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ABSTRACT: This article presents a method for computing Likelihood Ratios (LR) from 
multimodal score distributions produced by an Automated Fingerprint Identification System 
(AFIS) feature extraction and comparison algorithm. The AFIS algorithm used to compare 
fingermarks and fingerprints was primarily developed for forensic investigation rather than for 
forensic evaluation. The computation of the scores is speed-optimized and performed on 
three different stages, each of which outputs discriminating scores of different magnitudes 
together forming a multimodal score distribution. It is worthy mentioning that each fingermark 
to fingerprint comparison performed by the AFIS algorithm results in one single similarity 
score (e.g. one score per comparison). The multimodal nature of the similarity scores can be 
typical for other biometric systems and the method proposed in this work can be applied in 
similar cases, where the multimodal nature in similarity scores is observed. In this work we 
address some of the problems related to modelling such distributions and propose solutions 
to issues like data sparsity, dataset shift and over-fitting. The issues mentioned affect the 
methods traditionally used in the situation when a multimodal nature in the similarity scores is 
observed (a Kernel Density Functions (KDF) was used to illustrate these issues in our case). 
Furthermore, the method proposed produces interpretable results in the situations when the 
similarity scores are sparse and traditional approaches lead to erroneous LRs of huge 
magnitudes.  

1. INTRODUCTION 

The commercial “off-the-shelf” AFIS algorithms producing similarity scores 1  are primarily 
developed to support the process of selection of candidates for forensic investigation and not 
intended for the use in forensic evidence evaluation [1]. The algorithm selected was speed 
optimized to perform large number of comparisons in the shortest time possible. Not only is 
the comparison process2 speed-optimized, it is performed on three different stages, each of 
which outputs similarity scores of different magnitudes, together forming a multimodal score 
distribution. The scores that have been output in the first two stages of the algorithm are 
referred to as “early outs” and the “full” (profound) comparison is only performed in the final 
stage. The similarity score outputs of the three different stages of the AFIS algorithm used are 
illustrated in the Figure 1 below. 
 

																																																								
1	The aim is to discriminate the fingermarks originating from the same fingers from the fingermarks 
originating from different fingers.  
2 Undet the “comparison process” we mean the fingermark to fingerprint comparison. 



 

Figure 1 –Different regions of the similarity scores produced by the AFIS algorithm. 

The scores provided by the AFIS algorithm used are structured in three regions (R): 

• Region 1 (R1) – the first mode of the AFIS – all the comparisons performed at this stage 
are assigned identical scores value of “-1”. The event of observing a similarity score after 
a fingermark to fingerprpit comparison in this mode occurs when the AFIS algorithm finds 
no minutiae in agreement between the mark and the print.  

• Region 2 (R2) – the second mode of the AFIS – all the comparisons performed in this 
stage are assigned score values in the range between 0 and ,300. The event of observing 
a similarity score after a fingermark to fingerprint comparison at the second stage occurs 
when some similarities are observed, which are however not sufficient to proceed to a full 
comparison.  

• Region 3 (R3) (the third mode of the AFIS) – all the comparisons performed in this stage 
are assigned score values greater than 300 and a full comparison is performed. The 
event of observing a similarity score after a fingermark to fingerprint comparison at the 
third stage occurs when the AFIS algorithm finds the incoming images similar enough to 
perform a full comparison. 

Table 1 sumarizes the scoring process in the three modes of the AFIS algorithm used3 in 
more organised way. 

Table 1 – different operating stages of the AFIS algorithm 
 

Algorithm 
processing stage 

Score 
range 

1 – early outs 1 -1 
2 – early outs 2 [0 , 300] 

3 – full comparison >300 
 
In this work we propose a method to handle the multimodal score distributions resulting from 
the comparison process, which is also robust to the sparsity in the data. This article is 
structured in the following way. In section 2 we introduce the datasets used, section 3 is 
dedicated to the definition of the problem and introduction of the baseline LR method. In 
section 4 we present our solution to the data sparsity and lack of data in the multimodal score 
distributions. In section 5 we discuss the performance measures used and present the results 
in the section 6. Finally we present the discussion and conclusion in section 7.  

