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We demonstrate that a wide range of viable fðRÞ parametrizations (including the Hu and Sawicki and the

Starobinsky models) can be expressed as perturbations deviating from the �CDM Lagrangian. We

constrain the deviation parameter b using a combination of geometrical and dynamical observational

probes. In particular, we perform a joint likelihood analysis of the recent type Ia supernova data, the cosmic

microwave background shift parameters, the baryonic acoustic oscillations and the growth rate data

provided by the various galaxy surveys. This analysis provides constraints for the following parameters:

the matter density�m0, the deviation from�CDM parameter b and the growth index �ðzÞ. We parametrize

the growth index �ðzÞ in three manners (constant, Taylor expansion around z ¼ 0, and Taylor expansion

around the scale factor). We point out the numerical difficulty for solving the generalized fðRÞ Friedmann

equation at high redshifts due to the stiffness of the resulting ordinary differential equation. We resolve this

problem by constructing an efficient analytical perturbative method in the deviation parameter b. We

demonstrate that this method is highly accurate, by comparing the resulting analytical expressions for the

Hubble parameter with the numerical solutions at low and intermediate redshifts. Surprisingly, despite its

perturbative nature, the accuracy of the method persists even for values of b that are of Oð1Þ.
DOI: 10.1103/PhysRevD.87.123529 PACS numbers: 98.80.�k, 98.80.Bp, 98.65.Dx, 95.35.+d

I. INTRODUCTION

A variety of cosmological studies have converged to a
cosmic expansion history involving a spatially flat geometry
and a cosmic dark sector formed by cold dark matter and
some sort of dark energy, endowed with large negative
pressure, in order to explain the observed accelerating expan-
sion of the Universe [1–9]. In this framework, the absence of
a fundamental physical theory, regarding the mechanism
inducing the cosmic acceleration, has given rise to a plethora
of alternative cosmological scenarios. Modified gravity mod-
els act as an important alternative to the scalar-field dark
energy models, since they provide an efficient way of ex-
plaining the accelerated expansion of the Universe, under a
modification of the nature of gravity. Such an approach is an
attempt to evade the coincidence and cosmological constant
problems of the standard �CDM model.

Particular attention over the last decades has been paid
to fðRÞ gravity theories [10]. In this scenario of nonstan-
dard gravity, one modifies the Einstein-Hilbert action with
a general function fðRÞ of the Ricci scalar R. The fðRÞ
approach is a relatively simple but fundamental tool used

to explain the accelerated expansion of the Universe.
A pioneering approach was proposed long ago, where
fðRÞ ¼ RþmR2 [11]. Later on, the fðRÞ models were
further explored from different points of view in
Refs. [12–14] and a large number of functional forms of
fðRÞ gravity are currently available in the literature. It is
interesting to mention that subsequent investigations [14]
confirmed that 1=R gravity is an unacceptable model be-
cause it fails to reproduce the correct cosmic expansion in
the matter era. Of course, there are many other possibilities
to explain the present accelerating stage. Indeed, in the
literature one can find a variety of modified gravity models
(for reviews see Ref. [15]) which include the braneworld
Dvali, Gabadadze and Porrati (hereafter DGP; Ref. [16])
model, Finsler-Randers gravity [17], scalar-tensor theories
[18] and Gauss-Bonnet gravity [19].
The construction of observationally viable fðRÞ theories

has proved to be challenging because it has been shown
[14] that most of these models do not predict a matter era in
the cosmic expansion history. Nevertheless observationally
viable fðRÞ models have been constructed and two such
examples are the following:
(1) The Hu and Sawicki (HS) model [20] with

fðRÞ ¼ R�m2 c1ðR=m2Þn
1þ c2ðR=m2Þn ; (1.1)
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where c1, c2 are free parameters, m2 ’ �m0H
2
0 is of

the order of the Ricci scalar R0 at the present time,
H0 is the Hubble constant,�m0 is the dimensionless
matter density parameter at the present time, and m
and n are positive constants.

(2) The Starobinsky model [21] with

fðRÞ ¼ R� c1m
2½1� ð1þ R2=m4Þ�n�: (1.2)

These models were originally advertised as models that do
not contain the cosmological constant as part of fðRÞ being
distinct from the�CDM form fðRÞ ¼ R� 2� (where� is
the cosmological constant). However, it is straightforward
to show that both the Hu and Sawicki and the Starobinsky
models may be written in terms of �CDM modified by a
distortion function yðR; bÞ that depends on a deviation
parameter b as

fðRÞ ¼ R� 2�yðR; bÞ; (1.3)

where [22]

yðR; bÞ ¼ 1� 1

1þ ðR=ðb�Þn (1.4)

for the Hu and Sawicki model with � ¼ m2c1
2c2

and

b ¼ 2c1�1=n
2

c1
, while

yðR; bÞ ¼ 1� 1

ð1þ ð R
b�Þ2Þn

(1.5)

for the Starobinsky model where � ¼ c1m
2

2 and b ¼ 2
c1
.

Notice that in both cases the following two limits exist
for n > 0:

lim
b!0

fðRÞ ¼ R� 2�; lim
b!1

fðRÞ ¼ R; (1.6)

and therefore both models reduce to �CDM for b ! 0.
Notice that both the Hu and Sawicki and the Starobinsky
models effectively include the cosmological constant even
though they were advertised as being free from a cosmo-
logical constant in the original papers [20,21]. In fact by
proper choices of the function yðR; bÞ it is possible to
construct infinite viable fðRÞ models which however will
always include �CDM as a limiting case for b ! 0.

Thus, an important question that arises is the following:
What is the range of the deviation parameter b that is
consistent with cosmological observations? This is the
main question addressed in the present study. Since
�CDM is consistent with observations we anticipate that
the value b ¼ 0 is within the acceptable range of b values.
Thus, the interesting part of the question is, what is the
maximum allowed value of b at eg the 2� confidence
level?

In order to address this question we solve the back-
ground modified Friedman equation assuming flatness
and obtain the Hubble parameter Hð�m0; b; zÞ. This

involves the numerical solution of a stiff ordinary differ-
ential equation (ODE), second order in H, with initial
conditions at high z that correspond to �CDM. The nu-
merical solution of this stiff ODE at redshifts higher than
z ’ 300 is quite challenging. However, we have developed
an efficient analytical perturbative expansion in b to solve
it. This expansion leads to an analytic expression for
Hð�m0; b; zÞ to all orders in b. We thus use geometric
probes [type Ia surenovae (SnIa), the cosmic microwave
background (CMB) shift parameter and baryon acoustic
oscillation (BAO) data] to constrain the parameters�m0, b
that appear in the expression of Hð�m0; b; zÞ.
In addition to geometric observations that probe the

cosmic metric directly, dynamical probes play a crucial
role in constraining cosmological models. The growth
index, �, could provide an efficient way to discriminate
between modified gravity models and scalar field dark
energy (hereafter DE) models which adhere to general
relativity. The accurate determination of the growth index
is considered one of the most fundamental tasks for ob-
servational cosmology. Its importance stems from the fact
that there is only a weak dependence of � on the equation
of state (EoS) parameter wðzÞ, as has been found by Linder
and Cahn [23], which implies that one can separate the
background expansion history, HðzÞ, constrained by geo-
metric probes (SnIa, BAO, CMB), from the fluctuation
growth history, given by �. For a constant DE equation
of state w, it was theoretically shown that for DE models
within general relativity the growth index � is well ap-

proximated by � ’ 3ðw�1Þ
6w�5 (see Refs. [23–26]), which boils

down to � 6=11 for the �CDM cosmology wðzÞ ¼ �1.
Notice, that in the case of the braneworld model of Dvali,
Gabadadze and Porrati [16] we have � � 11=16 (see also
Refs. [23,27–29]), while for some fðRÞ gravity models we
have � ’ 0:415� 0:21z for various parameter values (see
Refs. [30,31]). Recently, Basilakos and Stavrinos [32]
found � � 9=14 for the Finsler-Randers cosmology.
Observationally, indirectmethods tomeasure� have also

been developed (mostly using a constant �), based either
on the observed growth rate of clustering [26,27,33–39]
providing a wide range of � values � ’ ð0:58–0:67Þ,
or on massive galaxy clusters (Vikhlinin et al. [40]
and Rapetti et al. [41]). The latter study provides � ¼
0:42þ0:20

�0:16. An alternative method for measuring � involves

weak gravitational lensing [42]. Gaztanaga et al. [43] per-
formed a cross-correlation analysis between probes of weak
gravitational lensing and redshift space distortions and
found no evidence for deviations from general relativity.
Also, Basilakos and Pouri [36] and Hudson and Turnbull
[37] imposed constraints on the growth index using the
combination parameter FðzÞ�8ðzÞ,1 of the growth rate of

1Here the capital FðaÞ denotes the growth rate of structure. We
follow the latter notation in order to avoid confusion with the
fðRÞ.
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structure FðzÞ multiplied by the redshift-dependent rms
fluctuations of the linear density field, �8ðzÞ. The above
authors found � ¼ 0:602� 0:05 [36] and � ¼ 0:619�
0:05 [37] while Basilakos and Pouri [36] showed that the
current growth data can not accommodate the Dvali,
Gabadadze and Porrati [16] gravity model.

