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Abstract 
6α-Methylprednisolone-loaded surfactant-free nanoparticles have been developed to 
palliate cisplatin ototoxicity. Nanoparticles were based on two different amphiphilic 
pseudo-block copolymers obtained by free radical polymerization and based on N-vinyl 
pyrrolidone and a methacrylic derivative of α-tocopheryl succinate or α-tocopherol. 
Copolymers formed spherical nanoparticles by nanoprecipitation in aqueous media 
that were able to encapsulate 6α-methylprednisolone in their inner core. The obtained 
nanovehicles were tested in vitro using HEI-OC1 cells and in vivo in a murine model. 
Unloaded nanoparticles were not able to significantly reduce the cisplatin ototoxicity. 
Loaded nanoparticles reduced cisplatin-ototoxicity in vitro being more active those 
based on the methacrylic derivative of vitamin E, due to their higher encapsulation 
efficiency. This formulation was able to protect hair cells in the base of the cochlea, 
having a positive effect in the highest frequencies tested in a murine model. A good 
correlation between the in vitro and the in vivo experiments was found. 
 
Background 
Cisplatin (CDDP) is a highly effective chemotherapeutic agent against a variety of solid 
tumors including head and neck, lungs, ovary, bladder and testicles; however, it 
presents severe side-effects. Marullo et al1 described a double way of CDDP-induced 
cytotoxicity: CDDP binding to guanine bases on nuclear DNA and the formation of 
inter- and intra-strand chain crosslinking trigger cell apoptosis because of replication 
and transcription blockage; CDDP also has a direct effect on mitochondrial DNA 
resulting in the impairment of electron 32 transport chain protein synthesis leading to 
ROS generation. Increasing doses incorporated into protocols, with the aim of 
increasing cure rates, are related with serious adverse effects that affect kidney 
function, nervous system and hearing. CDDP induces apoptosis of inner ear cell by 
binding to DNA, reactive oxygen species (ROS) generation, increased lipid peroxidation 
and Ca 2+ influx, and inflammation events.2 Hearing impairment begins in the high 
frequencies and progresses to midrange when patient receives doses higher than 100 
mg/m  2. Patients who receive ultrahigh doses of CDDP (150-225 mg/m 42 2), show 
hearing loss in the high and extended high frequencies in 100% of cases. 44 3 There is 
substantial variability in susceptibility to the ototoxic effects of CDDP. Rapid 
intravenous bolus injections, high cumulative doses, pre-existing hearing loss, renal 
insufficiency, anemia, hypoalbuminemia, and prior cranial irradiation are some of the 
factors that can play a role in CCDP toxicity. The incidence and severity of hearing loss 



