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Preface 

 

Virus particles represent a class of nanomaterial with outstanding mechanical capabilities.1 

They are robust cages capable of withstanding internal pressures of tens of atmospheres,2 but 

yet tremendously plastic, as they have to modulate their mechanical properties in order to 

adapt to the different physicochemical conditions encountered during their life cycle.3,4 

Although the most important impact of viruses in our society is related to their role as disease 

carriers, causing millions of deaths per year,5 over the last two decades the extraordinary 

features displayed by these structures have been exploited to human benefit.6,7 Virus-like 

particles (VLPs) have been engineered to work as vectors for drug delivery,8 nanoreactors 

for catalysis and synthesis,9-11 imaging agents,12 nanobatteries,13,14 or as building blocks for 

a new class of nanomaterials.15,16 However, despite all these advances, many aspects need 

still to be addressed to optimize these protein-based nanodevices. Studying the impact that 

the confinement of extrinsic agents have on the stability of their structures might contribute 

to the design of more robust and durable cages. Modulating the mechanical properties of 

VLPs by mutagenesis, pH change, or addition of external proteins, might improve the 

mechanical performance of virus-based nanomaterials or gene therapy vectors 

Understanding the relationship between the structure and mechanics of natural viral particles 

might direct the design of in novo nanocages.17 These are only a few examples that illustrate 

the importance of investigating these systems from different perspectives, which requires the 

synergy of scientist coming from areas as diverse as biochemistry, medicine, physics or 

material science. This thesis is focused on studying the dynamics and mechanics of hybrid 

virus-like particles, or similar protein cages, that are of interest because of their potential role 

in biotechnology, biomedicine or material science. 

 

Chapter 1 intends to be both an introduction and practical guide to the experimental study of 

protein nanocages by Atomic Force Microscopy (AFM). It introduces the unfamiliar reader 

to the field, with especial emphasis on some technical aspects that should be considered 

during an experiment. Chapter 2 to 7 contain the research papers, all based on the 

corresponding publication (either published or submitted). Chapter 2 is a study of the 



mechanical properties of vault-like particle. Chapter 3 discusses the pH-dependent dynamics 

of individual vault-particles. Chapter 4 discusses the effect that pH and ions have on the 

mechanics of Tomato Busy Stunt Virus. Chapter 5 discusses the role that a different cargo-

cargo and a cargo-shell interaction have on the stability of P22 virus-like particles. Chapter 

6 discusses the impact that introducing defects, and reinforcing the shell by an additional 

protein, have on the mechanical and chemical stability of P22 nanocages. Chapter 7 discusses 

a biologically relevant structural transition of the Minute Virus of Mice capsids. This last 

chapter does not contain AFM results but is based on Hydrogen-Deuterium Exchange Mass 

Spectrometry. This data was obtained during a two month internship that I got the opportunity 

to do in the lab of Prof. Albert Heck, at the University of Utrecht. In chapter 8 I present the 

general conclusions and a future outlook for the field; a summarized version of the 

conclusions are also included at the end of this chapter in both, English and Spanish. The 

appendixes at the end of the manuscript contain the supplemental information.  
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Prefacio 

Las partículas víricas representan un tipo de nanomaterial con propiedades mecánicas 

extraordinarias.1 Son estructuras robustas, capaces de aguantar presiones internas de decenas 

de atmósferas,2 y a la vez extraordinariamente plásticas, ya que a lo largo de la evolución se 

han proveído de los mecanismos moleculares necesarios para poder adaptarse a las distintas 

necesidades del medio.3,4 A pesar de que el mayor impacto social de los virus sigue siendo 

su papel como portadores de enfermedad, causando millones de muertes humanas al año,5 

sus exquisitas estructuras han propiciado que durante las dos últimas décadas derivados de 

partículas víricas (virus-like particles; VLPs) se investiguen para ser utilizados en beneficio 

de la sociedad.6,7 Este nuevo horizonte abarca áreas tan variopintas como la terapia génica,8 

la catálisis de reacciones,9,10 la producción de energía a la nanoescala,13,14 o la síntesis de 

nuevos materiales.15,16 Siendo como es ya un campo tan multidisciplinar, la unión de 

científicos provenientes de distintas ramas es requisito imprescindible para la optimización 

y desarrollo de estas nuevas nanoestructuras. Entender el impacto que tienen introducir un 

agente foráneo en el interior de una cápsida vírica puede contribuir al diseño de 

nanoestructuras más robustas y duraderas. Modular las propiedades mecánicas de estos 

derivados proteicos vía mutagénesis, cambios de pH o anclaje de proteínas “cemento” puede 

mejorar el rendimiento de nanomateriales basados en ellos o su uso como agentes 

terapéuticos. Estudiar la relación que hay entre estructura y mecánica de virus infecciosos, 

optimizados durante el proceso evolutivo, puede inspirar y dirigir el diseño de nuevas 

nanoestructuras.17 Éstos son sólo algunos ejemplos de la importancia que tienen estudiar 

estos sistemas desde distintos puntos de vista. Esta tesis se centra en el estudio de la dinámica 

y propiedades mecánicas de cuatro derivados de nanoestructuras proteicas que han 

despertado el interés de la comunidad científica no por su papel como agentes infecciosos, 

sino por su potencial uso en biotecnología, biomedicina o ciencia de materiales. 

El capítulo uno pretende ser una introducción y guía práctica al estudio experimental de 

nanoestructuras mediante la Microscopía de Fuerzas Atómica (AFM). Introduce al lector no 

familiarizado al campo, con especial hincapié en los aspectos técnicos que deberían de 

tenerse en cuenta a la hora de diseñar un experimento. Los trabajos científicos se exponen 

del capítulo 2 al 7, todos basados en la correspondiente publicación (o bien publicada, o 

pendiente de publicación). El capítulo 2 presenta un estudio de las propiedades mecánicas de 
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las partículas vaults. El capítulo 3 discute el papel que juega el pH en la dinámica de 

ensamblaje-desensamblaje de estas nanopartículas. El capítulo 4 discute el impacto que el 

pH y los iones calcio tienen en la estabilidad del virus del tomate (TBSV). El capítulo 5 

discute la influencia que la interacción carga-carga y carga-cápsida tienen en la estabilidad 

de nanoestructuras proteicas derivadas del bacteriófago P22. El capítulo 6 discute el efecto 

que tiene, en estas nanoestructuras, introducir defectos y reforzar la cápsida mediante una 

proteína cemento. El capítulo 7 identifica estructuralmente la  transición dependiente de 

temperatura que el virus diminuto del ratón (MVM) sufre durante su proceso de infección. 

Este último capítulo no contiene resultados de AFM sino que de Intercambio Hidrógeno-

Deuterio mediante Espectrometría de Masas (HDX-MS). Los datos presentados en él fueron 

obtenidos durante un estancia de dos meses que tuve la oportunidad de hacer en el laboratorio 

del Prof. Albert Heck, de la Universidad de Utrecht. El capítulo 8 contiene las conclusiones 

generales y mi visión actual del estado del campo; además, al final del capítulo una versión 

resumida de las conclusiones se expone tanto en inglés como en español. Finalmente, los 

apéndices contienen la información suplementaria de los trabajos científicos.  
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 Study of Nanosized Protein Cages with Atomic Force Microscopy 
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Abstract  

Stable imaging and manipulation of proteinaceous nanoparticles by Atomic Force Microcopy 

(AFM) have to overcome the challenge of scanning large and soft biological samples that 

can be easily damaged or detached during the imaging process. The success of this process 

requires a delicate balance between tip-sample and substrate-sample interaction. There are 

many reviews focused on the imaging modes or sample preparation procedures in the context 

of biological samples, here I illustrate some of these aspects using four different nanocages. 

Firstly, the imaging mode and substrates used during this thesis are presented. In this section 

it is shown, for example, that the choice of the substrate and electrolyte concentration modify 

the apparent height and percentage of adsorption of the minute virus of mice (MVM),which 

might be due to a conformational change that involves the reorganization of the capsid pore 

region. Secondly, the resolution and some technical aspects that should be considered during 

nanoindentation assays are discussed. Finally, the most relevant mechanical concepts in 

physical virology are summarized in three tables. Overall, this chapter intends to be both an 

introduction and practical guide to the experimental study of macromolecular nanostructures 

by AFM, highlighting some of the practical aspects that should be considered during an 

experiment.   
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Atomic Force Microscopy in Liquids – Jumping Mode Plus 

The principles of Atomic Force Microcopy (AFM) are relatively simple. A sharp tip at the 

end of a flexible cantilever scans over the surface during consecutive sweeps. The deflection 

of this cantilever, caused by the probe-surface interaction, is detected by a photodiode that 

registers the movement of a laser beam focalized at the end of the cantilever.1-3 This signal, 

in turn, is used as a feedback to reconstruct the sample surface and correct the position of the 

tip with a Z-piezo. There are different ways to correct for this position (termed as imaging 

modes) and they basically depend on which parameter is used for the feedback (i.e., whether 

the normal force, the amplitude of oscillation, the frequency of oscillation, the amplitude of 

excitation, or a combination of the above, are the input parameters of the feedback).4 The 

mode employed during this thesis uses the normal forces as the input parameter, and it is 

based on jumping mode (JM).5 JM essentially operates by performing a force vs. Z-piezo 

distance curve (FZC) at each point of the image (Figure 1); the tip approaches the sample 

until the photodiode detects a normal deflection that corresponds to the set point selected by 

the user. To move between consecutive points, the tip displaces laterally when it is retracted 

from the sample, making it ideal to image biological sample because it minimizes the shear 

forces that you apply during the acquisition process.6 

 

Figure 1. Schematic of jumping mode. At each 

point (pixel) of the image the tip perform a force vs. 

Z-displacement curve (FZC). It deflects up to a 

normal force (set point) set by the user. The image is 

acquired by sweeping each line with the x-scan and 

then moving to the next line with the y-scan. To 

move from point to point along the x-line the tip 

retracts and moves while is far from the substrate, 

minimizing shear forces and avoiding the damage of 

the sample. The retraction distance is also set by the 

user. Step 1 and 2 represent the approaching and 

retraction of the tip, step 3 represents the movement 

of the tip to another pixel.   

 



Controlling tip-sample interaction forces is fundamental to achieve accurate imaging and 

manipulation of the sample. Soft biological specimens represent a challenge in this regard as 

they might be easily damage during the imaging process. All the AFM experiments carried 

out in this thesis has been performed using jumping mode plus (JM+). JM+ represents an 

advantage in comparison with conventional JM as it confers a major control of the sample-

tip interaction during the approach imaging cycle. This improvement was achieved by 

checking for the cantilever deflection as it approached to the surface, and stop it if the 

deflection was greater that the set point.7 

Currently, the main technical drawback of JM+ (as it is for conventional JM) is the 

impossibility of acquiring high-speed images. For example, an image of 128x128 pixels (in 

the conditions required for measuring nanoparticles with an average height of 20-60 nm) 

typically last for 3 minutes. This hampers the possibility of exploring fast dynamics and 

might determine the choice of other imaging modes. However, for large macromolecular 

cages such as viruses, it is still one of the preferential choice. A comparison of the different 

AFM modes in the context of biological samples can be found in Moreno-Herrero et al.8  

 

Adsorption of Nanoparticles on Substrates — HOPG, HDMS-coated Glass and Mica  

In addition to an accurate control of the imaging parameters, substrate-sample interactions 

are also fundamental to have stable, high-resolution images of the probed specimen. Two 

main steps might be identified in the adsorption of nanoparticles. The first step involves the 

arrival of the particle at the surface, achieved by a diffusion process governed by the 

Brownian motion. The second step involves the binding of the particle to the substrate. The 

main driving forces responsible for this ‘physical’ attachment (i.e., specimens are not 

covalently linked to a chemical modified support) are the van der Waals force, the 

electrostatic double layer (EDL) force, and the forces arising from the hydrophobic effect.9 

The hydrophobicity of many proteins seems to play an important role in their adsorption on 

surfaces10 and several experimental AFM studies performed on viruses indicate that 

hydrophobic interactions represent also an efficient anchoring mechanism for these large 

macromolecular self-assemblies.11 HOPG (chapter 1, 2 and 5), glass coverslips 
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functionalized with HDMS (chapter 4) and mica (chapter 3) were the substrates used for this 

thesis. HOPG and HDMS-coated glasses are two hydrophobic substrates, whereas mica 

becomes negatively charged when submerged in water.12 To alter the surface density charge 

of the substrate different electrolytes might be incorporated to the buffer. Positively rather 

than negatively charged substrates are the preferential choice for AFM imaging of virus 

particles, as most of these proteinaceous self-assemblies display a net negative charge on the 

capsid exterior shell.13 Therefore, in other to create a positive layer of ions on top of the mica 

substrate, NiCl2 was added to the buffer for the experiments of Tomato Bushy Stunt Virus 

(TBSV) (chapter 3). It should be mention that mica was the final choice for TBSV because 

these particles were usually displaced during nanoindentation experiments on HOPG. This 

weak HOPG-TBSV anchoring was also noticeably during the imaging process, where 

particles could be observed moving on the substrate likely due to the scanning process 

(Figure 2).  

Figure 2. Diffusion of TBSV nanoparticles adsorbed on HOPG. Due to the weak interaction between the 

particles and the HOPG, the imaging process (performed with forces below 80 pN) induced the movement of 

the viruses. Different frames (#) of a movie acquired by scanning the same area consecutively are represented. 

Red and green arrowheads show positions presenting, alternatively, the presence and absence of particles. 

The choice of the substrate for each specific nanoparticle was always made after testing the 

adsorption of the specimen on, at least, three different surfaces. The protein complexity of 

nanosized molecular cages makes very challenging to determine a priori what the most 

suitable substrate will be (even the adsorption of small proteins on surfaces is still a complex 



and poorly understood process).14 Although hydrophobic surfaces were usually the 

preferential choice, a distinction between them should be made because different 

hydrophobic surfaces might have different effects on the adsorption process. In addition, the 

water molecules and salt ions present in solution are also an active component of the system. 

Changing the ionic strength (salts) or the pH of the solution might increase or reduce the 

electrostatic tip-sample interaction, which in turn might modify the height of the probed 

structures, their mechanical properties, or the adsorption configuration.15,16 Salts influence 

these outputs by screening electrical charges or modifying the hydrophobic effect. Low salt 

concentrations (<0.2mol/l) typically leads to the screening of surface charge-charge 

interaction (increase of the Debye length), while higher salt concentrations results in an 

increase of the hydrophobic effect.17 The stability, efficiency of attachment, and final 

configuration of a protein depends on both the specimen and the substrate, and with the 

current knowledge it is hard to predict in advance the final configuration of the system. An 

example of this is presented below, where the minute virus of mice (MVM) was studied for 

two different hydrophobic substrates (HOPG and HDMS-coated glass) under two different 

buffer solutions (PBS 1x and PBS 5x) (Figure 3). PBS 5x contained 5 times more salt 

concentration than PBS 1x (PBS 1x: 137 mmol/L NaCl, 2.7mmol/L KCl, 20.40mmol/l 

Na2HPO4, 1.8 mmol/L KH2PO4 pH=7.4). 

 Figure 3. MVM adsorption of HDMS-coated glass and HOPG at two ionic strength. (A) AFM images of 

MVM capsids orientated along the 5-, 3- and 2-fold symmetry axes. An icosahedron is shown on top of each 
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High-resolution AFM images of MVM VLPs (150x150 nm2) could be easily classified 

according to their orientation as S5, S3 and S2, as previously done in several studies18-22 

(Figure 3A). Our results revealed that the relative percentage of adsorption depended on both 

the substrate and the buffer (Figure 3B). The S5 orientation was the least frequently observed 

orientation for HOPG (at both salt concentration) or HDMS-coated glass at PBS 1x, but 

resulted the most frequent orientation for HDMS-coated glass under PBS 5x buffer. 

Noticeably, this increase in adsorption was accompanied by a significant decrease in height 

along the 5-fold axes, from 21 nm to 18 nm (Figure 3C and table 1). The S2 orientation 

did not present significant variation, whereas the S3 showed a slight decrease in height (1.5 

nm) between HOPG and HDMS-coated glass. Our results suggested that an increase in the 

electrostatic interaction (achieved at PBS 5x), together with the different nature of the 

substrate, promoted a conformational change that could only be trapped by the HDMS-coated 

glass. Analysis of the hydrophobicity of the different substrates performed with an optical 

water contact angle system (KSV CAM-101)23 revealed that the HDMS-coated glass was the 

most hydrophobic substrate, with a surface angle of (83±5) in comparison with the (66±5) 

angle presented by HOPG (table 1). We might speculate that the ‘major hydrophobicity’ of 

the HDMS-coated glass can be the reason of the disagreement between both substrates, but 

the fact that HDMS is an organic compound that exposes methyl groups on the surface, with 

certain flexibility, in contrast to HOPG —composed of highly-ordered carbon conforming 

an hexagonal lattice— might also be the cause. It seems reasonable, though, to expect that 

the exposure of some residues around the pore, presumably hydrophobic, are the responsible 

for this capsid rearrangements that enhance the probability of anchoring the samples along 

the 5-fold symmetry axes. We mentioned above that the nature of the substrate and the 

electrolyte composition of the buffer determine the tip- and substrate-sample interaction, and 

thus the frequency of adsorption or the height of the particle, but the MVM example suggests  

 

 (continued) AFM image for clarity. (B) Percentage of adsorption depending on the substrate and ionic strength 

for the three symmetry axes. The S5 orientation become the most frequent for HDMS-coated glass and PBS 5x 

(red line). (C) Histograms of height for the four different conditions. Particles adsorbed on HDMS-coated glass 

(PBS 5x) show a decrease in height for all orientation, with a more significant reduction along the 5-fold 

symmetry axes. It seems likely that under these conditions the particles had adopted a different configuration  



that it can also trap (or promote) different structural configurations. Controlling and being 

aware of these limitations is fundamental not only to optimize the imaging process but also 

to properly drive conclusions of the AFM measurements. For example, in previous AFM 

studies it was assumed that the distribution of occurrence of the three symmetry sites could 

be based on the icosahedron structure of the virus (i.e., the S3:S2:S5 ratio was expected to be 

20:30:12, corresponding to 20 faces, 30 edge, and 12 vertices).24 Our current data indicate 

that the assumption was probably mistaken, the frequency of adsorption is a buffer-, particle- 

and surface-specific process that have to be experimentally assessed case-by-case. 

 contact angle (83±5) contact angle (66±5) 

 Glass PBS 1x Glass PBS 5x HOPG PBS 1x HOPG PBS 5x 

 # mean SE # mean SE # mean SE # mean SE 

S5 5 20.6 0.5 29 17.7 0.2 15 21 1 8 21.9 0.8 

S3 15 22.5 0.6 22 22.0 0.3 23 23.9 0.4 19 23.9 0.4 

S2 13 22.3 0.6 17 22.0 0.3 14 22.5 0.5 12 22.7 0.5 

Table 1. Height of the particles sorted by symmetry, ionic strength and substrate. # indicates the number 

of particles and SE the standard error. 

Finally, the substrate preparation or its cleanness are also important aspects to factor in before 

making the final substrate choice. HOPG and mica only require the cleavage of the upper 

layers, which can be easily achieved by peeling them with a piece of tape. It is a fast 

procedure that leads to very clean and flat surface. HDMS-coated glass coverslips have to be 

cleaned with a KOH solution mixed with ethanol and functionalized overnight in HDMS 

vapor.25 It is a simple procedure that also leads to clean and flat surface, but it takes longer 

and substrates have to be replaced monthly. Other well-established methods for substrate 

preparation, such as the functionalization of mica with polylysine9 or APTES,26 were 

generally discarded because the tip was easily contaminated during the imaging process.  

For an overview of the most standardized biological sample preparation procedures for AFM 

imaging, beyond the three cases exposed here, see El Kirat et al. 27 
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Tip-Sample Interaction and Mechanical Properties of Virus Cages 

AFM is not only suitable for imaging different samples but it can also manipulate them. By 

pushing on a particle with an AFM tip it is possible to apply forces and measure how the 

particles respond to them. The interaction between the AFM tip and the probed particle (or 

substrate) can be generally described with an intermolecular Lennard-Jones potential (Figure 

4). 

𝑉𝐿𝐽𝑃 = 4𝜀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

],      [1] 

where ε is the depth of the potential well, σ is the distance at which the potential is zero, and 

r the distance between the two objects (i.e., between the tip and the sample or the tip and the 

substrate). The distance at which the potential reaches its minimum is defined as req and 

corresponds to the point of zero force, at the border between the attractive and repulsive 

regimes (Figure 4). 

Figure 4. Lennard-Jones potential 

representing the tip-sample interaction. 

Two regimes might be distinguished as a 

function of the distance: attractive forces 

dominate at large distance (green region), 

whereas at shorter differences the 

interaction is governed by repulsive forces 

(red region). It is important to notice that 

under liquid conditions the attractive 

region is significantly reduced and the tip 

might transition from no-interaction to 

repulsive interaction directly.  

In liquid, these attractive and repulsive terms basically account for:12 

1) Contact force. It is a short-range repulsive force that arises from the overlapping 

electron orbitals. These contact force deform contacting objects by displacing their atoms 

and molecules.  



2) Hydration force. It is a short-range repulsive interaction (0.5 nm).28 Its nature is 

attributed to the work required to remove water molecule from the vicinity of the 

interacting surfaces. In the field of physical virology, this force has been shown to 

increase the strength of lambda WT phages. 29  

3) Van der Waals force (vdW). It is a long-range attractive force that arises from the 

interaction between permanent or induced dipoles of molecules. In liquids, the range of 

this force is of the order of 1-2 nm and, in comparison with vacuum conditions, its 

contribution is almost negligible.30 It is particularly important to bear this last point in 

mind when one looks at the widely used Lennard-Jones potential to describe tip-sample 

interactions because, in most of our experiments (performed in aqueous solution), the 

attractive contribution might be so negligible that the tip transitions directly from no-

interaction to repulsive interaction.  

An example of this can be seen in the inset of Figure 5A: whereas the FZC performed on 

the substrates displays a ‘jump’ to contact when approaching the sample due to the vdW 

attraction (blue curve), the FZC performed on the particle does not experience any 

attractive interaction before reaching the contact point (red curve).  

4) Coulombic electrostatic force. It is a long-range attractive or repulsive force that is 

caused by the presence of charges on the tip and/or substrate. In aqueous medium, this 

force is almost always present and repulsive, even if the surfaces do not display a net 

surface charge.31,32  

The charging of surfaces in liquids can come about in two ways: by the dissociation of 

surface groups or by the adsorption of ions onto the surface. An electric double layer 

(EDL) formed by the electrolyte of the solution is formed in the vicinity of the surface 

due to the charged nature of the surfaces. This layer screens the surface charges and 

decays exponentially in a range set by the Debye screening length (D), which depends 

on both the charge zi and the concentration ci of the electrolytes 

𝐷 ∝
1

∑ 𝑐𝑖𝑧𝑖
2

𝑖
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The modulation of this EDL repulsion between the sample and the tip might mitigate the 

local effect of undesired forces and allow for higher resolution.33 In addition, the EDL 

forces have allowed to calculate with AFM the surface density charge of DNA 

molecules34 and, more recently, of virus particles.35
 

 

Figure 5. Nanoindentation experiment on an expanded P22 VLP particle. (A) Force-distance curves (FZC) 

performed on: substrate (black line) and particle (red line). The differences between both slopes accounts for 

the deformation of the particles (indentation). (inset) Zoom-in of the transition to contact for both the particle 

and the substrate. The tip did not experience any attractive force during its approach to the particle surface. (B) 

Force-indentation curve (FIC) of the particle. It was obtained by subtracting the contribution of the cantilever. 

Mechanical parameters such as critical indentation, breaking force or elastic constant can be obtained from this 

curve.  

In the field of physical virology, the deformation of particles have been widely interpreted in 

the framework of continuum elasticity theory of thin elastic shells, where the cantilever and 

the particle are represented as two spring constants in series, both presenting a linear initial 

deformation.36,37 Figure 5A shows two force-distance curves (FZC) performed, respectively, 

on a substrate (black curve) and a particle (red curve). Whereas the FZC performed on the 

substrate only accounts for the deformation of the cantilever (the cantilever stiffness used in 

our experiments is so low that the substrate can be considered to a very good approximation 

as an undeformable object), the FZC performed on the particle contains the deformations of 

both the cantilever and the particle. Therefore, in order to obtain the mechanical properties 

of the particle alone, the contribution of the cantilever has to be eliminated. This is achieved 



by subtracting the black curve (cantilever) from the red curve (cantilever and particle), a 

process that leads to the force-indentation curve (FIC) (Figures 5B). The FIC contains 

information about the critical deformation, the rigidity (elastic constant) and the breaking 

force of the particle.11,38 

From the force-indentation curve (FIC) we can extract information about the mechanical 

properties of the nanoparticles, such as the elastic constant or the breaking force (Figure 5B). 

The mechanical concepts and parameters used in AFM studies of nanoparticles are 

summarized in three tables at the end of the chapter (table 2, 3 and 4). These parameters 

permitted the comparison not only of different morphology of a given specie, but also 

between species. It is important to notice that the technical parameters of the FIC, such as the 

loading rate or the number of points acquired per curve, might also affect our results and thus 

have to be considered (Figure 6).  

Figure 6: Dependence of the mechanical parameters on the loading rate (A) Force vs. indentation curves 

performed on a half-vault at different loading rates. The images of the half-vault is shown as an inset. Because 

of the self-healing capacity of the particle multiple FICs at different loading rates could be performed on the 

same particle. Nanoindeations were acquiered at 40 nm/s, 34 FICs at 340 nm/s, and 29 FICs at 4000 nm/s. The 

FICs were obtained for 7 different particles. (B) Evolution of the elastic constant and the breaking force as a  
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Figure 6 shows the results of an experiment performed on vault particles to address this issue. 

Nanoindeantations were acquired at four different loading rates and the elastic constant and 

breaking force were compared. The results indicated that there was an exponential 

dependence of the breaking force on the loading rate for half-vaults (Figure 6A and 6B) ,but 

this value was maintained for full-vaults up to loading rates of 400 nm/s (Figure 6C and 6D) 

This distinct behavior was already found in studies performed on CCMV, HK97 and phi29,39 

where different dependency of the breaking force and elastic constant on the loading rate 

were observed within each specie. Such considerations are especially relevant when 

comparing the experiments with molecular dynamics simulations, where the loading rates 

might be orders of magnitude faster40 than the experimental ones (most of the AFM 

experimental studies performed on virus to date, including the ones in this thesis, have been 

performed at loading rates between 60-100 nm/s). In addition, further exploring of these 

dependencies might provide insights into the unbinding/rebinding mechanism of large 

macromolecular cages (in a way similar to that of smaller proteins41,42) or might permit 

studying viscoelastic properties of viral cages.43,44 

 

Spatial Resolution —Intra-Capsomeric Details Revealed by AFM 

The resolution of AFM depends mainly in three factors: the control of tip-sample interaction, 

the anchoring of the sample to the substrate and the tip geometry. In the late nineties, the 

proper  adjustment  of  pH  and  concentration  of  electrolyte  permitted to successfully image 

biological samples in contact mode with lateral resolutions of 0.5 nm and normal resolutions 

of 0.1 nm.45 However, it was not until 2010 when acquiring images of biological systems 

with sub-nanometer resolution in liquids (lateral resolution of 0.5 nm) was possible with 

dynamic modes.28,46-49 The advantage of dynamic or jumping mode in comparison with 

contact  modes  is  that  they  apply  lower  frictional  (lateral) forces, thus  enabling  to  image 

 

function of the loading rate (4 nm/s, 40 nm/s, 400 nm/s and 4000 nm/s). The values are obtained after averaging 

26 FICs at 4 nm/s, 46 FICs at 40 nm/s, 34 FICs at 34 nm/s, and 29 FICs at 4000 nm/s. The FICs were obtained 

(continued) for 7 different particles. (C,D) Same than before but performed on a full-vault reclining on the 

barrel. The values of the graph were obtained for 7 different particles after averaging 16 FICs at 4 nm/s, 42 

FICs at 40 nm/s, 19 FICs at 34 nm/s, and 15 FICs at 4000 nm/s. 



isolated molecules weakly bound. These sub-nanometer, high-resolution images of 

biological systems, however, have been acquired in lipid layers or small molecules, such as 

DNA.  

The maximum lateral resolution achieved by AFM in viruses is on the order of 5 nm.50,51 

This resolution has permitted to resolve the trimers of adenovirus particles,50 the intra-

pentameric subunits of bacteriophage T7, 51 or the capsomeric structure of herpes simplex 

virus52 or lambda phage.53 All the previous examples were acquired using JM or JM+, 

although it must be mentioned that detailed structure of viruses has also been resolved with 

dynamic modes.54,55 Perhaps, an advantage of JM for measuring such large molecular cages, 

which likely explains why it has been so successfully used in the field, is that it provides a 

very accurate control of the imaging force, avoiding undesirable peak-forces that might 

damage or move the sample.56 In addition, JM and JM+ offer a much simpler interpretation 

than dynamic modes, where the motion cantilever and forces exerted by the tip are always 

much harder to model. 

In this thesis, JM+ has allowed us to acquire images of vault particles, whose delicate 

structure hampered their visualization with dynamic modes or conventional jumping mode 

(chapter 2 and 3); visualize the granular structure of TBSV, attributed to the protruding 

domains of the virus (chapter 4); and resolving the capsomeric structure of mature expanded 

P22 VLPs, with lateral resolutions of 5 nm, which enabled us to identify the pentamers and 

hexamers that compose the capsid (chapter 5 and 6) (Figure 7).  

Figure 7. AFM images of expanded P22 VLP. (A) (left) 3D AFM topography of a P22 VLP adsorbed along 

the 5-fold symmetry axes. (right) A zoom-in of the same image with the position of intra-pentameric (red) and 

intra-hexameric (blue) subunits labelled on top. (B) Cartoon of an expanded P22 VLP based on the cryo-EM  
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We mentioned above that the physical size of the tip is one of the main bottlenecks that limits 

AFM resolution. The lateral resolution (𝑙) between two objects imaged by a parabolic tip 

with a radius Rtip is 

𝑙 = √2𝑅𝑡𝑖𝑝  (√𝛿𝑧 + ∆ℎ)    [2] 

where δz is the vertical resolution and Δh is the height differences (Figure 8). Because the 

vertical resolution (0.07nm for a cantilever with a spring constant of Kc=0.07 N/m)57 is a 

factor 100 times lower than the lateral resolution, formula [1] is often expressed as 

𝑙 = √2∆ℎ𝑅𝑡𝑖𝑝       [3] 

Figure 8. Schematic of the lateral resolution achieved 

by an AFM tip of radius Rtip. The distance (𝑙) and height 

difference (∆ℎ) between two objects limit the lateral 

resolution (equation 2). Adapted from Biophysical 

determinants for adenovirus uncoating and infectivity.12  

 

 

A consequence of the finite size of the tip is that the probed objects appeared dilated (black 

line, figure 8). Note, however, that this dilation only affects the lateral resolution, not the 

vertical resolution (height). 

The nominal radius of the AFM tip used during my experiments, and most of the mechanical 

experiments performed in viruses,11 is 15 nm (Olympus cantilever, RC800PSA). Therefore, 

the fact that the resolution commonly achieved is of the order of 5 nm means that, for most 

of the cases, the “effective tip radius” is smaller than the nominal radius. A small apex 

attached to the end of the tip is likely the responsible for achieving such good resolution 

(inset, Figure 9). It is important to notice, however, that this apex is not the responsible for 

determining the lateral width of the particles, which typically present heights in the range of 

30-100 nm and, therefore, is dilated with the nominal size of the tip (black line, Figure 9).  

(continued) data (chapter 5). A penton and two hexamers are highlighted in white and labelled correspondingly 

to the AFM image. Bar scale: 17 nm. 



Figure 6. Schematic of the dilation process of a viral particle. The black line indicates the dilated profile of 

the particle. Due to the finite size of the AFM tip, the width appear wider. (Inset) Because the dilation on top 

of the particles is performed with a smaller object (apex), the resolution of the surface features is higher. 
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Table 2. Mechanical concepts of material science.  

  

Concept Description 

Stiffness/rigidity 

Ability of a material to resist deformation in response to an applied force. The 

opposite of a rigid material is a soft material (do not confuse with hard). Likewise, 

the complementary concept is flexibility: the more flexible an object is, the less 

stiff it is. 

Mechanical strength The ability to withstand an applied load without failure or plastic deformation.  

Brittleness A brittle material breaks without significant deformation. 

Elastic deformation Reversible deformation — upon unloading the object return to its original shape. 

Plastic deformation 
Irreversible deformation — upon unloading the object dos not return to its original 

shape.  

Resilience Ability of a material to absorb and release energy when it is deformed elastically. 

Toughness Ability of a material to absorb (elastic and plastic) energy without fracturing  

Fatigue 

The weakening of a material caused by repeated loading. The failure of the material 

is caused by the accumulation of cracks (broken bonds in a nanostructure). In 

physical virology the resistance to fatigue has been related to the probability of a 

virus to survive in crowded environments.53 



Quantity Abbreviation/Formula Units Definition Related concept 

Height height nm Height of the particle Deformability 

Elastic constant k N/m 
Resistance of a material to 

be deformed under a force 
Stiffness/Rigidity 

Breaking Force 𝐹𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 nN 
Maximum force required to 

break a particle 

Mechanical 

Strength 

Critical Deformation 𝛿𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 nm 
Deformation at which the 

particle breaks 
Brittleness 

Continuum 

Elastic 

Theory 

Critical 

strain 

𝜀 =
𝛿𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

ℎ𝑒𝑖𝑔ℎ𝑡

¶

 

(𝜀 ∝
𝛿𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

𝑅𝑎𝑑𝑖𝑢𝑠
)

§

 

- 
Normalized critical 

deformation 
Brittleness 

Elastic 

constant 𝑘 =
𝐹𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 

𝛿𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

¶

 nN/nm 

Resistance of a material 

against a normal linear 

deformation. 

