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SNS junctions in nanowires with spin-orbit coupling: Role of confinement
and helicity on the subgap spectrum
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We study normal transport and the subgap spectrum of superconductor-normal-superconductor (SNS) junctions
made of semiconducting nanowires with strong Rashba spin-orbit coupling. We focus, in particular, on the role
of confinement effects in long ballistic junctions. In the normal regime, scattering at the two contacts gives rise
to two distinct features in conductance: Fabry-Perot resonances and Fano dips. The latter arise in the presence
of a strong Zeeman field B that removes a spin sector in the leads (helical leads), but not in the central region.
Conversely, a helical central region between nonhelical leads exhibits helical gaps of half-quantum conductance,
with superimposed helical Fabry-Perot oscillations. These normal features translate into distinct subgap states
when the leads become superconducting. In particular, Fabry-Perot resonances within the helical gap become
parity-protected zero-energy states (parity crossings), well below the critical field B, at which the superconducting
leads become topological. As a function of Zeeman field or Fermi energy, these zero modes oscillate around zero
energy, forming characteristic loops, which evolve continuously into Majorana bound states as B exceeds B..
The relation with the physics of parity crossings of Yu-Shiba-Rusinov bound states is discussed.
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I. INTRODUCTION

Majorana fermions, particles that are their own antipar-
ticles, have been the subject of intense research over the
past decades in the context of particle physics and cosmol-
ogy [1,2]. During the last few years, this interest extended
to the condensed matter arena where Majorana fermions are
intensely studied nowadays [3,4]. This state of affairs has been
driven by the key observation that emergent quasiparticles in
superconductors can be described as Majorana fermions [5].
This, together with the recent advances in the field of
topological materials [6,7], has spurred an intense search for
condensed matter realizations of Majorana fermions. Most of
these realizations focus on zero-energy modes inside the gap of
topological superconductors. These zero modes are Majoranas
from the point of view of particle-antiparticle conjugation, but
they do not obey fermionic exchange statistics.! Thus, instead
of Majorana fermions, they are now more precisely referred to
as Majorana bound states (MBSs) or Majorana zero modes.”

Early proposals suggested that MBSs can emerge in exotic
superconductors, such as p wave, since they realize topological
phases that support edge excitations with Majorana fermion
character [8—13]. Even though p-wave pairing is not robust
against disorder and thus scarce in nature, one can engineer
systems to mimic such nontrivial superconductivity. These
are based on the proximity effect between a conventional

'In fact, they obey non-Abelian exchange statistics which might
have potential applications in fault-tolerant quantum computa-
tion [80].

2Recently, it has been argued that Bogoliubov quasiparticles in
conventional superconductors are true Majorana fermions. See C.
Chamon, R. Jackiw, Y. Nishida, S.-Y. Pi, and L. Santos, Phys. Rev. B
81, 224515, (2010). Their Majorana fermion nature can be revealed
by annihilation processes; see C. W. J. Beenakker, Phys. Rev. Lett.
112, 070604 (2014).
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s-wave superconductor and a topological insulator [14], or
a semiconductor nanowire (NW) with strong spin-orbit (SO)
coupling [15-19]. For the latter case, it has been shown [18,19]
that if an external Zeeman field B, orthogonal to the SO
axis, exceeds a critical value B, = /2 + A2, where u is the
Fermi energy and A the induced s-wave pairing, zero-energy
MBSs emerge at the nanowire ends, signaling a topologically
nontrivial phase.

Unfortunately, the outcome of the simplest detection pro-
tocol for MBSs in NW devices [20-22], detection of subgap
zero modes through zero-bias anomalies in transport [23-28],
can be obscured, or even mimicked, by other effects [29-36].
As a result, there is no clear consensus yet on whether MBSs
have been observed or not in NWs.?

Thus, the time seems right to move beyond zero-bias
anomaly experiments and study more complex geometries
such as superconductor-normal-superconductor (SNS) junc-
tions [37-39]. This geometry has a number of advantages
including the possibility of studying supercurrents [24,40—43],
or direct spectroscopy of Andreev bound states (ABS) [28,44—
51]. As we shall discuss, this latter technique can be used, in
principle, to directly monitor the detailed evolution from the
trivial to the nontrivial regime. Previous papers have mostly
focused on short junctions [37,52-55], while detailed studies
of ABS in other relevant geometries, including long- and
intermediate-length junctions, remain largely unaddressed. In
particular, the role of Fabry-Perot resonances occurring in
normal transport as the middle NW finite-length section of the
junction is depleted has never been studied to the best of our
knowledge. In this work, we fill this void and present detailed

3Quite recently, further evidence of zero-bias anomalies related
to Majoranas has been reported in a different setup consisting of a
ferromagnetic atomic chain on top of a superconducting substrate. S.
Nadj-Perge et al., Science, doi:10.1126/science.1259327 (2014).
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FIG. 1. (Color online) Normal conductance Gy as a function of
the Fermi energy unw in the left lead for a semi-infinite NW-
N junction. Parameters: ogx = 20 meV nm (which corresponds to
Eso = 0.05 meV) and B = 0.0125 meV. Different curves show how
Gn(unw) evolves for increasing Fermi energy fije,q in the right lead.
The inset shows the dispersion relation for a Rashba NW in the
presence of a transverse B field. Within the gap there is only one right
mover per energy (green filled circle), while outside the gap there are
two (red filled circles). This gives rise to the reentrant behavior of
conductance, from ~2¢%/h to e*/ h and back to 2¢?/ h, as a function
of Fermi energy in the main panel. The spin of the counterpropagating
states (open circles) is opposite to the propagating ones (filled circles),
hence the name helical.

calculations of the normal conductance and Andreev spectra
in such geometries. We emphasize here that all nanowire
experiments should ideally belong to the category studied
here, as confinement effects should be present when a ballistic
quasi-one-dimensional conductor is contacted between leads,
especially when the normal part of the NW (in our geometry,
the region of length Lyw not directly in contact with leads) is
gated. This electrical gating naturally creates quantum wells
(or barriers) with their associated confined quantum levels in
the middle region of the NW.

