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Abstract

The Community Detection Problem (CDP) in Social Networks has been widely stud-
ied from different areas such as Data Mining, Graph Mining or Social Network Anal-
ysis, amongst others. Nowadays, this problem has become highly relevant due to the
growing interest in Social Networks, and its possible application in several disciplines
such as sociology, biology, neuroscience, or computer science, whose information can
be easily represented as networks or graphs.

This problem can be formulated as a graph-clustering problem, where the nodes
belonging to a graph should be partitioned into groups according to the network
topology. The partitioning of a graph is usually a division of the graph where each
node belongs to only one community. However, a common feature observed in real-
world networks is the existence of overlapping communities, where a particular node
can belong to more than one community. When the Community Detection Algo-
rithms (CDA) are applied to process social-based information, it is quite usual for
a node of the network to belong to different groups, or communities. Therefore, it
is quite interesting that this type of algorithms can deal with this feature, detecting
communities of nodes with overlaps.

This dissertation has been focused on the design of an evolutionary approach, which
can provide new methods to find overlapping and stable communities in a graph,
improving the currently existing techniques in the state of the art. For this purpose,
several encoding approaches have been designed, as well as several fitness functions
that guide the searching process using some measures related to the graph theory.
The different algorithms designed and implemented in this theses have been divided
in two generations.

In order to combine the basic idea of classical clustering methods with the graph
clustering methods, a first generation of algorithms have been designed. These algo-
rithms adopt an evolutionary approach to optimize the search of communities, using
different fitness functions which combine distances metrics based on features of the
nodes, with measures related to the network topology of the graph (GCF). Analysing
the experimental results obtained by these algorithms, it can be noticed that they
present the same problem as the classical CDAs, related to their dependence on the
graph structure. Therefore, to handle with this problem, these algorithms have been
extended trying to promote solution diversity, in a new generation of algorithms.

The second generation of algorithms designed are based on Multi-Objective Genetic
Algorithms (MOGA-OCD). The fitness function implemented in MOGA-OCD al-
gorithm optimizes two classical objective functions in CDP; the first one is used to
maximize the internal connectivity of the communities, whereas the second one is
used to minimize the external connections to the rest of the graph. To select the most
appropriate metrics for these objective functions, a comparative assessment of several
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connectivity metrics has been carried out using a real-world network. Finally, the
algorithm has been evaluated against other well-known algorithms from the state of
the art in CDP. The experimental results show that the proposed algorithms obtain
good results for the different types of graphs with different structures. In addition,
they improve overall the accuracy and quality of current approaches in CDP, showing
its effectiveness as a new method for detecting overlapping communities.

Finally, and in order to evaluate the CDA algorithms designed in a real domain, this
dissertation also includes the application of them to identify opinion communities
related to Public Healthcare topics in Social Networks. Vaccines have contributed to
dramatically decrease mortality from infectious diseases in the 20th century. How-
ever, several social discussion groups related to vaccines have emerged, influencing the
opinion of the population about vaccination for the past 20 years. These communities
discussing about vaccines have taken advantage of social media to effectively dissem-
inate their theories. Nowadays, recent outbreaks of preventable diseases such as
measles, polio, or influenza, have shown the effect of a decrease in vaccination rates.
Social Networks are one of the most important sources of Big Data. Specifically,
Twitter generates over 400 million tweets every day. This thesis shows how CDAs
can be applied to discover and track discussion communities on vaccination using in-
formation gathered from Twitter. In addition, this fact provides useful information
that Public Healthcare Organizations may try to use for avoiding or mitigating new
outbreaks of eradicated diseases.



Resumen

El Problema de Detección de Comunidades (o CDP del inglés Community Detection
Problem) ha sido ampliamente estudiado desde diferentes áreas como la Mineŕıa de
Datos, Mineŕıa de Grafos o Análisis de Redes Sociales, entre otros. Hoy en d́ıa,
este problema se ha vuelto muy relevante debido al creciente interés en las redes
sociales y su posible aplicación en varias disciplinas como la socioloǵıa, la bioloǵıa, la
neurociencia o la informática, cuya información puede representarse fácilmente como
redes o grafos.