Stiffness/rigidity 

 

2D 

Young’s 

modulus 

𝑌 = 𝐸3𝐷ℎ 

MPa 

Resistance of a material 

against normal linear 

deformation 
3D 

Young’s 

modulus 

𝐸3𝐷 =
𝜎

𝜀
 

(𝐸3𝐷 ∝
𝑅𝑘𝑠ℎ𝑒𝑙𝑙

ℎ2
)

∗

 

Elastic & 

Plastic 

behavior 

Elastic 

limit 

(yield 

force) 

𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑙𝑖𝑚𝑖𝑡  nN 
Force at which a material 

starts deform plastically 

Related to 

resilience and 

toughness 

Energy 

For 

fracturing 

bonds 

𝐸𝑓𝑟𝑎𝑐𝑡 = 𝐸𝑏𝑒𝑓𝑜𝑟𝑒 − 𝐸𝑎𝑓𝑡𝑒𝑟 KBT 

Energy to rupture a bond – 

subtracting the elastic 

energy before and after the 

fracture 

Intermonomeric 

Energy 

Elastic 𝐸𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
𝐹𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔·𝛿𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

2

¶

 KBT 

Elastic energy supplied to a 

particle to produce the 

breakage 

Resilence 

Cyclic loading with 

nanoindentations (FIC) 
# of FICs - 

Number of FICs performed 

per particle 

Mechanical 

fatigue Cyclic loading with 

imaging 
# of images - 

Number of images 

acquired per particle – 

proportional to the number 

of FICs 

Table 3. Mechanical terms and nomenclature used in AFM studies of protein nanostructures. ¶Linear behavior. 
§Very often the deformation capacity (brittleness) of a virus is expressed ta fraction of the capsid radius *Thin 

shell loaded with a point force (R is the radius of the shell and h the thickness). 
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 Quantity Abbrevation/Formula Units Definition 

Virus mechanics’ 

related concept 

Shell thickness h nm Average thickness of a shell - 

Shell Radius R nm Average radius of the shell - 

Normal Stress 𝜎 =
𝐹𝑛𝑜𝑟𝑚𝑎𝑙

𝑎𝑟𝑒𝑎
 MPa Force per unit area - 

Normal Strain 𝜀 =
∆𝐿

𝐿
 - 

Ratio of the total deformation 

to the initial dimension 
- 

Poisson ratio 𝜈 = −
𝑑𝜀𝑡𝑟𝑎𝑛𝑠

𝑑𝜀𝑎𝑥𝑖𝑎𝑙

 - 
Relationship between the 

transverse and axial strain 
- 

Bending 

rigidity 
𝜅 =

𝑌ℎ2

12(1 − 𝜈2)
 KBT 

Resistance of a material against 

bending deformation 
- 

Föppl-von 

Kármán 

number 
𝛾 =  

𝑌𝑅2

𝜅
= 12(1 − 𝜈2) (

𝑅

ℎ
)

2

 - 
Relationship between the 

stretching and bending energies 

Level of sphericity 

– 

𝛾 ≤ 150 (𝑠𝑝ℎ. ) 

𝛾 ≥ 300(𝑎𝑛𝑔. ) 

Table 4. Mechanical concepts used in physical virology.  
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Mechanical Stability and Reversible Fracture of Vault Particles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on:  

A. Llauró, P. Guerra, N. Irigoyen, J. F. Rodríguez, N. Verdaguer, P. J. de Pablo “Mechanical 

stability and reversible fracture of vault particles”. Biophys J. (2014); 106:687-695.  



Abstract 

Vaults are the largest ribonucleoprotein particles found in eukaryotic cells, with an unclear 

cellular function and promising applications as drug delivery containers. In this chapter we 

study the local stiffness of individual vaults and probe their structural stability with Atomic 

Force Microscopy (AFM) under physiological conditions. Our data show that the barrel, the 

central part of the vault, governs both the stiffness and mechanical strength of these particles. 

In addition, we induce single protein fractures in the barrel shell and monitor their temporal 

evolution. Our high-resolution AFM topographies show that these fractures occur along the 

contacts between two major vault proteins and disappear over time. This unprecedented 

systematic self-healing mechanism, which enables these particles to reversibly adapt to 

certain geometric constraints, might help vaults safely pass through the nuclear pore complex 

and potentiate their role as self-reparable nanocontainers. 
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Introduction 

Vault particles are naturally occurring nanoscale protein cages widely found in eukaryotes. 

Since their discovery in 1986,1 diverse hypotheses have been developed as to the possible 

functions of vaults, based on their unique capsular structure, their mobility and the distinct 

subcellular localisation of the particles. Most of these hypotheses might implicate cargo 

transport, which suggests that they could act as a versatile regulatory platform for diverse 

cellular signal and transport processes.2 

The X-ray structure of rat liver vaults revealed that their shell is organized into two identical 

moieties, each consisting of 39 copies of the major vault protein (MVP) (Figure 1A).3 The 

MVP monomer is organized in two well defined regions: the first half of the molecule folds 

into a series of small β-domains that assemble into a wide, thin barrel at the center of the 

particle, whereas the second half forms a long α-helix which assembles into the narrow cap 

at the C-terminal end. The N-terminal end of the MVP forms the particle’s waist and accounts 

for the non-covalent interface at the vault’s midsection. A combination of electrostatic and 

hydrophobic interactions governs the association of the two half-vault moieties.4 Natural 

vaults also enclose three minor components; two proteins, the vault poly-ADP-ribose 

polymerase (VPARP) and the telomerase associated protein 1 (TEP1), and several small non-

coding RNA molecules (vRNA).5-7 Vault-like particles (VLPs), similar to purified 

endogenous vaults, are observed when rat MVP is expressed in insect cells, which indicates 

that MVP is sufficient to direct the formation of the vault shell.8 These VLPs, with overall 

dimensions of 40 x 40 x 70 nm3 and an average wall thickness of 1.5 nm, define an internal 

cavity (5x104 nm3) that can store hundreds of molecules. 

The peculiar structure and dynamics of vault particles,9 their large size and natural occurrence 

in humans, together with the reported presence of unidentified cargos, 2 have led to the idea 

that they could be exploited as natural nanocontainers for drug, nucleic acid, or protein 

delivery. In recent years recombinant vaults have gone through significant engineering, 

including cell-surface receptor targeting and the encapsulation of a wide variety of 

molecules10,11. However, using vaults as functional containers requires a deep knowledge of 

their structural stability.  



 

Figure 1. Vault structure and 

adsorption geometry. (A) Side view 

of a vault from X-ray data.3 The major 

vault protein (MVP) is colored in green 

on the structure and zoomed-in on the 

right side. MVP is composed of twelve 

domains: nine structural repeat 

domains at the N-terminus, an α/β 

shoulder domain, a cap-helix domain 

and a cap-ring domain at the C-

terminus. (B) General topography 

image of vaults in buffer conditions. 

Particle orientations: ull upright 

particle (yellow arrow), full reclining 

particle (white arrow) and half-vault 

(green arrow). Scale bar: 75 nm.  

 

 

 

 

 

 

In this work, we studied the mechanical properties of vaults using Atomic Force Microscopy 

(AFM) under physiological conditions. We explored the stiffness of full- and half-vaults with 

single indentations, and probed the stability of these particles by exerting cyclic loading. 

Beyond the mechanical characterization of vault particles, our data monitored the first 

fracture/recuperation dynamics of a protein shell in which the particle repeatedly self-repairs 

over time.  
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Results and Discussion 

Surface Attachment and AFM Imaging 

Once vaults were attached to a freshly cleaved HOPG surface, AFM imaging in jumping 

mode12 revealed a variety of adsorption geometries. Figure 1B shows a general topography 

where vaults present three different orientations: full particles lying on either the barrel 

(reclining) or cap, and half-vaults adsorbed through the waist with the cap facing up. AFM 

topographies revealed an excellent agreement between the height of the particles and the 

crystallographic structure3 (Figure S1, in the Supporting Information), which excluded any 

effect of denaturation upon adsorption. Because the upright configuration was too unstable 

for AFM experiments, our study focused on full reclining particles and half-vaults.  

AFM imaging at different feedback forces provided a first approach for testing the 

mechanical stability of vaults. Figure 2A presents a series of topographies where a reclining 

full particle and a half-vault were imaged under equal conditions. In that case, the imaging 

force was purposely changed back and forth from frame to frame (Figure 2B, black crosses) 

causing variations in the height of the structures. Topographies revealed that the full-vault 

suffered some damage through the process. For instance, the inset of the seventh frame of 

Figure 2A shows the comparison between the topographies of frames 1 (black) and 7 (green), 

suggesting the partial collapse of the structure at the barrel. In addition, we observed a 

constant loss of height over time (Figure 2B, red dots). Besides these disruptions, however, 

partial recovery of the average height of the structure was observed between frames as a 

consequence of lowering the imaging force (Figure 2A and B; frames 4, 7 and 10).  

On the other hand, the half-vault structure reduced its height abruptly from 36 nm to 15 nm 

when the imaging force was increased (Figure 2B, black squares). Despite this large 

deformation, though, at lower imaging force the particle was capable of restoring its original 

height (Figure 2A and B; frames 4 and 7). The ability to undergo such a large strain (around 

60%) in a reversible manner, which was also reproducible for other half-vault structures (see 

Figure S2 in the Supporting Information), demonstrated the remarkable structural stability of 

these particles under mechanical stress. In addition to this global phenomenon, self-recovery 



capabilities were also observed at the local scale. The white arrow in the second frame of 

Figure 2A indicates a fracture on the barrel structure that disappeared over time. 

Figure 2. Vault stability dependents on 

imaging force. (A) Topography images are 

time ordered and each frame is labeled with 

its corresponding imaging force. The 

elapsed time between images was 3 minutes. 

Scale bar: 50 nm. (Frame #7, inset) 

Comparison of the profiles taken along the 

dotted lines of frames #1 (black) and #7 

(green). (B) (top) Imaging force evolution. 

(bottom) Maximal height evolution of the 

half-vault (black) and full reclining particle 

(red).  

 

 

 

 

 

 

 

 

Stiffness and breaking force of individual particles 

To investigate local phenomena rather than global deformations, we focused on performing 

individual nanoindentations both on full reclining particles and half-vaults (Figure 3). The 

resulting force vs. indentation curves (FIC) provided information about vault’s mechanical 

file:///C:/LABO/TESIS/Chapter 2 - vaults/figure 2.jpg
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properties, such as stiffness (elastic constant, green dashed line in Figure 3A-3 and B-3) and 

breaking force (a in Figure 3A-3 and B-3). For reclining particles, our experiments provided 

average values for stiffness and breaking force of 0.03±0.01 N/m and 122±83 pN. For half-

vaults these values rose to 0.06±0.03 N/m and 165±38 pN (table 1).  

Figure 3. Indentation experiments on 

single vaults and histogram of the 

recovery time (A) Images of a reclining 

particle before (panel 1) and after (panels 2) 

the FIC of panel 3. From the forward curve 

(black) we calculated the elastic constant 

(dashed green line), breaking force (point a), 

and the critical indentation (indentation at 

point a). The backward curve (grey) shows a 

recovery during tip retraction. (B) The same 

experiment performed on a half-vault. The 

shadowed area represents the energy 

supplied to the vault during the 

nanoindenation. Scale bar: 25 nm. (C) 

Histogram of the recovery times (RT) for 

both orientations. The time criterion for 

classifying these curves was: fast recovery 

(RT<650ms), medium recovery 

(650ms<RT<2s), and slow recovery (RT>2s) 

(see Materials and Methods for criteria). The 

histogram contains information of 260 FICs 

(black) and 357 FICs (red). The number on 

top of each bar indicates the number of 

particles that we found presenting the 

corresponding time recover. 

Table 1. Elastic constant, breaking force and indentation at which shell ruptures, means ± SD. n indicates the 

number of particles. 

 K(N/m) Fbreaking(pN) δcritical (nm) Energy(KBT) n 

Half-vault (0.06±0.03) (165±38) (4±2) (302±34) 21 

Reclining paritcle (0.03±0.01) (122±83) (3.9±1.5) (220±34) 13 



Our results showed that the stiffness value of half-vaults doubled the stiffness value of full 

reclining particles. To check if this result agreed with continuum mechanics, we constructed 

a Finite Element Model considering a shell with a geometry based on the X-ray structure of 

a vault (Figure S3). To reproduce the experimental curves with the simulation, the model was 

deformed with a sphere of 15 nm in diameter, which mimicked the AFM tip. The Young’s 

modulus of the vault was estimated by tuning the Young’s modulus of the model until the 

Finite Element simulation coincided with the experimental data (see Materials and Methods). 

The procedure led to a Young’s modulus value of 0.7 GPa, which was on the order of 

magnitude of other protein nanoshells.13 

 

Vault Particles Self-repair after Rupture 

The breaking force is a sign of particle damage, commonly ascribed to the permanent fracture 

of the structure.14-16 However, the fact that particles looked intact after the nanoindeantions 

(Figure 3A-2 and 3A-3) suggested that the process was reversible in our case. A recovery of 

the force during tip retraction also suggested this reversibility (b in Figure 3A-3 and 3B-3). 

Interestingly, the same behavior was found when we indented particles repeatedly, all the 

FICs presented drops ascribed to ruptures but the structures before and after the breakages 

were indistinguishable (Figure S4). In addition, study of the elastic constant of the particle 

through this repeated loading showed that the initial elastic behavior was completely restored 

(Figure S5). The average spring constant was maintained during, at least, the first five 

indentation, which probed the fast capacity of these particle to restore their elastic properties. 

Vault particles were able to recover within a time span of 650 ms, which roughly 

corresponded to half of the FIC time. Because those times were too short for acquiring a 

complete AFM image of the particle (3 minutes), we decided to monitor the topography of 

the particles right after the nanoindentation took place. To do so we switched off the y-scan 

and enabled only the x-scan (Figure S6). In that way we obtained a kymograph that displayed 

the height of the particle immediately after each indentation (Figure S6, A-2 and D-2). With 

this method, we could image 22 topographic reversible damages in 11 different reclining 

particles corresponding to recovery times (RTs) longer than 2000 ms (the time of a single 
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FIC). During those experiments we also found that some backward curves do not exhibit 

force recovery, even though the vault structure remains unaltered (Figure S6-E, curves 1 and 

7). We interpreted those cases as corresponding to vaults that recuperate from failure after 

the tip releases the vault surface but prior to imaging of the particle, which corresponded to 

recovery times (RT) between 650 ms and 2000 ms.  

These distinctions allowed us to classify particles depending on the recovery time (RT). We 

defined fast-recovery as when force was restored during the backward curve (RT<650ms); 

medium recovery as when, although no restoring force was observed, the subsequent 

topography showed an intact particle (650ms<RT<2s); and slow recovery as when AFM 

imaging could monitor the reversible process (RT>2s). The histogram in Figure 3C, which 

classifies 617 FIC for 26 half-vaults and 28 full reclining particles, shows that half-vaults 

restored faster than full reclining particles. Indeed, while a 70% of the FICs performed on 

half-vaults (179 of 260) show a recuperation occurring before 650 ms, only 22% of the FICs 

did so on full reclining vaults (97 of 357). 

The role that the bending and stretching energies play after the fracture could explain these 

differences in RT. Thin-shell theory predicts that, due to the ability of a cylinder to bend 

without much in-plane stretching, more energy is needed to deform a spherical shell than a 

cylindrical one.17 If we approximate the geometry of a vault particle to that of an sphero-

cylinder, its spherical (ksph) and cylindrical (kcyl) parts are related as  
𝑘sph

𝑘cyl
~√R

h⁄ ~3.65 , 

where R and h are, respectively, the radius of the cylinder (R=20nm) and the wall thickness 

(h=1.5 nm). By considering khalf-vaults and kreclining as ksph and kcyl , our result 
Ksph

Kcyl
~2 coincides 

with the trend predicted by the theory. Therefore, we speculate that when the tip induced a 

fracture on half-vaults, the in-plane stress present in this structure (which lacked in the 

reclining particle) could trigger a faster recovery. 

This hypothesis was supported by an estimation of the energy required to deform both 

configurations. The area enclosed by the forward and backward curves is a rough 

approximation of the energy supplied to a single vault to deform and, eventually, produce the 

rupture of the shell (i.e., the shadowed area in Figure 3B -3). The average energy provided 

to reclining particles and half-vaults was, respectively, 220±34 kBT and 302±34kBT (table 



1). This result suggested that breaking vaults axially (“pushing on the spherical cap”; half-

vaults) required more energy than breaking vaults radially (“pushing on the cylindrical 

barrel”, full reclining vaults).  

 

Vault Fractures Occur along MVP-MVP Contacts 

Although continuum elastic theory provided an understanding of particle elasticity, the 

discrete protein structure of vault particles had to be considered in order to investigate the 

fractures. Molecular dynamic simulations have shown that abrupt changes in the breaking 

force are due to the breakage of molecular bonds.18 Therefore, a correct interpretation of the 

fracture mechanism required a revision of all inter- and intra-subunit non-covalent contacts. 

The building block of the vault particle is the MVP molecule. The X-ray structure of the full 

vault reveals that the strongest MVP-MVP contacts are found between cap-helix domains, 

where hydrophobic interactions dominated the packing (29 of the 41 pairs of residues 

forming the interface between two adjacent helices are hydrophobic). The intermolecular 

interactions in the central barrel are weaker, mainly involving polar contacts (16 hydrogen 

bonds, 5 ionic bonds, and 10 hydrophobic contacts).3,19,20  To roughly estimate the difference 

of the interaction energy between these two regions we determined the non-covalent 

interactions of two consecutive MVP molecules using the program HBPLUS implemented 

in the package DIMPLOT.21,22 The energy values of -1.5 kcal/mol, -4.5 kcal/mol and -40 

kcal/mol, associated to hydrophobic interaction, hydrogen bond, and ionic pair, respectively, 

were taken from Brändén et al.23 Using these values we obtained that the bonding energy 

between two α-helices was about 4 times higher than the bonding energy between two -

sheets domains. From an energetic viewpoint, this calculartion already suggests that the 

fractures should appear in the barrel.  

To study in more detail these fractures we focused on the slow fracture-recovery cases 

(RT>2s) (Figure 4 and S7). The AFM topographies in Figure 4A show the evolution of one 

reclining particle that restored its initial shape within 90 seconds (the time required to take a 

complete AFM image). Analysis of the pattern of fracture showed that the rupture was 

produced in the barrel (Figure 4 A-2). Lines  and  in Figure 4B are the profiles of the 
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fractured area along the transverse and longitudinal directions of the vault. The black and 

green curves, which are the height profiles before and after the fracture, provide direct 

evidence of recuperation. The red profiles depict the fractured zone: the -profile shows that 

the topographic outline is cut by a sharp fall; alternatively, the -profile shows a smooth 

decrease in height. To interpret these data we created a geometric model that simulated the 

rupture (Figure 4D, top). When the line of rupture was produced through the MVP-MVP 

contacts of the barrel, the profiles of the geometrical tip-dilated model (Figure 4D, bottom) 

showed a good agreement with the experimental data (Figure 4B, blue).This result confirmed 

that the transient breakages were produced in the direction in which MVPs align. The other 

slow recovery cases (Figure S7) also support the longitudinal fracture of the barrel. 

Independently of the orientation of the particle with respect to the scan direction, the lines of 

rupture were aligned with the MVP-MVP contacts.  

 Figure 4.  Reversible fracture. (A) Topographical images: -1- before fracturing, -2- after fracturing, and -3- 

after recovering. Scale bar: 35 nm. (B) Profiles  and  depicted with dotted black lines in Figure A-1: before 

the fracture (black), after the fracture (red), and after the recovery (green). (C) Fracture is produced between 

the β-sheet domains of two neighboring MVPs (green and red). (D) Dilation model: (top) sketch of a fractured 

vault; (bottom) tip-dilation simulation. The blue solid lines in Figure B correspond to the profiles obtained from 

this model. 

While AFM images provide unequivocal information of the pattern of fracture, the 

interpretation of single FICs is not trivial because each case depends on several uncontrolled 

factors, such as the shape and dimension of the tip or the relative tip-particle orientation. 



Despite that, our data systematically indicated that there were two patterns of FICs depending 

on the adsorption geometry (Figure 5). For reclining particles, the force after the rupture 

exhibited several peaks (Figure 5A). In contrast, half-vaults were always characterized by a 

single peak (Figure 5B). The zipper-like pattern observed in the reclining forms suggested a 

sequential unbinding of the β-sheets domains. Each of those unbinding events, characterized 

by a step distance, had a dissipated energy defined by the area under the curve (highlited area 

in the inset of 5C). This area represented the difference in work between deforming a particle 

with and without the breakage.24 By estimating those areas from the average distances and 

forces of the steps (Δz =1.3±0.95 nm and 117±50 pN), we obtained that each unbinding event 

had an average energy of 20 kBT. Comparison of this value with the strengh of the non-

covalent interactions that govern the assembly of the barrel domains, 2 kBT for hydrophobic 

interactions and 8 kBT for hydrogen bonds,23 we estimated that every peak that we saw 

roungly corresponded to separating two of the structural repeat domains at the N-terminus 

(R1-R9) (Figure 1A). 

Figure 5. The pattern of FICs depends on the 

vault orientation. (A) 21 indentations performed on 

21 reclining particles. (B) 13 indentations performed 

on 13 half-vaults. (C) Histogram of the number of 

peaks counted in each indentation for 21 half-vaults 

(black) and 13 reclining particles (red). (Inset) 

Example of an indentation performed on a reclining 

particle showing 3 peaks. The shadowed area 

indicates the work needed for a single fracture event. 

This area was calculated by the difference between 

the measured FIC and the backward-extrapolated 

from the curve after the step. The obtained average 

energy of these steps was about 20 kBT. 

  

The Barrel of the Vault Governs its Structural Strength 

Consecutive AFM imaging at different forces provoked the disruption of some areas in the 

-sheet region whereas the -helix domains of the cap remain unaltered (i.e. Figure 2A, 
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frame 2). To determine if this also happened under constant force, we performed fatigue 

experiments on half-vaults25 and confirmed that the barrel was the region where the breakage 

started (Figure 6 and S8, and movie in the Supporting Information).  

Figure 6. Mechanical fatigue of a half-vault. 

This particle was imaged along 37 frames at an 

imaging force of 65 pN (movie, SI). (A, B, C) 

Topographical images corresponding to frames 

1, 16, and 35, respectively. Scale bar: 25 nm. (D) 

Evolution of the profile taken along the dotted 

black line in frame #1. The profiles 

corresponding to frames 1, 16, and 35 are 

depicted in red, blue, and green, respectively. 

The rest of them are depicted with dotted grey 

lines. (E) Sketch of the disruption process 

suffered by the particle. 

 

 

 

Figure 6 shows that, as a consequence of the disruption of barrel region, the cap tilted and 

the particle lost its axial symmetry. It is tempting to relate this behavior to the lower inter-

bonding energy of -sheets (barrel) compared to that of -helices (caps). The tight and 

twisted-like geometry of the -helices, in contrast with the aligned position of the β-sheet 

domains, also suggests a greater mechanical stability in the cap region. In the first section we 

showed that gentle variations in the imaging force caused striking differences between the 

relative deformations of both orientations (Figures 2 and S2). Whereas reclining particles 

deformed by about 10%, half-vaults underwent strains of around 60%. Interestingly, this 

impressive strain on half-vaults reduced the height of the particle to 15 nm, which 

corresponds to the size of a cap alone (Figure 1A). An increase in the imaging force provoked 

complete deformation of the barrels whereas the caps maintained their shape (an idea 

consistent with the ability of vaults to open into flower-like structures).26 These evidences, 



and the fact that we have only detected fractures on the barrel surface, prove that the barrel 

is the structure that governs the mechanical strength of both adsorption geometries.  

 

Biological Implications and New Insights into Self-healing Dynamics 

Several studies have reported that vault’s exterior shell is a dynamic structure capable of 

“breathing” and exchanging material from the environment to its interior.27 Although the 

precise function of vaults remains unclear, it is widely accepted that they act as cellular 

transporters.2 Our experiments unveil new dynamics of this nanostructure induced by 

mechanical stress. We found that the bonds between MVPs were able to self-repair just by 

being in a liquid environment at room temperature. This feature indicates that these particles 

are highly adaptive to mechanical deformations, and transforms them into safe nanoplatforms 

capable of adapting to certain geometric constraints. Nonetheless, these particles are known 

to translocate material through the nuclear pore complex,28,29 which is a gate with a functional 

diameter of 39 nm,30 right below vault’s diameter.  

Beyond their natural role, vaults are promising drug delivery systems due to their 

biocompatibility and recent success in the engineering of targeted vaults with controllable 

release.31 As a consequence, understanding vault dynamics is a necessary step towards their 

use in biomedicine. Fracture-recovery is likely related to the nature of the inter-domain 

interactions, the thermal shaking of these broken inter-MVPs bonds in a liquid milieu, and 

the geometry imposed by the vault. The inter-domain unions of β-sheets (which are mainly 

due to ionic and hydrogen bond interactions) are labile enough to allow particles to undergo 

reversible conformational changes at low energy inputs. In fact, the stress threshold that 

vaults must reach before breakage is lower compared with those of other molecular shells; 

the force at which vaults rupture is at least 5 times lower than the breaking forces of other 

nanoshells with similar Young’s modulus.14-16,32,33 On the other hand, vault particles seem 

optimized to self-repair from fracture. Although it has been suggested that these self-healing 

capabilities may be present in other protein cages,24,34,35 our experiments reveal a systematic 

fracture-recovery mechanism that has been topographically monitored for the first time. Our 

results indicate that vaults may have evolved to facilitate low energy conformational changes 
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that reverse easily. The vault’s rare self-healing dynamics, apart from being likely related to 

their function inside the cell, could inspire nanomaterial science in the creation of new 

engineered nanocontainers. 

 

Conclusions 

 We have characterized the mechanical properties of individual vaults by performing 

indentations on full reclining particles and half-vaults adsorbed on their waists. Our results 

demonstrate that vaults exhibit striking self-healing capabilities that enable them to quickly 

recover from fracture. Also, we found that this rupture consists of separating two neighboring 

MVPs in the barrel structure. We believe that these novel insights into vault dynamics will 

add valuable information to understanding the role and function of these enigmatic particles 

and help to envision their use as nanocontainers. 

 

Materials and Methods 

Recombinant Baculoviruses 

The generation of a recombinant baculovirus (rBV) containing the full length MVP was 

performed as follows: A DNA fragment containing the MVP sequence, flanked by NcoI and 

Kpnl restriction sites, was generated by PCR. The DNA fragment was digested with NcoI 

and KpnI and inserted into the multiple cloning site of the baculovirus transfer vector 

pFastBacHta (Invitrogen), previously digested with the same restriction enzymes. The 

resulting plasmid, pFB_MVP, was subjected to nucleotide sequencing to assess the 

correctness of the inserted MVP sequence, and was then used to produce the corresponding 

rBV using the Bac-to-Bac system and following the manufacturer’s instructions 

(Invitrogen)TM. 

 

 



Production and Purification of Recombinant Vaults 

HighFive cells (Invitrogen)TM were infected with rBVs at a multiplicity of infection of 5 

PFU/cell. Cells were harvested at 48 hrpostinfection, washed using Phosphate Buffered 

Saline and pelleted with a 5 minute centrifugation at 3000 r.p.m. This pellet was resuspended 

in 6 ml of buffer A (75 mMNaCl, 50 mMTris pH 7.4, 1.5 mM MgCl2, 1mM DTT) plus 1% 

NP-40 and protease inhibitors (Protease inhibitor cocktail tablets; Roche) and maintained on 

ice for 30 min. The resuspended pellet was sonicated and cellular debris was removed by 

centrifugation at 10,000 rpm for 30 minutes. The supernatant was applied to 4 ml of buffer 

A with 25% sucrose and centrifuged at 37,000 rpm (using a SW41Ti rotor) for 2:30 hours. 

The resulting pellet was re-suspended in 600 μl of Buffer A and centrifuged for 1 minute at 

13,000 rpm. The supernatant was applied to a 25–50% sucrose gradient in buffer A and 

centrifuged for 45 minutes at 40,000 rpm. The gradient was fractionated and then analyzed 

by SDS-PAGE and negative-stain electron microscopy. Finally, fractions enriched in 

recombinant vaults were concentrated to approximately 5 mg/ml using a centrifugal filter 

device (Centricon YM-100; Millipore). 

AFM 

Measurements were performed with an AFM microscope (Nanotec Electrónica S.L., Madrid, 

Spain) operating in Jumping mode plus 12. In this mode, the tip displaces laterally when it is 

far from the sample and images are taken by performing force vs. Z-piezo displacement 

curves at all the points. Most images were taken with a maximal force of about 75 pN, which 

leads to average heights of (38±2) nm and (35.5±2) nm for reclining particles lying on the 

barrel and half-vaults, respectively. These values agree with the dimensions obtained by X-

Ray EM, 33.5 nm for half-vaults and 40 nm for reclining particles. 3 Rectangular silicon-

nitride cantilevers (Olympus, RC800PSA) with a nominal spring constant of 0.05 N/m were 

used and calibrated using Sader’s method 36. The experiments were carried out under 

physiological conditions; 1 20 l drop of stock solution, consisting of vault particles under 

TMS buffer conditions, was incubated on a fresh HOPG surface (ZYA quality, NT-MDT) 

and, after 30 minutes, washed with buffer until a volume of 60 l was reached. The tip was 

also pre-wetted with a 20 l drop of buffer.  
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The elongation of the Z-piezo approached the top of the shell to the tip at a loading rate of 

60 nm/s. The bending of the cantilever, which indicated the force, was recorded 

simultaneously with a four quadrant photodiode. These force vs. Z-piezo displacement curves 

included the contribution of the cantilever and the particle. Therefore, we had to subtract the 

bending of the cantilever on the substrate to obtain the deformation of the particle. This 

procedure has been well established by the study of microtubules 24 and virus particles 32,37. 

Recently, few reviews 13,38,39 have recapitulated the techniques and advances of this research 

field. The elastic constant of the particle was obtained from the slope of the initial linear part 

of the force vs. indentation curve (FIC). The linear part of the indentation (regarding the 

elastic response of the shell) is sometimes preceded by a short-range non-linear region due 

to electrostatic, van der Waals, and hydration forces 40,41. Therefore, we excluded this initial 

curvature when calculating the elastic constant of the particle. All the FICs have been 

performed under identical experimental conditions, such as rate and kind of tip for providing 

comparable parameters. Particles were imaged before and after curve sets of  5 FICs. The 

values presented in table 1 were obtained from 21 half-vaults and 13 reclining particles. The 

spring constant value is the slope of the first curve performed on each particle. The breaking 

force, critical indentation, and energy were obtained by averaging 95 curves and 120 curves 

for half-vaults and reclining particles, respectively. This population size ranges within the 

typical number of curves found in literature 24,32,33,37,42-44. To determine the energy supplied 

to the particle we calculated the area of the forward and backward curve (integrating each 

curve from the contact point to the maximum Z-piezo) and subtracted the areas from the 

forward and backward curves. 

To check for any topographic change, AFM kept scanning between FICs (Figure S6). To 

classify particles depending on their recovery times, we increased the statistics to raise the 

number of slow recovery time cases. The histogram in Figure 3C contains data from 26 half-

vaults (260 curves) and 28 reclining particles (357 curves).  

The experiments of mechanical fatigue consisted of consecutively imaging the particle at a 

constant force that was far below the breaking force of its structure 25. The imaging force was 

calculated as: Imaging force (nN) = Kcantilever(nN
nm⁄ ) · Calibration (

nm

V
) · Set point (V).  



Forces vs. Z-piezo displacement curves were performed on the substrate after each image to 

control the calibration of the system. 

Finite Element Model and Tip-dilation Model 

Finite Element simulations were performed with FEMLAB 3.1 (Comsol, Zoetermeer, The 

Netherlands). The thick shell model used in the simulation was designed to mimic the 

dimensions and geometry of the vault’s X-ray structure (assuming a wall thickness of 1.5 

nm). The capsid wall was made of a homogenous material with a Poisson ratio of 0.3 — 

similar to that used in other protein shells such as viruses 13,33,39, and was meshed over 30,000 

tetrahedral elements. To match the experimental curves with the simulation, the particle was 

indented with a 15 nm radius sphere and Young’s modulus was varied until the accordance 

between simulation and experiment was reached 24,37,43.  

To create the model of a fractured vault we used Sketchup (www.sketchup.com). The dilation 

process 45 was performed by implementing the algorithm provided by WSxM 46 with a 10 

nm diameter tip.  
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Decrease in pH Destabilizes Individual Vault Nanocages by 

Weakening the Interprotein Lateral Interactions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on:  

A. Llauró, P. Guerra, R. Chaudhary, B. Bothner, N. Verdaguer, P. J. de Pablo. Real-time 

experiments reveal new insights into the dynamics of individual vault nanocages upon pH 

variation. Submitted.  



Abstract 

Vault particles are naturally occurring proteinacious nanocontainers with promising 

application as drug delivery vehicles. The role of vaults as functional transporters requires a 

profound understanding of their structural stability to guarantee the protection and controlled 

payload delivery. Previous results performed with bulk techniques at non-physiological 

conditions are interpreted such as pH mediates a dynamic exchange between half and full 

structures. Here we use Atomic Force Microscopy (AFM) to monitor the structural evolution 

of individual vault particles while changing the pH of the solution in real time. Our 

experiments show that decreasing the pH below 6.0, instead of opening vaults into halves, 

triggers the formation of holes and cracks in the barrel region, the central part of the vault. 

We suggest that this changes are caused by the disruption of four histidine-mediated polar 

bonds across lateral contacts between subunits, with an histidine-α-helix charge-dipole 

interaction at the shoulder of the cage playing a crucial role among them. Additional 

orthogonal bulk analyses using a second surface-based method, Quartz-Crystal Microbalance 

(QCM), as well as solution phase thermal denaturation by Differential Scanning Fluorimetry 

(DSF) are consistent with our single molecule AFM experiments. Our study unveil a new 

mechanism for the observed influence of pH on the stability and dynamics of vault particles 

and might suggest strategies to control the release of internalized payloads from these 

nanocages.   
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Introduction 

Vault particles are nanosized protein cages implicated in numerous cellular processes, 

including multidrug resistance, innate immunity and cellular transport.1,2 However, the 

specific functions ascribed to this unique cellular organelle have not yet been irrevocably 

defined. Highly conserved and present in nearly all eukaryotes, vault particles consist of 78 

copies of the major vault protein (MVP), which forms the MVP shell, plus three minor 

components. The less abundant species are the 193 kDa vault poly-ADP-ribose polymerase 

(VPARP), a 290 kDa telomerase associated protein 1 (TEP1), and several small non-coding 

RNA molecules (vRNA). 3-5 A 3.5 Å resolution structural model for the rat vault assembly, 

based on X-ray crystallography, shows that the vault shell can be divided into identical 

halves, each consisting of 39 copies of MVP.6 Each MVP chain folds into 12 domains: a cap-

helix domain, a shoulder domain and nine structural repeat domains that form the barrel 

(Figure 1A).6,7 The strongest MVP-MVP lateral contacts are found between cap-helix 

domains, where hydrophobic residues stabilize the interface between helices on adjacent 

proteins. A combination of hydrophobic and electrostatic interactions stabilizes the 

association of the two half-vault moieties. The entire particle forms an ovoid structure with 

overall dimensions of 40 x 40 x 67 nm3.  