In order to impose constraints on the viable fðRÞmodels
discussed above, we use—in addition to geometric
probes—the recent growth rate data as collected by
Nesseris and Garcia-Bellido [44], Hudson and Turnbull
[37] and Beutler et al. [45].

The plan of the paper is as follows. Initially in Sec. II, we
briefly discuss the background cosmological equations.
The basic features of the growth index are presented in
Sec. III, where we extend the original Polarski and
Gannouji method [46] for a general family of �ðzÞ parame-
trizations as well as fðRÞ cosmological models. In Sec. IV,
a joint statistical analysis based on theUnion 2.1 set of type
Ia supernovae [47], the observed baryonic acoustic oscil-
lations [48], the shift parameter of the cosmic microwave
background [9], and the observed linear growth rate of
clustering, measured mainly from the PSCz, 2dF, VVDS,
SDSS, 6dF, 2MASS, BOSS and WiggleZ redshift catalogs,
is used to constrain the growth index model free parame-
ters. Finally, we summarize our main conclusions in
Sec. V.

II. THE BACKGROUND EVOLUTION

First of all we start with the assumption that the Universe
is a self-gravitating fluid described by a modified gravity,
namely fðRÞ [10], and endowed with a spatially flat homo-
geneous and isotropic geometry. In addition, we also con-
sider that the Universe is filled by nonrelativistic matter
and radiation. The modified Einstein-Hilbert action reads

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2k2
fðRÞ þLm þLr

�
; (2.1)

where Lm is the Lagrangian of matter, Lr is the
Lagrangian of radiation and k2 ¼ 8�G. Now by varying
the action with respect to the metric2 we arrive at

fRG
�
� � g��fR;�;� þ

�
2hfR � ðf� RfRÞ

2

�
�
�
� ¼ k2T

�
� ;

(2.2)

where R is the Ricci scalar, fR ¼ @f=@R, G�
� is the

Einstein tensor and T�
� is the energy-momentum tensor

of matter. Modeling the expanding Universe as a perfect
fluid that includes radiation and cold dark matter with four-
velocity U�, we have T

�
� ¼ �Pg

�
� þ ð�þ PÞU�U�,

where � ¼ �m þ �r and P ¼ pm þ pr are the total energy
density and pressure of the cosmic fluid respectively. Note
that �m is the matter density, �r denotes the density of the

radiation and pm ¼ 0, pr ¼ �r=3 are the corresponding
pressures. Assuming negligible interaction between non-
relativistic matter and radiation the Bianchi identity
5�T�� ¼ 0 (which ensures the covariance of the theory)

leads to the matter/radiation conservation laws,

_�m þ 3H�m ¼ 0; _�r þ 4H�r ¼ 0; (2.3)

the solutions of which are �m ¼ �m0a
�3 and �r ¼ �r0a

�4.
Note that the over-dot denotes a derivative with respect to
the cosmic time t, aðtÞ is the scale factor and H � _a=a is
the Hubble parameter.
Now, in the context of a flat Friedmann-Lemaı̂tre-

Robertson-Walker metric with Cartesian coordinates

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ (2.4)

the Einstein tensor components are given by

G0
0 ¼ �3H2; Gi

j ¼ ��i
jð2 _H þ 3H2Þ: (2.5)

Inserting Eq. (2.5) into the modified Einstein field equation
(2.2), for comoving observers, we derive the modified
Friedmann equations

3fRH
2 � fRR� f

2
þ 3HfRR _R ¼ k2ð�m þ �rÞ; (2.6)

�2fR _H ¼ k2½�m þ ð4=3Þ�r� þ €fR �H _fR; (2.7)

where _R ¼ aHdR=da and fRR ¼ @2f=@R2. Also, the
contraction of the Ricci tensor provides the Ricci scalar,

R ¼ g��R�� ¼ 6

�
€a

a
þ _a2

a2

�
¼ 6ð2H2 þ _HÞ: (2.8)

Of course, if we consider fðRÞ ¼ R then the field
equation (2.2) boil down to the nominal Einstein equations,
a solution of which is the Einstein-de Sitter model. On
the other hand, the concordance � cosmology is fully
recovered for fðRÞ ¼ R� 2�. We would like to stress
here that within the context of the metric formalism the
above fðRÞ cosmological models must simultaneously
obey some strong conditions (for an overall discussion
see Ref. [15]). Briefly these are the following. (i) fR > 0
for R � R0 > 0, where R0 is the Ricci scalar at the present
time. If the final attractor is a de Sitter point we need to
have fR > 0 for R � R1 > 0, where R1 is the Ricci scalar
at the de Sitter point. (ii) fRR > 0 for R � R0 > 0.

(iii) fðRÞ � R� 2� for R � R0. (iv) 0<
RfRR
fR

ðrÞ< 1 at

r ¼ � RfR
f ¼ �2.

Finally, from the current analysis it becomes clear that
unlike the standard Friedmann equations in Einstein’s gen-
eral relativity the modified equations of motion (2.6) and
(2.7) are complicated and thus it is difficult to solve them
analytically. Below, we are going to compare the fðRÞ results
with those of the concordance �CDM model. This can help
us to understand better the theoretical basis of the current
fðRÞ models as well as the variants from general relativity.2We use the metric i.e. the Hilbert variational approach.

OBSERVATIONAL CONSTRAINTS ON VIABLE fðRÞ . . . PHYSICAL REVIEW D 87, 123529 (2013)

123529-3



For practical reasons (see below), we derive the effective
(‘‘geometrical’’) dark energy EoS parameter in terms of
EðaÞ ¼ HðaÞ=H0 (see Refs. [15,49] and references therein),

wðaÞ ¼ �1� 2
3a

dlnE
da

1��mðaÞ ; (2.9)

where

�mðaÞ ¼ �m0a
�3

E2ðaÞ : (2.10)

Differentiating the latter and utilizing Eq. (2.9) we find that

d�m

da
¼ 3

a
wðaÞ�mðaÞ½1��mðaÞ�: (2.11)

In the case of the traditional �CDM cosmology fðRÞ ¼
R � 2�, the corresponding dark energy EoS parameter is
strictly equal to �1 and the normalized Hubble function in
the matter era is given by

E�ðaÞ ¼ ð�m0a
�3 þ 1��m0Þ1=2: (2.12)

A. The fðRÞ functional forms

In order to solve numerically the modified Friedmann
equation (2.6) we need to know a priori the functional form
of fðRÞ. Due to the absence of a physically well-motivated
functional form for the fðRÞ parameter, there are many
theoretical propositions in the literature. In this paper for
the background we use different reference expansion mod-
els, namely flat �CDM and fðRÞ respectively. Below we
briefly present the two most popular fðRÞ models whose
free parameters can be constrained from the current
cosmological data.

