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Hybrid Gaussian–B-spline basis for the electronic continuum: Photoionization of atomic hydrogen
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As a first step towards meeting the recent demand for new computational tools capable of reproducing
molecular-ionization continua in a wide energy range, we introduce a hybrid Gaussian–B-spline basis (GABS)
that combines short-range Gaussian functions, compatible with standard quantum-chemistry computational codes,
with B splines, a basis appropriate to represent electronic continua. We illustrate the performance of the GABS
hybrid basis for the hydrogen atom by solving both the time-independent and the time-dependent Schrödinger
equation for a few representative cases. The results are in excellent agreement with those obtained with a purely
B-spline basis, with analytical results, when available, and with recent above-threshold ionization spectra from
the literature. In the latter case, we report fully differential photoelectron distributions which offer further insight
into the process of above-threshold ionization at different wavelengths.
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I. INTRODUCTION

With the advent of subfemtosecond extreme ultraviolet light
pulses from high-harmonic generation [1] and femtosecond
intense x-ray sources [2], in combination with high-resolution
techniques to detect photoelectrons [3] and ions in coinci-
dence [4], as well as to monitor the light transmitted through
the sample [5–9], it is now possible to study the ultrafast
dynamics of electronic and nuclear motion in atoms and
molecules with unprecedented sensitivity and time resolution.

While these advances offer the opportunity to probe
increasingly more complex phenomena, however, they also
represent a challenge to theory, since, in order to describe
the relaxation processes following exposure of polyatomic
molecules to ionizing radiation, numerical representations
must meet two conflicting requirements. On the one hand,
molecular electronic states at short range are best expressed in
terms of Gaussian functions. This is because, for polyatomic
systems, the polycentric bielectronic integrals associated with
interelectronic Coulomb repulsion can be computed much
more rapidly within a Gaussian basis set than by using any
other basis [10]. Indeed, the use of Gaussian functions is
today a de facto standard in all modern quantum-chemistry
packages [11]. On the other hand, Gaussian functions are
unsuitable to reproduce the characteristic oscillatory behavior
of continuum orbitals in the asymptotic radial range, due to
the rapid buildup of linear dependencies [12] between the
basis elements. Consequently, continuum orbitals obtained
numerically from Gaussian functions can only be reliable
either in a limited radial domain or within few eV from thresh-
old opening [13–15]. Nevertheless, Gaussian functions have
been rather successful in describing one-photon ionization of
molecules to first order of perturbation theory [16–21], since
the very localized nature of the ground state effectively restricts
the spatial region in which ionization is produced. A similar
restriction does not apply to above-threshold ionization (ATI)
or to ionization beyond the perturbative regime, thus making
the use of Gaussian functions unsuitable for the description
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of many ultrafast phenomena in the electronic continuum of
molecules.

Describing the electronic continuum with Gaussian func-
tions (or any other L2-integrable functions) requires the use of
specific methods, such as, e.g., the K-matrix theory [22–26].
Another popular method is based on the R-matrix theory (see,
e.g., [27] and references therein), which has been implemented
on different L2 bases, including Gaussian functions [28–37].
While the R-matrix method offers, in principle, considerable
flexibility, it also requires the evaluation of truncated electronic
integrals, which are not implemented by default in standard
quantum-chemistry codes.

The rapid oscillations of continuum orbitals are better
described by dedicated radial sets like, e.g., finite-element
discrete-variable representations [38–43] and B splines
[44–47]. The use of this latter type of function, however, leads
to costly polycentric bielectronic integrals or, alternatively,
to monocentric expansions which converge too slowly except
for the simplest cases (e.g., H2 [48] and hydrides of light ele-
ments [49,50]). To overcome the limitations of the monocentric
expansion common to many basis sets appropriate to represent
the continuum, it is possible to expand such basis with a
group of polycentric localized functions that are better suited
to express concisely the wave function close to the nuclei.
Within the single-active-electron approximation, the use of a
multicenter B-spline basis has proven to be a very effective
way to describe arbitrary single-ionization problems [51–61].
Monocentric B-spline sets have also been used in association
with polycentric Slater-type orbitals [62,63]. In the same
spirit, monocentric grid representations have been mixed with
polycentric Gaussian functions [64–67]. None of these ap-
proaches is readily generalized beyond single-active-electron
models (e.g., Hartree-Fock and density functional theory),
since the functions used to describe the continuum extend
across the whole molecule while standard implementations of
multielectron techniques cannot handle nonstandard basis sets.
This means that any ab initio method has to be implemented
from scratch.

A way to circumvent the evaluation of nonstandard
polycentric bielectronic integrals is to complement short-
range polycentric Gaussian functions with several diffused

1050-2947/2014/90(1)/012506(20) 012506-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.012506
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monocentric Gaussian functions, to cover the midrange radial
region, and with a set of B splines, defined starting from a finite
radius R0, to cover the long-range radial region. If R0 is large
enough, the overlap between short-range polycentric functions
and B splines can be neglected. Furthermore, thanks to the
fact that the short-range part of the electronic states is entirely
expressed in terms of Gaussian functions, optimized parent-ion
and neutral bound states can be computed with standard
quantum-chemistry packages. A minimal requirement for this
approach to be successful is that the hybrid monocentric basis
comprising the diffuse set of Gaussian functions and the
B splines (GABSs) can accurately reproduce the scattering
observables of a single-particle monocentric problem. In the
present work, we show that this is indeed the case. We
have tested the performance of the GABS basis for several
representative calculations of the interaction of the hydrogen
atom with external ionizing radiation, in both perturbative and
nonperturbative conditions, either in terms of dipole transition
matrix elements or by directly solving the time-dependent
Schrödinger equation (TDSE) for realistic ultrashort laser
pulses. In order to extend the test of gauge invariance for dipole
matrix elements to transitions between continuum states, we
have derived two different expressions for the contribution to
the transition integrals coming from the radial region beyond
the quantization box where the states are numerically com-
puted. We find excellent agreement with accurate numerical
calculations based on a purely B-spline basis and with the
analytical results, when available, in a wide radial and energy
range. GABS functions thus look like promising candidates to
build unbound molecular electronic states fulfilling all require-
ments needed to study a wide range of ultrafast phenomena in
molecules. Finally, in the comparison between our solutions of
the TDSE with spectra available in the literature, for selected
ATI processes, we also report fully resolved photoelectron
angular distributions and explain their distinctive features
in detail.

The article is organized as follows. In Sec. II we introduce
the GABS hybrid basis. In Sec. III we quantify the quality
of bound and continuum eigenstates of the hydrogen atom
obtained with the hybrid basis and of the dipole transition
matrix elements between them. In Sec. IV we solve the TDSE
at both short (Sec. IV A) and long (Sec. IV B) wavelengths and
compare our results with recent ones taken from the literature.
In Sec. V we draw our conclusions. Atomic units are used
throughout unless stated otherwise.

II. THEORY AND NUMERICAL METHODS

A. The GABS basis

The GABS basis is a monocentric basis comprising a set of
Gaussian functions and a set of B splines whose support starts
from a given radius R0 (see Fig. 1). Due to their fast-descent
character, the Gaussian functions are numerically negligible
beyond a radius R1 > R0. Functions expressed in the GABS
basis, therefore, are represented by purely Gaussian functions
in the short range, i.e., r < R0, by a combination of Gaussian
and B-spline functions in the intermediate region, R0 < r <

R1, and by purely B-spline functions thereafter.
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FIG. 1. (Color online) Radial part of Gaussian (solid lines) and
B-spline (dashed lines) representatives of the monocentric GABS
basis as a function of radius. The first B-spline node is located
at R0 = 10 a.u. The basis defines three characteristic regions:
(i) r ∈ [0,R0], with only Gaussian functions; (ii) r ∈ [R0,R1],
Gaussian and B-spline functions overlap; (iii) r ∈ [R1,Rbox], the
Gaussian functions are negligible.

The Gaussian spatial basis functions with angular momen-
tum � and projection m are defined as

G�m
αK (�r) = Nα�

gαK (r)

r
Y�m(r̂), (1)

where

gαK (r) = rK+1e−αr2
, (2)

K = �,� + 2,� + 4, . . ., � � �max, and �max is a fixed param-
eter that defines the maximum angular momentum that the
basis can represent. The lower bound on K ensures that
gαK (r) ∼ r�+1 is regular at the origin. Finally, NαK is a
normalization factor,

uαK (r) = NαK gαK,

∫ ∞

0
dr u2

αK (r) = 1. (3)

Normally, we use for all orbital angular momenta a single
set of even-tempered exponents {α1,α2, . . . ,αNα

}, generated
from the two parameters α and β according to the geometric
series [13,14],

αn = α βn−1. (4)

There are thus N�
G = Nα�(�max − �)/2 + 1� such states for

each angular momentum � (�x� is the largest integer n such
that n � x). Numerically redundant linear combinations must
be eliminated from the Gaussian set before it can be used in
calculations. To do so, for each orbital angular momentum
�, we diagonalize the overlap matrix S�

αK,βK ′ = 〈G�0
αK |G�0

βK ′ 〉
and exclude some of the eigenfunctions with the smallest
eigenvalues. We refer to the N�

G remaining eigenstates as to
the preconditioned Gaussian basis {|G�m

1 〉,|G�m
2 〉, . . . ,|G�m

N�
G
〉}.

B splines are a minimal-support basis for piecewise polyno-
mials of degree k − 1 that are at least Ck−2 in correspondence
with a given set of nodes {ti}i=1,2,...,n and C∞ elsewhere [68].
It can be shown that the support of each B spline is compact
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and covers k consecutive intervals. As a consequence, in
this basis, local operators are represented by sparse matrices.
This property, which imparts high flexibility to the basis
without compromising numerical accuracy, is the major reason
why B splines are used for atomic and molecular-physics
calculations [44]. In this work we employ k = 7, which is
a good compromise for calculations in double precision.

Preconditioned Gaussian functions and B splines are
separately well-conditioned basis sets. When considered to-
gether, however, numerical linear dependencies may arise
since the two sets overlap over an extended radial region.
To prevent numerical instabilities, the spline space is purged
from the elements which contribute most to the numerical over-
completeness of the GABS basis. We do so by diagonalizing
the projector P̂G that defines the preconditioned Gaussian
space in the basis of B splines (for simplicity, we drop the
angular momentum indexes),

〈B|P̂G |B〉 = SbgS−1
gg Sgb = O�O†,

(5)
�ij = λiδij , O†O = 1,

where

Sgg = 〈G|G〉, Sbg = 〈B|G〉, Sgb = S†
bg, (6)

|G〉 = ( |G1〉, |G2〉, . . . ,
∣∣GNG

〉)
, (7)

|B〉 = ( |B1〉, |B2〉, . . . ,
∣∣BNB

〉)
. (8)

We exclude from the basis the eigenfunctions whose eigen-
value differs from 1 less than an assigned threshold εB

P (in our
case, εB

P = 10−8). The remaining eigenstates form a precon-
ditioned B-spline basis that is called {|B�

1〉, |B�
2〉, . . . , |B�

NBp
〉}.