after CDDP treatment vary considerably, and 40%-80% of patients develop 
Nanomedicine: Nanotechnology, Biology, and Medicine an elevated hearing threshold 
following CDDP treatment being a limiting factor in antineoplasic treatments.4 The 
molecular mechanism of CDDP ototoxicity has not been fully elucidated; however ROS 
accumulation plays a key role in it. González-García et al found a significant increase in 
total superoxide dismutase (SOD) activity and caspase-3/7 and caspase-9 expression in 
whole cochlear extracts that relates to an antioxidant response against platinum 
accumulation on the seventh day after a single dose of 5 mg/kg CDDP.5 A depletation 
in endogenous antioxidants enzymes like SOD, catalase or glutathione peroxidase and 
glutathione reductase was observed in animals that have received ototoxic doses of 
CDDP (16 mg/kg), leading to ROS accumulation and resulting in apoptosis.6 CDDP 
inhibition of antioxidant enzymes after early antioxidant cell response, promotes ROS 
accumulation in the cochlea that brings on the entry of Ca2+ in the inner ear cells 
triggering apoptosis. Thus, activation and redistribution of bcl-2-like protein 4 (Bax) in 
the cytosol promote the release of cytochrome c from damaged mitochondria. 
Caspases 3 and 9 are activated by cytochrome c causing DNA damage mediated by 
activation of DNAase with loss of outer hair cells (OHC) and spiral ganglia.7 
Furthermore, some studies showed that CDDP induced apoptosis in inner hair cells 
(IHC) in a caspase independent way too.8,9 Utricle hair cells, with a common 
embryological origin with cochlea hair cells, minimizes oxidative stress by endogenous 
mechanisms and protective molecules such as glutathione, heat proteins (HSPs), heme 
oxigenase and adenosine A1 receptors that are proved to reduce CDDP-induced 
apoptosis in vitro.10 HSP-70 is over expressed in CDDP treated animals over 14 days,11 
showing a correlation between its concentration and a decrease in caspase activity at 
the cochlea.12 Nevertheless, up-regulation of these protective molecules is not 
enough to settle CDDP-induced oxidative stress being necessary the systemic or local 
administration of protective drugs6 such as caspase inhibitors (caspase-3 inhibitor z-
DEVD-fmk and caspase-9 inhibitor z-LEHD-fmk13, cannabinoid receptor 2 JWH-1514), 
antioxidants (Bucillamine15, caffeic acid,16 metformin17 Ginkgo biloba extract18) or 
corticoids (dexamethasone19, 6α-methylprednisolone20). 
The systemic administration of drugs is related to variable penetration into the inner 
ear due to the presence of a blood–cochlea barrier and undesired side effects. 
Hydrocortisone, 6α-methylpred-nisolone (MP), and dexamethasone showed poor 
delivery to inner ear, and the systemic administration of higher doses of corticoids 
would be necessary to achieve otoprotective therapeutic concentrations.20 However, 
high concentrations of corticoids are accompanied by severe side-effects that need to 
be avoided, such as hyperglycemia, hypertension, hypokalemia, peptic ulcer disease, 
osteoporosis and immunosuppression.19,21 Intratympanic treatment presents several 
advantages if compared with systemic administration. It is possible to reach higher 
concentrations of drug in the inner ear, the target is locally treated minimizing the 
drug side effects, and CDDP antitumor activity is not affected. However, it is not 
patient friendly. The main challenge in intratympanic treatments is still to achieve 
sufficient concentration of drug in contact with the sensory auditory cells as any drug 
delivered through the middle ear has to cross the three-layered round window 
membrane (RWM), diffuse through the labyrinth fluids and finally enter the inner ear 
cells. RWM behaves like a semipermeable membrane and its permeability depends on 



the size, concentration, structure, solubility and charge of the crossing molecule, 
enable agents and RWM thickness. 22 
In the last years, nanoparticles (NPs) have emerged as promising vehicles to transport 
drugs to specific tissues or even a particular cell or organelle. NPs with diameters 
between 100 nm and 1 μm have used in drug delivery to the inner ear with good 
results. 23 
Different NPs based on silica (unloaded NPs), polyethylene glycol (PEG) loaded with 
resveratrol or copolymers like poly-ε-caprolactone-PEG (PCL-PEG) loaded with 
furosemide were tested in vitro showing good internalization by auditory cells. 24–26 
Different types of nanocarriers have been used in vivo to ameliorate sensorineural 
hearing loss. Lipid NPs showed a high capacity to incorporate hydrophobic or 
hydrophilic drugs, and improve stability of encapsulated drugs. Liposomes 
encapsulating gadolinium-tetra-azacyclo-dodecane-tetra-acetic acid (LPS + Gd-DOTA) 
showed an efficient diffusion through RWM, 27 and Solid Lipid NPs (SLNs) edaravone-
loaded had certain protective effects against noise-induced hearing loss. 28 NPs based 
on copolymers like polyethylene glycol (PEG) provided immunologic benefits and 
remained longer in plasma. 29 Poly(D,L-lactide-co-glycolide acid) (PLGA) NPs were 
used for carrying single or multiple drugs through the RWM showing a significant 
improvement in drug distribution within the inner ear. 30 
The aimof thisworkwas the development of a newtherapy against CDDP-induced 
ototoxicity based on MP-loaded self-assembled polymericNPs.TheNPswere designed 
not only to beMP nanocarriers, but also to be active as these were based on 
methacrylic derivatives of  α-tocopherol (vitamin E), a verywell-known free radical 
scavenger that protects the cochlea from CDDP damage and prevents hearing loss.  
Our group has recently described the preparation, characterization and biological 
activity of surfactant-free NPs based on amphiphilic copolymeric drugs that self-
assembled in aqueous media during nanoprecipitation giving rise to multimicellar 
nanoaggregates. 31 The hydrophilic segment of the copolymers was mainly based on 
N-vinyl pyrrolidone (VP), which was selected because of its hydrophilicity, 
biocompatibility and capability to avoid the reticuloendothelial system. 32 The 
hydrophobic segment was mainly formed by amethacrylic derivative of vitamin E 
(MVE) or a methacrylic derivative of α-tocopheryl succinate (MTOS).  
Surfactant-free polymeric micelles nanoaggregates with hydrodynamic diameters 
between 96 and 220 nm were formed by self-assembling in aqueous media due to the 
appropriate hydrophilic/hydrophobic balance of these amphiphilic polymers. The 
hydrophobic core allowed the encapsulation of poorlywater-solublemolecules, such as 
coumarin-6 (C6) or additional α-TOS.  
Our aim in this work was the encapsulation of hydrophobic MP in the inner core of 
theseNPs to be administered intratympanically in order to reach higher concentrations 
ofMP in the inner ear, improve MP stability, avoid the MP side effects, and prevent the 
systemic with CDDP.  
 
