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X-ray diffraction
Treatment of 4N-monosubstituted bis(thiosemicarbazone) ligands of 3,5-diacetyl-1,2,4-triazol serieswith lithium
tetrachloridopalladate gave the dinuclear complexes of general formula [Pd(μ-H3L1–5)]2, but using dichloridobis-
triphenylphosphinepalladium(II) salt, the first mononuclear bis(thiosemicarbazone)–palladium–triphenylpho-
sphine complexes of the 3,5-diacetyl-1,2,4-triazol series, [Pd(H3L1–5)PPh3], have been obtained. All the
compounds have been characterized by elemental analysis and by IR and NMR spectroscopy, and the crystal
and molecular structures of dinuclear complexes [Pd(μ-H3L3)]2 and [Pd(μ-H3L5)]2 as well as mononuclear com-
plexes [Pd(H3L1)PPh3], [Pd(H3L2)PPh3], [Pd(H3L3)PPh3] and [Pd(H3L4)PPh3] have been determined byX-ray crys-
tallography. The new compounds synthesized have been evaluated for antiproliferative activity in vitro against
NCI-H460, A2780 and A2780cisR human cancer cell lines. Subsequent toxicity study, on normal renal LLC-PK1
cells, shows that all compounds investigated exhibit very low toxicity on kidney cells with respect to cisplatin.
34 914974833.
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1. Introduction

Although platinum metallo-drugs are among the most effective
agents for the treatment of cancer their clinical utility is restricted due
to the frequent development of drug resistance, the limited spectrum
of tumours against which these drugs are active and severe normal tis-
sue toxicity being the nephrotoxicity an important side effect which in-
terferes with their therapeutic efficiency [1–5].

Currently, metal complexes with structures different from that of
cisplatin are being considered with the idea that they would have a dif-
ferent spectrum of activity and hence do not develop cross-resistance to
cisplatin [6,7].

On the basis of the structural analogy (for d8 ions the square-pla-
nar geometry is favoured) and thermodynamic difference with plati-
num(II) complexes, there is much interest in the study of palladium
(II) complexes as potential anticancer drugs, especially those bearing
chelating ligands [8–13].

α-(N)-Heterocyclic thiosemicarbazones, (N)-TSCs, are strong
metal chelating agents and some of them have shown antineoplastic
activity by themselves [14]. It has been demonstrated that the bio-
chemical mechanism of action involve, among others, ribonucleotide
81
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84
reductase (RR) inhibition and DNA interaction by intercalation
[15,16]. Particularly, the 3-aminopyridine-2-carboxaldehyde thiose-
micarbazone (Triapine, Vion Pharmaceuticals, New Haven, CT) is cur-
rently being screened for antitumour effect using the National Cancer
Institute panel of 60 tumour cell lines and selected for Phase I and II
clinical trials [17–21].

Within the class of (N)-TSCs, a series of 3,5-diacetyl-1,2,4-triazol
4N-substituted bis(thiosemicarbazone) metal complexes synthesized
in our laboratory have shown in vitro antitumour activity [22–24].

On the other hand, phosphines and phosphine metal containing
complexes are of current interest due to their potential use as antitu-
mour agents. Particularly, 1,2-bis(diphenylphosphino)ethane and
some of its analogues have been shown to have antitumour activity
against a wide range of tumours, and moreover, their activity is en-
hanced upon coordination to metal ions, such as gold(I) [25].

The possibility that phosphine and thiosemicarbazonemoietiesmay
act in an additive or sinergetic fashion in palladium complexes, prompted
us to prepare and characterize thiosemicarbazone–palladium–phosphine
complexes.

3,5-Diacetyl-1,2,4-triazol 4N-substituted bis(thiosemicarbazone)
ligands have several potential donor sites and exhibit a strong and
typical property of acting as bridging ligands between two metal cen-
ters. By reaction with Li2[PdCl4] produce invariably, dinuclear com-
plexes but using PdCl2(PPh3)2 mononuclear complexes containing
triphenylphosphine as coligand have been obtained. Therefore,
ted thiosemicarbazone) palladium(II) complexes:
o.2011.08.014
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2 A.I. Matesanz et al. / Journal of Inorganic Biochemistry xxx (2011) xxx–xxx
alongwith the dinuclear palladium(II) complexes derived from 4N-tolyl
bis(thiosemicarbazone) ligands, hereinwe report thefirstmononuclear
bis(thiosemicarbazone)–palladium–triphenylphosphine complexes of
the 3,5-diacetyl-1,2,4-triazol series (Scheme 1).

We have studied their in vitro antitumour activity against three
human cancer cell lines: NCI-H460 (non-small cell lung cancer),
A2780 and A2780cisR (epithelian ovarian cancer). In addition toxicity
studies, on normal renal LLC-PK1 cells, have been carried out as an at-
tempt to provide an insight into the pharmacological properties of
these compounds.

2. Experimental

2.1. Measurements

Elemental analyses were performed on a LECO CHNS-932 microa-
nalyzer. 1H NMR spectra (DMSO-d6) were recorded on BRUKER AMX-
300 spectrometer. All cited physical measurements were obtained
out by the Servicio Interdepartamental de Investigación (SIDI) of
the Universidad Autónoma de Madrid.

Infrared spectra (KBr discs) were recorded on a Bomen–Michelson
spectrophotometer (4000–400 cm−1).

2.2. Materials

Solvents were purified and dried according to standard proce-
dures. Hydrazine hydrate, L-lactic acid, ortho-tolyl isothiocyanate,
meta-tolyl isothiocyanate, para-tolyl isothiocyanate, methylthiosemi-
carbazide, ethylthiosemicarbazide, palladium(II) chloride and thri-
phenylphosphine were commercially available.

2.3. Synthesis of compounds

All ligands were synthesized following general procedures as de-
scribed in references [22,26]. Analytical and spectroscopic properties
are consistent with those previously reported.
Scheme 1. Structure of bis(thiosemicarbazone

Please cite this article as: A.I. Matesanz, et al., 3,5-Diacetyl-1,2,4-triazo
Synthesis, structure, antiproliferative ..., J. Inorg. Biochem. (2011), doi:1
2.3.1. Synthesis of [Pd(μ-H3L
1–5)]2 complexes

The dinuclear complexes were obtained by reacting a methanol
suspension of the corresponding ligand (1.2 mmol) with a methanol
solution of lithium tetrachloridopalladate(II) prepared in situ from
palladium chloride(II) (1.2 mmol) and lithium chloride (4.4 mmol)
in MeOH. The reaction mixture was stirred for 5 h at room tempera-
ture, the resulting orange precipitated was filtered off, washed with
MeOH and Et2O and dried in vacuo.

