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Abstract The microlocalisation of Cu was examined in the leaves of white lupin and 

soybean grown hydroponically in the presence of 1.6 or 192 µM Cu, along with its 

effect on leaf morphology, (ultra)structure and the antioxidative response. The 192 µM 

dose led to a reduction in the total leaf area and leaf thickness in both species, although 

more strongly so in white lupin. In the latter species it was also associated with smaller 

spongy parenchyma cells, and smaller spaces between them, while in the soybean it 

more strongly reduced the size of the palisade parenchyma and epidermal cells. Energy-

dispersive X-ray microanalysis showed that under Cu excess the metal was mainly 

localised inside the spongy parenchyma cells of the white lupin leaves, and in the lower 

epidermis cell walls in those of the soybean. Cu excess also promoted ultrastructural 

chloroplast alterations, reducing the photosynthetic capacity index and the green area of 

the leaves, especially in the soybean. Despite this, the soybean appeared to be more 

tolerant to Cu excess than the white lupin, perhaps because i) soybean accumulates 
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smaller amounts of Cu in the leaves, ii) of the microlocalisation of Cu in the cell walls 

iii) and because of greater induced thiol, superoxide dismutase and catalase activities

investing it with a better antioxidative response. 

Keywords Antioxidative defence • Copper excess • Energy-dispersive X-ray 

microanalysis • Glycine max L. • Leaf ultrastructure • Lupinus albus L. 
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Introduction 

High copper concentrations have been recorded in some natural soils, although Cu 

toxicity is more commonly a problem of those polluted by Cu-rich pig and poultry 

slurries, fertilizers and fungicides, industrial and urban activities, metal mining and 

processing, and waste disposal (Yruela 2009). While Cu is an essential element for plant 

growth and development, it is highly toxic to plants at concentrations of > 20 µg g
-1

 dry

weight (DW) (Marschner 1995). In general, Cu excess inhibits seed germination and 

plant growth by interfering with respiration, nitrogen and protein metabolism, and 

photosynthesis (Yruela 2009), and by causing the overproduction of reactive oxygen 

species (ROS). Some plants posses mechanisms - enzymatic or non-enzymatic 

scavenging systems – whose function it is to prevent the oxidative damage caused by 

ROS (Sharma and Dietz 2008). 

The indirect consequence of changes in metabolism and/or signal transduction 

caused by toxic metals, as well as the direct interaction of the latter with structural 

components, can cause damage at the cellular, tissular and organ levels in plants 

(Barceló and Poschenrieder 2004). The visible symptoms of toxicity include 

structural/ultrastructural abnormalities, leaf chlorosis and necrosis, stem shortening, 

browning, and altered root morphology (Marschner 1995). The actual problems 

encountered are dependent on the species and ecotype in question, the concentration of 

the toxic metal present, the exposure time, and the properties of the soil (Yruela 2009). 

Certainly, marked differences in Cu tolerance have been observed in different plants.

While Arabidopsis halleri (Yruela. 2009), Elsholtzia haichowensis (Lou et al. 2004), 

Elsholtzia splendens (Shi et al. 2004), Phragmites australisrice (Ali et al. 2002), Silene 
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vulgaris and Thalspi caerulescens (Yruela. 2009) can tolerate excess Cu to some extent, 

Oryza sativa (Jones 1998) and Zea Mays are much more sensitive (Ali et al. 2002). 

White lupin (Lupinus albus L.) is a temperate grain legume of great agronomic 

potential given its high seed protein content and positive effect on soil fertility. The 

ability of white lupin to survive in soils of low pH and low nutrient availability 

(Fernández-Pascual et al. 2007), and the species’ intrinsic biomass production and 

relative tolerance to trace elements such as As, Hg and Cd (Vázquez et al. 2009; 

Esteban et al. 2008; Zornoza et al. 2002), suggest it to be a suitable species for use in 

the remediation of contaminated soils. Soybean (Glycine max L.), however, is the most 

economically important of all grain legumes. In some countries it is a major protein 

source, and is sometimes grown on As- and Cu-contaminated soils (e.g., in China).  It is 

also used as a model system for legume–Rhizobium research (Reichman 2007). 

There are few studies that relate Cu microlocalisation to plant tolerance of this 

metal. However, the pattern of Cu microlocalisation in cells and tissues may provide 

insights into tolerance mechanisms, and might help explain differences in tolerance 

between species. To test this hypothesis, the microlocalisation of Cu was studied in the 

leaves of white lupin and soybean by energy-dispersive X-ray microanalysis. The 

accompanying (ultra)structural, morphological and physiological alterations, as well as 

the enzymatic (APX, CAT and SOD) and non-enzymatic (MDA and –SH) antioxidant 

response of the plants, were also examined. 