Material and methods CDDP (1 mg/ml) and MP were purchased from Accord 
Healthcare and Sigma-Aldrich, respectively. Amphiphilic copolymers 
A methacrylic derivative of α-TOS (MTOS) and a methacrylic derivative of Vitamin E 
(MVE), and the copolymers poly(VP-co-MTOS) (89:11) (from now on CO-MTOS) and 



poly(VP-co-MVE) (60:40) (from now on CO-MVE) were synthesized as recently 
described by our group.31 
Preparation of loaded nanoparticles MP-loaded NPs were prepared by 
nanoprecipitation as previously published.33 Briefly, CO-MVE and CO-MTOS were 
dissolved in dioxane (50 mg/ml) containing an appropriate amount of MP (NP-MVE-10 
and NP-MTOS-10, with 10% w/w of drug respect to the polymer, and NP-MVE-15 and 
NP-MTOS-15 with 15% w/w of drug respect to the polymer). 
The resulting solution was added drop-wise to PBS (10 ml) with 5 constant mechanical 
stirring (650 rpm) (Figure 1).  C6-loaded NPs were also obtained by nanoprecipitation. 
C6 (1% w/w respect to the polymer) and the corresponding polymer (10 mg/mL) were 
dissolved in dioxane and added dropwise to PBS undermagnetic stirring. The final NPs 
concentration was 2.0 mg/mL. 
The obtained NPs were dialyzed during 72 h, sterilized by filtration through 0.22 μm 
polyethersulfone membranes (Millipore Express®, Millex GP), and stored at 4 °C until 
used. 
 