We use the symbol χ�
n to indicate the elements of the result-

ing regularized GABS basis, {χ�
n} = {G�

i } ∪ {B�
j }. Although

the support of the Gaussian functions is, in principle, the
whole [0,∞) semiaxis, in practice, the Gaussian functions
are negligible beyond a certain radius R1. As a consequence,
the B splines whose support is located beyond R1 can be
kept unchanged throughout the regularization procedure. This
means that, beyond a certain index, the regularized GABS
functions are pure B splines. In particular, local operators
expressed in this part of the GABS basis retain a sparse
character.

B. Spectral resolution of the Hamiltonian

Different choices for the conditions fulfilled by the state
functions at the box boundary lead to different sets of
eigenvalues and eigenstates of the Hamiltonian. If the last
B spline is excluded, all the functions in residual basis, which
we indicate as χ̄ = (χ̄1,χ̄2, . . .), vanish at the box boundary.
When projected in this basis, therefore, the Hamiltonian is
Hermitian and corresponds to the case in which the system is
confined in a box. Its spectrum comprises only isolated real
eigenvalues Ēi . The negative-energy box eigenstates |φi〉 that
do not get close to the box boundary approximate the first
terms of the Rydberg series of the unconstrained Hamiltonian,
while the positive-energy states represent a discrete selection
of the generalized continuum eigenstates of the unconstrained

Hamiltonian, up to a certain energy Emax, after which the
quality of the states starts to deteriorate.

Requiring that the wave function vanishes at the box
boundary, however, severely curtails the flexibility of the B

splines and of the hybrid basis alike. In particular, such basis
reproduces only a limited selection of discretized-continuum
states. If the last B spline is present, on the other hand, the
basis is able to represent, within the box, any eigenfunction of
the Hamiltonian that is regular at the origin, up to Emax [44].
To see this, let us look for an eigenfunction with energy E,
ψE , in the form

|ψE〉 = |χ̄〉cE + |BN 〉bE, (9)

where BN is the last B spline of the basis set. If E belongs
to the spectrum of the confined Hamiltonian, the solution is a
box eigenstate and the coefficient of the last B spline is zero,
bE = 0. In the other cases, we can derive the other coefficients
in terms of bE by solving the (n − 1) × n homogeneous linear
system

〈χ̄ | E − H |ψE〉 = 0, (10)

which admits the solution

|ψE〉 ∝ |χ̄〉Ḡ0(E)〈χ̄ |H − E|BN 〉bE + |BN 〉bE, (11)

Ḡ0(E) = 〈χ̄ |E − H |χ̄〉−1. (12)

The expression (11) provides valid scattering solutions for
any E ∈ [0,Emax], which are as accurate as the discretized-
continuum eigenstates obtained from the diagonalization of
the Hamiltonian in the box (a treatment similar to the one
presented here can be found, e.g., in [69]). To ensure that
the analytic continuation �E of ψE to the whole [0,∞) real
semiaxis fulfills the condition

〈�E|�E′ 〉 = δ(E − E′), (13)

the value of bE must be determined by matching, at the box
boundary, the reduced radial part u�E(r) of the wave function,

ψE�m(�r) = u�E(r)

r
Y�m(r̂) (14)

(� is the formerly implied angular momentum), with a linear
combination of the analytical regular F�(γ,ρ) and irregular
G�(γ,ρ) Coulomb functions with the same energy [70],

u�E(r) =
√

2

πk
[cos δ F�(γ,ρ) + sin δ G�(γ,ρ)], (15)

where k = √
2E, γ = −Z/k, ρ = kr , Z is the nuclear charge,

and δ is the phase shift. When comparing with ionization
experiments, we need to evaluate the transition amplitudes
to the detector eigenstates ψ−

E�̂
, i.e., the states that have a

well-defined asymptotic energy E and direction �̂ in the far
future. These are the scattering states which fulfill incoming
boundary conditions [71] and have the expression

ψ−
E�̂

=
∑
�m

ψE�mY ∗
�m(�)e−i(σ�+δ�−�π/2), (16)

where σ� = arg �(� + 1 + iγ ) is the Coulomb phase shift [72].
In the case of negative energies, only those solutions to

Eq. (11) whose analytical extension is regular at r → ∞
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represent valid bound eigenstates. This property can be ensured
by requiring that the logarithmic derivative of the radial part of
ψE matches that of the eigenfunction of the Coulomb problem
with the same (negative) energy and that is regular at infinity,

u′
�E(r)

u�E(r)
= [e−ρρ�+1U (� + 1 − Z/κ,2� + 2,2ρ)]′

e−ρρ�+1U (� + 1 − Z/κ,2� + 2,2ρ)
, (17)

where κ = √−2E, ρ = κr , U (a,b,z) is the confluent hyperge-
ometric function of the second kind [70], and both the left-hand
side and the right-hand side of (17) are to be evaluated for
r = Rbox (see Appendix C for an outline of the derivation).

C. Dipole transition matrix elements

Dipole transition matrix elements are a necessary ingredient
of both perturbative and nonperturbative radiative transitions.
In the next section we compare the reduced dipole transition
matrix elements between selected eigenstates ψE�m of the
field-free Hamiltonian,

〈
ψE�

∥∥O(g)
1

∥∥ψE′�′
〉 =

∑
mm′μ

C�m
�′m′,1μ√
2� + 1

〈ψE�m|O(g)
1μ |ψE′�′m′ 〉,

(18)

where C
cγ

aα,bβ is a Clebsch-Gordan coefficient [73], evaluated
in different numerical bases as well as analytically, for three
gauges g, length, velocity, and acceleration,

O(l)
1μ = r1μ, O(v)

1μ = p1μ, O(a)
1μ = Z

r1μ

r3
. (19)

The off-shell dipole transition matrix elements in different
gauges between physical eigenstates are related to each other
through the identities

i(E − E′)
〈
ψE�

∥∥O(l)
1

∥∥ψE′�′
〉 = 〈

ψE�

∥∥O(v)
1

∥∥ψE′�′
〉
, (20)

(E − E′)
〈
ψE�

∥∥O(v)
1

∥∥ψE′�′
〉 = i

〈
ψE�

∥∥O(a)
1

∥∥ψE′�′
〉
. (21)

While the Hamiltonian is particularly sensitive to the rapidly
varying parts of the wave function, due to the presence
of the kinetic energy operator, the kernels in (19) put a
higher emphasis on the wave function at either short or
long range. The agreement between matrix elements across
different gauges and numerical representations, therefore, is
an alternative valuable measure of the wave function quality
beyond the numerical fulfillment of the secular equation.

If the continuum-continuum transitions are evaluated be-
tween box eigenstates instead of physical states (i.e., if the
radial integrals are truncated at r = Rbox), Eq. (21) needs
to be modified for what we call the confined-state boundary
correction (CBC)

(E − E′)
〈
ψE�

∥∥O(v)
1

∥∥ψE′�′
〉
r∈[0,Rbox]

= i
〈
ψE�

∥∥O(a)
1

∥∥ψE′�′
〉
r∈[0,Rbox]

+ i

2

√
2�′ + 1 C�0

�′0,10
d u�E

dr
(Rbox)

d u�′E′

dr
(Rbox). (22)

Furthermore, while Eq. (20) remains valid even when consid-
ered between box eigenstates, the transition matrix elements
themselves do differ from those evaluated between scattering
states. In Appendix A we derive and discuss at length the above

equations. In the next section, we use them to frame the results
of our calculations.

D. Time-dependent Schrödinger equation

To compute the effects of intense linearly polarized radia-
tion pulses on a bound state φ0 of a hydrogen atom, we solve
the TDSE,

i∂tψ(t) = H (t)ψ(t); ψ(t0) = φ1s , (23)

by expanding the time-dependent wave function ψ(t) in the
basis of the box eigenstates of the field-free Hamiltonian,
obtained from either the GABS or the purely B spline basis,

ψ(t) =
∑
i �

φi� ci�(t), (24)

where axial symmetry, m = 0, is assumed throughout. In the
present work, beyond the field-free electrostatic term H0, the
complete Hamiltonian comprises the time-dependent interac-
tion with the external fields H ′(t) in the dipole approximation,

H (t) = H0 + H ′(t), (25)

H0 = p2

2
− Z

r
, (26)

H ′(t) =
{
α �A(t) · �p velocity gauge,
�E(t) · �r length gauge,

(27)

where �A(t) and �E(t) are the vector potential and the electric
field of the external radiation, respectively. The TDSE is
integrated numerically by propagating the solution on a time
grid ti = ti−1 + dt ,

ψ(t + dt) = U (t + dt,t)ψ(t), (28)

where U (t + dt,t) is a second-order split exponential propa-
gator,

U (t + dt,t) ≡ e−iH0
dt
2 e−iH ′(t+ dt

2 ) dt e−iH0
dt
2 . (29)

As the wave function is expressed in a spectral basis, the action
on ψ of the two outer exponential factors on the right-hand
side of (29) is trivial. The most time-consuming step of the
propagation (28) is the evaluation of exp[−iH ′(t + dt/2)dt]
on ψ . Here we carry out this step by representing the exponen-
tial operator on the truncated Krylov basis generated by the
repeated action of H ′(t + dt/2) on the exp[−H0dt/2]ψ(t)
state. Under the conditions examined in the present work,
where fields with only moderate intensities are contemplated,
this representation converges rapidly with respect to the size
NK of the Krylov space, which can generally be truncated
to NK � 5. Such a fast convergence is a consequence of the
factorization between the H0 and the H ′ action achieved with
the splitting in (29).

The bound-state population Pn� and the asymptotic energy-
resolved and angularly resolved photoelectron distribution
d2P (E, cos θ )/dE d cos θ are obtained by projecting the wave
packet, at any time after the external pulse is over, on a
complete set of bound and scattering eigenstates of the field-
free Hamiltonian, computed with the techniques described
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TABLE I. Energies for the first six bound s and p hydrogen states, obtained using the B-spline basis and two purely Gaussian basis.

