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Abstract
In this paper we present an algorithm that makes use of 
information contained in syllable lattices to significantly 
reduce the classification error rate of a children’s speech 
reading tracker. The task is to verify whether each word in a 
reference string was actually spoken. A syllable graph is 
generated from the reference word string to represent 
acceptable pronunciation alternatives. A syllable based 
continuous speech recognizer is used to generate a syllable 
lattice. The best alignment between the reference graph and 
the syllable lattice is determined using a dynamic 
programming algorithm. The speech vectors that are aligned 
with each syllable are used as features for Support Vector 
Machine classifiers that accept or reject each syllable in the 
aligned path. 

Experimental results over three children’s speech 
corpora show that this algorithm can substantially reduce the 
classification error rate over the standard word based tracker 
and over a simple best-path syllable based tracker. 

Index Terms: speech recognition, children’s speech, 
reading tracker, token passing, SVM. 

1. Introduction
Children’s speech computer-based reading tracking systems 
have proven to be an effective and low cost way to teach 
beginning and early readers to read accurately and fluently. 
Oral reading tracking systems generally use a speech 
recognizer to determine whether a child has read a known text 
passage correctly. By aligning the sequence of word 
hypothesis produced by the recognizer against the reference 
text, i.e. the text passage to be read, text passage’s words can 
be tagged as correctly or incorrectly read. Additional 
information, such as confidence scores, can be attached to 
each word.

 When dealing with children’s continuous speech 
recognition, it is difficult to obtain satisfactory acoustic 
models due to the great variability of children’s speech. In the 
context of a reading tracker is possible to cope with lack of 
adequate acoustic models by taking advantage of adaptive 
language models that reflect what the child is supposed to be 
reading [1]. While the use of such adaptive language models 
improves the Word Error Rate of the recognizer, the 
technique makes rejection of errors difficult. 

This paper presents a method that significantly reduces 
the Classification Error Rate (CER) of a state-of-the-art word-
based reading tracker by avoiding the drawbacks inherent to 
the use of dynamic adaptive language models. The method 
proposed comprises three steps:

1) A syllable lattice is generated using a syllable 
trigram language model. 

2) The reference text is represented as a syllable 
graph. A Dynamic Programming algorithm uses 

Minimum Edit Distance to traverse the lattice and 
find the path closest to the reference graph. This 
path gives an alignment between phones 
(comprising syllables) in a reference path and 
speech vectors in the input. 

3) The speech vectors that are aligned with each phone 
are used as features for Support Vector Machine 
(SVM) classifiers that classify each frame as 
belonging to the reference phone or not. These 
frame level decisions are combined to make 
syllable and then word level accept/reject decisions. 

Evaluation is based on Classification Error Rate, the rate 
at which words in the reference string are correctly classified 
as present or not. 

2. Background
In this section we describe the systems used as baselines 

in the experimental evaluation of the proposed algorithm. 

2.1. Word-based Reading Tracker 
The baseline system is the word-based reading tracker 
algorithm used in the Foundations to Literacy system [1]. The 
Sonic speech recognizer [2] is used to produce a single best 
hypothesis for what the child read. The recognizer uses a 
word lexicon and word based trigram language model. The 
reference string is aligned to the recognition hypothesis. 
Those words in the reference string that are aligned to the 
same word in the hypothesis are classified as present. Words 
in the reference string that are aligned to a different word in 
the hypothesis are classified as not present. Due to the large 
variability in children’s speech, acoustic models are typically 
of relatively poor quality, so stronger language models are 
used to compensate. In this application, the text to be read is 
known. Very low perplexity adaptive language models based 
on the words in the text that are currently being read are used 
during the decoding process. Position-sensitive trigram 
language models are generated, partitioning the training text 
into overlapping regions [1]. After decoding each utterance, 
the position-sensitive language model that gives a higher 
probability to the last recognized words is selected for the 
first pass decoding of the subsequent utterance. This results in 
a very low perplexity language model. Since most words in 
the corpus are read correctly, using this low perplexity 
language model and weighting it heavily produces the lowest 
Word Error Rate, compared to hand generated transcripts of 
the speech. However, this strategy produces a very sparse 
word lattice and compromises the ability of the system to 
assign confidence scores to each word. 

