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Abstract

The growing interest in big data problems implies the need for unsupervised methods for data visualization
and dimensionality reduction. Diffusion Maps (DM) is a recent technique that can capture the lower dimen-
sional geometric structure underlying the sample patterns in a way which can be made to be independent of
the sampling distribution. Moreover, DM allows to define an embedding whose Euclidean metric relates to
the sample’s intrinsic one which, in turn, enables a principled application of k-means clustering. In this work
we give a self-contained review of DM and discuss two methods to compute the DM embedding coordinates
to new out-of-sample data. Then, we will apply them on two meteorological data problems that involve
respectively time and spatial compression of numerical weather forecasts and show how DM is capable to,
first, greatly reduce the initial dimension while still capturing relevant information in the original data and,
also, how the sample-derived DM embedding coordinates can be extended to new patterns.
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1. Introduction

Methods for dimensionality reduction and data compression, visualization and analysis that preserve the
original information of high dimensional patterns are highly valued in data mining and machine learning.
The classical example is Principal Component Analysis (PCA) [1] but in recent years methods based on
manifold learning such as Multidimensional Scaling [2], Local Linear Embedding [3], Isomap [4], Laplacian
Eigenmaps [5] or Hessian Eigenmaps [6] have received a great deal of attention. The common assumption
in these methods is that sample data lie in a low dimensional manifold and their goal is to identify the
metric on the underlying manifolds from which a suitable low dimensional representation is derived that
allows to adequately approximate the original manifold metric with the natural one in the low dimensional
representation. Several of these methods rely on the spectral analysis of a data similarity matrix and this is
also the case of Diffusion Maps (DM) [7, 8] which we consider here.

As it is the case in other manifold learning methods, DM relies on a graph representation of the sample,
where the weight matrix is defined from a suitable similarity matrix of the data points. This approach was
pioneered in the several approaches to Spectral Clustering (SC) [9, 10, 11] and their various but essentially
equivalent eigenanalysis of the similarity matrix that, in turn, can be connected [5] with the Riemannian
geometry of the manifold where the sample is assumed to lie. The main assumption in DM is that the man-
ifold metric can be approximated by the diffusion distance of a Markov process [7] whose transition matrix
P is defined by an adequate normalization of the similarity matrix. In turn, this allows the construction
of a set of embedding functions, the Diffusion Maps, that transforms the original space into a new one in
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which Euclidean distance corresponds to the original manifold metric of the sample data. This means that
clustering methods that rely on the Euclidean metric, as is the case of k-means, can be properly applied
in the reduced space. In other words, DM can be seen as an intelligent data analysis technique for both
dimensionality reduction and clustering (see [12, 13] for other examples of these techniques).

While elegant and powerful, Diffusion Maps (and, in fact, other manifold learning methods, such as
Spectral Clustering) have a first drawback on the potentially quite costly eigenanalysis of the transition
matrix P that they require. Observe that in principle, sample size coincides with the dimension of the
similarity and, hence, transition matrices, which may make its eigenanalysis computationally unfeasible for
very large data sets. We will not deal with the issue of the complexity of DM’s eigenanalysis in this work
but point out that the usual approach is to apply an adequate subsampling of the original data [14]. In
turn, this requires a mechanism to extend the embedding computed on that subsample to the other data
points not considered or, more generally, new, unseen patterns. This extension is the second important
challenge in DM and other manifold learning methods and we will address it in this work through two
different algorithms that extend the diffusion coordinates for new out-of-sample points. The first one is an
extension to the non-symmetric transition matrix P of the classical Nyström formula [15] for symmetric,
positive semidefinite matrices derived from a kernel that extends the eigenvectors of the sample kernel
matrix to the eigenfunctions of the underlying integral operator. The second one, the Laplacian Pyramids
algorithm [16], also relies on a kernel representation but starts from the discrete sample values f(xi) (in our
case, the eigenvectors of the sample based Markov transition matrix P ) of a certain function f (in our case,
the general eigenfunctions), and seeks a multiscale representation of f that allows to approximate the values
f(x) from an appropriate multiscale combination of the sample values f(xi).

Even if the ultimate goal is to build a supervised classifier or a predictive model, dimensionality reduction
and clustering methods are most often applied in an unsupervised setting, where a first objective is to
acquire a knowledge of the underlying data that is simply impossible to achieve under their original, high
dimensionality representations. This is a common situation in many of the modern applications of big data
analytics that have to deal with large samples whose also large dimensions make this very difficult and
even precludes the meaningful use of plain data understanding or visualization tools. The number of fields
to which this situation applies keeps constantly growing as the continuous advances in data acquisition
and integration make big data settings an ubiquitous issue. This is in particular the case for meteorological
data, either by themselves or as inputs to modeling systems, such as those applied, for instance, in renewable
energy.

General weather forecasts, or more precisely, Numerical Weather Prediction (NWP) systems, usually
involve a large number of variables over relatively fine resolution three-dimensional spatial grids as the
meteorological agencies provide forecasts for several pressure layers and for several future horizons. For
example, the European Center for Medium-Range Weather Forecasts (ECMWF1) offers every three hours
about 70 different variables, in 25 pressure layers for 75 future horizons at a 0.125 degree resolution (about
12.5 km). However, the advances in high speed computing imply that spatial and temporal resolutions are
constantly increasing and, for instance, 1 km resolutions are already available in some mesoscale models.
Even if applied only at horizontal scales, this implies that data dimension will increase by a 150 factor. This
relates to forecasts for a given hour but, of course, the selection of the most appropriate data to be used
largely depends on the problem at hand, something that determines the dimensionality of the problem to
solve and that can result in even larger dimensions.