B splines Gaussian (�max = 20) Gaussian (�max = 2)

n Analytical � = 0, 1
� = 0 � = 1 � = 0

1 −0.5 −0.500 000 00 −0.499 969 42 −0.499 939 63
2 −0.125 −0.125 000 00 −0.124 996 18 −0.125 000 00 −0.124 992 44
3 −0.0(5) −0.055 555 56 −0.055 554 36 −0.055 555 52 −0.055 259 90
4 −0.031 25 −0.031 250 00 −0.031 104 96 −0.031 118 20 −0.019 090 04
5 −0.02 −0.020 000 00 −0.015 932 53 −0.016 128 74 0.040 600 86
6 −0.013(8) −0.013 888 89 0.004 226 93 0.003 683 41 0.149 498 65

in Sec. II B,

Pn� = |〈ψn�0|ψ(t)〉|2, (30)

d2P (E, cos θ )

dE d cos θ
= 2π |〈ψ−

E,�̂
|ψ(t)〉|2. (31)

III. VALIDATION OF THE GABS BASIS

A. Bound and continuum states of hydrogen

In this section we illustrate the accuracy of the GABS basis
from the perspective of the spectral resolution of the field-free
electrostatic Hamiltonian of hydrogen by comparing the results
with the analytical ones and with those obtained using both a
purely B-spline basis and a purely Gaussian basis. We use
B splines of degree k = 7 defined on a uniform grid with
node spacing �r = 0.5 a.u. up to a maximum radius Rbox =
1000 a.u. and Nα = 22 Gaussian exponents αn = αβn−1 for the
even-tempered Gaussian basis, with α = 0.01, β = 1.46. In
Table I, we report the energies for the bound s and p hydrogen
states with principal quantum number n � 6, obtained by
using two different values of �max, �max = 2 and �max = 20.
As anticipated, B splines provide essentially exact results for
all the states considered, while the quality of the eigenvalues
obtained with the Gaussian functions deteriorates already for
n = 4, due to their inability to reproduce the many oscillations
that Rydberg satellites have. Extending �max from 2 to 20
improves significantly the energy of the third and fourth states.
Even with the larger even-tempered basis, however, the results
still remain well off the mark from the n = 5 state on. In
the calculation with the Gaussian functions, the error on the
energy of the ground state is one order of magnitude larger
than for the first excited state. This circumstance is peculiar
to s orbitals and is due to the well-known difficulty Gaussian
functions have in reproducing the cusp condition at the origin.

Indeed, the energies of the 2p and 3p states reported in Table I
are two orders of magnitude more accurate than those of
the 2s and 3s ones computed with the same basis. Table II
reports the energy of several bound hydrogen states computed
with three GABS bases that differ for the value of �max and
for the position of the first B-spline node (a more extensive
compilation of states is given in the Supplemental Material
[74]). In s symmetry, all three GABS bases give excellent
values across the bound spectrum with errors, for n � 2, of the
order of ∼10−6 or lower, irrespective of �max. The energy of all
the p orbitals is accurate to eight decimal digits. We can better
understand the origin of GABS good performance by looking
at the contribution of B splines and Gaussian functions to the
radial part of the eigenstates computed with the hybrid basis.
Figure 2 shows these quantities for the 7s and 15s states, with
the corresponding radial orbitals obtained with the B-spline
basis as a reference. The plots in Fig. 2 illustrate two distinctive
features of the GABS basis. First, B splines complete the
Gaussian basis in the outer region. As a result, the basis can
represent the oscillatory behavior of highly excited bound
states there. Second, B splines effectively counterbalance any
value that the diffuse Gaussian functions can take in the
intermediate region. As a result, the diffuse Gaussian functions
acquire larger flexibility in the inner region as well.

The conclusions above also apply to the states in the
continuum. In Fig. 3(a), we compare the radial part of the
analytical ψsE generalized eigenfunction for E = 0.1 a.u.
with the corresponding numerical quantity computed with the
unconstrained-continuum method described in Sec. II using
the GABS basis. The two curves are indistinguishable to the
naked eye. We quantify the numerical error in Fig. 3(b) for
three different energies: E = 0.1, 1, and 4 a.u. In the outer
radial region (r � 55 a.u.), where only B splines contribute
significantly to the wave function, the numerical error is of
the order of 10−10, 10−7, and 10−4 for the three considered

TABLE II. Energies for the first 6s and 5p bound hydrogen states obtained with three and one GABS bases, respectively.

�max = 20, R0 = 10 a.u. �max = 2, � = 0

n Analytical � = 0 � = 1 R0 = 5 a.u. R0 = 10 a.u.

1 −0.5 −0.499 971 91 −0.499 942 31 −0.499 940 92
2 −0.125 −0.124 996 48 −0.125 000 00 −0.124 992 78 −0.124 992 61
3 −0.0(5) −0.055 554 51 −0.055 555 56 −0.055 552 41 −0.055 553 37
4 −0.031 25 −0.312 495 61 −0.031 250 00 −0.031 249 09 −0.031 249 07
5 −0.02 −0.019 999 77 −0.020 000 00 −0.019 999 54 −0.019 999 52
6 −0.013(8) −0.013 888 76 −0.013 888 89 −0.013 888 62 −0.013 888 61
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FIG. 2. (Color online) Radial part of the 7s (top panel) and
15s (bottom panel) hydrogen Rydberg states as a function of

√
r ,

computed with B splines (dots) and GABS (solid line). For the
latter case, the Gaussian component (dashed line) and the B-spline
component (dash-dotted line) are separately shown.

energies, respectively. In the intermediate radial region, be-
tween �20 and �40 a.u., where both the diffuse Gaussian
functions and the B splines contribute to the wave function,
the absolute representation error has a plateau of the order of
10−7 for E � 1 a.u. At higher energies the error is dominated
by the larger B-spline asymptotic error. Finally, in the short-
range region, where the wave function is represented only in
terms of Gaussian functions, for the two smallest energies
the absolute error has a plateau of the order of 10−4, i.e.,
comparable to the asymptotic B-spline representation error
for E = 4 a.u. (see Supplemental Material [74] for an analysis
of the quality of continuum wave functions based on the
phase shift).

B. Radiative transitions

Beyond energy, the other observable needed to describe the
time evolution of a system under the influence of external fields
is the dipole operator. It is essential, therefore, to assess the
accuracy of the dipole matrix elements in the hybrid basis. In
Table III we compare the analytical reduced matrix elements
|〈ψ‖p1‖ψ ′〉| for a few selected dipole transitions between
bound hydrogenic states with those obtained numerically with
B splines, with GABS functions in the three gauges of length,
velocity, and acceleration, as well as, in velocity gauge, for two
additional representative pairs of the �max and R0 parameters.
The transitions matrix elements computed with the B splines
are exact for all six tabulated decimal digits.

In Fig. 4 we compare the absolute value of some selected
bound-continuum reduced dipole matrix elements in velocity
gauge, obtained using the GABS basis, with the analytical
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FIG. 3. (Color online) (Top panel) Radial part of the ψsE hydro-
gen scattering state with E = 0.1 a.u., computed analytically (dots)
and numerically using GABS (solid line) R0 = 10 a.u., �max = 20.
The Gaussian (dashed line) and the B spline (dash-dotted line)
components of the numerical function are also shown. (Bottom panel)
Absolute local error of the scattering states ψsE computed with GABS
for E = 0.1 a.u. (dots), E = 1 a.u (solid line), and E = 4 a.u. (dotted
line). See text for more details.

results (see Appendix C). The agreement is generally very
good, with errors of the order of 1 part in 10 000 up to E =
2 a.u. At low energies, for the p-d transitions the errors are
smaller than 1 part in 106 up to E = 1 a.u. With the current
choice of parameters, the error in the matrix element starts to
increase progressively above E = 2 a.u., reaching the level of
a few percent for E = 5 a.u. The agreement between the dipole
matrix elements in length, velocity, and acceleration gauge is
illustrated in the representative case of the transition from the
1s orbital in Fig. 5.

In the dipole matrix elements examined so far, at least one
of the wave functions is localized near the origin. To be able to
represent multiphoton transitions and nonperturbative effects,
however, accurate continuum-continuum matrix elements are
needed as well. In Fig. 6 we compare the analytical results for
|〈ψ�E‖p1‖ψ�′E′ 〉| (see Appendix C and Ref. [75]) with those
obtained numerically using the GABS basis in the length,
velocity, and acceleration gauges, as a function of the final
discretized-continuum energy index, for three representative
initial discretized-continuum states with E �1, 2, and 3 a.u.
A few comments are in order. First, since the integration
domain of the numerical transition integrals is limited to
the box, the length and the velocity gauge agree with each
other but differ qualitatively from the acceleration matrix
element. On the other hand, the latter gauge, which has a
fast decreasing kernel, is in excellent agreement with the
analytical result. Furthermore, while in length and velocity
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TABLE III. Several bound-bound radiative transitions obtained via the analytical formula, using the B-spline basis and the GABS bases.

GABS1
a

Transition Analytical B splines Length Velocity Acceleration
GABS2

b GABS3
c

Velocity Velocity

1s-2p 0.483 850 0.483 850 0.483 859 0.483 855 0.483 852 0.483 860 0.483 860
2s-3p 0.212 834 0.212 834 0.212 847 0.212 844 0.212 843 0.212 855 0.212 855
3s-4p 0.132 935 0.132 935 0.132 946 0.132 943 0.132 945 0.132 952 0.132 952
2p-3d 0.466 297 0.466 297 0.466 297 0.466 297 0.466 297 0.466 297 0.466 297
3p-4d 0.260 048 0.260 048 0.260 048 0.260 048 0.260 048 0.260 048 0.260 048
3d-4f 0.430 680 0.430 680 0.430 680 0.430 680 0.430 680

a�max = 20, R0 = 10.
b�max = 2, R0 = 5.
c�max = 2, R0 = 10.

gauge the matrix elements oscillate wildly with respect to
either energy indexes, the matrix element in the acceleration
gauge is a smooth function, except for the on-shell cusp. The
discrepancy between length and velocity, on the one side, and
acceleration, on the other side, is readily explained: We are
neglecting the contribution to the integral of the part of the
wave function outside the quantization box (see Appendices A
and B). Indeed, the oscillations in, say, the velocity gauge
matrix element can be shown to depend on the size of the
quantization box. In fact, as the size of the box is increased,
the velocity matrix elements are expected to converge weakly
to the acceleration value (i.e., their integrals with any smooth
test functions converge to the same value as Rbox → ∞).
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FIG. 4. (Color online) (Top panel) Absolute value of selected
reduced dipole transition matrix elements in velocity gauge computed
using the GABS basis and compared with the corresponding
analytical results (solid squares). (Bottom panel) Relative percent
deviation between numerical and analytical results. The following
transitions are shown: 1s − εp (solid line), 2s − εp (dashed line),
2p − εs (dash-dotted line), 2p − εd (dotted line).

The acceleration gauge does not suffer from this dependence
thanks to the fact that its kernel decreases rapidly with the
electronic radius. The three gauges can thus be reconciled
by adding to the length and velocity matrix elements the
contribution coming from the region outside the quantization
box, which in Appendix A we show to be expressible in
the form of a confined-boundary correction [see Eq. (A17)].
This is what we have done in Fig. 7 for the illustrative
case of the velocity gauge. As the picture shows, the outer
contribution to the matrix elements exactly cancels the original
fast oscillations, leading to a smooth matrix element that is in
excellent agreement with the analytical result. In Appendix D
we derive an approximated correction for the outer integral
which applies for arbitrary initial and final energies.