In the first half of this work, we discuss normal transport
across a finite-length ballistic NW. We show how band-
structure details in the presence of strong Rashba SO coupling
and Zeeman fields may dominate transport, and give rise
to distinct features associated to helical phases (defined by
singly degenerate subbands at the Fermi level with spin locked
to momentum) known as helical gaps (Fig. 1). Likewise,
finite contact resistance induces confinement resonances in
conductance as quasibound states develop in the NW. In
the simplest case of noninteracting electrons,* we find that
confinement generates two types of resonances: Fabry-Perot
resonances and helical Fano dips. Fabry-Perot resonances for
a spinful mode [56] will give conductance oscillations with a
ceiling of 2¢%/h, unless the central NW is depleted into its
helical regime, in which case one may observe helical Fabry-
Perot resonances with a half-quantum ¢?// ceiling. For long
enough junctions, many helical Fabry-Perot resonances may

4Coulomb blockade effects will be discussed elsewhere.
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occur. We discuss that, while confinement effects may mask the
helical gap, the characteristic reentrance of helical Fabry-Perot
resonances with Zeeman field or gate voltage contains valuable
information about nontrivial helical transport through the NW.
The second kind of resonances are sharp Fano dips when
the central section of the NW is gated to form a quantum
well (nonhelical) and the NW sections below the contacts (the
leads) are helical. Therefore, both types of resonant features
in normal transport may signal the helical regime in different
sections (central or below the contacts) of the NW. In the
presence of superconducting leads, the two lead to distinct
effects.

In the second half of this work, we consider the connection
of this phenomenology to transport in the superconducting
regime. Each helical Fano dip in the normal phase translates,
in an SNS geometry, into a single subgap state that crosses zero
energy as a function of external parameters (Fermi energy or
Zeeman field). Such a crossing is often known as a parity
crossing since it is protected by conservation of number parity
in the junction. As we discuss, these parity crossings are
made possible by the nontrivial topology in the underlying
effective p-wave superconductor for B > B,. Similar bound
states originated from nonmagnetic impurities in topological
superconductors and superfluids have been recently discussed
in Refs. [57,58] and can be considered the p-wave counterparts
of Yu-Shiba-Rusinov bound states [59—62] in standard s-wave
superconductors with magnetic impurities. A more direct
analogy with standard Yu-Shiba-Rusinov magnetic bound
states actually applies in the nontopological phase B < B..
In this situation, helical Fabry-Perot resonances in normal
conductance translate, in the superconducting regime, into
loops around zero energy in the ABS spectrum as a function
of external parameters. For long junctions, many of these
loops are visible, each separated by a parity crossing at zero
energy. As a result, the B < B, subgap spectrum contains
near-zero-energy subgap states that oscillate as a function of
Fermi energy or Zeeman field when the N region of the junction
is helical. Interestingly, we find that these oscillating near-zero
subgap states in the trivial regime are smoothly connected to
MBS when Zeeman is increased beyond B..

This paper is organized as follows. In Sec. II, we describe
the Hamiltonian model employed in our work. Section III
focuses on the normal conductance and how the two types of
resonances, helical Fabry-Perot and helical Fano dips, appear
in the system. The rest of the paper is devoted to analyzing the
consequences of these resonant levels in the subgap spectrum
in the superconducting regime. After a brief discussion on
how the SNS junction is modeled, as well as a discussion
about the relevant length scales of the problem, Sec. IV
presents a systematic study of the subgap spectrum of SNS
junctions, including its dependence on the superconducting
phase difference across the junction ¢. We discuss in detail how
the presence of confined levels within the central region affects
the ABS and leads to parity crossings in the topological phase.
The dependence of the ABS on phase difference, Fermi energy
of the normal region, and Zeeman field is discussed for both
short and long junctions in Secs. IV B and IV C, respectively.
Our conclusions are presented in Sec. V. In Appendix A, we
describe in detail how we model SNS junctions by using
a tight-binding version of the model resented in Sec. II.
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Appendix B discusses an effective model that fully explains
the phenomenology behind helical Fano resonances.

II. NANOWIRE MODEL

We present the model for a nanowire with Rashba SOC
and in the presence of an external Zeeman. We restrict
ourselves to the strictly one-dimensional (single-mode) case
for simplicity. Generalizations to multimode nanowires are
relatively straightforward. The model Hamiltonian reads as
»?
2m*

R
Hy = _M_?pr'i'BO‘x’ (D
where p is the momentum operator, m* is the effective electron
mass, ag the Rashba SOC strength, u the Fermi energy, and
o; the spin Pauli matrices. An external magnetic field 55 along
the wire produces a Zeeman splitting B = gupl3/2, where
wp is the Bohr magneton and g the wire g factor. The Rashba
coupling defines a typical length, the spin-orbit length Iso =
711/ 2m* Egp, with the spin-orbit energy defined as Esp =

Ea%m*/hz. For typical InSb values m* = 0.015m,, with m,

the electron mass and ag = 0.2 eV A, the spin-orbit energy is
Ego ~ 50 pneV which gives SO lengths of the order of Iso &~
200 nm.

Note that the Rashba and Zeeman fields in Eq. (1) are
perpendicular. As a result, the two spinful bands (shifted by
SO) become mixed by the Zeeman term and the zero-field
crossing point at zero momentum becomes an anticrossing
of size 2B. When the chemical potential lies within this
anticrossing gap, the system has two Fermi points, as opposed
to four Fermi points for p above or below this gap. This
window is a helical gap since the two Fermi points correspond
to counterpropagating states with different spins (the spin
projection is locked to momentum) [63] (see inset in Fig. 1).

III. NORMAL CONDUCTANCE

Before discussing the subgap Andreev spectrum of a NW
coupled to superconducting leads, we characterize the normal
regime in the presence of a Zeeman field. We are interested in
particular in the normal conductance Gy as the Fermi energy
(unw) in the middle section of the NW (length Lyw) varies
with respect to the one in the left and right leads ftjeq5. Such
situation models a NW contacted between normal electrodes
and with a Fermi energy tuned by a central gate (see, e.g.,
Ref. [27]). For simplicity in the discussion, we model the
gate-induced electrostatic potential with an abrupt profile (the
role of smooth gate potentials has been recently discussed in
Ref. [64]).

For computations purposes, we discretize Eq. (1) into
a tight-binding lattice. The momentum operator introduces
hopping elements v between nearest-neighbor sites. The
transparency of the left and right contacts is parametrized by
a factor 7 € [0, 1], introduced in the hopping matrix vy = tv
across the two interfaces (see Appendix A). Gy is calculated
by means of the Green’s function technique [65,66]

2
Gy = 4% T, G’ Tr G°], )
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where G" =g;+ g, X" G" = (GH' is the full retarded
Green’s function. The bare Green’s function of the normal
region without the presence of the leads is g = [w — hg +
i01]~!. The Hamiltonian A corresponds to Hy in Eq. (1)
with & = unw. The leads are taken into account through the
self- energles 1Ry = V&LV » Where g} gy = [0 — hr) +
i0T]~! stands for the left/right lead’s propagator, when
decoupled from the system. In this case, i g) corresponds
x4

X R™ LR

to Hp in Eq. (1) with u = fjeqads. Finally, 'y r) =
In practice, Gy is computed recursively with the boundary
conditions imposed by the leads.