Thus, the direct analysis of weather forecasts and their application to prediction problems are natural
fields where dimensionality reduction and data visualization techniques can be successfully applied. In this
work we will consider the application of Diffusion Maps to two examples in this field. In the first one we
will illustrate how DM is able to capture in a meaningful way the one year evolution of the forecasts of
five weather variables given every three hours for a given point. More precisely, we will show how DM
is able to reduce an initial dimension of 14, 600 to a much lower dimension and how Euclidean k-means
with k = 4 applied to the projected data naturally corresponds to the geopotential height of the points

1European Center for Medium-Range Weather Forecasts, http://www.ecmwf.int/
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considered. This example illustrates how DM can be applied in a time compression setting, as it compress
a full year data evolution into single point DM representations. Our second example is concerned with the
recent solar radiation forecasting competition set up by the American Meteorological Society 2 and can be
considered as a spatial compression problem. More precisely, a set of 15-variable 3-hour forecasts (5 a day)
are given for 144 grid points that encompass 98 weather stations in Oklahoma for which accumulated daily
radiation average is to be predicted. Data dimension is thus 144 × 15 × 5 = 10, 800 and the entire NWP
forecast for a day is to be projected in a meaningful low dimensional representation that should be useful
for the analysis and eventual forecasts of the aggregated 98 stations daily radiation average. As such, this
is ultimately a prediction problem, although we will not put our emphasis on this. However we will use
it to illustrate how DM can give meaningful, low dimensional representations that can be understood as a
the spatial compression of NWP-based patterns given over a large geographical area. Moreover, in both
examples we will also present a comparison of the performances of the previously mentioned two methods
to extend DM-embeddings to out-of-sample points that will show that both give similar and good results.

The paper is organized as follows. In Section 2, we shall briefly review Diffusion Maps while in Section 3
the Nyström and Laplacian Pyramids algorithms for extending DM to out-of-sample data are described.
In Subsection 4.1 we will illustrate the application of DM to the time compression of one year evolution of
NWP weather forecasts for individual grid points and their out-of-sample extension, while in Subsection 4.2
we will apply DM to achieve spatial compression of 10, 800-dimensional patterns that describe the daily
NWP forecasts of radiation-related variables for a large area that encompasses the state of Oklahoma; we
will also discuss the DM embedding’s relationship with the average of the accumulated daily radiation values
measured at 98 weather stations. Finally, Section 5 ends this paper with a brief discussion and conclusions.

2. Diffusion Maps

The primary goal of statistical dimensionality reduction techniques such as PCA is to obtain a low
dimensional representation of sample data that captures as much of the variance of the original data as it
is possible. While these methods lead to a lower dimensional representation of the original patterns, there
is essentially no assumption on the underlying geometry of a sample, that they do not try to find out. In
contrast, the starting assumption in manifold learning methods is precisely that the sample lies in a low
dimensional manifold whose metric they try to identify and exploit. In the case of Diffusion Maps (and also
of Spectral Clustering) this is done after the eigenanalysis of a sample-defined similarity matrix.

The construction of a graph is thus the first step in both Spectral Clustering and Diffusion Maps.
Given a sample S = {x1, . . . , xn} in the initial feature space, the graph nodes are the sample points xi
and the similarity weights Wij = w(xi, xj) are taken to be symmetric and point-wise positive. Differ-
ent choices are possible for the weight matrix but a frequent one is to define Wij by a Gaussian kernel
w(xi, xj) = exp

(
−‖xi − xj‖22/σ2

)
. The parameter σ implicitly determines the radius of the relevant neigh-

borhood around xi (see [17] for some directions on how to choose σ). In the case of Spectral Clustering and
Diffusion Maps this kernel choice allows a natural connection to the Riemannian structure of the underlying
manifold [5] and, moreover, makes possible to use algorithms like the Nyström formula to compute the
diffusion coordinates of new, unseen points, as we shall see in Section 3.

It is clear that the distribution of the sample data is an important factor that will affect how well the
similarity matrix captures the local geometry of the data. It is thus important to take this distribution into
account and following the discussion in [7], a new parameter α, with values between 0 and 1, is introduced
and, as we will see, makes explicit the influence of the sample density q. To do so, we will not work directly
with W but instead with

wα(xi, xj) =
w(xi, xj)

q(xi)αq(xj)α

where q(xi) =
∑n
j=1 w(xi, xj) is the degree of each vertex xi in W .

2Solar Energy Prediction Contest (2013-2014), https://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest.
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Working with this new matrix Wα, the degree of a vertex xi becomes now

gα(xi) =

n∑
j=1

w(xi, xj)

q(xi)αq(xj)α
=

n∑
j=1

wα(xi, xj),

and we define a Markov chain over the graph whose transition probability matrix Pα is given by

(Pα)ij = pα(xi, xj) =
wα(xi, xj)

gα(xi)
. (1)

We denote by π the stationary distribution of this Markov process [18], which is given by π(x) = gα(xi)∑
j gα(xj)

.

We can now consider one-step Markov neighborhoods or, more generally, larger t-step neighborhoods,
i.e., those points accessible from a given xi in t Markov steps. As it is well known, the corresponding
probability matrices P t are given by the powers of Pα, i.e., pα,t(xi, xj) = (P tα)ij . This makes possible to
define for each t the diffusion distance

D2
t (x, z) = ‖pα,t(x, ·)− pα,t(z, ·)‖2L2( 1

π )
=
∑
y∈S

(pα,t(x, y)− pα,t(z, y))2

π(y)
, (2)

where L2( 1
π ) represents the L2-norm weighted by the inverse of the stationary distribution π. In a sense,

D2
t (x, z) considers x, z to be close if they are connected in the graph by many short paths of length t.

We can rewrite D2
t (x, z) based on the spectral analysis of the Pα-defined graph [5, 9], which allows for

an alternative formulation of the diffusion distance, namely

D2
t (x, z) =

n−1∑
j=1

λ2tj (ψj(x)− ψj(z))2, (3)

where λj and ψj are respectively the eigenvalues and eigenvectors of Pα and we disregard the trivial eigen-
value λ0 = 1 and eigenfunction ψ0 ≡ 1. We observe that (3) is simply the Euclidean distance between the
points Ψ̂t(x) and Ψ̂t(s), where

Ψ̂t(x) = (λt1ψ1(x), . . . , λtn−1ψn−1(x))>.

This suggests a natural way for dimensionality reduction by simply cutting the number of terms in Ψ̂t(x) to
a number d(t) that, fixing a given precision δ, can be simply chosen as d(t) = max{` : λt` > δλt1}. In other
words, we retain those eigenvalues larger than the fraction δ of the power λt1. We approximate (3) now as

D2
t (x, z) ∼

∑d(t)
j=1 λ

2t
j (ψj(x)− ψj(z))2, and, if we define the projection

Ψt(x) =

 λt1ψ1(x)
...