[Pd(μ-H3L1)]2 (1): Yield (32%). Elemental analysis found, C, 45.15; H,
4.05, N, 21.20; S, 10.30; C44H46N18Pd2S4 requires C, 45.25; H, 3.95, N,
21.60; S, 11.00%. IR (KBr pellet): υ/cm−1 3236 (s, NH); 1588 (s, CN).
1H NMR (300 MHz, DMSO-d6): δ/ppm 13.99 (s, 2NH, 2H); 10.74, 9.45
(s, 4NH, 2H); 7.30–7.10 (m, aromatic protons, 16H); 3.30 (s, CH3-thiose-
micarbazide, 12H), 2.23 (s, CH3-triazol, 12H).

[Pd(μ-H3L2)]2 (2): Yield (40%). Elemental analysis found, C, 44.70; H,
3.75, N, 21.30; S 10.25; C44H46N18Pd2S4 requires C, 45.25; H, 3.95, N,
21.60; S 11.00%. IR (KBr pellet): υ/cm−1 3260 (s, NH); 1611, 1590 (s
CN); 738 (d, CS-thioamide IV band). 1H NMR (300 MHz, DMSO-d6):
δ/ppm 12.81 (s, 2NH, 2H); 11.00, 9.99 (s, 4NH, 2H); 7.56–7.17 (m, aro-
matic protons, 16H); 3.29 (s, CH3-thiosemicarbazide, 12H), 2.24, 2.23
(s, CH3-triazol, 12H).

[Pd(μ-H3L3)]2 (3): Yield (33%). Elemental analysis found, C, 44.80;
H, 4.10, N, 21.05; S 11.00; C44H46N18Pd2S4 requires C, 45.25; H, 3.95,
N, 21.60; S 11.00%. IR (KBr pellet): υ/cm−1 3206 (s, NH); 1584 (s,
CN); 855 (w, CS-thioamide IV band). 1H NMR (300 MHz, DMSO-d6):
δ/ppm 12.90, 11.25 (s, 2NH, 1H); 10.29, 10.19 (s, 4NH, 2H); 7.47–
7.15 (m, aromatic protons, 16H); 3.16 (s, CH3-thiosemicarbazide,
12H), 2.33 (s, CH3-triazol, 12H).

The complexes [Pd(μ-H3L4)]2 (4) and [Pd(μ-H3L5)]2 (5) were pre-
pared as described in reference [22]. In support of analytical and spec-
troscopic data, consistent with those previously reported, the X-ray
structure of [Pd(μ-H3L5)]2 complex has been determined here for
the first time.

2.3.2. Synthesis of [H3L
1–5Pd(PPh3)] complexes

All complexes were obtained by reaction of PdCl2(PPh3)2, prepared
by a previously described procedure [27], with the corresponding
) palladium complexes used in the study.

l bis(4N-substituted thiosemicarbazone) palladium(II) complexes:
0.1016/j.jinorgbio.2011.08.014
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Table 1 t1:1

Crystal data and structure refinement for dinuclear complexes 3 and 5.
t1:2
t1:33 5

t1:4Molecular formula C52H52N18O4Pd2S8 C24.25H38N18OPd2S4
t1:5Formula weight 1462.40 938.77
t1:6Temperature (K) 100(2) 100(2)
t1:7Wavelength (Å) 1.54178 0.71073
t1:8Crystal system Triclinic Triclinic
t1:9Space group Pī Pī
t1:10a(Å) 14.3693(5) 14.4173(10)
t1:11b(Å) 16.1347(5) 14.5861(11)
t1:12c(Å) 17.1360(6) 19.1357(14)
t1:13α(°) 116.864(2) 69.792(4)
t1:14β(°) 96.626(2) 72.992(4)
t1:15γ(°) 106.358(2) 89.344(4)
t1:16Volume(Å3) 3261.17(19) 3593.2(5)
t1:17Z 2 4
t1:18Density (calculated)

(g/cm3)
1.489 1.735

t1:19Absorption coefficient
(mm−1)

7.310 1.284

t1:20F(000) 1484 1894
t1:21Crystal size (mm3) 0.30×0.15×0.15 0.24×0.22×0.12
t1:22Index ranges −15≤h≤16,

−19≤k≤19,
−20≤ l≤20

−18≤h≤18,
−18≤k≤18,
−23≤ l≤23

t1:23Reflections collected 27710 89540
t1:24Independent reflections 11153 [R(int)=0.0347] 14618 [R(int)=0.0568]
t1:25Data/restraints/parameters 11153/0/821 14618/1/937
t1:26Goodness-of-fit on F2 1.021 1.048
t1:27Final R indices [IN2σI)] R1=0.0369,

wR2=0.0958
R1=0.0392,
wR2=0.0969

t1:28R indices (all data) R1=0.0437,
wR2=0.1017

R1=0.0620,
wR2=0.1156

t1:29Largest diff. peak and hole,
e.Å−3

1.540 and −0.825 3.506 and −1.991

3A.I. Matesanz et al. / Journal of Inorganic Biochemistry xxx (2011) xxx–xxx
ligand in toluene, in presence of Et3N, in 1:1 molar ratios. The reaction
mixture was stirred for 2 h at room temperature. The resulting orange
solutions were filtered and left to stand at ambient temperature for
two days. The yellow-orange microcrystalline solid formed were fil-
tered, washed several times with hot water, recrystallized from ethanol
and finally and dried in vacuo.