To set the stage, we first consider an NW-N junction
between a semi-infinite nanowire and a good metal, which will
allow us to discuss deviations when we consider confinement
effects. Figure 1 shows the expected conductance profile
as a function of the NW Fermi energy unw, for different
values tje,g Of the Fermi energy in the metal. At finite
magnetic fields, the normal conductance exhibits a gap (with
Gn =~ €2/ h) of size Auxw = 2B. As we explained, this gap
is a direct consequence of the combined action of Zeeman
effect and strong SO coupling and reflects the presence of
helical transport, namely, spin-polarized counterpropagating
states [63]. As discussed in Ref. [64], the visibility of this
helical gap depends on various factors which, importantly,
include the actual value of the SO energy. Indeed, as the ratio
Wiead/ Eso 1s made larger, the visibility of the gap in Gy is
rapidly degraded (see lower curves in Fig. 1).

We now consider the confined N-NW-N junction geometry.
Due to the confinement of the central NW section, Fabry-Perot
resonances are expected. Figure 2 shows the extreme case of
a very short central region with only one resonant quasibound
state in the junction. As expected, the conductance without
external Zeeman field (solid curve) has a Lorentzian shape
and reaches its maximum value Gy = 2¢?/h when unw =
WUieads (vertical dashed guideline). Similar results are found for
small Zeeman fields B < jeaqs (dashed). When B = fiieqqs,
however, the leads becomes spin polarized (or helical, to be

|N

Wnw=~4.5 Uead Unl=6.6 Lieads

=%

&
Bllieads

/an/l-lleads

FIG. 2. (Color online) Normal conductance Gy as a function of
the Fermi energy punw for a short N-NW-N junction, Lyw = 20 nm
(rest of parameters Eso = 0.05 meV and pjeaqs = 10E50). Different
curves show how Gn(unw) evolve with the Zeeman field B. The insets
show a blowup of Gn(unw) around the Fano dip for two different B.

024514-3



CAYAO, PRADA, SAN-JOSE, AND AGUADO

(a) B=0 (b) B=IJIeads
O
 ———
—
—————— —— ]
§ -1 e ey .
) |
\i 1
©
-3 -
0 5 10 30 5 10
© B=1.2flicads (@) B=1.50hcads
———
ﬁt =
e —— — T
e —— 0
§ e B e Y —
\iﬂ _ —_
UJ S —— |
-3 3 : f

Hnw!Hieads Hnw! heads

FIG. 3. (Color online) Energy levels as a function of the Fermi
energy unw for the same system as in Fig. 2. Different panels show
how the levels evolve with the Zeeman field B. The red dashed circle
shows the value of unw for which one of the projections of the
Zeeman-split bound state resonates with carriers at the Fermi level
(horizontal dashed line), leading to a Fano resonance in conductance.

precise) and hence the maximum conductance is halved to
Gy = €/ h (red curve).

We consider first the situation with B > pijeaqs. This regime
is characterized by strong Fano dips that appear when pnw
is positive, namely, when the junction is gated, to create
a quantum dot instead of a barrier [see Eq. (1)]. At these
Fano dips destructive interference is maximum and Gy = 0.
Moreover, the position of these Fano resonances moves to
higher unw as B increases (Fig. 2, insets). The Fano dips can be
understood by noticing that the system develops a truly bound
state at an energy below .5 as unw increases [Fig. 3(a)].
While for B < [ieads this level lies far below the chemical
potential of the leads and cannot significantly affect Gy, in the
case B > [lieads at hand, the situation is markedly different.
At such high fields, one spin sector in the leads is removed
away from the chemical potential, and the leads become
helical. Similarly, the bound state below je.dqs 1S Zeeman
split, such that the component corresponding to the removed
spin sector may then cross the Fermi level at a given unw
[Figs. 3(b)-3(d)]. This results in one spin projection strongly
coupled to the continuum (the sector that is not removed),
while the other spin projection remains weakly coupled to
this helical continuum through the split bound state (dashed
circles), owing to the small spin canting induced by SO. This
configuration mimics the physics of a Fano resonance, as we
explicitly demonstrate in Appendix B with an effective model.
Note that SO is essential to mimic the physics of the Fano effect
(two channels with very different coupling to the continuum).
Indeed, we have checked that for «g = 0 (namely, a fully
spin-polarized system without canting) the effect disappears
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(not shown). The general behavior is related to the so-called
Fano-Rashba effect in systems with inhomogeneous Rashba
couplings [67,68] although in our case the bound states
originate from the Fermi energy inhomogeneity, which is
probably more realistic for NWs with gates. For intermediate
lengths, the system can accommodate many of the above
resonances but the helical gap is not visible (not shown).
Consider now the B < ijeaqs egime complementary to
the preceding discussion. In this situation, there exist two
propagating channels in the leads, and conductance may reach
2¢%/h at Fabry-Perot maxima, as long as the central NW is
likewise nonhelical (B > |unw]|). Otherwise, for long enough
junctions (Lnw = 4 um for the realistic NW parameters in our
simulation) a helical gap develops in conductance, such that
Gn < €2/ h. As central unw is tuned into and out of the helical
regime, conductance exhibits a reentrant behavior, switching
from ~ 2¢%/h to e¢*/h and back to 2¢?/h. This reentrance
can be resolved across multiple resonant helical Fabry-Perot
oscillations. This is illustrated in Fig. 4 where we plot the
conductance for a 4-um-long nanowire as a function of the
central Fermi energy unw. Note the reentrant conductance,
and the helical Fabry-Perot resonances with an e/ h ceiling,
signaling helical transport in the junction. The visibility of the
conductance reentrance and the helical gap is lost for fields
B > Ego (see band structure inset in Fig. 1). At such fields,
the helical gap becomes an extended Gy ~ 2/ h half-plateau
(potentially with superimposed Fano resonances if B also
exceeds [ieags) that emerges directly from pinchoff Gy = 0.
Note that the regime with helical Fano dips in the normal
conductance is quite relevant towards reaching topological
superconductivity: the NW under the contacts can become
a nontrivial topological superconductor in the presence of
pairing as long as it can be depleted and made helical in
the normal phase. Hence, our prediction of helical Fano dips
superimposed on a half-plateau of Gy ~ e?/h constitutes a