Recombinant vaults can be assembled in vitro after expression of MVP in insect cells. These 

vault-like structures are identical in size to natural vaults but have a hollow internal 

compartment that permits the storage of protein payloads.8 The ability to store hundreds of 

proteins, inherent biocompatibility and non-immunogenic cell response, make vault-like 

particles promising candidates as drug delivery vehicles for biomedical applications.1 Indeed, 

the shell of recombinant vaults has been genetically modified by addition of an INT motif 

(the shortest C-terminal domain of VPARP that interacts with MVM) to target packaging of 

specific payloads;9-11 cell specific targeting can be manipulated by modification of the C- and 

N-termini of MVP.12-14 Despite all these promising advances, though, little is known about 

the determinants that govern the dynamics of vaults, which is a fundamental step towards 

their use in biomedicine applications. Exogeneous proteins are able to incorporate into vault 

interior even after the formation of vault particle shell, which proves that these particles are 

highly dynamic.15 In addition, studies using fluorescently labeled protein showed that 

recombinant vault particles are capable of half-vault exchange in vivo, and Small-Angle X-



ray Scattering (SAXS) experimetns indicated that the percentage of half-vaults and full-vault 

was close to 50:50 in solution, suggesting that this opening mechanism could be a way 

whereby vaults could deliver their cargoes.16   

To utilize vaults in drug delivery applications it would convenient to find an external 

parameter to control the opening of the particles. During internalization of vault particles into 

cells through endocytosis, the acidic pH of the endosomal compartment might trigger vault 

dissociation. Vault particles engineered with adenovirus membrane lytic peptide (pVI) can 

escape the endosome and deliver molecules to the cytoplasm in about 10-30 minutes.13,14 

Interestingly, previous studies have suggested that vault particles dissociate into halves at 

low pH.17,18 In another study the structural stability of vault particles was studied across a 

range of pHs (3 to 8) and temperatures (4 to70ºC).19 This characterization revealed a variety 

of structures; full assemblies, half-vaults, states of aggregation and losses of secondary and 

tertiary structure. The most stable forms of vaults were found at pH 7, below 40ºC. However, 

some data seem contradictory (if lowering the pH triggers vault opening, why the percentage 

of half-vaults and full-vault at pH is 50:50) and the responsible for vault opening are yet to 

be determined. The majority of studies reporting the impact of pH on vault structures used 

biochemical techniques that average population from large numbers of particles and lack 

direct visualization at the single particle level. An exception was negative stain Transmission 

Electron Microscopy (TEM), but in that case the stain and sample drying could induce the 

damage of the structures,20 precluding the possibility of visualizing the structure under 

physiological conditions.  

To investigate the impact of pH on vault particle stability and dynamics, we carried out 

experiments using three different methods; Quartz Crystal Microbalance with Dissipation 

(QCM-D), Differential Scanning Fluorimetry (DSF) and Atomic Force Microcopy (AFM). 

Specifically, the environmental control of the buffer conditions at the AFM liquid chamber 

offered the possibility of studying structural changes of the vault protein in situ.21-23 We 

monitored the structural changes of individual vault particles as pH transitioned from 7.5 to 

4.0 in real time. Our results provide direct evidence that low pH weakens the interaction 

between adjacent MVPs in the barrel zone, in contrast to the previous results.17,18 In addition, 

based on the crystallographic structure, we propose a model of the structural determinants 

that would lead to this pH-dependent vault dissociation.  
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Figure 1. Vault structure and AFM adsorption geometry. (A) Side view of a full-vault particle (PDB: 4V60). 

Each full-vault consists of two identical moieties, each of one comprising 39 major vault proteins (MVP). MVP 

is composed of twelve domains: nine structural repeat domains at the N-terminus (barrel domain), an α/β 

shoulder domain, a cap-helix domain and a cap-ring domain at the C-terminus. (B) General AFM topography 

image of vaults at pH 7.5. The images show two different configuration: reclined full-vault (green arrowhead) 

and half-vaults (yellow arrowheads). (C) General AFM topography image showing upright full-vaults (blue 

arrowhead), reclining full-particle (green arrowhead) and flower-like structures (red arrowhead). To guide the 

eye the contour of the flower-like structure is shown with dotted red lines. Color scale bar: White-brown-grey, 

from the highest points to the substrate. 

 

Results  

In-solution Characterization of Vault Particles 

AFM images of vaults adsorbed on HOPG showed that at pH 7.5 full and half configurations 

were present (Figure 1B). Likewise, if the solution pH was lowered from 7.5 to 6.0 before 

adsorbing the particles on the HOPG surface both configurations were found. Figure 1C 

shows an AFM area with full particles at pH 6.0: either reclining on the barrel (green arrow) 

or stand up (black arrow). Flower-like structure, consisting of a cap with the barrel domains 

open such as petals around it, could be also seen (red arrow).24 Despite we found no 

differences in the percentage of half and full configuration as a function of pH, particles at 

pH 6 systematically decreased the height by 14% and 7% for both reclined full- and half-

vaults, respectively (table 1). This result suggests that while the open/close mechanism 

remains the same at both 7.5 and 6.0 pH, the overall structure of the particle is weaker at 

lower pH. AFM images of particles incubated at pH 5.2 for 1 minute before the adsorption 



on the substrate showed mostly empty areas and some clusters of protein, suggesting high 

levels of protein aggregation under these conditions (data not shown).  

Table 1. Height of the particle as a function of pH (mean±standard deviation). Particles at pH 7.5 and 6.0 were 

incubated in-solution at the corresponding buffer before adsorption. Particles at pH=5.2 were adsorbed at pH 

7.5 and then the pH was exchanged to 5.2. 

 

Imaging of Adsorbed Vault Particles 

Because protein aggregation hampers the identification of the structures at single particle 

level, vault particles were anchored to the HOPG substrate at pH 7.5 and then the pH was 

decreased to 5.2, reassembling previous experiments performed by TEM.19 In this situation 

particles are not freely diffusing in solution and cannot form clusters, which allowed us to 

identify single structures at pH 5.2 (Figure 2). Whereas at pH 7.5 particles were undamaged 

and could be easily classified as half- or full-vaults (Figure 2A).Structures at pH 5.2 showed 

marked damaged in the beta-sheet region of the barrel (Figure 2B). Flower-like structure 

were also observed under these conditions (Figure 2B, right bottom). Interestingly, the height 

of these flower-like structures (13nm) correspond to the intact cap region size on native 

vaults, indicating that the twisted alpha-helices maintain their conformation even at acidic 

pHs. The cap stability is believed to arise from the alpha-helix domain which is a major 

contributor to interactions between MVPs6 proteins and remains stable at low pH, more so 

than the beta-sheet domains of the barrel. A systematic analysis revealed that the average 

height of particles decreased with pH as measured at 7.5, 6, and pH 5.2 (Figure 2C and table 

1).This supports the hypothesis that exposure to low pH is responsible for an overall 

weakening of the barrel region. 

 Full-vault Half-vault 

 n height±SD n height±SD 

pH=7.5 30 37±3 47 35±3 

pH=6.0 9 35±3 6 30±2 

pH=5.2 18 25±6 35 27±4 
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Figure 2. (A) General AFM topography of particles at pH 7.5. The Image shows vault with different 

configuration: reclined full-vault (green arrowheads) or half-vault (yellow arrowheads). A high-resolution AFM 

image of a typical particle at pH 7.5 is shown on the right: half vault (top) and reclined full-vault (bottom). The 

white arrowheads indicate the line along which the height profile was taken. (B) General AFM topography of 

particles at pH 5.2. Most the particles reveal some damaged: half-vaults (yellow arrowheads) and reclined full-

vaults (green arrowheads). The images on the right show two typical configuration found at pH 5.2 reclining 

particles (top), and half-vault and flower-like structure (bottom). (C) Bar histogram of the average height of the 

particles at pH 7.5, 6.0 and 5.2. Both configurations (reclined full-vault and half-vault) show a progressive 

decrease in height as a consequence of lowering the pH. The n indicates the number of particles considered for 

calculating the mean (D) QCM-D analysis of vault particles. Traces show the frequency in black (Y1 axis) and 

dissipation in blue (Y2 axis) for three different overtones (n=3, 5 and 7, corresponding to 15MHz, 25MHz and 

35MHz). After loading the particles on the gold-coated crystal the buffer was exchanged three times, to 6.0, 5.0 

and 4.0 (black arrows). Important changes in frequency and dissipation were observed after decreasing the pH 

from 6 to 5 and from 5 to 4. Color scale bar: white-brown-purple, from the highest points to the substrate. 

 

Rigidity and Stability of Vaults 

The structural transition as a consequence of decreasing the pH was also studied by QCM-

D.25-27 QCM-D is a sensitive and straight-forward technique that measures viscoelastic 



changes associated with proteins and protein complexes.  We have used it to study the pH-

dependent conformational change of the small RNA virus CCMV.28 To measure and compare 

the rigidity of vault particles, they were loaded onto gold-coated quartz crystals 

simultaneously changes in frequency (Δf) and dissipation (ΔD) as a function of pH  were 

recorded at three overtones (n=3, 5, 7) (Figure 2D). Vault particles were allowed to adsorb 

for 50 minutes which resulted in a decrease in frequency and an increase in dissipation. 

Loosely bound vault particles were removed by washing the sample at pH 7.5 for 10 minutes. 

The stable signal during the wash (60-70 mins.) indicates strong adsorption of vault particles 

to the surface. Introduction of pH 6.0 buffer led to a small increase in frequency (12%) and 

decrease in dissipation (15%). A more significant decrease in frequency (45%) and decrease 

in dissipation (52 %) was observed after adding the pH 5.0 buffer. This change in frequency 

is related to the mass change which could be due to a detachment of material from the surface, 

a partial disassociation/compression of vault nanocages or a reduction of the vault hydration 

shell.  The decrease in dissipation indicates an increase in the rigidity. A soft material is easily 

deformed during oscillations which leads to high dissipation, while a rigid material has low 

dissipation because it strongly couples to the crystal. The increase in rigidity observed here 

is likely due to the collapse of the structure and the increase of contact area between the 

particles and the surface. Further decrease of pH (from 5.0 to 4.0) was accompanied by a 

sharp increase in frequency (30%) and decrease in dissipation (33%). These result show that 

lowering the pH has a progressive destabilizing effect on the structure of vaults. A previous 

QCM study used a single pH change, making it impossible to discern between a one-step 

transition (full-/half-vault) or a progressive disassembly process.17 

Our QCM-D experiments suggest that at pH 6.0, the majority of vault particles maintain their 

quaternary structure, although the reduction in height measured by AFM indicates that some 

of the inter-monomeric contacts at the barrel may have weakened. Below pH 6, particles start 

to aggregate when they are in solution and our AFM and QCM-D experiments on adsorbed 

particles reveal major structural changes.  

We performed thermal denaturation experiments with Differential Scanning Fluorimetry 

(DSF) to further investigate the effect of pHs on stability (Figure S1).29,30 When pH was 

changed from 7.5 to 6, the melting temperature (Tm) was reduced by 1.5ºC. At pH 5, a 

significant difference of 13ºC was observed in Tm. DSF at pH 4 showed that particles were 
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unstable even before heating. This result supports our hypothesis that below pH 6.0, particle 

integrity is compromised, but above that value, particles maintain quaternary structure. 13,14 

 

In singulo Real-time Structural Dynamics as a Function of pH 

Up to this point, our analysis has either used population averages to assess the properties of 

vault particles or caught individual frames through the pH-dependent destabilization process. 

To unequivocally identify the structural rearrangements occurring in individual vault 

particles, we used continuous scanning AFM while lowering the pH from 7.5 to 5.2. To 

accomplish this, the AFM liquid chamber was coupled to a two-syringe pump system that 

permitted in situ pH exchange (Materials and Methods). Before initiating the pH change, an 

area ( 700 nm2) containing multiple vaults was selected. This allowed single particles to be 

imaged in parallel. Figure 3A shows 6 frames of the area that was imaged at different times. 

Vault particles were equilibrated in pH 7.5 buffer. At t=0 min (frame #3) we started a slow 

buffer exchange. The area was continuously imaged until the buffer was completely 

exchanged and the pH was 5.2 (t=71 min, frame #26). Figure 3B shows the evolution of 

height of individual particles through the pH-exchange process (movie 1). Curves correspond 

to the particles labelled in frame # 3. For example, F1 corresponds to the full-vault labeled 

as 1 and H1 to the half-vault labeled as 1(see frame #3). Analysis of the intermediate states 

showed that the height of the particles started to decrease once the solution reached pH 5.7 

(t=56 min, frame #24). From this point onward, a monotonic decrease in height was observed. 

After aligning the images we took profiles of the particles along the green dotted lines 

indicated in frame #3. Comparison of the profiles at four different times (0, 38, 71 and 95 

min) indicated that the decrease in height was concomitant with the shrinkage of the barrel 

zone (Figure 3C). Interestingly, in a previous study cross-linked vaults appeared to shrink in 

size at low pH; however, the authors could not find an explanation for the observation of that 

shrinkage.18 



Figure 3. Real-time AFM images of vault particles while decreasing the pH from 7.5 to 5.2. (A) Different 

snapshots of the movie showing the structural transition caused by the pH lowering. Each frame is labeled with 

the time, the number of frame and the corresponding pH. Frame #3 (t=0 min) shows the initial configuration, 

with the particles labeled from 1 to 6: five reclined full-vault (F1-F5) and one half-vault (H6). White arrowheads 

(frame #24) indicate damage on the surface of the particles. At pH 5.2 (frame #32) the structure had aggregated. 

(B) Evolution of the height for each individual particles. From pH=5.7 (t=56 min) onwards a steady decrease 

in height was observed. The grey lines indicate that height of particles imaged while maintaining the pH 

constant.The color bar at the bottom indicates the pH, from 7.5 (purple) to 5.2 (yellow). The asterisks indicate 

the pumping settings: onset of infusion (*) and complete pH exchanged (**).(C) Profiles of the particles at 

different pHs (dotted green lines in frame #3 indicate the lines along which the profiles were taken). Particles 

decrease their height, shrink and aggregate as a consequence of the pH lowering. Color scale bar: white-brown-

purple, from the highest points to the substrate.  
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Our AFM images show that loss of structural integrity including the formation of holes and 

cracks on the surface of the barrel became evident once the solution reached pH 5.7 (white 

arrowheads, frame # 24). Higher resolution images of F1 and F2 (Figure 3A, see frame #3) 

acquired at pH 5.2 confirmed that these fractures occurred at the barrel zone, with 

longitudinal cracks between MVPs leading to an overall reduction of the particle height 

(Figure 4). These data are incompatible with the opening of vault particles into halves as 

there is no evidence of fractures occurring along the waist. It could be argued that the 

substrate would impair such division of the vaults into halves while resting on the barrel 

zone. However, we also found that full-particles laying on their cap maintain their full 

structure at pH 5.2 (Figure S2). Noticeably, some of these structures decrease their height 

from 70 nm to 60nm, which agrees with a weakening of the overall structure but not with 

pH-mediated opening into halves.  

Figure 4. High-resolution AFM images of F1 and F2 (see Figure 3) at pH 5.7. The barrel zone present clear 

damage, suggesting the weakening of inter-monomeric contacts at the barrel.. (Inset) Height profiles of the 

particles taken along the lines indicated by the white arrowheads. Both cages present heights lower than the 

ones expected from the crystallographic structure (40 nm).31  On the right panels, AFM images of the particles 

at pH 5.2 are shown. Major damaged is observed on the barrel zone as a consequence of the lower pH. The 

image at the bottom suggests that the lines of fracture occur along the MVP-MVP contacts, in agreement with 

our hypothesis that lowering the pH weaken lateral interactions instead of opening vaults into halves, as 

previously reported.7,17,18. Color scale bar: white-brown-purple, from the highest points to the substrate.  



Because the AFM probe establishes mechanical contact with vault particles during imaging,32 

it was important to rule out physical contact of the probe as a source of damage or weakening. 

To address this we performed control experiments by imaging vaults at neutral pH under the 

same AFM conditions: image area, set-point force and number of pixels. For example, we 

scanned vault particles during 33 times during 110 minutes at constant pH 7.5 (Figure S3) 

and did not observe a significant decrease in height (grey lines, Figure 3 and S3). In addition, 

we performed experiments with a faster pH exchange rate than the 71 mins used above (see 

Figure 3). At the faster exchange rate conditions pH 5.2 was reached after 20 mins (Figure 

S3). In that case, the height of the particle started to decrease at t=18 min, which corresponds 

to pH 5.5. From that point onwards a decrease in height was observed until particles were 

completely aggregated after 60 minutes. Therefore, our control experiments probed that the 

pH, and not the AFM imaging, was responsible for vaults destabilization. 

 

Structural Determinants of the Observed pH-dependent Dissociation 

The experiments presented here provide direct evidence that the low pH destabilized the 

MVP-MVP interactions. Surprisingly and in contrast to what has previously been 

described,17,18 the destabilization occurs between adjacent MVP monomers causing the 

formation of cracks in the vault barrel but not the opening of the two vault halves. The 

analysis of the X-ray structure of the vault particle revealed a combination of electrostatic 

and hydrophobic interactions, mediated by R1 repeats, governing the association of the two 

half-vault moieties6,33 (Figure 5). The presence of the electrostatic bonds in the half-vault 

interface prompted us to suggest a reversible mechanism of dissociation of the vault particle 

induced at acidic pH.7  However, data obtained in this work indicate that the hydrophobic 

cluster composed of residues Ala6, Ile7 and Ile36, also in the R1-R1 interface, would form 

the key interaction (Figure 5).  To provide a further structural explanation for the effect of 

the pH in the destabilization of the MVP-MVP lateral contacts, we re-examined here these 

contacts, using the refined structure of the particle (PDB id: 4HL8),33 paying special attention 

to residues easily protonable at middle acidic pH. The analysis showed the interactions of 

four histidines with polar residues across the MVP-MVP lateral interfaces in the shoulder 

and barrel zones [His85 (R2), His464 (R9) and, His534 and His592 shoulder]. Among them, 
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His534 of one MVP monomer appears to play a crucial role, participating in a histidine--

helix charge-dipole interaction, with the cap -helix N-terminus of the neighboring MVP 

(Figure 5). In light of these interactions is tentative to speculate that the stability of the vault 

barrel and shoulder would be mainly governed by these histidine residues and that its 

protonation would explain the weakening of the lateral MVP-MVP interactions at low pH 

due to local charge repulsion. Comparable interactions governing the stability of a viral 

capsid were previously described.34  

 

 

Figure 5. Structure of the vault shell, colored in green and pale green for the top and bottom half-

vault moieties respectively, with one of the 78 MVP copies forming the particle shown in wheat (PDB 

id: 4JL8). The top inset shows a close up of the MVM-MVP lateral electrostatic interactions in the 

shoulder domain. The bottom inset shows the R1-R1 interactions established at the half-vault 

interface.  

 



Biophysical Implications and Future Outlook for Controlled Payload Delivery 

Our data show that the pH lowering triggers the weakening of lateral intermonomeric 

interactions rather than opening vaults into halves. These results agree with our previous 

mechanical study showing that AFM tip-induced mechanical fractures occur along lateral 

MVP-MVP contacts.35 Interestingly, those fracture were found to be capable of self-

healing.35 Another protein assembly that also displays longitudinal fractures and self-healing 

capabilities are microtubules (MT).36,37 In MT, this high reversibility of lateral bonds has 

been suggested to repair the cracks between shortening protofilaments in the MT wall and 

serve as means of inhibiting de-polymerization. It seems interesting that the spatial 

distribution of tubulin protofilaments conforming MT reassembles that of MVP monomers 

in the barrel zone, which also bundle parallel to one another and form a cylindrical structure. 

In our case, decreasing the pH from 7.5 to 6.0 leads to the formation holes and cracks on the 

vault barrel that might permit the escape of different payloads with sizes smaller than the 

vault diameter (35 nm). This pH-dependent dynamics might be exploited during vault 

cellular uptake upon endocytosis, where the pH of the environment suffers mild 

acidification.13,14  

 

Conclusions 

In this paper we have combined single particle techniques with bulk techniques to study the 

structural dynamics of individual vault particles as a function of pH. Our results showed that 

at pH 7.5 and 6.0 the quaternary structure of vaults (observed as full- or half-particles) was 

maintained. Despite the overall structure was preserved, though, our AFM experiments 

indicated that at pH 6.0 the height of the particles was reduced a 15%. The adsorption of 

individual vaults on substrates allowed us to monitor the pH-dependent dynamics of single 

particle in real time. Our experiments showed that pH lowering destabilized the interaction 

between adjacent MVP monomers, which resulted in the formation of cracks on the barrel 

zone. Those cracks were observed in vault particles maintaining their quaternary structure if 

the pH was maintained above 5.7 but lower values of pH led to protein aggregations. 

Lowering the pH does not open vaults into halves, as previously described in literature,7,17,18 
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but promote a global destabilization of the particle that is governed by the weakening of the 

inter-monomeric contacts at the barrel. Based on the crystallographic structure, we propose 

that the interactions of four histidines with polar residues across the MVP-MVP lateral 

interfaces in the shoulder and barrel zones, are the determinants of the pH-dependent 

disassembly of the structure. In particular, His534 of one MVP monomer appears to play a 

crucial role, participating in a histidine--helix charge-dipole interaction, with the cap -

helix N-terminus of the neighboring MVP. In summary, our results reveal new insights into 

the pH-dependent dynamics of vault particles and might offer a means of controlling artificial 

cargo delivery upon cell endocytosis, where the pH of the environment gradually decreases.   

 

Materials and methods 

Production and Purification of Recombinant Vaults 

Recombinant vaults were produced and purified as previously described (22). Briefly, H5 

cells (Invitrogen) TM were infected with the MVP recombinant baculovirus, harvested at 48 

hours post-infection, washed with Phosphate Buffered Saline, resuspended in buffer A (75 

mMNaCl, 50 mMTris pH 7.4, 1.5 mM MgCl2, 1mM DTT) plus 1% NP-40 and protease 

inhibitors (Protease inhibitor cocktail tablets; Roche) and maintained on ice for 30 min. The 

resuspended pellet was sonicated and cellular debris was removed by centrifugation. Vaults 

particles were pelleted through a 25% (w/w) sucrose cushion in buffer A (37,000 rpm, using 

a SW41Ti rotor for 2:30 hours at 4ºC). The resulting pellet was re-suspended in 600 μl of 

Buffer A and and applied to a 25–50% sucrose gradient in buffer A and centrifuged for 45 

minutes at 40,000 rpm. Fractions containing vaults were dialyzed against buffer A and 

concentrated to 5mg/ml using a centrifugal filter device (centricon YM100; Millipore). 

AFM 

AFM measurements were performed with a Nanotec microscope (Nanotect Electrónica S.L., 

Madrid, Spain) operating in Jumping mode plus.32 In this mode, the feedback is done in 

normal force by performing a force-vs.-distance curve at all point of the images. For moving 

from point to point, the tip retracts and moves laterally while being far from the surface, thus 



reducing the lateral forces that might damage the sample. For all the images, imaging force 

was kept below 70 pN. Rectangular silicon-nitride cantilevers (Olympus, RC800PSA) with 

a nominal spring constant of 0.05N/m were used.  

All the experiments were performed in liquid environment, with buffers at three different 

pHs: 7.5 (50 mM Tris), 6.0 (50mM Hepes), 5.2 (50 mM NaOAc). All the buffers also 

contained 75mM NaCl and 0.75 MgCl. To perform the AFM experiments three different 

adsorptions strategies were tested: (1) pre-incubation of the sample on the Eppendorf under 

a specific pH conditions for 5 minutes prior to adsorption, (2) adsorption of the sample at 

pH=7.5 for 30 minutes and posterior pH exchange before imaging, and (3) adsorption of the 

sample at pH=7.5 followed by real-time imaging of the sample while lowering the pH. For 

all the cases 1 µl of stock solution was diluted into 19 µl of the considered buffer. This 20 µl 

drop of diluted solution was incubated on a fresh highly ordered pyrolytic graphite (HOPG) 

surface (ZYA quality NT-MDT) and, after 30 minutes, washed with the desired buffer until 

a volume of 70 µl was reached. The tip as also pre-wetted with a 20 µl drop of buffer.   

To exchange the buffer in-real time imaging a home-made system composed of two syringe 

pumps (NE-1000, New Era Pump Systems, Inc.) was coupled to the AFM.38 Two 

experiments at different infuse and withdraw rates were performed (Figure 3 and S3). For 

both experiments the initial conditions were the same (pH=7.5) and pH was exchanged by 

infusing buffer at pH=5.2. Slow exchange (Figure 4): at t=0min infusing was set at 30µl/min 

and increased to 40µl/min at t=18 min (it was maintained at this rate for the rest of the 

experiment). Withdrawing, while still infusing, started at t=39min and it was set at a rate of 

50µl/min. The total volume was exchanged at a time of 72 min. Fast exchange (Figure S3) 

was accomplished within 21 min. At t=0 min, infusing started at 20µl/min and increased to 

25µl/min at t=15 min. Withdrawing started at t=15 min at 25µl/min. The control experiment 

was performed by imaging an image of similar size (600x600 nm2) at constant pH. After 24 

images (t=105min) the height of the particle was only reduced a 2% —for fast exchange after 

15 images (t=64 min) the height was reduced 37% and for slow exchange after 24 images it 

was reduced to 25%. 
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All the images were acquired and processed with WSxM software.39 The height of the 

particles was considered as the maximum value obtained in the topographical prolife, also 

determined by WSxM.  

QCM-D Experiment 

The viscoelastic changes associated with vault particles at different pHs (7.0, 6.0, 5.0, and 

4.0) were studied by QCM-D (Q-Sense D300 system, Q-Sense AB, Goteborg, Sweden). For 

these measurements, gold quartz crystals (AT cut) with a fundamental resonant frequency of 

5 MHz were used.  Before loading of vault particles, control experiments using buffer 

changes (7.0, 6.0, 5.0, and 4.0) were conducted to quantitate the effect of buffers on 

frequency and dissipation. For the measurements, a baseline was established with 10mM 

sodium acetate buffer (pH 7.0) and recorded for 10 minutes.  After observing a stable base 

line, vault particles (50µg in 600ul acetate buffer, pH=7.0) were gradually deposited on the 

crystal and allowed it to stabilize for 50 minutes. To remove loosely bound material, the 

surface was washed with 0.6 ml of buffer at pH=7 for 10 minutes. Buffer was then exchanged, 

consecutively, to lower the pH to 6.0, 5.0 and 4.0. Time between exchanging buffers was 20 

minutes. The same experiment was also conducted with 10 µg of sample to ensure that there 

was no artifact to signal coming from particle aggregation or the formation of particle 

multilayers. After each run, gold surface was cleaned and regenerated by soaking the crystal 

in a 1:1:5 mixture of H2O2 (30%), NH3 (25%), and distilled water at 60oC for 15 min followed 

by exposure to UV light for 10 min. Frequency and dissipation values were recorded at 

fundamental frequency 5MHz and three overtones (15MHz, 25MHz and 35MHz); 

temperature was 24.5°C. 

Thermal Denaturation 

Thermal stability of vault particles was studied using four pHs (pH=7.5, 50 mM Tris; pH=6.0, 

50 mM CaCO3; 50 mM, pH=5.0, NaOAc 50 mM; pH=4.0, NaOAc). These buffers also 

contained 50 mM MgCl2 and 75mM NaCl. Vault particles were diluted in each buffer to a 

final concentration of 0.2mg/ml. To each sample, 2.5 µL of 1% Sypro-Orange dye 

(Invitrogen 140 Inc. S6651) was added to obtain the final reaction volume to 25 µL. The 

assays were conducted in a qPCR instrument (Corbett Research, RG-3000). A temperature 



ramp from 25 to 99°C, increasing 1 degree per minute was used. Lysozyme was run as a 

positive control at concentrations of 0.3 and 0.5mg/ml. Melting temperature of samples was 

determined using the first derivative (dF/dT) of the raw fluorescence data. All these 

experiments were conducted in three technical replicates.  
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Calcium Ions Modulate the Mechanics of Tomato Bushy Stunt Virus 
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Abstract 

Viral particles are endowed with physicochemical properties whose modulation confers 

certain metastability to their structures, to fulfill each task of the viral cycle. Here we 

investigate the effects of swelling and ions depletion on the mechanical stability of individual 

Tomato Bushy Stunt Virus nanoparticles (TBSV-NPs). Our experiments show that calcium 

ions modulate the mechanics of the capsid. The sequestration of calcium ions from the intra-

capsid binding sites reduces the rigidity and resilience of TBSV-NPs in about 24% and 40%, 

respectively. Interestingly, mechanical deformations performed on native TBSV-NPs induce 

an analogous result. An analysis of the pattern of fracture revealed that TBSV-NPs do not 

show capsomeric vacancies after surpassing the elastic limit. We hypothesize that, despite 

there are breakages among neighboring capsomers, RNA-capsid protein interaction is the 

responsible for preventing the release of capsid subunits. This work shows the mechanical 

role of calcium ions in viral shells stability and identify TBSV-NPs as malleable protein-

based platforms based on protein cages for cargo transportation at the nanoscale.  
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Introduction 

Viral capsids are self-assembled macromolecular shells that naturally protect, shuttle and 

release the enclosed genetic material upon the proper physicochemical conditions.1 The 

stability of viral shells has been tuned by evolution to respond to a variety of environments 

encountered along their biological cycle. This enormous adaptability to the environment, 

together with the possibility of genetically engineering their coat protein (CP) coding 

sequence, have made viruses attractive systems to construct virus-derived nanoparticles 

(VNPs) for applications in bionanotechnology.2 Among them, plant virus capsids display a 

variety of properties particularly appropriate for their applications in nanotechnology, such 

as their controllable genetic manipulation, their inability to infect and replicate in vertebrate 

hosts, or their ease of production.3 Tomato Bushy Stunt Virus nanoparticles (TBSV-NPs) are 

robust, stable, highly modifiable and easy to manufacture using Nicotiana benthamiana as 

the production host.4 In addition, the intrinsic tendency of these viruses to form ordered 

aggregates has already been used to build homogeneous monolayers, which probes the 

possibility of using these VNPs as building blocks for applications in material science. 5 

TBSV is a small non-enveloped virus with an outer diameter of 33 nm and an icosahedral 

symmetry with a triangulation number of T=3 (Figure 1A, left). The viral capsid is formed 

by the assembly of 180 subunits of a single CP and its genome consists of a monopartite 

ssRNA.6 An attractive feature of TBSV-NPs is the possibility to access their inner cavity 

using a swelling process that mediates the reversible opening of pores on the VNPs’ surface. 

(Figure 1A, right).7 This process, which likely occurs during the first stages of the infection 

cycle, increases the virus dimension through a Ca2+-dependent transition, and it is required 

for the release of the RNA during uncoating.8 The subunits of TBSV are arranged in three 

packing environments: A-, B-, and C-subunits (Figure 1A and 1B). A-subunits (blue) pack 

around the 5-fold symmetry axes, whereas B- and C-subunits (white and green) pack 

alternatively around the 3-fold symmetry axes.  Each capsomeric subunit is divided in three 

regions: the P-domain, that protrudes outwards giving the virus a granular appearance; the S-

domain, that forms the shell; and the R-domain, an inner tail protein that is inserted into the 

viral RNA.7,9  



Figure 1. TBSV structure. (A) (Left) Side view derived from X-ray diffraction data (pdb 2TBV).9 One of the 

protein trimers at the quasi-threefold axes is highlighted in orange. (Right) Schematic of the conformational 

change associated with the swelling process. (Top) The subunits of the trimer before expansion are tightly 

packed and Ca2+ are present (red dots). (Bottom) After the expansion the Ca2+ ions are removed and the 

electrostatic repulsion between subunits opens pores at the quasi-threefold axes. (B) Illustration of the trimer. 

Each trimer is composed of A-, B- and C-type protein subunits: the A-type are packed around the 5-fold axes 

(blue), and the B- and C-types alternate around the three-fold axes (gray and green). The inner tail proteins 

(dots) would interact with the ssRNA.5 (C) JM-AFM image of compacted wild-type VNPs in liquid conditions. 

The dotted blue line shows the profile along which the height was determined. The minimum resolved feature 

on the virus was 5 nm. (D) Profile of the particle (dotted blue line in B). The tip geometrically dilates10 the 

lateral dimension of the particle. 

 

Investigating virus physicochemical properties under different conditions is important for the 

application of these nanostructures in biotechnology. In particular, the study of virus 

mechanics by Atomic Force Microscopy (AFM)11 has emerged as a powerful technique to 

unravel the structural role of nucleic acids 12,13 or capsid mutations.14,15 In addition, AFM has 

contributed to understanding the influence of environmental conditions on the stability of 

viruses, including pH variations16-18 and humidity.19 The study of the mechanical properties 

of viral shells pivots on the measurement of the stiffness and the breaking force of the 

particle, which are both determined by recording indentation curves that result from 

squeezing the particles with an AFM tip. The stiffness (directly linked to the spring constant 

of the viral particle) is obtained from the linear regime of the deformation and provides 

information about the rigidity of the capsid. On the other hand, the breaking force, which is 
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ascribed to the force needed to disrupt the capsids, typically corresponds to the end of the 

elastic regime and provides information about the mechanical strength of the capsid.20  

In this chapter we present a twofold study based on the topographic and mechanical analysis 

of individual TBSV-NPs varying two conditions, the pH and the chelation of calcium ions. 

