calibrated set of posterior probabilities. (a): Histograms of probabilities

when θ = θp (top) and when θ = θd (bottom). (b): Empirical calibration plot.

a badly-calibrated set is represented in Figure 3.

Some of the good properties of calibration can be guessed intuitively now:

if a forecaster elicits well-calibrated probabilistic assessments, they will be
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Fig. 3. Badly-calibrated set of posterior probabilities. (a): Histograms of probabili-

ties when θ = θp (top) and when θ = θd (bottom). (b): Empirical calibration plot.

constraining their opinions to the actual proportion of occurrence of events, a

behavior that seems reasonable according to [16].
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2.5 Calibration and Discriminating Power

In the context of weather forecasting, we define the discriminating power of a

set of posterior probabilities as the ability to distinguish between days where

it will rain (θ = θp) and days where it will not rain (θ = θp). Discriminat-

ing power is also seen as the ability of the probability assessments to give

information about the true value of θ. An example of a set of probabilities

presenting good discriminating power is the one represented in the histograms

in Figure 2(a), where it can be seen that the forecasts in days where it rains

tend to be higher than the forecasts in days where it does not rain. Thus, a

single forecast in that set of probabilities will give information about whether

tomorrow it will rain or not, because if it is high, it will tend to indicate that

in the following day it will rain, and vice-versa.

Although calibration has been described as a desirable property, a set of pos-

terior probabilities needs not only to be well calibrated, but also to be dis-

criminating. We exemplify this as follows:

• It is possible that a well-calibrated set of posterior probabilities would give

little or no information about the value of θ. For instance, a weather fore-

caster assigning well-calibrated forecasts can be useless in order to determine

whether I should take my umbrella or not before going out. An example is

a weather forecaster that is eliciting probabilities about raining in a re-

gion where the average probability of rain is 50%, and they always assign

P (θp|K) = 0.5. In the long-term, they will be well calibrated, because for

the forecasts of value 0.5, the proportion of cases where it rains is 0.5, the

average proportion of rainy days. However, such a forecaster does not give
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any information whatsoever about whether it will rain or not in a given day,

and therefore I will obtain no advice in any day about whether I have to

take my umbrella with me or not. In other words, the forecaster does not

give any information about the value of θ, the variable of interest, and they

are useless in this sense. This type of forecaster is said to present no discrim-

inating power in order to distinguish between days where it rains or not,

but on the other hand they assign extremely well-calibrated probabilities in

the long-term. Such a forecaster is represented in Figure 4.

• Even a forecaster that perfectly separates days in which it rains or not

can be badly calibrated. We say that such a forecaster presents perfect dis-

criminating power. For instance, imagine a weather forecaster that assigned

probabilistic assessments during a period of time in a way that all the days

where it actually rained the probability of rain was 0.6, and all the days

where it actually did not rain the probability of rain was 0.4. The forecaster

had the ability of perfectly separating the days where θ = θp (with proba-

bity of 0.6 for all of them) and the days where θ = θd (with probabity of

0.4 for all of them), and therefore the forecaster presented perfect discrim-

inating power in that period of time. However, those forecasts seem quite

imperfect, because if the forecaster has such an amazing ability, a stronger

opinion (i.e., respectively closer to probability of 1 or 0) would have been

more convincing in order to decide if I have to take my umbrella or not

that day. Thus, even with perfect discriminating power, the forecaster is

not assigning the best possible probabilities for my decision of taking my

umbrella. Such a set of posterior probabilities is represented in Figure 5,

where the empirical calibration plot shows bad calibration.
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Fig. 4. A set of posterior probabilities showing null discriminating power but perfect

calibration. (a): Histograms of probabilities when θ = θp (top) and when θ = θd

(bottom). (b): Empirical calibration plot.

2.6 Calibration and Strictly Proper Scoring Rules

From our previous descriptions, now we can measure the accuracy of a set of

probabilistic assessments by means of average values of SPSR (see Equation
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Fig. 5. A set of posterior probabilities showing perfect discriminating power but bad

calibration. (a): Histograms of probabilities when θ = θp (top) and when θ = θd

(bottom). (b): Empirical calibration plot.

2). Additionally, we have introduced two desirable properties of the set of

probabilities: calibration and discriminating power. The question is are these

two properties related to our definition of accuracy?
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The answer to the former question is yes, and was given by [20,21] in relation

to the work in [11]. In those works, it is shown that:

LC = Ldisc
C + Lcal

C (3)

where LC is the average cost or penalty due to a lack of accuracy of the set of

posterior probabilities (Equation 2), Ldisc
C is the fraction of this average cost

due to a lack of discrimination, and Lcal
C is the fraction of the average cost due

to a lack of calibration. Thus, by means of this decomposition, the accuracy

of a set of forecasts will be good if and only if the discriminating power and

the calibration of the probabilities are also both of them good.