0 1 2
.unw/ESO

FIG. 4. (Color online) Normal conductance Gy as a function of
the Fermi energy pnw for a long junction with Lyw = 4 um, Eso =
0.05 meV, and s = Eso. For intermediate magnetic fields B <
Eso the conductance develops a clear helical gap inside the Fabry-
Perot resonant structure. This gap signals the region where the middle
section of the NW becomes helical. When B > (jeqqs, the contacts
become helical too and the conductance shows helical Fano dips (red
curve).
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FIG. 5. (Color online) Same as Fig. 4 for fixed magnetic field
B = 0.2E5o and increasing fjeags- The helical Fano dips are only
seen for peqs < B (solid line).

strong signature of helical behavior as precursor of nontrivial
superconductivity.

Similar phenomenology is obtained for conductance at
fixed magnetic fields and increasing ftieaqs (Fig. 5). As
expected, the Fano dips disappear as soon as fijeads > B while
the gap coming from helicity in the central section in the NW
is much more robust. Increasing pije,qs results in well-defined
Fabry-Perot resonances in the helical gap region. The normal
conductance as a function of magnetic field is shown in
Fig. 6. Here, a change from irregular behavior to regular ¢/ h
oscillations as a function of magnetic field signals the helical
regime when B > unw [64].

Having in mind that there exists no conclusive experimental
evidence of the helical regime in nanowires in the litera-
ture [69,70], the nontrivial resonant effects in finite-length
junctions that we have described, both helical Fabry-Perot
resonances and helical Fano dips, could be used as an
interesting option for detecting such helical transport regime in
long junctions. Even more significant, these helical resonant

262
h

Gn

=%

FIG. 6. (Color online) Normal conductance Gy as a function of
magnetic field for different values of the Fermi energy unw (same
parameters as in Fig. 4, except pieaas = 10Eso). The oscillatory
behavior when B > pnw reflects the transition to the helical regime
in the normal side.
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FIG. 7. (Color online) Two s-wave superconducting contacts (S,
with gaps Ag/) deposited on top of a Rashba nanowire (NW) of length
L = Lg + Lxw + Ls. The superconductors induce superconducting
correlations into some regions of the nanowire via proximity effect,
giving rise to regions which we refer to as superconducting leads (left
L and right R) with gaps A < Ag and Fermi energies ftje,qs, and
a central region in the normal state with punw. The dashed arrow in
the first figure denotes the applied Zeeman field along the NW. Due
to the finite length Lg, the junction in the topological phase hosts
four Majorana bound states 1;,12,73,74, for a phase difference of =
between the superconductors, with localization length £,,.

features give rise to a nontrivial subgap spectrum when the
leads become superconducting, as we discuss in what follows.

IV. SUBGAP LEVELS IN SNS JUNCTIONS
A. SNS junction model and relevant length scales

To model a SNS junction we assume that the outer parts
of the wire are coupled to an s-wave superconductor (with
bulk values pg and pairing Ag ), while the central is not (see
Fig. 7). Superconducting correlations are induced by proximity
effect into the nanowire. For good enough contact between
the NW and the superconductor, the Cooper pair amplitude is
finite inside the NW regions below the superconductor. In most
papers in the literature, this situation is modeled by including
by hand a pairing term A < Ag in the Hamiltonian of such
NW regions. While, rigorously speaking, this is incorrect (the
superconducting coupling constant is zero inside the NW), it is
well known that it provides a good description of the proximity
effect for large enough gaps [in such cases, the parameter A is
essentially the low-frequency limit of a tunneling self-energy
and is given by the tunnel coupling between the normal and
superconducting parts (see, e.g., [54]]. Therefore, we adopt
this approximation here for simplicity (we have checked that
all our conclusions remain unaltered irrespective of whether
we use this simplified model or a full NW + SC coupling
model, see Appendix A 3). In cases where the interface
transparencies are small, extra Fabry-Perot resonances coming
from insulating layers could complicate our analysis (see
Ref. [71]).

In particular, we model the regions of the nanowire below
the superconducting contacts as regions with Fermi energy
Wieads and pairing potential on the left (L) and right (R) contacts
given by Ay = Ae”%/? and Agp = Ae'%/?, with A < Ag.
The region in the middle of the nanowire without supercon-
ducting correlations is the normal region (N) with Fermi energy
denoted by unw as before. At high enough magnetic fields,
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FIG. 8. Andreev levels at ¢ = 0 of a short junction, Lyw = 20 nm as a function of unw. Different panels show the evolution of the spectrum
for increasing magnetic fields. Parameters: Eso = 0.05 meV, pjeaqs = 10Es0, Ls = 2 um, A = 0.25 meV.

the regions of the NW below the superconductors (S regions of
the junction) can be driven into a topological superconducting

phase when B > B, = v/ + A”. Owing to the finite length
Lg, this results in a SNS junction with four Majorana bound
states for a phase difference of w between the superconductors:
two inner Majorana bound states, labeled 7 3, that form inside
the junction, and two outer Majorana bound states, 1; 4 (see
Fig. 7). On the other hand, for a zero phase difference, only
the outer MBSs are present.

SNS Josephson junctions are classified in two types,
depending on the relationship between the length of the
normal region Lyw (i.e., distance between the superconducting
contacts) and the coherence length & = 2hvg/m A, where
vp is the Fermi velocity. Short junctions are characterized
by Lnw < &, whereas Lyw > £ in long junctions. Such
classification can be also given in terms of natural energy scales
of the problem, the Thouless energy Er = hvg/Lnw, and the
induced superconducting pair potential A, being vy the Fermi
velocity, and Lnw the length of the normal region. The above
conditions, in terms of these energy scales, are A < Er for
short junctions and A > Er for long ones. The significance
of this classification is related to the typical number ~A /E7
of Andreev subgap states of the junction, in addition to the
MBSs at zero energy.

The MBSs wave functions decay from both ends of
the topological superconducting leads. The inner and outer
MBSs may feel their mutual presence if their wave functions
exhibit a nonzero spatial overlap. The relevant decay distance
characterizing this overlap is the Majorana localization length
£y (Appendix C). For finite Lg < 2£,, the overlap between
MBS:s is significant and therefore they are no longer true zero
modes.