[Pd(H3L1)PPh3]•H2O (6): Yield (48%). Elemental analysis found, C,
55.75; H, 4.60, N, 13.90; S, 6.95; C40H40N9PPdOS2 requires C, 55.55; H,
4.65, N, 14.60; S 7.40%. IR (KBr pellet): υ/cm−1 3404, 3281, 3157 (s,
NH); 1586 (s, CN), 853, 837 (w, CS-thioamide IV band). 1H NMR
(300 MHz, DMSO-d6): δ/ppm 12.57 (s, 2NH, 1H); 9.81, 9.34 (s, 4NH,
2H); 7.66–7.51 (m, aromatic protons, 15 H); 7.35–7.04 (m, aromatic
protons, 8H); 3.29 (s, CH3-thiosemicarbazide, 6H), 2.30, 2.21 (s,
CH3-triazol, 6H).

[Pd(H3L2)PPh3]·PPh3 (7): Yield (72%). Elemental analysis found,
C, 62.30; H, 4.95, N, 11.60; S 5.50; C40H38N9PPdS2·PPh3 requires C,
62.85; H, 4.80, N, 11.35; S 5.75%. IR (KBr pellet): υ/cm−1 3308, 3144
(s, NH); 1611, 1590 (s CN); 780 (w, CS-thioamide IV band). 1H NMR
(300 MHz, DMSO-d6): δ/ppm 12.53 (s, 2NH, 1H); 9.95, 9.93 (s, 4NH,
1H); 7.68–7.51 (m, 15 H, aromatic); 7.43–6.80 (m, 8 H, aromatic);
3.30 (s, CH3-thiosemicarbazide, 6H), 2.29, 2.27 (s, CH3-triazol, 3H).

[Pd(H3L3)PPh3]·PPh3 (8): Yield (66%). Elemental analysis found,
C, 62.40; H, 5.05, N, 10.95; S 5.40; C40H38N9PPdS2·PPh3 requires C,
62.85; H, 4.80, N, 11.35; S 5.75%. IR (KBr pellet): υ/cm−1 3329, 3156
(s, NH); 1584 (s, CN); 923, 855 (w, CS-thioamide IV band). 1H NMR
(300 MHz, DMSO-d6): δ/ppm 12.53 (s, 2NH, 1 H); 9.95, 9.91 (s, 4NH,
1 H); 7.68–7.46 (m, aromatic, 15 H); 7.40–7.10 (m, aromatic, 8 H);
3.29 (s, CH3-thiosemicarbazide, 6H), 2.28, 2.23 (s, CH3-triazol, 3H).

[Pd(H3L4)PPh3]•PPh3 (9): Yield (45%). Elemental analysis found, C,
57.75; H, 5.15, N, 13.60; S 6.50; C28H30N9PPdS2·PPh3 requires C,
57.75; H, 4.70, N, 13.20; S 6.70%. IR (KBr pellet): υ/cm−1 3181 (s,
NH); 1590 (s, CN); 880 (w, CS-thioamide IV band). 1H NMR
(300 MHz, DMSO-d6): δ/ppm 12.34 (s, 2NH, 1H); 8.35–8.34 (d, 4NH,
1H); 8.33 (unresolved multiplet, 1H, 4NH); 7.63–7.23 (m, 15H, aro-
matic); 2.95, 2.82 (s, CH3-thiosemicarbazide, 3H); 2.40, 2.05 (s, CH3-
triazol, 3H).

[Pd(H3L5)PPh3]•H2O (10): Yield (46%). Elemental analysis found,
C, 49.15; H, 5.10, N, 16.50; S 8.85; C30H36N9PPdOS2 requires C,
48.65; H, 5.00, N, 17.05; S 8.65%. IR (KBr pellet): υ/cm−1 3191 (s,
NH); 1587 (s, CN); 880, 838 (w, CS-thioamide IV band). 1H NMR
(300 MHz, DMSO-d6): δ/ppm 12.33 (s, 2NH, 1H); 8.34 (t, 4NH, 1H);
7.87 (unresolved multiplet, 1H, 4NH); 7.63–7.46 (m, aromatic protons,
15H); 3.54–3.49 (t, CH3–CH2-thiosemicarbazide, 3 H), 2.39, 2.07 (s,
CH3-triazolic); 1.12–1.05 (q, CH3–CH2-thiosemicarbazide, 2H).

2.4. Crystallography

Data were collected on a Bruker X8 APEX II CCD (5, 7 and 8) and
Bruker SMART 6K diffractometer (3, 6 and 9). Crystallographic data
and selected interatomic distances and angles are listed in Tables 1
and 2 (for 3 and 5) and Tables 3 and 4 (for 6, 8 and 9). For all com-
pounds, the software package SHELXTL was used for space group de-
termination, structure solution, and refinement [28]. The structures
were solved by direct methods, completed with difference Fourier
syntheses, and refined with anisotropic displacement parameters.
For 8 the molecule crystallizes with a half molecule of disordered
DMSO solvent which has been squeezed [29]. The derived quantities
(Mr, F(000)), and Dx in the Crystal data are corrected with the contri-
bution from this disordered solvent.

CCDC 821564, 821565, 821566, 821567, 821568, and 821569 (for
complexes 3, 5, 6, 7, 8 and 9 respectively) contain the supplementary
crystallographic data for this paper. These data can be obtained free of
charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the
Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge
CB2 1EZ, UK; fax: +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.
uk].
Please cite this article as: A.I. Matesanz, et al., 3,5-Diacetyl-1,2,4-triazo
Synthesis, structure, antiproliferative ..., J. Inorg. Biochem. (2011), doi:1
2.5. In vitro antiproliferative activity

The human cancer cells (A2780, A2780cisR and NCI-H460) were
grown in RPMI-1640 medium supplemented with 10% foetal bovine
serum (FBS) and 2 mM L-glutamine in an atmosphere of 5% CO2 at
37 °C. Cell proliferation was evaluated by the sulforhodamine B
assay. Cells were plated in 96-well sterile plates at a density of
1.5·104 (for NCI-H460) or 4·103 (for A2780 and A2780cisR) cells
per well with 100μL of medium and were then incubated for 24 h.
After attachment to the culture surface the cells were incubated
with various concentrations of the compounds tested freshly dis-
solved in DMSO (1 mg/mL) and diluted in the culture medium
(DMSO final concentration 1%) for 48 h (for NCI-H460) or 96 h (for
A2780 and A2780cisR). The cells were fixed by adding 50 μL of 30%
trichloroacetic acid (TCA) per well. The plates were incubated at
4 °C for 1 h and then washed five times with distilled water. The cel-
lular material fixed with TCA was stained with 0.4% sulforhodamine B
dissolved in 1% acetic acid for 10 min. Unbound dye was removed by
rinsing with 0.1% acetic acid. The protein-bound dye was extracted
with 10 mM unbuffered Tris base for determination of optical density
(at 515 nm) in a Tecan Ultra Evolution spectrophotometer.