Notice that, as shown in [76], inclusion of the contribution
from outside the box is essential to correctly evaluate above-
threshold multiphoton ionization cross sections in length and
velocity gauges in the framework of perturbation theory. When
seeking solutions of the TDSE, on the other hand, inclusion
of the contributions from outside the box is not necessary
provided that all continuum-continuum matrix elements are
consistently evaluated in the same box and the electronic
wave packet does not reach the boundaries of the box before
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FIG. 5. (Color online) Relative percent deviation of
|(E − E1s)〈ψEp

‖O(l)
1 ‖ψ1s〉| and |(E − E1s)−1〈ψEp

‖O(a)
1 ‖ψ1s〉|

from |〈ψEp
‖O(v)

1 ‖ψ1s〉| (solid line and dashed line, respectively),
computed with a GABS basis using R0 = 10 a.u., �max = 20.
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FIG. 6. (Color online) Absolute value of the reduced tran-
sition matrix elements (Ep − Es)〈ψEp

‖Ol
1‖ψEs

〉 (black dots),
〈ψEp

‖Ov
1‖ψEs

〉 (red circles), (Ep − Es)−1〈ψEp
‖Oa

1‖ψEs
〉 (green

solid squares), computed with GABS for several scattering states by
truncating the radial integral at Rbox. Three representative energies
for the s state are shown: 1 a.u. (first peak), 2 a.u. (second peak), and
3 a.u. (third peak). The numerical results are compared with the exact
analytical result in velocity gauge (gray solid line).

projection onto physical eigenstates is performed (see, e.g.,
the discussion in [77]).

IV. TIME-DEPENDENT RESULTS

The ultimate test of the viability of the GABS basis for the
description of laser-driven processes is to use it to reproduce
fully differential photoelectron observables in nonperturbative
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FIG. 7. (Color online) Absolute value of the reduced velocity-
gauge hydrogen dipole matrix element 〈ψEp

‖Ov
1‖ψEs

〉 from three
s scattering states (E = 1, 2, 3 a.u.) to several p scattering states
evaluated as the sum of two contributions (thin solid line). The first
contribution is the numerical radial integral shown in Fig. 6, which is
computed with the GABS basis and truncated at Rbox, and the second
contribution is the CBC term derived in Appendix A. The agreement
between the numerical result and the exact analytical result (thick
solid line) is excellent.

conditions by solving the TDSE numerically. In this section,
we examine the photoelectron distribution for the ATI [78] of
the hydrogen atom from the ground state under the influence
of single, intense, comparatively long ultraviolet pulses,

H(1s) + nγUV → H+ + e−
�k , (32)

for which recent independent data to compare with are
available. The methodology used to solve numerically the
TDSE and to extract the asymptotic differential photoelectron
observables at the end of the interaction was described in
Sec. II D. We conduct the simulation using a purely B-spline
basis, which is known to provide good reference results [79],
as well as a GABS basis, with R0 = 10 a.u. and �max = 20.
To assess the accuracy of the solution, we use the same
laser parameters employed in two recent works, one by
Rodrı́guez et al. [80] (ω = 0.35 a.u., I = 1.4 × 1013 W/cm2,
30-cycle cos2-envelope electric laser pulse) and the other
one by Grum-Grzhimailo et al. [81] (ω = 0.114 a.u., I =
1014 W/cm2, 20-cycle cos2-envelope electric laser pulse).
When reproducing these two simulations, the angular expan-
sion of the wave function is truncated at � = 10 and � = 20,
respectively. It should be noted that we conduct the simulation
in velocity gauge starting from the definition of the external
vector potential as

�A(t) = ẑ A0 cos2

(
πt

τ

)
cos(ωt + ϕ) θ (τ/2 − |t |), (33)

where ϕ is the carrier-envelope phase (CEP), τ is the pulse
duration (twice the full width at half maximum of the
intensity profile), and θ (x) is the Heaviside step function. This
way, the external electric field, given by �E = −c−1∂t

�A(t),
automatically integrates to zero, as it should [82]. On the other
hand, in [80] a parametrization for the electric field similar
to (33) is used instead,

�E(t) = ẑ E0 cos2

(
πt

τ

)
sin(ωt) θ (τ/2 − |t |). (34)

This latter expression differs from the one that can be derived
from our definition (33) of the vector potential, due to the time
dependence of the pulse envelope. Furthermore, Eq. (34) is
applicable, in principle, only for zero CEP, since the field must
integrate to zero [82]. Having said that, for long pulses such
as those considered in this and their work (20–30 cycles), the
difference between the two parametrizations is negligible and
affects only minor details of the photoelectron spectra.

A. Short wavelength

In our first simulation, which reproduces the results by
Rodrı́guez et al., the laser angular frequency is ω = 0.35 a.u.
Figure 8 compares the ATI spectra obtained using GABS and
B splines with the corresponding quantity digitized from [80].
The spectra obtained with GABS and B splines are in excellent
agreement down to the tiniest detail, indicating that the solution
of the TDSE is accurate. The main peaks are in excellent
agreement also with the results from the literature. Minor
departures between the current prediction and the literature are
visible only in the background signal, which is six orders of
magnitude smaller than the dominant peak signal. We attribute
these discrepancies to the different parametrizations (33)
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FIG. 8. (Color online) ATI photoelectron spectrum from hydro-
gen ground state due to a 30-cycle cos2 laser pulse with ω = 0.35 a.u.
and I = 14 TW/cm2. The present results, computed by solving the
TDSE using either a purely B-spline basis (dots) or the GABS basis
(solid line), are compared with the spectrum obtained under similar
conditions by Rodrı́guez et al. [80]. See text for more details.

and (34) of the external pulse employed in the two simulations.
As anticipated, these differences are entirely negligible to all
practical purposes. At least two photons are needed to ionize
the atom, with the first excitation step being close to the 1s-2p

resonance. As a consequence, the ATI process is resonantly
enhanced, resulting in secondary peaks in the ATI spectrum, as
discussed in [80]. In particular, the first shoulder that is visible
at E = 0.225 a.u., on the upper-energy side of the first ATI
peak, and the two peaks at E � 0.29 a.u. and E � 0.32 a.u.
are due to the components of the two-photon transition that
are resonant with the 2p, 3p, and 4p states, respectively. This
can be realized by looking at the finite-pulse version of the
lowest-order two-photon transition amplitude for this process,

A(2)
E�←1s = −i

∫
dωF̃ (−ω)F̃ (E1s + ω − E)

×〈E�|OG+
0 (E1s + ω)O|1s〉, (35)

where

F̃ (ω) = F [F ](ω) = 1√
2π

∫
dtF (t)e−iωt , (36)

O is the transition operator ε
μ

1 O(g)
1μ in either the length (g = l)

or the velocity (g = v) gauge, and F (t) the corresponding E(t)
or αA(t) fields along the polarization direction ε̂ = ε

μ

1 x̂1μ

(for fields linearly polarized along the z axis, ε
μ

1 = δμ0, the
projection of the angular momentum remains zero, m = 0).
In contrast to the equivalent expression for monochromatic
fields, Eq. (35) is valid for nonresonant as well as for
resonant transitions, provided that Rabi oscillations, ac-Stark
shifts and depletion of the ground-state population can be
neglected. In the present case, the laser central frequency
ω = 0.35 a.u. is detuned with respect to the 1s-2p transition
by δ = ω − ω2p1s = −0.025 a.u. (we introduce the notation
ωij = Ei − Ej ). At peak intensity F0, the variation of the
ground-state population �P1s due to Rabi oscillations is
�P1s = [1 + (δ/�0)2]−1 = 0.26, where �0 = |F0O2p,1s | �

0.015 a.u. Therefore, the system remains mostly in the ground
state; hence, Eq. (35) is expected to provide meaningful
guidance for a qualitative interpretation of the first group
of peaks in the ATI spectrum. Quantitative predictions, of
course, require a separate numerical solution of the TDSE
for at least the 1s and the np essential states [80]. Indeed,
the population transfer between the 1s and the 2p states is
small but not negligible. Furthermore, the effective Rabi period
T� = 2π/

√
δ2 + �2

0, which is strongly modulated across the
laser pulse, is comparable to the duration of the pulse itself.
As a consequence, the amplitude of the 2p state undergoes a
sharp isolated variation, which manifests in the spectrum as a
broad feature around the resonant 2p peak, rather than in the
form of the Autler-Townes doublet that characterizes complete
Rabi oscillations.

Keeping in mind these caveats, let us go back to Eq. (35).
To disentangle the resonant component from the nonresonant
one, we split the retarded resolvent in an off-shell part GP

0 and
an on-shell part,

G+
0 (ω) = GP

0 (ω) − iπδ(ω − H0),

GP
0 (ω) = P

1

ω − H0
.

(37)

The two-photon transition amplitude (35) then splits into a
corresponding principal-value term A(2,P )

E←1s and an on-shell
term A(2,r)

E←1s ,

A(2)
E←1s = A(2,P )

E←1s + A(2,r)
E←1s . (38)

The principal-value component of the transition amplitude,

A(2,P )
E�←1s = −i

∫
dωF̃ (−ω)F̃ (E1s + ω − E)

×〈E�|OGP
0 (E1s + ω)O|1s〉, (39)

is responsible for the main peak in Fig. 8 at E = 0.2 a.u. This
is obvious for the contribution of the virtual states, i.e., those
|εp〉 states in the expansion of GP

0 (E1s + ω) whose energy ε is
far from E1s + ω0, where ω0 is the central angular frequency
of the pulse,

P

∫
dωF̃ (−ω)F̃ (E1s + ω − E)

OE�,εpOεp,1s

E1s + ω − ε

� OE�,εpOεp,1s

E1s + ω0 − ε

∫
dωF̃ (−ω)F̃ (E1s + ω − E)

= OE�,εpOεp,1s

E1s + ω0 − ε

√
2π F [F 2](E1s − E). (40)

Though less evident, the same is true for the asymmetric
principal-value contribution of the nonvirtual excitations.
Numerical tests show that the characteristic positions and
widths of the latter are comparable to those of the virtual
contributions.

The picture qualitatively changes for the on-shell contri-
bution to the transition amplitude A(2,r)

E←1s . Each term in the
eigenstate expansion of this component is simply half the
product between the first-order transition amplitudes A(1)

j←i

to go (i) from the ground 1s state to the resonant np state
and (ii) from the resonant np state to the final state in the
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FIG. 9. (Color online) Normalized photoelectron angular distri-
bution corresponding to the first and second ATI peaks in Fig. 8,
computed here by solving the TDSE in either a B-spline or a GABS
basis, and compared to the results obtained by Rodrı́guez et al. [80]
in similar conditions.

continuum,

A(2,r)
E�←1s = −π

∑
n

OE,npOnp,1s F̃ (ω1snp)F̃ (ωnpE�)

= 1

2

∑
n

A(1)
E�←np A(1)

np←1s , (41)

where

A(1)
f i = −i

√
2πF̃ (ωif )Of i . (42)

The on-shell part of the two-photon transition amplitude is
responsible for the shoulder at E = 0.225 a.u. and for the peaks
at E � 0.29 a.u. and E � 0.32 a.u., which correspond to the
2p, 3p, and 4p resonant states, respectively. Notice that the
amplitudes of these peaks have the characteristic F [F ](Enp −
E) profile of one-photon transitions; in particular, they are
narrower than the nonresonant two-photon peak amplitude,
which is instead proportional to F [F 2](E1s − E), i.e., to the
Fourier transform of a temporally compressed pulse. Finally,
the second shoulder, starting at E � 0.25 a.u., is the incipient
signature of the wide feature with which the nonperturbative
1s-2p transition, mentioned earlier in this section, manifests
in the spectrum.