2. DATASETS USED 

Since it is notoriously difficult to find forensically relevant, sufficiently large datasets with the 
ground truth about the origin of the samples known, we decided to use a set of simulated4 

																																																								
3 It is important to note that the AFIS algorithm uses different scoring methods for the fingermarks 
containing up to 10 minutiae and for the 11minutiae and above. The fingermarks in 8-minutiae 
configuration are used in this article. Different AFIS / biometric systems might provide similarity scores 
of different magnitudes. 



[13] [15] fingermarks in 8-minutiae configuration from 6 individuals, paired with their 
corresponding fingerprints. The fingermarks were obtained by capturing an image sequence 
of the finger of each individual from an optical live scanner (Smiths Heimann Biometrics 
ACCO 1394S live scanner) and splitting the frames captured into 8 minutiae configurations.  
AFIS scores of simulated fingermarks and the corresponding ground-truth reference 
fingerprint as training data are used for modelling the SS scores (numerator of the LR), 
captured from the same individual in controlled conditions. For modelling the DS scores 
(denominator in LR) we used the fingermark in the case compared against a 200,000 - 
fingerprint subset of the police database. The values assigned to the parameters of the 
distributions  are obtained from the data summarized in the table 2.  

3. Table 2: Same and different source scores. 

Individual ∆  - SS scores ∆  - DS scores 
Person 1 8,455 marks 1 print 8,455 marks 200,000 prints 
Person 2 2,751 marks 1 print 2,751 marks 200,000 prints 
Person 3 4,666 marks 1 print 4,666 marks 200,000 prints 
Person 4 2,206 marks 1 print 2,206 marks 200,000 prints 
Person 5 3,179 marks 1 print 3,179 marks 200,000 prints 
Person 6 3,758 marks 1 print 3,758 marks 200,000 prints 

 
For example scores for the Evidence Same Source (ESS) are obtained on a “leave-one-out” 
basis from the SS score distribution (fingermarks of Person 1 and fingerprint of the Person 1) 
and scores for the Evidence Different Source (EDS) are obtained from the AFIS scores of the 
fingermarks of Person 1 with the fingerprints of Persons 2-6. This process is repeated 
iteratively for each individual. In the “leave-one-out” approach we iteratively sweep through 
the set of fingermarks. With every iteration we delegate one of the fingermarks to play the role 
of the crime-scene mark (designated as yth mark abbreviated by “my”) and maintain the 
remaining fingermarks to form SS and DS score distributions for training the LR method. The 
concept of the LR and the method used will be discussed in length in the following sections. 

3. PROBLEM DEFINITION  

Traditional way to handle the multimodal score distributions is to adopt a holistic approach, 
e.g. finding a single-function description of the multimodal score distribution (examples of 
application single-function description of univariate, multimodal score distribution – the KDF 
can be found in [2,3]). The use of single-function description of such score distributions is well 
justified, if the scoring mechanism (in our case AFIS comparison algorithm) produces the 
similarity scores in a uniform or continuous manner. 

Our situation is different. The selected AFIS comparison algorithm produces the similarity 
scores of three different magnitudes and the events of observing the similarity score, e.g. the 
result of a fingermark to fingerprint comparison, are mutually exclusive – meaning that the 
similarity score of a certain magnitude can only be observed in a particular region.  

The core of the proposed solution therefore rests in treating the three score regions 
independently. In this approach we do however face a problem of data sparsity, as majority of 
the SS scores project in the region 3, leaving a few SS observations for the regions 1 and 2. 
Similar situation occurs with the DS scores, where majority of these scores project into the 
regions 1 and 2, leaving a few observations for the region 3. A situation where no SS, or no 
DS score is observed in a particular region poses a significant problem for evaluating the 
strength of evidence – e.g. resulting in LR values of unreasonably high magnitudes or 
infinities.  

In section 3.1 we present a model used for computing the Likelihood Rations (using the KDF 
method) and in section 3.2 we highlight the problems with the holistic approach when using 
the KDF.  