Exemplifying in our weather forecasting example, we understand that a fore-

caster is accurate if their predictions allow us to efficiently decide whether

to take an umbrella or not a given day. As we highlighted in Section 2.5, if

the discriminating power of the probabilities elicited by the forecaster is good

and their calibration is bad, then the accuracy can be very bad, because the

forecaster can be under-confident or even biased in their probabilistic assess-

ments, and our decision about the umbrella can be incorrect because of those

reasons. On the other hand, if the calibration is good but the discriminating

power is bad, we will probably have a forecaster that assigns so weak proba-

bilistic assessments that give us little information about whether tomorrow it

will rain or not, and therefore accuracy will be also poor because we will not

find them useful in our decision about taking an umbrella or not.

The decomposition in Equation 3 allows to explicitly measuring calibration

as the average cost given by Lcal
C : the lower the value of Lcal

C , the better the
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calibration, and vice-versa. However, arriving to such a decomposition is not

trivial. We have adopted the solution proposed in [20,21] by means of the Pool

Adjacent Violators algorith (PAV). As described in [20,21,23], PAV receives

as an input a validation set of posterior probabilities 5 , and a new probability

is assigned to each of the posterior probabilities of the input set, yielding a

set of optimally-calibrated posterior probabilities. Thus, if the accuracy of the

set of posterior probabilities before the application of PAV is LC, then the

accuracy of the set after the application of PAV will be Ldisc
C , because the

calibration loss of the probabilities transformed by PAV Lcal
C will be reduced

to zero. Therefore, if we have a validation set of posterior probabilities, we can

measure the following magnitudes:

• Accuracy, the global measure of performance of the set, as the average value

of the SPSR, namely LC (Equation 2).

• Discriminating power, as the accuracy of the set after being transformed by

the PAV algorithm, namely Ldisc
C .

• Calibration, as Lcal
C = LC −Ldisc

C .

It is important to highlight here that the use of PAV in the proposed method-

ology aims at establishing just a reference of performance. In this article, we

are not proposing PAV as a method for computing LR values. Thus, a set

of LR values can be computed using common LR computation methods (e.g.

such as the ones described in [13]), and then the LR values obtained can be

compared to the reference LR values obtained by the application of PAV. See

also [24] for details.

5 Notice that the ground truth labels are also in the validation set.
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3 Probabilistic Assessments in Forensic Science

In many aspects, the Bayesian probabilistic framework in forensic science is

analogous to the one described above for weather forecasting. However, al-

though it is possible to apply the assessment methodology described above

to forensic science, the steps are not straightforward. We need to take into

account the particular inferential context of forensic interpretation and the

competences and roles involved, in order to arrive to a satisfactory solution,

that we develop in this section.

3.1 The Likelihood Ratio Approach

In order to understand the problems arising from the use of the SPSR method-

ology in forensic science, it is needed that we get deeper into the Bayesian in-

ferential mechanism in forensic science, namely the LR framework for forensic

evidence evaluation [13].

Consider the forensic evidence E, which includes two types of evidential ma-

terials : recovered materials of unknown origin and control materials whose

origin is known. Such so-called alternative propositions can be stated at sev-

eral levels [25,26]. An example of a pair of propositions at source level is:

• θp (also known as the prosecution proposition): the recovered and control

materials come from the same source.

• θd (also known as the defence proposition, or the alternative proposition):

the recovered materials come from a population of potential sources, which

does not include the source of the control materials.
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In a forensic case, the unobserved variable of interest is the proposition that is

actually true in the case, namely θ, which may take the values θp or θd. Bayes’

theorem relates probabilities of the values of θ before and after the analysis

of the evidence:

P (θp |E, I)

P (θd |E, I)
= LR×

P (θp | I)

P (θd | I)
(4)

where I is the background information available in the case apart from the

evidence E. The propositions must be mutually exclusive and exhaustive 6 .

Equation 4 is the so-called odds form of Bayes’ theorem, because the odds O

are defined as O (θp |E, I) = P (θp |E,I)
P (θd |E,I)

. The likelihood ratio (LR) is therefore

defined as:

LR =
P (E| θp, I)

P (E| θd, I)
(5)

and expresses the degree of support given by the evidence to any of the propo-

sitions in the case.

From Equations 4 and 5, the relationship between the posterior probability

that θ = θp and the LR value can be stated as:

6 Although in this work we assume that the propositions fulfill both requirements,

some authors do not consider exhaustion as a strict requirement. For instance, in

[27] when the propositions are not exhaustive but the probability of any of them to

be true is close to 1, they define pseudo-odds as a way of performing the inferential

process
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P (θp|E, I) =
LR× O (θp)

1 + LR × O (θp)
(6)

It is important to highlight here that in casework the forensic examiner should

assess the value of the LR, but not the value of the prior probabilities. This

is the one of the main advantages of the use of likelihood ratios: in a given

case, the fact finder evaluates all the possible information but the evidence,

whose strength is contributed by the forensic examiner by the reporting of

a LR. In this way, the forensic examiner should not need to assess the prior

probabilities in casework.