In Fig. 9 we compare the angular distribution of the
electrons in the region of the first and second ATI peaks with
those reported by Rodrı́guez. Again, the agreement between
the two calculations is excellent, confirming the accuracy of
the observables obtained with the hybrid GABS basis. As ex-
pected, the angular distribution has a lobe structure consistent
with a complex linear combination of s + d amplitudes for
the first ATI peak and p + f amplitudes for the second ATI
peak. In both cases, the two amplitudes are neither in phase nor
in antiphase, hence the lack of proper nodes in the spectrum,
except, in principle, for θ = 90◦ for the second ATI peak (even
in this case, though, interference from the long-range tail of
the nearby ATI peaks prevents the photoelectron distribution
to attain zero).

FIG. 10. (Color online) Doubly differential photoelectron distri-
bution d2P/dE d cos θ for the process described in Fig. 8.

To gain further insight in the angular distribution, we show
in Fig. 10 the doubly differential photoelectron spectrum as
a function of both the electron energy and the cosine of
the ejection angle. To the best of our knowledge, such fully
differential representation of the photoelectron distribution has
not been reported before. While the regions corresponding
to the ATI peaks visible in Fig. 10 have approximately a
uniform lobe structure (three, four, and five maxima for
the two-, three-, and four-photon peaks, respectively), at a
closer inspection of the fully differential plot, three additional
aspects emerge. First, the ATI peaks along the polarization
axis (cos θ = ±1) are slightly shifted to lower energies with
respect to the photoelectrons ejected orthogonal to the field
polarization (cos θ = 0). Second, the characteristic three-
maxima angular distribution associated to the first group of
peaks is slightly more pronounced for the dominant peak
(E � 0.2 a.u.) than for the two shoulders associated with
the resonant 1s → 2p → E� transition (E � 0.225 and 0.27
a.u.). Third, the three-maxima structure in the first group of
peaks is interrupted in a narrow interval around E � 0.25 a.u.,
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FIG. 11. (Color online) Normalized photoelectron angular distri-
bution for several selected energies in Fig. 10. The energies 0.225,
0.294, and 0.319 a.u. correspond to the 2p, 3p, and 4p resonances,
respectively.

where the two dips are less pronounced. As it turns out, this is
because the energy E = 0.25 a.u. coincides with the position
of the first side peak of F [F 2](E1s − E) [compare Eq. (40)].
The presence of secondary peaks is a typical characteristics
of the Fourier transform of any pulse with a compact
support; the symmetric counterpart is clearly visible at E =
0.15 a.u. The side peak amplitude is in antiphase with respect to
that of the dominant peak. As a consequence, when interfering
with the resonant component, it cancels part of the angular
modulation, resulting in a more isotropic distribution. This
peculiar phenomenon, which would not be visible if the
external pulse had, say, a Gaussian envelope, illustrates well
how special care is needed when assigning spectra generated
using pulses that have a structured Fourier transform to
start with.

The change of the angular distribution with energy is high-
lighted in Fig. 11, where we plot the normalized photoelectron
angular distribution at six representative energies, E = 0.2 a.u.
(main peak of the nonresonant transition), E = 0.225 a.u. (2p

resonant peak), E = 0.2456 a.u. (side peak of the nonresonant
transition, which corresponds to the least pronounced dips in
the spectrum), E = 0.25 a.u. (intermediate energy at which the
dips are pushed towards smaller angles from the polarization
axis), E = 0.27 a.u. (second shoulder, presumably associated
with the nonperturbative 2p resonant transition), and E =
0.294 a.u. and E = 0.319 a.u. (3p and 4p resonant peaks,
respectively). Notice that, starting from E � 0.27 a.u., the
symmetry of the photoelectron distribution is progressively
broken. This feature is more dramatic for the weakest peak,
the one corresponding to the resonant 4p transition, for which
the upward maximum (θ < 90◦) is higher than the downward
one (θ > 90◦), while the opposite is true for the two minima.
This behavior is most likely due to the interference between
the weak resonant two-photon amplitude and the tail of the
nonresonant three-photon amplitude, which have opposite
parity [83].
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FIG. 12. (Color online) ATI photoelectron spectrum from hy-
drogen ground state due to a 20-cycle cos2 laser pulse with ω =
0.114 a.u. and I = 0.1 PW/cm2. The present results, computed by
solving the TDSE using either a purely B-spline basis (black dots) or
the GABS basis (solid line), are compared with the spectrum obtained
under similar conditions by Grum-Grzhimailo et al. [81] (light solid
squares). See text for more details.

B. Long wavelength

As a second example, we test our simulations against
the results reported by Grum-Grzhimailo et al. [81] for
ionization with a 20-cycle pulse with angular frequency ω =
0.114 a.u. and peak intensity I = 1014 W/cm2. In this case,
five photons are needed to achieve ionization. As Fig. 12
shows, the agreement between the data digitized from [81] and
the present calculations with GABS and the purely B-spline
basis is again excellent. The photoelectron peaks obtained with
either of the two latter bases are actually slightly shifted to
lower energies with respect to those reported in [81]. Since a
similar shift in the position of the peaks for high-intensity
pulses was already observed in [81] as a consequence of
changing the field parametrization from Eq. (33) to Eq. (34),
we assume that the shift we observe here is due to a similar
effect.

The most striking features of the spectrum shown in Fig. 12
are (i) the multipeak structure of each n-photon ATI signal
and (ii) the fact that the position of the dominant peak in each
group is shifted to lower energies by as much as 0.07 a.u.
with respect to the nominal values nωUV − E0, the latter value
rather approaching the upper limit of each peak subgroup. This
phenomenon was first observed 25 y ago by Bardsley et al. [84]
and the mechanism at its basis was identified and described
by several authors shortly thereafter [85–87]. Since essentially
the same phenomenon has recently received renewed interest,
in association with the use of intense ultrashort extreme
ultraviolet pulses [88], in the following we briefly summarize
the rationale of the underlying mechanism and contextualize
our results with reference to the original [87] and latest [88]
works on the subject. When a discrete state ψ interacts with a
moderately intense laser pulse, and as long as the laser does not
resonantly couple ψ to other discrete states, the energy of ψ

(i.e., the cycle-averaged rate of its phase modulation) changes
by a quantity �Eac

ψ called ac-Stark shift. For a monochromatic
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MARANTE, ARGENTI, AND MARTÍN PHYSICAL REVIEW A 90, 012506 (2014)

field with amplitude E0 and angular frequency ω, the ac-Stark
shift �Eac

1s of the ground state of hydrogen is given, to the
lowest order of perturbation theory, by the solution to the
equation

�Eac
1s = E2

0

4
M1s 1s

(
E1s + �Eac

1s ,ω
)
, (43)

where

Mii(E,ω) = 〈i| z [G+
0 (E + ω) + G+

0 (E − ω)] z |i〉. (44)

The ac-Stark shift of the ground state can thus be either
positive or negative depending on whether ω is, respectively,
larger or smaller than the excitation energies ωεp 1s to the
group of (discrete or continuum) |εp〉 states that are most
strongly coupled to the ground state. The energy of the states
in the continuum is affected by the ac-Stark effect as well.
In this case, the ac-Stark shift is approximated reasonably
well by the ponderomotive energy �Eac

E� � Up = E2
0/4ω2, a

positive quantity. Now, a careful treatment of time-dependent
perturbation theory (see, e.g., Chapter 3 in [89]) shows that, in
the absence of intermediate resonant states, the absorption of
n photons γω from an initial state |i〉 to populate a final state
|f 〉 takes place provided that the ac-Stark shifted energies
of the two dressed states differ by nω, Ẽf = Ẽi + nω. In
the case of ionization of atomic hydrogen from the ground
state, this means that the field-free energy E of the final
continuum state |E�〉 populated by the absorption of n photons
is approximately given by

E � E1s + nω + �Eac
1s − Up. (45)

This last equation is justified on the assumption that, when the
external field switches off, the population of a dressed state
follows the state adiabatically. Incidentally, such assumption
is not justified if the photoelectron leaves the laser focus before
the pulse is over. In this latter case, the electron is accelerated
by the gradient of the ponderomotive potential that is present
along the cross section of the laser beam, thus acquiring the
dressing energy once and for all, instead of returning it to
the field. When the light that dresses the system and induces
the multiphoton transition comes in the form of a short pulse,
the amplitude E0 of the electric field associated to it changes
with time, E0 = E0(t),

�E(t) = ε̂E0(t) sin[ωt + φ(t)]. (46)

For example, in the case of the parametrization (34) mentioned
in the preceding section, the carrier is modulated by a cosine-
square envelope,

E0(t) = E0 cos2

(
πt

τ

)
θ (τ/2 − |t |). (47)

Under these conditions, the energy E of the final state that is
populated by means of the absorption of n photons from the
hydrogen ground state changes across the pulse as well,

E(t) � E1s + nω + E2
0(t)

4

[
M1s 1s(E1s ,ω) − 1

ω2

]
(48)

(for simplicity, we disregard the dependence of M on the first
energy entry). This phenomenon is qualitatively illustrated
in Fig. 13: As the external oscillating field becomes more

tε−tε

E

Δφ = π

t

F(t)

1s

Thr.