In what follows, we discuss the subgap spectrum of short
SNS junctions in the topological regime B > B, as well as
the subgap spectrum of long SNS junctions as one goes from
the helical junction regime to the topological one. The helical
junction regime is defined by a central region depleted into
the helical regime, while the S regions remain nontopological,
namely, by fticags > nw, and unw < B < B..

B. Short junctions

For very short junctions, the ABS spectrum at B < B, and
¢ = 0does not contain subgap states [Figs. 8(a) and 8(b)]. This
is expected for a short junction with & > Lnw. The B > B,
spectrum [Figs. 8(c) and 8(d)], on the other hand, is much
more interesting. It contains the expected subgap state near
zero energy for all unw (coming from the weakly coupled
outer Majoranas for Lg > €, the inner MBS at ¢ = 0 are
strongly hybridized and form standard ABS at energy ~A).
Notably, this MBS coexists with a bound state that crosses
zero energy for a given punw > 0 (dashed line). This bound
state originates from the single resonance that the junction
accommodates for increasing unw > 0 (see Fig. 3), which we
discussed in connection to Fano resonances. If we interpret
this resonant state as an impurity level, our results for B <
B, are consistent with Anderson’s theorem which prevents
the existence of bound states inside the gap of an s-wave
superconductor for nonmagnetic impurities [72]. The reason
is that the zero-energy crossing appears for B > B, such
that the superconductor is effectively p wave. Therefore, the
emergence of these subgap states crossing zero energy should
be understood as a direct consequence of nontrivial topology
in the junction [57,58]. The precise condition for the level
crossing coincides with the condition for having a Fano dip.
As we discussed in Sec. III, this is the condition in the normal
regime for having a single resonant state which interferes
destructively with a helical contact; the latter condition is
here fulfilled because peaqs < B. < B. These subgap states
and zero-energy crossings should be understood as the p-wave
counterparts of so-called Yu-Shiba-Rusinov subgap states [59—
62] and their corresponding parity crossings [73] in s-wave
superconductors with magnetic impurities.

Further insight comes from the magnetic field dependence
at fixed unw (Fig. 9). After the closing of the gap across the
topological phase transition at B = B, the spectrum of the
junction exhibits a perfect zero-energy state accompanied by a
zero-energy crossing (dashed line) similar to the one discussed
in Fig. 8. Note here that, despite the finite length of the central
NW, the zero-energy state for B > B. does not oscillate as a
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B/B,

FIG. 9. Andreev levels at ¢ = 0 as function of the Zeeman field
for unxw = 3.57 meV. The rest of parameters are the same as in Fig. 8
except Lsg = 10 um.

function of Zeeman field, unlike what is typical of overlapping
MBSs [34,74-76]. This can be easily understood as this state
comes from the outer MBSs which at ¢ = 0 are effectively
decoupled across the junction since we assume Lg > £;.
We now analyze in more detail the full phase dependence
in the topological phase for different values of punw. The low-
energy sector is characteristic of a short junction: two almost
@-independent levels near zero energy coming from outer
MBSs and two dispersive levels coming from hybridization
of inner MBSs across the junction. The anticrossings near
¢ =m are only visible for finite Lg/€y. For Lg > €y
[Fig. 10(a)], the zero-energy levels are flat and the anticrossing
at ¢ =  becomes negligible.’ In the following, we refer to
the dispersive ABS with almost perfect crossings at ¢ = 7
as Majorana ABSs. As unw increases, an extra bound state

’In Lg — oo limit, the outer Majoranas are no longer involved in
transport while the levels at ¢ = 7 exactly cross (not shown) giving
rise to anomalous 4 -periodic spectrum and Josephson currents if
fermionic parity is conserved.

(a) Hnw=0.5meV (b) Unw=3meV
1 1
<
5 0 0
-1 : -1 :
0 T 275 0 T 27
(] @
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emerges from the continuum as an almost dispersionless
subgap state and interacts very weakly with the Majorana
ABSs [Fig. 10(b)]. Importantly, after crossing zero energy
[Fig. 10(c)] and reemerging at finite energy [Fig. 10(d)], the
anticrossing with the Majorana ABS is considerably larger,
indicating that the bound state has changed its parity character.

C. Long junctions

The ABS spectrum of long junctions at small magnetic
fields B < B, differs considerably from the one of short
junctions. Even for B = 0 [Fig. 11(a)], the spectrum is very
sensitive to the sharp increase of conductance at small negative
Unw, When the junction goes rapidly from pinchoff to fully
transmitting (solid black line in Fig. 4). This is reflected in a
feature that resembles the closing and reopening of a gap (but,
of course, is related to the central region becoming metallic,
rather than with a gap closing). The emergence of Fabry-Perot
resonances in the normal phase is translated into the appear-
ance of level pairs at finite energies, or loops, that oscillate with
system parameters in the superconducting phase. A distinct
change in the loop structure takes place as B is increased within
a window |unw| < B. This, recall, corresponds to the helical
regime of the normal region, characterized in normal transport
by a helical gap and helical Fabry-Perot oscillations. The loops
inside said window reconnect, and give rise to new loops
around zero energy, separated by parity crossings [Fig. 11(b)].
Each of these crossings corresponds to a helical Fabry-Perot
resonance in the normal regime. For larger Zeeman energies,
supporting many helical Fabry-Perot resonances within the
helical gap, correspondingly many consecutive zero-energy
loops become visible in the superconducting regime. As soon
as the normal side ceases to be helical (|unw| > B), the
spectrum no longer shows loops around zero energy. Since
depleting the normal section of the NW junction should be
much easier than gating the proximized region, we expect that
said near-zero loops and parity crossings should be ubiquitous

(c) Hnw=3.57meV (d) How=4meV
1 1
0 0
-1 : -1 :
0 T 27T 0 T 27
¢ ¢

FIG. 10. Andreev levels at the junction €(¢) in the short-junction regime Lyw = 20 nm in at B = 1.5B,.. Parameters: o = 20 meV nm
for InSb nano wires, ftje,gs = 0.5 meV, Lg = 10 um, and A = 0.25 meV. Different panels show the Andreev levels around p,y, = 3.57 meV

near the zero-energy crossing in Fig. 8(d).
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@

FIG. 11. (Color online) Andreev levels at ¢ =0 as function of u,, for a long junction, Lyw =4 pum and various magnetic fields.
Parameters: Eso = 0.05 meV, pieaas = 10Es0, Ls = 2 um, A = 0.25 meV. At finite B, the ABS spectrum shows a loop structure around
zero energy in the region where the normal side becomes helical (marked by dashed lines). Note that the junction is very far from becoming

topological (B. ~ 11.2Es0).

for finite-size junctions near depletion® and constitute yet
another alternative scheme to detect the helical regime.