Our results show that the intra-capsid calcium ions are inextricably linked to both virus 

rigidity and breaking force (termed hre as elastic limit). In addition, we show that viral 

particles keep their capsomers after irreversible deformation. This property might represent 

a valuable feature to utilize these systems as malleable nanocarriers for drug delivery. 

 

Results 

Four different forms of TBSV-NPs have been studied in this work: compact wt TBSV-NPs 

(cVNPs), swollen TBSV-NPs (sVNPs), recompacted TBSVs-NPs (rVNPs), and Ca2+-free 

TBSV-NPs (ifVNPs) (see Table S1 in the Supporting Information and Figure 2A). cVNPs 

are the native compact viruses and sVNPs are the expanded forms. These expanded forms 

were subjected to two different procedures: we studied the reversibility of the process by 

decreasing the pH of the solution in the presence of calcium ions (rVNPs) and we studied the 

role of the ions by decreasing the pH of the solution in the absence of calcium ions (ifVNPs). 

All the AFM measurements were conducted at pH 5.3, except for the case of sVNPs, where 

the measurements were at pH 8.5 (see Materials and Methods for details in sample 

preparation). 

 

Topographic Characterization 

High-resolution AFM image of single wt cVNP on mica presented particles with a diameter 

(height) fully compatible with the X-ray structure9 (Figure 1C). Despite tip-particle lateral 

dilation10 (see Figure 1D), we were able to resolve features of 5 nm, which corresponded to 

the size of individual capsomers. The granular structure obtained in our images was attributed 



to the protruding domains (P-domains) present on the outer shell of TBSV NPs.9 This 

resolution was routinely obtained with different tips (Figure S1). 

We studied the stability of the four different forms of TBSV-NPs using TEM and AFM 

(Figure 2). TEM images of wt cVNPs and rVNPS showed stable structures that were 

indistinguishable. However, the structural integrity of sVNP particles was less preserved, 

some particles appeared broken and the negative staining agent could penetrate inside some 

shells (Figure 2B, arrows). Similarly, AFM images of cVNPs and rVNPs showed structures 

with an average height that corresponded to intact particles, but sVNPs appeared as collapsed 

structures with an average height of only 10 nm (Figure 2B and 2C). These results suggested 

the sVNPs were less stable than wt cVNPs. 

Interestingly, the ion-free nanoparticles (ifVNPs) gave rise to an intermediate state that laid 

between the compact and the swollen forms. AFM images of these ifVNPs showed that the 

particles maintained their structure, but the average height was decreased to 30 nm (Figure 

2B and 2C). In addition, the existence of debris and genome on the mica substrate suggested 

that some particles were broken during the process. The higher dispersion of the height 

distribution also indicated that ifVNPs were less homogeneous than the native forms (Figure 

S2). In agreement with the AFM results, TEM images of ifVNPs showed close particles (no 

staining agent penetrated inside the shell) and the presence of some debris on the grid (Figure 

2B). This confirmed, with another technique, that the adsorption process (and perhaps the 

drying in TEM) was the responsible for the loss of stability of the swollen forms.  

 

Mechanics 

To further investigate the stability of the particles we performed nanoindentation 

experiments. Multiple force-indentation curves (FIC) were performed on the same particle 

in order to study the evolution of the mechanical properties and topography at the single 

particle level. Figure 3 shows a wt cVNP and an ifVNP subjected, respectively, to two cyclic  
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Figure 2. Schematic of the swelling 

process and images of the particles by 

AFM and TEM (A) Representation of the 

pH-induced expanding/compacting process. 

Under acidic conditions (pH 5.3) the Ca2+ 

ions are located at specific binding sites (red 

dots) contributing with an attractive 

component to the protein-protein 

interaction. The swelling of the particle was 

achieved by increasing the pH in the 

presence of a chelation agent.7,8,21 This 

procedure promoted the expansion of the 

capsid as a consequence of the deprotonation 

of the aspartate residues at the calcium 

binding sites and the subsequent 

sequestration of these ions. The swollen 

forms were either (1) recompacted by 

lowering the pH in the presence of calcium 

(rVNPs) or (2) compacted by lowering the 

pH in the absence calcium ions (ifVNPs). 

(B) (left) TEM images of the different forms 

of the particles. Scale bar: of 50 nm. (right) 

AFM images. Images of wt cVNPs, rVNPs 

and ifVNPs were taken at pH 5.3. Images of 

sVNPs were taken at pH=8.5. (C) Graph 

comparing the AFM heights of the different 

forms. (inset) Typical profiles of the four 

different forms. 

 

loading assays. In order to investigate the changes in height and topography induced by the 

deformations, AFM image were acquired between nanoindentaions (Figure 3C and 3F). The 

consecutive FICs performed on the wt cVNP transitioned from a linear deformation (FIC #1) 

to a Hertzian-like behavior (FIC #10) (Figure 3A). In addition, significant differences were 

observed between the first (FIC #1) and second (FIC#2) nanoindentation. FIC #1 presented 

a linear response up to 4.8 nN, where a sharp drop in force was registered. This maximum 
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force is typically ascribed to the breakage of the particle and the loss of capsid      

subunits.18,22-25 However, immediate imaging of the particle after the nanoindenation 

demonstrated the absence of capsomeric vacancies and a height decrease of less than 2 nm 

(Figure 3B-C). Because nanoindentations below that point were totally reversible, we 

decided to term this maximum force as ‘elastic limit’. The backward curve of FIC#1 (blue 

line) defined a hysteresis loop characteristic of non-equilibrium processes such as breakage 

or buckling.26,27 Whether breakage, buckling, or a combination of both took place in our case 

was difficult to assess, but the changed in mechanical properties observed during the second 

nanoindentation (FIC#2) indicated that the particle had suffered some irreversible damage. 

FIC#2 presented lower values of elastic limit and elastic constant, which had to be the 

consequence of a change in the virus structure. Indeed, the slight decrease in height (2 nm) 

suggested a rearrangement that could be compatible with the alteration of some 

intercapsomeric contacts without loss of capsomers. This argument was further supported by 

the topographies obtained through the entire loading cycle. Up to FIC #5, structural damages 

were limited to the progressive reduction of the particle height without loss of capsomers 

(Figures 3B-C and S3). This progressive reduction in height occurred in parallel with the 

transition from a linear to a Hertzian-like behavior (FIC #10), which is typical of solid 

objects.28 The absence of campsomeric vacancies and this Hertzian-like behavior suggested 

that the capsid and the genome were compressed through the process and, the fact that the 

final height of the structure (20 nm) was larger than only two capsid walls (10 nm) 

demonstrated the inextricably link between the capsid and the genome.  

Moreover, comparison of the mechanical properties between wt cVNPs and ifVNPs revealed 

that the former presented a higher elastic limit and rigidity at the beginning (FIC#1) (Figure 

3A and 3D). Besides that, the evolution of the mechanical properties of ifVNPs and wt 

cVNPs were very similar: a progressive decrease in height and a transition from a linear to a 

Hertzian-like behavior (Figure 3D-F).   
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Figure 3. Cyclic loading with single indentation assay. (A) Cyclic loading performed on a wt cVNP. (B, C) 

Profile and topographic evolution of the wt cVNP through the loading process. Profiles were taken on top of 

the VNP structures (marked with a dotted blue line in the AFM images). Labels indicates the number of FIC 

(i.e., the profile labeled as 1 shows the topography in which the FIC-1 was performed). (D, E, F) The same 

experiment performed on an ifVNP. All the images were acquired in JM-AFM under acidic buffer conditions 

(pH 5.3). Nanoindentation curves of (A) and (D) are laterally shifted for clarity.  

 

An ensemble analysis allowed us to compare the differences between the two forms 

statistically. Figures 4A and 4B show the initial 3 FICs performed on 11 wt cVNPs and 16 

ifVNPs, respectively. Comparison of the elastic limit between both forms (Figure 4C) 

showed that whereas wt cVNPs presented a higher vaule at the beginning (FIC #1), no 

significant differences were found in the consecutive loads (FIC #2 and FIC #3). The 

evolution of the spring constant between wt cVNPs and ifVNPs presented a similar behavior 

(Figure 4D). Although the stiffness decreased monotonically for both kinds of particles, wt 

cVNPs started with a higher value of elastic constant. Likewise, a progressive decrease in 

height was found for both wt cVNPs and ifVNPs, but  wt cVNPs presented an initial higher 

height (Figure 4E). 
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Figure 4. Comparison between the mechanical properties of wt cVNP and ifVNPs. (A) The graph shows 

the overlap of the first three FICs performed on 11 wt cVNPs: first curve (black), second curve (dark grey), and 

third curve (light grey). Curves are laterally shifted for clarity. (B) Nanoindeantions performed on 15 ifVNPs 

(displayed as in A). The insets represent the progressive deformation of the particles through the loading 

process. The observed irreversible decrease in height is likely caused by the rearrangements of inter-capsomeric 

interactions that do not entail the release of individual protein subunits. (C) Comparison of the evolution of the 

elastic limit between wt cVNPs (black line) and ifVNPs (blue line). (D) Comparison of the evolution of the 

elastic constant, obtained by fitting the initial linear, for wt cVNPs (black line) and ifVNPs (blue line). (E) 

Comparison of the evolution of the height between wt cVNPs (black line) and ifVNPs (blue line). It indicates 

the average height of the particles before performing the corresponding FIC.  

 

Discussion 

Our results can be discussed from a twofold perspective, including the topographical aspects 

of the viral particles adsorption and the mechanical characterization addressed by the 

nanoindentation experiments.The high heterogeneity of charge density and hydrophobic 
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patches within a virus shell permits the anchorage of particles to substrates through a 

combination of van der Waals, electrostatic and hydrophobic forces.29 AFM imaging of 

adsorbed particles provides valuable parameters that reveal subtle details about VNP 

stability. Note, however, that this information is only valid for comparing particles of the 

same type, as the complexity of the structure could make the comparison between different 

specimens misleading.  

Our experiments showed that wt cVNPs and rVNPs presented heights (34 nm) compatible 

with the crystallographic stucture,9 which in turn proved the well-known reversibility of the 

swelling process (Figure 2).5,7 However, topographical AFM images of sVNPs showed 

collapsed structures characterized by heights around 10 nm. TEM images complemented the 

AFM results; whereas wt cVNPs and rVNPs were stable and indistinguishable, sVNPs 

appeared broken after the adsorption and drying on the TEM grid. This result allowed us to 

conclude that the expanded forms were less stable. Viral structures have to be labile enough 

to provide the convenient meta-stability for the virus particle to accomplish its infectivity 

cycle. Some viruses, belonging to families other than TBSV, do not need virion swelling for 

the co-translational disassembly.30 TBSV and many other plant viruses, however, require 

swelling-induced structural changes for making RNA accessible to the cellular 

machinery.7,21,31 Our results reflect this situation by showing that the swollen forms of the 

virus, where the internal genome is still packed but reachable by the cellular proteins, are 

mechanically less stable than the native forms.  

The ion-free form (ifVNPs) appeared to be an intermediate state between the native and 

swollen structures. The decrease in height observed by AFM (5 nm, Figure 2C) suggested 

that the structure might have undergone some structural rearrangement due to the lack of 

ions. The ion chelation, though, did not preclude that most of the viruses maintained the 

assembled shape. Comparison of the mechanical properties between the native and ion-free 

particles supported these results. If we assume the spring constant as a measurement of virus 

deformability (which can not only be induced by the AFM tip, but also by the substrate during 

adsorption), the fact that ifVNPs were softer than cVNPs by about 0.2 N/m suggested that 

they were more malleable structure, thus explaining why the height was lower. In this regard, 

our high-resolution AFM images present the first experimental evidence of virus plasticity, 



which has been previously suggested for other viruses.32,33 This results was also support by 

the lack of capsomeric vacancies observed during the consecutive loading.  

Previous mechanical studies of VNPs have shown that the AFM tip usually removes 

individual structural components after the elastic limit (breaking force) is reached.18,22,24,25 In 

contrast, our data showed that consecutive FICs induced an irreversible deformation of the 

structure that was not accompanied by the removal of capsid subunits. Since AFM imaging 

is able to resolve individual capsomers,25,34 we assumed that the mechanical variation of 

TBSV-NPs after indentations was likely related to structural alterations consisting of inter-

capsomeric cracks that fell beyond the limit of our AFM. We hypothesize that the resistance 

of individual capsomers to be removed originates from the presence of the inner capsid 

proteins tails interacting with ssRNA.5,9 These domains would maintain the viral subunits 

joined to the viral core and avoid the disassembly of the capsid. Supporting this hypothesis, 

the Hertzian-like behavior and height of the structure observed at the end of the loading cycle 

indicated the existence of a tight and stabilizing interaction between the genome and the 

capsid shell in the native form. In contrast, this interaction disappear in the expanded form 

due to the increase in electrostatic repulsion. At pH 8.5 the genome is able to escape the 

capsid and the structure collapse. Indeed, the average height of the sVNPs structures was 10 

nm, which roughly corresponds to the width of two collapsed capsid walls.6  

Our AFM results also suggested that the decrease in spring constant and elastic limit obtained 

after the chelation of calcium ions could be mimicked by deforming the virus with the AFM 

tip (Figures 4C and 4D). This observation does not imply that the structural changes induced 

by the deformation are the same as those induced by the ion sequestration, but it indicates 

that both effects have similar mechanical consequences. We suggest that the first indentation 

might disrupt some of the inter-capsomeric interactions mediated by calcium ions, which 

consequently reduce the resilience and rigidity of the particles. Subsequent deformations 

would then be probing a softer and more malleable structure that is held together, despite the 

alteration of these inter-capsomeric bonds, due to the complex amalgam of coat protein 

(presumably inner tail domains) and ssRNA. From a biophysical viewpoint, calcium ions 

could act as ‘elastic staples’ inserted between capsomers and their sequestration would leave 

the main mechanical clamp for maintaining viral subunits together to the inner CP-RNA 

binding domain.  



 

95 

C
h

ap
te

r 
4
 

Conclusions 

In this paper we report the first experimental evidence of the mechanical role of calcium ions 

bound to intracapsid sites. The sequestration of these ions reduces capsid resilience and 

rigidity. We found that an analogous decrease could also be induced by the first indentation 

on wt TBSV-NP, which produced a permanent deformation of the particle without removing 

capsomers. Additionally, our mechanical data is consistent with the required meta-stability 

that TBSV-NP needs to accomplish its infection cycle. Calcium ions appear as molecular 

determinants for virus strength and their removal causes a mechanical instability that reduces 

virus resilience, which we hypothesize is governed by intercapsomeric interactions. In 

summary, our results highlight the crucial structural role of calcium ions on the viral shell 

stability. Also, TBSV ability of deforming without losing capsomers and avoiding cargo 

release suggests that these particle might represent suitable protein cages for payload 

transportation at the nanoscale. 

 

Materials and Methods 

TBSV-wt  

Infectious cDNA clones were assembled using standard recombinant DNA techniques as 

described in details in Grasso et al. 4 

Plant Infection 

Six to eight weeks old Nicotiana benthamiana plants were inoculated with two different 

TBSV constructs 4. Briefly, cDNA templates of TBSV-wt constructs were digested with the 

restriction enzyme XmaI. One μg of completely linearized cDNA was used for in vitro 

transcription reaction following the manufacturer's instructions (MEGAscript®T7 High 

Yield Transcription kit, Ambion Applied Biosystems). Plants were mechanically inoculated 

abrading the adaxial side of two leaves per plant using the carborundum powder (VWR 

International) mixed with the TBSV infectious RNAs, previously checked for integrity by 

TBE denaturing agarose gel electrophoresis. 



Virus Purification 

Virus purification was carried out as described in Grasso et al. 2012 4. Briefly, infected tissue 

was ground in liquid nitrogen and homogenized with 3 ml/g of ice-cold extraction buffer [50 

mM sodium acetate, 1% (w/v) ascorbic acid, pH 4.5, supplemented with a cocktail of 

protease inhibitors (P9599, Sigma)]. Homogenate was immediately filtered through 

Miracloth and, after low-speed centrifugation, the supernatant was adjusted to pH 5.0 with 

NaOH and ultracentrifuged for 1 h at 90000 x g at 4 °C, using a Sorvall-Thermo Scientific, 

WX ULTRA 100 ultracentrifuge with an AH629 rotor. The pellet was gently suspended in 

ice-cold acetate buffer (50 mM sodium acetate, pH 5.3) and then centrifuged at low speed 

for further clarification. Quality of the preparations was verified by a silver stained 13.5% 

SDS-PAGE (Figure S4). Viral particles concentration was quantified using Bradford Reagent 

(Bio-Rad) and Bovine Serum Albumin (BSA) as reference standards. 

Sample Preparation for AFM Measurements 

i) compact wt VNPs (cVNPs): stock VNPs solution (3µg/µl in 50 mM sodium acetate, pH 

5.3) was diluted 1:100 into the acidic buffer (5 mM NiCl2, 50 mM sodium acetate, pH 5.3). 

A 20 µl drop of this diluted solution was incubated in a freshly cleaved mica surface for 30 

minutes and then gently rinsed with the same buffer. The tip was also prewetted with a drop 

of 20 µl of the acidic buffer before starting AFM measurements.  

ii) swollen wt VNPs (sVNPs): stock wt cVNPs solution was diluted 1:10 in swelling buffer 

(TRIS-HCl 0.1M, pH 8.5, EDTA 50 mM) and incubated for 2 hours at 4° C. Then, the 

solution was diluted 1:10 in swelling buffer in the presence of NiCl2 (TRIS-HCl 0.1 M, pH 

8.5, EDTA 50 mM, NiCl2 5 mM) before incubating a 20 µl drop of this solution on the mica 

surface. After 30 minutes the sample was washed with swelling buffer, maintaining always 

an aqueous environment. The tip was prewetted with a 20 µl drop of swelling buffer.  

iii) recompacted wt VNPs (rVNPs): the swollen VNPs (stock wt cVNPs diluted 1:10 in 

swelling buffer during 2 hours at 4º C) were diluted 1:10 into compacting buffer (200 mM 

CaCl2, 50 mM Na-acetate, pH 5.3) and incubated for 2 hours at 4º C. Afterwards, the solution 

was diluted 1:2 into acidic buffer and a 20 µl drop of this solution placed on a cleaved mica 

surface. After 30 minutes the sample was washed with the acidic buffer.  
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iv) Ca2+-free wt VNPs (ifVNPs): stock wt cVNP solution was diluted 1:10 in the swelling 

buffer (TRIS-HCl 0.1 M, pH 8.5, EDTA 50 mM) and incubated for 2 hours at 4°C. 

Afterwards, the solution was 1:10 diluted into acidic buffer. A 20 µl drop of this diluted 

solution was deposited on a freshly cleaved mica surface and washed with acidic buffer after 

30 minutes. The swelling buffer promoted the deprotonation of the aspartate residues of the 

calcium binding sites (pH 8.5) and the consecutive sequestration of the Ca2+ ions by the 

EDTA which, in this case, were not added when lowering the pH conditions.  

AFM Experiments 

All measurements were conducted with an AFM (Nanotec Electrónica S.L., Madrid, Spain) 

operated in jumping mode (JM) plus for imaging in liquid 35. The relevant feature of this 

mode is that the lateral displacement of the tip occurs when it is not in contact with the sample 

so that shear forces are mostly avoided during scanning. We used rectangular cantilevers 

(Olympus, RC800PSA) with a nominal spring constant of 0.7 N/m and a tip radius of about 

15 nm. These cantilevers were chosen because their spring constant was similar to the spring 

constant of the virus. Sader’s Method was used to calibrate the spring constant of the 

cantilever. 36 Typical imaging force was set to 200 pN. 

In order to carry out the nanoindentation experiments we followed well-established 

procedures on virus mechanics 20,37. In brief, they consist of performing a single force vs. 

distance curve (FDC) at the very top of a single virus while recording the force as a function 

of the Z-piezo motion 20. All FDCs were performed at the same z-piezo displacement (17 

nm) with a loading rate of about 60 nm/s. These FDCs can be converted into force vs. 

indentation curves (FICs) by recording a calibration FDC of the cantilever deflection on the 

substrate next to the virus 11. From fitting the slope of the linear part of the FIC it is possible 

to calculate the spring constant (rigidity) of the virus (kv). The steps in the indentation curve 

that follow the linear region after the elastic limit 22 are interpreted as rupture events 27,38, 

ranging from big cracks 23 to removing single capsomers 25. The linear part of the FICs is 

sometimes preceded by a short-range non-linear region due to electrostatic, van der Waals, 

and hydration forces39,40 that was excluded from the fitting. 



During the first 5 deformations, the VNP was imaged before and after each FIC. From there 

on, the particle was cyclically loaded and images were taken after sets of 5 FICs. We stopped 

the loading experiments when the particle responded with an Hertzian-like behavior 41. All 

the images were analyzed using the program WSxM (Nanotec Electrónica S.L., Madrid, 

Spain) 42; and the profile along the top of the VNP was determined by averaging the height 

of a 5-pixel radius of influence.  

Transmission Electron Microscopy (TEM) 

For conventional TEM, 5 µl samples were applied to glow-discharged carbon-coated grids 

and negatively stained with 2% aqueous uranyl acetate. Samples were applied on carbon-

coated grids under the same conditions in which they were adsorbed on mica substrates for 

AFM measurements. Images were acquired on a JEOL JEM-1011 electron 
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Abstract 

Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell 

stability. In some cases the genome structurally reinforces the shell, whereas in others 

genome packaging causes internal pressure that can induce destabilization. Although it is 

possible to pack heterologous cargoes inside virus-derived shells, little is known about the 

physical determinants of these hybrid nanocantainers stability. Using atomic force and cryo-

electron microscopies, we determined the physical mechanisms that govern the mechanical 

strength of protein-loaded P22 bacteriophage shells. We analyzed the effects of cargo-shell 

and cargo-cargo interactions on shell stability after encapsulating two types of proteinaceous 

payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid 

in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the 

cages up to 30 atm due to steric effects. Understanding the stability of artificially loaded 

nanocages will help to design more robust and durable synthetic nanocontainers. 
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Introduction 

Synthetic biomimetic nanostructures are revolutionizing materials design at the nanoscale. 

Inspired by nature, where intracellular structures act as optimized nanocompartments, new 

self-assembling biological systems have been generated with growing interest in biology, 

chemistry, and materials science.1-7 Virus-like particles (VLP) show a controlled hierarchical 

assembly, are easy to produce, and their structure can accommodate modifications of their 

inner and/or outer surfaces. These attributes enable the incorporation of artificial cargos in 

the VLP, such as small molecules,7-9 metal nanoparticles10-12 or proteins,8 to produce hybrid 

materials that can be used for a broad range of applications. The confinement of proteins 

inside VLP permits the modulation, spatial control and protection of their enzymatic activity 

in a variety of environments, and has evident interest for pharmaceutical and nano-

technological disciplines.13-15 

The development of robust nanocages able to maintain their structure is crucial for their 

durability in harsh environmental conditions. To accomplish so, some successful strategies 

can be adopted from nature. Genetic material can reinforce natural viral shells after packing 

via structural interaction with the viral shell, similar to the way beams buttress the structure 

of a building.16,17 However, the genome might also destabilize the viral shell by inducing 

outward pressurization that stiffens the viral particles.18-20 In the light of these results, it 

seems reasonable to expect that the stability of protein-derived cages loaded with 

heterologous proteins not only on the presence of its internal cargo, but also on the mutual 

cargo-shell and cargo-cargo interplay, as in the case of their natural counterparts. 

Virus-like particles (VLP) derived from the Salmonella typhimurium bacteriophage P22 are 

suitable models to address some of these questions, as it is a versatile and well-characterized 

system in virology and nanomaterials synthesis.21,22 The P22 VLP capsid is built of 420 

copies of a coat protein (CP) that assembles into a T=7 icosahedral shell with the aid of 

100-300 copies of scaffolding proteins (SP), whose C-terminal helix-loop-helix motif 

interacts with the CP. In contrast to authentic phages, these VLPs have 12 identical pentons 

with no portal.23 P22 VLP procapsids (PC) undergo a series of well-defined structural 

transitions after heating that generate mature viral shells (EX particles), emulating 

bacteriophage P22 maturation.21,22,24 This capsid transition (PCEX) involves an increase 

in internal volume of 35%, as well as a capsid shell thinning and decrease in its porosity. 
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Heterologous expression of CP and N-terminal-truncated SP fused to other gene products 

results in self-assembly of the PC (59.6 nm outer diameter, 46,450 nm3 internal volume); 

heating at 65ºC for 20 min yields the EX (64.8 nm, 71,900 nm3) (Figure 1A).  We used the 

SP fusion strategy to incorporate enhanced green fluorescence protein (EGFP) or -

glucosidase from the hyperthermophile Pyrococcus furiosus (CelB) into the VLP interior 

when expressed in Escherichia coli together with CP (Figure 1B). Because the interaction 

between EGFP monomers is anticipated to be weaker than that between CelB monomers, 

which form spontaneous tetramers inside the shell,25 we used these two proteins to study the 

effects of cargo-cargo coupling. On the other hand, the ability of PC structure to mature into 

the EX morphology allowed us to address the effects of cargo-shell coupling. During 

maturation, the SP C-terminal segment of the SP-cargo protein is unbound from the interior 

surface shell, resulting in soluble cargo molecules inside the EX.21,24,26-32 

Figure 1. Synthesis of P22 nanocages and the expanded morphology of the P22 capsid. (A) P22 capsid 

maturation.  P22 viral-like particles (VLP) are produced as procapsids (PC), which are transformed to an 

expanded shell form (EX) by heating at 65ºC for 20 min. (B) Assembly of P22 VLP with different cargos.  Co-

expression of coat protein (CP, yellow) with N-terminal truncated scaffold protein (SP, blue) fused to EGFP 

(green) or CelB monomers (red) leads to VLP assembly as PC with encapsulated cargo.  VLP assembly is 

facilitated by interaction of the essential SP C-terminal domain and CP subunits, which leads to encapsulation 

of SP-fused proteins.  For clarity, EGFP and CelB are shown as monomers. 
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In this work we combine mechanical and structural information obtained from Atomic Force 

Microscopy (AFM) and three-dimensional cryo-Electron Microscopy (3D cryo-EM) to 

describe physico-chemical mechanisms that influence the stability of synthetic P22 protein 

cages. Our results show that the interplay between the cargo and the shell determines whether 

the mechanical reinforcement is structure- or pressure-induced, as happens in natural viral 

cages. The cargo bound to the shell provides structural reinforcement to the P22 procapsid, 

although a strong cargo-cargo interaction (i.e., CelB) renders particles more brittle. In the 

expanded form, the SP-associated cargo proteins that remains inside the shell in a “free” 

soluble state pressurizes the expanded structure up to 30 atmospheres.  

 

Results and Discussion 

Three-Dimensional Structure of Cargo-loaded P22 VLP 

We used 3D cryo-EM to analyze the structures of two morphologies of heterologous 

bacteriophage P22 T=7 VLP, termed PC and EX, loaded with a cargo of EGFP or CelB. 

Empty PC and EX were included as controls (Figure 2). We used HPLC size exclusion 

chromatography with multi-angle light scattering (MALS) to determine the number of cargo 

copies per particle, and found 128 ± 1 CelB monomers and 220 ± 5 EGFP. Figure 2A shows 

cryo-EM images of these purified P22 VLP with different morphologies, imaged at -170ºC 

in a 200 kV cryo-electron microscope.  

A 3D reconstruction (3DR) was calculated for each of the six sets of particle types (Figure 

2B-D). Based on a Fourier shell correlation (FSC) coefficient, the resolutions achieved were 

between 12-16 Å (Figure S1). Particle diameters were determined from radial density profiles 

from the 3DR (Figure 2E). Whereas spherical PC (empty, EGFP- or CelB-loaded) had a     

298 Å outer radius, EX form measured 324 Å. This capsid expansion range is similar in 

bacteriophages P22, and HK97.33  

Cargo-loaded PC and EX had the same size and general morphology as empty PC and EX. 

The P22 PC were T=7 isometric structures formed by 72 capsomers, 60 of which are skewed 

CP hexamers and 12 are CP pentamers, as they lack the portal structure (Figure 2B, top).22 

Empty PC showed densities at the inner surfaces of the hexamers due to SP C-terminal 
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residues that cannot be accounted for by the CP (Figure 2C, arrows), as previously 

reported.21,22,24 

 

Figure 2. Three-dimensional cryo-EM reconstructions of empty, EGFP- and CelB-loaded P22 capsids.  

(A) Cryo-EM of (left to right) empty PC, EGFP-loaded PC (EGFP-PC), CelB-loaded PC (CelB-PC), empty 

EX, EGFP-loaded EX (EGFP-EX) and CelB-loaded EX (CelB-EX). Bar: 50 nm. (B) Surface-shaded 

representations of the outer surfaces, viewed along an icosahedral twofold axis, of P22 PC (top) and EX 

(bottom).  Outer surfaces of empty and loaded PC and EX are similar at this resolution.  Symbols indicate 

icosahedral symmetry axes.  Bar, 25 nm.  (C) Central sections from the 3DR viewed along a twofold axis of 

T=7 empty PC (left), EGFP- (center) and CelB-PC (right).  Darker shading indicates higher density.  Arrows 

indicate some densities due to the SP C-terminal region in the PC internal surface (note that these densities are 

reduced in the CelB-PC central section).  (D) Central sections from the 3DR viewed along a twofold axis of 

T=7 empty EX (left), EGFP- (center) and CelB-EX (right). (E) Radial density profiles of 3DR of empty PC, 

EGFP- and CelB-PC, empty EX, and EGFP- and CelB-EX. PC (top) and EX shells (bottom) are essentially 

superimposable.  In PC, a cargo shell spans radii from 107 to 216 Å.  Vertical lines indicate PC (298 Å) and 

EX radii (324 Å). 

 

Images of EGFP- or CelB-loaded PC (EGFP-PC or CelB-PC) presented an interior darker 

than that of the empty forms (Figure 2A), which indicated the presence of packed cargos. 
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After imposing icosahedral symmetry, the 3DR showed that cargo density (within a 220 Å 

radius) was organized as a thick shell beneath the PC shell, with numerous connections to 

the PC inner surface (Figure 2C middle [EGFP-] and right [CelB-PC]). As in in vivo-matured 

virions, P22 EX were more angular than PC, and the hexons became symmetrical hexamers 

(Figure 2D). Heat-induced capsid maturation untethered EGFP- or CelB-fused SP from the 

EX interior surface and cargos were observed as free densities in the capsid interior (Figure 

2A), in concordance with the wild-type P22 procapsid release of SP after heating.34 

 

AFM Topographical Analysis of Empty and Cargo-loaded P22 VLP in vitro 

Fixation of the protein shells to a flat substrate via hydrophobic and/or electrostatic 

interactions is a requisite for AFM imaging. Each protein shell has individual features, such 

as hydrophobic patches or local charge densities, that result in distinct attachment forces. For 

a specific shell, these forces can even reduce the height of the softest virus-like 

morphologies.35 The precise combination of factors that leads to this partial collapse remains 

undefined, but so far a decrease in height has been always accompanied with a decrease in 

the mechanical stiffness of the specimen. Representative AFM images of each VLP type 

adsorbed on glass showed partial collapse of the empty forms (Figure 3A), which allowed us 

to carry out a comparative mechanical study of particle deformability. Whereas empty VLP 

showed a height decrease of 10% compared with their native size in cryo-EM, cargo-loaded 

VLP maintained heights near 100% of the cryo-EM value (Figure 3B). Therefore, the limited 

shell deformation of cargo-loaded VLP suggested that these particles were more rigid than 

their empty counterparts. 

Figure 3.  AFM topographies of P22 particles.  (A) AFM images of empty PC, EGFP-PC, CelB-PC, empty 
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Cargo-Cargo and Cargo-Shell Interactions Determine P22 PC Mechanics 

VLP mechanical stability was assessed systematically using single nanoindentation assays. 

The force vs. indention curves (FIC) obtained in those experiments provided two mechanical 

parameters that were linked to the rigidity and brittleness of the probed particles.36,37 The 

slope of the curve (also termed as spring constant, k) was related to particle rigidity. The ratio 

between the critical deformation (critical) and the particle height (h), which defines the critical 

strain 𝜀𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
𝛿𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

ℎ
 (Figure 4A, inset), was used to establish differences in brittleness.38  

Figure 4A shows a characteristic FIC performed on an intact EGFP-PC. AFM images taken 

before and after the FIC demonstrated the rupture of the shell, which in this case caused a 

crack associated with a reduction in height from 57 to 47 nm (Figure 4A, right). Other 

examples of this sort of experiments can be found in Figure S2; in all the cases, a clear 

disruption of the shell was observed. In addition, our AFM data showed that EGFP- and 

CelB-PC were more rigid than empty PC (Figure 4B top, Table S1), in agreement with the 

initial topographical analysis (Figure 3). To determine the cause of this difference in stiffness 

we analyzed the cryo-EM maps in detail. Comparison of the average radial densities of empty 

and full PC particles indicated that most cargo localized in a shell beneath the capsid wall 

within a 216-107 Å radius (Figure 2E). Whereas the empty PC structure showed a single 

spherical layer corresponding to the capsid shell, full PC presented an extra concentric layer 

corresponding to cargos. These data suggested that the stiffening was caused by a structural 

reinforcement that could be evaluated by continuous elasticity modeling. Simplification of 

these complex structures to homogeneous shells39-42 permits estimation of the ratio of 

Young’s modulus of the capsid (Es) and the cargo (Ec). The radial density derived from the 

cryo-EM data indicated that empty- and loaded-PC had effective thicknesses of 7.5 and 

17.5 nm, respectively (Figure 2E). Finite element modeling based on the experimental 

spring constant estimated Es/Ec of 7 and 10 for EGFP and CelB cargos, respectively (Figure 

S3A).This result indicates that the capsid shell is approximately ten times more rigid than the  

 

(contnued) EX, EGFP-EX and CelB-EX.  (B) Height of empty PC, EGFP-PC, CelB-PC, empty EX, EGFP-EX 

and CelB-EX after adsorption. Percentages indicate the ratio between average height as measured by AFM and 

nominal height based on 3D cryo-EM reconstructions.  Dashed lines indicate nominal PC and EX outer 

diameters. 
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cargo “shell”, suggesting that from a mechanical viewpoint viral nanocontainers might 

represent an effective way to offer protection to highly-packed proteins (packing factors of 

35-45%, table 1). 