Characterization of NPs 
The particle size distribution of the NPs suspensions was determined by dynamic light 
scattering (DLS) using a Malvern Nanosizer NanoZS, at 25 °C. Zeta potential of the NPs 
was determined using laser Doppler electrophoresis (LDE). The measurements were 
obtained for 0.2 mg/ml NPs suspension containing 10 mMNaCl. The zeta potentials 
were automatically calculated from the electrophoretic mobility using the 
Smoluchowski´s approximation. The statistical average and standard deviation of data 
were calculated from 8 measurements of 20 runs each one. 
SEM and TEM analyses were performed with a Hitachi SU8000 TED, cold-emission FE-
SEM microscope working with an accelerating voltage between 15 and 50 kV. Samples 
were prepared by deposition of one drop of the corresponding NPs suspension (0.02 
mg/ml) over a small glass disk (12 mm diameter) or poly(vinyl formal)-coated copper 
TEM grid, and evaporation at room temperature. SEMsamples were coated with gold 
palladium alloy (80:20). An additional drop of Brilliant Black dye (Sigma-Aldrich, 1 
mg/ml) was deposited on the grid and the excess was removed with filter paper and 
the grid was allowed to dry before TEM observation.  
Encapsulation efficiency MP-loaded NP-MVE and NP-MTOS were freeze dried and an 
amorphous powder was obtained with a yield higher than 90 %in all cases. The powder 
was dissolved in chloroformand the solvent was evaporated at room temperature for 
24 h. Ethanol (2 ml) was added to dissolve MP or C6, and stirred during 24 h.  
Samples were centrifuged at 10,000 rpm and supernatant was analyzed by UV or 
fluorescence spectroscopy (λabs = 244 nm for MP, and λexc = 485 nm, λemis = 528 for 
C6). The encapsulation efficiency (EE%) was calculated as follows:  
Encapsulation efficiency (EE%) = ([loaded molecule]i/[loaded molecules]0) × 100, 
With [loaded molecule]i being the concentration of MP or C6 encapsulated and 
detected experimentally, and [loaded molecule]0 the concentration of MP or C6 added 
in the nanoprecipitation process. 
Esterase-mediated MP release 5 mL of MP-loaded NPs (NP-MVE-15 or NP-MTOS-15) 6 
with 15 u/mL of esterase from porcine liver (Sigma-Aldrich) was dialyzed against 10 mL 
of PBS at 37 °C using a 3.5-5 kDa MWCO membrane (Spectrum Laboratories). After 
certain periods, 1 mL of the dialyzing medium was withdrawn and the same volume (1 



mL) of PBS was replenished. MP concentration was measured by HPLC (Shimadzu). The 
separation was performed on a C18-column (4.6 mm × 250 mm, Agela Tech-nologies) 
at 30 °C. The mobile phase was a mixture of acetonitrile, and distillated water (80:20, 
v/v) pumped at a rate of 1 mL/min. The UV detector was set at λabs =244 nm. The 
experiment was carried out in triplicate. 
 
Cell culture experiments 
The HEI-OC1 cell line was a kind gift from Dr. Federico Kalinec (House Ear Institute, Los 
Angeles, CA). HEI-OC1 cells were maintained under permissive conditions: high-glucose 
Dulbecco’s modified Eagle’s medium (DMEM, Sigma-Aldrich) supplemented with 10% 
fetal bovine serum (FBS, Gibco), 5% L-Glutamine (Sigma-Aldrich) and Penicillin-G 
(Sigma-Aldrich) 
at 33 °C and 10% CO2.34 
 
Toxicity of CDDP 
To assess the impact of CDDP on cell viability, the cells (3 × 104 cells/ml) were exposed 
to 10, 20, 30, 40, 50 and 100 μM of CDDP in DMEM/PBS for 24 h. DMEM without FBS 
was used to avoid uncontrolled cell growth. 
 
Apoptosis 
Apoptotic cell death was qualitatively evaluated by Hoechst 33258 nuclear staining. 
Cells were incubated with 2 μg/ml of the Hoechst 33258 (Sigma-Aldrich) for 20 min. 
After washing twice with PBS, cells were fixed with 4% paraformaldehyde for 10 min at 
room temperature. Cells were washed twice with distilled water and evaluated under 
a Nikon Eclipse TE 2000-S fluorescence microscope with a DS-U2 camera controller 
(Nikon). NPs toxicity and protection assay HEI-OC1 (3 × 104 cells/ml) cells were 
exposed to different concentrations of NPs solution (2.00, 1.00, 0.50, 0.25, 0.13, 0.06, 
0.03, 0.02 and 0.01 mg/ml) in order to assess their impact on cell viability. 
NPs were added to HEI-OC1 and 4 h later 20 or 30 μM CDDP was added to the cultures 
in DMEM without FBS to avoid uncontrolled cell growth for 24 h, in order to study the 
protection effect of the NPs against CDDP. 
AlamarBlue® (Invitrogen) was carried out to determine cell viability using a Multi-
Detection Microplate Reader Synergy HT (BioTek Instruments; λabs = 570 nm). 
In vivo experiments Thirty six healthy female Wistar rats weighting 180-280 g were 
used. All animals were housed in plastic cages with water and food available ad 
libitum, and maintained on a 12 h light/ dark cycle. Rats with signs of present or past 
middle ear infection were discarded. Animals were randomly assigned to different 
groups (Table 1).  
The animals were handled according to the guidelines of the Spanish law for 
Laboratory animals care registered in the “Real Decreto 53/2013” and the European 
Directive 2010/63/EU. The study was approved by the Clinical Research and Ethics 
Committee of the University Hospital Puerta de Hierro (dossier No. 013/2012).  
Experimental procedure Animals were anesthetized with intraperitoneal ketamine 
(100 mg/kg) and diazepam (0.1 mg/kg). An initial auditory steady-state responses 
(ASSR) test was performed on all animals. An insert earphone (Etymotic Research ER-2) 
was placed directly into the external auditory canal. Subcutaneous electrodes were 
placed over the vertex (active) and in the pinna of each ear (reference). Ground 