2.2. Syllable-based Reading Tracker 
One solution to avoid the problems caused by lexical and 
language model constraints is to use a decoder based on sub-
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word units, phones or syllables. The decoder is then more 
able to produce sequences that match the acoustics of the 
signal. The lattice contents can then be aligned against the 
reference string to produce features for classifying the 
presence or absence of each word. Our analysis of children’s 
speech corpora showed that most of the disfluencies like 
repetitions and self-corrections occur at the syllable level. For 
example “when his ow- owners got him as a a puppy”. Since 
working at the syllable level seems to be very promising for 
disfluency detection, we built a syllable based speech 
recognizer using Sonic [2]. The lexicon of the system 
consisted of a set of 2314 syllables, each with a sequence of 
one or more phones as its reference pronunciation. Context 
dependent phone models were trained for a 55-phoneme 
symbol set. The syllabification process was carried out over a 
multiple pronunciations version of the lexicon using the 
syllabification software available from NIST [3]. A back-off 
trigram syllable language model was trained in which 
multiple pronunciations of each word are used in the training 
process. This system is then used to generate a syllable lattice 
for each utterance. 

3. Path Alignment
The reference text, i.e. the text passage that the child 
supposedly read, is represented in the form of a graph of 
syllables that encodes the different pronunciations observed 
for the reference words in the training data. An example of 
these graphs can be seen in Figure 1. We evaluated two 
strategies for using paths in the syllable lattice: 

1. Comparing the best path (highest score) in the 
lattice to the reference graph. 

2. Finding the path in the syllable lattice that is 
closest, in terms of Minimum Edit Distance, to the 
reference text. 

The algorithm for finding the MED path is based on the 
token passing paradigm that is often used in keyword 
spotting phone-lattice search approaches [4][5]. In the case of 
aligning a lattice, that is just an acyclic oriented graph, 
against a reference graph, the number of token expansions 
grows exponentially. For this reason, and given that a reading 
tracker is by nature a real time application, beam pruning 
techniques are applied to reduce the search. 

3.1. Lattice Generation 
The lattice generation process is carried out using a Viterbi 
syllable recognizer that decodes each utterance into a syllable 
lattice. These lattices are transformed into syllable graphs 
whose density is adjusted as a tradeoff between the detection 
rate and the real time performance of the algorithm. The 
decoding search parameters (insertion penalty, language 
model weight and beam width) were optimized using a 
development set. 

For efficiency of alignment, lattices are constructed so 
that only one end node </s> is present and no node in the 
lattice is allowed to have more than one descendant 
associated with the same syllable.  

aa_n d_r_ay_v hh_ow_m hh_iy r_iy l_ay_z_dd l_eh_g_z

dh_ae_td          hh_ih_z 

dh_ax_td         hh_ax_z 

dh_ah

dh_iy

dh_ax

ax

3.2. Alignment Algorithm 
This section describes the algorithm used to find the path 

in the lattice that is closest match to some path in the 
reference graph. Let [t,s,H] be defined as a token where t
represents the minimum number of MED operations, i.e. 
insertions, deletions, substitutions and matches necessary to 
propagate a token to the lattice node where the token is held, 
and with same reference syllable in the last position of the 
token history. The value s is the token accumulated MED 
score and H is the token history. The value t can be easily 
computed dynamically and will be used to prune tokens 
globally instead of using the typical node localized V-best 
token merging procedure. Since tokens with same value of t
represent comparable partial alignments of paths in the lattice 
vs. paths in the reference graph, they can be compared by 
score and pruned using a beam. 

Let D(G,n) be defined as a function that returns the list 
of nodes that are descendants of the node n in the reference 
graph G. The alignment algorithm is: 

1. = 0 
2. Pass an empty token to the lattice root element 

(<s>).
3. While there are tokens in other nodes rather than 

the final node of the lattice do: 
a. For each node i in the lattice do: 

i. Merge node tokens with history ending at 
the same reference node keeping only the 
best scoring one. 

ii. For each token in the node with t = do
TokenPropagation(D(G,n),Ci,Cd,Cs)
where n is the last reference node present 
in the history of token i, Ci is the insertion 
cost function, Cd is the deletion cost 
function and Cs is the substitution cost 
function.

b.  =  + 1
c. Apply beam pruning for all tokens in the 

lattice with t =  using a beam-width of B.
4. Take the best scoring token in the final state (</s>)

and return its history as the final hypothesis. 