La idea principal de este problema puede considerarse similar a la del clustering de
grafos, donde los nodos pertenecientes a un grafo deben ser divididos en grupos de
acuerdo con la topoloǵıa de red. La partición de un grafo generalmente consiste
en una división del grafo donde cada nodo pertenece solamente a una comunidad.
Sin embargo, una caracteŕıstica común observada en las redes del mundo real es la
existencia de comunidades superpuestas, donde un nodo particular puede pertenecer
a varias comunidades. Cuando los algoritmos de detección de comunidades se están
aplicando para procesar información de base social, es muy habitual que un nodo
de la red pertenezca a diferentes grupos o comunidades. Por lo tanto, es muy in-
teresante que este tipo de algoritmos puedan manejar esta caracteŕıstica, detectando
comunidades de nodos con superposiciones.

Esta tesis se centra en proponer un enfoque evolutivo que pueda aportar nuevos
métodos para encontrar comunidades superpuestas y estables en un grafo, mejorando
las técnicas actuales del estado del arte. Para este propósito, se han diseñado varias
codificaciones diferentes, aśı como varias funciones de aptitud que gúıen el proceso
de búsqueda usando diferente medidas relacionadas con la teoŕıa de los grafos. Los
diferentes algoritmos diseñados e implementados en estas tesis se han dividido en
dos generaciones.

Combinando la idea básica de los métodos clásicos de clustering, con los métodos
de clustering para grafos, se ha desarrollado la primera generación de algoritmos.
Estos algoritmos adoptan un enfoque evolutivo para optimizar la búsqueda de co-
munidades, utilizando diferentes funciones de aptitud, que combinan métricas de
distancias basadas en caracteŕısticas de los nodos, con medidas relacionadas con la
topoloǵıa del grafo (GCF). Analizando los resultados experimentales obtenidos por
estos algoritmos, se puede observar que presentan el mismo problema que los algo-
ritmos de detección de comunidades clásicos, en relación con su dependencia a la
estructura del grafo. Por este motivo, con el objetivo de evitar este problema, dichos
algoritmos se extienden tratando de promover una mayor diversidad de soluciones,
y dando lugar a una segunda generación de algoritmos.

La segunda generación de algoritmos diseñados se basa en Algoritmos Genéticos
Multi-Objetivos (MOGA-OCD). La función de aptitud implementada para estos al-
goritmos optimiza simultáneamente dos objetivos: El primero tratando de maximizar
la conectividad interna de las comunidades, mientras que el segundo se utiliza para
minimizar las conexiones externas con el resto de nodos del grafo. Para seleccionar
las métricas más apropiadas para estas funciones objetivo, se ha realizado una evalu-
ación comparativa de varias métricas de conectividad utilizando una red representado
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un problema real. Y finalmente, el algoritmo ha sido evaluado frente a otros algo-
ritmos conocidos del estado del arte, donde se ha podido comprobar que los nuevos
algoritmos propuestos tienen buenos resultados para diferentes tipos de grafo, con
estructuras diferentes. Además, estos resultados muestran que en general mejoran
tanto la precisión, como la calidad respecto a los enfoques clásicos, mostrando aśı su
efectividad como nuevos método para detectar comunidades solapadas.

Finalmente, con el fin de evaluar los algoritmos diseñados en un dominio real, esta
tesis también incluye la aplicación de los mismos para identificar comunidades de
opinión relacionadas con temas de Salud Pública en Redes Sociales. Las vacunas han
contribuido a disminuir drásticamente la mortalidad por enfermedades infecciosas en
el siglo XX. Sin embargo, en los últimos años varios movimientos sociales hablando
en contra de las vacunas han surgido, influyendo en la opinión de la población sobre la
vacunación. Estas comunidades que discuten acerca de las vacunas han aprovechado
las redes sociales para difundir eficazmente sus teoŕıas. Actualmente, brotes recientes
de enfermedades ya casi erradicadas como el sarampión o la polio han demostrado
el efecto negativo que tiene la disminución de las tasas de vacunación. Las Redes
Sociales son una de las fuentes más importantes de Big Data, especialmente Twitter
que genera más de 400 millones de tweets cada d́ıa. Por este motivo, esta tesis
muestra cómo los algoritmos de detección de comunidades pueden ser aplicados para
descubrir y rastrear estas comunidades de discusión sobre la vacunación con datos
extráıdos de Twitter. Además, este análisis muestra como estos algoritmos pueden
proporcionar información útil, que las organizaciones de salud pública pueden tratar
de utilizar para evitar o mitigar nuevos brotes de enfermedades.
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estos años, también se convirtió en mi amiga, fuimos las mejores compis de trabajo,
y siempre ha estado intentando ayudarme en todo.
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Chapter 1

Introduction

“There are too many questions, there is not one solution,
there is no resurrection, there is so much confusion.”