electrodes were placed in the right leg muscles. ASSR were recorded using an evoked 
potential averaging system (Intelligent Hearing System Smart-EP) in an electrically 
shielded, double-walled, sound-treated booth in response to 100 ms clicks or tone 
burst at 0.5, 1, 2, 4, 8, 12 and 16 kHz with 10 ms plateau and 1 ms rise/fall time.  
Intensity was expressed as decibels sound pressure level (dB SPL) peak equivalent. 
Intensity series were recorded, and an ASSR threshold was defined by the lowest 
intensity able to induce a replicable visual detectable response.  
Following the ASSR measurements the right ear bulla was surgically approached and 
opened 301 35 and 50 μl of NPs solution was injected in the middle ear by bullostomy 
using a spinal needle (BD Whitecare 27G). Left ear was injected with PBS through the 
bullostomy as a control. After injection the anesthetized animals remained in lateral 
decubitus for 30 min to maximize the solution’s contact time with the RWM and to 
prevent its leakage into the pharynx through the Eustachian tube.  
After surgery, enrofloxacin and morphine (Braun 20 mg/ml) were administered 
subcutaneously for prevention of infection and postoperative analgesia, respectively. 
310 
CDDP-treated groups: after NPs administration in the right ear, an intraperitoneal slow 
infusion of CDDP (10 mg/kg) was carried out for 30 min. After CDDP infusion, animals 
were housed in individual cages with ad libitum access to water and food.  ASSR were 
tested after 3 days, and rats were euthanized by CO2 suffocation. 
In vivo distribution of coumarin-6-loaded NP NP-MVE-C6 and NP-MTOS-C6 were 
administered in vivo as described in the previous section. However, these animals 
were euthanized after 2 h. Cochlea was extracted and fixed in paraformaldehyde over 
24 h and decalcified in 1% ethylenedi-aminetetraacetic acid (EDTA) at room 
temperature (with daily changes) for 10-12 days. Once the bone was completely 
decalcified, the cochlea was dissected in PBS, and cochlear surface extracts were 
visualized using an inverted microscope  (Nikon Eclipse TE 2000-S) and a confocal laser 
fluorescence microscope (CLFM; Leica TCS-SP5 RS AOBS). Statistical analysis One-way 
ANOVA was used to analyze for statistical significance of all in vitro and in vivo results. 
Tukey test was used to identify significant differences between the paired treatments. 
P b 0.05 was considered statistically significant. 
 
Results 
NPs characterization Unloaded and MP-loaded NPs were obtained by nanopreci-
pitation in PBS of the corresponding polymer solutions in dioxane and their principal 
characteristics are described in Table 2. EE% was higher for NP-MVE (48% for NP-MVE-
10 and 53% for NP-MVE-15) than NP-MTOS (19% for NP-MTOS-10 and 26% for NP-
MTOS-15). 
All the synthesized NPs presented unimodal size distributions with apparent 
hydrodynamic diameters (by intensity, Dh) between 120 and 128 nm, with low PDI 
values. Dh slightly increased with the MP content in both families of NPs. All NPs 
presented slightly negative zeta potential. 
SEM and TEM micrographs showed that both NP-MVE (Figure 2, A and C) and NP-
MTOS (Figure 2, B and D) presented well-defined spherical morphology. Esterase-
mediated in vitro MP release In vitro release of MP was studied by an esterase-
mediated dialysis diffusion method. Figure 2, E shows the in vitro MP release profile at 