Firstly, we use the Hu and Sawicki [20] model (hereafter
f1CDM) as expressed by equation (1.1). Using the con-
straints provided by the violations of the weak and strong
equivalence principle, Capozziello and Tsujikawa [50]
found that n > 0:9. On the other hand it has been proposed
in Ref. [51] that n is an integer number, so for simplicity in
our work we have set n ¼ 1. In Ref. [20] the parameters
ðc1; c2Þ were related to �m0,�r0 and the first derivative of
fðRÞ at the present epoch fR0 in order to ensure the
expansion history is close to that of �CDM. Specifically,
we have

c1
c2

¼ 6
ð1��r0 ��m0Þ

�m0

;

fR0 ¼ 1� nc1
c22

�
�9þ 12

�m0

� 12�r0

�m0

��1�n
:

The first two derivatives of Eq. (1.1) with respect to
R are

fR ¼ R½c2ð Rm2Þn þ 1�2 � c1m
2nð R

m2Þn
R½c2ð Rm2Þn þ 1�2 ; (2.13)

fRR ¼ c1m
2nð R

m2Þn½c2ðnþ 1Þð R
m2Þn � nþ 1�

R2½c2ð Rm2Þn þ 1�3 : (2.14)

As discussed in the Introduction, the Lagrangian of
Eq. (1.1) can also be written as

fðRÞ ¼ R�m2c1
c2

þ m2c1=c2
1þ c2ðR=m2Þn

¼ R� 2�

�
1� 1

1þ ðR=ðb�ÞÞn
�

¼ R� 2�

1þ ðb�R Þn
; (2.15)

where � ¼ m2c1
2c2

and b ¼ 2c1�1=n
2

c1
. In this form it is clear that

the HSmodel can be arbitrarily close to�CDM, depending
on the parameters b and n.
We now consider the Starobinsky [21] model (hereafter

f2CDM) as expressed by equation (1.2): as in the Hu and
Sawicki [20] model we choose m2 ’ �m0H

2
0 , while

Ref. [50] also showed that n > 0:9. In this case the fR
and fRR derivatives are given by

fR ¼ 1� 2nRð1þ R2

m4Þ�1�nc1

m2
; (2.16)

fRR ¼ � 2m2nð1þ R2

m4Þ�n½m4 � ð1þ 2nÞR2�c1
ðm4 þ R2Þ2 : (2.17)

In order to ensure that the expansion history of this model
is close to that of�CDM we need to match the c1 constant
to �, i.e. �c1 m

2 ¼ �2� ¼ �6ð1��m0 ��r0ÞH2
0 or

c1 ¼ 6ð1��m0 ��r0Þ
�m0

: (2.18)

As discussed in the Introduction, the Lagrangian of
Eq. (1.2) can also be written as

fðRÞ ¼ R� 2�

�
1� 1

ð1þ ð R
b�Þ2Þn

�
; (2.19)

where � ¼ c1m
2

2 and b ¼ 2
c1
. In this form it is clear that this

model can also be arbitrarily close to �CDM, depending
on the parameters b and n. Thus, the parameter b deter-
mines how close the model is to �CDM.
It is interesting to mention that the above fðRÞ models

satisfy all the strong conditions (see Sec. II) and thus they
provide predictions which are similar to those of the usual
(scalar field) DE models, as far as the cosmic history
(presence of the matter era, stability of cosmological per-
turbations, stability of the late de Sitter point, etc.) is
concerned. Also, we will restrict our present numerical
solutions to the choice H0 ¼ 70:4 Km=s=Mpc and
�8 ¼ 0:8.3 For example, in this case the modified

3We treat �8 as a free parameter at the end of Sec. IVB 2.
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Friedmann equations for the fðRÞ models contain two free
parameters, namely ð�m0; bÞ which can be constrained
from the current cosmological data.

B. Analytic approximations

In this subsection we present a novel approximation
scheme for the solution of the modified Friedmann equa-
tion (2.6) and we explicitly apply it to the two widely used
models (2.16) and (2.19).

In particular we may write Eq. (2.6) as

� fRH
2ðNÞ þ ð�m0e

�3N þ�r0e
�4NÞ þ 1

6
ðfRR� fÞ

¼ fRRH
2ðNÞR0ðNÞ; (2.20)

where the prime denotes differentiation with respect to N
and RðNÞ is given by Eq. (2.8). Using now Eq. (1.3) for
specific fðRÞ models, the above ODE [and its solution
HðNÞ] may be expanded around �CDM with respect to
the deviation parameter b.

Since we are interested in testing deviations from
the �CDM model, we find it useful to perform a
series expansion of the solution of the ODE (2.20) around
b ¼ 0 as

H2ðNÞ ¼ H2
�ðNÞ þXM

i¼1

bi�H2
i ðNÞ; (2.21)

where

H2
�ðNÞ
H2

0

¼ �m0e
�3N þ�r0e

�4N þ ð1��m0 ��r0Þ
(2.22)

andM is the number of terms we keep before truncating the
series. Usually keeping only the two first nonzero terms is
more than enough to have excellent agreement of better
than 0.001% at all redshifts with the numerical solution for
realistic values of the parameter b 2 ½0:001; 0:5�.

By expanding Eq. (2.20) with Eq. (2.21) to any given
order in b we can find analytical solutions for the Hubble
expansion rate. It is easy to show that for the HS model and
for n ¼ 1 the first two terms of the expansion are the
following:

H2
HSðNÞ ¼ H2

�ðNÞ þ b�H2
1ðNÞ þ b2�H2

2ðNÞ þ � � � ;
(2.23)

where �H2
1ðNÞ and �H2

2ðNÞ are given by Eqs. (A1) and
(A2) respectively. For the Starobinsky model for n ¼ 1 we
have

H2
StarðNÞ ¼ H2

�ðNÞ þ b2�H2
2ðNÞ þ b4�H2

4ðNÞ þ � � � ;
(2.24)

where �H2
2ðNÞ and �H2

4ðNÞ are given by Eqs. (A3) and
(A4) respectively.

Obviously, similar expressions can be obtained for any
fðRÞmodel and up to any order provided that for b ! 0we
obtain �CDM. We stress that the expressions for �H2

i ðNÞ
are algebraic up to all orders, something that makes this
method very useful and fast compared to solving the
differential equation numerically. Furthermore, this
method avoids another problem of the numerical integra-
tion, namely that at very high redshifts the ODE of
Eq. (2.6) is quite stiff, thus making the integration impos-
sible with standard methods. This makes the numeric
solution quite time consuming and possibly unreliable,
something which as we will show is not a problem for
our analytic approximation.
In what follows we will test the validity of this approxi-

mation in both cases. In order to do this we compared the
predictions of the analytical solutions of Eqs. (2.23) and
(2.24) to the numerical solution in each case for a large
variety of values for the parameter b. In particular, we
estimated the average percent deviation between the ap-
proximations and the numerical solution, defined as

herrorðbÞi ¼
�
100 �

�
1� Happroxðz; bÞ

Hnumericðz; bÞ
��

; (2.25)

where the average is taken over redshifts in the range
z 2 ½0; 30�. The reason for averaging is that most of the
data we will use involve distance scales, like the luminosity
distance, that are integrals of the Hubble parameter. We
have also kept z below 200 since the numerical ODE solver
of MATHEMATICA is unable to go to larger redshifts due to
the stiffness of the ODE.
We show the results of the average error for a large

variety of values of the parameter b 2 ½0:01; 2� in Fig. 1.
Clearly, the approximation behaves exceptionally well
within the ranges of interest, i.e. the vertical dashed lines.
These regions correspond, as we will see in a later section,
to the best-fit values of b. The horizontal dotted line
indicates an error of 10�5%. Finally, we see that our
approximation is on average in agreement to better than
	0:01% for realistic parameters, i.e. b	Oð1Þ, of the fðRÞ
models. In a forthcoming paper we attempt to investigate
the validity of our method against all the available fðRÞ
gravity models.
We should note that there is some similarity between the

iterative approach suggested by Starobinsky in Ref. [52]
and our method. Both approaches are based on taking small
deviations from an unperturbed simple case. However, our
approach is based on the existence of a well-defined di-
mensionless deviation parameter b while Starobinsky uses
the WKB approximation with no reference to a deviation
perturbative parameter. In addition, in Ref. [52] the iterative
procedure was based on the assumption that the Ricci scalar

can be written in terms of three components, namely Rð0Þ,
�Rind and �Rosc [see Starobinsky’s Eq. 12], whereas in our
approach we perform a Taylor expansion of the Hubble
function around b ¼ 0. The reason for using such an
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expansion is due to the fact that for b close to zero both
fðRÞ models tend to the concordance �CDM model.