Materials and methods 

Growth conditions and Cu treatments 
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White lupin cv. Marta and soybean cv. Williams seeds were surface-sterilised in 10% 

v/v sodium hypochlorite for 15 min, rinsed thoroughly with deionised water and 

germinated on water-moistened filter paper in the dark at 28ºC for 3 days. The seedlings 

obtained were placed in plastic Riviera pots (three seedlings to each pot) containing 2 L 

of perlite in the upper compartment and 0.75 L of nutrient solution in the lower. The 

composition of the nutrient solution, the inoculation of the plants with Bradyrhizobium, 

and the plant growth conditions were similar to those reported in earlier work (Sánchez-

Pardo et al. 2012). These young plants were grown in a controlled environment chamber 

under the following night/day conditions: temperature 20/25°C, photoperiod 11/13 h, 

and relative humidity 60/40%. The photon flux density during the light periods was 520 

µmol m
-2

 s
-1

. Ten days after sowing, the plants were subjected to one of two Cu

treatments (1.6 or 192 µM CuSO4.5H2O) with four replicates, following a randomised 

block design. The very high 192 µM dose was chosen to ensure that sufficient quantities 

of Cu would accumulate and be detectable in the different leaf compartments. 

After 35 days the plants were divided into leaves, stems and roots, and weighed. 

They were then washed thoroughly with tap water three times, and then again with 

deionised water three times. One gram (fresh weight [FW]) of total homogenised leaves 

per plant were frozen in liquid N2 and stored at -76°C until analysis. The remaining leaf 

material was dried at 80°C for 3 days until a constant dry weight (DW) was reached. 

These dry samples were homogenised and used for element determination. 

 Copper and Fe concentrations 

The concentration of Cu and Fe in leaves was determined by digesting 20 mg DW of 

homogenised samples with a mixture of HNO3:H2O2:H2O (3:2:10, v:v:v) for 30 min at 

125ºC under a pressure of 1.5 kPa (Lozano-Rodríguez et al.1995). Cu and Fe 
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concentrations were then determined by atomic absorption spectrophotometry (Perkin-

Elmer Analyst 800). 

Electron microscopy and energy-dispersive X-ray microanalysis 

Small pieces (1 mm
2
) of fresh leaf from the 1.6 and 192 µM Cu-treated plants, selected

at comparable stages of development, were mounted with adhesive (Gurr®, OCT, BDH, 

Poole, UK) on aluminium stubs. They were then cryofixed in slush nitrogen (-196ºC) 

and cryotransferred to a vacuum chamber at -180ºC to be fractured using a cooled 

stainless steel spike. After placing them in a Zeiss DSM 960 digital scanning electron 

microscope (Oberkochen, Germany) the samples were subjected to superficial etching 

under vacuum (-90ºC, 120 s, 2 kV) and gold coated. Fractured leaf material was 

observed at low temperature employing secondary and back-scattered electrons. 

Energy-dispersive X-ray microanalysis (EDXMA) was performed in conjunction with 

low temperature scanning electron microscopy (LTSEM) using a Pentaflet apparatus 

(Pentaflet, Oxford, UK) at a resolution of 133 eV. Only smooth surfaces were taken for 

microanalysis, following the recommendations of Hess (1980). Semi-quantitative 

element analysis was performed using standard ZAF (atomic number, absorption and 

fluorescence) correction procedures employing Link Isis 3.2 software (Link Isis, Oxford, 

UK). 

Light and electron microscopy 

Small pieces of fresh leaf (1 mm
2
) from the 1.6 and 192 µM Cu-treated plants, selected

at comparable stages of development, were fixed in 2.5% (v/v) glutaraldehyde in 50 

mM Na-cacodylate buffer containing sucrose (Fedorova et al. 2005), pH 7.4, and 

vacuum-infiltrated before dehydrating through a graded ethanol series. They were then 
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embedded in LR White Resin (London Resin, London, UK) in gelatine capsules, 

according to de Lorenzo et al. (1998). Polymerisation was allowed to occur for 24 h at 

60°C. Sections 1 µm-thick were prepared for light microscopy, and 70 nm-thick for 

electron microscopy, using a Reicher Ultracut S ultramicrotome fitted with a diamond 

knife. The semithick sections were stained with 1% (w/v) toluidine blue in aqueous 

sodium borate for direct examination using a Zeiss Axiophot photomicroscope. The 

ultrathin sections were post-stained with lead citrate and examined using a STEM LEO 

910 electron microscope at an accelerating voltage of 80 kV. 