 

Study of the brittleness of the shells, though, revealed some interesting distinctions. While 

both packed cargos has similar influence on the rigidity of the particles, there was a difference 

in brittleness between EGFP- and CelB-loaded PC compared to empty shells (Figure 4B, 

bottom; and Table S1). EGFP-PC and empty PC presented a critical strain (critical = 0.17) 

slightly higher than that of CelB-PC (critical = 0.14). To evaluate this difference in brittleness, 

we performed docking analysis of the P22 CP model [C model, Protein Data Bank (PDB) 

ID 2XYY,21and the SP C-terminal region (residues 238-303, PDB ID 2GP8)43] in the empty 

and loaded PC cryo-EM density maps. The SP C-terminus fitted well in the triangular density 

at the internal surface of the PC skewed hexamers (Figure 4C, left; blue). This SP-related 

density was also well preserved in the EGFP-PC at the same radial position, and showed the 

connections between CP shell and cargo (Figure 4C, middle; green). However, CelB-PC were 

more disordered in this region than empty and EGFP-PC, and SP-mediated connections were 

irregular and less defined (Figure 4C, right; red). This scenario is compatible with the 

existence of fewer (or less intense) SP-mediated connections for CelB-PC than for EGFP-

PC. Because CelB monomers form tetramers inside the shell,25 it seems reasonable to expect 

that the SP-CP interaction becomes affected as a consequence of it. CelB monomers are 

connected to CP by a 123 amino acid linker that joins the cargo with the SP-CP binding 

domain. We propose that the formation of CelB tetramers inside the PC shell tighten some 

of these SP-mediated connections, and leads to an additional geometrical constraint that 

reduce capsid subunit mobility upon deformation (Figure 4D, top). In contrast, the 

monomeric condition of EGFP does not impose any constraint on the SP linkers and thus, 

there is no difference between these capsids and empty shells (Figure 4D, bottom). 

Supporting this data we performed single nanoindenation studies in empty shells (which are 

scaffolding-lacking procapsids)44 and saw that the removal of the SP, by its own, could not 

explain the difference in brittleness (table S1). 
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Figure 4. Structure and mechanical properties of P22 PC.  (A) (Left) Typical force-vs-indentation curve 

(FIC) of an EGFP-PC.  Particle rigidity (k) and critical deformation (critical) can be calculated from the 

nanoindentation.  Critical strain (critical), which provides information about particle deformation before 

breakage, is defined as the ratio between the critical indentation and particle height (inset).  (Right) AFM 

topographies of the PC before (top) and after nanoindentation (bottom).  A profile of the particle along its center 

is inset in each image (bottom left).  (B) Comparison of the average rigidity (top) and fragility (bottom) of 

empty and loaded PC. (C) Analysis of CP-SP interactions in empty and EGFP- and CelB-PC.  PC viewed down 

a twofold axis from inside, with docked SP helix-loop-helix motif (right half).  Empty PC shows the CP atomic 

model (yellow) in the shell and the SP motif in the SP density (blue; inset); the SP density is shown in EGFP-

PC (green; center) and in CelB-PC (red; right). (D) Scheme of PC showing the organization of CelB tetramers 

(red, top) and EGFP monomers (green, botton) fused to SP (black lines). 

 

Mechanics of Empty and Cargo-loaded EX Structures 

During the transition from PC to EX, the SP domains release the CP and escape from the 

capsid, resulting in empty EX particles.24 However, in the case of loaded particles the SP 

fused to EGFP or CelB structures cannot escape and become free inside the EX after 

detaching of the capsid wall. We analyzed the mechanics of three expanded protein cages 
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(empty, CelB- and EGFP-EX) to establish differences between them. Figure 5A shows a 

representative nanoindentation curve performed on a CelB-EX, with the AFM images before 

and after the tip-induced breakage represented on the right (Figure 5A). Statistical analysis 

of the mechanical properties of the three EX types showed that cargo-loaded shells increased 

their rigidity but critical did not vary (Figure 5B). The lack of influence of this cargo on EX 

brittleness is likely related to the detachment of SP domains; both EGFP monomers and CelB 

tetramers remained unanchored, free to diffuse within the EX cage (Figure 5C). On the other 

hand, because no permanent structural contacts exist between the cargo and the capsid shell, 

the increased rigidity seemed to be cause by an internal pressure.  A possibility would be that 

the different concentration of protein between the inner shell and the surroundings would 

drive water molecules into the shell, thus causing an osmotic pressure. Alternatively, the 

electrostatic repulsion between cargo molecules retained within the capsid might originate 

this pressure. To determine which of these mechanisms, or if a combination of both, was 

responsible for the capsid reinforcement we modeled our system and performed new AFM 

experiments. 

 

Pressurization of EX VLP 

Regardless of its physical origin, we can estimate the magnitude of the internal pressure in 

loaded EX using the continuous elastic prediction for rigidity of a pressurized thin spherical 

shell indented by a point force.45 

𝑘1 =
𝜋

2
𝑘0

(1−𝜏−2)
1
2

arctanh  ⌊(1−𝜏−2)
1
2⌋

   (1) 

Here, 𝜏 =
𝑝𝑅1

𝑘0
⁄  is a dimensionless parameter that compares the relative relevance of 

pressure p against the elastic constant of the unpressurized shell, k0, and R1 the internal 

radius of the P22 EX, considered effectively as a sphere (R1 = 29.1 nm). Taking k0 = kEX = 

0.21N/m, k1 = kEGFP-EX = kCelB-EX = 0.27 N/m, and solving Eq. (1) for p, an estimate of 3±1 

MPa (30 atm) is obtained for the increase in internal pressure after cargo internalization, a 

value that was corroborated by Finite Element Simulations (Figure S3B). 
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Figure 5.  Mechanical characterization of EX capsids.  (A) Typical FIC of a CelB-EX. Inset, Aligned profiles 

of particle topographies before (black) and after (green) breakage.  Right, CelB-EX images before (top) and 

after breakage (bottom).  (B) Comparison of the average rigidity (top) and fragility (bottom) of empty and 

loaded EX.  (C) Scheme of EX showing cargo units as diffusing entities within the protein shell (colors as in 

Figure 5). 

 

The osmotic pressure generated from a freely moving cargo constrained to the EX interior 

depends on the nature of the interactions between the cargo molecules and between the cargo 

and the inner capsid wall. The simplest influence stems from steric interactions between 

cargo molecules and the fact that they cannot escape from the capsid. The irregular geometry 

of the cargo, enhanced by the presence of the SP linker and the helix-loop-helix motif 

attached to it, makes accurate quantification difficult. Its magnitude can nonetheless be 

estimated by modeling the cargo molecules as uncharged hard spheres with an effective 

radius rHS. In this approach, the expression for this “hard spheres” contribution to the osmotic 

pressure is46,47 

𝑝𝐻𝑆 = 𝑘𝐵𝑇𝜌
(1+η + η2− η3)

(1− η3)
3     (2) 

where kB = 1.38 × 10-23 m2 kg s-2 KB is the Boltzmann constant, T=300 K is the temperature,  

is the number density of the cargo inside the particle, and η =
𝑉𝐶𝑎𝑟𝑔𝑜

𝑉𝐸𝑋
=

𝑁4
3⁄ ·𝜋𝑟𝐻𝑆

3

𝑉𝐸𝑋
 is the 

packing fraction, defined as the volume occupied by the cargo divided by the available 

volume in the capsid (Tables 1 and S2). This assumption allowed us to evaluate the effective 

hard sphere radius (rHS) needed to obtain the pressure values estimated in the experiments 

(Eq. 1). 



 

 115 

C
h

ap
te

r 
5
 

In the case of CelB-EX, in which N=128±1 monomers were encapsulated per capsid and the 

estimated pressure was p=3±1 MPa, the effective radius was RHS = RCelB =7.8 nm. For 

EGFP-EX, with N = 220 ± 5 monomers encapsulated and the same pressure as CelB-EX, the 

effective radius was RHS = REGFP = 3.9 nm. Although we approached the irregular geometry 

of the cargos as hard spheres, the model reasonably predicted an effective radius 

appropriate to the size of the CelB tetramer (10.1 × 10.1 × 5.7  nm3) and of the EGFP 

monomer (4.8 × 3.3 × 3.5 nm3) (Table S2). 

 CelB-PC EGFP-PC CelB-EX EGFP-EX 

Physical origin Structural reinforcement Steric interactions 

Capsid volume (nm3) 46,452 71,936 

# cargo/capsid 32 224 32 224 

Packing factor 45.5 36.18 29.4 29.4 

Pressure (MPa) - - 3 ± 1 3 ± 1 

Table 1.  Interactions that modulate P22 PC and EX mechanics.  In PC, the cargo is constrained to the vicinity 

of the shell, whereas unattached cargo in EX moves freely inside the shell, creating osmotic pressure. 

 

Note that the values that we used for calculating such pressures were based on the number of 

cargos internalized in PC shells, not in EX shells. Size exclusion chromatography coupled to 

multi-angle light scattering (SEC-MALS) indicated that, on average, the mass of loaded 

particles decreased slightly after expansion, as previously reported.3 In our case, loaded EX 

lost 20 CelB (16%) and 64 EGFP (30%) monomers in comparison with their PC forms. 

However, this loss of material was probably related to defective particles. Shell defects, such 

as missing pentamers, allow cargo molecules to leave the cavity. Because only particles 

flawed or broken during thermal expansion would be the responsible for this loss of average 

mass, and because AFM topographic characterization permits to select intact particles that 

have presumably not lost any cargo molecules, we assumed that PC and EX capsids contained 

the same amount of monomers and used the PC values to calculate the different packing 

factors and effective radii. 

A second contribution to the pressure could arise from the electrostatic repulsion between 

the cargo molecules or/and the cargo and the shell. The magnitude of this influence could 
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be estimated in two ways, by considering a solution of N effective charged spheres in an 

electrolyte48 or through the concept of Donnan equilibrium.49 Both calculations led to 

theoretical pressure values that were negligible compared with the values obtained in our 

experiments (see Supporting Information for details). To confirm that result experimentally 

we carried out AFM nanoindentations on loaded EX. The electrostatic contribution of natural 

cargos, such as dsDNA, has been detected in natural viral cages by screening DNA-DNA 

repulsion with condensing agents or by lowering the ionic strength of the solution. This 

screening, which reduces the internal pressure, leads to a decrease in the rigidity of the 

cages.19,20,50 We performed nanoindentation experiments at lower ionic strength and in the 

presence of spermidine (Figure S5). Our results showed that there were no difference in 

stiffness, which confirmed the theoretical calculations predicting that the electric nature of 

the cargo plays no role in stiffening the shell.  

 

Conclusions 

The combination of cryo-EM and AFM has clarified the precise interplay between an 

artificial cargo and the protein shell in which it is confined, and could permit the rational 

design of more stable nanocontainers. Our data indicate that the presence of a cargo stiffens 

the cages in two different ways. In the case of PC, when the cargo is linked to the shell 

through the C-terminal SP motif, the capsid is reinforced structurally. For EX capsids, 

however, cargo-shell interaction are lost and the increase in rigidity arises from the different 

concentration of protein (CelB tetramers or EGFP monomers) between the inside of the 

capsid shell and the surroundings. This different concentration drives water molecules inside 

the particle creating an osmotic pressures of ~30 atm, a value comparable to the DNA-

induced pressurization in natural viruses (40-60 atm for phi29 19,51, 20 atm for lambda52, 10 

atm for P22 phages,53,54 and 30 atm for human adenovirus20). In addition, we have seen that 

the formation of CelB tetramers inside procapsid represent a geometrical constraint that 

render particles more brittle. In summary, our results show that the mechanical stability of 

particles loaded with foreign proteins is governed by different physical mechanism. 

Understanding these mechanisms and their molecular determinants might permit designing 
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more robust cages and thus contribute to their development as protective shields towards 

their use in bionanotechnological applications. 

 

Materials and methods 

Biochemical and Genetic Analyses 

Proteins were cloned, expressed and purified, and analyzed by size exclusion 

chromatography with multi-angle light scattering and refractive index detection was 

performed as described.3,4,7 Plasmids containing the genes for coat protein and cargo proteins 

of interest fused to scaffold protein (EGFP-SP3, CelB-SP25) were transformed in BL21 (DE3) 

Escherichia coli (Novagen) for protein expression.  The transformed E. coli cells were grown 

to an OD600 =0.6, induced with isopropyl -D-thiogalactopyranoside (IPTG), and grown for 

an additional 4 h before cells were collected by centrifugation at 4,500 rpm. Cells were 

resuspended in PBS pH 7, lysed by sonication, centrifuged (at 12,000 rpm) to remove cell 

debris, and virus particles were isolated by ultracentrifugation through a sucrose cushion.  

The resuspended pellet was further purified on a Sephacryl (S-500; GE Healthcare) size 

exclusion column in PBS pH 7 (1 ml/min).  For SEC-MALS analysis, samples were analyzed 

on a Dawn 8 instrument (Wyatt Technologies, Santa Barbara, CA). Samples were separated 

by Agilent 1200 HPLC on a WTC-0200S size exclusion column (Wyatt Technologies) and 

monitored with a UV-Vis detector (Agilent), a Wyatt HELEOS Multi Angle Laser Light 

Scattering (MALS) detector, a quasi-elastic light scattering detector (QELS), and an Optilab 

rEX differential refractometer (Wyatt Technologies).  The Wyatt Astra 6 software 

determined average molecular weight (Mw) and radius of gyration (Rg) values. 

Cryo-EM and Image Processing 

Samples (5 l) were applied to Quantifoil R 2/2 holey grids, blotted, and plunged into liquid 

ethane. Cryo-EM images were recorded in low-dose conditions with a FEI Eagle CCD 

camera in a Tecnai G2 electron microscope equipped with a field emission gun operating at 

200 kV and at a detector magnification of 69,444X (2.16 Å/pixel sampling rate). 

General image processing operations were performed using Xmipp55, and graphics were 

produced using UCSF Chimera56.  The Xmipp automatic picking routine was used to select 

particles.  Defocus was determined with CTFfind57 and CTF phase oscillations were 
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corrected in images by flipping them in the required lobes.  Homogeneous populations were 

selected by two-dimensional classification using the Xmipp CL2D reference-free clustering 

routine58.  Published structures of P22 PC and EX (PDB 2XYY and 2XYZ)21 were filtered 

to 30 Å, size-scaled and used as initial models for their respective samples.  The Xmipp 

iterative projection matching routine59 was used to determine and refine particle origin and 

orientation.  For the CelB tetramer, an artificial noise model was used as starting reference 

for parallel iterative angular refinement using the EMAN program60.  Once converged, the 

resulting model was selected and refined using the Xmipp iterative projection matching 

routine.  For PC, EX and CelB, 90% of the particles were included in the final 3DR, and 

resolution was assessed by FSC between independent half dataset maps (Figure S1).  The 

final map of the CelB tetramer included 11,432 particles, and resolution for the 0.5 and 0.3 

criteria was 16.4 and 14.5 Å, respectively.  The UCSF Chimera fitting routine was used to 

dock the crystallographic models of PC, EX, SP and Pyrococcus -glucosidase CelB (PDB 

2XYY, 2XYZ, 2GP8 and 3APG, respectively) in the cryo-EM maps.  The 3D reconstructions 

are deposited in the Electron Microscopy Data Bank (http://www.ebi.ac.uk/pdbe/emdb) with 

accession no. EMD-3171 (empty PC), EMD-3172 (EGFP-PC), EMD-3173 (CelB-PC), 

EMD-3174 (empty EX), EMD-3175 (EGFP-EX), EMD-3176 (CelB-EX) and EMD-3177 

(CelB tetramer). 

AFM 

AFM experiments were performed as described42, using a Nanotec Electrónica microscope 

(Madrid, Spain) operating in jumping mode plus61.  Imaging forces were maintained below 

150 pN.  Rectangular silicon-nitride cantilevers (RC800PSA, Olympus, Center Valley, PA) 

with a nominal spring constant of 0.05 N/m were calibrated before each measurement by 

Sader’s method62.  Experiments were carried out in standard buffer conditions (100 mM 

phosphate, 50 mM NaCl, pH 7) at a controlled temperature of 17ºC.  A 20 l drop of diluted 

stock solution was incubated on previously silanized glass coverslips.  Cleaning and 

functionalizing of glass surfaces was as described39.  After 30 min, the sample was washed 

with buffer solution to a volume of 90 l.  AFM images were processed with WSxM software.  

AFM control experiments were performed in two conditions, at low ionic strength (50 mM 

phosphate, 25 mM NaCl, pH 7) or with 1 mM spermidine (100 mM phosphate, 50 mM NaCl, 

1 mM spermidine, pH 7). Details of the procedure are found in the SI. 

http://www.ebi.ac.uk/pdbe/emdb
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Nanoindentation was done at a loading rate of 60 nm/s with forward elongation of 100 nm.  

Force-vs-indentation curves (FIC) were obtained from force-vs-Z-piezo curves as reported42.  

The elastic constant was obtained by fitting the initial linear part of each FIC.  Breaking force 

and critical indentation were measured with WsxM63.  A summary of the number of particle 

and average values of the mechanical properties analyzed are detailed in the SI. 
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Abstract 

Virus-like particles (VLP) are highly symmetric structures with outstanding mechanical 

properties. However, these nanosized protein assemblies might display defects that alter the 

local inter-monomeric interactions and change the overall performance of the capsid. Here 

we investigate the effects that the controllable introduction of defects have on the stability of 

P22 VLPs by using single-particle Atomic Force Microscopy and bulk biochemical 

techniques. We also use an accessory protein (Dec) as a means of restoring the stability of 

the cages. Our results show that the introduction of defects provokes a concomitant chemical 

and mechanical destabilization of the capsid and reveals that the lines between defects, 

corresponding to the capsid edges, are the mechanical determinants of the breakage. 

Consequent adhesion of Dec protein at these critical regions is capable of restoring the 

undermined chemical and mechanical stability. The surprising agreement between our single 

molecule and bulk techniques suggest that the same structural determinants govern both 

destabilizing process, and it offers the possibility of study symmetry-dependent effects in 

bulk biochemical studies. Overall, our results provide a systematic study of the effects of 

protein-specific destabilization and restabilization of a nanostructure and might serve as a 

model to understand the mechanical performance of other nanomaterials displaying high-

levels of symmetry.  
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Introduction 

Virus capsids represent a class of biological nanomaterials that exhibit impressive 

mechanical properties. These complex and highly regular structures are assembled from a 

limited number of subunits with the overall mechanical properties dependent on local 

subunit-subunit interactions.1 Selective interruption or reinforcement of these interactions 

could lead to controllable changes in global mechanics.2 To understand the effect of local 

interactions on the mechanics of the material it is necessary to probe the propagation of 

stabilizing and destabilizing perturbations with spatial resolution. These mechanical insights 

provide better structural understanding of biological nanomaterial systems as well as 

guidance for designing biomimetic assemblies with specific mechanical properties Here we 

utilize a virus-like particle (VLP) as a controllable system for the examination of capsid 

mechanics after the introduction of destabilizing defects and subsequent reinforcement with 

accessory proteins.  

VLPs are noninfectious cage architectures derived from viral or non-viral sources that 

provide nano-scale engineering platforms for the design of nanoparticles with functionalized 

exteriors and/or interiors.3,4 This potential for modification makes VLPs promising 

candidates for the design of a new class of nanomaterials with applications ranging from 

biomedicine  to electronics.5,6 Self-assembly of many VLPs is remarkably robust but, as with 

any process, can generate structures with imperfect symmetry or defects that modify the 

overall performance of the material.7 Examination of the impact of these defects on the 

mechanical stability of the capsid allows for the design of strategies to avoid defect-

promoting pathways and also offers insight into what elements of the capsid symmetry lead 

to their remarkable properties as robust nanostructures. 

The VLP derived from bacteriophage P22 offers a controllable system for the introduction 

of structural defects and the potential recovery of structural integrity through the binding of 

accessory proteins. P22 procapsid VLPs consist of 415 copies of a coat protein (CP) that 

assemble into a T=7 icosahedral structures around 100-330 scaffolding proteins with a portal 

complex occupying one of the 5-fold vertices. DNA packaging triggers the expansion of the 

immature procapsid form of P22 into the more angular mature phage.8-14 A P22 VLP is 

assembled when CP and SP are coexpressed heterologously or recombined in vitro.15 The 

structural transition from PC to the mature phage can be mimicked in the VLP system by 
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either heating the sample at 65ºC or by briefly incubating the sample with sodium dodecyl 

sulfate (SDS), which results in the expanded (EX) VLP morphology (Figure 1A).16,17 Further 

heating at 75oC leads to the release of the 12 pentons of the cage resulting in the porous and 

less angular wiffle ball (WB) VLP morphology (Figure 1B).18-20 Because the mechanical 

stress of a polyhedron is concentrated at the pentons, expulsion of the pentons in the WB 

form relieves stress and introduces mechanical defects.21  

The P22 VLP system additionally offers the possibility to reinforce the capsid with an 

exterior decoration protein. The Dec protein is a 15 kDa protein that binds to the surface of 

the Phage L capsid as trimers localized preferentially to the 60 quasi 3-fold sites.16,19,22 Phage 

L is highly similar to P22 with only 4 conserved amino acid differences in the coat protein 

sequences and it has been shown that mature P22 virus increase the heat stability of the 

infectious phage after Dec binding.16 Cryo-electron microcopy studies revealed that Dec also 

binds to the EX and WB P22 VLPs, localizing to the quasi 3-fold axes (nearest the 

icosahedral 2-fold axes) and with lower affinity to the true 3-fold axes (Figure 1C).19,22 

Together, the heat-induced penton expulsion and addition of Dec allow for the potential 

controlled introduction and reinforcement of defect sites in the P22 VLP structures. 

To understand the effect that defects and Dec protein have on the stability of these cages we 

studied the mechanical properties and chemical stability of four different forms of P22 

(Figure 1D). We first focused on the effects of penton-release by comparing the mechanics 

and stability of EX vs. WB. Secondly, Dec protein was attached to both morphologies and 

the changes due to Dec addition were compared (i.e., EX vs. EX+Dec and WB vs. WB+Dec). 

Our results showed that, as expected, stability was lost when EX transitioned to WB, but that 

stability could be recovered through the introduction of Dec. Symmetry dependent 

destabilization and restabilization also agreed well with the localization of Dec on either side 

of the 2-fold sites of the capsid. The addition of Dec at these sites increased the mechanical 

stability of the VLPs in a symmetric-dependent manner, showing that selective spatial 

reinforcement could be applied to enhance the overall stability of nanostructures displaying 

high levels of symmetry. 
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Results and Discussion 

The Capsid is Destabilized by the Loss of Pentons 

To assess the degree to which the loss of pentons destabilizes the P22 capsid the mechanics 

and chemical stability of WB was compared to EX. P22 VLPs were produced in E. coli and 

purified as SP containing procapsids. Capsid samples were heated to form either EX or WB 

from a common PC sample and expansion was monitored via non-denaturing agarose gel 

electrophoresis (Figure S1-A). Samples were also assessed by size-exclusion 

chromatography (SEC) monitored by multi-angle light scattering (MALS) and quasi-elastic 

light scattering (QELS). By SEC the EX and WB samples showed a shift in retention time 

suggesting larger particles (Figure S1-B). This was further supported by QELS, which 

reported a radius of hydration of 29.6  1.4 nm for EX and 28.1  1.1 nm for WB compared 

to 26.5  0.8 nm for PC. By MALS the number average molecular weight of EX and WB 

was reduced compared to PC (Figure S1-C and S1-D). The molecular weight for EX of 20.3 

 0.7 MDa was in good agreement with the expected weight of 19.7 MDa for a capsid 

completely devoid of SP. The molecular weight of WB of 18.3  0.5 MDa indicated the loss 

of the majority of the pentons but was short of the expected 2.8 MDa reduction. This 

difference in mass was likely the consequence of having some intermediate state with only a 

few of the pentons released. Single molecule AFM experiments confirmed the existence of 

such intermediate forms in which only a few of the pentons were lacking (Figure S2). 

 

Figure 1. Structure of the particle. Cryo-EM 

reconstruction of (A) EX capsid (PDB: 3IYI)20 and 

(B) WB (PDB: 3IYH)20  (C) Dec protein bound to an 

EX capsid.22 An icosahedron is overlaid to the 

structure (red dashed lines). (C) Schematic of the 

transition of the particles in our study. EX VLPs 

were heated to expel pentons forming the WB 

morphology. Dec proteins were bound to either the 

EX capsids or the WB capsids at a ratio of 160 Dec 

proteins per capsids. 
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To compare the chemical stability of EX and WB samples were incubated with SDS. SDS is 

known to facilitate the expansion of the PC form of the capsid to the EX form presumably 

by providing more subunit flexibility allowing for transition of subunits to the EX structure.16 

Extended incubation of the capsid in SDS or incubation in increasing concentrations of SDS 

leads to degradation of the capsid (Figure S3). When the normalized loss in light scattering 

for EX and WB was compared in 0.5% SDS, WB exhibited much lower stability with a 56% 

average reduction in scattering over 1 hour compared to only 31% for EX over the same time 

period (Figure 2A). By transmission electron microscopy WB samples exhibited a decrease 

of 63% in the percentage of well-formed particles after 20 minutes in 0.5% SDS. In contrast, 

EX samples remain largely intact with a decrease of 10% in the percentage of well-formed 

particles (Figure 2B and C).   

Figure 2. The P22 VLP is destabilized by the loss of pentons. (A) Normalized loss in light scattering at 320 

nm due to degradation of either EX (blue) or WB (red) in 0.5% SDS. Error bars represent the standard error on 

the mean of the normalized scattering at each time point for 3 runs. Electron micrographs of (B) WB (left) and 

WB after 20 min in 0.5% SDS (right) or (C) EX (left) and EX after 20 min in 0.5% SDS (right). Insets in the 

upper  right  corner  show  an expanded  view  of a representative  particle from  the field.  Scale bars:  500 nm.  
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To examine the degree and symmetry dependence of WB and EX destabilization samples 

were examined by AFM. Particles were adsorbed on freshly exfoliated graphite surfaces and 

their orientation was determined (Figure 2D). The 5-fold symmetry (S5) was the most 

frequent orientation, representing a 59% and 66% of EX and WB, respectively (Table S1). 

The other two orientations were classified together as 3- and 2-fold symmetries (S3/S2) 

because the precise position was difficult to distinguish. The average height of the particles 

measured by AFM depended on the orientation. Particles in the S5 orientation presented a 

higher height than particles showing a S3/S2 orientation (Figure 2E). These differences in 

height were in agreement with the fact that in an icosahedron the distance between two 

opposite vertices is larger than the distance between two opposite faces or edges. In both 

cases (S5 and S3/S2) WB particles presented a lower height compared to the corresponding 

orientation in the complete EX forms, which indicated that the loss of pentons had a 

significant effect on the deformability of the particles. Recent AFM experiments have shown 

that the mechanical properties of VLPs might be related to the measured height of the 

particles and that a lower height correlates with a softening of the overall structure.23  

To further investigate this change in the mechanical properties with penton loss we performed 

nanoindentation experiments at the single particle level. Nanoindentation assays have been 

extensively used to study the mechanical properties of viral and non-viral nanocages during 

the last decade.24,25 Briefly, the experiment consists of deforming individual particles with 

an AFM tip until the point of mechanical failure. The force vs. indentation curve (FIC) 

obtained during this irreversible deformation provides information about the rigidity (elastic 

constant) and the strength of the particle (breaking force and critical deformation).24 A 

representative set of AFM images and model schematics is shown in Figure 3. The example 

displays an EX compressed along the S5 axis (Figure 3A and B) and a WB compressed along 

the S3 axis (Figure 3C and D) before and after breakage. The corresponding FICs for these 

particles are plotted together in Figure 3E, which demonstrates the strong impact of penton 

loss on the particle breaking force.  

 

(continued) (D) AFM images of single particles. Top row: S5 oriented EX (left) and WB (right). Bottom row: 

S3/S2 oriented EX (left) and WB (right). (E) Average height measurements from AFM imaged particles of EX 

and WB with  
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 either the 5- or 3/2-fold symmetry axes oriented upward. S3 and S2 axes were grouped because the orientations 

could not be reliably distinguished. Error bars represent standard error on the mean.  

Figure 3. Individual AFM nanoindentaion assay (A) AFM images of an EX capsid showing a S5 orientation 

before and after the nanoindentation. The particle is shown as a 3D representation before (left) and after (middle) 

breaking. The image at right shows a 2D representation after breakage. A pentagon with its 5 faces is overlapped 

to the image to guide the eye (dash lines). The red lines highlight the parts of the particle that were mostly 

affected by the nanoindentation. (B) Schematic at scale of an AFM tip indenting an EX capsid along the 5-fold 

symmetry axis. The size of the tip can be seen to extend past the edges of the penton at the capsid vertex. (C) 

AFM images of a WB showing a S3 orientation before and after a nanoindentation. The left and middle images 

are 3D representations (white arrowheads indicate the position of the missing pentons). The image at right 

shows a 2D representation of the particle after breakage. Dashed circles indicate the position of the missing 

pentons (in red are represented the pentameric sites that were connected after to the breakage). (D) Schematic 

at scale of an AFM tip indenting an EX 
26

 along the 3-fold symmetry axis. Black dots are located at the pentons. 

The contact of the AFM tip can be seen to be localized to the capsid face.  (E) Nanoindentation curves that 

provoked the breakage in A (blue line) and C (red line). (F) Evolution of the elastic constant (k) and breaking 

force of 30 EX and 39 WB. The error bar represents the standard error.  
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The characterization of the pattern of breakage provided important information about the 

stability of the particles. Despite pentons are the regions subjected to the maximum stress,21 

nanoindentations along the 5-fold symmetry axis were rarely accompanied by the release of 

the penton but, instead, resulted in damage to neighboring faces (Figure 3A, right, and Figure 

S4). This might be explained by the relative size and orientation between the particle and the 

AFM tip. Because the tip was much larger than a penton subunit, the area under pressure 

exceeded the size of the penton and spread over the entire structure provoking the collapse 

of one of the neighboring faces (Figure 3B). In contrast, deformations produced along the 

2/3-fold symmetry axes typically involved the collapse (total or partial) of the top face 

(Figure 3C, right, and Figure S4). In those cases, the contact area of the AFM tip was confined 

within the top face of the capsid and deformations mainly affected the top three hexamers, 

which were radial indented (Figure 3D). These fractures usually occurred along the edges of 

the top face, connecting at least two penton sites (Figure 3C and S4). Note that the rupturing 

of these edges was especially notable in WB particles, where the cracks were usually 

constrained between two pentameric vacancies (Figure S3-D).  

To quantify the mechanical parameters 30 EX particles and 39 WB particles were examined 

and the results separated by symmetry (Figure 3F). Measurements of stiffness suggested that 

the loss of pentons was accompanied by a loss of structural integrity. A decrease in particle 

stiffness of 25% was observed between EX and WB along both symmetry axes (Figure 3F, 

bottom). These results were in good agreement with continuum elastic theory and Montecarlo 

coarse-grained simulations predicting that pentons are the most stressed regions of the capsid 

and that their removal should make particles softer.21,27 Penton-less capsid forms exist across 

a wide size range of icosahedral viruses including adenovirus (T=25), HSV1 (T=16), HK97 

and P22 bacteriophages (both T=7).18,28-30 It is worth noting that known penton-less forms 

seem to be localized to T7 particles, which agrees well with predictions that as the T number 

increases more stress is localized to the five-fold sites.21 This repeated occurrence of penton-

less cages suggests that this state is a general consequence of the overall mechanics of 

icosahedral cage architecture. However, the symmetry-specific mechanical properties of a 

virus particle originate at residual level interactions.26,31-33 For example, single point 

mutations in MVM change the elastic response of the capsid more than twofold in a 

symmetry-dependent manner.2 In a recent work by Cieplak et al., 35 virus capsids, with T  
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numbers from 1-7, were tested in a molecular model showing that the change in mechanical 

properties did not correlate with the virus size or the T number but with the mean number of 

interactions to neighboring amino acids.1 This mechanical sensitivity to the molecular 

interactions was also captured in our work when we compared the presented P22 VLP 

experiments to previous studies examining bacteriophage T7, also a T=7 virus of similar 

size.34 The expanded capsid form of P22 is isotropic (i.e, the same value of stiffness was 

obtained along the three different symmetry axes: KEX-S5  KEX-S3/S2  0,20). In contrast, 

bacteriophage T7 capsids were found to be highly anisotropic (the 3-fold symmetry axis was 

two times stiffer than the 5-fold symmetry axis).26  

 

Our results on the breaking force supported the conclusion that the loss of pentons was 

accompanied by a loss of structural integrity (Figure 3F, top). Note, however, that the impact 

of the breaking force was highly anisotropic. The loss of pentons had a huge impact on the 

S3/S2 symmetry (green line) but along the S5 remain the same (black line). This anisotropic 

decrease in breaking force with loss of pentons indicated that the removal of pentons had a 

very specific symmetry-dependent effect on capsid mechanics. The lack of pentons in WB 

reduced more dramatically the strength of the capsids along the S3/S2 most likely because 

the hexamers (of the top face or edge) involved in the deformation had lost their interaction 

with their neighboring pentons, which involves the reorganization of the N-arm of the 

hexameric subunit lying closest to the missing penton.20 Analysis of the critical indentation 

distance supported this assertion and showed that along the S3/S2 WB particles could 

withstand shorter deformations than EX capsids (table S2 and Figure S5-A). In addition to 

the connections lost due to penton removal, an analysis of the inter-capsomeric association 

energies based on the buried surface areas (obtained form Carrilo-Tripp et al.)35 showed that 

three connections involving inter-hexameric interactions were also lost during the transition 

from EX to WB (see table S3 and Figure S6). Two connecting hexamers along the edge and 

one connecting hexamers in the face (see blue dots in Figure S6). Those were all indication 

of the decrease in mechanical strength observed for the WB forms along the 2/3-fold 

symmetry axes.  
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Dec Protein Reinforces Pentonless Particles 

Dec protein from bacteriophage L has been previously shown to enhance the heat tolerance 

of infectious P22.16 Though not part of the P22 viral genome, Dec binds to both the EX and 

WB VLP preferentially at the quasi 3-fold sites, which straddles the 2-fold axes of the 

capsid.19 We found that the destabilization of WB VLPs was most evident for the S3/S2 

orientation, with fractures occurring along the edges of the cage (Figure S4-D). Binding of 

Dec directly adjacent to these points of destabilization in the WB may lead to recovery of 

stability. To examine this possibility, the SDS degradation of EX and WB were compared to 

Dec bound samples of both VLP morphologies. While Dec reinforcement had little effect on 

the degradation of EX in 0.5% SDS, the degradation of WB was significantly reduced. 