The normal cells (LLC-PK1) were grown in 199 medium supple-
mented with 3% foetal bovine serum (FBS) and 1.5 g/L of sodium bi-
carbonate in an atmosphere of 5% CO2 at 37 °C. Cell proliferation
was evaluated by the sulforhodamine B assay. Cells were plated in
96-well sterile plates at a density of 1·104 cells per well with 100 μL
of medium and were then incubated for 24 h. After attachment to
the culture surface the cells were incubated with various concentra-
tions of the compounds tested freshly dissolved in DMSO (1 mg/mL)
and diluted in the culture medium (DMSO final concentration 1%) for
48 h at 37 °C. The cells were fixed by adding 50 μL of 30% trichloroacetic
acid (TCA) per well. The plates were incubated at 4 °C for 1 h and then
washed five times with distilled water. The cellular material fixed with
l bis(4N-substituted thiosemicarbazone) palladium(II) complexes:
0.1016/j.jinorgbio.2011.08.014
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Table 2t2:1

Selected bond distances (Å) and angles (°) for dinuclear complexes 3 and 5.
t2:2
t2:3 3 5

t2:4 S(1)–C(8) 1.771(3) N(3)–Pd(1)–N(4) 80.08(11) S(1)–C(1) 1.763(5) N(3)–Pd(1)–N(4) 79.95(15)
t2:5 S(2)–C(37) 1.730(3) N(3)–Pd(1)–S(1) 84.06(8) S(2)–C(22) 1.707(5) N(3)–Pd(1)–S(1) 84.31(11)
t2:6 S(3)–C(23) 1.780(4) N(4)–Pd(1)–S(1) 164.14(8) S(3)–C(13) 1.769(5) N(4)–Pd(1)–S(1) 164.16(11)
t2:7 S(4)–C(15) 1.729(4) N(3)–Pd(1)–S(2) 179.30(8) S(4)–C(10) 1.702(5) N(3)–Pd(1)–S(2) 176.83(12)
t2:8 C(8)–N(1) 1.361(4) N(4)–Pd(1)–S(2) 100.03(8) C(1)–N(1) 1.333(7) N(4)–Pd(1)–S(2) 102.55(11)
t2:9 C(8)–N(2) 1.312(4) S(1)–Pd(1)–S(2) 95.83(3) C(1)–N(2) 1.304(6) S(1)–Pd(1)–S(2) 93.12(5)
t2:10 C(9)–N(3) 1.302(4) N(12)–Pd(2)–N(13) 80.12(11) C(4)–N(3) 1.291(6) N(12)–Pd(2)–N(13) 80.20(16)
t2:11 C(13)–N(7) 1.293(4) N(12)–Pd(2)–S(3) 83.91(8) C(8)–N(7) 1.273(6) N(12)–Pd(2)–S(3) 84.00(12)
t2:12 C(15)–N(8) 1.328(4) N(13)–Pd(2)–S(3) 163.92(8) C(10)–N(8) 1.330(6) N(13)–Pd(2)–S(3) 163.95(12)
t2:13 C(15)–N(9) 1.328(4) N(12)–Pd(2)–S(4) 179.20(9) C(10)–N(9) 1.310(7) N(12)–Pd(2)–S(4) 176.81(12)
t2:14 C(23)–N(10) 1.354(5) N(13)–Pd(2)–S(4) 100.65(8) C(13)–N(10) 1.328(6) N(13)–Pd(2)–S(4) 101.32(12)
t2:15 C(23)–N(11) 1.313(5) S(3)–Pd(2)–S(4) 95.32(3) C(13)–N(11) 1.302(6) S(3)–Pd(2)–S(4) 94.60(5)
t2:16 C(31)–N(12) 1.307(4) C(17)–N(12) 1.301(6) N(21)–Pd(3)–N(22) 79.81(19)
t2:17 C(35)–N(16) 1.289(4) C(20)–N(16) 1.281(6) N(21)–Pd(3)–S(5) 83.90(13)
t2:18 C(37)–N(17) 1.332(5) C(22)–N(17) 1.324(6) N(22)–Pd(3)–S(5) 163.70(14)
t2:19 C(37)–N(18) 1.320(5) C(23)–N(18) 1.464(7) N(21)–Pd(3)–S(6) 176.65(14)
t2:20 N(2)–N(3) 1.375(4) N(2)–N(3) 1.370(5) N(22)–Pd(3)–S(6) 103.45(14)
t2:21 N(7)–N(8) 1.386(4) N(7)–N(8) 1.372(6) S(5)–Pd(3)–S(6) 92.85(5)
t2:22 N(11)–N(12) 1.371(4) N(11)–N(12) 1.357(5) N(30)–Pd(4)–N(31) 79.46(15)
t2:23 N(16)–N(17) 1.388(4) N(16)–N(17) 1.371(6) N(30)–Pd(4)–S(7) 84.24(11)
t2:24 Pd(1)–S(1) 2.2593(8) Pd(1)–S(1) 2.2419(13) N(31)–Pd(4)–S(7) 163.61(11)
t2:25 Pd(1)–S(2) 2.3068(8) Pd(1)–S(2) 2.2939(13) N(30)–Pd(4)–S(8) 176.03(11)
t2:26 Pd(2)–S(3) 2.2617(9) Pd(2)–S(3) 2.2422(13) N(31)–Pd(4)–S(8) 104.33(11)
t2:27 Pd(2)–S(4) 2.3059(8) Pd(2)–S(4) 2.2911(14) S(7)–Pd(4)–S(8) 92.01(4)
t2:28 Pd(1)–N(3) 2.007(3) Pd(1)–N(3) 1.997(3)
t2:29 Pd(1)–N(4) 2.029(3) Pd(1)–N(4) 2.026(4)
t2:30 Pd(2)–N(12) 2.004(3) Pd(2)–N(12) 1.988(4)
t2:31 Pd(2)–N(13) 2.025(3) Pd(2)–N(13) 2.044(4)

t3:1

t3:2
t3:3

t3:4

t3:5

t3:6

t3:7

t3:8

t3:9

t3:10

t3:11

t3:12

t3:13

t3:14

t3:15

t3:16

t3:17

t3:18

t3:19

t3:20

t3:21

t3:22

t3:23

t3:24

t3:25
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TCAwas stained with 0.4% sulforhodamine B dissolved in 1% acetic acid
for 10 min. Unbound dye was removed by rinsing with 0.1% acetic acid.
The protein-bound dyewas extractedwith 10 mMunbuffered Tris base
for determination of optical density (at 515 nm) in a Tecan Ultra Evolu-
tion spectrophotometer.