3.2 Weather Forecasting and Forensic Science

In order to apply in forensic science the performance assessment methodology

based on SPSR, we establish some analogies between the previously described

weather forecasting example and the forensic inference framework:

• The binary variable of interest, θ(i) ≡ θ. In weather forecasting, its value

indicates if it rained or not in day i. In forensic inference, its value indicates

the proposition (prosecution or defence) that is true in a given case indexed

as i.

• The possible values of θ. In weather forecasting, θp means that it rained in

day i and θd means that it did not rain in day i. In forensic inference, θp

means that the prosecution proposition is true in case i and θd means that

the defence proposition is true in case i.

• The available knowledge. In weather forecasting, all the knowledge available

to the forecaster is referred to as K. In forensic inference, all the available
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knowledge is split into E and I. If we understand these as sets, we can

define K ≡ E ∪ I for forensic inference, and K would have an analogous

meaning than in weather forecasting: all the available observed knowledge

in the problem.

• The assessment of probabilities. Given the analogies above, we can state the

problem of forensic inference in the same terms as in weather forecasting.

On the one hand, the aim of the weather forecaster is assigning a posterior

probability distribution P (θp |K) that represents their opinion about the

value of the unknown variable θ, from the information obtained from K. On

the other hand, in forensic inference the aim of the fact finder is obtaining a

posterior probability distribution P (θp |E, I) that represents their opinion

about the value of θ from the information obtained from the evidence E

and the rest of iformation in the case I.

Despite all the analogies before, using the methodology of performance assess-

ment based on SPSR in forensic science is not straightforward, because there is

a substantial difference with respect to the weather forecasting example. And

that difference comes from what we want to measure in forensic evaluation of

the evidence.

In weather forecasting, we wanted to measure the performance of the proba-

bilistic assessments of the forecaster, namely P (θp |K). As the responsible of

such assessments is the forecaster, then we can measure performance directly

from a validation set of posterior probabilities assigned by the forecaster (and

their corresponding ground-truth labels).

However, in the case of forensic inference, this is not the case, for several

reasons:
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• In forensic inference we only want to measure the performance of the proba-

bilistic assessments of the forensic examiner. Therefore, we want to focus on

measuring the performance of the LR, not the performance of the posterior

probability P (θp |E, I). This is because the posterior probability depends

both on the LR and on the prior probability P (θp | I), the latter not be-

ing the province of the forensic examiner. However, the SPSR framework

is based on measuring the performance of the posterior probabilities, and

therefore if we apply it directly to forensic science, we would be partially

measuring performance of the assessments of the fact finder, not just the

LR given by the forensic examiner.

• It is currently unrealistic to imagine a scenario where fact finders assign

prior probabilities in a Bayesian context. Thus, it may not be possible in

general to arrive to posterior probabilities in a case, and therefore the SPSR

methodology could not be applied to measure performance of posterior prob-

abilities in a realistic scenario.

• The measurement of the performance of the methods is typically conducted

in the forensic laboratories, by means of simulated experiments where the

evidence evaluation methods are tested empirically. This is typically done

before deciding whether a method is ready to be used in casework or not.

As the forensic examiner cannot assign prior probabilities, it is not straight-

forward to arrive to posterior probabilities from the values of LR that may

be computed in those simulated experiments.
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4 Measuring Accuracy in Forensic Science

Despite all the reasons given in the previous section, we give a solution that

allows the use of the SPSR assessment methodology to LR values computed

by forensic examiners.

4.1 Avoiding the Prior Odds in Performance Measurement

Imagine that we work in a forensic laboratory where we want to assess the

performance of a given LR computation method. In order to apply the SPSR

methodology, our proposed solution firstly considers the set-up of a simulated

experiment, where a validation set of LR values will be computed from a so-

called validation database. Each LR value from such a validation set, say LRi,

would be generated by the simulation of a case, say case i, where the evi-

dential materials Ei (control and recovered) will be taken from the validation

database. The experimental protocol considers that several values of LR are

computed following this procedure, each one by means of a different simulated

case. As the ground-truth labels are known in the validation database, we can

follow a comparison protocol that yields a number Np of LR values from sim-

ulated cases where we know that θp is actually true, and a number Nd of LR

values from simulated cases where we know that θd is true. Summarizing, the

validation set of LR values will consist of the set of N = Np +Nd LR values

with their corresponding ground-truth labels.