λtd(t)ψd(t)(x)


of the original points xi into the d(t) dimensional space Rd(t), the diffusion distance on the original space
can be approximated by the Euclidean distance of the Ψt(x) projections in Rd(t):

D2
t (x, z) ∼

d(t)∑
j=1

λ2tj (ψj(x)− ψj(z))2 = ‖Ψt(x)−Ψt(z)‖22.

The previous steps are summarized in Algorithm 1.
The diffusion projections Ψt(x) lend themselves in a principled way to clustering applications. More

precisely, if the parameters that we have chosen are such that the diffusion distance adequately captures the
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Algorithm 1 Diffusion Maps Algorithm.

Input: S = {x1, . . . , xn}, the original dataset.
Output: {Ψ(x1), . . . ,Ψ(xn)}, the embedded dataset.

1: (S,W ) with Wij = w(xi, xj) = e
−‖xi−xj‖

2
2

σ2 .
2: q(xi) =

∑n
j=1 w(xi, xj). % Initial density function.

3: wα(x, y) =
w(x,y)

q(x)αq(y)α
. % Normalized weights.

4: Pij = pα(xi, xj) =
wα(xi,xj)

gα(xi)
, with gα(xi) =

∑n
j=1 wα(xi, xj) the graph degree. % Transition Probability.

5: Get eigenvalues {λr}r>0 and eigenfunctions {ψr}r>0 of P such that{
1 = λ0 > λ1 > · · ·

Pψr = λrψr.

6: Choose d(t) = max{` : λt` > δλt1}. % Embedding Dimension.

7: Define Ψ =


λt1ψ1(x)

...
λt
d(t)

ψd(t)(x)

 . % Diffusion Coordinates.

sample’s underlying geometry, the Ψt(x) embed the original data in a lower dimension space in such a way
that the metric of the sample’s underlying geometry becomes Euclidean distance on the embedding coordi-
nates. In turn, if we are interested in clustering the sample, it is now quite natural to apply the standard
Euclidean k-means algorithm on the embedding coordinates. We will thus obtain k clusters C1, · · · , Ck that
can be directly related with the clusters A1, · · · , Ak in the original sample S as Ai = {xj |Ψt(xj) ∈ Ci}.

The last remaining question is how to choose the parameter α. It can be seen [7] that the infinitesimal
generator Lα of the diffusion process Pα acts on a function f as

Lαf =
∆(fq1−α)

q1−α
− ∆(q1−α)

q1−α
f,

where ∆ is the Laplace–Beltrami of the underlying manifold. Notice that if α = 1, L1 coincides with ∆ and
we can expect the diffusion projection to capture the underlying geometry without any interference from
the sample’s density q. On the other hand, when α = 0, we have

L0f =
∆(fq)

q
− ∆(q)

q
f

and the density q will influence how the diffusion coordinates capture the underlying geometry, unless, of
course, q is uniform in which case we arrive again at L0 = ∆. Because of this we will consider the case α = 1
in what follows.

In summary, Diffusion Maps provide a simple and elegant way to capture the intrinsic geometry of the
sample although with two drawbacks, the possibly costly eigenanalysis that is required to obtain the DM
coordinates and the need to avoid repeating this analysis when the projections of new patterns have to be
computed. The eigenanalysis of the similarity matrix is unavoidable if DM are to be applied but we describe
next two methods to compute the diffusion coordinates of new, unseen patterns.

3. Extending Diffusion Maps to Out-Of-Sample Patterns

The models built in supervised Machine Learning are usually easy to apply on new data points without
repeating the whole training algorithms. However, the unsupervised nature of DM and the lack of a explicit
function that could be used to compute the projection algorithm make it difficult to obtain the DM embed-
ding of new points. In other words, in DM we find the similarity matrix eigenvector coordinates ψi(xj) of
the sample patterns xj but we do not learn general eigenfunctions ψi(x) that give these coordinates for a
new x. Thus, it is very important to have relatively simple and efficient ways to extend these ψi(xj) values

5



to out-of-sample patterns and, hence, to be able to compute the DM embedding of a new pattern x. In
this section we will review two different approaches to obtain approximate embedding coordinates for new
points.

3.1. Nyström Formula

The Nyström formula [15] is a general method to approximate the eigenfunctions ψj(x) of a kernel from
the eigenvectors ψj(xi) of a sample-based kernel matrix. As we shall see, in the case of DM, the formula
enables to approximately compute the embedding of new patterns without computing again the eigenvalues
and eigenvectors of the similarity matrix of the training sample.

Assume k(x, y) is a symmetric, positive semi-definite and bounded kernel; then it has an eigendecompo-
sition [7]

k(x, y) =
∑
l≥0

λlul(x)ul(y).

Now, given a sample S = {x1, . . . , xn}, let {`j}, {vj} be the eigenvalues and eigenvectors of the sample-
restricted kernel matrix kij = k(xi, xj). Then, the general Nyström method [15] enables us to approximate
the ul eigenfunctions by the following expression that extends the matrix eigenvectors vj to a new y as

vj(y) =
1

`j

n∑
i=1

vj(xi)k(y, xi). (4)

When dealing with the DM setting, notice that, by construction, the Markov transition matrix P in (1)
cannot be associated to a symmetric kernel; however, we can apply the approach in Appendix A in [7] and
define first a symmetric kernel as

a(x, y) =

√
π(x)√
π(y)

p(x, y),

where π is the stationary distribution of the Markov process, as explained in Section 2. It is easy to see that
the kernel a is symmetric if we take into account the definition of P in (1):

a(x, y) =

√
π(x)√
π(y)

wα(x, x)

gα(x)
=

√
gα(x)√
gα(y)

wα(x, y)

gα(x)
=

1√
gα(y)

√
gα(x)

wα(y, x) = a(y, x).

Moreover, a is also positive semi-definite and bounded [7] and, thus, it has an eigendecomposition

a(x, y) =
∑
l≥0

λlϕl(x)ϕl(y),

from which the corresponding eigendecomposition of P can be easily derived as

p(x, y) =
∑
l≥0

λlΨl(x)Φl(y),

where the eigenvalues λl are those of a and Ψl and Φl are obtained from the eigenfunctions ϕl of the kernel
a(x, y) as

Ψl(x) =
ϕl(x)√
π(x)

; Φl(y) = ϕl(y)
√
π(y).