ε

FIG. 13. (Color online) Schematic illustration of the dynamic-
interference mechanism underlying the appearance of the multipeak
substructure in the nonresonant multiphoton photoelectron signals
when an atom is ionized with intense isolated ultrashort pulses.
The external pulse induces an ac-Stark shift of the energy levels of
the atom. Depending on the value of the time-dependent intensity
of the laser, the pulse promotes at different times transitions to
laser-dressed states that are adiabatically connected to field-free
states with different energies, thus resulting in a global shift of the
photoelectron signal. Two temporally separated amplitudes contribute
to each final energy. The phase difference acquired by the first
amplitude with respect to the second one in the intermediate time
lapse can give rise to either constructive or destructive interference,
thus resulting in a peak or a zero in the photoelectron spectrum,
respectively. See text for more details.

and more intense, the energy of any state gets shifted by
a quantity that follows the laser-intensity profile and which
reaches its maximum in correspondence with the peak of the
pulse envelope. As the intensity of the pulse decreases again,
and eventually vanishes, the energies of the dressed states
return to their original field-free value, thus traversing for a
second time, in the opposite direction, all the intermediate
energies. As a consequence, for a symmetric pulse centered at
t = 0, the probability amplitude to each possible final energy
ε, A(n)

ε←1s , receives two contributions: one at a time −tε and
another one at a time tε, where E(tε) = ε (see Fig. 13),

A(n)
ε←1s = A(n)

ε←1s(−tε) + A(n)
ε←1s(tε). (49)

Indeed, for t = ±tε , the n-photon transition from the ground
state is resonant with the dressed state that is adiabatically
connected to the field-free state with energy ε. The two
amplitudes A(n)

ε←1s(±tε) have comparable magnitude, but
not the same phase. This is because, in the time interval
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�t = 2tε elapsed from the first transition to the second
one, the amplitude of the final excited state acquires an
additional phase with respect to the ground state, which is
approximately given by �φε � 2nωtε (in this latter formula,
we made the simplifying assumption that the ac-Stark shifts
are small when compared with the total transition energy
nω). The two amplitudes, therefore, will interfere destructively
whenever 2nωtε = (2k + 1)π , thus giving rise to a node in the
photoelectron spectrum,

P
(n)
ε←1s � 4

∣∣A(n)
ε←1s(tε)

∣∣2
cos2 (nωtε) . (50)

The transitions taking place close to the center of the pulse,
and which thus lead to the population of the final continuum
state whose energy lies farther from the field-free resonant
condition, all interfere constructively. As a result, in the
photoelectron spectrum we observe a dominant peak at
the maximally shifted final energy, accompanied by several
other peaks with progressively smaller intensities and whose
energy positions approach the value predicted by the field-free
resonance condition E = E1s + nω.

For ω = 0.114 a.u., both terms in parentheses on the right-
hand side of (48) are negative. In our simulation, at peak
intensity, the ac-Stark shifts of the ground and continuum states
have the following approximate values:

�Eac
1s = −0.003 a.u., Up = 0.055 a.u. (51)

A closer look at Fig. 12 reveals that the displacement of
the largest peak with respect to the nominal position in the
weak-field limit is �−0.051 a.u. for the first groups of signals
(five-photon absorption) and �−0.049 a.u. for the second
one (six-photon absorption). While both values are in quali-
tative agreement with the prediction �Emax = �Eac

1s − Up =
0.058 a.u., a couple of observations are pertinent nonetheless.
First, the observed shift changes from one group of peaks to the
other. This is not unexpected since the photoionization cross
section changes rapidly close to the threshold and the ac-Stark
shift of continuum states, which is an order of magnitude larger
than the ac-Stark shift of the ground state, may also change
significantly in this energy range. In fact, the variation in the
energy shift in the continuum is comparable to the ac-Stark
shift of the ground state itself. Second, due to the short duration
of the pulse, the displacement of the maximum in the spectral
profile is arguably smaller than the one that would be obtained
with a monochromatic laser with the same peak intensity.

The appearance of a peak substructure in the photoelectron
signal for the absorption of a fixed number of photons from
a short pulse has also been recently observed by Demekhin
and Cederbaum [88] in the context of the ionization of the
hydrogen atom by an energetic (ω � 2 a.u.) intense pulse (I =
5 × 1015 W/cm2), in the region of one-photon absorption. In
this case, the photoelectron signal gives rise to a group of peaks
that are shifted at higher energies with respect to the nominal
position of the peak in the weak-field limit, rather than at
smaller energies as in the case discussed in this paper. This
is because, for ωUV � 2 a.u., the ac-Stark shift of the ground
state is (i) positive and (ii) larger than the ponderomotive shift
experienced by the final continuum states.

In Fig. 14, we report the fully differential photoelectron
distribution corresponding to the spectrum shown in Fig. 12,

FIG. 14. (Color online) Doubly differential photoelectron distri-
bution d2P/dE d cos θ for the process described in Fig. 12.

computed with the GABS basis. When compared with the
analogous spectrum in Fig. 10, obtained with a higher laser
frequency and lower pulse intensity, it is apparent that
the structure is more complicated. Here the correspondence
between the number of dips in the angular distribution and the
number of absorbed photons is not visible anymore. Indeed,
the first group of peaks, comprised between the threshold
and E � 0.08 a.u., which results from the absorption of five
photons, counts at most four local maxima. Furthermore, the
downward energy shift of the signal for the photoelectrons
ejected along the polarization axis with respect to those
ejected perpendicularly to it, which was barely visible in
Fig. 10, is here much more pronounced. This effect, which
is clearly visible for the two absolute maxima in the group
of peaks comprised between E � 0.09 a.u. and E � 0.2 a.u.
(the first group of peaks is truncated by the threshold opening)
constitutes an additional aspect of the dynamical-shift effect
that cannot be detected in a two-dimensional plot like Fig. 12.
The spectral lines that are most dramatically distorted by
this effect are the weakest ones within each group, i.e., at
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E � 0.07 a.u. and E � 0.19 a.u., which are also the ones closer
to the nominal weak-field positions of the ATI peaks. A final
peculiar aspect that we would like to highlight in Fig. 14 is the
appearance of isolated narrow dips in the transition probability,
e.g., for (E, cos θ ) � (0.03 a.u., ± 0.7), (0.02 a.u., ± 0.75),
(0.125 a.u., ± 0.9). This phenomenon is associated with the
fact that the transition amplitude beneath the photoelectron
distribution is complex, rather than real. As a result, the loci
of zeros in the (E, cos θ ) domain of its real and imaginary
components are curves that generally intersect at isolated
points only. Symmetry nodes, like those at θ = 90◦ for the
absorption of an odd number of photons, are a notable
exception.

V. CONCLUSIONS

We have introduced a hybrid GABS for the description
of the continuum that permits to achieve high electron
energies while, at the same time, preserving a purely Gaussian
representation of the electronic wave function in a radial region
large enough to encompass whole polyelectronic atoms as well
as small molecules. We have demonstrated that the hybrid
GABS basis can be used to compute with high accuracy all the
observables associated with the interaction of a single-active
electron atom with external light pulses in a wide energy range.
In particular, we have reproduced with the GABS basis the
energies and transition amplitudes of the hydrogen atom as
well as the fully differential photoelectron distributions that
result from the interaction of the atom with strong ultra-short
external laser pulses. All the results are in excellent agreement
with those obtained numerically from well-established B-
spline bases, with data taken from the literature and with
analytical predictions, when available.

In the analysis of the results from the solution of the TDSE
for the hydrogen atom exposed to external pulses, we have
presented and discussed new fully differential photoelectron
distributions of the hydrogen ATI spectra obtained in the
conditions reported in two recent works [80,81]. In particular,
we contextualize the low-energy multipeak structure of the
ATI spectrum of hydrogen reported by Grum-Grzhimailo
and co-workers [81] and the dynamic-interference mechanism
highlighted recently by Demekhin and Cederbaum [88] within
the theoretical framework outlined long ago by Cormier and
Lambropoulos [87].

In conclusion, the GABS basis has the benefit of the
most flexible numerical basis for the description of the
continuum while at the same time being expressed in terms
of standard Gaussian functions in a large inner radial region.
These features make GABS a very attractive candidate for
the extension of existing quantum-chemistry packages to the
calculation of molecular continuum properties.
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APPENDIX A: DIPOLE TRANSITION GAUGES

In this section we explore in detail how dipole transition
matrix elements evaluated between eigenstates of either the
unconstrained or the confined hydrogen Hamiltonian (physical
and confined eigenstates, respectively, in the nomenclature of
Sec. II), computed in different gauges, are related to each other.
In the case of the hydrogen Hamiltonian,

H = 1

2
p2 − Z

r
, (A1)

the following operator identities hold:

[H,r1μ] = 1

2
[p2,r1μ] = −ip1μ, (A2)

[H,p1μ] = −Z

[
1

r
,p1μ

]
= iZ

r1μ

r3
. (A3)

As a consequence, if we indicate with ψE�m and ψE′�′m′

two generic eigenstates of H with eigenvalues E and E′,
respectively, we can easily derive the following relations
between the off-shell (E �= E′) reduced transition matrix
elements:

i(E − E′)
〈
ψE�

∥∥O(l)
1

∥∥ψE′�′
〉 = 〈

ψE�

∥∥O(v)
1

∥∥ψE′�′
〉
, (A4)

−i(E − E′)
〈
ψE�

∥∥O(v)
1

∥∥ψE′�′
〉 = 〈

ψE�

∥∥O(a)
1

∥∥ψE′�′
〉
. (A5)

These equations have two uses. First, the same off-shell
transition matrix element (say, the one in velocity gauge)
can be computed in three different ways. Since the kernels
of the three transition operators [Eq. (19)] weighs differently
the wave function at short and long range, one can choose the
form that weighs more the region where the wave function is
known to be computed with better accuracy. Second, Eqs. (A4)
and (A5) only hold when evaluated using exact eigenstates
of the Hamiltonian. The discrepancy between the numerical
realization of the right-hand side and the left-hand side in (A4)
and (A5), therefore, is a measure of the accuracy of the
numerical eigenstates.

Three further remarks are in order about the relations (A4)
and (A5). First, as it has already been pointed out, these
relations permit to convert between each other only off-shell
matrix elements. In the on-shell case, where the two eigenstates
are necessarily either both bound or both in the continuum,
the relations provide only partial information. For example,
they say that the transition matrix elements in velocity and
acceleration gauge between degenerate bound states is exactly
zero, but they do not say anything about the finite value of the
transition matrix elements in length gauge between degenerate
states (e.g., between the 2s and the 2p states). Second, when
evaluated between two continuum generalized eigenstates and
expressed in terms of a radial integral, the transition matrix
elements in length and velocity gauge must be regularized with
the inclusion of an exponential extinction factor for the integral
to converge in the first place. The transition matrix element in
acceleration gauge, on the other hand, is a continuous function.
As a consequence, Eqs. (A5) is to be seen as a relation between
distributions. The general expression of the velocity-gauge
transition matrix element in terms of the acceleration gauge is
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thus [90–92]

〈
ψE�−1

∥∥O(v)
1

∥∥ψE′�
〉 = iP

〈
ψE�−1

∥∥O(a)
1

∥∥ψE′�
〉

E − E′

+F�E δ(E − E′), (A6)

where P indicates the principal part and F�E is a function that
depends on the asymptotic behavior of the radial part of two
functions and must be determined separately. In Appendix B
we derive the explicit expression for F�E for the hydrogen
atom as well as in the presence of a short-range potential.
Notice that the on-shell continuum-continuum integral in
length gauge cannot be regularized, so Eq. (A4) does not
have an extension similar to what Eq. (A6) is for (A5). Third,
the use of the term “gauge” for the acceleration operator is
admittedly an abuse of language. Indeed, while the velocity
and length gauges are related to each other by a unitary
transformation (Göppert-Mayer’s; see [93]), this is not the
case for the acceleration operator. In the present context, the
latter should thus be regarded simply as an alternative way to
estimate the transition matrix element in velocity gauge.

