Biblos-e Archivo

Repositorio Institucional de la Universidad Autónoma de Madrid https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:
Journal of Inorganic Biochemistry 105.12 (2011): 1613-1622
DOI: http://dx.doi.org/10.1016/j.jinorgbio.2011.08.014

Copyright: © 2011 Elsevier Inc. All rights reserved.
El acceso a la versión del editor puede requerir la suscripción del recurso
Access to the published version may require subscription

Graphical abstract

3,5-Diacetyl-1,2,4-triazol bis(${ }^{4} \mathrm{~N}$-substituted thiosemicarbazone) palladium(II) normal kidney cells

Ana I. Matesanz ${ }^{\text {a }}$, Carolina Hernández ${ }^{\text {a,b }}$, Ana Rodríguez ${ }^{\text {c }}$, Pilar Souza ${ }^{\text {a,* }}$

New mononuclear and dinuclear palladium(II) complexes derived from N^{4}-substituted bis (thiosemicarbazone) ligands have been synthesized and characterized. They exhibit important antitumour activity since they are capable of circumvent cisplatin resistance in A2780cisR cells and reducing toxicity on normal kidney cells.

3,5-Diacetyl-1,2,4-triazol bis(${ }^{4} \mathrm{~N}$-substituted thiosemicarbazone) palladium(II) complexes: Synthesis, structure, antiproliferative activity and low toxicity on normal kidney cells

a Departamento de Química Inorgánica (Módulo 07), Facultad de Ciencias, c/ Francisco Tomás y Valiente n ${ }^{\circ}$ 7, Universidad Autónoma de Madrid, 28049-Madrid, Spain
${ }^{\text {b }}$ Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias del Medio Ambiente, Avd. Carlos III s/n, Universidad de Castilla-La Mancha, 45071-Toledo, Spain
${ }^{\text {c }}$ Departamento de Química Inorgánica, Orgánica y Bioquímica, ETS Ingenieros Industriales, Avd. Camilo José Cela nº 3, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain

A R T I C L E I N F O

Article history:

Received 14 April 2011
Received in revised form 18 July 2011
Accepted 22 August 2011
Available online xxxx

Keywords:

Antitumour agents
Palladium complexes
Renal toxicity
Thiosemicarbazone
1,2,4-Triazol
X-ray diffraction

Abstract

Treatment of ${ }^{4} N$-monosubstituted bis(thiosemicarbazone) ligands of 3,5-diacetyl-1,2,4-triazol series with lithium 25 tetrachloridopalladate gave the dinuclear complexes of general formula $\left[\mathrm{Pd}\left(\mu-\mathrm{H}_{3} \mathrm{~L}_{\Lambda}^{1-5}\right)\right]_{2}$, but using dichloridobis- 26 triphenylphosphinepalladium(II) salt, the first mononuclear bis(thiosemicarbazone)-palladium-triphenylpho- 27 sphine complexes of the 3,5-diacetyl-1,2,4-triazol series, $\left[\operatorname{Pd}\left(\mathrm{H}_{3} \mathrm{~L}_{\stackrel{\wedge}{1-5}}^{)} \mathrm{PPh}_{3}\right]\right.$, have been obtained. All the 28 compounds have been characterized by elemental analysis and by IR and NMR spectroscopy, and the crystal 29 and molecular structures of dinuclear complexes $\left[\mathrm{Pd}\left(\mu-\mathrm{H}_{3} \mathrm{~L}^{3}\right)\right]_{2}$ and $\left[\mathrm{Pd}\left(\mu-\mathrm{H}_{3} \mathrm{~L}^{5}\right)\right]_{2}$ as well as mononuclear com- 30 plexes $\left[\mathrm{Pd}\left(\mathrm{H}_{3} \mathrm{~L}^{1}\right) \mathrm{PPh}_{3}\right],\left[\mathrm{Pd}\left(\mathrm{H}_{3} \mathrm{~L}^{2}\right) \mathrm{PPh}_{3}\right],\left[\mathrm{Pd}\left(\mathrm{H}_{3} \mathrm{~L}^{3}\right) \mathrm{PPh}_{3}\right]$ and $\left[\mathrm{Pd}\left(\mathrm{H}_{3} \mathrm{~L}^{4}\right) \mathrm{PPh}_{3}\right]$ have been determined by X-ray crys- 31 tallography. The new compounds synthesized have been evaluated for antiproliferative activity in vitro against 32 NCI-H460, A2780 and A2780cisR human cancer cell lines. Subsequent toxicity study, on normal renal LLC-PK1 33 cells, shows that all compounds investigated exhibit very low toxicity on kidney cells with respect to cisplatin. 34

 © 2011 Published by Elsevier Inc. 35
1. Introduction

Although platinum metallo-drugs are among the most effective agents for the treatment of cancer their clinical utility is restricted due to the frequent development of drug resistance, the limited spectrum of tumours against which these drugs are active and severe normal tissue toxicity being the nephrotoxicity an important side effect which interferes with their therapeutic efficiency [1-5].

Currently, metal complexes with structures different from that of cisplatin are being considered with the idea that they would have a different spectrum of activity and hence do not develop cross-resistance to cisplatin [6,7].

On the basis of the structural analogy (for d^{8} ions the square-planar geometry is favoured) and thermodynamic difference with platinum(II) complexes, there is much interest in the study of palladium (II) complexes as potential anticancer drugs, especially those bearing chelating ligands [8-13].
$\alpha-(N)$-Heterocyclic thiosemicarbazones, (N)-TSCs, are strong metal chelating agents and some of them have shown antineoplastic activity by themselves [14]. It has been demonstrated that the biochemical mechanism of action involve, among others, ribonucleotide

[^0]reductase (RR) inhibition and DNA interaction by intercalation 60 [15,16]. Particularly, the 3-aminopyridine-2-carboxaldehyde thiose- 61 micarbazone (Triapine, Vion Pharmaceuticals, New Haven, CT) is cur- 62 rently being screened for antitumour effect using the National Cancer 63 Institute panel of 60 tumour cell lines and selected for Phase I and II 64 clinical trials [17-21].

65
Within the class of (N)-TSCs, a series of 3,5-diacetyl-1,2,4-triazol 66 ${ }^{4} \mathrm{~N}$-substituted bis(thiosemicarbazone) metal complexes synthesized ${ }_{67}$ in our laboratory have shown in vitro antitumour activity [22-24]. 68

On the other hand, phosphines and phosphine metal containing 69 complexes are of current interest due to their potential use as antitu- 70 mour agents. Particularly, 1,2-bis(diphenylphosphino)ethane and 71 some of its analogues have been shown to have antitumour activity 72 against a wide range of tumours, and moreover, their activity is en- 73 hanced upon coordination to metal ions, such as gold(I) [25].

74
The possibility that phosphine and thiosemicarbazone moieties may 75 act in an additive or sinergetic fashion in palladium complexes, prompted 76 us to prepare and characterize thiosemicarbazone-palladium-phosphine 77 complexes.

3,5-Diacetyl-1,2,4-triazol ${ }^{4} \mathrm{~N}$-substituted bis(thiosemicarbazone) 79 ligands have several potential donor sites and exhibit a strong and 80 typical property of acting as bridging ligands between two metal cen- 81 ters. By reaction with $\mathrm{Li}_{2}\left[\mathrm{PdCl}_{4}\right]$ produce invariably, dinuclear com- 82 plexes but using $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ mononuclear complexes containing 83 triphenylphosphine as coligand have been obtained. Therefore, 84
along with the dinuclear palladium(II) complexes derived from ${ }^{4} \mathrm{~N}$-tolyl bis(thiosemicarbazone) ligands, herein we report the first mononuclear bis(thiosemicarbazone)-palladium-triphenylphosphine complexes of the 3,5-diacetyl-1,2,4-triazol series (Scheme 1).

We have studied their in vitro antitumour activity against three human cancer cell lines: NCI-H460 (non-small cell lung cancer), A2780 and A2780cisR (epithelian ovarian cancer). In addition toxicity studies, on normal renal LLC-PK1 cells, have been carried out as an attempt to provide an insight into the pharmacological properties of these compounds.

2. Experimental

2.1. Measurements

Elemental analyses were performed on a LECO CHNS-932 microanalyzer. ${ }^{1} \mathrm{H}$ NMR spectra (DMSO_{6}) were recorded on BRUKER AMX300 spectrometer. All cited physical measurements were obtained out by the Servicio Interdepartamental de Investigación (SIDI) of the Universidad Autónoma de Madrid.

Infrared spectra (KBr discs) were recorded on a Bomen-Michelson spectrophotometer $\left(4000-400 \mathrm{~cm}_{-1}^{-1}\right)_{\lambda}$

2.2. Materials

Solvents were purified and dried according to standard procedures. Hydrazine hydrate, L-lactic acid, ortho-tolyl isothiocyanate, meta-tolyl isothiocyanate, para-tolyl isothiocyanate, methylthiosemicarbazide, ethylthiosemicarbazide, palladium(II) chloride and thriphenylphosphine were commercially available.