Now, we can apply first the Nyström formula (4) to the symmetric kernel a to obtain the approximations

φj(x) =
1

λj

n∑
i=1

φj(xi)a(x, xi),
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to the ϕj eigenvectors from the eigenvalues λj and eigenvectors φj of the sample-based kernel matrix aij =
a(xi, xj). If we use the above relationships between Ψl and ϕl on the one hand, and a and p on the other
hand, we arrive at

ψj(x) =
φj(x)√
π(x)

=
1√
π(x)

(
1

λj

n∑
i=1

φj(xi)a(x, xi)

)

=
1

λj

n∑
i=1

φj(xi)
a(x, xi)√
π(x)

=
1

λj

n∑
i=1

φj(xi)
p(x, xi)√
π(xi)

=
1

λj

n∑
i=1

ψj(xi)p(x, xi). (5)

In other words, we can extend Nyström’s formula to approximate the values of the DM kernel eigenvectors
over new patterns x from those of the matrix eigenvectors ψj(xi) and, thus, to compute the DM coordinates
of these x.

The complexity analysis of Nyström’s method is easy to make. Observe that to compute (5) for a new
pattern x has an O(N) cost for each of the embedding coordinates to be extended. Of course, (5) requires
the knowledge of the eigenvalues λj and eigenvectors ψj(xi), but these come from the general DM analysis
and, thus, do not suppose an extra cost when applying (5). In summary, if we use a training sample of
size N and work with D embedding coordinates, computing these coordinates for a new pattern has a cost
O(D N). We also observe that a nice property of Nyström’s method is that it does not need the selection
of any algorithm parameter.

3.2. Laplacian Pyramids

The Nyström formula can be seen as a procedure to interpolate the ψj(xi) values to new points x.
Laplacian Pyramids (LP), first proposed by Burt and Adelson [19], have been widely used for this purpose,
particularly in image coding, low-pass filtering and down-sampling. From a general point of view LP is a
multiscale algorithm for extending sample-based function values (in our case, the eigenvectors ψj(xi)) that
uses different scalings for different resolutions. More precisely, we can apply them [16] to approximate a
function f from its values f(xk) on a sample S = {x1, . . . , xn} using Gaussian kernels of decreasing widths

so that we obtain an approximation f̂(x) to this function’s extension to new points x, i.e.,

f(x) ≈ f̂(x) = f̂ (0)(x) + f̂ (1)(x) + f̂ (2)(x) + · · ·+ f̂ (H)(x).

We refer to the construction of these f̂ (h) as the training step, where we start with a first approximation
f̂ (0) that is built starting with a Gaussian kernel G0 with a wide, initial scale σ0

G0(x, x′) = e
−‖x−x′‖22

σ20 ,

that, in our Markov context, we normalize as

G0(x, xp) =
G0(x, xp)∑
q G0(x, xq)

,

to ensure that
∑
p G0(x, xp) = 1. We then define

f̂ (0)(xk) =

n∑
i=1

G0(xk, xi)f(xi), (6)

i.e., we use the kernel G0 as a smoothing operator that, applied to f in the training points, gives us a
first approximation f̂ (0) for each point xk in the training set. We then improve this approximation to the

7



unknown f in an iterative way, working at each step with a finer scale. More precisely, at each step h we
define again a new Gaussian Kernel

Gh(x, x′) = e
−‖x−x′‖22
(σ0/µh)

2

that uses a sharper scaling σ0/µ
h and normalize it as before, i.e., Gh(x, xp) =

Gh(x,xp)∑
q Gh(x,xq)

. The concrete

value of scaling parameter µ is relatively unimportant and is usually chosen to be 2. Denoting by dh(xi) the
residual at step h over the pattern xi, and defined it as

dh(xi) = f(xi)−
h−1∑
l=0

f̂ (l)(xi), (7)

we arrive at a new term f̂ (h)(xk), which is given by

f̂ (h)(xk) =

n∑
i=1

Gh(xk, xi)dh(xi), (8)

and it is added to the approximation f̂(x). This iterative process is applied while the approximation error
at each step, computed as ‖dh‖/N, is bigger than a prefixed quantity. When these iterations stop we have a
multiscale representation of f that we can apply to new, unseen points x as

f̂(x) =

H∑
h=0

f̂ (h)(x) =

n∑
i=1

G0(x, xi)f(xi) +

H∑
h=1

n∑
i=1

Gh(x, xi)dh(xi), (9)

where f̂ (0) and the different f̂ (h) are given by (6) and (8) respectively.
It is now straightforward to apply (9) to each one of the eigenvectors ψj of the Markov matrix, extending

their values to a new x by

ψ̂j(y) =

H∑
h=0

ψ̂
(h)
j (y) =

n∑
i=1

G0(y, xi)ψj(xi) +

H∑
l=1

n∑
i=1

Gh(y, xi)djh(xi), (10)

with now djh(xi) = ψj(xi)−
∑h−1
l=0 ψ̂

(l)
j (xi). All the steps for the diffusion coordinates extension are outlined

in Algorithms 2 and 3.

Algorithm 2 Building the LP Approximation

Input: S = {xi}i, the sample dataset; ψj , the DM eigenvectors; σ0, the initial width parameter; µ, the σ-reduction factor.
Output: ({di}, k), the training model formed by the residuals and the number of steps needed.
1: σ ← σ0, d0 = ψj , h = 1. % Initialization steps.
2: while errh > err do
3: Gh(xp, xq) = exp(−‖xp − xq‖22/σ2). % Gaussian kernel.
4: Gh(xp, xq) = Gh(xp, xq)/

∑
k Gh(xp, xk). % Normalized kernel.

5: ψ̂
(h)
j (xk) =

∑
p dh−1(xp)Gh(xp, xk). % Approximation to the residual error left at step h− 1.

6: dh = dh−1 − ψ̂(h)
j . % New residual computation.

7: ψ̂j = ψ̂j + ψ̂
(h)
j . % Approximation to the j-eigenvector at step h.

8: errh = dh/N.
9: σ = σ/µ. % Sharper width parameter.

10: h = h+ 1.
11: end while
12: k = h− 1.

Finally, concerning the cost of applying LP, we have to take into account the cost of computing the
embedding coordinates of a new pattern, but also that of building the underlying LP model that is used to
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Algorithm 3 Applying the LP Approximation

Input: S, the sample dataset; y, the new point; ({di}, k), the ALP model.

Output: ψ̂(y), the extension for the new point.