When computing the transition matrix elements between
box eigenstates, the considerations above need to be modified.
Indeed, in this case the Hamiltonian can be regarded as the
limit of the hydrogen Hamiltonian plus a step potential at
r = Rbox, with height V , for V → ∞,

H (V ) = p2

2
− Z

r
+ V θ (r − Rbox), (A7)

where we explicitly indicated the parametric dependence of
H on V . As long as we are interested in transition matrix
elements between eigenstates with eigenvalues smaller than V ,
the relation (A4) between velocity and length transition matrix
elements continues to apply as it does between bound states
of the unconstrained hydrogen Hamiltonian. In particular, the
equivalence (A4) holds in the limit V → ∞, i.e., between
box eigenstates. This is because the commutator (A2) is
unaltered by the presence of an additional multiplicative
term in the Hamiltonian in coordinate representation. Notice,
however, that while the positive-energy box eigenstates can
be normalized so to coincide, within the box, with the
real scattering states with the same energy, the transition
matrix elements between box eigenstates (i.e., where the
radial integral is truncated at r = Rbox, where all the box
eigenstates vanish) does not coincide with the one evaluated
between scattering states; the contribution to the (regularized)
transition integral from the radial domain [Rbox,∞) is finite
and non-negligible [76]. The picture takes on a different
perspective when the acceleration gauge is considered. In this
case, the right-hand side of (A3) changes,

[H,p1μ] = −Z

[
1

r
,p1μ

]
+ V [θ (r − Rbox),p1μ]

= iZ
r1μ

r3
+ i V

r1μ

r
δ(r − Rbox). (A8)

This latter equivalence between the left-hand side and the
right-hand side still holds for arbitrary values of V , but the limit
for V → ∞ of the new term on the right-hand side evaluated
between eigenstates of the Hamiltonian that comprises the step
potential does not vanish and must be taken into account. If

we indicate with ψE�m(r; V ) = r−1u�E(r; V )Y�m(r̂) a generic
eigenstate of the Hamiltonian that includes the step potential,
where the parametric dependence on V has explicitly been
indicated and we assume V � E, then we can immediately
write, for r � Rbox,

u�E(r; V ) � N (E,V )e−κ(r−Rbox), (A9)

u′
�E(r; V ) � −κN (E,V )e−κ(r−Rbox), (A10)

where κ = √
2(V − E) and N (E,V ) is a normalization con-

stant. In the limit V → ∞, if the wave function is to remain
normalized, the wave function at the box boundary must
converge to zero while its derivative must converge to a finite
value. Therefore, we can choose the normalization so that the
wave function derivative coincides with its asymptotic value
for any V � E,

u�E(r; V ) � −u′
�E(Rbox,∞)√

2(V − E)
e−κ(r−Rbox) (A11)

� −u′
�E(Rbox,∞)√

2V
e−κ(r−Rbox), (A12)

u′
�E(r; V ) � u′

�E(Rbox,∞)e−κ(r−Rbox). (A13)

Now we can compute the limit of the matrix element of the
second term on the right-hand side of Eq. (A8) (we assume
radial wave functions to be real):

〈ψE�m|i V
r1μ

r
δ(r − Rbox)|ψE′�′m′ 〉

= i〈Y�m| r1μ

r
|Y�′m′ 〉V uE�(Rbox; V )uE′�′(Rbox; V )

� C�m
�′m′,1μ√
2� + 1

i

2

√
2�′ + 1 C�0

�′0,10

× u′
�E(Rbox; ∞)u′

�′E′(Rbox; ∞). (A14)

The increase of the barrier height, therefore, exactly compen-
sates the decrease of the wave function at the boundary. In
the limit V → ∞, the last approximate equality becomes an
identity. In conclusion, even if the transition matrix elements in
velocity and acceleration gauges, defined as in (19), do not sat-
isfy the relation (A5) when computed between box eigenstates
unless the radial derivative of at least one of them is vanishingly
small at the box boundary, the conversion from one gauge to
the other can still be performed provided that the additional
term (A14), which we call CBC, is taken into account,

(E − E′)
〈
ψE�

∥∥O(v)
1

∥∥ψE′�′
〉
r∈[0,Rbox]

= i
〈
ψE�

∥∥O(a)
1

∥∥ψE′�′
〉
r∈[0,Rbox]

+ i

2

√
2�′ + 1C�0

�′0,10 u′
E�(Rbox)u′

E′�′(Rbox). (A15)

Finally, if the box size is large enough, thanks to the r−2

behavior of the acceleration kernel, the acceleration matrix el-
ement between any two box eigenstates does converge to those
between the real eigenstates of the unconstrained Hamiltonian,

lim
Rbox→∞

〈
ψE�

∥∥O(a)
1

∥∥ψE′�′
〉
r∈[Rbox,∞) = 0. (A16)

As a consequence, the contribution to the regularized velocity
transition integral from the [Rbox,∞) radial domain, evaluated
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between the analytic extensions of the box eigenfunctions,
can be obtained, for large values of Rbox, from the correction
in (A14),

(E − E′)
〈
ψE�

∥∥O(v)
1

∥∥ψE′�′
〉
r∈[Rbox,∞)

= − i

2

√
2�′ + 1C�0

�′0,10 u′
E�(Rbox)u′

E′�′(Rbox). (A17)

This last equation has two distinctive features that set it
apart from similar corrections available in the literature.
First, it is a closed expression which, together with the
transition integral truncated to Rbox, provides a transition
matrix element which is as accurate as the one that can
be obtained in the same box using the acceleration gauge
instead. This means that Eq. (A17) offers the opportunity
to extend to continuum-continuum transitions the stringent
gauge-invariance test employed for transitions from or to
bound states and thus provides an independent way to assess
the accuracy of the discretized continuum functions computed
numerically. Second, Eq. (A17) is only applicable to the fixed
energies, for both � and �′ angular momenta, that result from
imposing box boundary conditions. In Appendix D we derive
an approximated expression that does not have this restriction.

APPENDIX B: SINGULAR PART OF THE DIPOLE
MATRIX ELEMENT IN VELOCITY GAUGE

BETWEEN CONTINUUM STATES

As observed in Appendix A, the relation between
continuum-continuum dipole transition matrix elements in
velocity and acceleration gauges includes a singular on-shell
contribution, according to the complete gauge relation (A6). To
evaluate the factor F�E in (A6), we start from the well-known
formula [73]〈

ψE�−1

∥∥∇1

∥∥ψE′,�
〉

= −
√

�

∫ ∞

0
dr u∗

�−1E(r)

(
d

dr
+ � + 1

r

)
u�,E′(r), (B1)

where u�E(r) is a reduced radial function. Since we are
interested in the singular part of the integral, we can disregard
the contribution to the integral from any finite interval [0,R].
As a consequence, we can replace u�E(r) with its asymptotic
expression [72],

u�E(r) �
√

2

πk
sin θ�k(r), (B2)

θ�k(r) = kr − γ ln 2kr − �π

2
+ σ� + δ�, (B3)

and disregard entirely the term that comes from the op-
erator r−1. As usual, in Eq. (B2), k = √

2E, γ = −Z/k,
σ� = arg �(� + 1 + iγ ) is the Coulomb phase, and δ� is the
additional phase due to a possible short-range potential (for
hydrogen, Z = 1 and δ� = 0). On this basis, the factor F�E

can be computed as

F�E =
∫ E+ε

E−ε

dE′〈ψE�−1

∥∥O(v)
1

∥∥ψE′,�
〉

= 2i
√

�

πk

∫ E+ε

E−ε

dE′
∫ ∞

R

dr sin θ�−1k(r)
d

dr
sin θ�k′(r),

(B4)

in the limit of ε → 0+ and R → ∞. What matters in the
evaluation of the singular part of the radial integral in (B5)
is that the oscillations of degenerate initial and final states
are in a fixed phase relation across the whole radial range.
This is true independently of the presence of the asymptotic
logarithmic term in (B2). Indeed, it is sufficient to perform
the change of variable r �→ r ′(r) = r − γ /k ln 2kr , dr ′ =
[1 − γ /(2k2r)]dr to realize that the logarithmic term can be
safely ignored on the same ground that the term (� + 1)r−1

in the transition operator was. Therefore, the radial integral
on the right-hand side in the last equation is equivalent to the
expression

k

∫ ∞

0
dr sin (kr + σ�−1 + δ�−1 − (� − 1)π/2)

× cos(k′r + σ� + δ� − �π/2), (B5)

which does not depend on R [innermost limit in (B5)]. It takes
only few passages to show that the singular component of this
integral is

kπ

2
δ(k − k′) cos (σ� + δ� − σ�−1 − δ�−1) . (B6)

In conclusion,

F�E = i
√

� k cos (σ� + δ� − σ�−1 − δ�−1) . (B7)

In the case of the hydrogen atom, δ� = 0 ∀ �, and we can write

F�E = i
�1/2k

2

[ |�(� + iγ )|
�(� + iγ )

�(� + 1 + iγ )

|�(� + 1 + iγ )| + c.c.

]

= 2i �3/2E√
2�2E + 1

, (B8)

where in the last passage we made use of the relation � (s) =
(s − 1) � (s − 1).

APPENDIX C: ANALYTICAL DIPOLE MATRIX
ELEMENTS IN HYDROGEN

The equation for the reduced radial Coulomb problem of
an electron in interaction with a point charge Z is

ψk�m(�r) = u�k(r)

r
Y�m(r̂), (C1)

[
d2

dr2
+ k2 − �(� + 1)

r2
+ 2Z

r

]
u�k(r) = 0. (C2)

For negative energies, we can set κ = i
√

2|E| (i.e., we choose
the determination on the physical sheet of

√
2E) and obtain[

d2

dρ2
+ 2γ

ρ
− �(� + 1)

ρ2
− 1

]
y�κ (ρ) = 0, (C3)

where we have defined γ = Z/|κ|, ρ = |κ|r , and y�k(ρ) =
u�k(r). The solution to the latter equation that is regular at
r → ∞ can be expressed as

y�k(ρ) ∝ e−ρ(2ρ)�+1U (� + 1 − γ,2� + 2,2ρ), (C4)

where U (a,b,z) is the confluent hypergeometric function of
the second kind [70],

U (a,b,z) = �(1 − b)

�(a − b + 1)
1F1(a; b; z)

+ �(b − 1)

�(a)
z1−b

1F1(a − b + 1; 2 − b; z), (C5)
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1F1(α; β; z) being the ordinary confluent hypergeometric
function

1F1(α; β; z) =
∞∑

j=0

(α)j zj

(β)j j !
, (α)0 = 1, (α)n =

n−1∏
j=0

(α + j ).