The effects of complexes were expressed as corrected percentage
inhibition values according to the following equation:

%inhibition ¼ 1− T=Cð Þ½ � � 100

where T is the mean absorbance of the treated cells and C the mean
absorbance in the controls.
Table 3
Crystal data and structure refinement for mononuclear complexes 6, 7, 8 and 9.

6 7

Formula C42H38N9OPPdS3 C42H44N9OPPdS3
Molecular weight 918.36 924.41
Crystal system Triclinic Triclinic
Space group Pī Pī
a(Å) 9.3982(5) 10.4846(8)
b(Å) 14.4134(8) 14.3569(9)
c(Å) 16.2876(8) 15.2545(11)
α(°) 83.388(3) 73.728(3)
β(°) 87.939(3) 74.870(3)
γ(°) 79.800(3) 84.921(3)
V(Å3) 2156.7(2) 2127.5(3)
λ(CuKα)(Å) 0.71073 1.54178
T(K) 296(2) 100(2)
Z 2 2
Dcalc.(g/cm3) 1.414 1.443
F(000) 940 952
μ(mm−1) 0.657 5.608
Independent reflections 8178 [R(int)=0.0372] 7274 [R(int)=0
Observed reflections 39,689 19,544
Final R indices [IN2σ(I)] R1=0.0333, wR2=0.0874 R1=0.0550, wR2

R indices (all data) R1=0.0482, wR2=0.1094 R1=0.0834, wR2

Goodness of fit on F2 1.158 1.036

Please cite this article as: A.I. Matesanz, et al., 3,5-Diacetyl-1,2,4-triazo
Synthesis, structure, antiproliferative ..., J. Inorg. Biochem. (2011), doi:1
The inhibitory potential of compounds was measured by calculat-
ing concentration–percentage inhibition curves, these curves were
adjusted to the following equation:

E ¼ Emax= 1þ IC50=Cð Þn� �

where E is the percentage inhibition observed, Emax is the maximal ef-
fects, IC50 is the concentration that inhibits 50% of maximal growth, C
is the concentration of compounds tested and n is the slope of the
semi-logarithmic dose–response sigmoid curves. This non-linear fit-
ting was performed using GraphPad Prism 2.01, 1996 software [30].

For comparison purposes, the antiproliferative activity of cisplatin
was evaluated under the same experimental conditions. All
8 9

C42H44N9OPPdS3 C30H30N9O1.5PPdS3
924.41 774.18
Monoclinic Monoclinic
P21/c P21/n
14.827(2) 15.8581(17)
9.408(3) 8.5108(9)
31.571(4) 25.960(3)
90 90
103.150(16) 103.374(6)
90 90
4288.3(15) 3408.7(7)
0.71073 0.71073
230(2) 100(2)
4 4
1.432 1.509
1904 1576
0.661 0.816

.0864] 7290 [R(int)=0.1177] 6954 [R(int)=0.0479]
21,592 34,219

=0.1243 R1=0.0642, wR2=0.1308 R1=0.0439, wR2=0.1136
=0.1408 R1=0.1210, wR2=0.1512 R1=0.0619, wR2=0.1337

0.887 1.093

l bis(4N-substituted thiosemicarbazone) palladium(II) complexes:
0.1016/j.jinorgbio.2011.08.014
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Table 4t4:1

Selected bond distances (Å) and angles (°) for mononuclear complexes 6, 7, 8 and 9.
t4:2
t4:3 6 7 8 9

t4:4 S(1)–C(1) 1.775(3) S(1)–C(1) 1.786(6) S(1)–C(1) 1.777(8) S(1)–C(1) 1.778(4)
t4:5 S(2)–C(6) 1.667(3) S(2)–C(15) 1.668(6) S(2)–C(15) 1.656(9) S(2)–C(9) 1.655(5)
t4:6 C(1)–N(2) 1.300(4) C(1)–N(2) 1.319(7) C(1)–N(2) 1.300(9) C(1)–N(2) 1.303(5)
t4:7 C(1)–N(1) 1.350(4) C(1)–N(1) 1.350(7) C(1)–N(3) 1.375(10) C(1)–N(1) 1.330(6)
t4:8 C(2)–N(3) 1.293(4) C(2)–N(3) 1.299(7) C(9)–N(1) 1.275(9) C(3)–N(3) 1.288(5)
t4:9 C(5)–N(7) 1.295(4) C(13)–N(7) 1.288(7) C(13)–N(7) 1.282(10) C(7)–N(7) 1.284(6)
t4:10 C(6)–N(9) 1.341(4) C(15)–N(9) 1.344(8) C(15)–N(9) 1.368(10) C(9)–N(9) 1.334(7)
t4:11 C(6)–N(8) 1.362(4) C(15)–N(8) 1.358(7) C(15)–N(8) 1.360(10) C(9)–N(8) 1.365(6)
t4:12 Pd(1)–N(3) 2.036(2) Pd(1)–N(3) 2.026(4) Pd(1)–N(1) 2.040(6) Pd(1)–N(3) 2.035(3)
t4:13 Pd(1)–N(4) 2.057(2) Pd(1)–N(4) 2.050(4) Pd(1)–N(4) 2.041(7) Pd(1)–N(4) 2.038(3)
t4:14 Pd(1)–S(1) 2.2563(8) Pd(1)–S(1) 2.2454(13) Pd(1)–S(1) 2.261(2) Pd(1)–S(1) 2.2547(12)
t4:15 Pd(1)–P(1) 2.2820(8) Pd(1)–P(1) 2.2624(13) Pd(1)–P(1) 2.267(2) Pd(1)–P(1) 2.2706(10)
t4:16 N(3)–Pd(1)–N(4) 79.19(9) N(3)–Pd(1)–N(4) 79.28(17) N(1)–Pd(1)–N(4) 79.4(3) N(3)–Pd(1)–N(4) 79.87(14)
t4:17 N(3)–Pd(1)–S(1) 82.91(7) N(3)–Pd(1)–S(1) 83.64(12) N(1)–Pd(1)–S(1) 83.4(2) N(3)–Pd(1)–S(1) 83.15(10)
t4:18 N(4)–Pd(1)–S(1) 161.78(7) N(4)–Pd(1)–S(1) 162.87(12) N(4)–Pd(1)–S(1) 162.77(19) N(4)–Pd(1)–S(1) 162.95(10)
t4:19 N(3)–Pd(1)–P(1) 177.66(7) N(3)–Pd(1)–P(1) 177.07(14) N(1)–Pd(1)–P(1) 179.2(2) N(3)–Pd(1)–P(1) 176.46(10)
t4:20 N(4)–Pd(1)–P(1) 103.15(7) N(4)–Pd(1)–P(1) 100.87(13) N(4)–Pd(1)–P(1) 99.81(19) N(4)–Pd(1)–P(1) 100.13(10)
t4:21 S(1)–Pd(1)–P(1) 94.76(3) S(1)–Pd(1)–P(1) 96.11(5) S(1)–Pd(1)–P(1) 97.39(8) S(1)–Pd(1)–P(1) 96.91(4)
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compounds were tested in two independent studies with triplicate
points. These experiments were carried out at the Unidad de Evalua-
ción de Actividades Farmacológicas de Compuestos Químicos (USEF),
Universidad de Santiago de Compostela.
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3. Results and discussion