It is important to remark that if any of these LR values would have been

computed in a real case, the forensic scientist should report the LR value to

court, but not accompanied by any assessment of prior probabilities [25], and
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not usurping the role of the court and reporting a posterior probability (a

phenomenon that is called the prosecutor’s fallacy [28]).

However, measuring performance by SPSR is focused on posterior probabili-

ties, but forensic examiners only have the values of the LR in the validation

set. If a value of the prior would be fixed in the experiment, a validation set of

posterior probabilities could be obtained from that prior and the LR values,

and those posteriors could be used to assess accuracy with the SPSR method-

ology. In that case, we would be measuring performance for the particular

case when the fact finder would set the prior to that given value. However,

the forensic examiner cannot fix a value of the prior, even in their experiment,

because that value is not their competence.

Instead of that, we propose to compute accuracy in our experiment for a wide

range of prior probabilities, following the same procedure as in [20]. That way,

in the experiment, we vary the prior probabilities, and we compute what would

be the accuracy when we use the validation set of LR values for each of the

the prior probabilities in that range. Thus, the forensic examiner will not fix

a value for the prior probabilities in the experiment, but they will be able to

know the performance (accuracy) if someone would be using their LR values

in a correct Bayesian framework.

Notice the differences we establish between the use of a LR in casework and

our proposed procedure to measure performance of a set of LR values in a con-

trolled experiment, typically prior to casework. First, in casework the ground

truth is unknown, but in the controlled experiment the ground-truth labels

are available. Second, in casework it is totally unrealistic to think that the fact

finder will be assessing a prior probability, at least in current practice. How-
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ever, the duty of our methodology for measuring performance is to consider

the LR in a formal way, as part of a Bayesian inference process. Therefore, in

our experiment, we assume that the fact finder will assess a prior, but we will

never know its particular value. This is the reason to consider a wide range of

prior probabilities, and not a particular value of the prior.

4.2 Proposed Performance Representation: ECE plots

Following the procedure described in the previous section, we propose a way of

representing the performance of a set of LR values, which measures accuracy

as an explicit decomposition between discriminating power and calibration. It

is out of the scope of this work to go into deep details, that can be found in

[24,22].

First, we define our measure of accuracy, namely Empirical Cross-Entropy

(ECE) as the average value of the logarithmic scoring rule, weighted in the

following way:

ECE =−
P (θp| I)

Np

∑

θ(i)=θp

log2 P (θp|Ei, I)

−
P (θd| I)

Nd

∑

θ(j)=θd

log2 P (θd|Ej , I). (7)

where Ei and Ej denote the evidence in each of the comparisons (cases) in the

validation set where θp or θd are respectively true. It is illustrating to express

ECE explicitly in terms of the prior odds and the LR using Equations 6 and

7:
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ECE =
P (θp| I)

Np

∑

θ(i)=θp

log2

(

1 +
1

LRi ×O (θp)

)

+
P (θd| I)

Nd

∑

θ(j)=θd

log2 (1 + LRi × O (θp)). (8)

As it can be seen in Equations 7 and 8, the averages in ECE are weighted by the

value of the prior probabilities. This weighting allows ECE to be interpreted in

an information-theoretical way, but this topic is out of the scope of this work

(see [24,22] for details). However, it can be shown that the interpretation of

ECE as accuracy and its properties related to calibration remain the same as

for LC (see, e.g., [21]).

Equation 8 shows that ECE depends on the validation set of LR values in the

experiment (i.e., the LR values and their corresponding ground-truth labels).

However, ECE also depends on the value of the prior odds O (θp| I), since a

SPSR depends on the posterior probabilities. Thus, following the procedure

described in Section 4.1 ECE can be represented as a function of the logarithm

of the prior odds. An example of such a representation can be seen in Figure 6.

We use base-10 logarithms for the prior odds because they are typically used

for evidence evaluation. However, base-2 logarithms will be used for computa-

tion of ECE because of its information-theoretical interpretation (see [24,22]

and [29] for details).

ECE in Figure 6 represents the accuracy for all the possible values of the prior

probability, but calibration is not explicitly represented. Therefore, we give an

explicit measurement of discriminating power and calibration in a so-called

ECE plot ([24]), which shows three comparative performance curves together

(Figure 7):
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Fig. 6. ECE as a function of the logarithm of the prior odds (prior log-odds).

(1) Solid curve: accuracy. This curve is the ECE of the LR values in the

validation set, as a function of the prior log-odds. The lower this curve,

the better the accuracy. This is the same representation as shown in

Figure 6.

(2) Dashed curve: accuracy after PAV. This curve is the ECE of the validation

set of LR values after being transformed using the PAV algorithm, as a

function of the prior log-odds. Therefore, this shows the performance of

a validation set of optimally-calibrated LR values, according to Section

2.5 7 .