2.3. Synthesis of compounds

All ligands were synthesized following general procedures as described in references [22,26]. Analytical and spectroscopic properties are consistent with those previously reported ${ }_{\alpha}$

2.3.1. Synthesis of $\left[\operatorname{Pd}\left(\mu-\mathrm{H}_{3} L^{1-5}\right)\right]_{2}$ complexes

The dinuclear complexes were obtained by reacting a methanol 115 suspension of the corresponding ligand (1.2 mmol) with a methanol 116 solution of lithium tetrachloridopalladate(II) prepared in situ from 117 palladium chloride(II) (1.2 mmol) and lithium chloride (4.4 mmol) 118 in MeOH . The reaction mixture was stirred for 5 h at room tempera- 119 ture, the resulting orange precipitated was filtered off, washed with 120 MeOH and $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo.

121
$\left[\operatorname{Pd}\left(\mu-\mathrm{H}_{3} \mathrm{~L}^{1}\right)\right]_{2}(1)$: Yield (32\%). Elemental analysis found, C, $45.15 ; \mathrm{H}, 122$ 4.05运 $\mathrm{N}, 21.20 ; \mathrm{S}, 10.30 ; \mathrm{C}_{44} \mathrm{H}_{46} \mathrm{~N}_{18} \mathrm{Pd}_{2} \mathrm{~S}_{4}$ requires C, 45.25; H, $3.95_{\text {- }}^{\text {- }} \mathrm{N}, 123$ 21.60; S, 11.00\%. IR (KBr pellet): $v_{\nless} \mathrm{Cm}_{\Delta}^{-1} 3236$ (s, NH); 1588 (s, CN). 124 ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d ${ }^{6}$): $\delta \not \mathrm{tppm}^{2} 13.99$ ($\mathrm{s},{ }^{2} \mathrm{NH}, 2 \mathrm{H}$); 10.74, $9.45{ }_{125}$ (s, $\left.{ }^{4} \mathrm{NH}, 2 \mathrm{H}\right) ; 7.30-7.10$ (m, aromatic protons, 16 H); $3.30\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$-thiose- 126 micarbazide, 12 $\widehat{\mathrm{H}}$,, 2.23 ($\mathrm{s}, \mathrm{CH}_{3}$-triazol, 12H). 127
$\left[\mathrm{Pd}\left(\mu-\mathrm{H}_{3} \mathrm{~L}^{2}\right)\right]_{2}$ (2): Yield (40\%). Elemental analysis found, C, 44.70; H, 128 $3.75_{\text {̄̄ }} \mathrm{N}, 21.30$; S 10.25; $\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{~N}_{18} \mathrm{Pd}_{2} \mathrm{~S}_{4}$ requires C, $45.25 ; \mathrm{H}, 3.95_{\text {- }} \mathrm{N}, 129$ 21.60; S 11.00\%. IR (KBr pellet): $\mathrm{v}_{\mathrm{L}} \mathrm{cm}^{-1} 3260$ (s, NH); 1611, 1590 (s 130 CN); 738 (d, CS-thioamide IV band). ${ }^{\text {T}} \mathrm{H}$ NMR (300 MHz, DMSO-d 6): 131 סŁtppm 12.81 ($\mathrm{s},{ }^{2} \mathrm{NH}, 2 \mathrm{H}$); 11.00, $9.99\left(\mathrm{~s},{ }^{4} \mathrm{NH}, 2 \mathrm{H}\right) ; 7.56-7.17$ (m , aro- 132 matic protons, 16 H); 3.29 ($\mathrm{s}, \mathrm{CH}_{3}$-thiosemicarbazide, $1 \hat{2} \mathrm{H}$), 2.24, 2.23 133 (s, CH3-triazol, 12H).

134
$\left[\operatorname{Pd}\left(\mu-\mathrm{H}_{3} \mathrm{~L}^{3}\right)\right]_{2}(3)$: Yield (33\%). Elemental analysis found, C, 44.80; 135 H, 4.10 ${ }_{\text {- }} \mathrm{N}, 21.05$; S 11.00; $\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{~N}_{18} \mathrm{Pd}_{2} \mathrm{~S}_{4}$ requires C, 45.25; H, 3.95- 136 N, 21.60; S 11.00\%. IR (KBr pellet): v+_くm CN); 855 (w, CS-thioamide IV band). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- ${ }^{6}$): 138 סłtppm 12.90, 11.25 ($\mathrm{s},{ }^{2} \mathrm{NH}, 1 \mathrm{H}$); 10.29, 10.19 ($\mathrm{s},{ }^{4} \mathrm{NH}, 2 \mathrm{H}$); 7.47- 139 7.15 (m, aromatic protons, 16H); 3.16 ($\mathrm{s}, \mathrm{CH}_{3}$-thiosemicarbazide, 140 12H), 2.33 ($\mathrm{s}, \mathrm{CH}_{3}$-triazol, 12H).

The complexes $\left[\operatorname{Pd}\left(\mu-\mathrm{H}_{3} \mathrm{~L}^{4}\right)\right]_{2}$ (4) and $\left[\mathrm{Pd}\left(\mu-\mathrm{H}_{3} \mathrm{~L}^{5}\right)\right]_{2}$ (5) were pre- 142 pared as described in reference [22]. In support of analytical and spec- 143 troscopic data, consistent with those previously reported, the X-ray 144 structure of $\left[\operatorname{Pd}\left(\mu-\mathrm{H}_{3} \mathrm{~L}^{5}\right)\right]_{2}$ complex has been determined here for 145 the first time.

2.3.2. Synthesis of $\left[\mathrm{H}_{3} L^{1-5} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)\right]$ complexes

All complexes were obtained by reaction of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, prepared 148 by a previously described procedure [27], with the corresponding 149