4. Syllable Rejection
Once the best matching path from the lattice (relative to 

a path in the reference graph) is found, it is used to reject 
syllables in the reference string. If aligned syllables agree, 
then the syllable in the reference is classified as present. If the 
aligned syllables do not agree, the syllable in the reference is 
classified as absent. Classifications produced by this 
procedure typically have a low False Rejection rate but are 
subject to higher False Acceptance rates. This motivates the 
use of a confidence measure acting as a syllable rejection 
mechanism. Support Vector Machines have been used 
successfully in recent years for phonetic classification [6]. 

Figure 1. Syllable graph corresponding to the utterance “…on the drive home he realized that his legs…”.
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An SVM learns the decision boundary between samples 
belonging to two classes by mapping the training sample 
vectors into a higher dimensional space and then determining 
an optimal separating hyper-plane [7]. In our case, the 
alignment of paths in the lattice to paths in the reference 
string associates a sequence of vectors in the speech signal 
with each syllable in the reference string. These vectors are 
used by SVM classifiers to accept or reject the syllable. 

4.1. Training and Parameter Selection 
For every speech segment present in the training set, 39-

dimensional feature vectors, consisting of 12 Mel Frequency 
Cepstral Coefficients and energy plus first and second order 
derivatives, have been extracted. The children’s speech 
corpora available are tagged at the word level only so phone 
boundaries are obtained using a Viterbi-based phonetic 
alignment against the transcriptions. 

SVM’s are well suited for two-class separation tasks, 
however for n-class (n>2) separation tasks, like building a 
phonetic classifier, n SVMs need to be trained. In this case we 
have selected a “one vs. all” approach in which one SVM 
classifier [8] is trained for each of the 55 phonetic symbols 
used. For the training of each SVM, half of the data points 
(positive samples) belong to the actual phone while the rest 
belong to the remaining phones (negative samples). 

A radial basis function (RBF) kernel is used for which 
the parameters C (cost) and  are estimated over the training 
set doing a “grid-search” process using 5-fold cross 
validation.

4.2.  Confidence measures estimation 
For each syllable in a given reference string, a 

confidence measure (1) is calculated using an arithmetic mean 
of the confidence measures calculated for each of its phones 
(2). The later is computed as the posterior probability of a 
phone given the acoustic observation sequence O to which it 
is aligned.

1
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The probability P(O|pi) is estimated using the trained set 
of SVMs. To estimate this probability, each speech vector 
aligned with a phone is passed to the one vs. all SVM 
classifier associated with the phone. The SVM returns either a 
positive (vector is an instance of the phone) or negative 
classification. The probability is the ratio of the number of 
positive classifications to the total numbers of vectors aligned 
with the phone. Once (1) is calculated, the decision whether 
to classify the syllable as “reliable” or “unreliable” is taken 
based on a fixed threshold  previously trained (3).   

if  ( )
otherwise

s accept  CM s
s

 reject   
                           (3) 

A final step of syllables to words mapping is necessary. 
In this step sometimes not all the syllables of a given 
reference word are present in the hypothesis. These cases 
have been solved by considering “partially read” words as 

correctly read when at least 50% of the corresponding 
syllables were present, otherwise the word is classified as 
incorrectly read. 

5. Experimental Procedure 
Experiments were carried out to evaluate the performance of 
the alignment algorithm proposed and to compare the 
resulting syllable based system against a tuned word based 
one.

5.1. Speech material
We present experimental results on a corpus composed of the 
CU Prompted and Read Children’s Speech Corpus [9], the 
OGI Kid’s speech corpus [10] and the CU Read and 
Summarized Story Corpus [11]. Children’s acoustic models 
are estimated from over 62 hours of audio from the CU 
Prompted and Read Children’s Speech Corpus, the OGI Kids’ 
speech corpus grade K through 5, and data from 1st and 2nd 
graders found in the CU Read and Summarized Story Corpus. 
Reading tracking systems are evaluated on the 106 3rd, 4th 
and 5th graders from the CU Read and Summarized Story 
Corpus, each speaker reading one out of 10 stories with an 
average length of 1,054 words per story.  

5.2. Evaluation procedure 
To evaluate the performance of a reading tracker we use the 
Classification Error Rate (CER) defined as the percent of 
words in the reference text that have been correctly tagged, as 
present (correctly) or absent (incorrectly) read, by the reading 
tracker. The reference classifications are generated by 
aligning the reference (prompt) string against hand generated 
transcriptions of the corresponding speech. Each word in the 
reference string aligned with the same word in the hand 
transcription is marked as present (read correctly). Words in 
the reference not aligned with the same word in the hand 
transcript are marked as absent (not read correctly). This 
classification string is the gold standard against which 
automatic classification output is scored. 