(3) Dotted curve: neutral reference. It represents the comparative perfor-

mance of a so-called neutral evidence evaluation method, defined as the

one which always delivers LR=1 for each case. This neutral method is

taken as a performance bound: the accuracy should be always better than

7 Recall that PAV is used in the proposed methodology as a reference for measuring

performance, and not as a method of obtaining LR values in casework.
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Fig. 7. Example of an ECE plot.

the neutral reference.

Thus, in ECE plots we can observe the following:

• Accuracy: solid curve. The lower the curve, the better the accuracy.

• Discriminating power: dashed curve. The lower the curve, the better the

discriminating power.

• Calibration: difference between the solid and dashed curves. The closer the

blue and the red curves, the better the calibration.

With this representation, the calibration of a validation set of LR values can

be explicitly measured.
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4.3 Software tools for drawing ECE plots

In order to facilitate the use of these tools, there is a freely available software

for the computation of ECE plots for Octave and MatlabTM , that can be down-

loaded from http://atvs.ii.uam.es/software/ECE plots SW.zip. Moreover, the

R package comparison by David Lucy also includes functions for drawing

ECE plots, and can be downloaded from the CRAN repository (http://cran.r-

project.org).

An example of the use of the software in MatlabTM is shown as follows, where

it can be seen that with the LR values separated in the cases where θp and θd

are respectively true, it is easy to use the software to draw ECE plots:

>> figureS1=ECE_plot_10({’Example ECE plot’,{logLRss1,logLRds1}});

>> % Variables (two vectors) containing the LR values:

>> % logLRss1: LR where prosecutor proposition is true

>> % logLRds1: LR where defence proposition is true

5 Why reliable? A Desirable Property of Well-calibrated Likeli-

hood Ratios

Until now, we have been focusing on describing and explaining the concept of

calibration, an we have provided tools to measure accuracy and calibration.

In this section, we justify why a set of LR values should be well calibrated, by

means of an important property of calibration: for a well-calibrated set of LR

values, the higher their discriminating power, the stronger the support they
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will tend to yield, and vice-versa. In other words, if we have a method that

yields well-calibrated LR values which also present high discriminating power,

the weight of the evidence given by that method, expressed as the value of

|log (LR)|, will tend to be high, and vice-versa 8 .

We illustrate this property with an example. Figure 8 shows the Tippett plots

of two validation sets of LR values, namely set S1 and set S2. In the y-axis

Tippett plots represent the proportion of cases where the log10(LR) exceeds

the value in the x-axis in the experimental set. Moreover, two curves are

represented: one for the LR values in the set where θ = θp, and one for the LR

values in the set where θ = θd (see e.g. [31] for details about Tippett plots).

These two validation sets of LR values have been generated synthetically for

the sake of illustration.

From the Tippett plots, one can figure out what is the range of LR values

in each of the sets S1 and S2, because the curves represent an empirical cu-

mulative distribution of the LR values in the set. Thus, as a rule of thumb,

the further are the curves from the value of log10 (LR) = 0, the higher the

value of |log10 (LR)|. The latter is a measure of the strength (or weight) of the

evidence, because the higher the value of |log10 (LR)| the stronger the support

of the evidence to a given proposition in the case. Therefore, Tippett plots in

Figure 8 show that the strength of the LR values in S1 tends to be much higher

than for the LR values in S2. Also, in Tippett plots the discriminating power

is measured as the vertical separation of both curves in the graph, measured

at a given value of the x− axis. Therefore, if that separation is measured e.g.

8 Although well-calibrated probabilistic assessments present other desirable prop-

erties, that are not described here for limits in the extension of this work. See [14,30]

for more details.
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at x = 0, it can be also be seen from Tippett plots that the discriminating

power of S1 is higher than the discriminating power of S2.

Also, ECE plots are represented in Figure 8. ECE plots reveal that the cal-

ibration of the LR values in S1 and S2 is good in both cases, because the

separation between the solid and dashed curves is small for both sets. This

could not be seen in Tippett plots, where calibration is not explicitly mea-

sured. Moreover, the discriminating power is better in S1 than in S2, because

the dashed curve is lower for S1. Therefore, the example illustrates that if S1

and S2 are well calibrated, the method with better discriminating power will

yield stronger support to the propositions (higher weight of the evidence, i.e.

|log10 (LR)|).

This relationship between the discriminating power and the weight of the

evidence does not necessarily happen for badly-calibrated sets of LR values. In

figure 9, the performance of two badly-calibrated LR sets is shown, namely Su
1

and Su
2 . ECE shows the miscalibration, because there is a considerable distance

between the solid and dashed curves in both cases. Also, the discriminating

power is better for Su
1 than for Su

2 . However, the values of |log10 (LR)| are

in most cases much higher for Su
2 than for Su

1 , and therefore the relationship

between discrimination and the magnitude of |log10 (LR)| does not hold.