Scheme 1. Structure of bis(thiosemicarbazone) palladium complexes used in the study.
ligand in toluene, in presence of $\mathrm{Et}_{3} \mathrm{~N}$, in 1:1 molar ratios. The reaction mixture was stirred for 2 h at room temperature. The resulting orange solutions were filtered and left to stand at ambient temperature for two days. The yellow-orange microcrystalline solid formed were filtered, washed several times with hot water, recrystallized from ethanol and finally and dried in vacuo.
$\left[\mathrm{Pd}\left(\mathrm{H}_{3} \mathrm{~L}^{1}\right) \mathrm{PPh}_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}(6)$: Yield (48\%). Elemental analysis found, C, 55.75 ; H, 4.60-N, 13.90; S, 6.95; $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~N}_{9} \mathrm{PPdOS}_{2}$ requires C, 55.55 ; H, $4.65{ }_{\text {® }} \mathrm{N}, 14.60$; S 7.40%. IR (KBr pellet): $\mathrm{v}+\mathrm{cm}{ }^{-1} 3404,3281,3157$ (s , NH); 1586 (s, CN), 853, 837 (w, CS-thioamide IV band). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }^{6}$): $\delta \neq \mathrm{pppm} 12.57$ ($\mathrm{s},{ }^{2} \mathrm{NH}, 1 \mathrm{H}$); 9.81, 9.34 ($\mathrm{s},{ }^{4} \mathrm{NH}$, 2H); 7.66-7.51 (m, aromatic protons, 15 H); 7.35-7.04 (m, aromatic protons, 8 H); 3.29 ($\mathrm{s}, \mathrm{CH}_{3}$-thiosemicarbazide, $\widehat{6} \mathrm{H}$), 2.30, 2.21 (s , CH_{3}-triazol, 6H).
$\left[\mathrm{Pd}\left(\mathrm{H}_{3} \mathrm{~L}^{2}\right) \mathrm{PPh}_{3}\right] \cdot \mathrm{PPh}_{3}$ (7): Yield (72\%). Elemental analysis found, C, 62.30; H, $4.95_{\text {- }}^{\text {- }} \mathrm{N}, 11.60 ; \mathrm{S} 5.50 ; \mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{9} \mathrm{PPdS}_{2} \cdot \mathrm{PPh}_{3}$ requires C, 62.85; H, 4.80 ${ }_{\mathbf{2}} \mathrm{N}, 11.35$; S 5.75%. IR (KBr pellet): $\mathrm{v}+\mathrm{cm}^{-1} 3308,3144$ (s, NH); 1611, 1590 (s CN); 780 (w, CS-thioamide IV band). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }^{6}$): $\delta \not t \mathrm{ppm} 12.53$ (s, ${ }^{2} \mathrm{NH}, 1 \mathrm{H}$); 9.95, 9.93 (s, ${ }^{4} \mathrm{NH}$, 1H); 7.68-7.51 (m, 15 H , aromatic); 7.43-6.80 (m, 8 H , aromatic); $3.30\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$-thiosemicarbazide, 6 H$), 2.29, \widehat{2} .27$ ($\mathrm{s}, \mathrm{CH}_{3}$-triazol, 3 H).
$\left[\mathrm{Pd}\left(\mathrm{H}_{3} \mathrm{~L}^{3}\right) \mathrm{PPh}_{3}\right] \cdot \mathrm{PPh}_{3}$ (8): Yield (66\%). Elemental analysis found, C, 62.40; H, $5.05_{\text {- }}^{\text {- }} \mathrm{N}, 10.95$; S 5.40; $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{9} \mathrm{PPdS}_{2} \cdot \mathrm{PPh}_{3}$ requires C , 62.85; H, $4.80_{\text {- }} \mathrm{N}, 11.35$; S 5.75%. IR (KBr pellet): $\mathrm{v}_{\mathrm{L}} \mathrm{Cm}^{-1} 3329,3156$ (s, NH); 1584 (s, CN); 923, 855 (w, CS-thioamide IV band). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }^{6}$): $\delta \not t \mathrm{ppm} 12.53$ ($\mathrm{s},{ }^{2} \mathrm{NH}, 1 \mathrm{H}$); 9.95, $9.91\left(\mathrm{~s},{ }^{4} \mathrm{NH}\right.$, 1 H); 7.68-7.46 (m, aromatic, 15 H$) ; ~ 7.40-7.10$ (m, aromatic, 8 H); 3.29 ($\mathrm{s}, \mathrm{CH}_{3}$-thiosemicarbazide, 6H), 2.28, $\hat{2} .23$ ($\mathrm{s}, \mathrm{CH}_{3}$-triazol, 3H).
$\left[\mathrm{Pd}\left(\mathrm{H}_{3} \mathrm{~L}^{4}\right) \mathrm{PPh}_{3}\right] \cdot \mathrm{PPh}_{3}(9)$: Yield (45\%). Elemental analysis found, C, 57.75; H, $5.15_{\text {込 }} \mathrm{N}, 13.60$; S 6.50; $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{9} \mathrm{PPdS}_{2} \cdot \mathrm{PPh}_{3}$ requires C , 57.75; H, 4.70- $\mathrm{N}, 13.20$; $\mathrm{S} 6.70 \%$. IR (KBr pellet): $\mathrm{v}_{\mathrm{t}} \mathrm{Cm} \mathrm{m}^{-1} 3181$ (s , NH); 1590 (s, CN); 880 (w, CS-thioamide IV band). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }^{6}$): $\delta \neq \mathrm{ppm} 12.34$ (s, ${ }^{2} \mathrm{NH}, 1 \mathrm{H}$); 8.35-8.34 (d, ${ }^{4} \mathrm{NH}$, $1 \mathrm{H}) ; 8.33$ (unresolved multiplet, $1 \mathrm{H},{ }^{4} \mathrm{NH}$); 7.63-7.23 ${ }^{\wedge}(\mathrm{m}, 15 \mathrm{H}$, aromatic); 2.95, 2.82 ($\mathrm{s}, \mathrm{CH}_{3}$-thiosemicarbazide, 3 H); 2.40, 2.05 ($\mathrm{s}, \mathrm{CH}_{3}-$ triazol, 3 H).
$\left[\mathrm{Pd}\left(\mathrm{H}_{3} \mathrm{~L}^{5}\right) \mathrm{PPh}_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}(10)$: Yield (46\%). Elemental analysis found, C, 49.15; H, $5.10_{\text {- }} \mathrm{N}, 16.50 ; \mathrm{S} 8.85 ; \mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{9} \mathrm{PPdOS}_{2}$ requires C, 48.65; H, 5.00- $\mathrm{N}, 17.05$; S 8.65%. IR (KBr pellet): $\mathrm{v}_{\mathrm{L}} \mathrm{cm}^{-1} 3191$ (s , NH); 1587 (s, CN); 880, 838 (w, CS-thioamide IV band). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }^{6}$): δ tppm 12.33 (s, ${ }^{2} \mathrm{NH}, 1 \mathrm{H}$); $8.34\left(\mathrm{t},{ }^{4} \mathrm{NH}, 1 \mathrm{H}\right)$; 7.87 (unresolved multiplet, $1 \mathrm{H},{ }^{4} \mathrm{NH}$); 7.63-7.46 (m, aromatic protons, 15 H); 3.54-3.49 (t, CH3 ${ }^{-} \mathrm{CH}_{2}$-thiosemicarbazide, 3 H), 2.39, 2.07 (s, CH_{3}-triazolîc); $1.12-1.05$ (q, $\mathrm{CH}_{3}-\mathrm{CH}_{2}$-thiosemicarbazide, 2 H).

2.4. Crystallography

Data were collected on a Bruker X8 APEX II CCD (5, 7 and 8) and Bruker SMART 6K diffractometer (3, 6 and 9). Crystallographic data and selected interatomic distances and angles are listed in Tables 1 and 2 (for 3 and 5) and Tables 3 and 4 (for 6, 8 and 9). For all compounds, the software package SHELXTL was used for space group determination, structure solution, and refinement [28]. The structures were solved by direct methods, completed with difference Fourier syntheses, and refined with anisotropic displacement parameters. For 8 the molecule crystallizes with a half molecule of disordered DMSO solvent which has been squeezed [29]. The derived quantities ($\mathrm{Mr}, \mathrm{F}(000)$), and Dx in the Crystal data are corrected with the contribution from this disordered solvent.

CCDC 821564, 821565, 821566, 821567, 821568; and 821569 (for complexes $3,5,6,7,8$ and 9 respectively) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac. uk].

Table 1
t1.1
Crystal data and structure refinement for dinuclear complexes 3 and 5 .

	3	5	t1. t1.3
Molecular formula	$\mathrm{C}_{52} \mathrm{H}_{52} \mathrm{~N}_{18} \mathrm{O}_{4} \mathrm{Pd}_{2} \mathrm{~S}_{8}$	$\mathrm{C}_{24.25} \mathrm{H}_{38} \mathrm{~N}_{18} \mathrm{OPd}_{2} \mathrm{~S}_{4}$	t1.4
Formula weight	1462.40	938.77	t1.5
Temperature (K)	100(2)	100(2)	t1.6
Wavelength (\AA)	1.54178	0.71073	t1.7
Crystal system	Triclinic	Triclinic	t1.8
Space group	Pī	Pī	t1.9
$\mathrm{a}(\AA)$	14.3693(5)	14.4173(10)	t1.10
$\mathrm{b}(\AA)$	16.1347(5)	14.5861(11)	t1.11
$c(\AA)$	17.1360(6)	19.1357(14)	t1.12
$\alpha\left({ }^{\circ}\right)$	116.864(2)	69.792(4)	t1.13
$\beta\left({ }^{\circ}\right)$	96.626(2)	72.992(4)	t1.14
$\gamma\left({ }^{\circ}\right)$	106.358(2)	89.344(4)	t1.15
Volume (\AA^{3})	3261.17(19)	3593.2(5)	t1.16
Z	2	4	t1.17
$\begin{aligned} & \text { Density (calculated) } \\ & \left(\mathrm{g} / \mathrm{cm}^{3}\right) \end{aligned}$	1.489	1.735	t1.18
Absorption coefficient $\left(\mathrm{mm}_{-}^{-1}\right)$	7.310	1.284	t1.19
$\mathrm{F}(000)^{-}$	1484	1894	t1.20
Crystal size (mm^{3})	$0.30 \times 0.15 \times 0.15$	$0.24 \times 0.22 \times 0.12$	t1.21
Index ranges	$\begin{aligned} & -15 \leq \mathrm{h} \leq 16, \\ & -19 \leq \mathrm{k} \leq 19, \\ & -20 \leq 1 \leq 20 \end{aligned}$	$\begin{aligned} & -18 \leq \mathrm{h} \leq 18, \\ & -18 \leq \mathrm{k} \leq 18, \\ & -23 \leq 1 \leq 23 \end{aligned}$	t1.22
Reflections collected	27710	89540	t1.23
Independent reflections	$11153[\mathrm{R}(\mathrm{int})=0.0347]$	$14618[\mathrm{R}(\mathrm{int})=0.0568]$	t1.24
Data/restraints/parameters	11153/0/821	14618/1/937	t1.25
Goodness-of-fit on F^{2}	1.021	1.048	t1.26
Final R indices [$I>2 \sigma I)]$	$\begin{aligned} & \mathrm{R} 1=0.0369 \\ & \mathrm{wR} 2=0.0958 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0392 \\ & \mathrm{wR2}=0.0969 \end{aligned}$	t1.27
R indices (all data)	$\begin{aligned} & \mathrm{R} 1=0.0437 \\ & \mathrm{wR} 2=0.1017 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0620 \\ & \mathrm{wR} 2=0.1156 \end{aligned}$	t1.28
Largest diff. peak and hole, $\text { e. } \AA^{-3}$	1.540 and -0.825	3.506 and -1.991	t1.29