3.1. Synthesis and spectroscopic characterization

A series of dinuclear Pd(II) and Pt(II) complexes of 3,5-diacetyl-
1,2,4-triazol bis(4N-substituted thiosemicarbazones) obtained by re-
action of the corresponding ligand with Li2[PdCl4] or K2[PtCl4] have
been reported by us. Here, we extend our studies to Pd(II) complexes
derived of 3,5-diacetyl-1,2,4-triazol bis(4N-tolylthiosemicarbazone)
ligands. Analytical data suggest the formation of [Pd(μ-H3L1–3)]2
complexes.

When the complexation reaction was carried out with PdCl2
(PPh3)2 salt we have achieved 3,5-diacetyl-1,2,4-triazol bis(4N-
substituted thiosemicarbazone) palladium(II) mononuclear com-
plexes, containing triphenylphosphine as coligand, of stoichiome-
try [Pd(H3L1–5)PPh3], in which the thiosemicarbazones coordinate
as dianionic ligands with removal of both chlorido and one PPh3

ligands.
The significant IR vibrational bands and the 1H chemical shift values

of the palladium(II) complexes synthesized are listed in Section 2.
The infrared spectral bands most useful for determining the mode

of coordination of the ligands are the υ(C=N) iminic and υ(C=S)
thioamide IV vibrations. These bands shift to lower wavenumbers in
the spectra of the complexes suggesting coordination of the imine ni-
trogen and sulfur atoms. In mononuclear complexes, (6)–(10), the
presence of the triphenylphosphine ligand is confirmed in the spectra
of the complexes by the existence of the characteristic bands around
3050 and 1097 cm−1 for ν(CH) and ν(P–C), with no significant
change when compared to the precursor PdCl2(PPh3)2.

In the 1H NMR spectra of the complexes the absence of any signals
above 15 ppm, indicative of de deprotonation of the triazole ring, to-
gether with the presence of only one signal assigned to 2N hydrazinic
hydrogens is consistent with the asymmetric diprotonation typical of
3,5-diacetyl-1,2,4-triazol bis(thiosemicarbazone) ligands. The rest of
the proton signals appear, in the dimeric complexes 1–5, at nearly
identical positions if each one is compared with its corresponding
parent ligand. In addition, mononuclear complexes present the sig-
nals of the aromatic hydrogen atoms of triphenylphosphine. 1H
NMR integrations and signal multiplicities are in agreement with
the proposed structures, a doublet observed at 8.35 for complex 9
Please cite this article as: A.I. Matesanz, et al., 3,5-Diacetyl-1,2,4-triazo
Synthesis, structure, antiproliferative ..., J. Inorg. Biochem. (2011), doi:1
as well as a triplet observed at 8.34 for complex 10 corresponding
to 4N–H protons may be due to the coupling with neighbouring
alkyl group.
3.2. Description of dinuclear crystal structures 3 and 5

Single crystals of dinuclear complexes 3 and 5, suitable for single
crystal X-ray diffraction analysis, were obtained by recrystallization
in dimethylsulfoxide. The most significant parameters for these com-
pounds are shown in Tables 1 and 2.

The structure of 3 together with the atom labelling scheme is shown
in Fig. 1. This neutral Pd(II) complex, crystallizes in the triclinic Pī space
groupwith Z=2 as discrete C44H46N18Pd2S4·4DMSOmolecules and its
crystallographic analysis reveals unambiguously a dimeric structure
which results from the pairing of two mononuclear subunits through
two thiosemicarbazone moieties bridges.

Each Pd(II) center is four coordinated with a [NNSS] donor envi-
ronment, via: one triazolic nitrogen atom, the iminic nitrogen and
sulfur atoms belong to the deprotonated arm of one ligand molecule,
and being the fourth position occupied by a sulfur atom of the non
deprotonated arm from the other ligand. Thus, the deprotonated thio-
semicarbazone arm behaves as a bidentate and the neutral one be-
haves as monodentate acting as a bridge.

The bond angle data indicate that the stereochemistry around
each palladium (II) ion is almost planar. The angles deviate slightly
from that expected for a regular square–planar geometry, this distor-
tion may be attributed to the restricted bite angle of the tridentate
moieties. Coordination results in the formation of two five-
membered (PdSCNN and PdNCCN) chelate rings for each palladium
(II) ion, which are coplanar with the deprotonated triazole ring.