Our approach is indeed a perturbative approach and it
should be applicable for small values of the deviation
parameter b. The fact that the method remains accurate
even for values of b of Oð1Þ can be attributed to the fact
that even for b of Oð1Þ the deviation term as a whole
remains small. As expected, however, the accuracy of the
method decreases for increasing b (see Fig. 1). We will
compare the above iterative procedures in a forthcoming
paper.

III. THE EVOLUTION OF THE LINEAR
GROWTH FACTOR

In this section we concentrate on the subhorizon
scales in which the DE component is expected to be
homogeneous and thus we can use perturbations only on
the matter component of the cosmic fluid [53]. Therefore,
the evolution equation of the matter fluctuations, for cos-
mological models where the DE fluid has a vanishing
anisotropic stress and the matter fluid is not coupled to
other species (see Refs. [30,54–59]), is given by

€�m þ 2H _�m ¼ 4�Geff�m�m (3.1)

where �m is the matter density and GeffðtÞ ¼ GNQðtÞ, with
GN denoting Newton’s gravitational constant.

For those cosmological models which adhere to general
relativity, [QðtÞ ¼ 1, Geff ¼ GN], the above equation re-
duces to the usual time-evolution equation for the mass
density contrast [60], while in the case of modified gravity
models (see Refs. [23,30,54,58]), we have Geff � GN

(or Q � 1). Indeed it has been shown (see Refs. [30,31])
that in the case of fðRÞ models the quantity Q is a function
of the scale factor and of the wave number 	,

Qða; 	Þ ¼ 1

fR

1þ 4 	2

a2
fRR
fR

1þ 3 	2

a2
fRR
fR

: (3.2)

We restrict our analysis to the choice of 	 ¼ 1=
 ¼
0:1hMpc�1 or 
 ¼ 10h�1 Mpc (see also Ref. [61]).
In this context, �mðtÞ / DðtÞ, where DðtÞ is the linear

growing mode (usually scaled to unity at the present time).
Of course, solving Eq. (3.1) for the concordance � cos-
mology, we derive the well-known perturbation growth
factor (see Ref. [60]),

D�ðzÞ ¼ 5�m0E�ðzÞ
2

Z þ1

z

ð1þ uÞdu
E3
�ðuÞ

: (3.3)

In this work we use the above equation normalized to unity
at the present time.
Since in most of the cases Eq. (3.1) does not yield

analytical solutions, it is common in this kind of study to
provide an efficient parametrization of the matter pertur-
bations that is based on the growth rate of clustering [60],

FðaÞ ¼ d ln�m

d ln a
’ ��

mðaÞ; (3.4)

where � is the growth index (see Refs. [23–26,54]) which
plays a key role in cosmological studies as we described in
the Introduction.

A. The generalized growth index parametrization

Inserting the first equality of Eq. (3.4) into Eq. (3.1) and
using simultaneously Eq. (2.9) and d

dt ¼ H d
d lna , we derive,

after some algebra, that

a
dF

da
þ F2 þ XðaÞF ¼ 3

2
�mðaÞQðaÞ; (3.5)

with

XðaÞ ¼ 1

2
� 3

2
wðaÞ½1��mðaÞ�; (3.6)

where in order to evaluate the final form of Eq. (3.6) we
have used Eq. (2.11).
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FIG. 1. The results of the average error in the redshift range z 2 ½0; 30� for a large variety of values of the parameter b 2 ½0:01; 2�.
Clearly, the approximation behaves exceptionally well within the ranges of interest, i.e. the vertical dashed lines. The horizontal dotted
line indicates an error of 10�5%.
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Now, we consider that the growth index varies with
cosmic time. Transforming Eq. (3.5) from a to redshift
[ d
da ¼ �ð1þ zÞ�2 d

dz ] and utilizing Eqs. (3.4) and (2.11)

we simply derive the evolution equation of the growth
index � ¼ �ðzÞ (see also Ref. [46]). Indeed this is
given by

� ð1þ zÞ�0 lnð�mÞ þ��
m þ 3wð1��mÞ

�
�� 1

2

�
þ 1

2

¼ 3

2
Q�1��

m ; (3.7)

where a prime denotes a derivative with respect to
redshift. At the present time the above equation becomes

��0ð0Þ lnð�m0Þþ��ð0Þ
m0 þ 3w0ð1��m0Þ

�
�ð0Þ� 1

2

�
þ 1

2

¼ 3

2
Q0�

1��ð0Þ
m0 ; (3.8)

where Q0 ¼ Qðz ¼ 0; 	Þ and w0 ¼ wðz ¼ 0Þ.
In this work we phenomenologically parametrize �ðzÞ

by the following general relation (see Ref. [36]):

�ðzÞ ¼ �0 þ �1yðzÞ: (3.9)

Obviously, the above equation can be viewed as a first-
order Taylor expansion around some cosmological quan-
tity such as aðzÞ, z and �mðzÞ. We would like to stress
that for those yðzÞ functions which satisfy yð0Þ ¼ 0
[or �ð0Þ ¼ �0] one can write the parameter �1 in terms
of �0. In this case [�0ð0Þ ¼ �1y

0ð0Þ], using Eq. (3.8) we
obtain

�1 ¼
�

�0

m0 þ 3w0ð�0 � 1
2Þð1��m0Þ � 3

2Q0�
1��0

m0 þ 1
2

y0ð0Þ ln�m0

:

(3.10)

Let us now briefly present various forms of �ðzÞ, 8 z.
(i) Constant growth index (hereafter �0 model): Here

we set �1 strictly equal to zero, thus � ¼ �0.
(ii) Expansion around z ¼ 0 (see Ref. [46]; hereafter �1

model): In this case we have yðzÞ ¼ z. Note, how-
ever, that this parametrization is valid at relatively
low redshifts 0 
 z 
 0:5. In the statistical analysis
presented below we utilize a constant growth index,
namely � ¼ �0 þ 0:5�1 for z > 0:5.

(iii) Expansion around a ¼ 1 ([62–64]; hereafter �2

model): Here the function y becomes yðzÞ ¼ 1�
aðzÞ ¼ z

1þz . Obviously, at large redshifts z � 1 we

get �1 ’ �0 þ �1.
For the �1 and �2 parametrizations one can easily show
that yð0Þ ¼ 0 and y0ð0Þ ¼ 1, respectively. As an example,
for the case of the �CDM cosmology with �0 ’ 6=11 and
�m0 ¼ 0:273, Eq. (3.10) provides �1 ’ �0:0478. In addi-
tion, based on Starobinsky’s fðRÞ model with ð�m0; �0Þ ¼
ð0:273; 0:415Þ Gannouji et al. [30] found �1 ¼ �0:21.
Finally, we should note that the growth index is clearly

model dependent via �1, as can be seen from Eqs. (3.9) and
(3.10). However, Gannouji et al. [30] found that in the case
of the Starobinsky fðRÞ model the corresponding growth
rate of clustering [see Eq. (3.4)] is not really affected by the
scale especially up to z ¼ 2 (see their Fig. 2). In addition,
we have demonstrated that the allowed deviation from
�CDM is relatively small in the cases considered (b less
than 0.5 at 2� in most cases) and therefore any allowed
scale dependence of the growth is minor. This implies that
the use of the value of the measured f�8 can be used
without sacrifice of accuracy.
Another issue concerning nonlinear effects is that in

this work we utilize 	 ¼ 1=
 ¼ 0:1hMpc�1 which corre-
sponds to 
 ¼ 10h�1 Mpc. Note that the power-spectrum
normalization �8 which is the rms mass fluctuation on
R8 ¼ 8h�1 Mpc corresponds to 	 ¼ 0:125hMpc�1.