1: ψ̂0(y) = 0, σ = σ0.
2: for h = 0 to k − 1 do
3: Gh(xp, y) = exp(−‖xp − y‖22/σ2). % Gaussian kernel.
4: Gh(xp, y) = Gh(xp, y)/

∑
p Gh(xp, y). % Normalized kernel.

5: ψ̂
(h)
j (y) =

∑
p dh−1(xp)Gh(xp, y).

6: ψ̂j(y) = ψ̂(y) + ψ̂
(h)
j (y). % Approximation to the j-eigenvector at step h.

7: σ = σ/µ.
8: end for

do so. Assuming a training sample with size N and H resolution levels for the LP model, the cost of applying
(10) to a new x is clearly O(N(H + 1)) per embedding coordinate, i.e., O(N H D) for a D-dimensional
embedding. Contrary to what happened in Nyström’s case, LP extensions require to build a model before
they can be applied, which means that we have to compute the (H + 1)N residuals dh(xi) in (7). In turn,

each of them requires that the previous f̂ (h−1)(xk) terms in (8) be available, at a O(N2) cost per iteration.
Moreover, we have to decide on the number H of LP iterations using a validation subset SV to compute
the errors of the LP approximations f̂H(xq) to the true validation values f(xq), xq ∈ SV , and stopping LP
training when these errors start to grow. Doing so adds an extra O(N |SV |) cost per LP iteration that, as
|SV | ≤ N , is dominated by the previous O(HN2) for a size N training sample and a LP model with H + 1
terms, which is thus the main cost in LP. We point out that this is quite less that the roughly O(N3) cost
of the straight DM analysis but, even if we restrict ourselves to consider the Nyström and LP costs only
over new patterns, the LP cost is still O(H) times bigger than that of Nyström’s. Thus, if only complexity
is considered, Nyström’s method is more efficient than LP.

4. Diffusion Maps for the Analysis of Meteorological Data

Meteorological data can be seen from two different points of view. In the first one we can concentrate
at a given space point and consider weather evolution at that point over a certain large time period. Of
course, weather will change along time but we could expect that this evolution is dependent on the point
in question, which somehow captures, or compresses, that evolution. In other words, it is conceivable that
weather evolution at a concrete point which will make up a very high dimensional feature vector, can be
time compressed into a lower dimensional representation that somehow characterizes that point.

Alternatively, we can consider the reciprocal of the preceding situation, where for a concrete time moment
we collect the weather measurements at a large number of space points over a large area. These measures
form also a very large dimensional pattern that we can expect to capture in an abstract way weather
behavior at that concrete time. Now it is natural to ask ourselves whether we can spatially compress the
large weather measurements area in a lower dimensional representation that now is prototypical of that
precise time moment.

In the following subsections we consider the application of DM to the time and spatial compression of
weather values. We will not work with actual weather measurements but use instead as a proxy NWP values
over very large grids.

4.1. Diffusion Maps for time compression

We first illustrate how Diffusion Maps can be applied to compress an entire year evolution of five me-
teorological variables for points of the ECMWF grid for the Iberian peninsula. More precisely, and as just
mentioned, we will not work with actual weather measurements but, instead, with their surface predictions
provided by the ECMWF. These predictions are in general close to the actual atmospheric conditions, and
they have the advantage of providing values over an uniform large scale grid. To cover the Iberian peninsula
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we have selected a 1, 995-point grid with a resolution of 0.25◦ (i.e., a grid square corresponds to a land
square with about a 27 km side).

We will use meteorological forecasts for a whole year, from March 2009 to February 2010, working with
five surface variables: wind velocity and x and y direction (given by sine and cosine values), pressure and
temperature, that are available every three hours. In this way we have for each day eight snapshots of the
meteorological conditions at each one of the 1, 995 nodes in the ECMWF grid for the Iberian peninsula;
we take those 1, 995 grid points as our sample S here. Thus, we assign to each grid node a vector with
dimension 5× 8× 365 = 14, 600 that describes weather evolution at that node over an entire year, and that
we seek to compress into another vector of a much lower dimension in a way that still provides meaningful
information about each one of the grid nodes. We normalize this data matrix column-wise to have 0-mean
and standard deviation 1 variables.

Notice that we are essentially working in an unsupervised setting; nevertheless, we would like to compare
the DM results with those obtained from PCA and SC, for which we need a comparison criterion. It is logical
to expect that points that are close in the embedded space should also be close under some criterion in the
original space. For instance, since we are dealing with surface points, a first notion of closeness could be just
geographic proximity; however, this may be just too narrow, as we would also expect that far away points
may share similar weather. On the other hand, geographical altitude could also determine similar weather
evolution patterns and can bring together distant points. In this experiment, we shall see that this is indeed
the case, in the sense that by clustering over the reduced coordinates we are able to describe the Iberian
peninsula in terms of the climate in a way that is directly related to the altitude.

We begin with the parameter selection, choosing first the width σ of the Gaussian kernels we will work
with. As this parameter defines the neighborhood size, a reasonable idea is fixing it as the median of the
Euclidean distances between points xi and xj for every pair of points in the grid sample S. The main reason
to select this measure is its robustness to outliers. For this concrete problem the σ obtained has a value of
159.18, where the average distance is 166.71 with a standard deviation of 35.34. Recall that those values
correspond to normalized data.

The next choices are the diffusion step t and the dimension d(t) of the embedded space. We first apply
the threshold-based dimension selection method proposed in [7] and already explained in Section 2. Recall
that for a given t, we can select d(t) as d(t) = max{` ∈ N : λt` > δλt1}. The precision parameter δ is fixed
in our experiments either at 0.1 or at 0.01, which actually means keeping those eigenvalues whose t-th power
is 10% or 1% bigger than that of the first relevant eigenvalue (recall that we discard the λ0 = 1 eigenvalue).
The right hand table in Figure 1 shows d(t) values for both precisions and different values of t. The figure
at left shows the eigenvalue decay. Notice that eigenvalues are smaller than 1, and higher t values thus
result in smaller λt` values. Seeing the table we discard d(t) values of 1, as probably yielding a too drastic
dimension reduction. We also discard the probably too high value of 19 obtained for δ = 0.01 and t = 1.
This leaves us with the options t = 1, d = 3 for the 10% precision and t = 2, d = 3 or t = 3, d = 2 for the
1% precision. For a more homogeneous comparison we will work with d = 3 and t equals 1 and 2. These
choices also make sense if we observe the eigenvalue decay at the figure’s left, that seems to become linear
and close to 0 after the fourth eigenvalue (i.e., λd ' 0 for d ≥ 4).