WB+Dec showed a 20% reduction in 0.5% SDS over 1 hr compared to 56% for WB alone 

(Figure 4A).  

Figure 4. Dec selectively reinforces WB VLPs. (A) Normalized loss in light scattering at 320 nm due to 

degradation of (top) WB (red) or WB+Dec (black) and (bottom) EX (red) or EX+Dec (black) in 0.5% SDS. 

Error bars represent the standard error on the mean of the normalized scattering at each time point for 3 runs. 

(B) Electron micrographs of WB (top) or WB+Dec (bottom) after 20 min in 0.5% SDS. Insets in the upper right 

corner show an expanded view of a representative particle from the field. Scale bars are 500 nm. (C) Height of  
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This recovery in stability was supported by TEM. Micrographs of WB treated with 0.5% 

SDS for 20 min displayed 62% reduction in the ratio of formed to incomplete particles 

compared to untreated WB. With Dec bound, an 11% reduction in the ratio of formed to 

incomplete particles was observed (Figure 4B and S7). In agreement with these results, AFM 

images showed that Dec bound WB particles increased in average height 3% along the S5 

axes and 5% along the S3/S2, whereas the height of EX capsid was only increased by 0.2% 

and 2%, respectively (Figure 4C). The presence of Dec attached to the particle surface could 

not be observed by our AFM due to limitations in lateral resolution (5 nm),26,36 but we 

systematically observed that after Dec binding the capsomeric appearance of the structures 

was less defined (Figure 4D).  

 

The effect of Dec binding was also explored by single nanoindentation assays (Figure 5A 

and 5B). No significant changes in the elastic constant were observed after Dec binding (only 

a slight increase of 13% for EX+DEC along the S5 axes), but important differences were 

observed in the breaking force. The binding of Dec to EX VLPs was accompanied by a 

moderate 15% and 12% increase in the breaking force for the the S5 and S3/S2 symmetries 

axes, respectively (Figure 5A). In contrast, WB VLPs showed a recovery of stability that 

highly depended on the orientation. With Dec binding the breaking force only increase a 6% 

along the S5 symmetry axes, but a rise of 31% was observed for the S3/S symmetry axes 

(Figure 5B). Remarkably, this symmetry-dependent reinforcement seemed to compensate for 

the observed loss of stability after the expulsion of pentons (Figure 3). Supporting this idea 

of a selective recuperation of stability, we observed that WB VLPs with Dec recovered the 

deformation capacity loss during the removal of pentons along the S3/S2 axes (table S2 and 

Figure S4). Naked WB VLPs resisted deformations of 9 nm, but after Dec binding WB VLPs 

extended this distance to 12 nm (the same value obtained for EX VLPs with and without 

Dec).  

 

(continued) particles with either the S5 axis or the S3/S2 axes oriented upward. S3 and S2 were grouped because 

the orientations could not be reliably distinguished. Error bars represent standard error on the mean. (D) Single 

particle AFM images of either the S5 (top row) or S3 (bottom row) orientations or EX+Dec (left) or WB+Dec 

(right). 
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Figure 5. Mechanical changes due to Dec binding. (A) Evolution of the breaking force and elastic constant 

(k) for the transition EX→EX+Dec along the S5 axes (black curve) and S3/S2 axes (green curve). (B) Evolution 

of the breaking force and elastic constant (k) for the transition WB→WB+Dec along the S5 axes (black curve) 

and S3/S2 axes (green curve).  

 

To collectively compare the multiple contributing mechanical parameters, the net elastic 

energy transferred to the system to produce the breakage was analyzed (Figure 6A). The 

energy required to break EX VLPs was similar to that of WB VLPs along the S5 axes, but 

this value dropped by 50% along the S3/S2 axes. As expected, after Dec binding the required 

elastic energy increased for both morphologies, but the effect was not proportional. Whereas 

along the S5 axes the effect of Dec was similar (25% vs. 30%), along the S3/S2 axes it was 

more significant for the WB morphology (10% vs. 50%). In summary, our energetic study 

demonstrated two things: (1) the insertion of defects had a symmetry-dependent effect, being 

more important for the S3/S2 orientation (see one asterisk in Figure 6A), and (2) it was 

precisely this orientation the one that show the major effect after Dec binding (see two 

asterisks in Figure 6A). An analysis of the position of Dec protein in the structures shed some 

light on these results (Figure S6). Dec proteins locate nearest the icosahedral 2-fold axes, 

reinforcing the edges of the capsid (see trimers in Figure S3).19,22 It binds precisely at the 

positions where the inter-capsomeric interactions were lost after the transition from EX to 

WB (blue dots, Figure S6). It seems reasonable to suggest that, in the same way that those 

interactions seemed the responsible for the symmetry-dependent loss of stability, the 
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reestablishment of those same connections by Dec result in the restoring of the mechanical 

strength.  

Figure 6. AFM elastic energy required to break each 

configuration. (A) Example of a nanoindentaion 

experiment performed on a WB+Dec along the S3 axes. The 

AFM images before (top) and after (bottom) the rupture 

show that the top face was completely removed (white 

arrows indicate the penton-less vacancies).  The area below 

the elastic FIC (green area) represents the energy provided 

to the system to produce the breakage. (B) Statistical 

analysis of the different energies of rupture: along the S5 

axes (left side) and S3/S2 axes (right side). The most 

significant decrease in energy was observed for the S3/S2 

orientation after penton removal (one asterisk). Likewise, 

the most significant increase in energy was observed for the 

S3/S2 orientation after Dec binding (two asterisks). 

 

 

 

 

 

 

Chemical and Structural Determinants of the Stability 

Despite the stark differences in the means of perturbation, our bulk chemical and single-

particle mechanical stability experiments reflected the same trends between capsid 

morphologies. The agreement in these trends likely originates from similar structural 

elements of the capsid being interrupted. Due to the difficulty in observing chemical 

destabilization in a non-bulk, symmetry-specific manner there remains a gap in the 

understanding of this process. However, single-particle, symmetry-specific mechanical 

perturbation results may provide some insights into the similar trends seen in the chemical 

experiments.  
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Chemical destabilization and degradation of the particle with SDS likely functions by 

interrupting both intra- and inter-subunit hydrophobic contacts. This effect, although it will 

likely be isotropic about the capsid, may be more effective acting between subunits that are 

held under greater mechanical stress or interacting with a lower number of bonds. The 

observed initial expansion of the capsid in SDS suggests that intra-subunit contacts are 

initially disrupted allowing for adoption of the EX morphology without losing capsid 

integrity. Further degradation of the capsid suggests interruption of inter-subunit interactions 

and/or intra-subunit contact, resulting in eventual loss of capsid integrity.  

Our AFM results showed that fractures occurred along the edges, the second most stressed 

regions of the capsid after the pentons.21 This feature was especially evident for the WB 

morphology, where deformation led to cracks that connected two pentameric sites. An 

inspection of the inter-capsomeric energies between subunits revealed that along those edges 

interactions were lost after the transition, which explained the symmetry-dependent 

destabilization observed in our single molecule experiments. Subsequent Dec binding at 

those critical points was able to restore the stability of the capsid in a symmetry-dependent 

way. The significant recovery of chemical stability with Dec binding to WB may indicate 

that capsid rupture under these conditions also occurs at the inter-capsomeric contacts along 

the edges, exposed during the transition from EX to WB, which would allow for more ready 

intercalation of SDS and faster degradation of the capsids.  

 

Symmetry-dependent effects of auxiliary proteins 

Auxiliary proteins are a common strategy used by different viruses to stabilize their structures 

against remarkable mechanical forces involved in the viral lifecycle.20,37 Recent publications 

have shown that binding to the shells enhances the mechanical stability of the viral cages. 

However, contradictory data has been published concerning the effect of gpD on lambda 

phage.37,38 A possible explanation of this disparity may be the absence of symmetry-specific 

examination of the effect of gpD binding. An anisotropic reinforcement is observed for P22 

after the Dec binding and a similar effect could explain the disagreement observed for lambda 

phage, where symmetry was not considered. In fact, the difference in decoration protein 

binding site location for HSV1, which only binds adjacent to the pentons, and lambda phage, 

which binds similarly to Dec at the quasi and true 3-fold sites, has been justified by a 
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changing distribution of the stress with an increase in capsid size.37 20,37,38 If this is the case, 

it should be expectable that that the reinforcement mediated by auxiliary proteins would have 

a symmetry-dependent effect to compensate for the anisotropic stress contribution of the 

capsid.  

 

Conclusions  

We have shown that the controlled, symmetrical introduction of defects into a viral cage leads 

to a symmetry-dependent destabilization of the capsid. In addition, we have shown that 

symmetry-dependent binding of an accessory protein might be employed to restore the loss 

of stability.  

The symmetric inclusion of defects in P22 VLPs modifies the chemical and mechanical 

properties of the capsid in a striking way. Our light scattering and TEM analysis showed that, 

under 0.5% SDS, WB VLPs exhibited much lower stability than EX VLPs. This transition 

was also explored by AFM, which showed that the stability loss was dependent on the 

orientation of the capsid. While along the S5 axes the breaking force was maintained for both 

VLPs morphologies, along the S3/S2 axes the breaking force dramatically dropped after the 

transition. An inspection of the patterns of breakage and interaction energies between capsid 

subunits allowed us to conclude that the edges of the cage were the main responsible for the 

loss of stability.  

By adhering a decoration protein that bound directly over those edges the decrease in 

mechanical strength was restored. We found that the adhesion of Dec enhanced the overall 

mechanical properties of the VLPs but, notably, had a more significant effect on the 

mechanical variables most weakened after the removal of pentons. In agreement with these 

AFM results, our light scattering and TEM experiments showed that Dec binding had a 

greater stabilizing effect toward WB VLPs than toward EX VLPs. The coupling of single 

molecule and bulk techniques permitted the in depth examination of contributing factors to 

these symmetry-specific phenomenon, allowing for a deeper understanding of chemical bulk 

destabilization, and for the potential future examination of both infectious viral systems and 

synthesized nanomaterials. 
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Materials and methods 

Materials 

Chemically competent BL21 (DE3)  E. coli, cells were purchased from Lucigen. TEM grids 

were purchased from Electron Microscopy Sciences. All other chemical reagents were 

purchased from Fisher Scientific. 

Protein Production 

E. coli strains transformed with a pET Duet plasmid contianing either the CP and SP genes 

or an N-terminal 6x his-tag Dec gene were grown in LB medium at 37 °C in the presence of 

ampicillin. Expression was induced at mid-log phase (OD600=0.6) with isopropyl β-D-

thiogalactopyranoside (IPTG) added to a final concentration of 0.5 mM. 4 hours post-

induction cells were harvested by centrifugation and cell pellets stored at -80 °C overnight. 

Cell pellets were resuspended in PBS (100 mM sodium phosphate, 50 mM sodium chloride, 

pH 7) and lysozyme and RNAse were added. Protease inhibitor, cOmplete™minitabs 

(Rosche), were added to Dec cultures. Cell suspensions were incubated for 30 minutes at 

room temperature. Suspensions were lysed by sonication and cell debris was removed by 

centrifugation at 12,000 g for 45 min at 4 °C.  

P22 VLPs were purified from the supernatant by ultracentrifugation through a 35% (w/v) 

sucrose cushion and the resulting pellet was resuspended in PBS. VLPs were purified using 

a S-500 Sephadex size exclusion column and a Biorad Biologic Duoflow FLPC. Flow rate 

for SEC purification was 1 mL/min. Fractions containing P22 were concentrated by 

ultracentrifugation. 

Dec was purified via his-tag affinity chromatography using a 5 mL cOmplete™ his-tag 

column (Rosche) and a Biorad Biologic Duoflow FLPC. Samples were initially eluted using 

a 60mL gradient from 20-250 mM imidazole. Fractions were dialzyed against PBS and 

reloaded onto the column. Samples were concentrated and further purified using a short 10 

mL 20-250 mM gradient and subsequently redialyzed against PBS. 

Expansion 

P22 PC VLPs were diluted to ~1.5 mg/mL total protein in PBS and heated at either 65 oC or 

75 oC for 25 minutes. Samples were at 16,000 xg for 5 minutes to remove any aggregates and 
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the supernatant analyzed for expansion. Samples were analyzed by non-denaturing gel 

electrophoresis as previously described.39 

SDS Destabilization 

For TEM and initial concentration screening experiments, samples were incubated at room 

temperature in varying concentration of SDS in PBS and quenched at the point of analysis 

by either loading on a non-denaturing agarose gel or by deposition on a TEM grid.  

For light scattering experiments samples were diluted to ~1 mg/mL CP. Dec-bound samples 

were made by mixing Dec with P22 VLP samples at a ratio of 160 Dec trimers per capsid 

prior to dilution. The intensity of light scattering was monitored through the optical density 

(OD) at 320 nm with a background subtraction of the OD at 800 nm to account for any 

baseline fluctuations. Data was normalized to the starting OD320 value and all runs were 

performed n=3. Runs were plotted using IGOR Pro 6.3. 

TEM 

Samples (5 μL, 0.1 mg/mL protein) were incubated for 30 s on carbon-coated copper grids. 

Grids were then washed with 5 μL of distilled water and stained with 5 μL 2% Uranyl acetate. 

Images were captured at an accelerating voltage of 80 kV on a JEOL 1010 transmission 

electron microscope. 

AFM 

AFM experiments were performed as described previously in chapter 2.40 Experiments were 

done with a Nanotec Electrónica microcope (Madrid, Spain) operating in jumping mode 

plus.41 Imaging forces were kept between 60-150 pN. Rectangular silicon-nitride cantilevers 

(RC800PSA, Olympus, Center Valley, PA) with a nominal spring constant of 0.05 N/m were 

used. Before every measurement cantilevers were calibrated by Sader’s method. 42 

Experiments were carried out in buffer conditions (100 mM phospathe, 50 mM NaCl, pH=7) 

at a controlled temperature of 17ºC. A 20 µL drop of diluted stock solution was incubated on 

a freshly exfoliated highly ordered pyrolytic graphite (HOPG) surface (ZYA quality; NT-

MDT, Tempe, AZ). After 30 min, sample was washed with buffer solution until a volume of 

90 µL was reached. AFM images were processed with the WSxM software.43 For the binding 

of Dec (50 mM HEPES, 100 mM NaCl) sample was mixed at 160 Dec trimers per capsid 
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(i.e., 2x excess Dec per binding site) and allow to bind for an hour at room temperature prior 

to the adsorption.  

Nanoindentation were done at a loading rate of 60 nm/s with forward elongation of 100 nm. 

Force-vs.-indentation curves (FICs) were obtained from Force-vs.-Z piezo (FZ) curves as 

previously explained in chapter 2. In brief, to obtain the FIC one has to subtract from the FZ 

(which includes the deformation of the tip cantilever and the particle) the compliance of the 

tip cantilever. The elastic constant was obtained by fitting the initial linear part of each FIC; 

the breaking force and critical indentation were measured using the WsxM software.43 To 

calculate the energy we assumed a linear deformation and integrated the area below the FIC, 

considering the elastic constant and the critical indentation.  
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Abstract 

Protein assemblies, including viruses and virus capsids, are highly dynamic structures. Not 

only do they undergo concerted structural reorganizations in response to changes in the 

environment, they are also constantly subjected to thermally driven conformational 

fluctuations. Icosahedral viral capsids are made of a large number of symmetrically organized 

protein subunits whose local movements cause global structural reorganizations that are 

known to play an essential role in viral infection. In the capsid of the minute virus of mice, a 

conformational rearrangement is associated with molecular translocation events required for 

viral infection. In vitro, this transition can be reversibly induced by mild heating of the capsid, 

but little is known about the capsid regions involved. We used a modified form of hydrogen-

deuterium exchange coupled to mass spectrometry (HDX-MS) at varying temperatures to 

structurally dissect the dynamics of the MVM capsid. Our data revealed that capsid pores 

through which the viral genome is packaged and peptide signals are externalized during viral 

infection, are among the most dynamic capsid regions at equilibrium at any temperature. 

Remarkably, the results also indicate that the transition associated with peptide translocation 

involves a global conformational change of the capsid leading to structural alterations in 

regions distant from the pores. These alterations are reflected in both an increased dynamics 

of some secondary structure elements in the capsid shell from which the spikes protrude, and 

a decreased dynamics of long intertwinned loops that form large capsid spikes. More 

generally, this study demonstrates the potential of HDX-MS to explore in detail temperature-

dependent structural dynamics in large macromolecular protein assemblies. 

  



 

149 
 

C
h

ap
te

r 
7
 

Introduction 

Non-enveloped virus particles include multiple copies of one or a small set of proteins 

organized in a highly symmetrical capsid that encloses the viral genome. The structures of 

these large macromolecular assemblies at the atomic level, obtained mainly by X-ray 

crystallography or cryo-electron microscopy, have contributed enormously to the 

understanding of these complex, hierarchical biological systems.1-3 However, the structures 

depicted by these techniques may be somewhat deceptive. Viruses are not a static ensemble 

of atoms with a fixed position over time, but highly dynamic structures that constantly 

fluctuate around an average conformation at equilibrium as a result of thermal energy. These 

fluctuations are commonly termed ‘breathing’, and represent an important feature in virus 

dynamics, playing a role in the infection process.4 In addition, changes in physicochemical 

conditions or the action of specific biomolecules in vivo can modify the energy landscape, 

leading to structural transitions between different states separated by an energy barrier.4-7 

Characterization of these and other biologically relevant structural transitions (typically 

characterized by longer time scales) require specific physicochemical conditions, such as a 

particular range of temperatures, that frequently fall beyond the technical limits of current 

high-resolution structural methods. 

The minute virus of mice (MVM) represents an excellent model system for studying 

functionally relevant motions and rearrangements in large protein complexes. MVM is a non-

enveloped single-stranded DNA (ssDNA) parvovirus with a T=1 icosahedral capsid made of 

60 equivalent subunits which share a same sequence and fold, except for the length of their 

structurally disordered N-terminal segments (Nt) (Figure 1A).8 VP2 is the most abundant 

capsid protein. VP1 is an extended form of VP2 and has a longer Nt, whereas in VP3 the Nt 

of VP2 has been shortened by proteolytic cleavage during virus entry into a host cell. The 

Nts of VP2 and VP1, initially buried in the capsid, contain molecular signals that are required 

during various stages of the infection cycle. They are then externalized through capsid pores 

located at the 5-fold symmetry axes (Figure 1B).9-15 These pores are also involved in 

packaging and ejection of the viral ssDNA.16,17 Recombinant VP2 capsid proteins are able to 

assemble into DNA-free virus-like particles (VLPs) that are structurally nearly 

indistinguishable from natural empty MVM capsids, except for the absence of the disordered 

VP1 Nts.18 These VLPs have been used as a model system to explore the structural 
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determinants of MVM capsid assembly, its physical properties and function.17-27 The 

biologically required externalization of VP2 Nts, triggered in vivo by DNA encapsidation,13 

can be mimicked in vitro by mild heating of the VLPs above approximately 45ºC.19,20 The 

temperature-dependent transition causes a subtle, reversible cooperative conformational 

rearrangement that involves slight changes in the degree of solvent exposure of some 

tryptophan residues which can be measured by spectrofluorometry.20 Previous attempts to 

characterize this conformational rearrangement by conventional methods has been hampered 

by the required heating conditions. In this work we use the MVM system to show the value 

of a modified form of hydrogen-deuterium exchange coupled to mass spectrometry (HDX-

MS).28-33 to structurally dissect a viral conformational rearrangement by probing local 

variations in capsid dynamics with temperature.  

HDX-MS has been previously used to study equilibrium dynamics, (un)folding, structural 

transitions and protein-protein and protein ligand interactions of numerous soluble and 

membrane embedded small proteins and protein complexes.34-40 It has proven most valuable 

to obtain information on the structure and dynamics of virus capsids, complementing and 

expanding the more static pictures obtained by X-ray crystallography or cryo-EM.41-44 The 

potential of HDX-MS to distinguish not only the dynamic behavior of different regions of a 

protein, but also between multiple subpopulations of the protein ensemble provides 

complementary information to other dynamic techniques like nuclear magnetic resonance 

(NMR) spectroscopy.45 Added to this, the reduced sample consumption and tolerance 

(mainly the absence of an upper size limit) make HDX-MS a popular and powerful tool in 

structural biology.  

In this study we have performed HDX-MS experiments over a range of temperatures to study 

local variations in dynamics of the MVM capsid along its heat-induced structural 

rearrangement. First, we studied capsid dynamics in the basal state (at 0ºC) and show that 

structural elements important for virus infectivity, such as the pore region or the Nts, present 

the fastest exchange. Second, we monitored the deuterium uptake at increasing temperature 

to determine region-specific temperature-dependent changes in capsid dynamics. Our results 

show that the cooperative transition required for viral infection and associated to 
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translocation events to the capsid pores is not constrained to the vicinity of the pores, but 

involves a global rearrangement of the capsid.  

Figure 1. The MVM capsid and HDX-MS experimental setup. a) The MVM capsid structure (PDB ID 

1Z1418exhibits a icosahedral T = 1 symmetry. The black lines delimit the 60 VP2 subunits. The icosahedral 

symmetry axis (5-fold, 3-fold, 2-fold) are labeled. b) Five VP2 subunits (shown as ribbon models surround a 5-

fold axis pore (center) through which translocation of peptide segments and viral DNA occurs during viral 

infection. The capsid contains 12 such pores. c) Native mass spectrum of the intact MVM VLPs. A well-

resolved series of charge states reveals a mass of 3883 kDa, confirming that the capsid consists of 60 copies of 

the 64 kilo-Dalton VP2 capsid protein. d) Schematic representation of the modified HDX approach used. The 

uptake of deuterium by the capsid protein backbone is monitored as a function of time at varying incubation 

temperatures around the transition temperature. 

 

Materials and Methods 

Expression and Purification of VLPs of MVM 

Bacmid BM-VP2 20 was used for the production of VLPs of MVM in H-5 insect cells. VLPs 

were purified as previously described19 with minor modifications. VLP preparations were 
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extensively dialyzed against phosphate-buffered saline. Capsid purity and integrity were 

assessed by electrophoresis and electron microscopy. 

Spectrofluorometry of VLPs 

The heat-induced conformational transition of the VLP associated to Nt externalization was 

initially probed by following the variation in intrinsic Trp fluorescence in thermal gradients 

as previously described. 20 Reversibility of the conformational rearrangement was 

ascertained by repeated fluorescence analysis after heating to a controlled maximum 

temperature (60ºC) and cooling. Capsid dissociation was observed only at high (75ºC) 

temperatures. 20 

Native MS 

Native MS samples were prepared by exchanging the buffer in which purified VLPs were 

obtained for aqueous ammonium acetate using multiple concentration and dilution steps with 

a centrifuge filter (Millipore). For the experiments shown in Figure 1, samples were prepared 

in 100 mM Ammonium acetate pH 7.4 and kept on ice. For control experiments under HDX 

conditions, samples were heated at 60ºC and spectra were acquired at multiple time points. 

Before injection into the mass spectrometer, low amounts of triethylammonium acetate were 

added. Mass spectrometry experiments were performed on a modified QToF II (MS Vision; 

Waters, U.K.)46, operating at 10 mbar source pressure, 1300–1500 V capillary voltage, 100 

V cone voltage, 300 V collision energy with 2×10−2 mbar pressure in the collision cell using 

xenon as collision gas.47 Tandem mass spectrometry experiments were acquired by full 

envelope selection and fragmentation using a 400 V potential over the collision cell. Aliquots 

of the samples were introduced in the mass spectrometer through nano-electrospray 

ionization using gold coated boro-silicate capillaries produced in-house. All data was 

analyzed using Masslynx 4.1 software (Waters). 

Hydrogen-Deuterium Exchange MS 

Fluorometry studies showed that the structural transition is complete for most of the particles 

within a time of 5 minutes at >50ºC.20 Aliquots of MVM VLPs of 3 μg/ml and D2O (99.99% 

deuterium content) were heated separately at different temperatures (25, 37, 45, 50, 55, 60 
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ºC) for 5 minutes prior to the start of the exchange reaction. The exchange reaction was 

initiated by addition of the D2O (98% of deuteration) and during the reaction heating was 

maintained. Reactions were quenched at set time points (10, 30, 60, 600, 1800, 3600 and 

14400 seconds) by rapid addition of ice-cold quench solution (100 mM TCEP and 2M 

Guanidine HCl at pH 2.5). Immediately after quenching, the samples were injected into a 

Waters HDX / nanoAcquity system for digestion on an online pepsin column operating at 

100 μL/min and 25°C, followed by separation on a 10 minute reverse phase UPLC gradient 

at 0.5°C and MS on a Waters Xevo QToF G2. Acquisition of HDX of MVM without heating 

was performed identically but samples were incubated on ice (at 0ºC). All experiments at all 

temperatures were performed in triplicate. Identification of peptides was performed by 

dilution in H2O and using MSE data acquisition. 83 peptides covering 80% of the sequence 

were identified for the experiments performed at 0ºC. For VP2 regions covered by more than 

one peptide the criteria were that the shortest peptides would be selected for the analysis, 

always ensuring that redundant information was consistent. This led to a subset of 51 

peptides, representing the same 80% sequence coverage. For the experiments performed at 

increasing temperature 69 different peptides could be identified (over the entire temperature 

range) with a sequence coverage of 70%. From those, a subset of 35 peptides were used for 

the analysis. The criteria for selecting them was the same than before. Data for peptide 

identification was processed with ProteinLynx Global Server 2.5 software.  Deuterium 

uptake was calculated compared with the control samples in H2O using Waters DynamX 3.0 

software. 

MS under Denaturing Conditions 

To acquire spectra of denatured VP2, samples were introduced in the Waters HDX / 

nanoAcquity system without pepsin digestion. Spectra were deconvoluted using MaxEnt 

algorithm in Masslynx 4.1 software (Waters). 

Data Analysis 

Uptake plots. Time courses of the number of deuterons incorporated at each temperature 

were plotted for the different peptides and, following procedures described earlier 31, fitted 

to two exponential equation 
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D = N − A1e−k1t − A2e−k2t   [1] 

where D is the number of deuterons observed at time t, N equals the maximal deuteration 

that exchange within the time range of the experiment, A1 is the number of amide Hs 

exchanging with fast kinetic rate constant (k1~10min-1) and A2 the number of amide Hs 

exchanging with a slow rate constant (k2~0.001min-1). To determine the non-exchange 

amides the total number of exchangeable sites was subtracted from the sum of the detected 

exchangeable sites (i.e., A1 + A2). The total number of exchangeable sites was calculated by 

subtracting the N terminus and the number of prolines from the peptide length and 

multiplying it by 0.98 (% deuterium in the solvent). Profiles were fitted without considering 

back exchange or artifactual in-exchange (burst phase), as previously done by Monroe et al.43 

Due to rapidity of the exchange values from the fitting (k1, k2, A1, A2) for some of the peptides 

did not converge, and significant data could not be obtained from those fits. Therefore, we 

decided to base our analysis on the different deuteration levels that were reached over time 

at increasing temperature. To estimate the average enthalpy change (H) for local 

rearrangement, ∆H𝑎𝑣𝑔
𝑜 , we followed the procedure described in Oyeyemi et al.48 The number 

of exchanged amide hydrogens at 4h was normalized to the total exchangeable amides (NT, 

t/N4h). Plots of ln(NT, t/N∞) as a function of 1/T for each peptide were linearly fitted to 

determine the average using Origin Pro 8.5.1. The same protocol was used for all the peptides 

despite the fact some of them did not reach a steady plateau at 4h (for example, peptide 248-

255). We had to limit our analysis at 4 hours because data at 18 hours timepoints (not shown) 

showed great variation within the technical replicates. Nonetheless, native MS at 60ºC for 

>5h confirmed the stability of the particles under HDX-MS conditions. Capsid dissociation 

occurs only at a temperature of 70-80ºC.19,20 We should mention that defining an average 

enthalpy (∆H𝑎𝑣𝑔
𝑜 )  for peptides not presenting a steady plateau is not accurate, as the 

equilibrium state might have not been reached. However, for simplicity we used the same 

thermodynamic protocol for all the peptides, which allowed us to systematically compare the 

energetic barriers of the different regions of the capsid.   

Data fitting to a two-state transition. The transition temperature was determined by fitting 

the data to a two-state transition.20 Thermodynamics parameters (𝑇𝑀,∆𝐻𝑇𝑀

‡
) were obtained 
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by nonlinear fitting of the experimental number of deuterons or fluorescence intensity, as 

previously done by Carreira et al.20  For HDX-MS experiments, all peptides showing a linear 

increase in uptake were fitted, and the ones showing square r values of 0.99 or higher (11 

peptides) were used for the calculation of the average Tm. The values of the transition 

enthalpy, ∆𝐻𝑇𝑀 , were subjected to large errors hampering an accurate estimation.  

 

Results and Discussion 

The general workflow of the temperature-dependent HDX experiments described in this 

paper is shown in Figure 1D. It follows the procedure previously described by Oyeyemi et 

al.48 and Liang et al.49 to characterize temperature dependent changes in thermophilic 

enzymes. Overall the approach is similar to most other HDX experiments but includes 

additional sample preparation and data analysis steps. Prior to HDX analysis, we verified 

both the composition and stoichiometry of the purified VLPs using native mass spectrometry 

(Figure 1C). In these spectra a well-resolved series of charge states was detected around 

30,000 m/z, which was assigned to a mass of 3883.0 ± 0.8 kDa, corresponding well with the 

expected mass of 60 copies of the monomeric VP2 protein: 3877.9 kDa. The mass of the VP2 

monomer was determined by LC-MS under denaturing conditions (Figure S1-B). The 

oligomeric state was additionally confirmed using tandem MS experiments (Figure S1-A). 

Having verified the integrity of the VLPs, we performed HDX analysis (Figure 1D). Samples 

stored in protiated buffer were heated in parallel with a large volume of D2O for 5 minutes. 

The solutions were subsequently mixed at a ratio that reached 98% deuterium content and 

continuously heated over different periods of time during which backbone amide hydrogens 

could exchange with deuterium from the buffer. After stopping the reaction with a quench 

solution, proteins were denatured and reduced and this mixture was loaded onto a HPLC 

system. The peptides that resulted from the digestion were separated and analyzed by the 

coupled mass spectrometer, after which the uptake time courses were measured.  
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Structural Elements Involved in Basal "Breathing" of the MVM Capsid 

In previous structure-function studies, mutant MVM particles were compared with wild-type 

particles using spectrofluorometry, atomic force microscopy (AFM) and infectivity 

assays.21,26 Mutation of residues located around the base of the 5-fold axes pores abolished 

viral infectivity, impaired the transition observed by fluorometry, and showed a highly 

increased mechanical stiffness at the pore regions.21,26 Other studies showed that viral ssDNA 

segments bound to the capsid inner wall in the native MVM virion confer a higher resistance 

to thermal inactivation of its infectivity by increasing the mechanical stiffness of the capsid 

around the 2-fold and 3-fold axes (relative to mutant virions in which some of the capsid-

DNA interactions had been removed).22-24,27 However, this biologically advantageous 

stabilization of the virion was achieved while specifically preserving the mechanical stiffness 

of the capsid around the 5-fold axis pores. Together, the above results indicated that the 

distribution of mechanical stiffness and conformational dynamics of the MVM virion and its 

capsid are essential for virus survival.  

To directly investigate the equilibrium dynamics (‘breathing’) of different regions of the 

MVM capsid in its basal state, we performed HDX-MS experiments at 0ºC without prior 

heating (Figure 2). Results provided a high-resolution map of the level of exposure to solvent 

of different capsid regions over time, revealing different kinetics in the regions represented 

by different peptides (Figure 2A). We classified the capsid peptides into three different 

groups according to their level of deuterium uptake after one hour: from 0 to 15% (blue dot), 

from 16% to 34% (green dot) and from 35 to 100% (red dot). Figure 2B shows the deuterium 

uptake level after one hour, color-coded on the crystal structure of the VLP (PDB ID 1Z14).18 

The most dynamic capsid regions correspond to the Nt of the capsid protein subunits (located 

at the capsid interior and not visible in the crystal structure), some highly exposed loops at 

the tips of the 3-fold spikes and, interestingly, the structural elements forming the capsid 

pores at the 5-fold axis. These results provide direct proof for intense conformational 

fluctuations at equilibrium (breathing) in the capsid pore regions that are involved in 

translocation events during MVM infection.  
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Figure 2. Deuterium uptake by the MVM 

capsid at 0ºC. a) Uptake of deuterium for a 

selection of peptides at different time points 

expressed as a fraction of the maximum 

uptake. Dots indicate the classification of 

the peptide after 1 hour of exchange with 

high uptake as red, medium uptake as green 

and low uptake as blue. b) Mapping of the 

peptide uptake levels after 1 hour on the 

capsid structure. For simplicity, only five 

subunits surrounding a capsid pore (center) 

are represented. The level of exposure from 

the highest to the lowest percentage is 

colored as red-white-blue, respectively. 

Capsid regions that could not be probed are 

shown in yellow. Squares indicate the most 

dynamic regions of the capsid.  
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Structural Dissection of Changes in MVM Capsid Dynamics during a Conformational 

Transition Associated to Biologically Relevant Translocation Events 

A limitation of fluorescence spectroscopy is that it does not provide any detailed information 

about the structural elements and residues involved in the transition. In contrast, the peptide 

resolution offered by HDX-MS leads to a powerful approach to compare specific changes in 

the dynamics of different regions in the viral particle around the transition temperature. In 

this way structural elements involved in this transition could be identified. Purified VLPs 

aliquots were incubated between 10 seconds and 4 hours at 6 different temperatures (25, 37, 

45, 50, 55 and 60 ºC). An initial examination of the HDX time course plots at different 

temperatures revealed conspicuous differences between peptides that suggest region-

dependent variations in dynamics. A representative set of these distinct behaviors is shown 

in Figure 3A (left column), where the time course plots of four different peptides are shown. 