To score an automatically classified string, the string is 
aligned with the gold standard and the classifications for each 
word are compared. The CER is the percent of words for 
which the classifications do not agree. 

5.3. Results
The first experiment conducted compares performance 

of a reading tracking system using different parameterizations 
of the alignment algorithm. These are compared against two 
tuned baseline systems, the word-based reading tracker 
described in section 2.1 and a syllable-based reading tracker 
that uses the single best scoring path from the syllable lattice. 
Each configuration in the path alignment algorithm is 
represented by the following notation PAA[SGD,Cs,B] where 
SGD is the syllable graph density, defined as the total number 
of syllable graph edges divided by the number of actually 
spoken syllables. B is the pruning beamwidth and Cs is the 
MED cost for substitutions. The value of Ci and Cd is fixed 
and equal to 1 in all the configurations. 

For comparison, performance given by aligning the 
lattices against the hand transcribed text is shown. This 
number gives an indication of lattice quality. Performance of 
this system, marked with an asterisk, shows the potential of 
lattice-search in the CER minimization task. 
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Results can be seen in table 1, where performance is 

measured in terms of CER, false acceptations and false 
rejections. Note that the parameter combinations are chosen 
so that the corresponding system is fast enough to perform in 
real time. 

Configuration CER FA FR 
syllable-based (best path) 4.70 2.15 2.55
PAA[8,1,2] 4.61 2.91 1.7
PAA[8,1.1,2] 4.17 2.70 1.47
PAA[8,1,3] 4.22 2.65 1.57
PAA[8,1.1,3] 3.97 2.57 1.40
PAA[12,1.1,3] 3.91 2.53 1.38
PAA[8,1,3]* 3.03 1.38 1.65
word-based (best path) 4.48 1.88 2.60

PAA[8,1.1,3] + SVM rejection module

Table 1. Performance of different parameterizations of the algorithm. 

Results show that the alignment algorithm outperforms (in 
CER) both syllable-based and word-based baseline systems. 
The number of false rejections are reduced at the cost of an 
increase in the number of false acceptances. Different 
parameterizations of the algorithm show that, as expected, 
increasing the lattice density and the beamwidth produce a 
reduction in the CER. In addition, penalizing substitutions 
higher than deletions and insertions performs better. Note that 
these results do not use the SVM classifiers to reject syllables 
with poor acoustic matches. The hope is that using the SVMs 
will reduce the False Acceptance rate. 

Finally, an experiment to evaluate the discriminative 
power of the syllable rejection module and how it 
complements the alignment algorithm by reducing the 
number of false acceptances was carried out. Each of the 
syllables present in the lattice path produced by the algorithm 
is scored using the confidence measure CMs described in 
section 4.2 and tagged as “reliable” or “unreliable” using the 
fixed threshold . Subsequently, when aligning the hypothesis 
against the reference during the CER calculation process, 
“unreliable” syllables will produce incorrectly read words. 

Results for this experiment are shown in figure 2 in the 
form of an ROC curve.

Figure 2. ROC curve for the system PAA[8,1.1,3] after applying the 
syllable rejection mechanism. 

The SVM rejection algorithm was applied to alignments 
produced by the PAA[8,1.1,3] condition. The initial 
performance of this condition was CER= 3.97, FA= 2.57, 
FR= 1.40. As the threshold is increased, the SVM 

increasingly reduces the FA rate at the cost of increasing the 
FR rate. The minimum CER is 3.67 which has a FA= 1.99 
and FR= 1.68. 

6. Conclusions
We have presented a mechanism for a reading tracker 

task that uses syllable based decoding to avoid the problems 
associated with using word lexicons and word based language 
models. The model presented is very preliminary in that it has 
not been optimized in a number of ways: No allowance has 
been made for disfluencies in the syllable language model, no 
disfluency acoustic models are used, the method of estimating 
the phone probabilities from the individual speech vector 
probabilities and the syllable and word confidences from 
these is clearly sub-optimal. Also there is much information 
in the dense syllable lattices that is not being used. Even so, 
the method seems very promising in that it reduced CER over 
a current state-of-the-art word based system from 4.48 to 
3.67, a relative reduction in error rate of 18%. It also provides 
a mechanism for trading off False Alarms against False 
Rejections to optimize these for a specific application. This 
general technique can be applied to verifying any hypothesis, 
not just reading tracking tasks. For example, it can be used to 
assign confidence scores to words in hypotheses generated by 
a speech recognizer. 
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