37 °C during one week. About 20% of the loaded MP is released from the NP-MVE-15 
and more than 40% from NP-MVE-15 within seven days.  
In vitro experiments  
HEI-OC1 auditory cell line is very sensitive to ototoxic drugs and expresses specific 
markers of Organ of Corti. 34 HEI-OC1 viability decreased with the concentration of 
CDDP in a dose dependent manner (see supplementary data Figure S2, A).  
Cytotoxicity of unloaded and loaded-NPs was also tested using HEI-OC1 and the results 
demonstrated that only the highest concentration (2.0 mg/ml) of both NP-MVE and 
NP-MTOS was cytotoxic (viability b70%; ISO 10993-5:2009). Viability of cells treated 
with MVE formulations was reduced near to 40%, while MTOS formulations reduced 
viability near to 70%. MVE formulations (Figure 3, A) resulted to be more cytotoxic 
than MTOS formulations (Figure 3, B) because MVE at 1.0 mg/ml also reduced cell 
viability more than 20% and in a corticoid loading dependent manner (HEI-OC1 viability 
NP-MVE-0 N NP-MVE-10 N NP-MVE-15 at 1.0 mg/ml). However, no statistically 
significant differences were found between the formulations.  
NP-MVE and NP-MTOS amelioratesCDDP-induced cytotoxicity in HEI-OC1 373 
NPs were added to HEI-OC1, and 4 h later 20 or 30 μM CDDP was added for 24 h. Cell 
viability approximately decreased till 60%, and till 50% when 20 μM CDDP (Figures 4, A 
and 5, A) and 30 μM CDDP were added to the cells (Figures 4, B and 5, B), respectively.  
MP-loaded NP-MVE (NP-MVE-10 and NP-MVE-15) at concentrations between 0.5 and 
0.13 mg/ml significantly reduced CDDP-induced cytotoxicity of 20 and 30 μM CDDP. 
NP-MVE concentrations of 2 and 1 mg/ml resulted to be cytotoxic per se, as shown in 
Figure 3, A and B and were not able to ameliorate CDDP cytotoxic effect even if cells 
were treated with MP-loaded NPs. NP-MVE-15 was apparently the most effective 
formulation although there were no statistically significant differences with NP-MVE-
10. 2 mg/ml concentration of NP-MTOS resulted to be cytotoxic, but 1 mg/ml 
significantly protected HEI-OC1 from CDDP effects. No significant differences between 
NP-MTOS-0, NP-TOS-10 and NP-MTOS-15 were observed that could be explained due 
to the poor MP EE% with this copolymer. 
NP-MVE-10, NP-MVE-15 and NP-MTOS-10 and NP-MTOS-15 significantly reduced 
CDDP cytotoxicity in a certain range of concentrations, being the most active MVE 
formulations. NP-MTOS-0 slightly increased cell viability of CDDP-treated cells. 
 
In vivo experiments 
Young adult animals were selected to test the possible protective effect of the 
synthesized NPs as CDDP ototoxicity is also related to the age of the patient and both 
elderly and pediatric patients are reportedly more sensitive to CDDP ototoxicity. 
In order to maximize NP delivery to inner ear, the highest dose of NPs (2 mg/ml) was 
used even though it was toxic in the in vitro tests. Empty NPs were inoculated through 
a bullostomy in the right ear of 2 animals per formulation (NP-MVE-0 and NP-MTOS-0). 
These animals were not treated with CDDP after surgery although they did get the 
same palliative care as the animals that received the chemotherapeutic treatment. 
After 72 h of NPs exposure, no significant differences were observed between the 
auditory thresholds of the right ear and the left ear at all frequencies (see 
supplementary data Figure S3).  