Stress indicators and antioxidant enzymes 

The concentrations of malondialdehyde (MDA) (a cytotoxic product of lipid 

peroxidation normally considered the major 2-thiobarbituric acid-reacting compound) 

and total thiols (-SH) were examined in samples of leaves homogenised to a fine 

powder in liquid N2 using an ice-cooled mortar and pestle.  They were then assayed as 

described by Esteban et al. (2008). 

Antioxidant enzyme activity was determined by homogenising 100 mg FW of 

leaves in 1.5 mL of ice-cooled phosphate buffer (50 mM, pH 7.0, containing 1 mM 

ethylenediamine tetra-acetic acid (EDTA) and 1% w/v insoluble polyvinylpyrrolidone) 

and passing the solution through four layers of cheese cloth. The extract obtained was 

centrifuged at 15,000 × g for 15 min at 4ºC. The supernatant was used to measure the 

activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase 

(CAT). The protein content of the supernatant was measured according to Lowry et al. 

(1951). 

SOD (EC 1.1.5.1.1) activity was assayed using the method of Srivastava et al. 

(2006), measuring its ability to inhibit the photochemical reduction of nitro-blue 
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tetrazolium (NBT). The 3 mL reaction mixture contained 40 mM phosphate buffer (pH 

7.8), 13 mM methionine, 75 µM NBT, 2 µM riboflavin, 0.1 mM EDTA and a suitable 

aliquot of enzyme extract. The test tubes were shaken and placed 30 cm below a 15 W 

fluorescent lamp. Absorbance was then measured at 560 nm. The activity of SOD was 

expressed as units mg
−1

 protein. One unit of activity was defined as the amount of

protein required to reduce NBT under light to 50% of the initial concentration. 

APX (EC 1.11.1.11) activity was measured by estimating the rate of ascorbate 

oxidation (extinction coefficient 2.8 mM
-1

 cm
-1

). The 3 mL reaction mixture contained

50 mM phosphate buffer (pH 7.0), 0.1 mM H2O2, 0.5 mM sodium ascorbate, 0.1 mM 

EDTA and a suitable aliquot of enzyme extract. The change in absorbance was 

monitored at 290 nm (Srivastava et al. 2006) and the enzyme activity expressed as units 

mg
-1

 protein.

CAT (EC 1.11.1.6) activity was assayed by measuring the decomposition of 

H2O2. Enzyme extract (100 µL) was added to the reaction mixture containing 1 mL 

phosphate buffer solution (50 mM, pH 7.0) and 0.1% H2O2. The reduction in the 

absorbance at 240 nm was then recorded and the enzyme activity calculated using an 

extinction coefficient of 0.04 mM
-1

 cm
-1

. One unit of CAT activity was defined as the

amount required to decompose 1 µmol of H2O2 min
-1

 mg
-1

 protein under the assay

conditions (Chen et al. 2009). 

Morphological and physiological leaf variables, and statistical analyses 

 The calculation of leaf thickness was performed using ImageJ 1.45 software. Leaf area 

(LA), the photosynthetic capacity index (PCI) and the green, yellow and red leaf areas 

were calculated using optically scanned leaf samples and Foliárea software (Muñoz-

Guerra 2002). 
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The data presented are the means ± standard errors (S.E.) of four independent 

replicates. To ensure that the assumptions for statistical analysis were fulfilled, the 

equality of variances and the normality of the data were tested. Differences between 

means for each variable were tested for significance by one-way ANOVA. Means were 

compared using the least significant difference test. Significance was set at P<0.05. All 

calculations were performed using IBM SPSS v.19.0 software. 

Results 

Total Cu and Fe concentrations and Cu microlocalisation in leaves 

Table 1 shows the leaf Cu and Fe concentrations for the white lupin and soybean plants 

grown under the 1.6 and 192 µM Cu conditions. The concentration of Cu in the leaves 

of the white lupin and soybean 192 µM Cu-treated plants was 13.5 and 9.8 times that 

recorded in the control (1.6 µM plants) respectively. In contrast, the 192 µM Cu 

treatment significantly reduced the leaf concentration of Fe – by 91% in white lupin and 

63% in soybean. 