The Pd–N [2.004–2.029 Å
´ ] and Pd–S [2.2593–2.3068 Å

´ ] bond dis-
tances are comparable with those reported for Pd(II) thiosemicarba-
zone complexes. It is important to note that upon coordination, the
deprotonated arms undergo significant evolution from the thione to
the thiol form [S(1)–C(8) 1.771(3) and S(3)–C(23) 1.780(4) Å],
while the neutral thiosemicarbazone arms present shorter C–S bond
lengths [S(2)–C(37) 1.730(3) and S(4)–C(15) 1.729(4) Å]. The C–N
and N–N bond distances are intermediate between formal single
and double bonds, pointing to extensive delocalization over the entire
3,5-diacetyl-1,2,4-triazole bis(thiosemicarbazone) skeleton.

Interestingly, the flexibility of the ligand originating from the free
rotation of the two thiosemicarbazone arms around the C(9)–C(11), C
(12)–C(13), and C(31)–C(33), C(34)–C(35) single bonds, allows that
each ligand ligates two metal ions in a twist conformation generating
two parallel coordination planes. Particularly, between the two
l bis(4N-substituted thiosemicarbazone) palladium(II) complexes:
0.1016/j.jinorgbio.2011.08.014
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Fig. 1. Molecular structure of complex 3, hydrogen atoms are omitted for clarity.
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triazole moieties, the interplane separation being 3.35 Å is considered
optimal for π–π interactions (intramolecular stacking). This arrange-
ment is reinforced by double intramolecular hydrogen bonds be-
tween the 2NH of the bridging thiosemicarbazone moieties and
uncoordinated triazole nitrogen atoms. The supramolecular associa-
tion involves intermolecular hydrogen bonds between the 4NH and
the oxygen atoms of the DMSO solvent molecules and intermolecular
π–π stacking interactions between successive thiosemicarbazone
moieties.

A drawing of complex 5 is shown in Fig. 2. This dimeric compound
crystallizes in the triclinic Pī space group and the crystallographic unit
comprises two independent complex molecules, which do not differ
significantly from each other, and solvent molecules (the quality of
the diffraction data did not allow the position of these molecules to
be resolved clearly). Within each molecule, the H5L5 ligands coordi-
nate in a dideprotonated form to the Pd(II) ions in a tridentate fashion
(SNN) and S-bridgingmodes in a similarmanner to the above described
3. These two structures with tridentate/monodentate bonding, rather
thanbis-bidentate, result from the preferential binding of sulfur over ni-
trogen to palladium(II) and the high stability of the tricyclic ring system
of the tridentate moiety.

3.3. Description of mononuclear crystal structures 6, 7, 8 and 9

Single crystals of complexes 6–10 were obtained by recrystalliza-
tion in dimethylsulfoxide which allowed us to confirm the molecular
structures of all palladium–bis(thiosemicarbazone)–phosphine com-
plexes synthesized by a X-ray diffraction, however for complex 10
the quality of the crystals was not sufficient to carry out the complete
crystallographic study (the preliminary study confirms the atoms
Please cite this article as: A.I. Matesanz, et al., 3,5-Diacetyl-1,2,4-triazo
Synthesis, structure, antiproliferative ..., J. Inorg. Biochem. (2011), doi:1
connections). Selected bond lengths and angles are shown in
Table 4 and the molecular structures are shown in Figs. 3–6.

Complexes 6 and 7 crystallize in the triclinic Pī space group with
Z=2 as discrete [Pd(H3L1)PPh3]•DMSO and [Pd(H3L2)PPh3]•DMSO
molecules while complexes 8 and 9 crystallize in the monoclinic sys-
tem (P21/c and P21/n space groups) with Z=4. Complex 8 crystallizes
with one molecule of disordered dimethylsulfoxide solvent (the op-
tion squeeze in Platon was used to eliminate the contribution of the
electron density in the solvent region from the intensity data) and
complex 9 crystallizes as discrete [Pd(H3L4)PPh3]•DMSO•0.5H2O
molecules.

In the four compounds the palladium(II) ion presents a square-
planar geometry being the bis(thiosemicarbazone) ligand attached
through the Ntriazolic, and the Niminic and S atoms from one thiosemi-
carbazone arm. The fourth coordination position occupied by a phos-
phorous atom from the PPh3 coligand which is coordinated to
palladium trans to Niminic.

The bis(thiosemicarbazone) ligand is in dianionic form showing s
Z, E configuration, that is the coordinated thiosemicarbazone arm, in-
volved in two five-membered (PdSCNN and PdNCCN) chelate rings,
with the sulfur atom cis to the azomethine nitrogen atom, and the
uncoordinated thiosemicarbazone arm with the sulfur atom trans to
the azomethine nitrogen atom. This arrangement is reinforced by in-
tramolecular hydrogen bonds between the 2NH of the uncoordinated
thiosemicarbazone arm and one triazole nitrogen atom.

As expected, the bond lengths and angles, in the four palladium(II)
complexes, are very similar. It is important to note that upon coordi-
nation, the deprotonated arm undergoes significant evolution from
the thione to the thiol form which is reflected in C–S distance of
1.775(3)–1.786(6) Å while the neutral thiosemicarbazone arm
l bis(4N-substituted thiosemicarbazone) palladium(II) complexes:
0.1016/j.jinorgbio.2011.08.014
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E
C

presents a shorter C–S bond length of 1.655(5)–1.668(6). The C–N and
N–Nbonddistances are intermediate between formal single and double
bonds, pointing to extensive delocalization over the entire 3,5-diacetyl-
1,2,4-triazole bis(thiosemicarbazone) skeleton, however metal coordi-
nation provokes an important shortening of the C–Nhydrazinic distances
[1.300(4)–1.319(7) Å] in the deprotonated arm as compared to the
undeprotonated arm [1.358(7)- and 1.365(6) Å].
U
N
C
O

R
R

Fig. 3. Molecular structure of complex 6, h

Please cite this article as: A.I. Matesanz, et al., 3,5-Diacetyl-1,2,4-triazo
Synthesis, structure, antiproliferative ..., J. Inorg. Biochem. (2011), doi:1
E

Comparison between the structures of the three 4N-tolyl
substituted complexes reveals some differences in C(7)–N(1), C(4)–
N(1) and C(2)–N(3) bond distances, for complexes 6, 7 and 8 respec-
tively, as a consequence of the variation in position of the 4N-tolyl
methyl group.