NP-MVE-15 decreased CDDP-induced hearing loss in an in vivo model NP-MVE-0 and 
NP-MTOS-0 were not able to decrease CDDP-induced ototoxicity. Auditory thresholds 
72 h after CDDP treatment increased in the same way in both ears  
(Figure 6). 
NP-MVE-10 and NP-MTOS-10 showed no otoprotection (data not shown). However, 

NP-MTOS-15 and NP-MVE-15 were active in vivo and showed protection against CDDP-

induced hearing loss. NP-MTOS-15 protected in a significant way only in one medium 

frequency (Figure 7, A), while NP-MVE-15 was able to decrease CDDP-induced 

ototoxicity in frequencies between 10 and 16 kHz, being statistically signif-icant from 

14 to 16 kHz. In view of the results, the size of the group was increased from 4 animals 

to 12 to corroborate the preliminary results. Animals that received this treatment 

showed that auditory thresholds in high frequencies (14 and 16 kHz) were significantly 

lower in the protected right ear (Right ear: CDDP + NP-MVE-15) when compared with 

the auditory thresholds of the left ear (left ear: PBS + CDDP) (Figure 8, A). 

NP-MVE-C6 and NP-MTOS-C6 accumulation in IHC and OHC NP-MTOS-C6 (Figure 7, B, 

C and D) and NP-MVE-C6 (Figure 8, B, C and D) were preferentially accumulated in the 

IHC than in OHC of the basal turn of the cochlea after 2 h post-administration in the 

middle ear. Green fluorescence due to the accumulation of C6-loaded NP progressively 

decreased from the basal turn to the apical turn (see supplementary data Figure S4). 

Discussion  

CO-MVE and CO-MTOS are amphiphilic copolymers that present an appropriate 

hydrophilic/hydrophobic balance to self-organize in aqueous media forming spherical 

NPs with a hydrophilic shell (mainly VP sequences) and a hydrophobic core (mainly 

MVE or MTOS monomer, respectively). 31 

MP was incorporated in the core of the NPs in order to locally deliver the corticoid in 

the inner ear at appropriate concentrations and to increase its activity and decrease its 

undesired side effects.  

Encapsulation efficiency was higher for NP-MVE than NP-MTOS.  

This was probably due to a different hydrophobic/hydrophilic balance (MVE system is 

poly(VP-co-MVE)(60:40) and MTOS system is poly(VP-co-MTOS)(89:11)). CO-MVE has a 

higher content in the hydrophobicmonomerMVEthat could favor the encapsulation 

ofMP.  

Bowe et al 22 studied the RWM perfusion dynamics and stated that NPs with sizes 

lower than 200 nm were able to pass through this membrane by rapid diffusion 

making them ideal candidates for drug delivery across the RWM. Cai et al 459 30 

demonstrated the potential of PLGA-based NPs with sizes between 135 and 154 nm for 

carrying drugs and crossing the RWMin guinea pigs.  

Sizes measured by DLS were between 120 and 128 nm and therefore were adequate 

for this purpose.  



All NPs presented slightly negative zeta potential, indicating an almost neutral charge 

surface. These values have been previously described for other authors and were also 

corrobo-rated by our group with α-TOS-loaded NPs based on CO-MVE and CO-MTOS. 

This fact indicates that the shell of the NPs is constituted by VP-rich hydrophilic 

domains. 

Esterase-mediated MP release profiles of both systems followed a zero order kinetic 

during the first 80 h, followed by a non-linear period (Figure 2, E). The experimental 

conditions are far from the in vivo environment; however, this experiment probes that 

MP release takes place in the presence of esterase in a sustained manner during, at 

least, one week. The biological half-life of MP in the inner ear is around 24 h20 and 

therefore, its protection and sustained release are of great interest to its application as 

otoprotector of CDDP-induced toxicity. 