Figure 1 shows the EDXMA results for the leaves of white lupin and soybean 

plants exposed to the 1.6 and 192 µM Cu treatments. In white lupin, the latter treatment 

increased the Cu signal from the cytoplasm-vacuole of the spongy parenchyma cells to 

10 times that of the control 1.6 µM Cu plants. The signal from the cell walls of the 

lower epidermal cells increased 1.6 times. In the same species, a decreasing Cu gradient 

was observed between the cell walls of the lower epidermal cells to those of the upper 

epidermis (Fig. 1c). 
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In the soybean leaves, exposure to the 192 µM Cu conditions increased the Cu 

signal from the cytoplasm-vacuole of the lower epidermal cells to 1.4 times that of the 

controls. In the cell walls of the palisade parenchyma the signal increased to 1.6 times 

that recorded in the controls, while in the lower epidermal cells it increased 3.7 times. In 

contrast, reductions were seen in the Cu signal from the cytoplasm-vacuole of the 

palisade parenchyma cells (28%), as well as from the walls of the upper epidermal cells 

(23%). No changes were seen in other tissues (Figs. 1b, d). The leaves of plants 

subjected to the 1.6 µM Cu treatment showed no clear pattern of Cu distribution, while 

those treated with 192 µM dose showed a decreasing gradient from the lower epidermal 

cells towards the cell walls of the upper epidermal cells (Figs. 1b, d). 

Leaf variables 

Table 2 shows the leaf biomass, LA, LT, number of leaves (LN), PCI, and the green, 

yellow and red leaf areas for white lupin and soybean plants grown under the 1.6 and 

192 µM Cu conditions. The high dose reduced the leaf biomass by 77% in white lupin 

and 69% in soybean. In white lupin plants exposed to the 192 µM Cu treatment, the LA, 

LT, LN and PCI were reduced by 68%, 29%, 47% and 36% respectively with respect to 

the controls, while the yellow leaf area increased significantly (10 times). However, no 

differences were seen between the treatments in terms of green and red leaf area. In the 

leaves of the 192 µM Cu-treated soybean plants, the LA, LT and LN, the PCI and the 

green leaf area were reduced significantly by 64%, 27%, 29%, 77% and 29% 

respectively compared to the controls. In contrast, the high Cu dose increased the 

yellow and red leaf areas 11 and 7.5 times respectively. 
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Leaf and chloroplast (ultra)structure 

Figures 2 and 3 show the effects of the 1.6 and 192 µM Cu treatments on the structure 

of the white lupin and soybean leaves, as determined by light microscopy. The leaves of 

the white lupin plants showed a well-organised structure after both treatments (Fig. 2a, 

b, c). However, the 192 µM treatment leaves were thinner, and the mesophyll cells and 

intercellular spaces were smaller than in the controls; this was more apparent in the 

spongy parenchyma than the palisade parenchyma (Fig. 2b). Further, the spongy and 

palisade parenchyma cells of the 192 µM Cu-treated plants showed a reduction in the 

number and size of chloroplasts, and of large starch granules (Fig. 2d). In some cells of 

the palisade parenchyma, the chloroplasts appeared more distant from the cell wall, a 

likely consequence of the separation of the latter from the plasma membrane (Figs. 2e, 

f). In soybean, the leaves of the 192 µM Cu-treated plants were slightly thinner and the 

palisade parenchyma cells and abaxial and adaxial epidermal cells were smaller (Figs. 

3a, b). The spongy parenchyma cells were not affected. The packing of both types of 

mesophyll cell also remained unaffected (Figs. 3b, c, d). 

Figures 4 and 5 show the effects of the 192 µM treatment on the ultrastructure of 

the white lupin and soybean leaves. Figure 4a shows the ultrastructure of a chloroplast 

from the leaf of a control white lupin plant; note the parallel arrangement of the grana 

and intergrana with respect to the chloroplast axis. White lupin plants treated with 192 

µM Cu showed three types of chloroplast in their leaves: 1) approximately a 40% had a 

single starch granule, an unaffected thylakoid structure, but a very electron-dense 

stroma; such chloroplasts were slightly distant from the cell wall (Fig. 4b); 2) those with 

more than two starch granules and showing incipient changes in the ultrastructure of the 

grana and intergrana, plus a loss of their normal parallel alignment with the main axis 
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(40%); these also showed a highly electron-dense stroma, a separation of chloroplast 

membrane (indicated by arrow) and a greater distance between the chloroplast 

membrane and cell wall (Fig. 4c); and 3) chloroplasts completely filled with starch, with 

a totally disorganized thylakoid structure, and showing clear signs of degradation 

(major deteriorations in the mitochondria [Fig. 4d] and cytoplasmic senescence vesicles 

[Fig. 4c, arrowheads] were also seen in lesser extent [20%]). 

The mesophyll cells of the 192 µM Cu-treated soybean plants also showed an 

increase in the number of starch granules (between 2-7, mean = 5). In addition, they 

showed bulging of the chloroplast membrane and a loss of the parallel orientation of the 

grana and intergrana with respect to the chloroplast axis (Fig. 5b). The number of grana 

was reduced, as was the number of thylakoids per granum. Some thylakoids became 

swollen, leading to the appearance of plastoglobuli (Fig. 5c). Many were seen in the 

interior of the chloroplasts; these sign signs of early senescence are characteristic of 

degraded tissue (Fig. 5c, d). 