Each loop in the helical regime [see, e.g., Fig. 11(b)] is
similar to those expected for magnetic impurities [59-62],
or quantum dots in the Coulomb blockade regime [28,44]
coupled to superconductors (we emphasize here that our
junction is noninteracting). This result again suggests an
interesting analogy with the physics of Yu-Shiba-Rusinov
states in superconductors with magnetic impurities. Here, the
combined action of Zeeman-induced spin polarization and
depletion is crucial.

Consecutive loops around zero energy resemble the oscilla-
tory behavior expected from overlapping MBSs in finite-length
NWs. However, since the helical gap condition |unw| < B
does not involve ug, which may be large, the zero-energy
loops may exist while the proximized S regions are still in the
topologically trivial regime B < B, [Figs. 11(c) and 11(d)].
Remarkably, there exists a profound connection between zero
loops and MBSs. We find that the former actually evolve
continuously into outer MBSs as B is increased beyond B..
To illustrate this key idea, we compare in Fig. 12 a situation
without near-zero energy loops at low B fields [unw = [ieads>
Fig. 12(a)] with another with loops at very low B coming
from a helical normal region [unw = 0, Fig. 12(b)]. While
the MBSs in the first configuration emerge from a situation
without zero-energy states/crossings at low fields, the ones
corresponding to the second configuration are clearly evolving
from the low B-field loops around zero energy. We emphasize
here that both configurations correspond to the same physical
nanowire junction with the sole difference of a depletion in
the normal part of the junction in the second case. Figure 12
nicely illustrates two of our main results: (1) long loops with
parity crossings in the ABS spectrum can be used to identify

SIntermediate Lynw junctions also show the same behavior, not
shown.

the helical regime in a Rashba NW and (2) such helical loops,
coming from depletion in the normal side of the junction,
continuously evolve into MBS for large enough magnetic
fields.

To obtain more precise information about the nature of
this interesting connection between B < B, near-zero loops
and MBS states, we study their evolution for increasing SO
coupling (Fig. 13). For ag = 0 [Fig. 13(a)], Zeeman-induced
depairing closes the superconducting gap and the spectrum
becomes a dense quasicontinuum (the full junction is in
the normal regime), as expected. Any oy # O removes all
finite-energy crossings while preserving the parity-protected

Hnw=0

(/AN

5 10 15
B/E.,

FIG. 12. (Color online) Andreev levels at ¢ = 0 as function of
B. Same parameters as in Fig. 11. The critical field B, is marked by
vertical dashed line.
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FIG. 13. (Color online) Same as Fig. 12 for unw = 0 and increasing values of the SO coupling ag. The critical field B. is marked by

vertical dashed line.

crossings at zero energy. As a result, the spectrum is still
gapped after the first parity crossing (the Zeeman field is no
longer fully depairing) and many parity crossings are possi-
ble. This important observation is illustrated in Figs. 13(b)
and 13(c) [see also Fig. 12(b)]. For finite ag, the low-energy
spectrum remains gapped after the first crossing and also after
subsequent crossings. Another interesting conclusion that we
can draw from our results is that a clear distinction between
the near-zero states in the B < B, and B > B, regions can
no longer be made. The only difference is quantitative, in that
the amplitude of MBS oscillations in the topological regime
become smaller for increasing a g, unlike for B < B,. (The SO
length becomes much shorter and, hence Lg > £,,). However,

(a) B>B; (b)
0.5 0.5

\/
A

/AN
o

/\

-0.5 -0.5 :

0 T 2 0 T 27
¢ @
FIG. 14. Andreev levels as function of phase ¢ for two values

of the Zeeman field (a) B = 10Eso and (b) B = 13E50. Rest of
parameters same as in Fig. 12(b).

other spectral properties, such as the minigap separating the
near-zero modes from the first excited states, is roughly the
same in both the trivial B < B, and nontrivial B > B, phases.

To finish, we consider the phase dependence of the subgap
spectrum. While topological SNS junctions with Lg — oo
are 4m periodic as a function of phase difference ¢ due to
the characteristic parity-protected crossing at ¢ = m [see,
e.g., Fig. 10(a)], in finite Lg junctions [Fig. 14(a)], said
crossing is avoided, and splits by a small energy due to the
hybridization of MBSs at the junction (inner) and MBSs at
the far ends of each S region (outer), which leads to a more
conventional 27 periodicity [77]. Interestingly, the subgap
spectrum at B < B, [Fig. 14(b)] shows essentially the same
phase dependence which further confirms the deep connection
between the B < B, and B > B, parity crossings. Note that
the resulting Josephson current [78], which only depends on
the Andreev spectrum, would be effectively the same (not
shown).

V. CONCLUSIONS

We have studied the normal transport and the sub-gap spec-
trum of SNS junctions based on semiconducting nanowires
with strong Rashba spin-orbit coupling. In particular, we
have focused on the role of confinement effects in ballistic
finite-length junctions and analyzed the distinct properties of
the ABS for short and long junctions as different sections
of the underlying NW (N or S or both) become helical. For
B > B, confined levels in the normal section give rise to
bound subgap states, as expected from the effective p-wave
nature of the topological superconductor. In normal transport,
such bound states give rise to helical Fano dips. Perhaps
more strikingly, we have found that a long junction with a
helical normal section, but still in the topologically trivial
regime with unw < B < B,, supports a low-energy subgap
spectrum consisting of multiple-loop structures and parity
crossings. Such states are derived from helical Fabry-Perot
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resonances in the normal regime. We have argued that
such multiple-loop structure in the ABS spectrum could be
used to unambiguously identify the helical regime in NWs.
Interestingly, these multiple loops smoothly evolve towards
Majorana bound states as the Zeeman field exceeds the critical
value. This suggests an interesting connection between subgap
parity crossings in helical junctions with B < B, and Majorana
bound states in topological ones with B > B,. A recent study
of fully open helical-N/trivial-S contacts [79] further confirms
the profound connection between subgap states in the helical
regime and Majorana physics.
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APPENDIX A: THE SNS JUNCTION MODEL

In this Appendix, we describe the model we use for SNS
junctions.