																																																																																																																																																															
4 Simulated fingermarks in this case refer to series of image captions of a finger moving on a glass plate 
of the fingerprint scanner (the procedure is described in detail in [13]). 
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3.2 LR COMPUTATION 

When computing LR values in forensic applications most of the time we encounter a problem of 
the choice of the population database. In forensic fingerprints the role of the legacy police 
databases in individual countries play this role. While comparing fingerprints in forensic scenario 
we encounter fingerprints of degraded quality, high distortion, partial fingerprints (e.g. fingermarks) 
etc…  
 
We can shape the prosecution and defense propositions at different levels depending on the 
investigation scenario – level of the source (where we inquire regarding the source of the 
fingermark), activity level (where we inquire regarding transfer of the fingermark onto the crime 
scene) or at the crime level (not commonly addressed in fingerprints as it usually implies transfer 
of the crime scene material onto the suspected individual).  
 
At the source level for the same source hypothesis we further inquire whether the questioned 
fingermark is coming from a particular finger of the suspected individual or any finger of the 
suspected individual (finger / person level propositions). For the different source proposition we 
can inquire whether the print is coming from a different finger of a suspected individual, from a 
particular finger (for example the right-hand thumb) of any other individual in the database 
(conditioning on a particular finger is not common for the DS hypothesis), or any finger of any 
other individual in the database.  
 
The fingermark primarily address the question of its source, we set the forensic propositions 
at source level, namely: 
 

Hp: The fingermark and the fingerprint originate from the same finger 
Hd: The fingermark and the fingerprint originate from different fingers5 
 

The LR’s in the case of the KDF are produced from the Same Source (SS) and Different 
Source (DS) score distributions (examples are shown in the Figure 1) and approximated 
using the KDF. In our case, the distribution of SS and DS scores observed in each region 
varies in its shape, mainly due to the three-different-stage scoring process. In most of the 
cases, the majority of the SS scores projects into the R3 region, because a comparison 
showing high degree of similarity tends to be a SS comparison resulting in a score > 300. 
Conversely, the majority of the DS scores projects in the R1 and R2 regions, because a 
comparison showing low degree of similarity tends to be a DS comparison and results in a 
score < 300. 

 
 

Figure 3 – LR model example 

																																																								
5 Change at the level of the proposition induces a change in the LR model. 



 
In the forensic literature different strategies have been proposed for calculating LRs from 
continuously distributed AFIS scores. In the field of score-based biometric recognition [4, 5, 6, 
7, 3, 8], the following LR model has been defined (example shown in Figure 3): 
 

LR =
f (S |Hp )
f (S |Hd )

=
f (Δ(y, x) |Hp,Δθ̂ p )
f (Δ(y, x) |Hd,Δθ̂d )

   (eq. 1) 

 
where for the fingerprint evidence evaluation datasets are defined in the following way: 
f() – in the equation stands for the probability density function applied to the continuous 
distribution of the similarity scores 
S = ∆(y, x) – a similarity score between the fingermark y found on the crime scene and the 
fingerprint x of the suspect. It is usually referred to as the evidence score. 
∆ – similarity scores obtained from comparing training set of simulated fingermarks of the 
suspect with the reference fingerprint of the suspect  
∆  – scores obtained from comparing the crime scene fingermark and a subset 6  of 
fingerprints from the population database used in the model (in this case a subset of 
operational 10-print card police database). 
 
Furthermore, we will use below the following notation to refer to the parameters of the 
models:  
q – represents the parameters of the model (e.g. mean, variance) that need to be trained 

 – represents a value given to the parameters of the model, obtained from the scores of the 
training set 
 
3.2 BASELINE METHOD - KDF  

KDF is typically a first choice to handle univariate, multimodal distributions, as it can be seen 
in [2, 3]. Therefore, we will use it as a baseline in this work. We do nevertheless anticipate 
that KDF is a method that can be prone to over-fitting (see Figure 2), an undesired behaviour 
as it often leads to the Likelihood Ratio (LR) values of erroneously enormous magnitudes, 
mainly due to the poor description of the tails of the score distribution closely related to the 
lack of data.  