Some peptides are characterized by a rapid exchange rate that was not dependent on 

temperature (i.e., 153-164), whereas others present increasing deuteration levels at increasing 

temperatures (i.e., 169-215, 178-195, and 248-255). Noticeably, for some peptides (i.e., 178-

195 and 248-255) the deuteration level changes abruptly at temperatures close to the reported 

TM of the capsid conformational change detected by fluorescence and associated to Nt 

externalization through the pores. To test whether these abrupt changes in dynamics could 

be associated to this transition, we fitted our HDX data to a unimolecular two-state transition 

in the same way that it had been done in fluorescence spectroscopy experiments.20 Nicely, 

the TM obtained by fluorescence (47.2±0.3ºC, Figure 3B) or by HDX-MS experiments (⟨𝑇𝑚⟩ 

48±1ºC, Figure 3C) were indistinguishable. Thus peptides with abrupt changes in dynamics 

around the TM of the translocation-associated transition observed by fluorescence can be used 

as markers to identify capsid regions that are structurally altered during this transition, as 

described below.  

To systematically analyze and quantify this conformational rearrangement in structural detail 

we carried out a thermodynamic analysis of the changes in dynamics of individual capsid 

peptides. Previous studies showed that it is possible to determine the energy barrier 

associated with the reversible internal motions of a small monomeric enzyme (tens of kDa) 

using HDX-MS as a function of temperature (see supplemental for theoretical 

background).48,49 
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Figure 3. Probing the heat-induced transition of the MVM capsid by fluorescence and HDX-MS. (a) HDX 

time course plots of 4 representative peptides (left) and plots of 𝑙𝑛 (
𝑁𝑡=4ℎ𝑟

𝑁𝑇𝑂𝑇𝐴𝐿
) as a function of  

1

𝑇
 (right). From 

these plots the different average enthalpy (∆H 
𝑜) can be determined for that specific region. (b) Tryptophan-

specific fluorescence of the MVM VLPs as a function of temperature. Data (dots) were fitted to a two-state 

transition (solid line). (c) HDX uptake plots of the number of deuterons exchanged at t=4 hours as a function 

of the temperature. Data (dots) were fitted to a two-state transition (solid line). 

 

Plots of the log of the  relative uptake after four hours, 𝑙𝑛 (
𝑁𝑡=4ℎ𝑟

𝑁𝑇𝑂𝑇𝐴𝐿
), against the inverse of the 

temperature (1/T) provide information about the average H required to expose all the amide 

sites of each peptide (Figure 3A, right column). A peptide that exposes most of its amide 

sites at low temperature will present a single plateau and its average H would be almost 

negligible (for example, 153-164). In contrast, a peptide whose amide hydrogen are protected 

at low temperature but become exposed at higher temperatures would reach different plateaus 
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and present higher H values (i.e., peptide 169-215, 178-195 and 248-255). In principle, the 

observed increase in amide exposure of these more protected regions could be a fingerprint 

of higher dynamics, but it could also arise as a consequence of a loss of capsid integrity at 

higher temperatures. To verify that the capsids would not fall apart during heating in the 

HDX buffer, we acquired native MS spectra of MVM capsids under identical conditions. 

Even over an extended period of time (>5h) at 60 °C, the spectrum does not appear different 

from the spectrum acquired at basal temperature. This corroborates that the integrity of the 

particles were maintained even at the highest temperatures tested (Figure S1-C). It was also 

important to ascertain that the conformational transition probed was reversible. Fluorescence 

assays showed that after heating and cooling the sample from 27ºC to 61ºC (while waiting 

30 min at the highest temperature), particles not only maintained their integrity but also kept 

their ability to undergo the temperature-induced conformational change (results not shown), 

which corroborates the reversibility of the process.  

To identify which regions undergo the most abrupt changes in deuterium incorporation after 

the transition, we plotted the average H from 25ºC to 45ºC (∆H 25°C-45°C
o ) versus the average 

H from 50ºC to 60ºC (∆H 50°𝐶−60°𝐶
𝑜 ) (Figures 4A and S2). With this approach, peptides 

showing a similar uptake before and after the transition would fall in a region represented by 

a line of slope m=1 (region 2); peptides showing an increase in dynamics after the transition 

fall above this line (region 1); and peptides showing a reduced dynamics after the transition 

fall below the same line (region 3). Region 4 contains peptides presenting a faster exchange 

(red), with an average H that was mostly negligible. Any transition-associated increase in 

equilibrium dynamics of these peptides, which include the disordered Nts within the capsid 

and the five long -hairpins that delimit each capsid pore, was beyond the range of our 

experiments, as exchange was nearly complete even at the shortest times that could be 

reliably tested. Peptides 414-429 and 422-429 also belong to this fast-exchange group and 

deserve some mention. They correspond to an exposed loop situated close to the tip of each 

3-fold spike, and present a 10-fold higher average H before than after the transition. 

However, two-state fittings for these two peptides suggest that the abrupt increase in HD 

exchange occurs before the transition temperature. Indeed, peptide 422-429 had exchanged 

80% of their N-H sites at 45ºC, a value that remained constant at increasing temperatures, 

indicating that a structural change in this loop is not associated with the global transition.  
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Figure 4. Peptides that present an abrupt change in dynamics around the heat-induced conformational 

transition of the MVM capsid. (a) Plot showing the average enthalpy change of each peptide before 

(∆H 25°𝐶−45°𝐶
𝑜 ) and after (∆H 50°𝐶−60°𝐶

𝑜 ) the transition (defined by the transition temperature TM). Four regions 

were identified: increased deuteration after TM (region 1), decreased deuteration after TM (region 3) and no 

change in deuteration after TM (region 2 and 4). The color indicate the dynamics of the peptides in the basal 

state (T=0ºC). (b) Peptides presenting an abrupt change in deuterium uptake are mapped in the MVM capsid 

structure. For simplicity, only five capsid subunits surrounding a pore are represented. In green are shown 

peptides that expose more residues after the transition (region 1) and, in purple, peptides that stop the 

incorporation (region 3). The inset square delimits a region of a capsid subunit close to the 3-fold axes where 

there is a substantial reduction in dynamics after TM. Peptides 178-195 and 347-385, which present the most 

significant changes, are located in the inner core of this cavity. (c) Detailed view of a 3- and 5-fold symmetry 

axis. The inner part of the capsid (left of each symmetry) and outer part of the capsid (right of each symmetry). 

The peptides that become more exposed after TM (green) are located in the inner part of the capsid.  

Peptides presenting the most significant differences in dynamics associated with the 

transition (either increased dynamics, region 1, or decreased dynamics, region 3) were sorted 

and are listed in Table S1 (see Figure S2 for the criteria followed). Mapping of these selected 

peptides in the capsid structure (Figures 4b and 4c) revealed local conformational changes in 

multiple capsid regions that can be collectively described as follows:  
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i) Capsid regions with transition-associated conformational rearrangements leading to 

abruptly increased local dynamics during the global transition. They include three -strands 

and two very short -helices of each capsid subunit. With the exception of one of these 

strands (which is buried along the spike wall), these secondary structure elements form a part 

of the -sandwich fold of each capsid protein subunit from which long peptides protrude to 

form the capsid spikes. Region 1 peptides defining these regular secondary structure elements 

involve about one-tenth of the capsid amino acid residues. 

ii) Capsid regions with transition-associated conformational rearrangements leading to 

abruptly decreased local dynamics during the global transition. They include substantial 

portions of several long, convoluted loops of each capsid subunit that generally define parts 

of the thick walls of the spikes centered at the capsid 3-fold axes, away from the pores at the 

capsid 5-fold axes. Region 3 peptides defining these structural elements with abruptly 

decreased dynamics involve as many as one-fourth of the capsid amino acid residues. 

To summarize, the structural transition associated with translocation events through capsid 

pores required for MVM infectivity is not limited to the vicinity of the pores. It involves a 

global conformational rearrangement of the capsid that substantially alters its equilibrium 

dynamics in a complex, region-dependent way.  

 

Conclusions  

In this work we have used HDX-MS to identify, with high spatial resolution, structural 

changes in the MVM capsid that are required for viral infection. Transition-associated, abrupt 

changes in local dynamics of peptide segments in the capsid served as markers to identify 

structural elements that modified their conformation during the transition. The results 

revealed that translocation events through capsid pores, that occur during the infection cycle, 

involve a global structural rearrangement of the capsid. Many of the elements showing 

altered conformations were located far from the pores, and included loops with abruptly 

decreased dynamics as well as regular secondary structure elements that showed marked 

increase in dynamics. This study provides a novel demonstration of the potential of HDX-
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MS to structurally dissect functionally relevant, temperature-dependent structural transitions 

in viruses and other large macromolecular protein assemblies. Being able to probe structural 

dynamics of quite specific regions in virus particles may also facilitate the development of 

novel antiviral drugs aimed at impairing conformational transitions required for viral 

infection. 
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General Conclusions and Future Outlook 

Protein complexes are intricate. The work presented in this thesis focuses on the dynamics 

and mechanical properties of four protein complexes that represent interesting structures in 

nanotechnology because of the possibility of modifying their structure at will, besides their 

role in biology. The specificity of protein-protein interaction in a capsid is, in many instances, 

sufficient to govern the mechanical properties or dictate the organization of the shell. 

Understanding how the mechanical properties and dynamics are derived and how they 

change as a function of the environment or presence of cargo can direct the design on new 

protein-based nanodevices.  

In chapter 2 we showed that the mechanical properties of vault particles, similar in size to 

many virus capsids, are capable of recovering from fractures produced with only a few tens 

of piconewtons. These forces, in comparison with the breaking forces of most of virus shells,1 

are almost one order of magnitude lower. In addition, we found that the barrel of the structure 

governed the mechanical strength of the particles, and that continuum elastic theory 

represented an appropriate framework to interpret the stiffness and recovery times displayed 

by the particles The particular set of mechanical properties of vaults might be the 

consequence of their labile and highly dynamic structure, which could be a requirement for 

their role in cellular transportation.2 Interestingly, the other nanostructures that are known to 

display similar mechanical properties (at least to my knowledge) are microtubules. Shcaap 

et al.3 showed that indentations performed on microtubules presented hysteresis when the tip 

was retract while not trace of damage was observed in the subsequent images. Despite in 

their experiments there was no visual evidence of recuperation, the authors hypothesized that 

the phenomenon could be caused by a self-healing mechanism. A recent in silico AFM study 

performed on microtubules has captured the existence of this self-healing mechanism and 

showed that it consists of the reversible dissociation of lateral bonds between tubulins.4 This 

description of microtubule disruption presents a scenario similar to our findings of vaults, 

where we showed that fractures occurred along the lateral contacts of neighboring MVP 

subunits. The distribution of tubulin protofilaments conforming microtubules5 reassembles 

that of MVP monomers in the barrel zone, both structures bundling parallel to one another 

forming a cylinder. This finding suggests that there is a link between the protein structure 

and the self-healing ability of the shell, which might be related to their role in biology.  In 
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the same way that the high dynamics of microtubules is associated with their need to 

polymerize and de-polymerize inside the cell,6 with the reversibility of lateral bonds been 

suggested to serve as means of inhibiting de-polymerizaion,7 the ability of vaults’s barrel to 

self-repair plays might play a role in their function as nanocarriers. How vault particles are 

able to transport material inside or between cells remains a mystery, but their implication in 

processes of cellular transport suggests that a labile and highly dynamic structure might 

represent a biological advantage. On the technology front, these findings could inspire the 

design of similar de novo structure that would be expected to have mechanical properties 

suitable to exhibit high level of dynamics.  

In chapter 3 we explored the dynamic of vault particles as a function of pH, which might be 

a mechanism whereby releasing the cargo during cellular uptake through endocytosis. To do 

so we set up an experiment to monitor the pH-dependent dynamics of vault particles in real 

time. Although real-time AFM experiments to track protein dynamics is a well-stablished 

procedure, which started with the pioneered work by Müller et al. in 1999,8 it keeps surprising 

me why the possibility that AFM offers in this regard has not been exploited more often to 

study dynamic process of protein nanocages. A possible explanation might rely on the fact 

that the soft nature of these large nanostructure requires a tight control of the imaging force. 

However, many interesting biological problems could be addressed by observing in real-time 

and at a single particle level the structural dynamics triggered by changes in the physiological 

conditions that mimic biologically relevant processes, such as pH or molecular crowding. In 

chapter 2 we demonstrated that vault opening was not a pH-dependent process, as it was 

published before in literature,9,10 but that lowering the pH induced the weakening of lateral 

inter-monomeric contacts that promoted the formation of cracks in the barrel zone. Despite 

the formation of cracks, the quaternary structure of vaults was maintained if the pH was kept 

above 5.7, but lower values of pH led to protein aggregation. In the light of these results, we 

proposed a mechanism based on the crystallographic structure whereby vault would 

disassembly as a function of pH. Our model contemplates the disruption of four histidine-

mediated polar bonds across lateral MVP-MVP contacts in the barrel and shoulder of the 

cage, with His534 participating in a histidine-α-helix charge-dipole interaction with the cap 

α–helix N-terminus of the neighboring MVP playing a crucial role among them. Overall, our 

findings shed some light on vault dynamics and might serve as means of designing strategies 
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to control payload delivery upon cell endocytosis, where the acidic nature of the endosomal 

microcompartment would represent the perfect environment.  

In chapter 4 we investigated the role that pH and ion chelation had on the stability of Tomato 

Busy Stunt Virus (TBSV). We found that at pH 8.5 and in the presence of a chelation agent 

(when calcium ions are removed from the structure and the particles present the expanded 

form) viruses collapsed upon adsorption. This result indicated that the expanded from was 

less stable than the native form, which we related to the increase in electrostatic repulsion 

between subunits.11 A similar RNA viruses that also undergoes a pH-dependent swelling and 

whose mechanical properties has been extensively studied with AFM is CCMV.12 Klug et al 

showed that after increasing the pH from 5 to 6 the capsids of CCMV softened.13 Because 

CCMV expands around pH 7 and the morphology of both shells at pH 5 and 6 cannot be 

distinguished, this change in stiffness had to be associated with a pre-transitional softening 

of the shell. Indeed, in a recent work by Wilts et al.14 a salt-stable mutant that precludes the 

expansion was used to show that the softening was not strictly coupled to the swelling of the 

protein shell. This result probed that the mere expansion was not the responsible for the shell 

softening, but that changes in capsid bonds and/or interactions with the packed RNA had to 

be implicated in the process. Supporting these results, our results in calcium-free TBSV 

nanoparticles indicated that the mere sequestration of calcium ions from the inter-capsomeric 

domains was sufficient to reduce capsid resilience and rigidity. Analogous decrease in the 

mechanical strength could be also induced by deforming the capsid with an AFM tip, which 

produced permanent deformation of the shell without removing capsomers. From those 

results we concluded that, (1) the chelation of ions introduced defects in the capsid shell that 

affected the overall mechanical properties of the capsid and, (2) the resistance of TBSV 

nanoparticle to lose capsomers was likely related to the stabilizing effect of the ssRNA 

molecule, which by interacting with the inner capsid tails would avoid the dissociation of the 

particle. The ability of RNA viruses to spontaneously self-assemble in the presence of the 

genome, in contrast to bacteriophages where the DNA has to be encapsulated via ATP 

hydrolysis and/or complexation with nucleic acid folding proteins,15 also indicates the 

important stabilizing effect of the genome in RNA viruses. From the technological viewpoint, 

the development of stable protein cages for payload transportation at the nanoscale might 

draw inspiration from the high resistance of TBSV nanoparticle (and other ssRNA plant 
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viruses) to lose capsomers and avoiding cargo release through tight pH-dependent cargo-

shell interactions. 

In chapter 5 we used AFM and cryo-EM to study the effect that cargo-cargo and cargo-shell 

interactions have on the mechanical stability of virus-like particles derived from 

bacteriophage P22. To study the contribution of cargo-cargo interaction P22 VLPs were 

loaded with two different proteins (EGFP and CelB, which forms tetramers after shell 

encapsidation) The contribution of cargo-shell interaction was investigated through a capsid 

transition that mimicked the maturation pathway of P22 bacteriophages. Procapsids were 

transitioned to expanded capsids and the contacts between the cargo and the shell, mediated 

by the scaffolding proteins, were eliminated. Our results indicated that the cargo stiffened the 

cages via two different means. In the case of procaspids, when the cargo was linked to the 

shell, the capsid was reinforced structurally. In contrast, for expanded capsids the increase in 

rigidity was due to steric interaction. The different concentration of osmolyte between the 

inside of the shell and the surroundings created an osmotic pressure inside the shells of 30 

atm. This value is of the order of the DNA-induced pressures found in other 

bacteriophages,16-19 although in natural viruses pressure arises from the short-range repulsion 

acting between neighboring DNA chains.20 In addition, we found that procapsids containing 

CelB were the most brittle structures. We speculated that the formation of CelB tetramers 

inside the shell, which would impose an extra geometrical constraint, reducing the distance 

at which capsid subunits could be separated from their equilibrium position, was the 

responsible for rendering particles more brittle. Overall, our results showed that the interplay 

that exists between the cargo and the shell contributes to the (des)stabilization of the capsid 

via different physical mechanisms. Understanding these mechanisms and their molecular 

determinants would permit enhance the stability of these cages for their development as 

protective shields. 

In chapter 6 we showed that the controlled, symmetrical introduction of defects into a viral 

cage led to a symmetry-dependent destabilization of the capsid. In addition, we showed that 

symmetry-dependent binding of an accessory protein at the regions responsible for the 

undermined stability was capable of restoring the mechanical properties. We found that this 

recovery was also symmetry-dependent, and had a major effect on the regions of the capsid 

most weakened after the introduction of defects. Complementing the AFM results, our light 
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scattering and TEM analysis showed that under 0.5% SDS conditions defected VLPs 

exhibited much lower stability than intact VLPs. Likewise, Dec binding had a greater 

stabilizing effect toward defected VLPs than toward intact VLPs. The agreement between 

our single-particle and bulk chemical techniques likely originated from similar structural 

elements of the capsid being interrupted. Due to the difficulty in observing chemical 

destabilization in a non-bulk, symmetry-specific manner there remains a gap in the 

understanding of this process. However, single-particle mechanical perturbation results may 

provide some insights in this regard. The analytical tools that are associated with a particular 

field, such is in this case TEM, AFM and light scattering, offer instrument-dependent 

perspective of the system. Great efforts should be done to put together information coming 

from different techniques and viewpoints in order to asses more accurate pictures of the 

system. Complementing this data might allow us to understand better the information 

extracted from our system and, in turn, contribute to its future technical development.  

In chapter 6 we also showed that to fully understand the mechanical properties of a capsid 

interactions at the residue level had to be considered. I do not want to finish this thesis without 

briefly mentioning this point. Many theoretical models have been proposed to explain the 

mechanics of virus particles so far, many of them based on continuum elastic theory.13,21-25 

Continuum elasticity framework might provide very valuable information. For instance, 

elasticity theory has permitted to identify the distribution of stresses in virus capsids, 

gathering relevant structural information of competing mechanism for viral shell failure.21
 

However, continuum modeling omit the discrete nature of the capsid structure and thus it 

must be considered as a rough first approximation of the problem. Consider only that one 

aminoacid mutation in a capsid protein might change the rigidity of the overall structure 

twofold.14,22 A recent study by Cieplak et al.23 showed in a molecular model of 35 viruses 

that changes in mechanical properties do not simply correlate with virus size or symmetry, 

but with the mean number of interaction to neighboring amino acids. All-atom and/or coarse-

grained simulation that factors in the discrete nature of the capsid and, in some case, consider 

the structure at the amino acid level are required and will allow for better comprehensions of 

the underlying mechanism responsible for the mechanical properties of nanocages.  

In chapter 7 we used HDX-MS to identify the breathing distribution of the capsids of MVM. 

Up to that point, we had mainly investigated how capsids responded to deformation of a few 



 

173 
 

nanometers and what determined the mechanical properties of these nanocages. We had 

applied to them macroscopic concepts from material science such as rigidity, brittleness, or 

material fatigue, and thought of them as an assembly of building blocks (proteins) bound 

with a given interacting energy. In chapter 7 we changed the viewpoint, and considered 

viruses as dynamic entities that constantly fluctuate around an average conformation as a 

result of thermal energy. These fluctuations are commonly termed ‘breathing’, involve 

distances of only a few Angstroms and might play a role in the infection process.24 

Our HDX-MS results showed that important regions for the infectivity of the virus, such as 

the N-terminus or the structural elements forming the capsid pores at the 5-fold symmetry 

axes, were among the most dynamic regions of the capsid. This provided proof of the intense 

breathing of regions involved during translocation events during MVM infection. And 

interestingly, arise question about the potential connection between breathing and 

mechanical properties. The 5-fold symmetry axes in MVM particles is known to preserve 

their stiffness upon DNA encapsidation.25 Also, it has been shown that any mutation in the 

MVM capsid that increased the rigidity of the pore was found to decrease the infectivity of 

the virion.22 These findings suggested that the AFM-tested flexibility of the pore, which 

extends to deformation of a few nanometers, have to be preserved through evolution. 

Whether or not a mutant that precludes infectivity decrease their breathing around the pore 

needs still to be tested, but I further studies in this direction might shed some light in the 

intricate nature that determines the mechanics of virus capsids. MVM is an amazing system 

to keep working on. All mutations done so far has shown that (overall) either the rigidity was 

maintain or increase, suggesting that an evolutionary pressure might have kept the capsids at 

their minimum of ‘softness’. It still strikes me how a single amino acid change might increase 

twofold the overall mechanical response of the capsid tested with an AFM tip as big as the 

capsid. But why there is —if it is the case— an evolutionary pressure that preserves such 

mechanics fascinates me even more. Complementing HDX-MS studies with AFM results 

might pave new ways to respond to these questions.
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Summarized conclusions 

1– We characterized the mechanical properties of individual vaults by performing 

nanoindentation experiments on full reclining particles and half-vaults. We found that 

reclining particles were softer than half-vaults, and with a finite element model we 

rationalized the origin of this difference in stiffness. In addition, our results 

demonstrated that vault particles exhibited self-healing capabilities that enable them 

to recover from failure within times shorter than 1 second. Our AFM images showed 

that these ruptures occurred in the barrel, along the lateral contacts of two neighboring 

MVPs, and we could estimate the energies involved in the breakage of these bonds. 

Overall, our results provided new insights into the dynamics of these enigmatic 

particles, which might help to understand their role as cellular nanocontainers or 

inspire the design of new protein-based nanostructures with self-healing capacities.  

2- We performed real-time AFM experiments to investigate the pH-dependent 

dynamics of vaults at single particle level. We found that pH lowering destabilized 

the interaction between adjacent MVP monomers resulting in the formation of cracks 

in the barrel or shoulder zones. Those cracks were observed in vault particles 

maintaining their quaternary if the pH was maintained above 5.7, but lower values of 

pH led to protein aggregation. In addition, based on the crystallographic structure we 

proposed a model whereby this pH-dependent disassociation might occur. Our results 

offer a new picture of the pH-dependent dynamics of vaults, which before was 

thought to trigger vault opening, and might serve as a means to design strategies for 

cargo delivery upon cell endocytosis, where the pH of the environment gradually 

decreases. 

3- We studied the mechanical role that calcium ions inserted in the viral shell had on 

the stability of TBSV nanoparticles. We found that the sequestration of these ions 

reduced capsid resilience and rigidity, and that deformations of the native forms above 

the elastic limit led to analogous decrease in the mechanical properties. Both the 

sequestration of calcium ions and the squeezing of the shell yielded to a 

rearrangement of the capsid subunits that it was not accompanied by a loss of 

capsomers. Experiments performed with multiple loading cycles confirmed the 
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resistance of these structures to lose capsomers, which proved the high plasticity of 

the shells. We speculated that this high plasticity was caused by the stabilizing effect 

of RNA at interacting with the inner tails proteins of the capsid. In summary, our 

results provided the first experimental evidence of the impact that calcium ions have 

on the mechanical properties of a viral shell.  

4- We analyzed the effects that an heterologous cargo had on the stability of P22 

virus-like particles. To achieve this goal we encapsulated two types of proteinaceous 

payloads, which allowed us to study the effect of a different cargo-cargo interaction. 

We also studied the effect of a different cargo-shell interaction by expanding the 

procapsid shell into the mature form, which unanchored the cargo from the vicinity 

of the inner capsid wall. We found that while bound cargo to the inner capsid surface 

mechanically reinforced the capsid in a structural manner (procapsids), unbound 

cargo diffusing freely within the shell cavity pressurized the cages up to 30 atm due 

to steric effects (expanded capsids). In addition, we found that a strong cargo-cargo 

interaction rendered particles more brittle by imposing extra geometrical constraints 

between capsid subunits.  

5- We showed that the controlled, symmetrical introduction of defects into a viral 

cage led to a symmetry-dependent mechanical destabilization of the shell. In addition, 

we showed that binding of an accessory protein at the weakest regions of the capsid 

was capable of restoring locally the loss of mechanical stability. Our AFM results 

were complemented with biochemical destabilization assays studied with light 

scattering and TEM, which showed the same trend of stabilizing/destabilizing effects. 

The coupling of single molecule and bulk techniques permitted the in depth 

examination of contributing factors to these symmetry-specific phenomenon, 

allowing for the future examination of both infectious viral systems and synthesized 

nanomaterials. 

6- We used HDX-MS to identify, with high spatial resolution, structural changes in 

the MVM capsid that are required for viral infection. Our results revealed that 

translocation events through capsid pores involved a global structural rearrangement 

of the capsid, involving elements around the three-fold symmetry axes, located far 
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from the pores. Overall, the study provided a novel demonstration of the potential of 

HDX-MS to structurally dissect functionally relevant, temperature-dependent 

structural transitions in virus particles and other large macromolecular protein 

assemblies.  
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Conclusiones resumidas 

1 - Caracterizamos las propiedades mecánicas de partículas vaults mediante 

nanoindentaciones en partículas enteras (full-vaults), apoyadas sobre el barril, o 

mitades (half-vaults), adsorbidas a través de la sección central. Nuestros experimentos 

mostraron que las partículas apoyadas sobre el barril eran más blandas. Un modelo 

basado en elementos finitos nos permitió entender el origen de esta diferencia en 

rigidez. Además, nuestros experimentos demostraron la capacidad autoreparativa de 

estas nanoestructuras. Vimos que la deformación de partículas con la punta del AFM 

inducía fracturas con tiempos de vida medio inferior a un segundo. Imágenes de AFM 

de alta resolución nos permitieron evaluar estas efímeras fracturas y determinar que 

se producían en la zona del barril, a lo largo de los contactos laterales entre 

monómeros de proteína adyacentes. Para resumir, estos resultados pueden contribuir 

a desentrañar el papel biológico de estas enigmáticas parículas, así como ser fuente 

de inspiración para el desarrollo de nanoestructuras proteicas con capacidades 

autoreparativas. 

2 - Diseñamos un experimento en el que visualizamos en tiempo real la dinámica de 

partículas vaults individuales en función del pH. Nuestros resultados mostraron que 

la bajada de pH, en vez de abrir las vaults en dos mitades, como se sugería en 

resultados previos, desestabilizaba las interacciones entre monómeros adyacentes de 

la zona del barril. Este debilitamiento de las interacciones inter-monoméricas se 

traducía en la formación de fracturas en la zona del barril y hombro de la estructura. 

Si el pH de la disolución se mantenía por encima de 5.7, la estructura cuaternaria de 

las vaults se preservaba, a pesar de la presencia de fracturas, pero valores de pH más 

bajos provocaban el colapso de la partícula. Basados en la estructura cristalográfica 

de la partícula propusimos un modelo que racionalizaba nuestros resultados.   

3- Estudiamos el papel que los iones calcio jugaban en la estabilidad mecánica de la 

estructura del virus del tomate (TBSV). Nuestros resultados mostraron que el 

secuestro de esos iones, insertados en el interior de las cápsidas, disminuía la rigidez 

y resiliencia de las partículas. Además, observamos que nanoindentaciones que 

sobrepasaban el  límite elástico en virus nativos (con iones) causaban resultados 
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mecánicos similares. Ambos casos, tanto la quelación de iones como la deformación 

de la estructura vírica con la punta del AFM, provocaban una reorganización de la 

estructura vírica que no se veía acompañada por la pérdida de capsómeros. Repetidas 

nanoindenationes sobre la misma partícula confirmaron la resistencia de estas 

estructuras a perder capsómeros, demostrando así su gran plasticidad. Especulamos 

que la presencia de RNA, interactuando con los extremos N-terminales de la cápsida 

proteica, era el responsable de esta plasticidad. 

4 - Analizamos la influencia que distintas interacciones carga-cápsida y carga-carga 

tenían en la estabilidad de nanoestructuras derivadas del bacteriófago P22. Nuestros 

resultados mostraron que mientras el reforzamiento observado en las precabezas era 

estructural, interacciones estéricas eran las responsables del incremento de rigidez 

observado en cápsidas expandidas. La diferente concentración de osmolito (CelB o 

EGFP) entre el interior y el exterior de la cápsida promovía un influjo de moléculas 

de agua que se traducía en aumentos de presión de las estructuras víricas de hasta 30 

atmósferas. Además, vimos que las precabezas con CelB eran las estructuras más 

frágiles. Argumentamos que la formación de tetrámeros, reduciendo la movilidad de 

los capsómeros de la estructura, podía ser la causa de esta mayor fragilidad. 

5-  Vimos que la introducción simétrica de defectos en las cápsidas expandidas de 

P22 inducía una desestabilización “anisótropa” de las estructuras (los parámetros 

mecánicos que se veían afectados dependían del eje de simetría). Además, vimos que 

el anclaje de “proteínas accesorio” (Dec) en las zonas de mayor debilidad era capaz 

de restablecer la estabilidad de las partículas, también, anisotrópicamente. Los 

resultados de AFM fueron complementados por experimentos de inestabilidad 

bioquímica observados por TEM y dispersión de luz, los cuales mostraron los mismos 

patrones de estabilidad/inestabilidad. La complementariedad de los resultados sugirió 

que ambos procesos estaban gobernados por los mismos determinantes moleculares, 

y que su unión podía desentrañar la especificidad de experimentos  bioquímos de bulk, 

ofreciendo la posibilidad de estudiar con mayor detalle tanto sistemas víricos 

infecciosos como nuevos nanomateriales. 
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6- Usamos HDX-MS para identificar cambios estructurales en cápsidas de MVM 

necesarios durante su proceso de infección. Nuestros experimentos concluyeron que 

los procesos de translocación a través de los poros promovían una reorganización 

global de la cápsida, que involucraba zonas situadas alrededor del eje de simetría tres, 

alejadas de los poros. A nivel más genérico, nuestro estudio probó el potencial de 

HDX-MS para determinar cambios estructurales en macrocomplejos proteicos que 

pueden ser de difícil acceso para técnicas como la cristalografía de rayos X, la cryo-

EM o el NMR.   
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Supporting Information to Chapter 2 

 

 

 

Figure S1. High-resolution AFM topographies of an entire reclining particle and a half-vault. (A) 

Topographical image of a reclining particle. (B) Longitudinal profile taken along the dotted black line in Fig. 

A. The height profile (red line) shows an excellent agreement with the X-Ray data of the vault structure. In this 

case, the vault is tilted about 5 degrees from the substrate. (C) AFM topography of a half vault with the cap 

facing up. (D) Profile taken along the dotted black line in Fig. C. Again, the dimensions agree with those 

obtained by X-Ray and EM.[3] 
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Figure S2. Half-vault deformation depending on force imaging. (A) Topographical images are time ordered 

and labeled with its corresponding imaging force. (B) (top) Imaging force evolution of Fig. S2 A. (bottom) 

Maximal height evolution of Fig. S2 A. (C-D), (E-F), and (G-H) correspond, respectively, to three more cases. 

The height evolution for these cases accounts for the half-vault circled with a green dotted line. 
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Figure S3. Finite Element Analysis. (A) FIC obtained in the Finite Element simulation for a half-vault (green) 

and a reclining particle (blue) when Young’s modulus was set to E=700 MPa. On the background we have 

overlaid the experimental curves for 26 different half-vaults (black) and 13 different reclining particles (red). 

(B) (left) Image of a half segment of a reclining particle with a 6 nm indentation; again, the colors indicate the 

von Misses stress distribution. (right) Image of a quarter segment of a half-vault with a 6 nm indentation, the 

colors indicating the distribution of the von Misses stress.   
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Figure S4. Cyclic loading. (A) Some of the FIC performed on top of the reclining particle shown in i. The 

numbers in the legend indicate the order of the curves. The image of the particle after the cyclic loading is 

represented in ii. (B, C) Two more examples, as in A. (D, E, F) Cycle loading experiments performed on half-

vaults. 

 

 

Figure S5. Evolution of the spring 

constant. The grah shows the evolution of 

the average spring costant value during 

the first indentation cycle (corresponding 

to 5 consecutive FICs). The values were 

obtained from 21 half-vaults and 13 

reclinging particles, respectively. Each 

FIC was perfomed beyond the breaking 

limit. 
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Figure S6. Monitoring of the topography in a stopped y-scan (A) Image of a reclining particle: (1) before 

the indentations, (2) during the indentations, and (3) after the indentations. All images were taken from top to 

bottom. In Figure A 2, the dashed green line indicates the place where the tip stopped scanning in the y-direction. 

Therefore, from this line, the tip was placed on top of the structure and FICs started. Each black line in figure 

A 2 corresponds to a different FIC. After the second indentation, the structure of the particle was damaged, as 

a partial loss in height was observed (darker zone on top of the structure). Further imaging of this profile showed 

a recovery of the structure (red arrow). (B) The indentations performed on the top of the structure, the number 

of each curve corresponding to the order in which they were performed. (C) Topographic profile corresponding 

to the solid blue line depicted in figure A 2. In this profile, each FIC is represented as a sharp decrease. After 

the second FIC, the structure lost 10 nm in height that was later recovered (red line). (D, E, F) The same 

experiment performed on a half-vault. In this case, the particle does not display any topographical changes. 