1. Tight-binding discretization

For computation purposes, we consider a discretization of
the continuum model (1) for the Rashba nanowire into a tight-
binding lattice with a small lattice spacing a. Thus, H, reads
as

Hy = Zc}hci + chvcj + H.c., (Al)
i (i)

where the symbol (ij) means that v couples nearest-neighbor
i,j sites. This discretization transforms Eq. (1), in terms
containing onsite energy 4 and into nearest-neighbor hopping
matrices v which arise from the momentum operator p,

_ . |2t = B
(A2)
_ —1 oso T
h,’ i =V = 2a =h; ,
+1. [_%QSO —t i| ii+1

are matrices in spin space and t = h%/2m*a’.

2. SNS junction model

The Hamiltonian of the full system considering the proxi-
mized NW regions as left and right superconducting leads (see
discussion at the beginning of Sec. IV A) is given by

hs,  hs,N 0
hin  hx o hasg |
0  hls, hs

hsns = (A3)

R

where hg, is the Hamiltonian of the superconducting lead
i = L/R that we consider to be the same, hg,n the Hamiltonian
that couples the superconducting lead i to the normal region,
while Ays, the Hamiltonian that couples the normal region to
the lead i. These coupling matrices are nonzero for adjacent
sites that lie at the interfaces of the superconducting leads and
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of the normal region, only. This coupling is parametrized by
a hopping matrix vy = tv between the sites that define the
interfaces of the SNS junction, where 7 € [0,1]. A tunnel
junction can be modeled by considering T < 1, while a
full transparent junction with = 1. All the elements in the
diagonal of matrix (A3) have the structure of H, given by
Eq. (1) taking into account that the superconducting lead
regions have a Fermi energy [tieags (OF [ieags fOr the normal
transport study), while this is unw for the normal region. It is
important to point out here that the matrix of Eq. (A3) is of
finite size since we are dealing with a finite-size system.

Effects of superconductivity are induced by the pairing
potential A(x) = Ae'?, thus leading to the Nambu description
where the new Hamiltonian reads as

H |:hSNS (Ad)

A(x)
Al(x) '

*
_hSNS

The superconducting pairing potential in the previous Hamil-
tonian equation, that corresponds to the full system, must have
the same structure as the SNS Hamiltonian Agys, thus

A, 0 0
Ax)=| 0 Ax O
0 0 A,
_ A (AS)
Agse? 0 0
= 0 0 0 ,
0 0 A(),sewk

where Ay = 0 since in the normal region the superconducting
correlations are absent.

Superconductivity is induced by an s-wave pairing potential
A(x) that couples particles of different spin and momenta. So
that, Ao s is given by

AO,S = iO'yAS = iO'yA. (A6)

3. Induced superconducting pairing

A more realistic model consists on the following descrip-
tion. The full NW is divided in three sections: a central normal
region (N) and two normal regions (M) (see Fig. 15). Each of
the M sections describe NW regions coupled to a supercon-
ductor which, to distinguish from the previous notation, we
denote as S’. As opposed to the previous subsection, the full
NW is now a normal system and the proximity effect comes
now from the tunneling coupling between the superconductors
and the M normal parts of the NW.

5y vg
0. SR o0 --- 0 SR

R 3) S —
FIG. 15. (Color online) A NW is divided in three normal regions

(N) and (M), where the latter are coupled to a superconductor through
V, while the coupling between (N) and (M) is controlled by vy.
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In this case, the problem is described by the following
Hamiltonian:

hs, hsm 0 0 0

hloy b b 00
hsns = | 0 Bl AN haa O |, (AT)
0 0 hly v hug

T
0 0 0 g ks,

where hy; is a normal region of the same dimension as the
superconducting one S" and hgy is a diagonal matrix in site
space that couples the superconductor S} with the normal lead
M. This coupling can be parametrized by the parameter V.
The superconducting pairing is then written in the same basis
as hSNS:

As, 00 0 0
00 0 O
Ax)=| 0 0 0 0 0 |, (A8)
0 0 0 0 0
0 0 0 0 Ag,

where Ay = Age” with i = R,L describe the bulk s-wave
superconducting leads.

As described in the main text, the approximate description
of the proximity effect in the previous subsection [Eq. (A5)]
is a good approximation provided that we are in a large
gap limit and that the contact transparency is good. We
have benchmarked the approximate solution of the previous
subsection against the full proximity model in various relevant
cases and always found good agreement in the correct
parameter range. We here illustrate this point by showing a
calculation using the full proximity effect model of Eq. (A7)
instead of the approximate model of Eq. (AS). In Fig. 16, we
show results corresponding to the same physical situation we
presented in Fig. 11(c) in the main text, the only difference
being that the bulk gap in S’ is much larger than the induced
gap used in the calculations of Fig. 11(c) (Agy = 20A). The
overall behavior of the subgap states in Fig. 16 is the same as in
Fig. 11(c) (including the loops in the helical region described
in the main text), demonstrating that the simplified model
is indeed justified when the bulk gap is the largest energy
scale. Importantly, note the rescaled y axis which explicitly
shows that the relevant energy scale is not the original bulk gap
included in the calculation but the smaller value A = Ag /20,
in agreement with our previous claim.

APPENDIX B: MODEL FOR THE CONDUCTANCE

In this Appendix, we make use of an effective model to
describe the physics of Fano resonances. An effective spinless
model based on Green’s functions is constructed where
two semi-infinite tight-binding chains (leads) are coupled
through V' to a central region g,, formed by one site, that
is additionally weakly coupled through 7 <« V to a resonant
level g = ¢4 — ¢&,, being ¢, a fixed parameter that represents
the separation between the quantum dot level and the resonant
level (in principle, this parameter mimics the role of the
Zeeman splitting in our numerics). Consider that a is the lattice
constant and ¢ the hopping between sites in the leads. The
normal transmission 7y through a central system formed by

PHYSICAL REVIEW B 91, 024514 (2015)

0.1 Y,

20€e/Ag
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FIG. 16. (Color online) Energy levels at ¢ = 0 as function of
unw for a long junction Lyw =4 um for a fixed Zeeman field.
Parameters: Eso = 0.05 meV, peaqs = 10Eso, Ls =2 um, V =
20Es0, and Ag = 20A =5 meV. The rescaled y axis explicitly
shows that the relevant energy scale is not the original bulk gap
included in the calculation Ag but rather A, in agreement with
Fig. 11(c).