Stress indicators and antioxidant enzymes 

Table 3 shows the MDA and total SH contents, as well as the SOD, APX and CAT 

activities of the leaves of white lupin and soybean plants exposed to the 1.6 and 192 µM 

Cu treatments. The total SH content of the leaves of the white lupin plants grown under 

the 192 µM Cu conditions did not vary with respect to the 1.6 µM Cu treatment. 

However, in soybean, it was 1.6 times that recorded in the corresponding control plants. 

The concentrations of MDA in the leaves of both types of plant grown under the 192 

µM Cu conditions were higher than in the controls: 2.2 times in the white lupin plants 

and 2.9 times in the soybean plants. 
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Exposure to the 192 µM Cu conditions reduced the activities of SOD and CAT 

by 35% and 45% in the white lupin leaves. However, no differences were seen between 

the treatments in terms of APX activity. The activities of SOD and CAT in the leaves of 

the 192 µM Cu-treated soybean plants increased to 0.9 and 2.5 times those of the 

control plants, while the activity of APX was significantly reduced. 

Discussion 

In many sensitive species, Cu excess inhibits plant growth when leaf concentrations 

reach 15-20 mg Cu kg
-1

 DW. However, for most plants, Cu toxicity symptoms appear

when leaf concentrations reach around 30 mg Cu kg
-1

 DW (Marschner 1995). In the

present study, the concentration of Cu in the leaves increased in plants subjected to the 

high Cu dose, with the white lupin leaves accumulating about twice that of the soybean 

(Table 1). Indeed, the total Cu concentrations found in the leaves of both species fell 

within the toxicity range (Reuter and Robinson 1997). 

The accumulation of high Cu levels in leaf tissues can cause morphological and 

structural disorders, affect many physiological processes, inhibit growth, and sometimes 

even hasten the death of a plant (Marschner 1995); it is well known that Cu excess can 

inhibit cell elongation and cell division (Panou-Filotheou and Bosabalidis 2004). The 

cells of the leaves of bean plants exposed to toxic concentrations of Cu are reported to 

be smaller (Kasim 2005). This has been attributed to a reduction in the elasticity of the 

cell walls caused by the irreversible inhibition of proteins that regulate this feature 

(Kasim 2005). In the present study, reductions in the thickness of soybean and white 

lupin leaves were observed under Cu excess. In the white lupin, this reduction seems to 

be promoted by a decline in the size of the mesophyll cells (mainly of the spongy 
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parenchyma) and the spaces between them (Fig. 2). In soybean, the epidermis and 

palisade parenchyma cells showed reduced volumes (Fig. 3). The opposite effect has 

been observed in oregano leaves grown under Cu excess, due to an increase in the 

number of mesophyll cells and their volume (Panou-Filotheou et al. 2001). In turn, 

excess Cu adversely affected the LA and LN in both crops studied, although the 

reduction was most pronounced in white lupin (Table 2). Elevated levels of Cu have 

been associated with similar outcomes in cucumber (Alaoui-Sossé et al. 2004), oregano 

(Panou-Filotheou et al. 2001) and wheat (Cook et al. 1997). 

In the present work, the leaf tissues most affected were those that accumulated 

larger amounts of Cu. In white lupin, the excess Cu was mainly localised in the 

cytoplasm-vacuole of the spongy parenchyma cells, whereas in the soybean leaves it 

was mainly located in the cell walls of the leaf abaxial epidermal cells (Fig. 3). Other 

authors have found Cu to be mainly localised in the upper epidermis and trichomes of 

the abaxial epidermis in Cannabis sativa leaves (Arru et al. 2004), and in the vascular 

tissues of Avicennia marina (MacFarlane and Burchett 2000) and Elsholtzia splendes 

(Shi et al. 2004). The microlocalisation of heavy metals in cells and tissues provides 

insight into the possible mechanisms of detoxification, and therefore of tolerance: the 

outermost tissues and cell walls would appear to act as a barrier against its harmful 

effects. The preferential accumulation of heavy metals in the epidermis would help to 

protect mesophyll cells from the buildup and toxicity of metals and maintain the 

functionality of mesophyll cells over a wide range of metal concentrations in the leaves 

(Küpper et al. 1999). 