However, some backward curves present a recovery (2, 3, 4, 5, and 6) whereas others do not (1 and 7). These 

latter cases correspond to recoveries occurring during the non-contact part of the curve (flattened region), which 

we classified as medium recovery times (650ms<RT<2s) 
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Figure S7. Reversible failure of vaults (A) Consecutive images of a reclining particle: (1) before the fracture, 

(2) just after the fracture, and (3) after the recovery. (B) Profiles  and  depicted with dotted black lines in 

Figure A1: before the fracture (black), after the fracture (red), and after the recovery (green). (C) Picture 

showing the line of fracture aligned between two neighboring MVPs (in red), with the depressed region 

highlighted in pink. (D, E, F) and (G, H, I) correspond, respectively, to two more cases of slow reversible 

fracture. 
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Figure S8. Three cases of fatigue experiments on half-vaults (A) Evolution of the topographical images of a 

half-vault imaged at 70 pN. Images are time ordered and labeled with the number of its corresponding frame. 

In this case, the particle was imaged 40 times, which corresponds to a time of 90 minutes. (B) Evolution of the 

profile taken along the dotted black line of Figure A-1. The profiles corresponding to frames 1, 24, and 40 are 

depicted in red, blue, and green, respectively. The rest of the profiles are depicted in grey. (C, D) and (E,F) 

correspond, respectively, to two more cases. The imaging force for these cases was about 75 pN. 

 

 

Movie 1. Mechanical fatigue of a half-vault. This movie indicates the temporal evolution of figure 6. – it can 

be found online at http://www.cell.com/action/showImagesData?pii=S0006-3495%2814%2900009-5. 
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Supporting Information to Chapter 3 

 

Figure S1. Differential scanning fluorescence at pH 7.5, 6.0, 5.0 and 4.0. The corresponding melting 

temperature are 60.5±0.5, 59±0.5 and 46.0±0.5 for pH 7.5, 6.0 and 5.4, respectively. Particles are not stable at 

pH 4. 

 

 

 

 

 

 

 

 

 

 

Figure S2. AFM topography evolution of single stand-up full-vault from pH 7.5 to 5.2.  (A) AFM images 

of the same area before and after changing the pH from 7.5 to 5.2. At pH 5.2 some particles present a stand-up 

configuration, proving that lowering the pH not necessary open particles into halves (white and green arrows). 

(inset) Profiles of the particles. (B) AFM images of the same area before and after changing the pH from 7.5 to 

5.2. (inset) Profile of the particle. Due to the pH lowering the height of the particle reduces likely as a 

consequence of an overall weaking. The height reduction does not account for an opening of vaults into halves. 

Color scale bar: white-golden-brown, from the highest to the substrate.  

A

B
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Figure S3. Control AFM experiments: evolution of the topography as a consequence of AFM imaging 

and pH exchange. (A) A region of vault particles (600x600 nm2) imaged at constant pH for 105 minutes (24 

frames). The figure shows different snapshots of the process, each frame is labeled with its corresponding time. 

Labels 1, 2 and 3 correspond to two reclining full-vaults and one half-vault, respectively. The evolution of their 

height is plotted in Figure S3-C (grey lines), which shows that it does not vary significantly as a consequence 

of AFM imaging. From time 103 minutes onwards consecutively higher-resolution images of full particle 1  
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(continued) were taken (green square, frame #23 ). Even at this higher-resolution (200x200 nm2) the height of 

the particle was roughly maintained (grey line 1, Figure S3-C). (B) Evolution of the structural transition caused 

by lowering the pH at a faster exchange rate (in comparsion with the experiments shown in Figure 3). Each 

frame is labeled with the time and the corresponding pH. Frame #1 (t=0 min) shows the intical configuraiton, 

with the particles labeled from F1 to F4 (all the particles were full-vaults). Particles F1 and F3 were likely 

damaged from the beginning, which caused a lower initial height. (C) Evolution of the height for the 

experimetns shown in S3-A and S3-B. The color bar at the bottom indicates the pH exchange, from 7.5 (purple) 

to 5.2 (yellow). The asteriscs indicate the pumping setting: onset of infusion (*) and complete pH exchanged 

(**). Particles collapsed after only 60 minutes because pH 5.2 was reached faster. Color scale bar: white-

golden-purple, from the highest to the substrate.   
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Supporting Information to Chapter 4 

 

Figure S1. High-resolution JM-AFM topographies of the different forms of TBSV-NPs. (A, B, C) JM-

AFM topography images acquired in liquid, of a wt cVNP, a ifVNP and a sVNP, respectively (insets). Profiles 

of the particles were taken along the central part. The image and profile of the sVNP show that the particle was 

collapsed upon absorption, as indicated by the lower height and the form of the structure. 

 

 

 

Figure S2. Height histogram of the different forms. sVNPs and ifVNPs present a higher dispersion in height 

than the native structure.  
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Figure S3. Evolution of wt cVNPs during an experiment of cyclic loading. (A) Evolution of JM-AFM 

topographical image of an individual wt cVNP during an experiment of cyclic loading. A single FIC was 

performed between consecutive images (B) Evolution of the profile of the wt cVNP taken along the central 

part of the structure. (D) Evolution of the width and height of the particle. The height corresponds to the 

maximum height of the profile and the width was measured at half of the height. (D, E, F and G, H, I) The 

same experiment performed on two others single wt cVNPs. 
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Figure S3. Evaluation of particles purification. Silver stained SDS–PAGE of purified 

TBSV–wt (1µg, lane 2). M, Standard molecular-weight size marker (lane 1).  



  
2

0
4

 

 

Acronym Type of VNPs Description Height (nm) 
Elastic constant a (N/m) Elastic limit b (nN) Sketch c 

FIC1 FIC2 FIC1 FIC2  

wt cVNPs 

wild type 

Compact 

VNPs 

Purified wt VNPs. 32.8±0.2 (0.72±0.09) (0.51±0.07) (3.20±0.25) (1.75±0.20) 

 
d 

sVNPs Swollen VNPs 

 

wt cVNPs put under swelling 

conditions by increasing the pH in the 

presence of EDTA, in order to induce 

the deprotonation of the Ca2+ binding 

sites and the sequestration of 

these ions 

Collapse into 

structures with 

an average 

height of 

10±1 

— — — — 

 

 

 

 
e 

rVNPs 
Recompacted 

VNPs 

 

The Ca2+ binding sites of the sVNPs 

were protonated again by incubating 

the sVNPs by lowering the pH in a 

specific buffer containing a high 

concentration of Ca2+ ions. 

32.9±0.1 — — — — 

 
d 

ifVNPs 
Ions free 

VNPs 

sVNPs recompacted by lowering the 

pH but without supplying of Ca2+ ions. 
29.9±0.7 (0.55±0.07) (0.36±0.03) (1.90±0.15) (1.7±0.1) 

 
d 

Table 1. A brief description and some experimental results of the investigated viral nanoparticles (VNPs). All the values are given as (mean±SE); 11 wt cVNP and 16 ifNVPs 

were considered to determine the mechanical properties. a  The elastic constants were obtained by linearly fitting the first part of the Force vs Indentation Curves (FICs); b 

the elastic limit is defined as the maximum force reached at the end of the linear deformation; c representations of the different VNPs forms: red dots are referred to the Ca2+ 

ions located at the specific binding sites  d acidic buffer (NiCl2 5 mM, Na-acetate 50 mM, pH 5.3) and e swelling buffer (TRIS-HCl 0.1 M, pH 8.5, EDTA 50 mM). JM-AFM 

images were acquired under these buffer conditions. 
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Supporting Information to Chapter 5 

Figure S1.  Resolution of empty procapsid (PC), EGFP- and CelB-PC, empty expanded particles (EX), EGFP- 

and CelB-EX.  Fourier shell correlation (FSC) resolution curves were calculated for empty PC (blue), EGFP-

PC (green), CelB-PC (red), empty EX (dashed blue), EGFP-EX (dashed green) and CelB-EX (dashed red).  

Number of particles included in the 3DR, and resolutions based on 0.5 and 0.3 criteria are indicated.
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Figure S2.  AFM nanoindentation on empty and loaded PC.  (Top) Comparison of three typical nanoindenation 

curves for an empty PC (black), EGFP-PC (green) and CelB-PC (red). We observed a non-linear regime before 

particle breakage (arrows).  (Inset) Other examples of PC FIC.  (Bottom) AFM images of PC before (left) and 

after a single nanoindentation (right).  Images show clear damage to the particle shell. 
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Figure S3.  (A) Force-indentation curves obtained from Finite Element Simulations that mimic AFM 

experiments for PC.  The empty PC is represented as a spherical shell with an external radius R = 29.8 nm and 

7.5 nm thickness, indented on a hard substrate by a spherical tip with radius Rin = 15 nm.  The Young modulus 

of the PC was E = 58 MPa, chosen to yield the same spring constant value as in experiments for empty PC.  The 

cargo effect is modeled by addition of a second, 10-nm-thick layer (2D transverse sections, inset).  The graph 

shows the values for the empty PC (black line); CelB-PC (red) and EGFP-PC (green) are shown with a second 

internal layer of E = 6 and E = 8 MPa, respectively.  (B) Force-indentation curves obtained from Finite Element 

Simulations that mimic the AFM experiments for EX.  The graph shows the values for an unpressurized empty 

EX (black line) and an EX (red) with an internal pressure of 2.6 MPa.  The inset shows the model used for 

simulations, where EX is shown as a 6.6-nm-thick spherical shell with an external radius R = 32.4 nm, indented 

on a hard substrate by a spherical tip with a radius Rin = 15 nm.  The Young modulus of the capsid was E = 178 

MPa, chosen to yield the same spring constant value as in experiments for empty EX.  
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Figure S4. AFM nanoindentation on empty and loaded EX.  (Top) Comparison of three typical nanoindenation 

curves for an empty EX (black), EGFP-EX (green) and CelB-EX (red).  Particle breakage is indicated (arrows). 

(Inset) Other examples of EX FIC.  (Bottom) AFM images of EX before (left) and after a single nanoindentation 

(right).  Images show loss of some capsid subunits. 
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Figure S5. AFM indentations of CelB- and EGFP-EX in different buffers.  We tested the effect of electrostatic 

interactions on cargo-loaded EX rigidity at low ionic strength (50 mM phosphate, 25 mM NaCl, pH 7) or in the 

presence of spermidine (100 mM phosphate, 50 mM NaCl, 1 mM spermidine, pH 7) compared to standard 

conditions (100 mM phosphate, 50 mM NaCl, pH 7).  EGFP- and CelB-EX were tested similarly; each sample 

was incubated in standard buffer and its elastic constant measured by AFM, followed by buffer exchange first 

to lower ionic strength and then to spermidine buffer.  No significant differences were found (Table S3).  (A, 

B) Average elastic constant (A) and average height (B) of CelB-EX (red) and EGFP-EX (green) in different 

buffer conditions. 

 

Table S1.  Mechanical characterization of empty and loaded P22 PC and EX. The values show mean ± SE of 

single particles.  Breaking force is the maximum force reached before breakage.  The elastic constant was 

determined by linear adjustment of the initial part of the FIC.  Critical strain (critical) was calculated by dividing 

critical indentation by height.  Particle height was determined from a profile of the center of its image.  Relative 

deformation is the ratio of AFM height to nominal size from 3DR cryo-EM.  

acontrol experiment. Empty shells correspond to scaffolding-lacking procapsids.1 

  

 
Particles 

(nº) 

Breaking 

force (nN) 
K(N/m) critical Height (nm) 

Relative 

deformation 

Empty PC  32 0.56 ± 0.02 0.094 ± 0.006 0.18 ± 0.01 50 ±1 0.84 

EGFP-PC 35 0.68 ± 0.03 0.131 ± 0.005 0.17 ± 0.01 56.3 ± 0.5 0.94 

CelB-PC 25 0.54 ± 0.03 0.12 ± 0.01 0.14 ± 0.01 56.5 ± 0.7 0.95 

Empty shellsa 12 0.53 ± 0.03 0.105 ± 0.004 0.17 ± 0.01 48±1 0.81 

Empty EX 24 1.02 ± 0.05 0.21 ± 0.01 0.13 ± 0.01 58 ± 1 0.90 

CelB-EX 24 1.20 ± 0.07 0.27 ± 0.03 0.13 ± 0.01 63.3 ± 0.8 0.97 

EGFP-EX 21 1.11 ± 0.05 0.27 ± 0.01 0.13 ± 0.01 62.7 ± 0.3 0.98 
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Volumea 

(nm3) 

Total cargo  

volume  

(nm3) 

Shell 

thickness 

(nm) 

Net surface 

chargeb 

(e) 

PC 46,452c  7.5 - 

EX 71,936d  6.6 -840j 

CelB (tetramer) 581e  - -37k 

EGFP 55f  - 0l 

SP 
Ct helix-loop-helix  4.2  - 5m 

Nt linker  15.8g  - 2n 

CelB & 4 SP 661 21,152h - -288 

EGFP & 1 SP 75 16,800i - +1586 

Table S2. Volume and charge of P22 PC, EX and their cargos 

aMeasurements were obtained by 3D cryo-EM analysis 
bNet surface charges were calculated as indicated in the VIPERdb server (http://viperdb.scripps.edu ); basically, net surface charge is 

calculated by adding the charges of the inner surface-exposed positive (Lys, Arg, His) and negative (Glu, Asp) residues. 

cVolume when a perfect sphere is assumed, PC inner radius = 223 Å (outer radius = 298 Å). 
dVolume when a perfect sphere is assumed, EX inner radius = 258 Å (outer radius = 324 Å). 

eCelB tetratramer dimensions: 101 x 101 x 57 Å 

fEGFP monomer  dimensions: 48 x 33 x 35 Å 
gVolume occupied by the SP segment 141-263 

hVolume for 32 CelB tetramers 

iVolume for 224 GFP monomers 
jThe EX asymmetric unit inner surface has a total charge of -14 e (39 Asp, 62 Glu, 23 Lys, 64 Arg). 

kThe CelB tetramer outer surface has 169 Asp, 283 Glu, 238 Lys, 92 Arg, and 85 His 

lThe GFP outer surface contains 12 Asp, 12 Glu, 16 Lys, 6 Arg and 2 His 
mThe SP Ct helix-loop-helix motif has 7 Asp, 1 Glu, 7 Lys and 3 Arg 

nThe SP Nt linker (residues 141-263) has 6 Asp, 10 Glu, 9 Lys, 8 Arg and 2 His 

 

 CelB-EX EGFP-EX 

Buffer Particles 

 (nº) 

K (N/m) Height 

(nm) 

Particles 

(nº) 

K (N/m) Height 

(nm) 

50 mM NaCl, 100 

mM phosphate 
9 0.26 ± 0.045 64.1 ± 0.4 4 0.27 ± 0.02 64 ± 0.4 

25 mM NaCl, 50 

mM phosphate 
14 0.26 ± 0.025 64.4 ± 0.4 13 0.28 ± 0.02 64.05 ± 0.4 

1 mM spermidine 17 0.26 ± 0.015 63.9 ± 0.5 7 0.28 ± 0.04 63.8 ± 0.6 

Table S3. Elastic constant and height of CelB- and EGFP-EX in distinct ionic conditions 

  

http://viperdb.scripps.edu/
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Finite element simulations of P22 PC and EX 

Finite elements simulations of AFM indentation of P22 were performed using the COMSOL 

Multiphysics 4.3 program (Comsol, Stockholm, Sweden).  In all cases, the capsid wall was 

considered to be made of a homogenous material, using Young Modulus E and Poisson ratio 

ν = 0.3 (a standard value for protein-like materials).  This model capsid was placed on a hard 

flat substrate and indented by a hard spherical object with radius Rin = 15 nm to mimic the 

AFM tip.  The system was simulated using a 2D axisymmetric model meshed with over 3000-

6000 triangular elements.  Contacts were implemented between the shell and the tip as well 

as the supporting surface during indentation with a contact-penalty stiffness method 

according to manufacturer’s protocols.  A parametric, non-linear solver was used to simulate 

the stepwise lowering of the tip onto the capsid.  The spring constant was derived from a 

linear fit of force vs indentation for small indentations in the linear region between 2 and 6 

nm. 

The empty PC was modeled as a thick spherical shell with an external radius R = 29.8 nm 

and thickness h = 7.5 nm (Figure S2A, inset).  The presence of cargo attached to the PC was 

modeled by adding a second layer beneath the capsid layer with a different Young’s modulus 

and 10 nm thick (estimated from 3DR cryo-EM radial density profiles).  The indentation 

curves obtained for the model PC with a Rin = 15 nm tip and Young modulus value E = 58 ± 

4 MPa, chosen to reproduce the experimental value of the empty PC spring constant (0.094 

± 0.006 N/m), is shown in Figure S2A.   The indentation curves for two PC with the internal 

second (cargo) layer showed Young’s modulus values of 6 MPa and 8 MPa, yielding spring 

constants of k = 0.12 and k = 0.131 N/m, identical to the experimental values measured for 

CelB-PC and EGFP-PC, respectively.  The effective Young’s modulus for the cargo is thus 

nearly 10 times smaller for CelB and 7 times smaller for EGFP than that of the PC shell. 

The empty EX was modeled as a thick spherical shell with an external radius R = 32.4 nm 

and thickness h = 6.6 nm (Figure S2B, inset).  Finite elements simulations were used to 

corroborate pressure estimates based on the Vela formula.  Indentation curves for the model 

EX capsid with a Rin =15 nm tip and a Young modulus value E = 0.178 ± 0.009 GPa, chosen 

to reproduce the experimental spring constant value of empty EX (0.21 ± 0.01 N/m), are 

shown in Figure S2B.  The indentation curve when EX internal pressure is 2.6 MPa, which 

yields a spring constant k = 0.27 N/m, is identical to the experimental value measured for the 



 

 212 

cargo-loaded EX.  The estimated pressure in finite element simulations is thus 2.6 ± 1.1 MPa, 

compatible with the value obtained from the Vela formula (Eq. 1, main text).2 

 

Electrostatic contributions to osmotic pressure in EX 

The cargo can be considered a solution of N effective charged spheres in an electrolyte with 

a Debye length given by the salt concentration of the buffer (100 mM phosphate, 50 mM 

NaCl, yielding κ-1 = 0.796 nm). Electrostatic repulsion between the cargo molecules is 

screened by the buffer salt and is described using the electrostatic repulsion part of the DLVO 

potential between two charged spheres; this allows calculation of the second virial coefficient 

B2, which quantifies the leading electrostatic contribution to the osmotic pressure.  In the 

simplest approximation of treating the cargo as point charges,3  

𝐵2 =
𝑧2

2𝛴
 

Where Σ is solvent ionic strength and z is the charge of cargo molecules, in elementary charge 

units.  The resulting contribution to the osmotic pressure is 

∏𝑒𝑙𝑒𝑐𝑡 = 𝑘𝐵𝑇𝜌2𝐵2 

For CelB, with an estimated charge of 9 electrons (Z = -9; Table S2) per tetramer (which 

includes the SP charge), 

𝑝 ≈ 𝑘𝐵𝑇𝜌2𝐵2 = 180𝑃𝑎 

For EGFP, with an estimated positive charge of 7 (Table S2), 

𝑝 ≈ 𝑘𝐵𝑇𝜌2𝐵2 = 5000𝑃𝑎  

In both cases, this contribution is negligibly small and cannot explain the large pressure 

values derived in the nanoindentation experiments. 

 

The electrostatic contribution to the osmotic pressure can also be estimated through the 

Donnan equilibrium, by which the chemical equilibrium between the capsid interior and 

exterior, with a fixed charge that cannot escape from the capsid, leads to a higher interior 

counterion concentration that is responsible for the osmotic pressure.  The osmotic pressure 

here can be evaluated as described,4 to yield 
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𝛥Ԥ = 𝑘𝐵𝑇 (√𝑛0
2 − 𝑛0

2 − 2𝑛𝑏) 

where n0 is net charge density of the cargo and nb  is bulk salt density (~150 mM here).  

The interior charge density can be estimated as 𝑛0 =
𝑧𝑁

𝑉𝑐𝑎𝑝𝑠𝑖𝑑−𝑉𝑐𝑎𝑟𝑔𝑜
, where we subtract the 

volume occupied by the cargo.  For CelB with z = -9 per tetramer: 

𝛥Ԥ = 𝑘𝐵𝑇 (√𝑛0
2 − 𝑛0

2 − 2𝑛𝑏) = 370 𝑃𝑎 

For EGFP with z = 7 per molecule: 

𝛥Ԥ = 𝑘𝐵𝑇 (√𝑛0
2 − 𝑛0

2 − 2𝑛𝑏) = 9800𝑃𝑎 

In this case, the electrostatic contribution is thus also negligibly small. 

 

To summarize, the osmotic pressure is dominated by packing effects, since the electrostatic 

contribution is negligible.  This was confirmed by AFM nanoindentations, which showed no 

change in the elastic constants, independently of the presence of spermidine (which further 

screens electrostatic interactions) or when ionic strength was reduced.  
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Supporting Information to Chapter 6 

 

 S5 S3/S2 

 
# of 

paritcles 
% 

# of 

paritcles 
% 

EX 29 59 20 41 

EX+Dec 37 70 16 30 

WB 25 66 13 34 

WB+Dec 34 68 16 32 

Table S1. Adsorption frequency depending on symmetry. The number of single 

particles and its corresponding percentage are shown.  
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   S5   S3/S2  

  
# of 

paritcles 
mean SE 

# of 

paritcles 
mean SE 

EX 

Fbreaking (nN) 16 1,05 0,03 14 1,14 0,05 

K (N/m) 16 0,20 0,01 14 0,19 0,02 

critical (nm) 16 9,5 0,8 14 11,4 1,2 

Height (nm) 16 57 1 14 50 1 

εcritical 16 0,16 0,02 14 0,23 0,02 

 Energy (KBT) 16 1257 138 14 1624 237 

EX+DEC 

Fbreaking (nN) 21 1,26 0,05 13 1,3 0,1 

K (N/m) 21 0,23 0,02 13 0,19 0,03 

critical (nm) 21 11,5 0,9 13 11,5 1,5 

Height (nm) 21 56,8 0,6 13 52,1 1,0 

εcritical 21 0,20 0,02 13 0,22 0,03 

 Energy (KBT) 21 1799 213 13 1821 436 

WB 

Fbreaking (nN) 18 1,07 0,07 11 0,66 0,04 

K (N/m) 18 0,15 0,01 11 0,14 0,01 

critical (nm) 18 10,9 1,3 11 8,69 0,92 

Height (nm) 18 52,84 0,57 11 46 1 

εcritical 18 0,21 0,01 11 0,19 0,02 

 Energy (KBT) 18 1457 266 11 716 120 

WB+DEC 

Fbreaking (nN) 21 1,12 0,04 9 0,96 0,09 

K (N/m) 21 0,14 0,01 9 0,13 0,01 

critical (nm) 21 14,17 0,56 9 12 1 

Height (nm) 21 55,55 0,52 9 51 1 

εcritical 21 0,26 0,01 9 0,23 0,02 

 Energy (KBT) 21 1984 146 9 1421 273 

Table S2.  Mechanical characterization. Breaking force, elastic constant (k), critical indenation (critical), 

height and critical strain (critical) for the different morphologies: EX, EX+Dec, WB and WB+Dec. SE: standard 

error. 
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Figure S1. Characterization of capsids shows complete expansion of EX and subsequent penton loss in 

WB. (A) Non-denaturing agarose gel shift of PC, EX and WB capsid samples. (B) SEC chromatograms of PC, 

EX and WB displaying the Rayleigh scattering ratio. Dashed line marks the retention time of EX and WB. (C) 

Average hydrodynamic radius of PC, EX and WB measured across the peak width at half max of the SEC 

chromatograms. (D) Number average molecular weight of PC, EX and WB samples measured by multi-angle 

light scattering. Error bars represent the standard error on the mean. 

Figure S2. AFM images of WB presenting some of the pentons. (left) Large AFM view. The white arrowheads 

indicate a particles adsorbed along the 3- and 5-fold symmetry axes showing some pentons. (right) High-

resolution of a WB with a penton on the top. The arrowheads indicate two penton vacancies.  

Figure S3. SDS expands and then degrades the P22 VLP. (A) PC VLP incubated in increasing concentrations 

of SDS for 15 minutes. (B) Extended incubation of PC in 0.1% SDS. In both gels a PC and heat-expanded EX 

control are included for reference. 
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Figure S3. Pattern of breakage. (A) Each row: 3D AFM image of an EX capsid in the S5 axes before and 

after the nanoindentation (left and middle). The image on the right side shows a 2D representation of the particle 

after the breakage. A pentagon with its 5 faces is overlapped to the structure (dash lines). The red lines 

highlighted the parts of the particles that were clearly affected. (inset) Profile of the particle before (white) and 

after (green line) the damage.  (B) As before but with three EX capsids along their S3 axes. In this case the 2D 

AFM images (right) shows an icoshedron along its 3- or 2-fold symmetry. (C) Each row: 3D AFM images of a 

WB along the S5 axes before and after the nanoindentation (left and middle). The arrows point the position of 

the missing pentons (in red are represented the sites involved during the breakage). The image on the right 

shows a 2D representation of the particle after the breakage. A pentagon with its 5 faces is overlapped to guide 

the eye (dash lines). In red are represented the regions affected by the damage. The insets show the profile of 

the capsids before and after the breakage. (D) As in (C) but with the WB along its 3-fold symmetry axes. 
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Figure S4. (A) Evolution of the critical indentation (critical) along the EX→WB transition. (B) Evolution of the 

critical indentation (critical) along the EX →EX+Dec transition. (C) Evolution of the critical indentation (critical). 

 

 

Table S3. Association energy between inter- and intra capsomeric subunits for EX and WB. The association 

energy was calculated based on the buried surface areas (information was extracted from ViperdB).1 In black 

are represented interaction existing in both forms, in red and blue interfaces lost due to the transition, and in 

green interactions gained due to the transition. Note that red corresponds to interactions with the pentons 

(subunit G) and blue to interactions between hexamers. All the gained interactions were within an hexamer 

subunit (green) (see Figure X for position of the interfaces). 

EX WB 

Interface Symmetry 
Association 

Energy(kcal/mol) 
Interface Symmetry 

Association 

Energy(kcal/mol) 

F1-G1 Q-3 -14.8 C7-E1 Q-3 -28.7 

B1-C10 Q-3 -14.2 B1-C10 Q-3 -24.6 

C7-E1 Q-3 -13.9 D1-D7 I-3 -24.1 

A1-G2 Q-3 -13.2 B1-E2 Q-3 -23.6 

B1-E2 Q-3 -12.7 B1-C1 Q-6 -17.2 

D7-E1 Q-2 -9.1 E1-F1 Q-6 -17.1 

A1-F2 Q-3 -7.2 A1-B1 Q-6 -14.8 

B1-F2 Q-2 -7.1 A1-F2 Q-3 -13.8 

A1-G1 Q-2 -6.7 D1-E1 Q-6 -12.9 

C1-C10 I-2 -6.5 C1-D1 Q-6 -12.0 

D1-D7 I-3 -5.5 A1-F1 Q-6 -5.7 

B1-C1 Q-6 -4.4    

A1-F1 Q-6 -1.7    

C1-D1 Q-6 -1.2    

E1-F1 Q-6 -0.5    
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Figure S5. Interaction energy between subunits (based on table S3). Hexameric subunits (A-G) are colored in 

blue, red, green, yellow, cyan and pink, respectively. Pentameric subunits (G) are colored in pale pink. (top) 

Comparison of EX and WB forms (PDB: 3iyi and 3iyh)2. Blue dots in EX represent the interfaces where the 

interactions were lost after the transition. (bottom) Comparsion of EX+Dec and WB+Dec. The position of two 

Dec trimer are superimposed on the structures; each trimer lays between three hexamers (marked with a solid 

black line)3,4. Note that the trimer reinforces the position were the interactions were lost after the transition. 
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Figure S6. Percentage of undamaged structures observed by TEM. 
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Supporting Information to Chapter 7 

 

 

Figure S1. Mass spectrometry data on MVM 

VLPs used in this study. A) Tandem MS 

spectrum of intact VLPs (60x MVM, 3886.7 

kDa) shows sequential loss of monomeric VP2 

subunits (1x MVM, 64.6 kDa) resulting in VLPs 

missing a single copy of VP2 (59x MVM, 3815.4 

kDa) and two copies of VP2 (58x MVM, 3751.4 

kDa). This confirms the VLPs consist of 60 

copies of VP2. B). Deconvoluted mass spectrum 

of denatured VP2 subunits provides a weighted 

averages mass of the monomeric building block. 

C). Native mass spectra of MVM VLPs under 

HDX conditions (HDX buffer and heating at 

60 ºC) shows that even for extended periods 

under harsh conditions the VLPs remain 

intact. 
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Peptide classification  

Peptides whose error bar fell into the linear region (line of slope m=1, dashed line) were 

considered as not presenting a significant difference in deuterium uptake before and after the 

temperature transition, TM. Likewise, peptides falling above or below the linear region were 

sorted as ‘increase in deuteration after the transition’ (in green, Figure 4) or ‘decrease in 

deuteration after the transition’ (in purple, Figure 4).  

 

Figure S2. Average enthalpy before and after the 

temperature-induced transition. (a) Average 

enthalpy from 50ºC to 60ºC versus 25ºC to 45ºC for 

each peptide presenting a high basal uptake (35 to 

100%).Dashed line corresponds to a line with a slope 

equal to the unit, where peptides presenting the same 

level of uptake before and after the transition should 

fall. (b, c) The same than before but for peptides 

presenting medium (16 to 34%, green) and low (0 to 

15%) uptake at the basal state. 
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Red 

(35 to 100% basal 

uptake) 

Flat región (region 4) 
2-18, 67-81, 71-81, 153-164, 153-172,  

225-247, 296-323, 499-516. 

Saturation (region 1) 414-429, 422-429 

Green 

(16 to 34% basal 

uptake) 

Linear increase (m=1) 

(region 2) 

309-323, 430-446, 517-525, 534-550,  

559-572 

Decrease deuteration  

after TM (region 1) 

82-113*, 178-195, 216-224, 347-385, 386-413, 

386-398, 473-497,476-498, 482-498,  

573-587, 559-587 

Blue 

(0 to 15% basal uptake) 

Linear increase (m=1) 

(region 2) 
106-113, 196-215, 447-455, 456-472, 

Increase deuteration  

After TM (region 3) 

60-66, 99-113*, 128-134, 248-255, 

526-533 

Table S1. Peptides classification according to deuterium uptake before and after the transition. *Because 

peptides 82-113 and 99-113 present overlapping sequence; we split their sequences in two (i.e., 82-100 and 

101-113) to map them on the structure.  
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Figure S3. HDX time courses as a function of temperature are represented together with the corresponding 

Arrhenius plot. The peptide sequence is shown on top of each figure, with the color (red, green, and blue) 

indicating the level of uptake in the basal state.  
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Figure S4. List of peptides identified in the temperature-dependent HDX-MS experiment. HDX time courses 

as a function of temperature are represented together with the corresponding Arrhenius energy plot. The peptide 

sequence is shown on top of each figure, with the color (red, green, and blue) indicating the level of uptake in 

the basal state.   
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Figure S5. List of peptides identified in the temperature-dependent HDX-MS experiment. HDX time courses 

as a function of temperature are represented together with the corresponding Arrhenius plot. The peptide 

sequence is shown on top of each figure, with the color (red, green, and blue) indicating the level of uptake in 

the basal state.   
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Theoretical background 

HDX experiments are characterized by an intrinsic chemical rate constant (kch) that 

determines the probability that a hydrogen from an amide group would be exchanged (N-H 

→ N-D). This conversion, however, is modulated by the conformational flexibility of the 

protein that regulates how many of the amide sites are accessible to solvent and/or are 

involved in hydrogen bonding at each specific time. Under EX2 limit conditions (kclose>>kch), 

this dual contribution implies that the global kinetic rate measured in our HDX experiments 

is KHDX = Kopenkch, where 𝐾𝑜𝑝𝑒𝑛 =
𝑘𝑜𝑝𝑒𝑛

𝑘𝑐𝑙𝑜𝑠𝑒
 represents the equilibrium constant of the opening 

reaction. 

Eclosed

kopen

⇄
kclose

Eopen

kch

→   Eexchanged    [1] 

Although raising the temperature is expected to increase the values of both Kopen and kch, it 

is important to mention that Kopen is characteristic of a particular transient open state (Eopen) 

that should be temperature independent. The fact that some of our time courses reach 

different levels of deuteration (i.e., plateaus) at different temperatures indicates that the 

nature of Eopen varies and offers a means of evaluating the conformational flexibility of 

different regions in the viral particle. Each Eopen state is characteristic of a particular 

conformational state of the virus, which is different from a simple transient fluctuation from 

closed to open but provides information about the grade of local conformational flexibility. 

As it has been previously shown by Oyeyemi et al.,1 we can define an apparent enthalpy for 

this local conformational change that would represent the average property of the local 

enthalpy of each different amide within a peptide chain: 

∆H𝑎𝑣𝑔
𝑜 =

∑ ni∆H𝑖
𝑜

∑ ni
      [2] 

with ni the hydrogen at amide i that exchanges. Assuming that the distribution of states as a 

function of temperature follows a Boltzmann distribution, 𝑃 = 𝐴𝑒
−∆H𝑎𝑣𝑔

𝑜

𝑅𝑇 , we can then 

determine this average enthalpy by plotting the 𝑙𝑛 (
𝑁𝑡=4ℎ𝑟

𝑁𝑇𝑂𝑇𝐴𝐿
) versus the inverse of the 
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temperature, 
1

𝑇
., where Nt=4hr is the number of sites exchanged after 4 hours and NTOTAL the 

total number of exchangeable sites.  

 

References 

1 Oyeyemi, O. A. et al. Temperature dependence of protein motions in a thermophilic dihydrofolate 

reductase and its relationship to catalytic efficiency. P Natl Acad Sci USA 107, 10074-10079 (2010). 

 

 


	Portada

	Índice

	Capítulo 1

	Capítulo 2

	Capítulo 3

	Capítulo 4

	Capítulo 5

	Capítulo 6

	Capítulo 7

	Conclusiones

	Bibliografía

	Anexos