For a homogeneous comparison we will work with a dimension d = 3 for Spectral Clustering, that we
compute just as DM with t = 0. Regarding PCA, although the covariance matrix would be 14, 600×14, 600,
the data matrix has rank at most 1, 995, i.e., the number of patterns considered. The standard way to
decide on the PCA embedding dimension is to retain a certain percentage of variance; however, and again
for homogeneity, we will apply PCA also with a 3-dimensional projection, for which the variance explained
is 44.18%. In summary, we will compare four different dimensionality reduction models: the classical SC
algorithm, PCA, and DM with t = 1 and t = 2, with the final reduced dimension being 3 in all cases.

As we have mentioned and is the case in any unsupervised problem, the quality of an embedding has
to be established by somewhat indirect means. Here we will visualize first the geometric structure of the
embeddings and analyze then the clusters obtained after applying Euclidean k-means on the embedding
coordinates provided by each method; we choose k = 4 in order to achieve an easy visualization. Figure 2
depicts over the first two embedding coordinates the corresponding DM, SC and PCA projections as well
as the four cluster structure obtained for each model. In all cases the initial k-means centroids have been
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the one it belongs when k-means is applied over the DM coordinates computed over the entire grid. The
classification accuracy, that is, the percentage of test nodes assigned to their “real” clusters, will now be the
quality measure. Table 1 includes the confusion matrices of both methods for the different test sets. These
matrices confirm the overall good performance, and also that the few missclassifications are always between
near clusters. Notice that the clusters will be numbered accordingly to their mean geopotential altitude,
thus, cluster 1 will represent the sea and cluster 4, the mountains. It can be also seen on this table how
both methods offer a very similar high accuracy for each dataset, being LP slightly better than the Nyström
method in the case of the experiments with 100 and 250 test points. For the most complicated example,
the subset with 500 test points—around the 25% of the original sample—the Nyström method is slightly
better than the other ones. with Nyström’s method having a slight advantage over LP as the number of
test patterns grow. We point out that these comparisons have been repeated in 100 experiments where we
randomly select the test subsets. The results in Table 1 correspond to the averages computed over the 100
test sets.

P1 P2 P3 P4

∑
R1 39.93 0.49 0.00 0.00 40.42
R2 0.56 25.07 0.97 0.00 26.60
R3 0.00 1.07 24.25 0.50 25.82
R4 0.00 0.00 0.54 6.62 7.16∑

40.49 27.17 25.76 7.12 100.00

(a) Nyström extension for 100 test points.
Accuracy: 95.87%

P1 P2 P3 P4

∑
R1 39.98 0.44 0.00 0.00 40.42
R2 0.15 26.17 0.28 0.00 26.60
R3 0.00 0.03 25.79 0.00 25.82
R4 0.00 0.00 0.56 6.60 7.16∑

40.13 27.20 26.63 6.60 100.00

(b) LP extension for 100 test points.
Accuracy: 98.54%

P1 P2 P3 P4

∑
R1 98.55 0.78 0.00 0.00 99.33
R2 1.48 65.94 1.79 0.00 69.21
R3 0.00 1.65 60.83 0.83 63.31
R4 0.00 0.00 0.90 17.25 18.15∑

100.03 69.27 63.52 18.08 250.00

(c) Nyström extension for 250 test points.
Accuracy: 97.03%

P1 P2 P3 P4

∑
R1 99.16 0.77 0.00 0.00 99.93
R2 0.74 67.97 0.46 0.00 69.17
R3 0.00 0.07 63.00 0.01 63.08
R4 0.00 0.00 1.33 16.49 17.82∑

99.90 70.14 64.79 16.50 250.00

(d) LP extension for 250 test points.
Accuracy: 98.65%

P1 P2 P3 P4

∑
R1 198.34 1.25 0.00 0.00 199.59
R2 1.89 132.56 2.59 0.00 137.04
R3 0.00 2.36 122.53 1.53 126.42
R4 0.00 0.00 2.68 34.27 36.95∑

200.23 138.85 127.80 35.80 500.00

(e) Nyström extension for 500 test points.
Accuracy: 97.54%

P1 P2 P3 P4

∑
R1 193.07 6.52 0.00 0.00 199.59
R2 1.49 128.46 7.09 0.00 137.04
R3 0.00 0.69 122.40 3.33 126.42
R4 0.00 0.00 4.02 32.93 36.95∑

194.56 139.69 133.51 36.26 500.00

(f) LP extension for 500 test points.
Accuracy: 95.37%

Table 1: Confusion matrices for Nyström and LP methods for the three test datasets for the average over 100 experiments.

The preceding discussion shows that we can obtain good clustering accuracies when Nyström or LP
are used to extend diffusion coordinates. This is a somewhat indirect measure but we show next that
both methods also give good intrinsic approximated embeddings for new points. A simple way of doing so
is to compute what we may call the Frobenius distance, that is, the Frobenius norm of the data matrix
with the differences between the exact, i.e., the “true” embedding coordinates of the test points and their
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test coordinates computed using Nyström or LP. We recall that the Frobenius norm of a matrix is just

the Euclidean norm of the vectorized matrix entries, i.e. ‖A‖F =
√∑m

i=1

∑n
j=1 |aij |2. We used a relative

Frobenius distance defined as disF = ‖DMfull − DMext‖F/‖DMfull‖F , where DMfull represents the DM coordinates
of the test points obtained applying DM over the training and test sets together, and DMext represents the
coordinates where DM has been computed over the training set and those of the test points has been
extended via Nyström or LP.

Both sets can be measured over the training points, over the test points or over both together. Of
course, this Frobenius distance will depend on the number of test points considered. We can compare three
different matrices: the full embedding matrix which contains the corresponding coordinates of the entire
sample, the embedding matrix corresponding only to the training subsample and the embedding matrix
corresponding to the test subsample. Recall that embeddings are computed after a suitable eigenanalysis
of the training subsample, which is quite influenced by the selection made of the test subset, particularly
when, as it will be the case in some examples, it is a sizable part of the entire sample. Notice that if the
embeddings of the training subsample are quite different when computed over the full matrix or over the
training submatrix, they will also differ markedly over the test subsample. This fact has to be taken into
account when comparing the approximate embeddings computed for test patterns with their full sample
counterparts.