In Figure 2 we see two examples of clearly erroneous behaviour of KDF due to overfitting. 
The plot on the left-hand-side shows the LR for Same Source evidence (LREss) resulting in 
an enormous magnitude (numerically infinite), while the plot on the right-hand-side illustrates 
an example of a LR = 1091 for Different Source evidence (LREds), which is supporting the 
wrong proposition in a very strong way. 

 
 

Figure 2 – KDF fit to the SS and DS score distributions – example magnitudes 
 

																																																								
6 The subset (rather than the entire set) of the AFIS database, counting 20k individuals (200’000 fingers), 
was chosen based on the fact, that the features extracted from the fingerprints in this subset have been 
manually (human) verified.  
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4. SOLUTION PROPOSED 

We do not aim being critical towards the use of the KDF and maintain that in other scenarios 
it may be useful. The LR’s of extreme magnitudes obtained using the KDF presented in 
Figure 2 however advocate for an alternative solution (this statement is further supported in 
the results section of this article). 

4.1 MULTIMODAL LR METHOD 

Each fingermark vs. fingerprint comparison by the AFIS system used results in one single 
score. This score can either belong to region 1, region 2 or region 3. The events of observing 
the similarity scores in a particular region (R1, R2 or R3) are therefore “mutually exclusive”. 
This is an intrinsic property of the AFIS algorithm used. The scores in the R1, R2 and R3 for 
both of the propositions together form a multimodal score distribution. The scores in the three 
regions “exhaustively” cover the multimodal score distribution – R1 ∪ R2 ∪ R3 = multimodal 
distribution. In the method proposed we will split the SS and DS score distributions into the 
three regions of interest, since the events of observing an AFIS score in different regions are 
mutually exclusive and exhaustive (Figure 4). 

Due to the fact that the events of observing similarity scores in the three regions are mutually 
exclusive and exhaustive, we can rewrite equation 1 in the following way: 

 

(eq.2)

 

 

 
Figure 4 – Multimodal method 

By substituting the region numbers in with i (e.g. i = 1, 2, 3) we obtain the following compact 
representation of the equation 2: 

 

LR =
f (S |Hp )
f (S |Hd )

=

=
f (S | R1,Hp )×P(R1 |Hp )+ f (S | R2,Hp )×P(R2 |Hp )+ f (S | R3,Hp )×P(R3 |Hp )
f (S | R1,Hd )×P(R1 |Hd )+ f (S | R2,Hd )×P(R2 |Hd )+ f (S | R3,Hd )×P(R3 |Hd )



LRi =
f (S | Ri,Hp )×P(Ri |Hp )
f (S | Ri,Hd )×P(Ri |Hd )  

 (eq. 3) 

Where 
P(Ri |Hp )
P(Ri |Hd )

is the ratio of probabilities of observing Ri scores given that the fingermark 

and the fingerprint originates from the same finger over the probability of observing Ri scores 
given that the fingermark and the fingerprint originates from different fingers.  

4.1.1 Scores in the Region 3 

LR3 =
f (S | R3,Hp )×P(R3 |Hp )
f (S | R3,Hd )×P(R3 |Hd )  

 (eq. 4)
 

From the histograms of the SS and DS score distributions in Figure 5 we consider as a 
reasonable initial assumption that the scores in the R3 region are following a Gaussian 
(Normal) distribution. 

 

Figure 5 – Gaussian fit to the R3 region score distributions 

4.1.2 Scores in the Region 2 

LR2 =
f (S | R2,Hp )×P(R2 |Hp )
f (S | R2,Hd )×P(R2 |Hd )

  (eq.5) 

The DS score distribution in the R2 region appears to be skewed, and the SS score 
distribution seems to be monotonically raising in this region. Although different parametric and 
non-parametric data fits have been tested for the R2 region scores [22], Beta function was 
chosen mainly due to the modelling simplicity to describe the score distributions in this region. 
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Figure 6 – Beta fit to the R2 score distributions 
 