2.5. In vitro antiproliferative activity

The human cancer cells (A2780, A2780cisR and NCI-H460) were 215 grown in RPMI-1640 medium supplemented with 10% foetal bovine 216 serum (FBS) and 2 mM L-glutamine in an atmosphere of $5 \% \mathrm{CO}_{2}$ at 217 $37^{\circ} \mathrm{C}$. Cell proliferation was evaluated by the sulforhodamine B 218 assay. Cells were plated in 96 -well sterile plates at a density of 219 $1.5 \cdot 10^{4}$ (for NCI-H460) or $4 \cdot 10^{3}$ (for A2780 and A2780cisR) cells 220 per well with $100 \mu \mathrm{~L}$ of medium and were then incubated for 24 h .221 After attachment to the culture surface the cells were incubated 222 with various concentrations of the compounds tested freshly dis- 223 solved in DMSO ($1 \mathrm{mg} / \mathrm{mL}$) and diluted in the culture medium 224 (DMSO final concentration 1\%) for 48 h (for NCI-H460) or 96 h (for 225 A2780 and A2780cisR). The cells were fixed by adding $50 \mu \mathrm{~L}$ of $30 \% 226$ trichloroacetic acid (TCA) per well. The plates were incubated at 227 $4^{\circ} \mathrm{C}$ for 1 h and then washed five times with distilled water. The cel- 228 lular material fixed with TCA was stained with 0.4% sulforhodamine B 229 dissolved in 1% acetic acid for 10 min . Unbound dye was removed by 230 rinsing with 0.1% acetic acid. The protein-bound dye was extracted 231 with 10 mM unbuffered Tris base for determination of optical density 232 (at 515 nm) in a Tecan Ultra Evolution spectrophotometer.

The normal ce mented with 3% foetal bovine serum (FBS) and $1.5 \mathrm{~g} / \mathrm{L}$ of sodium bi- 235 carbonate in an atmosphere of $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$. Cell proliferation 236 was evaluated by the sulforhodamine B assay. Cells were plated in 237 96 -well sterile plates at a density of $1 \cdot 10^{4}$ cells per well with $100 \mu \mathrm{~L} 238$ of medium and were then incubated for 24 h . After attachment to 239 the culture surface the cells were incubated with various concentra- 240 tions of the compounds tested freshly dissolved in DMSO ($1 \mathrm{mg} / \mathrm{mL}$) 241 and diluted in the culture medium (DMSO final concentration 1\%) for 242 48 h at $37^{\circ} \mathrm{C}$. The cells were fixed by adding $50 \mu \mathrm{~L}$ of 30% trichloraceetic 243 acid (TCA), per well. The plates were incubated at $4^{\circ} \mathrm{C}$ for 1 h and then 244 washed five times with distilled water. The cellular material fixed with 245

Table 2
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for dinuclear complexes 3 and 5 .

$\begin{aligned} & \mathrm{t} 2.2 \\ & \mathrm{t} 2.3 \end{aligned}$	3				5			
t2.4	$\mathrm{S}(1)-\mathrm{C}(8)$	1.771(3)	$\mathrm{N}(3)_{-} \mathrm{Pd}(1)_{-} \mathrm{N}(4)$	80.08(11)	$\mathrm{S}(1)-\mathrm{C}(1)$	1.763(5)	$\mathrm{N}(3)_{-} \mathrm{Pd}(1)_{-} \mathrm{N}(4)$	79.95(15)
t2.5	$S(2)-C(37)$	1.730(3)	$\mathrm{N}(3)-\mathrm{Pd}(1)-\mathrm{S}(1)$	84.06(8)	$\mathrm{S}(2)-\mathrm{C}(22)$	1.707(5)	$\mathrm{N}(3)-\mathrm{Pd}(1)-\mathrm{S}(1)$	84.31(11)
t2.6	$\mathrm{S}(3)-\mathrm{C}(23)$	1.780(4)	$\mathrm{N}(4)-\mathrm{Pd}(1)-\mathrm{S}(1)$	164.14(8)	$\mathrm{S}(3)-\mathrm{C}(13)$	1.769(5)	$\mathrm{N}(4)-\mathrm{Pd}(1)-\mathrm{S}(1)$	164.16(11)
t2.7	$\mathrm{S}(4)-\mathrm{C}(15)$	1.729(4)	$\mathrm{N}(3)-\mathrm{Pd}(1)-\mathrm{S}(2)$	179.30(8)	$\mathrm{S}(4)-\mathrm{C}(10)$	1.702(5)	$\mathrm{N}(3)-\mathrm{Pd}(1)-\mathrm{S}(2)$	176.83(12)
t2.8	$\mathrm{C}(8)-\mathrm{N}(1)$	1.361(4)	$\mathrm{N}(4)-\mathrm{Pd}(1)-\mathrm{S}(2)$	100.03(8)	$\mathrm{C}(1)-\mathrm{N}(1)$	1.333(7)	$\mathrm{N}(4)-\mathrm{Pd}(1)-\mathrm{S}(2)$	102.55(11)
t2.9	$\mathrm{C}(8)-\mathrm{N}(2)$	1.312(4)	$\mathrm{S}(1)-\mathrm{Pd}(1)-\mathrm{S}(2)$	95.83(3)	$\mathrm{C}(1)-\mathrm{N}(2)$	1.304(6)	$S(1)-\mathrm{Pd}(1)-\mathrm{S}(2)$	93.12(5)
t2.10	$\mathrm{C}(9)-\mathrm{N}(3)$	1.302(4)	$\mathrm{N}(12)-\mathrm{Pd}(2)-\mathrm{N}(13)$	80.12(11)	$\mathrm{C}(4)-\mathrm{N}(3)$	1.291(6)	$\mathrm{N}(12)-\mathrm{Pd}(2)-\mathrm{N}(13)$	80.20(16)
t2.11	$\mathrm{C}(13)-\mathrm{N}(7)$	1.293(4)	$\mathrm{N}(12)-\mathrm{Pd}(2)-S(3)$	83.91(8)	$\mathrm{C}(8)-\mathrm{N}(7)$	1.273(6)	$\mathrm{N}(12)-\mathrm{Pd}(2)-\mathrm{S}(3)$	84.00(12)
t2.12	$\mathrm{C}(15)-\mathrm{N}(8)$	1.328(4)	$\mathrm{N}(13)-\mathrm{Pd}(2)-\mathrm{S}(3)$	163.92(8)	$\mathrm{C}(10)-\mathrm{N}(8)$	1.330(6)	$\mathrm{N}(13)-\mathrm{Pd}(2)-S(3)$	163.95(12)
t2.13	$\mathrm{C}(15)-\mathrm{N}(9)$	1.328(4)	$\mathrm{N}(12)-\mathrm{Pd}(2)-\mathrm{S}(4)$	179.20(9)	$\mathrm{C}(10)-\mathrm{N}(9)$	1.310(7)	$\mathrm{N}(12)-\mathrm{Pd}(2)-\mathrm{S}(4)$	176.81(12)
t2.14	$\mathrm{C}(23)-\mathrm{N}(10)$	1.354(5)	$\mathrm{N}(13)-\mathrm{Pd}(2)-\mathrm{S}(4)$	100.65(8)	$\mathrm{C}(13)-\mathrm{N}(10)$	1.328(6)	$\mathrm{N}(13)-\mathrm{Pd}(2)-S(4)$	101.32(12)
t2.15	$\mathrm{C}(23)-\mathrm{N}(11)$	1.313(5)	$S(3)-\operatorname{Pd}(2)-S(4)$	95.32(3)	$\mathrm{C}(13)-\mathrm{N}(11)$	1.302(6)	$S(3)-\operatorname{Pd}(2)-S(4)$	94.60(5)
t2.16	$\mathrm{C}(31)-\mathrm{N}(12)$	1.307(4)			$\mathrm{C}(17)-\mathrm{N}(12)$	1.301(6)	$\mathrm{N}(21)-\mathrm{Pd}(3)-\mathrm{N}(22)$	79.81(19)
t2.17	$\mathrm{C}(35)-\mathrm{N}(16)$	1.289(4)			$\mathrm{C}(20)-\mathrm{N}(16)$	1.281(6)	$\mathrm{N}(21)-\mathrm{Pd}(3)-S(5)$	83.90(13)
t2.18	$\mathrm{C}(37)-\mathrm{N}(17)$	1.332(5)			$\mathrm{C}(22)-\mathrm{N}(17)$	1.324(6)	$\mathrm{N}(22)-\mathrm{Pd}(3)-S(5)$	163.70(14)
t2.19	$\mathrm{C}(37)-\mathrm{N}(18)$	1.320(5)			$\mathrm{C}(23)-\mathrm{N}(18)$	1.464(7)	$\mathrm{N}(21)-\mathrm{Pd}(3)-S(6)$	176.65(14)
t2.20	$\mathrm{N}(2)-\mathrm{N}(3)$	1.375(4)			$\mathrm{N}(2)-\mathrm{N}(3)$	1.370(5)	$\mathrm{N}(22)-\mathrm{Pd}(3)-S(6)$	103.45(14)
t2.21	$\mathrm{N}(7)-\mathrm{N}(8)$	1.386(4)			$\mathrm{N}(7)-\mathrm{N}(8)$	1.372(6)	$\mathrm{S}(5)-\mathrm{Pd}(3)-\mathrm{S}(6)$	92.85(5)
t2.22	$\mathrm{N}(11)-\mathrm{N}(12)$	1.371(4)			$\mathrm{N}(11)-\mathrm{N}(12)$	1.357(5)	$\mathrm{N}(30)-\mathrm{Pd}(4)-\mathrm{N}(31)$	79.46(15)
t2.23	$\mathrm{N}(16)-\mathrm{N}(17)$	1.388(4)			$\mathrm{N}(16)-\mathrm{N}(17)$	1.371(6)	$\mathrm{N}(30)-\mathrm{Pd}(4)-S(7)$	84.24(11)
t2.24	$\mathrm{Pd}(1)-\mathrm{S}(1)$	2.2593(8)			$\mathrm{Pd}(1)-\mathrm{S}(1)$	2.2419(13)	$\mathrm{N}(31)-\mathrm{Pd}(4)-\mathrm{S}(7)$	163.61(11)
t2.25	$\mathrm{Pd}(1)-\mathrm{S}(2)$	2.3068(8)			$\operatorname{Pd}(1)-\mathrm{S}(2)$	2.2939(13)	$\mathrm{N}(30)-\mathrm{Pd}(4)-\mathrm{S}(8)$	176.03(11)
t2.26	$\mathrm{Pd}(2)-\mathrm{S}(3)$	2.2617(9)			$\mathrm{Pd}(2)-\mathrm{S}(3)$	2.2422(13)	$\mathrm{N}(31)-\mathrm{Pd}(4)-S(8)$	104.33(11)
t2.27	$\mathrm{Pd}(2)-\mathrm{S}(4)$	2.3059(8)			$\mathrm{Pd}(2)-\mathrm{S}(4)$	2.2911(14)	$S(7)-\operatorname{Pd}(4)-S(8)$	92.01(4)
t2.28	$\mathrm{Pd}(1)-\mathrm{N}(3)$	2.007(3)			$\mathrm{Pd}(1)-\mathrm{N}(3)$	1.997(3)		
t2.29	$\mathrm{Pd}(1)-\mathrm{N}(4)$	2.029(3)			$\mathrm{Pd}(1)-\mathrm{N}(4)$	2.026(4)		
t2.30	$\mathrm{Pd}(2)-\mathrm{N}(12)$	2.004(3)			$\mathrm{Pd}(2)-\mathrm{N}(12)$	1.988(4)		
t2.31	$\mathrm{Pd}(2)-\mathrm{N}(13)$	2.025(3)			$\mathrm{Pd}(2)-\mathrm{N}(13)$	2.044(4)		