Non-loaded NPs (CO-MTOS and CO-MVE) were tested in order to check if they could 

effectively reduce ROS in CDDP treated HEI-OC1 cells as they incorporate α-tocopherol 

or α-tocopheryl succinate derivatives covalently attached to their macromolecular 

chain.36 

Kruspig et al37 studied the effects of the combinatorial administration of α-TOS and 

other antiproliferative molecules, and demonstrated the antagonic effects of low 

concentrations of α-TOS and CDDP. Therefore, NP-MTOS were tested in order to check 

if the α-TOS of the copolymer could effectively reduce the pro-apoptotic effect of 

CDDP in HEI-OC1 cells. NPs based on both MVE and MTOS with concentrations 

between 1 and 0.01 mg/ml resulted to be non-cytotoxic to HEI-OC1. NP-MVE-15 was 

the most effective formulation in vitro, although there was no statistically significant 

difference with NP-MVE-10 (Figure 4, A and B). NP-MTOS had less protector effect 

against CDDP-induced cytotoxicity than NP-MVE treated group (Figure 5, A and B). NP-

MTOS-0 slightly increased cell viability of CDDP-treated cells. This could indicate 

certain activity of the polymer although this effect was not statistically significant. 

Therefore, NP-MVE-0 and NP-MTOS-0 cannot be considered active against CDDP 

cytotoxicity in vitro, but are good nanocarriers to encapsulate and transport MP. As it 

has been commented before, the differences between both systems could be ascribed 

to the different composition of the copolymers better than the chemical structure of 

both MVE and MTOS components. Despite the development of new regimens and 

dosage limits, the ototoxic effect of CDDP treatment is still unavoidable. A single 

injection of high doses of CDDP rapidly causes ototoxicity with a high incidence. CDDP-

induced hearing loss firstly affects the high frequencies and continues to medium 

frequencies so an increase in auditory threshold is shown for frequencies from 8 to 16 

kHz. NP-MVE-0 and NP-MTOS-0 were not able to decrease CDDP-induced ototoxicity 

(Figure 6). This fact could be related to the high doses that were used in this 

experiment to simulate aggressive CDDP-based therapies used in clinical patients. 

Corticoids have been systemically administered to protect against sensorineural 

hearing loss with good results.38 However, some authors have called into question the 

efficacy of systemic steroids due to the controversial results in clinical studies because 



of the side effects. Other problem associated with corticoid systemic administration 

has been the wide range of pharmacokinetic factors that influence the concentration 

of the drug inside the inner ear including: difference in distribution, variability to cross 

the blood–labyrinth barrier, different drug metabolic pathways and varied routes of 

excretion.39 Due to these related problems intratympanic administration is an 

accepted alternative to systemic administration in patients with contraindications for 

systemic corticoids.20,40 A good correlation between the in vitro and in vivo 

experiments was found when unloaded and MP-loaded nanoparticles were tested to 

palliate the ototoxicity of CDDP.  

Unloaded-NP reduced the ototoxicity of the CDDP but this effect was not statistically 

significant, although both copolymers incorporated vitamin E or α-TOS in their 

structure. Loaded-NPs were active and their activity mainly depended on the 

encapsulation efficiency. NP-MVE-15 was the most active formulation both in vitro and 

in vivo. In the in vitro experiments, concentrations between 0.13 and 0.50 mg/mL 

significantly reduced cytotoxicity of CDDP on HEI-OC1 cells. In the in vivo experiments, 

high frequencies (14-16 kHz) were protected by the addition of the NP suspension 

intratympanically by bullostomy (Figure 8, A). In addition, NP-MVE-C6 (Figure 8, B,C 

andD) andNP-MTOS-C6 (Figure 8,B,CandD)were accumulated in the area of sensory 

auditory cells by crossing the three-layered RWMafter 2 h of the administration. 

Accumulation preferentially occurred in IHC in the basal turn of the cochlea associated 

with higher frequency hearing.  

In conclusion, these results indicate that NP-MVE-15 could be a good candidate to 

deliver MP in the inner ear to palliate, at least in part, the CDDP ototoxicity. Moreover, 

both kinds of polymers could also be used to encapsulate and deliver other 

hydrophobic drugs (antioxidants, anti-inflammatory agent, or anticaspase drugs) as 

both NP crossed the round window membrane and enter the inner ear. 
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