4.1.3 Scores in the Region 17 

As mentioned in the introduction section, all of the scores observed in the R1 region get one 
particular value of the similarity score (SR1 = -1) assigned by the AFIS algorithm. Equation 6 
for the R1 region will have this form: 

LR1 =
f (S | R1,Hp )×P(R1 |Hp )
f (S | R1,Hd )×P(R1 |Hd )

  (eq. 6) 

where  is the probability of observing a -1 score (SR1 = -1) amongst all the scores 
observed in the R1 region under the Hp, an event, which is always true and we can write 

.  The same logic applies to the , which is a probability of 
observing a -1 score (SR1 = -1) amongst all the scores falling into the R1 region under Hd, an 
event which again is always true and we can write .  
 
By aplying the above-mentioned conditions, eq. 6 further simplifies to a ratio of probabilities of 

observing score in the R1 region under both propositions . The scores in region R1 

possess certain evidential value, despite the fact that all of them share the same discrete 
value.  
 
Let’s assume that very few SS are observed in the R1 region, and that they are mostly DS 
scores. If we observe a score of -1 (in the R1 region), the LR should support the defence 

hypothesis. This happens if . Additionally, an apparent solution to the -1 scores 

of ignoring them because all of them have the same value appears to be a waste of the 
discriminating information given by the fact that in R1 there are mostly DS scores. 

4.2 ROBUSTNESS TO THE LACK OF DATA 

In forensic science, the apparent problem of assigning probabilities when no observations are 
made in the training data has been studied for example in [9]. In the end the model has to be 
completed by assigning the following probability ratio for each region Ri: 

 
																																																								
7 The similarity scores in this region also carry evidential information, and as such should not be simply 
ignored.  
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these are probabilities of observing a score in i-th Region respectively under prosecution and 
defence propositions.  

4.2.1 Example with a simplified binary division 

Assigning P(Ri|Hp) and P(Ri|Hd) to each of the different regions Ri, i=1,2,3 needs to consider 
some robustness about the sparsity of the scores in the training set. In order to illustrate this, 
we start with a simplified example, where we have divided the score axis in two regions R1 
and R2 – a binary division. We consider for illustration the scores under the assumption that 
Hd is true, but this example can be analogously applied to the scores under the assumption 
that Hp is true. In order to assign a probability P(Ri|Hd) that a given score will be observed in 
region Ri, we need previous knowledge regarding the observations of similarity scores falling 
into different regions – some training observations. Those observations are taken from the 
training scores ∆ , with Nd – the number of scores observed under the defence proposition, 

in the following way. Let  be a sample of random variables, where  
represents the region in which the j-th different-source training score was observed. In this 
binary example, the possible outcomes of each  are R1 and R2. Then, the outcome of  

will be the region in which the j-th score in ∆  is observed. Thus, the training observations 

are the particular values of each of those random variables . We assume that variables 

 are identically distributed according to a Bernoulli distribution, where the 
probability that a score is observed in Region i is precisely P(Ri|Hd), the parameter of the 
model. Moreover, we assume that the variables are conditionally independent given the 
model. Then, it can be shown that the maximum likelihood rule for the probability that a score 
will fall into Region i is as follows: 

 (eq. 7) 

where Mi is the number of scores in the training set observed in Region i and the Nd is the 
number of observations of the scores under the defence proposition. If the training scores 
under Hd for whatever reason contains zero score observations in Region i, i.e. Mi = 0, we get 
the following: 

 (eq. 8) 

In some cases this might result in a LR = ∞. An analogous derivation results in LR = 0 for 
same-source scores falling in a region where no same-source scores have been observed 
before. 
 
An outcome of LR = 0 or ∞ is very likely to occur if a similarity score, either SS or DS, is not 
observed in one of the regions. The problem arises particularly in the R1 region, where the 
SS scores are quite rare, but can also occur in the R2 or R3 region as well. 