Table 3
Crystal data and structure refinement for mononuclear complexes 6, 7, 8 and 9 .

	6	7	8	9
Formula	$\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{~N}_{9} \mathrm{OPPdS}_{3}$	$\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{9} \mathrm{OPPdS}_{3}$	$\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{9} \mathrm{OPPdS}_{3}$	$\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{9} \mathrm{O}_{1.5} \mathrm{PPdS}_{3}$
Molecular weight	918.36	924.41	924.41	774.18
Crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic
Space group	Pī	Pī	P2 1_{1} c	$P 2_{1} / \mathrm{n}$
$a(\AA)$	9.3982(5)	10.4846(8)	14.827(2)	15.8581(17)
$b(\AA)$	14.4134(8)	14.3569(9)	9.408(3)	8.5108(9)
$c(\AA)$	16.2876(8)	15.2545(11)	31.571(4)	25.960(3)
$\alpha\left({ }^{\circ}\right)$	83.388(3)	73.728(3)	90	90
$\beta\left({ }^{\circ}\right.$	87.939(3)	74.870(3)	103.150(16)	103.374(6)
$\gamma($	79.800(3)	84.921(3)	90	90
$V\left(A^{+3}\right)$	2156.7(2)	2127.5(3)	4288.3(15)	3408.7(7)
$\lambda(\mathrm{CuK} \alpha)(\AA)$	0.71073	1.54178	0.71073	0.71073
$T(\mathrm{~K})$	296(2)	100(2)	230(2)	100(2)
Z	2	2	4	4
$D_{\text {calc. }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.414	1.443	1.432	1.509
$F(000)$	940	952	1904	1576
$\mu\left(\mathrm{mm}^{-1}\right)$	0.657	5.608	0.661	0.816
Indepêndent reflections	8178 [R(int $)=0.0372]$	7274 [R(int) $=0.0864$]	7290 [R(int) $=0.1177]$	$6954[\mathrm{R}($ int $)=0.0479]$
Observed reflections	39,689	19,544	21,592	34,219
Final R indices $[I>2 \sigma(I)]$	$\mathrm{R}_{1}=0.0333, \mathrm{wR}_{2}=0.0874$	$\mathrm{R}_{1}=0.0550, \mathrm{wR}_{2}=0.1243$	$\mathrm{R}_{1}=0.0642, \mathrm{wR}_{2}=0.1308$	$\mathrm{R}_{1}=0.0439, \mathrm{wR}_{2}=0.1136$
R indices (all data)	$\mathrm{R}_{1}=0.0482, \mathrm{wR}_{2}=0.1094$	$\mathrm{R}_{1}=0.0834, \mathrm{wR}_{2}=0.1408$	$\mathrm{R}_{1}=0.1210, \mathrm{wR}_{2}=0.1512$	$\mathrm{R}_{1}=0.0619, \mathrm{wR}_{2}=0.1337$
Goodness of fit on F^{2}	1.158	1.036	0.887	1.093

Table 4
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for mononuclear complexes $6,7,8$ and 9

6		7		8		9	
S(1)-C(1)	1.775(3)	$\mathrm{S}(1)-\mathrm{C}(1)$	1.786(6)	$\mathrm{S}(1)-\mathrm{C}(1)$	1.777(8)	S(1)-C(1)	1.778(4)
$S(2)-C(6)$	1.667(3)	$S(2)-C(15)$	1.668(6)	$S(2)-C(15)$	1.656(9)	$S(2)-C(9)$	1.655(5)
$\mathrm{C}(1)-\mathrm{N}(2)$	$1.300(4)$	$\mathrm{C}(1)-\mathrm{N}(2)$	1.319(7)	$\mathrm{C}(1)-\mathrm{N}(2)$	1.300(9)	$\mathrm{C}(1)-\mathrm{N}(2)$	1.303(5)
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.350(4)$	$\mathrm{C}(1)-\mathrm{N}(1)$	1.350(7)	$\mathrm{C}(1)-\mathrm{N}(3)$	1.375(10)	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.330(6)$
$\mathrm{C}(2)-\mathrm{N}(3)$	1.293(4)	$\mathrm{C}(2)-\mathrm{N}(3)$	1.299(7)	$\mathrm{C}(9)-\mathrm{N}(1)$	1.275(9)	$\mathrm{C}(3)-\mathrm{N}(3)$	$1.288(5)$
$\mathrm{C}(5)-\mathrm{N}(7)$	1.295(4)	$\mathrm{C}(13)-\mathrm{N}(7)$	1.288(7)	$\mathrm{C}(13)-\mathrm{N}(7)$	1.282(10)	$\mathrm{C}(7)-\mathrm{N}(7)$	1.284(6)
$\mathrm{C}(6)-\mathrm{N}(9)$	1.341(4)	$\mathrm{C}(15)-\mathrm{N}(9)$	1.344(8)	$\mathrm{C}(15)-\mathrm{N}(9)$	1.368(10)	$\mathrm{C}(9)-\mathrm{N}(9)$	$1.334(7)$
$\mathrm{C}(6)-\mathrm{N}(8)$	1.362(4)	$\mathrm{C}(15)-\mathrm{N}(8)$	1.358(7)	$\mathrm{C}(15)-\mathrm{N}(8)$	1.360 (10)	$\mathrm{C}(9)-\mathrm{N}(8)$	1.365(6)
$\mathrm{Pd}(1)-\mathrm{N}(3)$	$2.036(2)$	$\mathrm{Pd}(1)-\mathrm{N}(3)$	2.026(4)	$\mathrm{Pd}(1)-\mathrm{N}(1)$	2.040(6)	$\mathrm{Pd}(1)-\mathrm{N}(3)$	$2.035(3)$
$\operatorname{Pd}(1)-\mathrm{N}(4)$	2.057(2)	$\operatorname{Pd}(1)-\mathrm{N}(4)$	2.050(4)	$\operatorname{Pd}(1)-\mathrm{N}(4)$	2.041(7)	$\operatorname{Pd}(1)-\mathrm{N}(4)$	2.038 (3)
$\operatorname{Pd}(1)-\mathrm{S}(1)$	2.2563(8)	$\operatorname{Pd}(1)-\mathrm{S}(1)$	2.2454(13)	$\operatorname{Pd}(1)-\mathrm{S}(1)$	2.261(2)	$\operatorname{Pd}(1)-\mathrm{S}(1)$	2.2547(12)
$\mathrm{Pd}(1)-\mathrm{P}(1)$	2.2820(8)	$\mathrm{Pd}(1)-\mathrm{P}(1)$	2.2624(13)	$\mathrm{Pd}(1)-\mathrm{P}(1)$	2.267(2)	$\mathrm{Pd}(1)-\mathrm{P}(1)$	2.2706(10)
$\mathrm{N}(3)-\mathrm{Pd}(1)-\mathrm{N}(4)$	79.19(9)	$\mathrm{N}(3)-\mathrm{Pd}(1)-\mathrm{N}(4)$	79.28(17)	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{N}(4)$	79.4(3)	$N(3)-P d(1)-N(4)$	79.87(14)
$N(3)-P d(1)-S(1)$	82.91(7)	$\mathrm{N}(3)-\mathrm{Pd}(1)-\mathrm{S}(1)$	83.64(12)	$N(1)-P d(1)-S(1)$	83.4(2)	$N(3)-\mathrm{Pd}(1)-\mathrm{S}(1)$	83.15(10)
$N(4)-P d(1)-S(1)$	161.78(7)	$\mathrm{N}(4)-\mathrm{Pd}(1)-\mathrm{S}(1)$	162.87(12)	$N(4)-P d(1)-S(1)$	162.77(19)	$N(4)-\mathrm{Pd}(1)-\mathrm{S}(1)$	162.95(10)
$N(3)-P d(1)-P(1)$	177.66(7)	$\mathrm{N}(3)-\mathrm{Pd}(1)-\mathrm{P}(1)$	177.07(14)	$N(1)-P d(1)-P(1)$	179.2(2)	$\mathrm{N}(3)-\mathrm{Pd}(1)-\mathrm{P}(1)$	176.46(10)
$N(4)-P d(1)-P(1)$	103.15(7)	$N(4)-P d(1)-P(1)$	100.87(13)	$N(4)-P d(1)-P(1)$	99.81(19)	$N(4)-\mathrm{Pd}(1)-\mathrm{P}(1)$	100.13(10)
$\mathrm{S}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	94.76(3)	$\mathrm{S}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	96.11(5)	$\mathrm{S}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	97.39(8)	$\mathrm{S}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	96.91(4)