0.250 0.255 0.260 0.265 0.270 0.275 0.280 0.285 0.290
0.3

0.4

0.5

0.6

0.7

0.8

0.9

m

0

0.250 0.255 0.260 0.265 0.270 0.275 0.280 0.285 0.290
0.3

0.4

0.5

0.6

0.7

0.8

0.9

m

0

0.250 0.255 0.260 0.265 0.270 0.275 0.280 0.285 0.290
0.3

0.4

0.5

0.6

0.7

0.8

0.9

m

0

FIG. 2 (color online). Left: Likelihood contours for �2 equal to 2.30, 6.18 and 11.83, corresponding to 1�, 2� and 3� confidence
levels, in the ð�m0; �Þ plane using a�CDM expansion model. Middle and Right: Here we show the corresponding contours in the case
of fðRÞ models (f1CDM in the middle panel and f2CDM in the right panel). In all cases the red point corresponds to ð�m0; �Þ ¼
ð0:272; 6=11Þ. In this plot and in the ones that follow we have set the parameters that are not shown (e.g. b) to their best-fit values for
the corresponding model (see Table III). Here we use n ¼ 1.

OBSERVATIONAL CONSTRAINTS ON VIABLE fðRÞ . . . PHYSICAL REVIEW D 87, 123529 (2013)

123529-7



On the other hand it has been common practice to assume
that the shape of the power spectrum recovered from galaxy
surveys matches the linear matter power spectrum shape on
scales 	 
 0:15hMpc�1 ([65,66]; see also the discussion in
Sec. IV of Ref. [67]). Obviously the choice of 	 ¼
0:1hMpc�1 ensures that we are treating the liner regime.
Of course we have repeated our analysis for different values
of 	 and we confirm the results of Gannouji et al., i.e. that
small variations around 	 ¼ 0:1hMpc�1 do not really
affect the qualitative evolution of the growth rate of cluster-
ing and thus of �. Furthermore, we find that the evolution of
GeffðzÞ is almost completely unaffected for different values
of 	; see for example Fig. 9 (top) and Fig. 10.

Nevertheless, we do anticipate a minor contribution of
nonlinear effects even on these scales at a level less than a
few percent [68]. These effects would tend to slightly
amplify the value of � and increase the error bars corre-
spondingly by less than a few percent.

IV. OBSERVATIONAL CONSTRAINTS

In the following we briefly present some details of the
statistical method and on the observational sample that we
adopt in order to constrain the free parameters of the
growth index, presented in the previous section.

A. The growth data

The growth data that we utilize in this article based on the
PSCz, 2dF, VVDS, SDSS, 6dF, 2MASS, BOSS and
WiggleZ galaxy surveys, for which their combination pa-
rameter of the growth rate of structure, FðzÞ, and the
redshift-dependent rms fluctuations of the linear density
field, �8ðzÞ, is available as a function of redshift,
FðzÞ�8ðzÞ. The F�8 � f�8 estimator is almost a model-
independent way of expressing the observed growth history
of the Universe (see Ref. [69]). Indeed the observed growth
rate of structure (Fobs ¼ �B) is derived from the redshift
space-distortion parameter �ðzÞ and the linear bias B.
Observationally, using the anisotropy of the correlation
function one can estimate the �ðzÞ parameter. On the other
hand, the linear bias factor can be defined as the ratio of the
variances of the tracer (galaxies, quasistellar objects, etc.)
and underlying mass density fields, smoothed at 8h�1 Mpc,
BðzÞ ¼ �8;trðzÞ=�8ðzÞ, where �8;trðzÞ is measured directly

from the sample. Combining the above definitions we arrive
at f�8 � F�8 ¼ ��8;tr. We would like to point out that the

different cosmologies (including those of modified gravity)
enter only weakly in the observational determination of
�ðzÞ (and thus of f�8), through the definition of distances.
In Table I we quote the precise numerical values of the data
points with the corresponding errors and references.

B. The overall likelihood analysis

In order to constrain the cosmological parameters and
the growth index of the fðRÞmodels one needs to perform a

joint likelihood analysis, involving the cosmic expansion
data, such as SnIa, BAO and the CMB shift parameter
together with the growth data. Up to now, due to the large
errors of the growth data with respect to the cosmic expan-
sion data, various authors preferred to first constrain �m0

using SnIa/BAO/CMB and then to use the growth data
alone. Of course, armed with the recent high-quality
growth data it would be worthwhile to simultaneously
constrain ð�m0; b; �Þ. In particular, we use the Union 2.1
set of 580 SnIa of Suzuki et al. [47],4 and the observed
BAOs. For simplicity, but without loss of generality, we
only considered the case where the covariance matrix of
the SnIa data is diagonal. The BAO data are given in terms

of the parameter dzðzÞ ¼ lBAOðzdragÞ
DV ðzÞ , where lBAOðzdragÞ is the

BAO scale at the drag redshift, assumed known from CMB
measurements, and [48]

DVðzÞ ¼
�
ð1þ zÞ2DAðzÞ2 cz

HðzÞ
�
1=3

(4.1)

is the usual volume distance.
In this analysis we use the 6dF, the SDSS and WiggleZ

BAO data shown in Table I. The WiggleZ collaboration
[77] has measured the baryon acoustic scale at three differ-
ent redshifts, complementing previous data at lower red-
shifts obtained by SDSS and 6DFGS [48].
The chi-square is given by

�2
BAO ¼ X

i;j

½di � dðziÞ�C�1
ij ½dj � dðzjÞ�; (4.2)

where the indices i, j are in growing order in z, as in
Table II. For the first six points, C�1

ij was obtained from

the covariance data in Ref. [77] in terms of dz,

TABLE I. Summary of the observed growth rate and references.

Index z Growth Rate ðf�8obsÞ References

1 0.02 0:360� 0:040 [37]

2 0.067 0:423� 0:055 [45]

3 0.17 0:510� 0:060 [69,70]

4 0.35 0:440� 0:050 [69,71]

5 0.77 0:490� 0:180 [33,69]

6 0.25 0:351� 0:058 [72]

7 0.37 0:460� 0:038 [72]

8 0.22 0:420� 0:070 [73]

9 0.41 0:450� 0:040 [73]

10 0.60 0:430� 0:040 [73]

11 0.78 0:380� 0:040 [73]

12 0.57 0:427� 0:066 [74]

13 0.30 0:407� 0:055 [75]

14 0.40 0:419� 0:041 [75]

15 0.50 0:427� 0:043 [75]

16 0.60 0:433� 0:067 [75]

4The SnIa data can be found at [76]and in Ref. [47].
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C�1
ij ¼

4444 0: 0: 0: 0: 0:

0: 30318 �17312 0: 0: 0:

0: �17312 87046 0: 0: 0:

0: 0: 0: 23857 �22747 10586

0: 0: 0: �22747 128729 �59907

0: 0: 0: 10586 �59907 125536

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: (4.3)

The positions of CMB acoustic peaks are affected by the
expansion history of the Universe from the decoupling
epoch to today. In order to quantify the shift of acoustic
peaks we use the data points ðla;R; zcmbÞ of Ref. [78]
(WMAP9), where la andR are two CMB shift parameters
and zcmb is the redshift at decoupling.

For the redshift zcmb there is a fitting formula by Hu and
Sugiyama [79],

zcmb ¼ 1048ð1þ 0:00124!�0:738
b Þð1þ g1!

g2
m Þ; (4.4)

where g1 ¼ 0:0783!�0:238
b =ð1þ 39:5!0:763

b Þ, g2 ¼ 0:560=
ð1þ 21:1!1:81

b Þ, !b � �b0h
2 and !m � �m0h

2 (h corre-

sponds to the uncertainty of the Hubble parameter H0

today, i.e. H0 ¼ 100h km sec�1 Mpc�1).
For a flat prior, the 9-year WMAP data (WMAP9)

measured best-fit values are [78]

�VCMB ¼
la

R

zcmb

0
BB@

1
CCA ¼

302:40

1:7246

1090:88

0
BB@

1
CCA: (4.5)

The corresponding inverse covariance matrix is [78]

C�1
CMB ¼

3:182 18:253 �1:429

18:253 11887:879 �193:808

�1:429 �193:808 4:556

0
BB@

1
CCA: (4.6)

We thus define

XCMB ¼
la � 302:40

R� 1:7246

zcmb � 1090:88

0
BB@

1
CCA; (4.7)

and construct the contribution of CMB to �2 as

�2
CMB ¼ XT

CMBC
�1
CMBXCMB: (4.8)

Notice that �2
CMB depends on the parameters

ð�m0;�b0; hÞ. The density parameter of radiation today is

�r0 ¼ ��0ð1þ 0:2271NeffÞ; (4.9)

where ��0 is the photon density parameter and Neff is the

relativistic degrees of freedom. We adopt the standard
values ��0 ¼ 2:469� 10�5h�2 and Neff ¼ 3:04 [78].