4.2.2 Bayesian solution 

In order to avoid “zeroes” in either numerator or denominator of the LR and to assure a valid 
numerical input, we propose a Bayesian solution to P(Ri|Hd). We start from the above binary 
example, where a maximum likelihood rule was considered. Under the same assumptions, if 
we instead consider that the probability P(Ri|Hd), the parameter of the Bernoulli distribution, 
has a uniform prior distribution (in the [0,1] range), then it can be shown that the solution 
inferred is the predictive distribution, which takes the following form: 
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 (eq. 9) 

A full derivation is tractable, and can be found in [10] (Equations (6.66) to (6.73)). This result 
is known as the Laplace rule of succession [11]. For simplicity the application of this rule on 
our dataset will be demonstrated on R1 region, where all the scores attain a discrete value S 
= -1. Recall the binary example, where in the R1 region we obtained LR = ∞ because there 
were no observed scores in that region in the training data. Suppose a number of DS training 
scores Nd = 20 and that none of these scores are observed in the Region 1, thus Mi = 0. Then, 
according to the previously proposed maximum-likelihood rule we would obtain 

 and the LR would be infinite. However, with the Bayesian uniform 

prior on the model’s parameter (Laplace rule of succession) we get following 

, which with increasing number of scores will be 

asymptotically approaching zero, but will still provide a non-zero numerical value. The 
interpretation of this result is that, additionally to the training data, a uniform prior for the 
model parameters forces to consider always at least an observation of one score in each of 
the regions. Therefore, if Hd is true, we have to consider Nd + 2 scores, and the scores 
observed in each region will be at least one. An analogous derivation provides equivalent 
interpretation for the case when Hp is true. 

4.2.3 Generalization to more than 2 regions 

The problem addressed in this work requires a generalization with respect to the rule of 
succession for the binary example, because we are dividing the score range into more than 2 

regions. That means that the variables  will now have more than 2 possible 
outcomes, and therefore their distribution cannot be a Bernoulli distribution. The 
generalization to more than 2 possible outcomes, say Q possible regions, involves the 

assumption that the variables  follow a multinomial distribution. Moreover, since 
there are now Q parameters for this multinomial model, the prior uniform distribution of the 
model parameters will be a Dirichlet distribution. Under these conditions, the derivation of the 

predictive distributions  for each of the regions can be found in [12], and therefore 
generalizes the rule for more than 2 regions. That generalization provides the following result 
for the predictive distribution: 

  (eq. 10) 

or, in the case of 3 regions as in the problem we address in this article, we have: 

  (eq. 11) 

Again, the analogous derivation produces a similar result for the case where Hp is true. 
 
In our model, equation 11 will be used in all three regions to assign all the probabilities 

 and . This is because in cases where there are both SS and DS scores 

present values, the probabilities do not change significantly with respect to the maximum 
likelihood solution. In cases where there are zero scores of either SS or DS it will give 
robustness to the model, avoiding results of LR = 0 or LR = ∞8. 
																																																								
8 One could argue that a system providing LR = 0 or ∞ is the best that can be achieved if always correct. 
However when the quality of the data is limited, a system providing LR = 0 or ∞ is not desirable, since 
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The motivations for the use of the Laplace rule of succession and its generalization are 
thoroughly justified in [10] and [11]. 

5. PERFORMANCE MEASURES 

We will measure the performance of the KDF and the MULTIMODAL LR methods, mainly 
focusing on their accuracy and the discriminating power.  The accuracy was defined in [14] as 
the closeness of agreement between the decision – driven by a LR computed using a given 
method – and the ground truth. The discriminating power was defined in [14] as the property 
of a set of LR’s that allows distinguishing between the propositions involved. In the forensic 
biometric literature [15,16,17] Log Likelihood Ratio Cost (Cllr) is an accepted measure of 
accuracy. It will be illustrated on an ECE curve [15]. To measure the discriminating power of 
the two methods we will use the EER (graphically represented in the Detection Error Trade-
off DET [18] curve) and the minimum value of the Cllr - the Cllrmin and its graphical 
representation in the ECEmin curve [15]. Alongside the ECE and DET plots a Tippett plot [1, 6, 
19] showing the rates of misleading evidence for the prosecution and defense [20] (RMEP / 
RMED) will be presented as well. A detailed description for each graphical representation is 
provided in the results section.  
 