compounds were tested in two independent studies with triplicate points. These experiments were carried out at the Unidad de Evaluación de Actividades Farmacológicas de Compuestos Químicos (USEF), Universidad de Santiago de Compostela.

3. Results and discussion

3.1. Synthesis and spectroscopic characterization

A series of dinuclear $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ complexes of 3,5-diacetyl-1,2,4-triazol bis (${ }^{4} \mathrm{~N}$-substituted thiosemicarbazones) obtained by reaction of the corresponding ligand with $\mathrm{Li}_{2}\left[\mathrm{PdCl}_{4}\right]$ or $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ have been reported by us. Here, we extend our studies to Pd(II) complexes derived of 3,5-diacetyl-1,2,4-triazol bis(${ }^{4} \mathrm{~N}$-tolylthiosemicarbazone) ligands. Analytical data suggest the formation of $\left[\mathrm{Pd}\left(\mu-\mathrm{H}_{3} \mathrm{~L}^{1-3}\right)\right]_{2}$ complexes.

When the complexation reaction was carried out with PdCl_{2} $\left(\mathrm{PPh}_{3}\right)_{2}$ salt we have achieved 3,5-diacetyl-1,2,4-triazol bis(${ }^{4} \mathrm{~N}$ substituted thiosemicarbazone) palladium(II) mononuclear complexes, containing triphenylphosphine as coligand, of stoichiometry $\left[\mathrm{Pd}\left(\mathrm{H}_{3} \mathrm{~L}^{1-5}\right) \mathrm{PPh}_{3}\right]$, in which the thiosemicarbazones coordinate as dianionic ligands with removal of both chlorido and one PPh_{3} ligands.

The significant IR vibrational bands and the ${ }^{1} \mathrm{H}$ chemical shift values of the palladium(II) complexes synthesized are listed in Section 2.

The infrared spectral bands most useful for determinining the mode of coordination of the ligands are the $v(C=N)$ iminic and $v(C=S)$ thioamide IV vibrations. These bands shift to lower wavenumbers in the spectra of the complexes suggesting coordination of the imine nitrogen and sulfur atoms. In mononuclear complexes, (6)-(10), the presence of the triphenylphosphine ligand is confirmed in the spectra of the complexes by the existence of the characteristic bands around 3050 and $1097 \mathrm{~cm}^{-1}$ for $\nu(\mathrm{CH})$ and $\nu(\mathrm{P}-\mathrm{C})$, with no significant change when compared to the precursor $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$.

In the ${ }^{1} \mathrm{H}$ NMR spectra of the complexes the absence of any signals above 15 ppm , indicative of de deprotonation of the triazole ring, together with the presence of only one signal assigned to ${ }^{2} \mathrm{~N}$ hydrazinic hydrogens is consistent with the asymmetric diprotomation typical of 3,5-diacetyl-1,2,4-triazol bis(thiosemicarbazone) ligands. The rest of the proton signals appear, in the dimeric complexes $1-5$, at nearly identical positions if each one is compared with its corresponding parent ligand. In addition, mononuclear complexes present the signals of the aromatic hydrogen atoms of triphenylphosphine. ${ }^{1} \mathrm{H}$ NMR integrations and signal multiplicities are in agreement with the proposed structures, a doublet observed at 8.35 for complex 9
as well as a triplet observed at 8.34 for complex 10 corresponding 309 to ${ }^{4} \mathrm{~N}-\mathrm{H}$ protons may be due to the coupling with neighbouring 310 alkyl group.
3.2. Description of dinuclear crystal structures 3 and 5

Single crystals of dinuclear complexes 3 and 5, suitable for single 313 crystal X-ray diffraction analysis, were obtained by recrystallization 314 in dimethylsulfoxide. The most significant parameters for these com- 315 pounds are shown in Tables 1 and 2.

The structure of 3 together with the atom labelling scheme is shown 317 in Fig. 1. This neutral $\operatorname{Pd}(\mathrm{II})$ complex, crystallizes in the triclinic Pī space 318 group with $\mathrm{Z}=2$ as discrete $\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{~N}_{18} \mathrm{Pd}_{2} \mathrm{~S}_{4} \cdot 4 \mathrm{DMSO}$ molecules and its 319 crystallographic analysis reveals unambiguously a dimeric structure 320 which results from the pairing of two mononuclear subunits through 321 two thiosemicarbazone moieties bridges.

Each Pd(II) center is four coordinated with a [NNSS] donor envi- 323 ronment, via: one triazolic nitrogen atom, the iminic nitrogen and 324 sulfur atoms belong to the deprotonated arm of one ligand molecule, 325 and being the fourth position occupied by a sulfur atom of the non 326 deprotonated arm from the other ligand. Thus, the deprotonated thio- 327 semicarbazone arm behaves as a bidentate and the neutral one be- 328 haves as monodentate acting as a bridge.

The bo each palladium (II) ion is almost planar. The angles deviate slightly 331 from that expected for a regular square-planar geometry, this distor- 332 tion may be attributed to the restricted bite angle of the tridentate 333 moieties. Coordination results in the formation of two five- 334 membered (PdSCNN and PdNCCN) chelate rings for each palladium 335 (II) ion, which are coplanar with the deprotonated triazole ring. 336

The $\operatorname{Pd}-\mathrm{N}[2.004-2.029 \AA]$ and $\operatorname{Pd}-\mathrm{S}[2.2593-2.3068 \AA]$ bond dis- 337 tances are comparable with those reported for Pd(II) thiosemicarba- 338 zone complexes. It is important to note that upon coordination, the 339 deprotonated arms undergo significant evolution from the thione to 340 the thiol form $[S(1)-C(8) 1.771(3)$ and $S(3)-C(23) 1.780(4) \AA \AA]$, 341 while the neutral thiôsemicarbazone arms presênt shorter $\mathrm{C}-\mathrm{S}$ bond 342 lengths $[S(2)-C(37) 1.730(3)$ and $S(4)-C(15) 1.729(4) \AA$. $]$. The $C-N 343$ and $\mathrm{N}-\mathrm{N}$ bô̂̀ distances are intermédiate between formal single 344 and double bonds, pointing to extensive delocalization over the entire 345 3,5-diacetyl-1,2,4-triazole bis(thiosemicarbazone) skeleton. 346

Interestingly, the flexibility of the ligand originating from the free 347 rotation of the two thiosemicarbazone arms around the $C(9)-C(11), C 348$ (12) $-C(13)$, and $C(31)-C(33), C(34)-C(35)$ single bonds, alÎows that 349 each ligand ligates twô metal ions in à twist conformation generating 350 two parallel coordination planes. Particularly, between the two 351

Fig. 1. Molecular structure of complex 3, hydrogen atoms are omitted for clarity.
triazole moieties, the interplane separation being $3.35 \AA$ is considered optimal for $\pi-\pi$ interactions (intramolecular stacking). This arrangement is reinforced by double intramolecular hydrogen bonds between the ${ }^{2} \mathrm{NH}$ of the bridging thiosemicarbazone moieties and uncoordinated triazole nitrogen atoms. The supramolecular association involves intermolecular hydrogen bonds between the ${ }^{4} \mathrm{NH}$ and the oxygen atoms of the DMSO solvent molecules and intermolecular $\pi-\pi$ stacking interactions between successive thiosemicarbazone moieties.