Concerning the constraints on the parameters assuming a
fixed H0 value we should note that the statistical analysis
does not depend on an a priori selected value of H0. First,
the SnIa distance moduli are always normalized using the
internally determined H0. On the other hand one of the
merits of using the shift parameter in cosmological studies
is that its dependence on the Hubble constant is almost
negligible (for details see Ref. [80]). Indeed one can see
from Eq. (4.4) that we use the normalized cosmological
parameters!m ¼ �m0h

2 and!b ¼ �b0h
2. In this context,

the H0 dependence does enter in the analysis of the CMB
shift parameter via�r0 [see Eq. (4.9)], but small variations
around 	70 km= sec =Mpc are not expected to affect the
qualitative results.
The overall likelihood function5 is given by the product

of the individual likelihoods according to

Ltotðp1;p2Þ ¼ LEðp1Þ �Lfðp1;p2Þ; (4.10)

where Lf refers to the dynamical probe likelihood fit and

LEðp1Þ ¼ LSNIa �LBAO �LCMB: (4.11)

The vectors p1, p2 contain the free parameters of the fðRÞ
model and depend on the model. In particular, the essential
free parameters that enter in the theoretical expectation are
p1 � ð�m0; bÞ and p2 � ð�0; �1Þ. Note that in the case of
the �CDM we have p1 � �m0. Also, in all cases we have
set �8 ¼ 0:8.
Since likelihoods are defined as L / exp ð��2=2Þ; this

translates into an addition for the joint �2
tot function,

�2
totðp1;p2Þ ¼ �2

Eðp1Þ þ �2
fðp1;p2Þ; (4.12)

with

�2
Eðp1Þ ¼ �2

SNIa þ �2
BAO þ �2

CMB: (4.13)

TABLE II. The BAO data used in this analysis. The first six
data points are volume averaged and correspond to Table 3 of
Ref. [77]. Their inverse covariance matrix is given by Eq. (4.3).

6dF SDSS WiggleZ

z 0.106 0.2 0.35 0.44 0.6 0.73

dz 0.336 0.1905 0.1097 0.0916 0.0726 0.0592

�dz 0.015 0.0061 0.0036 0.0071 0.0034 0.0032

5Likelihoods are normalized to their maximum values. In the
present analysis we always report 1� uncertainties on the fitted
parameters.
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The minimization of the �2
tot was done in MATHEMATICA.

Note that the �2
f is given by

�2
fðp1; p2; ziÞ ¼ XNf

i¼1

�
f�8obsðziÞ � f�8ðp1; p2; ziÞ

�i

�
2
;

(4.14)

where �i is the observed growth-rate uncertainty.
To this end, since N=nfit > 40 we will use—relevant to

our case—the corrected Akaike information criterion
(AIC) [81], defined, for the case of Gaussian errors, as

AIC ¼ �2
min þ 2nfit (4.15)

where N ¼ NEXP þ Nf and nfit is the number of free

parameters. A smaller value of the AIC indicates a better
model-data fit. However, small differences in the AIC are
not necessarily significant and therefore, in order to assess
the effectiveness of the different models in reproducing the
data, one has to investigate the model pair difference
�AIC ¼ AICy � AICx. The higher the value of j�AICj,
the higher the evidence against the model with a higher
value of the AIC, with a difference j�AICj * 2 indicating
a positive evidence and j�AICj * 6 indicating a strong
evidence, while a value & 2 indicates consistency among
the two comparison models. A numerical summary of the
statistical analysis for the background expansion models as
well as for the various �ðzÞ parametrizations is shown in
Table III.

At this point we should stress that in this work we only
use the shift parameter and do not use the full CMB like-
lihood provided by CAMB. The reason for this is that our
analysis has demonstrated self-consistently that only small
deviations from �CDM are allowed. Thus the use of the
shift parameter for this range of small deviations is ex-
pected to be an acceptable approximation to the more
accurate (but also more complicated) full CMB likelihood
approach.

Furthermore, we have decided to utilize (as many au-
thors did in the past) the CMB shift parameter which is a
valid and frequently used tool in this kind of study, espe-
cially over the last decade. The robustness of the shift
parameter was tested and discussed in Ref. [82] and it
has been found that the shift parameter changes when
massive neutrinos are included (which is not our case
here) or when there is a strongly varying equation of state
parameter [the fðRÞ models remain close to �CDM].

1. Constant growth index

First of all we utilize the �0 parametrization (� ¼ �0,
�1 ¼ 0: see Sec. III A). Therefore, the corresponding
f1CDM and f2CDM statistical vectors p2 contain only
three free parameters, namely p2 � ðp1; �0; 0Þ, where
p1 � ð�m0; bÞ. Accordingly, if we consider the �CDM
model then p1 � �m0, implying that the vector p2 includes
two free parameters.
Our main results are listed in Table II, where we quote

the best-fit parameters with the corresponding 1� uncer-
tainties, for three different expansion models. In Fig. 2 we
present the 1�, 2� and 3� confidence levels in the ð�m0; �Þ
plane. It becomes evident that by using the most recent
growth data set together with the expansion cosmological
data we can place strong constraints on ð�m0; �Þ. In all
cases the best-fit value �m0 ¼ 0:272� 0:003 is in very
good agreement with that provided by WMAP9þ SPTþ
ACT (�m0 ¼ 0:272; Hinshaw et al. [78]).
Concerning the �CDM expansion model (see the right

panel of Fig. 2) our growth index results are in agreement
within 1� errors to those of Samushia et al. [72] who found
� ¼ 0:584� 0:112, and to those of Ref. [38] who obtained
�m0 ¼ 0:273� 0:011 and � ¼ 0:586� 0:080. However,
our best-fit value � ¼ 0:597� 0:046 is somewhat greater
than the theoretically predicted value of �� ’ 6=11 (see
lines in the right panel of Fig. 2). Such a small discrepancy
between the theoretical �CDM and the observationally
fitted value of � has also been found by other authors.
For example, Di Porto and Amendola [34] obtained

TABLE III. Statistical results for the combined growth data (see Table I): The first column indicates the expansion model, the second
column corresponds to �ðzÞ parametrizations appearing in Sec. III A. The third and fourth columns provide the�m0 and b best values.
The fifth and sixth columns show the �0 and �1 best-fit values. In all cases we used �8 ¼ 0:8. The remaining columns present the
goodness-of-fit statistics (�2

min, AIC and j�AICj ¼ jAIC� � AICfðRÞj).
Exp. Model Param. Model �m0 b �0 �1 �2

min AIC j�AICj
�CDM �0 0:272� 0:003 0:597� 0:046 0 574.227 578.227 0

�1 0:272� 0:003 0:567� 0:066 0:116� 0:191 573.861 579.861 1.634

�2 0:272� 0:003 0:561� 0:068 0:183� 0:269 573.767 579.767 1.540

f1CDM-[20] �0 0:271� 0:003 0:111� 0:140 0:598� 0:046 0 573.855 579.855 1.628

�1 0:271� 0:003 0:109� 0:142 0:573� 0:068 0:097� 0:195 573.633 581.633 3.406

�2 0:271� 0:003 0:109� 0:142 0:579� 0:070 0:101� 0:275 573.585 581.585 3.358

f2CDM-[21] �0 0:272� 0:005 0:292� 0:647 0:594� 0:047 0 574.178 580.178 1.951

�1 0:272� 0:005 0:150� 1:355 0:567� 0:066 0:113� 0:199 573.857 581.857 3.630

�2 0:272� 0:005 0:149� 1:261 0:561� 0:068 0:179� 0:279 573.765 581.765 3.538

BASILAKOS, NESSERIS, AND PERIVOLAROPOULOS PHYSICAL REVIEW D 87, 123529 (2013)

123529-10



� ¼ 0:60þ0:40
�0:30, Gong [27] measured � ¼ 0:64þ0:17

�0:15 while

Nesseris and Perivolaropoulos [26] found � ¼ 0:67þ0:20
�0:17.