Alterations in chloroplast structure have been reported in some plants under Cu 

excess, such as rice (Lidon and Henriques 1993), bean (Maksymiec et al. 1994), wheat 

(Quartacci et al. 2000) and oregano (Panou-Filotheou et al. 2001). In the present work, 
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both white lupin and soybean showed changes in the structure of the thylakoids, 

detachment and/or loss of integrity of the chloroplast membrane, and a degradation of 

grana stacking and the stroma (Figs. 4, 5). A swelling of the thylakoids and an increase 

in the number of plastoglobuli were also observed in the soybean plants (Fig. 5). It 

seems that soybean chloroplasts are more affected by Cu excess than those of white 

lupin. 

According to Maksymiec et al. (1994), Cu interferes with the biosynthesis of the 

photosynthetic machinery, modifying the pigment and protein composition of the 

photosynthetic membranes. Low chlorophyll contents and the inhibition of 

photosynthetic activity have also been observed in the leaves of several species exposed 

to Cu excess (Yruela 2009). The opposite effect has been reported in Cu-tolerant plants 

(Borghi et al. 2008). In the present work, Cu excess promoted a reduction of the PCI 

and the green leaf area, more so in the soybean than in the white lupin plants (Table 2). 

The reduction in photosynthetic activity may be due to a fall in the biosynthesis of 

chlorophyll, caused by the destruction of the internal structure of the chloroplast and 

thylakoid membrane damage (Quartacci et al. 2000). Pätsikkä et al. (2002) attributed the 

reduction of the chlorophyll content to a Cu-induced Fe deficiency. In the present work, 

Cu excess caused an intense reduction in the leaf Fe concentration in both species, more 

so in white lupin than in soybean (Table 1). In both legumes, the Fe concentrations 

recorded can be considered deficient (Reuter and Robinson 1997). Nevertheless, the 

white lupin leaves still had a higher Fe concentration under Cu stress than did the 

soybean plants. Soybean would seem to be sensitive to Fe deficiency. This may explain 

why the photosynthetic activity and chloroplast structure were more affected than in the 

white lupin. 
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Copper excess catalyze the formation of hydroxyl radicals (OH·) from the non-

enzymatic chemical reaction between superoxide (O2·
-
) and H2O2 (Haber-Weiss

reaction). These cause lipid peroxidation (Navari-Izzo and Quartacci 2001), damage to 

the photosynthetic apparatus (Vajpayee et al. 2005), and may also catalyze the 

degradation of proteins through oxidative modifications and increased proteolytic 

activity (Romero-Puertas et al. 2002). The degree of damage suffered by cells depends 

on the rate of ROS formation and the efficiency and capacity of their detoxification and 

repair mechanisms. The MDA concentration provides an index of lipid peroxidation and, 

therefore, of oxidative stress. In the present work, Cu excess led to increased leaf MDA 

concentrations in both species, although more strongly in soybean (Table 3). The 

differences between species might be attributable to the increased number of 

plastoglobuli observed in the soybean plants only. 

Antioxidants are molecules that inhibit or slow down the oxidation of other 

molecules, thus stopping the propagation of oxidative chain reactions (Navari-Izzo and 

Quartacci 2001). Thiol groups play an important role in the cytoplasmic detoxification 

defence mechanism against heavy metals, but they are also required to counteract the 

harmful effects of oxidative stress (Noctor and Foller 1998). Plants can respond to 

oxidative stress by stimulating enzymatic antioxidative systems. The effects of Cu on 

the activity of antioxidant enzymes and the involvement of these enzymes in the 

defence of plant tissues against metal-induced damage remain unclear, with differences 

seen between plant species and tissues, and depending on the concentration and duration 

of exposure (Chamseddine et al. 2009). Yurekli and Porgali (2006) showed that, in 

Phaseolus vulgaris, both low and high concentrations of Cu lead to an increase in CAT 

and SOD activities after Cu excess. Chaoui and El Ferjani (2005), in contrast, reported 

that the exposure of pea plants to 20 µM Cu had no effect on the activity of these 
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enzymes, although the supply of 100 µM Cu did reduce it. In the present soybean plants, 

the enzymatic and non-enzymatic scavenging systems were enhanced under Cu excess, 

whereas antioxidant activity was depressed in the white lupin plants (Table 3). A 

reduction in antioxidant enzyme activity would result in the accumulation of reactive 

oxygen species and the recorded reductions in photosynthetic pigments and activity. 

The scavenging function of both studied enzymes appears to have been impaired by the 

prolonged period of severe stress (Chamseddine et al. 2009). In addition different 

enzymatic antioxidant responses shown by the legumes studied may be due to 

differences in affinities for H2O2 between APX and CAT. Mittler (2002), proposed that 

‘‘two-way defence systems’’ might be involved, suggesting that ROS could be 

eliminated through the SOD–CAT pathway or by the ascorbate–glutathione cycle, both 

of which are considered ROS-scavenging systems”. 