Inspection of the angles formed between the palladium(II) ion and
the coordinated atoms shows that the metal is contained within a
ydrogen atoms are omitted for clarity.

l bis(4N-substituted thiosemicarbazone) palladium(II) complexes:
0.1016/j.jinorgbio.2011.08.014
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slightly distorted square-planar environment. The distortion is
caused by the restricted bite angle of the tridentate ligand as reflected
in the Niminic–Pd–Ntriaolic and Niminic–Pd–S angles (less than 90°).

The crystal structures are stabilized by hydrogen interactions in-
volving the 4N atoms of the coordinated arms and the oxygen atom
of solvent molecules. Within each molecule, the bis(thiosemicarba-
zone)–palladium moiety is close to planar, so the supramolecular as-
sociation also involves π–π stacking interactions between parallel
layers of molecules.

3.4. Antiproliferative activity

To analyze the potential of the compounds as antitumour agents,
the new compounds synthesized were tested (in powder solid
form) for their antiproliferative activity in vitro against the human
cancer cell lines: NCI-H460 (non-small cell lung cancer), A2780 and
A2780cisR (epithelian ovarian cancer). For comparison purposes the
cytotoxicity of cisplatin was evaluated under the same experimental
conditions. The cytotoxic activity of the complexes 4 and 5 was
Fig. 5. Molecular structure of complex 8, h

Please cite this article as: A.I. Matesanz, et al., 3,5-Diacetyl-1,2,4-triazo
Synthesis, structure, antiproliferative ..., J. Inorg. Biochem. (2011), doi:1
previously studied against A2780 and A2780cisR cells [23], but their
antiproliferative activity against NCI-H460 is reported for the first
time here.

Table 5 shows that in A2780 cells eight of the ten compounds in-
vestigated present important antiproliferative activity in both
A2780, cisplatin sensitive, and A2780cisR, cisplatin resistant, cell
lines. Although a clear structure–activity relationship cannot be de-
duced from the limited number of compounds investigated, several
preliminary conclusions may be drawn.

Dinuclear palladium(II) complexes 1, 4 and 5 demonstrated to be
active in the couple of cell lines A2780/A2780cisR, however com-
plexes 2 and 3 show, at 100 μM concentration, very low cellular
growth inhibition (b50%) and therefore had not evaluable cytotoxicity
(IC50N100 μM). It is remarkable that among tolyl derivatives, only com-
plex 1 containing the ortho-tolyl group is active suggesting that the po-
sition of the methyl group on the tolyl substituentmay be influence the
antiproliferative activity.

All mononuclear palladium (II) complexes synthesized 6–10,
bearing a triphenylphosphine coligand, displayed significant in vitro
ydrogen atoms are omitted for clarity.

l bis(4N-substituted thiosemicarbazone) palladium(II) complexes:
0.1016/j.jinorgbio.2011.08.014
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antiproliferative activity in the two ovarian carcinoma cell lines tested.
Specifically, complexes 9 and 10 showed the most promising results. In
this case, the enhancement of the antiproliferative activity, with respect
to dinuclear complexes 1–5, might be related with their different struc-
tural characteristics. In addition the triphenylphosphinewould have a li-
pophilic effect in the complex and help to cross the cytoplasmic
membrane.

The compounds were also tested against NCI-H460 (non-small cell
lung cancer) cell line but only complex 5 (IC50=49) reached a cellu-
lar growth inhibition higher than 50% at the concentrations that we
used in the assay (0–100 μM) which is evidence of the greater sensi-
tivity of the A2780 and A2780cisR cells lines to the complexes.

In order to investigate possible adverse side effects that may occur
such nephrotoxicity, the compounds investigated and cisplatin were
subsequently tested (in powder solid form) in vitro on normal renal
LLC-PK1 cells [31,32] and their selectivity index (SI) value was calcu-
lated for cisplatin and estimated for the compounds investigated
since all complexes tested presented, at 100 μM concentration, very
low cellular growth inhibition (b50%) and therefore had not evaluable
cytotoxicity (IC50N100 μM).

As shows Table 5, all mononuclear palladium(II) complexes, 6–10,
exhibit estimated SI values greater than that of cisplatin against
A2780 cell line and for the resistant cell line A2780cisR.only complex
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

Table 5
In vitro antiproliferative activity of the bis(thiosemicarbazone) complexes and cisplat-
in, evaluated in human cancer (A2780, A2780cisR and NCI-H460) and normal renal
(LLC-PK1) cell lines.

Compound IC50(μM) SIc

A2780 A2780cisR NCI-H460 LLC-PK1 A2780 A2780cisR

1 23 60 N100 N100 N4.3 N1.7
2 N100 N100 N100 N100 – –

3 N100 N100 N100 N100 – –

4a 15 18 N100 NDb – –

5a 25 10 49 NDb – –

6 3.2 55 N100 N100 N31.2 N1.8
7 2.9 83 N100 N100 N34.5 N1.2
8 1.2 21 N100 N100 N83.3 N4.7
9 6.9 13 N100 N100 N14.5 N7.7
10 1.0 4.7 N100 N100 N100 N21.3
cisplatin 0.85 5 3.98 7.9 9.3 1.6

The IC50 values are averages of two independent determinations.
a Values taken from Ref. [22].
b ND, non-determined.
c SI refers to the selectivity index, which was obtained by dividing the IC50 value for

the normal cells by the IC50 value for the cancer cells.

Please cite this article as: A.I. Matesanz, et al., 3,5-Diacetyl-1,2,4-triazo
Synthesis, structure, antiproliferative ..., J. Inorg. Biochem. (2011), doi:1
7 shows a estimated SI value less than that of cisplatin. These results
suggest that the selectivity is dependent of both cancer cell line
(A2780 vs A2780cisR) and compound structure (mononuclear com-
plexes 6–10 vs dinuclear complexes 1–5).

The goal of this investigation was to prepare new metallic com-
pounds with structures and modes of action different to those of cis-
platin while getting activity levels within the 100 μM range and with
the advantage of a very low renal toxicity. That is to say although all
the investigated complexes show slightly higher IC50 values than cis-
platin their renal toxicity is markedly lower than that of cisplatin
which is important since one of the keys for the design of new
metallo-drugs is to find the optimal ratio between a cancer killing
dose and systemic toxicity [33].
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