Recently, Basilakos and Pouri [36] and Hudson and
Turnbull [37] using a similar analysis found � ¼ 0:602�
0:05 and � ¼ 0:619� 0:054 respectively. In this context,
Samushia et al. [39] obtained � ¼ 0:65� 0:05.

Concerning the f1CDM model (see the middle panel of
Fig. 2) the best-fit parameter is �0 ¼ 0:598� 0:046 with
�2
min ’ 573:855. Also, we checked the case where n ¼ 2

(compare the middle plot of Fig. 2 with Fig. 3), and we
found that our results remain mostly unaffected. Thus,
throughout the rest of the paper we adopt n ¼ 1. Also in
the case of Starobinsky’s f2CDM model (see Fig. 2) the
best-fit parameter is �0 ¼ 0:594� 0:047 with �2

min ’
574:178. In Fig. 4, we plot the measured f�8obsðzÞ with
the estimated growth-rate function, f�8ðzÞ ¼ FðzÞ�8ðzÞ.
The value of AIC�ð’ 578:227Þ is smaller than the corre-
sponding fðRÞ values which indicates that the �CDM
model (�� ¼ 0:597) appears now to fit the expansion
and the growth data better than the f1CDM and f2CDM
gravity models. The j�AICj ¼ jAIC� � AICf1�2ðRÞj val-
ues (i.e., 	2) indicate that the growth data are consistent
with the f1CDM and f2CDM gravity models with a con-
stant growth index.

2. Time-varying growth index

Now we concentrate on the �ðzÞ parametrizations, pre-
sented in Sec. III A. In this case the free parameters of the
models are p2 � ð�m0; �0; �1Þ and p2 � ð�m0; b; �0; �1Þ

for the �CDM and f1CDM, f2CDM expansion models
respectively.
In Fig. 5 (�CDM model), Fig. 6 (f1CDM model) and

Fig. 7 (f2CDM model) we present the results of our
statistical analysis for the �1 (left panel) and �2 (right
panel) parametrizations in the ð�0; �1Þ plane in which the
corresponding contours are plotted for 1�, 2� and 3�
confidence levels. The theoretical ð�0; �1Þ values (see
Sec. IIi A) in the �CDM and fðRÞ expansion models are

0.250 0.255 0.260 0.265 0.270 0.275 0.280 0.285 0.290
0.3

0.4

0.5

0.6

0.7

0.8

0.9

m

0

FIG. 3 (color online). The likelihood contours for �2 equal to
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fidence levels, in the ð�m0; �Þ plane in the case of the f1CDM
model for n ¼ 2. In all cases the red point corresponds to
ð�m0; �Þ ¼ ð0:272; 6=11Þ. Clearly, our results remain mostly
unaffected by the choice of a particular n.
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indicated by the colored dots. Overall, we find that the
predicted �CDM, f1CDM and f2CDM ð�0; �1Þ solutions
of the �1�2 parametrizations are close to the 1� borders
(��2

1� ’ 2:30; see green sectors in Figs. 5–7).
At this point we should mention that in all our contour

plots, e.g. Fig. 2, we have fixed the various parameters to
the best-fit values instead if marginalizing over them. It is
well known in the literature (see for example Ref. [83]) that
marginalizing over the nuisance parameters and fixing the
parameter in general gives different effects since in
the former case due to the integration of the likelihood
points away from the best-fit and well within the tail of

the distribution they will contribute in the contour, thus
creating a sort of a volume effect. Furthermore, we also
show the corresponding �0 � �1 contours by marginaliz-
ing over the other parameters (see the bottom row in
Fig. 5), and we find that both procedures are in good
agreement within 	1–1:5�. Statistically this means that
the likelihood function is close to being a Gaussian.
Below we briefly discuss the main statistical results.
(a) �1 parametrization: For the usual � cosmology the

likelihood function peaks at �0 ¼ 0:567� 0:066
and �1 ¼ 0:116� 0:191 with �2

min ’ 573:861. The
latter results are in agreement with previous studies
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FIG. 5 (color online). The �CDM expansion model: Likelihood contours (for ��2 ¼ �2 lnL=Lmax equal to 2.30, 6.18 and 11.83,
corresponding to 1�, 2� and 3� confidence levels) in the ð�0; �1Þ. The top row shows the contours when the rest of the parameters are
fixed to their best-fit values, while the bottom row shows when they are marginalized over, while the left and right panels show the
results based on the �1�2 parametrizations respectively. We also include the theoretical �CDM ð�0; �1Þ values given in Sec. III,
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[26,34–36]. In the case of the f1CDM and f2CDM
gravity models we find that ð�0; �1Þ ¼ ð0:573�
0:068; 0:097� 0:195) with �2

min ’ 573:633 and

ð�0;�1Þ¼ð0:567�0:066;0:113�0:199) and with
�2
min ’ 573:857 respectively.

(b) �2 parametrization: The best fit values are the
following:

(i) For �CDM we have �0 ¼ 0:561� 0:068, �1 ¼
0:183� 0:269 (�2

min ’ 573:767).
(ii) In the case of f1CDM model we obtain �0 ¼

0:579� 0:070, �1¼0:101�0:275 (�2
min’573:585).

(iii) For the f2CDM gravity model we find �0¼0:561�
0:068, �1¼0:179�0:279 (�2

min’573:765).
Finally, as we have already mentioned in Table III, one

may see a more compact presentation of our statistical
results. In Fig. 8 we present the evolution of the growth
index for various parametrizations. In all three cases of the
concordance � and f2CDM cosmological models (see
upper and bottom panels of Fig. 8) the relative growth-
index difference of the various fitted �ðzÞ models indicates
that the �1�2 parametrizations have a very similar redshift
dependence for z 
 0:5, while the �2 parametrization
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FIG. 6 (color online). The likelihood contours for the f1CDM expansion model (for more definitions see caption of Fig. 5).
Here the colored dots correspond to the theoretical f1CDM ð�0; �1Þ pair provided in Sec. III A, �1 ¼ ð6=11; �1ð6=11;�m0;bfÞÞ and
�2 ¼ ð�0;bf; �1ð�0;bf;�m0;bfÞÞ.
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FIG. 7 (color online). The likelihood contours for the f2CDM expansion model (for more definitions see caption of Fig. 5).
Here the colored dots correspond to the theoretical f2CDM ð�0; �1Þ pair provided in Sec. III A, �1 ¼ ð6=11; �1ð6=11;�m0;bfÞÞ and
�2 ¼ ð�0;bf; �1ð�0;bf;�m0;bfÞÞ.
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shows very large deviations for z > 0:5. Based on the
f1CDM gravity model (middle panel of Fig. 8) we observe
that the �1�2 parametrizations provide a similar evolution
of the growth index.

Furthermore, in Fig. 9 we show the evolution of GeffðzÞ
for the two fðRÞ models considered in the text: f1CDM
(left) and f2CDM (right). The lines correspond to �0

(blue), �1 (green) and �2 (red). As can be seen, both cases
predict little evolution for GeffðzÞ at late times, around
1.2% for f1CDM and 0.5% for f2CDM. Furthermore,
while GeffðzÞ shows almost the same evolution for all three
parameterizations �0;1;2 of f1CDM, this is not the case for

f2CDM where �0 differs significantly from the other two.
Finally, we repeated our analysis by treating �8 as a

free parameter and the corresponding results are in good

agreement with our previous analysis within 1� with the
results of Table III, thus justifying our choice to fix �8.
Specifically, we found the following.
In the case of the �CDM:
(i) For the �0 model, �2 ¼ 573:254, �m0 ¼ 0:272�

0:003, �0 ¼ 0:523� 0:0858, �8 ¼ 0:761� 0:038.
(ii) For the �1 model, �2 ¼ 572:618, �m0 ¼ 0:272�

0:003, �0 ¼ 0:485� 0:098, �1 ¼ �0:398� 0:502,
�8 ¼ 0:694� 0:087.