6. RESULTS 

A brief summary of the experimental setup is shown below in table 3. 
 

Table 3. Different methods for LR calculation for the multimodal and baseline method 

MULTIMODAL method 
Region 1 Region 2 Region 3 

(SS/DS)Bayesian Beta Normal 
BASELINE method 

KDF baseline for the entire SS and DS score distributions 
in all regions  

The robustness to the lack of data issue is well visible in the Tippet plots in Figure 7, where 
the baseline KDF method shows sub-optimal performance in the lower right corner when the 
inverse cumulative density function of the LRSS fails to converge in the bottom right corner. In 
extreme cases the LR values reach infinity. Please note that the log(LR) values have been 
limited for illustration purposes. 

Even though identical datasets were used in both methods, the resulting cumulative density 
functions appear much more refined using the multimodal method. Although we observe 
similar rates of misleading evidence in both cases, in roughly 3% of the cases the baseline 
KDF provides unjustifiably high LR values. 

 

																																																																																																																																																															
such an output underestimates or overestimates the quantity of information available particularly in the 
trace. 
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Figure 7 – Tippett plots of the KDF vs. Multimodal LR method 
 
In the Figure 8 we show the Equal Error Rate (EER) and the Detection Error Trade-off9 (DET) 
curves [18]. Similarly to the Tippett plots shown earlier, DET plots confirm the deviation from 
the optimal performance of the KDF method (dashed curve).  
Analysing the DET curves we observe, that in some cases the baseline method produces 
extreme LR values reflecting more an artefact of the modelling approach than expressing the 
real evidential value of the findings. In the top left corner of the DET curves we clearly see a 
deviation from otherwise linear distribution of errors for the baseline KDF. This happens 
because some of the DS evidence scores (roughly 0.1% of the total DS scores) yield an 
extremely large LR value, strongly supporting the wrong proposition. This is a highly 
undesirable effect, which has consequences on the reliability of the LRs that are computed 
using the KDF method. We can measure the discriminating capabilities of a LR method in 
terms of EER, though as the EERs observed for both of the methods are relatively close to 
each other it is apparent that measuring the performance of a LR method solely using the 
discriminating power becomes insufficient. The EERs observed for either of the methods 
were EERKDF = 3,625 and EERMULTIMODAL = 3,877. 
 
 

Figure 8 – DET plots of the KDF vs MULTIMODAL LR method 

From the ECE plot (Figure 9) we can deduct the performance measures of the two LR 
methods. The solid line represents the accuracy of a set of LRs (the lower the solid curve, the 
better the accuracy) and the dashed curve represents the discrimination of the LRs (the lower 
the dashed curve the better the discriminating power of the LR). The solid minus the dashed 
curve represents calibration loss of the set of LRs. The smaller the distance between the solid 

																																																								
9 The DET curve is a 2 dimensional plot of false acceptance and false rejection rates evenly handling 
both error types plotted on the gaussian wrapped scale. Linearity of the DET curves is due to the 
assumed “normality” of the LRs. The closer the curve to the coordinate origin, the better the 
discrimination capabilities of the model [18]. 
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and dashed curves, the better the calibration of the system. The lower the dashed curve, the 
better the discriminating capabilities of the system. Ideally, both solid and dashed line should 
be below the black dotted curve, which represents a reference system that continuously 
returns LR = 1. The ECE is directly linked to the Cllr. The Cllr (measure of the accuracy) on 
the ECE plot lays on the intersection of the solid curve and “zero” prior log odds and the 
Cllrmin (alternative measure of the discriminating power) lays on the intersection of the dashed 
curve with the “zero” prior log odds line.  
 