one site can be calculated by using the Caroli’s formula
In(w) = 4Tr['L G" T G], (B1)
where G"@ is the retarded full system Green’s function, and
] ) (@) — Zf gy (@)
2i
takes into account the influence of the leads on the central
system through the left (right) L (R) self-energies X, . The

full system Green’s function can be calculated by using the
Dyson’s relation

G (0) = gh(®) + gH(®) T () G'(0) = [G*(»)]'
or G'(@) = {[gh(@)] " - (@], (B3)

where g is the retarded Green’s function of the isolated central
region (this central region can for instance be a quantum dot)
without the influence of the leads and without the influence of
the resonant level. It reads as

Crpy(w) = (B2)

0 = — B4
@) = o (B4)
where ¢, is the onsite energy of the central region.
The self-energy X7,
() = ] (0) + Zi(w) + X/, (0), (B5)
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contains the effect of the left X, (w) and right X z(w) leads as
well as the influence of the resonant level %,.;(w), respectively.
Such self-energies are defined as follows:

Sy (@) =11 g (@)1, (B6)

where g7z, is the retarded semi-infinite left (right) lead
Green’s functions. In principle, such lead’s Green’s functions
can be computed considering a recursive approach

1
—h—ttgrp(@it’

gLp(w) = > (B7)

J

el L 2]e|
gL (w) =
1 [wo—h . w—h
wls iyl = (5
where for the first case the density of states pg = — %Imgu R)1s

zero, while in the second case it exhibits a nonzero value. These
results allow us to obtain X} (w). The impurity self-energy X/
reads as

Er (w) = —. 9

res

(B11)

where 7 is the coupling of the resonant level to the system.
With these expressions for the different self-energies, we may
compute G”:

G’ = {[g(@] " — Th(@) - Th) - Z,@ ]
(B12)

The normal conductance Gy is calculated from the transmis-

sion as
&2 d
Gx =1 f TN(w)(— é) do.

where by construction we have already in a spinless channel.
Since we are interested in low-temperature physics, f(w) =~
O(wr —w)and df/dw ~ —§(wr — w). Therefore,

(B13)

2
Gy = % / Tn(@)(wr — w)d o,

2
GNn = — In(wr) ,
h
where wr is the Fermi energy which is the zero of energy in
our calculations.

The aim of this part was to construct an effective model
that contains the whole physics of our numerics where a
resonance in the trivial phase and a dip in the helical phase the
transmission develops. Indeed, by plugging previous equations
in the expression for the transmission and conductance, one
ends up with the desired result that is plotted in Figs. 17
and 18.

In such plots, we consider a strong hopping ¢t between sites
in the leads in comparison to the couplings V and t. For
weak coupling between leads and the central region, a resonant
tunneling peak is obtained at the energy of the central region

(B14)

L[t —sgn(@ — b/ (52)° = 1], l(@ — /20t > 1
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h = 2t — p is the onsite energy in the leads. From the previous

equation, one has
18Ry — (@ —h) gLy + 1 =0, (B8)

therefore,

@) 1[w—~h " w—h 2 )
w) = — —1].
L 1L 201 201]

Adding a convergence factor to frequency w — w %+ in, one
finds the retarded or advanced Green’s function. We have the
following properties of g (r):

(B9)

21l (B10)

)] (@ — h)/20t]] < 1

w = g4. Upon increasing the coupling between the leads and
the central region V, the resonant peak at ¢, becomes broader
and a sharp Fano feature emerges at the resonant impurity
o = ¢&,. The new feature has the typical Fano structure of
a zero followed by a peak, and arises from the interference
of the two possible paths for the carriers, through the very
broadened (strongly coupled) site at ¢, and through the weakly
coupled resonant level at ¢,. For strong enough coupling
V, the g, contributes with a uniform e?/h background to
conductance, while the Fano feature becomes a pure dip to
Zero.

In conclusion, we have developed an effective model
that contains the physics involved in our numerics where a
resonance peak is present at the energy of the quantum dot

1.0

i \ N
0.8’ M | .

06 7 |
f I
0.4; I

0.2t /

I L
0.0 0.1 02
w

FIG. 17. (Color online) Normal transmission for the system de-
scribed in Appendix B. Two tight-binding semi-infinite chains (leads)
coupled to central region formed by one site and where a resonant
level is additionally weakly coupled to such central region. The
hopping among sites in the leads is fixed and strong. By controlling
the coupling to the leads V and the one to the resonant level t, one
observes that the normal transmission exhibits a resonant peak at the
energy of the quantum dot for weak coupling, however, by making
the coupling to the leads stronger and leaving weak the one to the
resonant level, Ty develops a dip at the energy of the resonant level.
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FIG. 18. (Color online) Normal conductance across a central
region attached to two semi-infinite tight-binding chains (leads). In
addition, a resonant level is weakly coupled to such central region.
The plots show the dependence of Gy on the energy of the quantum
dot ¢,. The hopping among sites in the leads is fixed and strong. By
controlling the coupling to the leads and the one to the resonant level,
one observes that the normal conductance exhibits a resonant peak
when ¢, = 0, that is, the Fermi energy of the leads wr = 0, for weak
couplings, however, by making the coupling to the leads stronger and
leaving weak the one to the resonant level, Gy develops a dip at the
energy of the resonant level.

for weakly coupled system. By increasing the coupling of the
quantum dot to the leads, a Fano feature (dip to zero followed
by a peak) appears in conductance at the energy of the resonant
level.
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FIG. 19. Majorana localization length ¢, as a function of the
Zeeman field B for ap = «y (dashed curve) and ar = Saq (solid
curve), where g = 0.2 eV A. They correspond to spin-orbit lengths
Iso ~ 200 nm and Iso ~ 40 nm, respectively. Rest of parameters
u =0.5meV and A = 0.25 meV.

APPENDIX C: MAJORANA LOCALIZATION LENGTH

The calculation of €, is carried out by solving the
polynomial equation for the wave vector k k*+4(u +
Ca%)Ck* + 8).C*Aagk + 4CyC?* = 0, where C = m/h?* and
Co = *> + A? — B2, Here, we point out that although the
previous equation was derived in Ref. [18] for a semi-infinite
case, it gives reasonable values for the Majorana localization
length. Indeed, in Fig. 19 one observes that £;, linearly
increases as one increases B for realistic SOC (dashed line),
while it acquires smaller values and remains roughly constant
for stronger SOC (solid curve).
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