(iii) For the �2 model, �2 ¼ 572:652, �m0 ¼ 0:272�
0:003, �0 ¼ 0:483� 0:097, �1 ¼ �0:633�
0:815, �8 ¼ 0:685� 0:097.

In the case of the f1CDM:
(i) For the �0 model, �2 ¼ 573:128, �m0 ¼ 0:271�

0:003, b ¼ 0:104� 0:142, �0 ¼ 0:533� 0:089,
�8 ¼ 0:766� 0:039.

(ii) For the �1 model, �2 ¼ 573:277, �m0 ¼ 0:272�
0:003, b ¼ 0:086� 0:143, �0 ¼ 0:526� 0:104,
�1 ¼ 0:054� 0:507, �8 ¼ 0:771� 0:104.

(iii) For the �2 model, �2 ¼ 572:452, �m0 ¼ 0:272�
0:003, b ¼ 0:072� 0:144, �0 ¼ 0:490� 0:101,
�1 ¼ �0:679� 0:835, �8 ¼ 0:682� 0:099.

In the case of the f2CDM:
(i) For the �0 model, �2 ¼ 573:766, �m0 ¼ 0:272�

0:004, b ¼ 0:109� 1:48, �0 ¼ 0:585� 0:091,
�8 ¼ 0:786� 0:041.

(ii) For the �1 model, �2 ¼ 573:693, �m0 ¼ 0:272�
0:002, b ¼ 0:092� 1:52, �0 ¼ 0:549� 0:108,
�1 ¼ 0:0934� 0:551, �8 ¼ 0:790� 0:116.

(iii) For the �2 model, �2 ¼ 572:653, �m0 ¼ 0:272�
0:004, b ¼ 0:082� 1:71, �0 ¼ 0:483� 0:097,
�1 ¼ �0:635� 0:408, �8 ¼ 0:684� 0:038.

V. CONCLUSIONS

It is well known that the growth index � plays a key role
in cosmological studies because it can be used as a useful
tool in order to test Einstein’s general relativity on cosmo-
logical scales. In this article, we utilized the recent growth-
rate data provided by clustering, measured mainly from the
PSCz, 2dF, VVDS, SDSS, 6dF, 2MASS, BOSS and
WiggleZ galaxy surveys, in order to constrain the growth
index. In particular, we performed simultaneously a like-
lihood analysis of the recent expansion data (SnIa, CMB
shift parameter and BAO) together with the growth rate of
structure data, in order to determine the cosmological and
the free parameters of the �ðzÞ parametrizations and thus to
statistically quantify the ability of �ðzÞ to represent the
observations. We considered the following growth index
parametrization: �ðzÞ ¼ �0 þ �1yðzÞ [where yðzÞ � 0,
yðzÞ ¼ z and 1� aðzÞ]. Overall, considering a �CDM
expansion model we found that the observed growth index
is in agreement, within 1� errors, with the theoretically
predicted value of �� ’ 6=11. Additionally, based on the
Akaike information criterion we have shown that for any
type of �ðzÞ the combined analysis of the cosmological
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(expansion+growth) data can accommodate the
Hu-Sawicky and Starobinsky fðRÞ gravity models for
small values of the deviation parameter b.

Numerical analysis files: The MATHEMATICA and data
files used for the numerical analysis of this study may be
downloaded from [84].
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APPENDIX: USEFUL FORMULAS

Here we provide the exact expressions of the coefficients
�H2

i ðNÞ for the HS and Starobinsky models for n ¼ 1. In
all cases H2

�ðNÞ is given by Eq. (2.22). For the HS model

the first two terms are

�H2
1ðNÞ
H2

0

¼ �H2
0ð�1þ�m0 þ�r0Þ2ð6H�ðNÞ2 þ 4H0

�ðNÞ2 þH�ðNÞð15H0
�ðNÞ þ 2H00

�ðNÞÞÞ
2H�ðNÞð2H�ðNÞ þH0

�ðNÞÞ3 ; (A1)
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FIG. 9. The evolution of the GeffðzÞ for the two fðRÞ models considered in the text, f1CDM (top) and f2CDM (bottom), for all three
growth rate parametrizations �0 (left), �1 (middle) and �2 (right). In all cases we assume 	 ¼ 0:1h Mpc�1.
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FIG. 10. The evolution of the Geffð	; zÞ for the HS fðRÞ model for 	 ¼ 0:01h Mpc�1. The plot is practically indistinguishable from
Fig. 9 (top). Therefore, we conclude that for these theories the particular choice of 	 leaves the results unaffected.
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�H2
2ðNÞ
H2

0

¼ �ðH4
0ð�1þ�m þ�rÞ3ð128H�ðNÞ8 � 32H2

0ð�1þ�m þ�rÞH0
�ðNÞ6

þ 32H�ðNÞ7ð25H0
�ðNÞ þ 3H00

�ðNÞÞ � 2H2
0ð�1þ�m þ�rÞH�ðNÞH0

�ðNÞ4ð139H0
�ðNÞ þ 22H00

�ðNÞÞ
þ 16H�ðNÞ6ð9H2

0ð�1þ�m þ�rÞ þ 89H0
�ðNÞ2 þ 12H0

�ðNÞH00
�ðNÞÞ

þH�ðNÞ2H0
�ðNÞ2ð�749H2

0ð�1þ�m þ�rÞH0
�ðNÞ2 þ 9H0

�ðNÞ4 � 48H2
0ð�1þ�m þ�rÞH00

�ðNÞ2
� 4H2

0ð�1þ�m þ�rÞH0
�ðNÞð74H00

�ðNÞ � 3H�
ð3ÞðNÞÞÞ þ 8H�ðNÞ5ð144H2

0ð�1þ�m þ�rÞH0
�ðNÞ

þ 146H0
�ðNÞ3 þ 18H0

�ðNÞ2H00
�ðNÞ þH2

0ð�1þ�m þ�rÞð15H00
�ðNÞ � 6H�

ð3ÞðNÞ �H�
ð4ÞðNÞÞÞ

þ 4H�ðNÞ4ð540H2
0ð�1þ�m þ�rÞH0

�ðNÞ2 þ 124H0
�ðNÞ4 þ 12H0

�ðNÞ3H00
�ðNÞ

þ 3H2
0ð�1þ�m þ�rÞH00

�ðNÞð17H00
�ðNÞ þ 4H�

ð3ÞðNÞÞ þ 2H2
0ð�1þ�m þ�rÞH0

�ðNÞð129H00
�ðNÞ

þ 12H�
ð3ÞðNÞ �H�

ð4ÞðNÞÞÞ � 2H�ðNÞ3ð84H2
0ð�1þ�m þ�rÞH0

�ðNÞ3 � 53H0
�ðNÞ5

� 3H0
�ðNÞ4H00

�ðNÞ þ 21H2
0ð�1þ�m þ�rÞH00

�ðNÞ3 þ 3H2
0ð�1þ�m þ�rÞH0

�ðNÞH00
�ðNÞ

� ð41H00
�ðNÞ � 4H�

ð3ÞðNÞÞ þH2
0ð�1þ�m þ�rÞH0

�ðNÞ2ð217H00
�ðNÞ � 42H�

ð3ÞðNÞ
þH�

ð4ÞðNÞÞÞÞÞ=ð4H�ðNÞ4ð2H�ðNÞ þH0
�ðNÞÞ8Þ; (A2)

while for the Starobinsky model the first two terms are

�H2
2ðNÞ
H2

0

¼ H4
0ð�1þ�m0 þ�r0Þ3ð8H�ðNÞ2 þ 9H0

�ðNÞ2 þH�ðNÞð34H0
�ðNÞ þ 6H00

�ðNÞÞÞ
4H�ðNÞ2ð2H�ðNÞ þH0

�ðNÞÞ4 ; (A3)
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0ð�1þ�m0 þ�r0ÞH�ðNÞH0

�ðNÞ4ð263H0
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and H. Štefančić, J. Cosmol. Astropart. Phys. 12 (2010)
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