In conclusion, Cu excess affects chloroplast ultrastructure and photosynthetic 

capacity in both soybean and white lupin legumes, especially in the former. This could 

be due to reduced Fe contents, particularly in the soybean leaves. Despite this, the 

soybean plants appeared to be more tolerant to Cu excess than the white lupin plants, as 

shown by their smaller reduction in biomass and the less intense effects on leaf 

morphology and structure. This could be due to soybean: i) transporting smaller 

amounts of Cu to the leaves, reducing its accumulation in these organs; ii) the different 

sites of Cu microlocalisation - soybean leaves localised Cu in the walls of the lower 

epidermis cells while the white lupin plants accumulated Cu mainly inside of the 

spongy parenchyma cells, and iii) the induction of a better antioxidative response. 

Finally, the structural alterations observed seem to bear a relationship with Cu 

microlocalisation; the tissues most affected were those that localised the largest 
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quantities of Cu. It would therefore seem that Cu microlocalisation is an important 

factor to consider when assessing the response of plants to Cu excess. 
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Table legends 

Table 1 Concentrations of Cu and Fe (mg kg
-1

 DW) in the leaves of white lupin and

soybean grown for 35 days with 1.6 or 192 µM Cu treatments. Data are means ± S.E. (n 

= 4). Values in the same row followed by different letters differ significantly (P < 0.05). 

Table 2 Leaf biomass, LA, LT, LN, PCI, and green, yellow and red leaf areas of white 

lupin and soybean grown for 35 days with 1.6 or 192 µM Cu treatments. Data are means 

± S.E. (n = 4). Values in the same row followed by different letters differ significantly 

(P < 0.05). 

Table 3 MDA and total -SH contents and activity of SOD, APX and CAT in leaves of 

white lupin and soybean plants grown for 35 days with 1.6 or 192 µM Cu treatments. 

Data are means ± S.E. (n = 4). Values in the same row followed by different letters 

differ significantly (P < 0.05). 
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Figure captions 

Fig. 1 EDXMA-determined Cu localisation in transverse sections of leaves of 1.6 and 

192 µM Cu-treated plants, viewed by LTSEM. Values are expressed as percentages of 

the total signal. Data are means ± S.E. (n = 4). Different letters to the right of the bars 

indicate significant differences between Cu treatments (P < 0.05). 

Fig. 2 Photomicrographs of white lupin leaves from plants grown with 1.6 µM (a,c) or 

192 µM Cu (b, d, e, f). Cl: chloroplast, LE: lower epidermis, PP: palisade parenchyma, 

SP: spongy parenchyma, S: starch, UE: upper epidermis, VB: vascular bundle 

Fig. 3 Photomicrographs of soybean leaves from plants grown with 1.6 µM (a, c) or 192 

µM (b, d) Cu. Cl: chloroplast, LE: lower epidermis, PP: palisade parenchyma, SP: 

spongy parenchyma, S: starch, UE: upper epidermis, VB: vascular bundle 

Fig. 4 Electron micrographs of white lupin leaves from plants grown with 1.6 µM (a) or 

192 µM (b-d) Cu. C: cytosol, Cl: chloroplast, CM: chloroplast membrane, CW: cell 

wall, G: grana, IG: intergrana, M: mitochondria, Pe: peroxisome, S: starch, T: tonoplast, 

V: vacuole 

Fig. 5 Electron micrographs of soybean leaves from plants grown with 1.6 µM (a) and 

192 µM (b-d) Cu. C: cytosol, Cl: chloroplast, CW: cell wall, ER: endoplasmic 

reticulum, G: grana, IG: intergrana, N: nucleus, P: plasmalemma, Pe: peroxisome, PG: 

plastoglobuli, S: starch 
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Table 1 Concentrations of Cu and Fe (mg kg
-1

 DW) in the leaves of white lupin and soybean 

grown for 35 days with 1.6 or 192 μM Cu treatments. Data are means ± S.E. (n = 4). Values in 

the same row followed by different letters differ significantly (P < 0.05). 