 

Figure 9 – ECE plots of the Baseline KDF (left) vs. MULTIMODAL LR method (right) 
 
Clearly undesired behaviour of the baseline KDF method is visible at the prior log odds 
smaller than 10-2, where its performance is worse than that of the reference method which 
constantly returns LR = 1. The experiments and the visualisation tools used seek to present 
operational limits and constraints the two methods. This does not mean that the KDF should 
not be used in similar cases for modelling multimodal distributions; it simply shows the 
operational constraints of this method. It also warns about the low reliability of the LRs in 
certain situations, particularly when the prior odds in the case will be low. In other words, it 
appears to be “safe” to rely on the LR produced by the baseline KDF method only for the 
prior-log-odds bigger than 10-2. Conversely, the LRs produced by the multimodal method 
proposed can be deemed as reliable, because the calibration of this method is good for all the 
regions of the prior odds (see figure 9) and because the solid ECE curve of the multimodal 
method never remains under the one of the reference method.  

Table 4 summarises the results presented graphically above. The improvement of the 
proposed system compared to the baseline KDF achieved was approximately 21% for the Cllr 
and 6.5% for the EER.  

Table 4. Discriminating capabilities and calibration of the KDF and MULTIMODAL methods 

MULTIMODAL Method Rate of Misleading Evidence Performance 
Region 1 Region 2 Region 3 RMEP RMED EER Cllrmin Cllr 

 (SS/DS) Beta Gauss 3.45 4.6 3.62 0.14 0.15 
BASELINE method Rate of Misleading Evidence Performance 

Baseline KDF10 all regions 3.6 4.16 3.87 0.15 0.19 
 
The objective of this article was not to find the best performing LR method but to deal with 
similarity scores of a particular AFIS comparison algorithm, which presented multimodal 
distributions. The methods used to represent data in different regions may vary in different 
biometric modalities (or different AFIS systems). For example in [21] the AFIS scores are 
shown to be best modelled by a log-normal distribution.  
 

7. DISCUSSION AND CONCLUSION 

The main drawback of the traditionally used KDF method for the multimodal score 
distributions is its poor description of the tails of the training score distributions, together with 

																																																								
10 The performance of the baseline KDF method was only possible to measure after removing the 
extreme outliers (LR = infinity) and setting a hard limit at log(LR) = 30. As such the reader is required to 
treat the KDF baseline method results with certain amount of moderation in mind. 
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a tendency to over-fit the underlying score distributions. Using the KDF we observed LRs of 
enormous magnitude supporting the correct proposition (e.g., LREss = 10130, LR = ¥) in 
extreme cases, and even supporting the wrong proposition (e.g., LREds = 1091). This provides 
an illusion of certainty that transcends reality and leads to a misleading interpretation of 
forensic evidence. In the ECE plots we observed poor calibration of the baseline KDF method 
in the low prior-odds region, a problem that is avoided using the multimodal method proposed 
in this work.  
 
In the multimodal method proposed we have split the SS and DS score distributions into three 
different regions (R1, R2 and R3), and used a particular score region depending on the 
magnitude of the evidence score observed. The multimodal method did not dramatically 
improve the discrimination capabilities of the system in terms of EER (6.5% relative 
improvement of the multimodal method over the baseline KDF). Measuring performance 
solely based on the observation of the EER related to the discriminating capabilities of a 
given LR method appears to be insufficient and measuring other performance characteristics 
appears to be highly desirable. The relative improvement of the calibration by 25% is 
considered highly important. Moreover, we have shown that using a multimodal method we 
can produce well-calibrated LRs for the whole range of the prior odds in a case, as shown on 
the ECE plots in Figure 9.  
 
Due to its good performance and its computational simplicity, the multimodal LR method was 
used in [14] to evaluate the coherence of the discriminating scores produced by an AFIS 
algorithm.  
 
In this article we have highlighted issues – lack of data and over-fitting – related to the 
modelling multimodal score distributions, which were in our case produced when comparing a 
fingermark and a fingerprint by an AFIS algorithm. By applying a traditional method we 
illustrated nuisance LR values when modelling the SS and DS score distributions as whole. 
We have proposed an alternative method that is robust against the lack of data and does not 
over-fit the score distributions. The method proposed can be used in cases where similar 
multi-modal score distributions are observed. 
With the LR method proposed, in future work we will proceed further with the definition of 
additional validation criteria, apply “real” forensic marks to the method selected (rather than 
simulated marks) and reproduce the results for 5 – 12 minutiae configurations based on the 
data from real forensic casework (see [22]).  
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