This property has strong implications, mostly because it agrees with common

sense. In daily life, it seems reasonable that people expresses strong opinions

if and only if they have a considerable amount of information about what

they are talking about. As a consequence, if someone has little information

about some variable of interest, they should express a weak opinion about that

variable. For instance, for probabilistic assessments in weather forecasting, if
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Fig. 8. Example with two well-calibrated sets of LR values. ECE plots on the left

column and Tippett plots on the right column. (a): Set S1. (b): Set S2

a weather forecaster is able to gather lots of information about whether it will

rain or not, then their probabilistic assessments should be strong, close to 1

or 0. On the other hand, if a forecaster is not proficient, then the best they

can do is expressing a weak opinion, typically very close to the annual average

probability of rain.

In forensic science, imagine for instance a comparison between DNA and

speech evidence. Assume a forensic scenario where the quality of the evi-

dence and the operational conditions are good for both disciplines. It seems
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Fig. 9. Example with two badly-calibrated sets of LR values. ECE plots on the left

column and Tippett plots on the right column. (a): Set Su
1 . (b): Set S

u
2

reasonable that the current methods for computing LR values for DNA ev-

idence yield highly discriminating LR values in those conditions. Moreover,

we could also affirm that the discriminating power of LR values from DNA

models is much higher than the discriminating power obtained with a forensic

automatic speaker recognition system in those conditions [32]. Then, common

sense suggests that the strength of the evidence in DNA should be in general

much higher than the strength of LR values from forensic automatic speaker

recognition systems. If the DNA models and the speaker recognition models
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yield well-calibrated LR values, then this property will hold. In this sense,

methods yielding well-calibrated LR values will help to prevent the calcula-

tion of very strong LR values in fields where the discriminating power can be

shown to be limited.

Mainly because of the property described above, calibration has been dubbed

reliability in the context of Bayesian probabilistic assessment [14,11]. Accord-

ing to the dictionary, reliability is a property of something that can be trusted

[33]. In fact, it is also common sense that, because of this property, a prob-

abilistic assessor eliciting well-calibrated probabilities can be trusted. On the

one hand, if the probabilistic assessor is able to gather lots of information

about the variable of interest, their opinions will be strong. On the other

hand, if the assessor has little information about the value of interest, their

opinions will be weak.

The same idea of reliability can be applied to well-calibrated LR values in

forensic science. Therefore, if the LR values are discriminating, then they will

tend to be strong and therefore they will have lots to do in the final decisions

by the fact finder. However, if their discriminating power is low, the LR will

tend to be weak, and therefore the prior probabilities of the fact finder will

not suffer too much change. Thus, in general one can trust well-calibrated LR

values in the inferential process.

6 Experimental Examples

In this section we show two experimental examples in the context of speaker

recognition. The aim is to highlight the importance of calibration in the per-
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formance measurement of LR computation methods, and to exemplify the

property described in Section 5.

At is is described below, the models for LR computation used in this exper-

imental example are based on assignments of probability distributions sep-

arately to the numerator and the denominator of the LR, following other

approaches in the literature such as e.g. [34–39]. Then, the performance of the

LR computed is measured by means of the proposed methodology. Therefore,

it is again highlighted that our proposal is focused on performance measure-

ment, not on the methods for computing LR values.

6.1 Human-listener speaker recognition at NIST HASR 2010

The example is presented in the context of a bi-annual speaker recognition

evaluation conducted by the American National Institute of Standards and

Technology (NIST). These evaluations constitute one of the most important

scientific fora in order to foster the improvement and development of auto-

matic speaker recognition technology. Participation is free, and the number of

participants increase year by year.

The first experiment presented in this section has been obtained from our

participation in NIST Human-Assisted Speaker Recognition evaluation 2010

(NIST HASR 2010). The main idea is to blindly compare the performance of

different speaker recognition systems from different participants. This is done

by consecutively conducting a given amount of comparisons of two speech

segments according to a given protocol, without knowledge of the speaker

that generated each speech segment. The aim is to obtain information about
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whether both segments belong to the same person or not. The conditions of

the speech are rather uncontrolled, presenting strong variability in the acoustic

environment, the transmission channel, the acquisition device, the emotional

state of the speaker, the dialectal variation of English, etc. Thus, the compar-

ison protocol resembles some kind of forensic scenario, with poor quality of

the recordings, and strong variability of the conditions. Once the results of the

comparisons are submitted to NIST for evaluation, the organizers make the

ground-truth labels public, and benchmark results are disseminated among

participants to reveal which systems have performed better.

The NIST HASR 2010 dataset is a subset of the NIST Speaker Recognition

Evaluation 2010 (NIST SRE 2010), the latter containing hundreds of speakers

and a number of comparisons in the range of the hundreds of thousands.