Cu treatments (µM) 

1.6 192 

White lupin 

Cu 9.79 ± 0.17
a

132.08 ± 1.53
b

Fe 239.98 ± 4.48
a

21.85 ± 0.53
b

Soybean 

Cu 6.86 ± 0.39
a

67.11 ± 1.76
b

Fe 44.40 ± 0.93
a

16.60 ± 0.80
b
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Cu treatments (µM) 

1.6 192 

White lupin 

Biomass (g FW plant
-1
) 3.68 ± 0.10

a
0.84 ± 0.10

b

LA (cm
2
 plant

-1
) 1003.3 ± 25.1

a
325.9 ± 15.4

b

LT (µm) 203.93 ± 3.08
a

145.39 ± 2.89
b

LN 34.76 ± 0.28
a

12.69 ± 0.80
b

PCI 458.4 ± 41.1
a

294.1 ± 22.6
b

Green area (%) 91.59 ± 0.42
a

90.08 ± 1.36
a

Yellow area (%) 0.18 ± 0.01
a

1.86 ± 0.20
b

Red area (%) 8.23 ± 0.42
a

8.06 ± 0.55
a

Soybean 

Biomass (g FW plant
-1
) 3.43 ± 0.31

a
1.06 ± 0.07

b

LA (cm
2
 plant

-1
) 1285.0 ± 83.1

a
468.7 ± 32.4

b

LT (µm) 131.69 ± 1.93
a

96.12 ± 1.47
b

LN 24.50 ± 0.75
a

17.42 ± 0.85
b

PCI 2379.0 ± 79.1
a

538.2 ± 88.0
b

Green area (%) 95.77 ± 0.63
a

68.30 ± 1.72
b

Yellow area (%) 0.02 ± 0.00
a

0.22 ± 0.03
b

Red area (%) 4.20 ± 0.63
a

31.48 ± 1.84
b
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Table 3 MDA and total -SH contents and activity of SOD, APX and CAT in leaves of white lupin 

and soybean plants grown for 35 days with 1.6 or 192 μM Cu treatments. Data are means ± 

S.E. (n = 4). Values in the same row followed by different letters differ significantly (P < 0.05). 

Cu treatments (µM) 

1.6 192 

White lupin 

MDA (nmol g
-1
 FW) 13.66 ± 1.50

a
29.79 ± 1.26

b

-SH (nmol g
-1
 FW) 473.85 ± 18.52

a
511.19 ± 24.49

a

SOD (units mg
-1
 protein) 5.73 ± 0.38

a
3.72 ± 0.07

b

APX (units mg
-1
 protein) 2.93 ± 0.08

a
2.63 ± 0.17

a

CAT (units mg
-1
 protein) 84.66 ± 1.88

a
46.21 ± 3.30

b

Soybean 

MDA (nmol g
-1
 FW) 31.50 ± 3.32

a
91.28 ± 3.51

b

-SH (nmol g
-1
 FW) 620.22 ± 19.63

a
963.68±80.72

b

SOD (units mg
-1
 protein) 2.08 ± 0.08

a
2.51 ± 0.09

b

APX (units mg
-1
 protein) 7.78 ± 0.29

a
6.47 ± 0.05

b

CAT (units mg
-1
 protein) 18.73 ± 3.87

a
47.15 ±0.51

b
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Fig. 1 EDXMA-determined Cu localisation in transverse sections of leaves of 1.6 and 192 µM Cu-treated 
plants, viewed by LTSEM. Values are expressed as percentages of the total signal. Data are means ± S.E. (n 

= 4). Different letters to the right of the bars indicate significant differences between Cu treatments (P < 

0.05).  
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w

Fig. 2 Photomicrographs of white lupin leaves from plants grown with 1.6 µM (a,c) or 192 µM Cu (b, d, e, f). 
Cl: chloroplast, LE: lower epidermis, PP: palisade parenchyma, SP: spongy parenchyma, S: starch, UE: 

upper epidermis, VB: vascular bundle  

151x193mm (150 x 150 DPI)  
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F
Fig. 3 Photomicrographs of soybean leaves from plants grown with 1.6 µM (a, c) or 192 µM (b, d) Cu. Cl: 
chloroplast, LE: lower epidermis, PP: palisade parenchyma, SP: spongy parenchyma, S: starch, UE: upper 

epidermis, VB: vascular bundle  
178x146mm (150 x 150 DPI)  
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Fig. 4 Electron micrographs of white lupin leaves from plants grown with 1.6 µM (a) or 192 µM (b-d) Cu. C: 
cytosol, Cl: chloroplast, CM: chloroplast membrane, CW: cell wall, G: grana, IG: intergrana, M: 

mitochondria, Pe: peroxisome, S: starch, T: tonoplast, V: vacuole  
174x172mm (150 x 150 DPI)  
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Fig. 5 Electron micrographs of soybean leaves from plants grown with 1.6 µM (a) and 192 µM (b-d) Cu. C: 
cytosol, Cl: chloroplast, CW: cell wall, ER: endoplasmic reticulum, G: grana, IG: intergrana, N: nucleus, P: 

plasmalemma, Pe: peroxisome, PG: plastoglobuli, S: starch  
175x172mm (150 x 150 DPI)  
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