These three different distance values are presented in Table 2, that shows the medians of the corre-
sponding relative distances given as percentages when they are computed over the 100 different train-test
partitions. Because of the preceding discussion, we use the median as it is more robust than the mean in a
case where we obtain DMext embeddings very different from DMfull.

100 250 500
Training 56.17% 51.01% 207.53%

T
es

t Nyström 59.08% 51.64% 207.47%
LP 56.22% 49.75% 205.87%

Table 2: Median relative Frobenius distances between exact and approximated embedding coordinates computed for 100
experiments.

These Frobenius distances can be considered as the relative reconstruction distances, and we can observe
how they grow, as expected, with the number of test points. And notice how, when we take 500 points
out of the sample set for testing, the median of the relative Frobenius distance may be above 100%, which
means that the training and test embeddings obtained are totally different from the ones computed with
the full DM. This is possibly due to the large size of the test subset relative to the training one (recall that
500 points are about 25% of the sample set). However, we point out that the median result can be further
refined in terms of the actual distribution of reconstruction distances that is to a great extent determined by
the distance between the DM embeddings of the training subsample when they are computed over the entire
sample or over the training subset only. As mentioned above, we cannot expect the “real” and extended
(i.e., after applying Nyström and LP) embeddings of the test subset to be close when this is not the case for
the original embeddings computed directly by a direct eigenanalysis over the training patterns. In fact, a
low train distance almost always correspond to a low test distance and the table exemplifies this, as test and
train distances are rather similar in all cases. This effect can be checked over Figure 6, where we present for
the different test set sizes the relative Frobenius distances of the direct training subsample embeddings versus
the relative distances over the extended testing subsample embeddings for the 100 experiments. Observe
that the points essentially appear in the diagonal of the graph for both extended embeddings. Moreover,
there are two clearly different regions, a left bottom one of the smaller differences and a top right, far
away region, where both train and test embeddings are simultaneously large. The figure thus supports our
previous hypothesis that the Nyström and LP methods behave well when the “real” training embedding
differences are smaller.
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Figure 6: Relative Frobenius distances over the training subsample embedding versus the relative Frobenius distances over the
testing subsample embedding for the 100 experiments done for each different test set size.

4.2. Diffusion Maps for spatial compression

We turn now our attention to the ability of DM to spatially compress weather forecasts. We will consider
a solar radiation problem where we have data from the 2013–2014 Solar Energy Prediction Contest organized
by the American Meteorological Society (AMS) and hosted by the company Kaggle. The ultimate goal in
this competition was to predict the total daily incoming solar radiation in 98 meteorological stations located
in Oklahoma using NWP forecasts of 15 variables for each one of the nodes of a grid that encompasses the
state. Here, instead, we will focus on using DM (we will not deal now with SC or PCA) to compress for any
given day the spatial feature vector made up of the weather predictions for the entire grid and to obtain thus
a meaningful low dimensional embedding of the daily NWP patterns that could help us to understand the
relationship between them and the average radiation computed over all stations. We will also consider the
extension of the coordinates that result from the spatial compression to new patterns, using the Nyström
and LP methods described previously.

The complete input data of the contest are, on the one hand, the numerical weather predictions (NWP)
given as eleven ensembles from the NOAA/ESRL Global Ensemble Forecast System (GEFS) and, on the
other hand, daily aggregated radiation readings from the 98 stations. For this experiment setting we have
used only the NWP forecasts in the main ensemble. For every day, it contains predictions for five time
steps (12 to 24 UTC-hours in three hour increments), giving for each one 15 variables related to radiation,
temperature, precipitation, cloud clover and pressure. These NWP forecasts are given over a grid with
16 × 9 = 144 points. Assuming a pattern for each day, pattern dimension is thus 144 × 15 × 5 = 10, 800,
with spatial spread (144 points) dominating over the time (5) or variable (15) dimensions. These data are
available for the years between 1994 and 2007, yielding a total of 5, 113 days and, hence, patterns and our
first goal is to compress for each day these daily 10, 800-dimensional spatial features.

We have applied first the DM algorithm to obtain a low dimensional embedding. In this case, the
parameter selection has been done as in Section 4.1, selecting a σ value of 132.61 as the median of the
Euclidean distances between points (the mean distance is now 138.03 and 48.73 the standard deviation) and
we have fixed α = 1 and t = 1. To decide on the embedding dimension, we have used a precision of δ = 0.1
(i.e., we discard dimensions whose eigenvalues are smaller than 10% of the first one), reducing the initial
10, 800 dimension to just 3.

The resulting embedding over the whole dataset is shown in the left image of Figure 7, where its co-
ordinates have been colored by the average over the 98 stations of their daily-aggregated incoming solar
radiation. Observe that this measured radiation is not one of the NWP variables and, thus, is not included
in the embedding. Even so, we can appreciate that the three-dimensional DM embedding captures quite
clearly the average radiation in a band-like structure, with high radiation days (red and brown points) being
clearly separated from low ones (blue and dark blue points). This band-like structure is approximately par-
allel to the first embedding axis, with a higher density of high radiation points (red and brown dots) to its
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(b) k-means clusters over the DM Embedding.

Figure 7: Diffusion Coordinates, colored by the real incoming solar radiation average in the left hand image, and by the
resulting k-means clustering over the embedding, with k = 3, in the right hand image.

right and a higher density of low radiation points (blue) to its left. Besides the fact that several of the NWP
variables have only an indirect effect on radiation, we point out that radiation is perhaps one variable on
which NWP models have a largest degree of uncertainty. Thus we cannot hope that the embedding captures
radiation with a high precision, given that this is not the case in the starting NWP radiation forecasts.

To try to understand the DM embedding, we have built clusters over the embedding coordinates and
checked their relationship with the measured radiation patterns. With this objective in mind, we have
applied k-means over the diffusion coordinates, with k = 3, hoping to detect perhaps in the embedded
data days with high radiation, days with intermediate radiation and days with low radiation. The resulting
clusters are depicted in the right hand side of Figure 7 and show how clusters are defined mostly along the
first DM dimension. Comparing both images in Figure 7 and taking into account the previous discussion, we
could say that the DM clusters capture the high density areas of points with low, medium and high average
radiation values.