(C6)

Even in the presence of short-range potentials, (C4) expresses
the general asymptotic form that must be fulfilled by the bound
states of the system. To determine the acceptable bound-state
energies, the logarithmic derivative of (C4) must match, at a
radius R beyond which the short-range potential is negligible,
that of the degenerate solution that is regular at the origin. This
is how we obtained Eq. (17) in Sec. II B. The function U (� +
1 − γ,2� + 2,2ρ) is irregular at the origin except for integer
values of γ , γ = n > �. In this latter case, U is proportional
to a Laguerre polynomial (13.6.27 in [70]),

U (−k,2� + 2,z) = (−1)kk! L
(2�+1)
k (z), k ∈ N0, (C7)

and (C4) thus identifies with an admissible bound state of
the hydrogenlike system. The reduced radial component un�

of the normalized hydrogen bound states ψn�m, with energy
En = −1/2n2, angular momentum �, and projection m, have
the expression [72]

un�(r) = Nn� ρ�+1 e−iρ
1F1(� + 1 − iη; 2� + 2; 2iρ), (C8)

where, for reasons that will be clear in a moment, we
introduced the new variables κ = i/n, η = −1/κ , (η = in),
and ρ = κr , while the normalization factor Nn� is given by

Nn� = 2�+1n−1

i�+1 (2� + 1)!

√
(n + �)!

(n − � − 1)!
. (C9)

In the case of the continuum states, the reduced radial part
of the wave function ψE�m, normalized as 〈ψE�m|ψE′�m〉 =
δ(E − E′), is [72]

u�E(r) = C�Eρ�+1e−iρ
1F1(� + 1 − iγ ; 2� + 2; 2iρ), (C10)

where

C�E =
√

2

πk
C�(γ ), (C11)

C�(γ ) = 2�e− π
2 γ |�(� + 1 − iγ )|

(2� + 1)!
, (C12)

k = √
2E, γ = −1/k, ρ = kr , and C�(γ ) is the Gamow factor.

Apart for the normalization factor, therefore, the expressions
for the continuum and bound eigenstates are simply the
analytical continuation to the real and imaginary axis of a
function of the generalized radial momentum k,

y�k(r) = ρ�+1e−iρ
1F1(� + 1 − iγ ; 2� + 2; 2iρ). (C13)

In fact, the normalization factor for the bound states can be
cast in the suggestive form

Nn� = n−3/2
√

1 − e2πη (−1)�+12�

√
2

πκ
e− π

2 η

×
√

�(� + 1 − iη)�(� + 1 + iη)

(2� + 1)!
, (C14)

where the proper analytical continuation of the normalization
factor for the continuum states has been factored out. (Notice
that, in this latter formulation, Nn� is defined for integer
values of n only in terms of the limit for η → i n, thanks
to the compensation of two divergences). This means that the
normalized bound eigenstates of hydrogen can be obtained
as the analytical continuation of the continuum eigenstates
as

un�(r) = i2�+1n−3/2 lim
γ→in

√
1 − e2πγ u�E(r). (C15)

In the following, we summarize the analytical expressions
for the off-shell reduced dipole transition matrix elements, in
length gauge, between arbitrary hydrogen eigenstates,

〈ψa�′ ‖r1‖ψb�〉 =
∏

�
C�′0

�0,10

∫ ∞

0
u∗

�′a r u�b dr, (C16)

where
∏

�1�2··· = √
(2�1 + 1)(2�2 + 1) · · · and C

�3m3
�1m1,�2m2

is a
Clebsch-Gordan coefficient. The expression for the corre-
sponding quantities in the other two gauges can be readily
obtained using relations (A4) and (A5). The on-shell case
has already been thoroughly discussed in the previous two
appendixes. We focus the attention on the radial integral
common to all these cases,

R�′a,�b =
∫ ∞

0
y∗

�′a(r) r y�b(r) dr, (C17)

where a and b are complex numbers in the first quadrant.
The values pertinent to the continuum and bound indexes are
obtained by taking the limit to the positive real and positive
imaginary axes, respectively,

R�′κ ′,�κ = (κ ′)�
′+1κ�+1

∫ ∞

0
dr r�+�′+3 e−i(κ+κ ′)r

× 1F1(�′ + 1 − iη′; 2�′ + 2; 2iκ ′r)

× 1F1(� + 1 − iη; 2� + 2; 2iκr). (C18)

The integral in Eq. (C18) is of the form [94]

J
s,p

β (α,α′) =
∫ ∞

0
dre−(h+h′) r

2 rβ−1+s

× 1F1(α; β; hr) 1F1(α′; β − p; h′r), (C19)

which can be solved by applying repeatedly the well-known
recurrence relations [94]

J
s,p

β (α,α′) = (β − 1)

h

[
J

s,p−1
β−1 (α,α′) − J

s,p−1
β−1 (α − 1,α′)

]
,

(C20)

J
s+1,0
β (α,α′) = 4

h2 − h′2

{
2α′sJ s−1,0

β (α,α′ + 1)

+
[

1

2
β(h − h′) − hα + h′(α′ − s)

]
J

s,0
β (α,α′)

+ s
(
β − 1 + s − 2α′) J

s−1,0
β (α,α′)

}
, (C21)
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until the initial expression is entirely given in terms of J
0,0
β

integrals, and finally computing

J
0,0
β (α,α′) = 2β �(β)(h + h′)α+α′−β(h′ − h)−α

× (h − h′)−α′
2F1

[
α,α′; β; − 4hh′

(h′ − h)2

]
,

(C22)

where 2F1(α,β; γ ; z) is the hypergeometric function [70],

2F1(α,β; γ ; z) =
∞∑

j=0

(α)j (β)j zj

(γ )j j !
. (C23)

Following the procedure outlined above, we obtain the
completely general expression

R�κ ′,�−1κ

= (2� + 1)!

2

eπη(κκ ′)�−1

i(κ − κ ′)2�+2

(
κ − κ ′

κ + κ ′

)1−iη−iη′

×
{

κ + κ ′

κ − κ ′ 2F1

[
� + 1 + iη′,� + iη; 2�; − 4κκ ′

(κ − κ ′)2

]

− κ − κ ′

κ + κ ′ 2F1

[
� − 1 + iη′,� + iη; 2�; − 4κκ ′

(κ − κ ′)2

]}
,

(C24)

from which any bound-bound, bound-continuum, and
continuum-continuum matrix elements can be obtained by the
substitution κ → k or κ → i/n, for continuum and bound
indexes, respectively, and multiplying by the corresponding
normalization factor.

APPENDIX D: ASYMPTOTIC APPROXIMATION TO THE
OUTER CONTINUUM-CONTINUUM

TRANSITION INTEGRAL

As discussed in Appendix A, the continuum-continuum
reduced dipole matrix elements between physical states (i.e.,
those defined on the whole [0,∞) semiaxis) in the continuum
can be computed restricting the radial integral to the interval
[0,R] only in the case of the acceleration gauge and provided
that R is sufficiently large. In the length and velocity gauge,
instead, the contribution to the integral from the half-bounded
interval [R,∞) cannot be neglected. If both continuum states
vanish at r = R, one can use the expression (A17) which gives
the contribution of the [R,∞) interval in terms of a boundary
correction. For general energies, however, no exact expression
in closed form is available, so the integral must be computed
either numerically or using approximate formulas. Cormier
et al. [76] derived a series expansion for such contribution.
In this Appendix we examine an alternative series expansion
for the outer correction to the length gauge transition matrix
element, derive its analytical expression up to the third term,
and analyze the performance of the formula thus obtained. Let

us start from the definition

O�E,�′E′ |∞R = C�EC�′E′

k−(�+ 1
2 )k′−(�′+ 1

2 )

∫ ∞

R

dr r�+�′+3eir(k+k′)

× 1F1

(
� + 1 − i

k
; 2� + 2; −2ikr

)

× 1F1

(
�′ + 1 − i

k′ ; 2�′ + 2; −2ik′r
)

.

(D1)

For − 3π
2 + δ � arg z � π

2 − δ, the confluent hypergeometric
functions admits the following expansion for |z| → ∞ (see
Eq. 13.5.1 in [70]),

1F1 (a; b; z)

� (b)

= ezza−b

� (a)

⎡
⎣N−1∑

j=0

(b − a)j (1 − a)j
j ! zj

+ O(|z|−N )

⎤
⎦

+ e−iπaz−a

� (b − a)

⎡
⎣M−1∑

j=0

(a)j (1 + a − b)j
j ! (−z)j

+ O(|z|−M )

⎤
⎦ .

(D2)

We use this expression for M = N = 3, thus making an error
εF � F/(kr)3 on the evaluation of F , and regularize the
integral (D1) introducing the parametric factor e−ξr . Once
the integration is carried out, and after taking the limit of the
result for ξ → 0+, we obtain an asymptotic approximation to

1 2 3
electron energy (a.u.)

1

10

100

0.1

ab
s(

tra
ns

iti
on

 a
m

pl
itu

de
)

Analytical
Conf. Velocity + CBC
Conf. Velocity + AOI

FIG. 15. (Color online) Absolute value of the reduced velocity-
gauge hydrogen dipole matrix element 〈ψEp

‖O(v)
1 ‖ψEs

〉 from the
s scattering state with Es � 2 a.u. to several p scattering states
evaluated as the sum of two contributions. The first contribution
is the numerical integral shown in Fig. 6, which is computed with
the GABS basis and truncated at Rbox, and the second contribution is
either the AOI (solid circles) or the CBC (thin solid line). The thick
gray solid line on the background shows the exact analytical results.
See text for more details.
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the outer integral (AOI),

O�+1E,�′E′ |∞R ≈ C�+1EC�E (2� + 3)! (2� + 1)!

(−2i)2�+3
√

kk′

×
∑

σ,σ ′=±1

I�(σk, σ ′k′), (D3)

where

I� (x,y) = 2iD�+1(x)D�(y) [G1 (x,y) + G2(x,y)] , (D4)

D�(x) = (sgn x)�+1+i/x e−i(xR+ 1
x

ln |x|R)

x� (� + 1 − i/x)
, (D5)

G1 (x,y) = R + x + y + ixy

xy(x + y)

(
1

Rxy
− 1

)
, (D6)

G2(x,y) = H1(x,y)

(
1 − 1

Rxy

)
+ H2(x,y)

R
, (D7)

H1(x,y) = h�+1(x) + h�(y), (D8)

H2(x,y) = h�+1(x)h�+2(x)/2

+h�+1(x)h�(y) + h�(y)h�+1(y)/2, (D9)

h�(x) = (� + 1 + i/x)(� − i/x)/(2ix). (D10)

Figure 15 illustrates the accuracy of the AOI (D3) by
comparing the corrected reduced transition matrix element
in velocity gauge for states that vanish at R and Es �
2 a.u. with the one obtained using the CBC correction given
in Eq. (A17) and with the analytical result. Notice that, in this
case, the correction to the length gauge can be transformed to
the correction in the velocity gauge by applying the same
conversion factor as in Eq. (A4). The CBC correction is
very accurate as long as the truncated acceleration radial
integral is converged for r � R (R = 500 a.u.). The AOI
correction is extremely accurate in an energy interval of �1 a.u.
around the diagonal, |�E| < 0.5 a.u.. The deviations between
the AOI and CBC results for off-shell transitions with |�E| >

0.5 a.u. are attributed to the truncation of Eq. (D2) to
M = N = 3. Systematic improvement of the AOI correction
is straightforward.
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