A drawing of complex 5 is shown in Fig. 2. This dimeric compound crystallizes in the triclinic Pī space group and the crystallographic unit comprises two independent complex molecules, which do not differ significantly from each other, and solvent molecules (the quality of the diffraction data did not allow the position of these molecules to be resolved clearly). Within each molecule, the $\mathrm{H}_{5} \mathrm{~L}^{5}$ ligands coordinate in a dideprotonated form to the $\mathrm{Pd}(\mathrm{II})$ ions in a tridentate fashion (SNN) and S-bridging modes in a similar manner to the above described 3. These two structures with tridentate/monodentate bonding, rather than bis-bidentate, result from the preferential binding of sulfur over nitrogen to palladium(II) and the high stability of the tricyclic ring system of the tridentate moiety.

3.3. Description of mononuclear crystal structures 6, 7, 8 and 9

Single crystals of complexes 6-10 were obtained by recrystallization in dimethylsulfoxide which allowed us to confirm the molecular structures of all palladium-bis(thiosemicarbazone)-phosphine complexes synthesized by a X-ray diffraction, howevêr for complex 10 the quality of the crystals was not sufficient to carry out the complete crystallographic study (the preliminary study confirms the atoms
connections). Selected bond lengths and angles are shown in 380 Table 4 and the molecular structures are shown in Figs. 3-6. 381

Complexes 6 and 7 crystallize in the triclinic Pī space group with 382 $\mathrm{Z}=2$ as discrete $\left[\mathrm{Pd}\left(\mathrm{H}_{3} \mathrm{~L}^{1}\right) \mathrm{PPh}_{3}\right] \cdot \mathrm{DMSO}$ and $\left[\mathrm{Pd}\left(\mathrm{H}_{3} \mathrm{~L}^{2}\right) \mathrm{PPh}_{3}\right] \cdot$ DMSO 383 molecules while complexes 8 and 9 crystallize in the monoclinic sys- 384 tem ($\mathrm{P} 2_{1} / \mathrm{c}$ and $\mathrm{P} 2_{1} / \mathrm{n}$ space groups) with $\mathrm{Z}=4$. Complex 8 crystallizes 385 with one molecule of disordered dimethylsulfoxide solvent (the op- 386 tion squeeze in Platon was used to eliminate the contribution of the 387 electron density in the solvent region from the intensity data) and 388 complex 9 crystallizes as discrete $\left[\mathrm{Pd}\left(\mathrm{H}_{3} \mathrm{~L}^{4}\right) \mathrm{PPh}_{3}\right] \cdot \mathrm{DMSO} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} 389$ molecules.

In the four compounds the palladium(II) ion presents a square- 391 planar geometry being the bis(thiosemicarbazone) ligand attached 392 through the $\mathrm{N}_{\text {triazolic }}$, and the $\mathrm{N}_{\text {iminic }}$ and S atoms from one thiosemi- 393 carbazone arm. The fourth coordination position occupied by a phos- 394 phorous atom from the PPh_{3} coligand which is coordinated to 395 palladium trans to $\mathrm{N}_{\text {iminic }}$.

The bis(thiosemicarbazone) ligand is in dianionic form showing \& 397 Z, E configuration, that is the coordinated thiosemicarbazone arm, in- 398 volved in two five-membered (PdSCNN and PdNCCN) chelate rings, 399 with the sulfur atom cis to the azomethine nitrogen atom, and the 400 uncoordinated thiosemicarbazone arm with the sulfur atom trans to 401 the azomethine nitrogen atom. This arrangement is reinforced by in- 402 tramolecular hydrogen bonds between the ${ }^{2} \mathrm{NH}$ of the uncoordinated 403 thiosemicarbazone arm and one triazole nitrogen atom.

404
As expected, the bond lengths and angles, in the four palladium(II) 405 complexes, are very similar. It is important to note that upon coordi- 406 nation, the deprotonated arm undergoes significant evolution from 407 the thione to the thiol form which is reflected in C-S distance of 408 1.775(3)-1.786(6) \AA while the neutral thiosemicarbazone arm 409

Fig. 2. Capped sticks representation of complex 5.
presents a shorter C-S bond length of 1.655(5)-1.668(6). The C-N and $\mathrm{N}-\mathrm{N}$ bond distances are intermediate between formal single and double bonds, pointing to extensive delocalization over the entire 3,5-diacetyl-1,2,4-triazole bis(thiosemicarbazone) skeleton, however metal coordination provokes an important shortening of the $\mathrm{C}-\mathrm{N}_{\text {hydrazinic }}$ distances $[1.300(4)-1.319(7) \AA]$ in the deprotonated arm as compared to the undeprotonated arm [$1.358(7)_{\wedge}$ and $1.365(6) \AA$ Å].

Comparison between the structures of the three ${ }^{4} \mathrm{~N}$-tolyl 417 substituted complexes reveals some differences in C(7)-N(1), C(4)- 418 $N(1)$ and $C(2)-N(3)$ bond distances, for complexes 6,7 and 8 respec- -419 tively, as a consequence of the variation in position of the ${ }^{4} \mathrm{~N}$-tolyl 420 methyl group.

Inspection of the angles formed between the palladium(II) ion and 422 the coordinated atoms shows that the metal is contained within a 423

Fig. 3. Molecular structure of complex 6, hydrogen atoms are omitted for clarity.

Fig. 4. Molecular structure of complex 7, hydrogen atoms are omitted for clarity.
slightly distorted square-planar environment. The distortion is caused by the restricted bite angle of the tridentate ligand as reflected in the $\mathrm{N}_{\text {iminic }}-\mathrm{Pd}-\mathrm{N}_{\text {triaolic }}$ and $\mathrm{N}_{\text {iminic }}-\mathrm{Pd}-\mathrm{S}$ angles (less than 90°).

The crystal structures are stabilized \hat{b} by hydrogen interactions involving the ${ }^{4} \mathrm{~N}$ atoms of the coordinated arms and the oxygen atom of solvent molecules. Within each molecule, the bis(thiosemicarba-zone)-palladium moiety is close to planar, so the supramolecular association also involves $\pi-\pi$ stacking interactions between parallel layers of molecules.

3.4. Antiproliferative activity

To analyze the potential of the compounds as antitumour agents, the new compounds synthesized were tested (in powder solid form) for their antiproliferative activity in vitro against the human cancer cell lines: NCI-H460 (non-small cell lung cancer), A2780 and A2780cisR (epithelian ovarian cancer). For comparison purposes the cytotoxicity of cisplatin was evaluated under the same experimental conditions. The cytotoxic activity of the complexes 4 and 5 was
previously studied against A2780 and A2780cisR cells [23], but their 441 antiproliferative activity against NCI-H460 is reported for the first 442 time here.

443
Table 5 shows that in A2780 cells eight of the ten compounds in- 444 vestigated present important antiproliferative activity in both 445 A2780, cisplatin sensitive, and A2780cisR, cisplatin resistant, cell 446 lines. Although a clear structure-activity relationship cannot be de- 447 duced from the limited number of compounds investigated, several 448 preliminary conclusions may be drawn.

449
Dinuclear palladium(II) complexes 1, 4 and 5 demonstrated to be 450 active in the couple of cell lines A2780/A2780cisR, however com- 451 plexes 2 and 3 show, at $100 \mu \mathrm{M}$ concentration, very low cellular 452 growth inhibition ($<50 \%$) and therefore had not evaluable cytotoxicity 453 ($\mathrm{IC}_{50}>100 \mu \mathrm{M}$). It is remarkable that among tolyl derivatives, only com- 454 plex 1 containing the ortho-tolyl group is active suggesting that the po- 455 sition of the methyl group on the tolyl substituent may be influence the 456 antiproliferative activity.

All mononuclear palladium (II) complexes synthesized 6-10, 458 bearing a triphenylphosphine coligand, displayed significant in vitro 459

Fig. 5. Molecular structure of complex 8, hydrogen atoms are omitted for clarity.