However, as opposed to the NIST SRE 2010, where only automatic means are

allowed for comparison, the NIST HASR 2010 allowed human intervention in

the comparison process. Thus, in order to make the task feasible, the NIST

HASR dataset considered a small subset of 150 comparisons.

More details about the data and protocols in NIST HASR 2010 can be found

in [40].

6.1.1 Methods to compare

Using the comparison protocol of NIST HASR 2010, we will generate two dif-

ferent validation sets of LR values for two different LR computation methods,

and we will compare them in order to illustrate ECE plots and calibration.

For both models presented, it is assumed that the evidential materials are com-
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pared in order to obtain a score sE . Then, the probability density functions of

that score under the competing propositions θp and θd will be obtained from

scores under both assumptions, obtained using suitable databases. Thus, we

will denote sp =
{

s(1)p , · · · , s(Mp)
p

}

the set of Mp scores used to obtain the prob-

ability density function in the numerator of the LR, which will be computed

under the assumption that θp is true, i.e., comparing speech segments coming

from the same speaker. Analogously, we will denote sd =
{

s
(1)
d , · · · , s

(Md)
d

}

the set of Md scores used to obtain the probability density function in the

denominator of the LR, which will be computed under the assumption that

θd is true, i.e., comparing speech segments coming from different speakers.

The first method to compare is a fully-automatic speaker recognition system,

which outputs a score from the comparison of two speech segments, from which

a LR will be obtained. It is out of the scope of this article to deeply describe the

system, but its details can be found in [41]. From the scores of the automatic

speaker recognition system, in this article a model for LR computation is

used based on assigning probabilistic distributions to the numerator and the

denominator of the LR separately, according to a Kernel Density Function

(KDF). Formally, the model is as follows:

P (sE| θp)

P (sE | θd)
=

f (sE| sp)

f (sE | sd)
(9)

where f (sE| sp) and f (sE | sd) are probability density functions obtained with

Kernel Density Functions using Gaussian kernels with optimal kernel widths.

Details about KDF and the selection of the kernel width can be found in [42].

The second method to compare is based on a panel of 11 lay listeners not
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trained in forensic speaker recognition, and not English native speakers ei-

ther. Each of the listeners was assigned part of the 150 comparisons of the

HASR evaluation. For each comparison, each participant was plenty of time

to hear the two speech recordings to compare, and several tools were allowed

in order to assist them to do basic speech representation and analysis. Af-

ter this process, a score was given by the listener, which would be higher

than 0 as more support was given to the prosecutor proposition (θp, meaning

same-source in this case) and lower than 0 as more support was given to the

defence proposition (θd, meaning different-sources in this case). The details of

this process can be found in [40]. Then, LR values were computed according

to a Gaussian model trained with scores from comparisons using data from

past NIST evaluations (namely sp and sd). Thus, for each comparison yielding

a score sE by the listener, a LR value was computed from sE in the following

way:

P (sE | θp)

P (sE | θd)
=

f (sE| µ̂p, σ̂p)

f (sE | µ̂d, σ̂d)
(10)

where f (sE| µ̂p, σ̂p) and f (sE| µ̂d, σ̂d) are Gaussian probability density func-

tions. The parameters for the numerator are µ̂p, σ̂p, the sample mean and

variance of sp. The parameters for the denominator are µ̂d, σ̂d, the sample

mean and variance of sd

6.1.2 Results: the importance of calibration

Figure 10 shows ECE plots for the validation set of LR values for each method.

From the figure, the following can be observed:
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• It is seen that the accuracy is good for the automatic method, but not for

the human listener method. The former presents an accuracy (ECE, solid

curve) much better than the neutral reference (dotted curve). However, the

accuracy of the latter is really close to the neutral reference.

• The discriminating power of the automatic method is good, because the

dashed curve is much lower than the neutral reference. However, for the

human listeners the dashed curve is pretty close to the neutral reference,

which means that the human listeners have similar discriminating power

than a set of LR values that are all equal to 1. In other words, the LR values

computed from the human listener scores have almost no discriminating

power.

• For both methods the calibration is good, because the solid and dashed

lines are really close. According to the property described in Section 5,

this will mean that for the automatic method, the LR values will tend to

be be moderately strong, because they present moderate disrcriminating

power. However, for the human listeners, the LR values will tend to be

weak, because their discriminating power is poor.

Tippett plots in Figure 11 confirm the conclusions above concerning calibra-

tion. It is observed that for the automatic method, the ranges of the LR values

are moderate, mostly in the order of magnitude of 100 or even 1000 when the

prosecution proposition is true (and inversely between 0.001 and 0.01 when

the defence proposition is true). However, for the human listener method, the

values of the LR are very weak, with |log10 (LR)| < 1 in all cases.

From the results we can say that both methods present the desired behavior.