To better visualize the possible meaning of these clusters, we have depicted the radiation time series
colored by the cluster assigned to each day. This is shown in the left hand side of Figure 8 for the first
three years in the sample, and we can see a structure of relatively wide green and blue vertical bands,
corresponding approximately to summer and winter months respectively, and thinner intermediate brown
vertical bands that approximately dominate spring and fall.

Moreover, in the right hand side of the figure we have drawn box plots for the distribution of average
radiation in each cluster. We can see that the medians of the three clusters are well separated and the
extreme radiation boxes overlap only at their respective outliers; the intermediate cluster has a higher
overlapping but this is not incompatible with its assignment of time periods between summer and winter.
Looking at these images we can conclude that DM achieves a high degree of spatial compression of the NWP
data, with the diffusion coordinates capturing the regions with a higher density of low, medium and high
radiation days and also representing the seasonality that is intrinsically present in radiation measurements.

4.2.1. Out-of-sample extensions for the spatial compression problem

Now we are going to study the performance of Nyström and LP methods for extending diffusion coordi-
nates to new, unseen patterns in this example. We are going to use the previously described NWP forecasts
for the years 1994–2004 as the training set (4, 018 patterns), and the years 2005, 2006 and 2007 for testing
purposes (1, 095 patterns). We take advantage of the natural ordering that is possible in time dependent
patterns to work with a single train-test split.
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(a) Three years’ radiation colored by cluster.
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(b) Radiation Boxplots.

Figure 8: Other visualization methods for the embedding clusters effect.

For this purpose, we first compute an embedding over the training set, and we apply the out-of-sample
methods to extend the coordinates on the test points. We will also make use of the DM embedding previously
computed over the entire sample, for comparing purposes as we have done with the time compression
example. For evaluating the results obtained we use the same tools presented in Subsection 4.1.1: confusion
matrices over the previously defined three clusters and relative Frobenius distances between the “true” and
extended diffusion coordinates. The confusion matrices and the accuracy obtained for the classification
problem between “real” and predicted cluster are shown in Table 3. As in the previous example, we can
also see now high accuracies for both methods.

P1 P2 P3

∑
R1 303 0 0 303
R2 23 325 0 348
R3 0 11 433 444∑

326 336 433 1095

(a) Nyström extension.
Accuracy: 96.89%

P1 P2 P3

∑
R1 303 0 0 303
R2 10 338 0 348
R3 0 3 441 444∑

313 341 441 1095

(b) LP extension.
Accuracy: 98.81%

Table 3: Confusion matrices for Nyström and LP methods over the test dataset.

To evaluate how similar is the reconstructed matrix to the one obtained computing directly DM over
the whole set we define the relative Frobenius distance between both matrices. The results are presented
in Table 4. Recall that, as before, this distance is presented for three different matrices. We observe that
the distances for this example are lower than for the time compression one. Here, we can said that the
reconstruction is good: both methods perform well and are almost equal.

Note that the results obtained over this example are more robust. One reason is probably that we have
more data and the training and test sets constructed are better representatives of the problem to solve (we
counted with seven complete years for training and three for test). Another, and perhaps a more important
issue is that here we can expect a greater similarity between the training and test subset patterns, as
radiation (and to some extent, weather itself) is clearly a seasonally periodic phenomenon where patterns in
the testing years cannot be extremely different from patterns in the previous training years. This similarity
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‖‖F
Train 13.45%

T
es

t Nyström 13.58%
LP 14.33%

Table 4: Frobenius distances between exact and approximated embedding coordinates.

makes the embeddings of the extension somehow easier. In any case, we can also conclude here that Nyström
and LP are both good methods for extending diffusion coordinates when we have a sample big enough to
represent the underlying information, and also a good out-of-sample set, correlated enough with the patterns
we have previously seen.

5. Conclusions

Diffusion Maps is a recent manifold learning method for dimensionality reduction that assumes the
original sample patterns being embedded in a low dimensional manifold whose metric can be characterized
by the diffusion distance of a Markov chain model defined from a sample’s kernel similarity matrix. The
spectral analysis of the transition matrix of the Markov chain suggests naturally that the diffusion metric
can be computed as the Euclidean distance of a properly defined embedding, the Diffusion Maps proper.
In turn, this Euclidean representation lends itself to a simple procedure to choose a much lower embedding
dimension that, nevertheless, still allows a good estimation of the Euclidean (and the manifold’s) metric.
Also, the Euclidean metric of the embedded space allows to apply on it in a principled way clustering
methods such as k-means with an implicit Euclidean distance assumption on their sample.

In this paper we have applied Diffusion Maps for the compression and analysis of weather forecasts from
both a spatial and a temporal data compression points of view. In our time compression example, that of the
forecast evolution of an entire year over the points of a NWP grid, we have shown that 4-means clustering
over three-dimensional DM coordinates gives clusters that relate weather patterns to their concrete spatial
location in a more meaningful way than that achieved by other models such as PCA or standard Spectral
Clustering. For the spatial compression example, that of daily NWP forecasts on a grid that encompasses
the state of Oklahoma, we have shown that the DM embedding can also be helpful to visually analyze the
available data and that the spatial compression is indeed achieved, obtaining a meaningful low dimensional
representation that captures the intrinsic seasonality present in radiation measures.

Either by itself or by the increasing importance of renewable energy, the analysis of meteorology data,
particularly, that of NWP forecasts, is a field of interest for which the very high data dimensionality makes
embedding methods such as DM to be important tools. In this line different issues of interest arise for
further applications of DM. An important one is the detection and analysis of singular days where actual
meteorological behavior markedly differs from what it was to be expected from NWP forecasts. Related to
this but from the opposite point of view is the goal of identifying past days that are similar to the current
one and to exploit the actual meteorological behavior on them to refine the NWP (or renewable energy)
forecasts for the current one. We are presently pursuing these and other related applications of DM.
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Innovation Director at the Instituto de Ingenieŕıa del Conocimiento (IIC) and Part Time Professor of
Computer Engineering at the Universidad Autónoma de Madrid. She has authored more than 20 scientific
papers in machine learning and applications, has managed a large number of research and innovation projects
and has 10 years’ experience on renewable energy prediction.
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a senior scientist at the Instituto de Ingenieŕıa del Conocimiento (IIC), where he leads IICs research and
innovation on wind and solar energy prediction, that services more than 100 wind and solar farms in Spain
and about 4GW.

20