Fig. 6. Molecular structure of complex 9, hydrogen atoms are omitted for clarity.

t5 t 5.3	Compound	$\mathrm{IC}_{50}(\mu \mathrm{M})$				$\mathrm{SI}^{\text {c }}$	
t5.4		A2780	A2780cisR	NCI-H460	LLC-PK1	A2780	A2780cisR
t5.5	1	23	60	>100	>100	>4.3	>1.7
t5.6	2	>100	>100	>100	>100	-	-
t5.7	3	>100	>100	>100	>100	-	-
t5.8	$4^{\text {a }}$	15	18	>100	ND ${ }^{\text {b }}$	-	-
t5.9	$5^{\text {a }}$	25	10	49	ND ${ }^{\text {b }}$	-	-
t5.10	6	3.2	55	>100	>100	>31.2	>1.8
t5.11	7	2.9	83	>100	>100	>34.5	>1.2
t5.12	8	1.2	21	>100	>100	>83.3	>4.7
t5.13	9	6.9	13	>100	>100	>14.5	>7.7
t5.14	10	1.0	4.7	>100	>100	>100	>21.3
t5.15	cisplatin	0.85	5	3.98	7.9	9.3	1.6

antiproliferative activity in the two ovarian carcinoma cell lines tested. Specifically, complexes 9 and 10 showed the most promising results. In this case, the enhancement of the antiproliferative activity, with respect to dinuclear complexes $1-5$, might be related with their different structural characteristics. In addition the triphenylphosphine would have a lipophilic effect in the complex and help to cross the cytoplasmic membrane.

The compounds were also tested against NCI-H460 (non-small cell lung cancer) cell line but only complex $5\left(\mathrm{IC}_{50}=49\right)$ reached a cellular growth inhibition higher than 50% at the concentrations that we used in the assay $(0-100 \mu \mathrm{M})$ which is evidence of the greater sensitivity of the A2780 and A2780cisR cells lines to the complexes.

In order to investigate possible adverse side effects that may occur such nephrotoxicity, the compounds investigated and cisplatin were subsequently tested (in powder solid form) in vitro on normal renal LLC-PK1 cells $[31,32]$ and their selectivity index (SI) value was calculated for cisplatin and estimated for the compounds investigated since all complexes tested presented, at $100 \mu \mathrm{M}$ concentration, very low cellular growth inhibition ($<50 \%$) and therefore had not evaluable cytotoxicity ($\mathrm{IC}_{50}>100 \mu \mathrm{M}$).

As shows Table 5, all mononuclear palladium(II) complexes, 6-10, exhibit estimated SI values greater than that of cisplatin against A2780 cell line and for the resistant cell line A2780cis $R_{\text {-a }}$ only complex

Table 5
In vitro antiproliferative activity of the bis(thiosemicarbazone) complexes and cisplatin, evaluated in human cancer (A2780, A2780cisR and NCI-H460) and normal renal (LLC-PK1) cell lines.

The IC_{50} values are averages of two independent determinations.
${ }^{\text {a }}$ Values taken from Ref. [22].
${ }^{\mathrm{b}}$ ND, non-determined.
${ }^{\text {c }}$ SI refers to the selectivity index, which was obtained by dividing the IC_{50} value for the normal cells by the IC_{50} value for the cancer cells.

7 shows a estimated SI value less than that of cisplating These results 483 suggest that the selectivity is dependent of both cancer cell line 484 (A2780 vs A2780cisR) and compound structure (mononuclear com- 485 plexes 6-10 vs dinuclear complexes 1-5).

The goal of this investigation was to prepare new metallic com- 487 pounds with structures and modes of action different to those of cis- 488 platin while getting activity levels within the $100 \mu \mathrm{M}$ range and with 489 the advantage of a very low renal toxicity. That is to say although all 490 the investigated complexes show slightly higher IC_{50} values than cis- 491 platin their renal toxicity is markedly lower than that of cisplatin 492 which is important since one of the keys for the design of new 493 metallo-drugs is to find the optimal ratio between a cancer killing 494 dose and systemic toxicity [33].

4. Acknowledgements

496

We are grateful to Ministerio de Ciencia e Innovación, Instituto de 497 Salud Carlos III (PI080525), Universidad Autónoma de Madrid and 498 Comunidad de Madrid (CCG08-UAM/SAL-4000) of Spain for financial 499 support.

Appendix A. Supplementary data

Supplementary data to this article can be found online at doi:10. 502 1016/j.jinorgbio.2011.08.014.

References

[1] N.J. Wheate, S. Walker, G.E. Craig, R. Oun, Dalton Transactions 39 (2010) 505 8113-8127.
[2] E. Wong, C.M. Giandomenico, Chemical Reviews 99 (1999) 2451-2466. 507
[3] Z. Guo, P.J. Sadler, Angewandte Chemie, International Edition 38 (1999) 508 1512-1531.
[4] M.S. Razzaque, Nephrology, Dialysis, Transplantation (2007) 1-5. 510
[5] M. Okuda, K. Masaki, S. Fukatsu, Y. Hashimoto, K. Inui, Biochemical Pharmacology 511 59 (2000) 195-201.
[6] E. Wong, Christen M. Giandomenico, Chemical Reviews 99 (1999) 2451-2466. 513
[7] Hassan_ Daghriri, Fazluth Huq, Philip, Beale, Journal of Inorganic Biochemistry 98514 (2004) 1722-1733.
[8] Hassan_ Daghriri, Fazlul_Huq, Philip, Beale, Coordination Chemistry Reviews 248516 (2004) 119-133. istry 9 (2009) 356-368.
[10] A.S. Abu-Surrah, M. Kettunen, Current Medicinal Chemistry 13 (2006) 520 1337-1357.
[11] A.C.F. Caires, Anti-cancer Agents in Medicinal Chemistry 7 (2007) 484-491. 522
[12] A.S. Abu-Surrah, H.H. Al-Sa'doni, M.Y. Abdalla, European Cancer Therapy 6 (2008) 523 1-10.
[14] E.C. Moore, A.C. Sartorelli, in: J.G. Cory, A.H. Cory (Eds.), Inhibitors of Ribonucleo- 527 tide Diphosphate Reductase Activity, Pergamon Press, New York, 1989, 528 pp. 203-215.
[15] G. Nocentini, Critical Reviews in Oncology/Hematology 22 (1996) 89-126. 530
[16] N.M.F.S.A. Cerqueira, P.A. Fernandes, M.J. Ramos, Recent Patents on Anti-Cancer 531 Drug Discovery 2 (2007) 11-29.
[17] M. Liu, T. Lin, A.C. Sartorelli, Chemical and biological properties of cytotoxic $\alpha-533$ (N)-heterocyclic carboxaldehyde thiosemicarbazone, Progress in Medicinal 534 Chemistry 32 (1995) 1-35.
[18] M.C. Liu, T.S. Lin, A.C. Sartorelli, Journal of Medicinal Chemistry 35 (1992) 536 3672-3677.
[19] R.A. Finch, M.C. Liu, A.H. Cory, J.G. Cory, A.C. Sartorelli, Advances in Enzyme Reg- 538 ulation 39 (1999) 3-12.
[20] R.A. Finch, M.C. Liu, S.P. Grill, S.P.W.C. Rose, R. Loomis, K.M. Vasquez, Y.C. Cheng, 540 A.C. Sartorelli, Biochemical Pharmacology 59 (2000) 983-991. 541
[21] A.B. Alvero, W. Chen, A.C. Sartorelli, P. Schwartz, T. Rutherford, G. Mor, Journal of 542 the Society for Gynecologic Investigation 13 (2006) 145-152.
[22] A.I. Matesanz, P. Souza, Journal of Inorganic Biochemistry 101 (2007) 245-253. 544
[23] A.I. Matesanz, C. Joie, P. Souza, Dalton Transactions 39 (2010) 7059-7065. 545
[24] A.I. Matesanz, C. Hernández, A. Rodríguez, P. Souza, Dalton Transactions 40546 (2011) 5738-5745.

547
[25] O.M. Ni Dhubhghaill, P.J. Sadler, in: B.K. Keppler (Ed.), Metal Complexes in Cancer 548 Chemotherapy, VCH, Weinheim, 1993, p. 221.
[26] P. Souza, A.I. Matesanz, C. Pastor, Inorganic Chemistry Communications 5 (2002) 550 344-346.
[27] W.L. Steffen, G.J. Palenik, Inorganic Chemistry 15 (1976) 2432.
[28] SHELXTL-NT version 6.12, Structure Determination Package, Bruker-Nonius AXS, 553 Madison, Wisconsin, USA, 2001.
[32] P. Gunness, K. Aleksa, K. Kosuge, S. Ito, G. Koren, Canadian Journal of Physiology 559 and Pharmacology 88 (2010) 448-455. 560
[33] M. Huxley, C. Sanchez-Cano, M.J. Browning, C. Navarro-Ranninger, A.G. Quiroga, 561

29] A.L. Spek, Acta Crystallographica A46 (1990) C-34
[30] GraphPad Prism, version 2.01, GraphPad Software, Inc., San Diego, CA, 1996.
[31] M. Okuda, K. Tsuda, K. Masaki, S. Sachio, Y. Hashimoto, K. Inui, Biochemical Pharmacology 59 (2000) 195-201.
A. Rodger, M.J. Hannon, Dalton Transactions 39 (2010) 11353-11364. 562

[^0]: * Corresponding author. Tel.: + 34914975146 ; fax: + 34914974833 .

 E-mail address: pilar.souza@uam.es (P. Souza).