On the one hand, the discriminating power of the automatic method can assist

the court in their inferential process, but only moderately, because it is not so
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Fig. 10. ECE plots for the human listeners (a) and automatic (b) methods in NIST

HASR 2010 evaluation.
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Fig. 11. Tippett plots for the human listeners (solid) and automatic (dashed) meth-

ods in NIST HASR 2010 evaluation.

discriminating. However, as the discriminating power of the human listeners

is poor, the best they can do is almost not affecting the prior opinion of the

fact finder, which means a weak LR value. This desirable effect is achieved if

the LR values from the evidence evaluation methods are well calibrated.
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6.2 Automatic speaker recognition at NIST SRE 2010

In this example, we present results using the ATVS-UAM automatic speaker

recognition system used in Section 6.1.1 and deeply described in [41]. This

section presents the outcome of the participation of the ATVS group of the

Universidad Autonoma de Madrid in NIST SRE 2010.

The NIST SRE 2010 database and protocol is described as follows 9 . The task

is comparing a big amount of pairs of speaker utterances from a so-called

testing database, provided by NIST for the evaluation (and previously unre-

leased). All available speech databases from past NIST evaluations can be

used for what is called a development dataset, which includes speech data

used to build the models in the system, population data for LR computation,

and validation databases in order to test the system prior to the evaluation.

The participants must submit their results without knowing the ground-truth

labels of the comparisons and without hearing the audios, as opposed to the

previously described NIST HASR evaluation. In the results presented here,

the recordings to compare (i.e., the evidence) consisted of two utterances of

roughly 5 minutes duration each, that may come from a variety of microphone

or telephone origins. The variability of the rest of conditions is strong, com-

parable to the NIST HASR 2010 evaluation described above, and therefore it

is assumed that the comparisons in the evaluation can be as challenging as in

many forensic scenarios.

9 A complete description of the NIST SRE 2010 dataset and protocol is available

in http://www.itl.nist.gov/iad/mig//tests/sre/2010/NIST SRE10 evalplan.r6.pdf

(last accessed 28 September 2012).
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The evaluation protocol considered the comparison of roughly 6000 control

speech recordings with roughly 25000 recovered recordings. The number of

comparisons to be conducted was roughly 700000. For each of the compar-

isons, the automatic system was able to give a score in a blind way. Then, for

this article a LR was obtained from the score using the same Kernel Density

Function (KDF) model as in Section 6.1.1 (Equation 9), which assigns a prob-

ability density to the numerator and the denominator of the LR separately.

After the submission of the LR values for the evaluation, NIST released the

ground-truth labels, and the participants could check the performance of their

systems. Figure 12 shows the performance of the scores of the system submit-

ted by us, with LR values computed using the described KDF model. Perfor-

mance is represented in the form of ECE and Tippett plots. Several effects

are observed. First, since the solid and dashed curves in the ECE plot are

reasonably close, we can say that the LR values blindly submitted to the eval-

uation are well calibrated, a valuable result given the challenging nature of

the evaluation. Second, the accuracy is also good, since the red curve is much

lower than the neutral reference in a wide range of prior probabilities. This

also means that the discriminating power of the system is also good, because

the blue, dashed curve is also low. Third, the strength of the LR values is also

moderately high, confirming again that a method that yields LR values that

have good discriminating power will give strong LR values if the calibration

is also good. However, there is still some room for improvement, because the

accuracy of the method is slightly worse than the neutral reference for some

extreme values of the prior odds (lower than 10−2).
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Fig. 12. ECE plots and Tippett plots of the ATVS automatic speaker recognition

method in NIST SRE 2010. Note that the range of the x-axis in Tippett plots is

from −6 to 6.

7 Conclusions

This work has highlighted the importance of calibration as a desirable prop-

erty of likelihood ratios (LR) computed by an evidence evaluation method.46



It has also presented Empirical Cross-Entropy (ECE) plots as a valuable tool

to measure the performance of LR values, including calibration, following a

methodology based on Strictly Proper Scoring Rules from Bayesian statistics.

The proposed methodology is not intended to replace other measures of per-

formance of the LR previously proposed, but to be complementary to them,

introducing the measurement of the calibration of the LR values as a way of

improving the analysis of its performance in a validation process.

After describing some desirable properties of the LR, we have introduced cal-

ibration focusing more on intuitions rather than on complex mathematics,

showing that some of those properties are achieved if the LR values are well

calibrated. In particular, we have remarked that if the LR values present good

discriminating power, they should express strong support, and vice-versa. We

also show that this property holds if the LR values are well calibrated, but

does not have to be the case if they are badly calibrated. Some examples in

the context of forensic speaker recognition have illustrated how ECE plots are

useful to represent and measure the performance of LR values, and how LR

values present a desirable behavior if they are well calibrated.
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