- Madonna (Love Profusion - American Life)

This chapter presents the motivation and overview of this dissertation. Firstly, the Com-
munity Detection Problem (CDP) is introduced as main research focus of this work. Section
1.2 motivates the research questions that are addressed later. Section 1.3 briefly describes the
Community Detection Algorithms (CDAs) and Genetic Algorithms (GAs), in order to provide a
basic framework for the research questions that are described in Section 1.4. Next, the disserta-
tion structure is described in Section 1.5 and, finally, the main contributions and the associated
publications related to the this thesis are presented in Section 1.6.

1.1 The Community Detection Problem

The CDP can be defined as the division of a graph into clusters of nodes based on its topology
information, where each cluster includes strongly interconnected nodes, and sparsely connections
to the rest of the graph. This problem is similar to the idea of graph partitioning into groups of
nodes according to the network topology. A partition is a division of a graph where each node
belongs to only one community. Nowadays, this is an important problem applied in disciplines
such as sociology, biology, neuroscience, or computer science, whose information can be easily
represented using connected networks or graphs [58]. In addition, the emergence and exponential
growing of the Social Networks (SNs) has led to a great interest in this topic, being currently one
of the most popular and hot topics in computing research. Today, society lives in a connected
world in which communication networks are intertwined with daily life, and social networks
are one of the most important sources of social big data [21]. In social networks, individuals
interact with one another and provide information on their preferences and relationships which
can be easily represented as a graph. Therefore, these networks have become important sources
for collective intelligence extraction, where community detection algorithms can be applied to
discover useful knowledge on several fields.

The goal of the CDP is similar to the idea of graph partitioning in graph theory [40, 154]. A
cluster in a graph can be mapped into a community. Therefore, this problem can be handled us-
ing graph-based clustering algorithms. The clustering problem can be described as a blind search
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2 Chapter 1. Introduction

on a collection of unlabelled data, where elements with similar features are grouped together in
sets. There are three main techniques to deal with the clustering problem [93]: overlapping [25]
(or non-exclusive), partitional [120] and hierarchical [108]. Overlapping clustering allows each
element to belong to multiple clusters, partitional clustering consists in a disjoint division of the
data where each element belongs only to a single cluster, and hierarchical clustering nests the
clusters formed through a partitional clustering method creating bigger partitions, grouping the
clusters by hierarchical levels.

In some domains, it could be interesting to allow that a node could belong to several clusters.
For instance, it is well-known that people belonging to a social network can be member of
multiple communities. A common feature observed in real-world networks is the existence of
overlapping communities where a particular node can belong to more than one community. To
solve this problem, fuzzy clustering algorithms applied to graphs [92] and overlapping approaches
[178] have been proposed. In this thesis, the approach has been focused on the overlapping
clustering techniques.

There is no single definition accepted to clearly state what is a cluster in a graph, and the
variants used in the literature are numerous. But these kinds of algorithms are typically based
on the topology information of the graph or network. Related to the graph connectivity, each
cluster should be connected; it means that should exist paths connecting each pair of vertices
within the cluster. It is generally accepted that a subset of vertices forms a good cluster if the
induced sub-graph is dense, and there are few connections from the included vertices to the rest
of the graph [98]. Considering both features, connectivity and density, a possible definition of
a graph cluster could be a connected component where every two vertices in the sub-graph are
connected by an edge [31].

This family of algorithms can be improved using Genetic Algorithms (GAs) to decrease
their high computational complexity when they are applied to networks of very large sizes. A
genetic algorithm is inspired by biological evolution [110], where the possible problem solutions
are represented as individuals belonging to a population. The individuals are encoded using a
set of chromosomes (called the genotype of the genome). Later these individuals are evolved,
during a number of generations, following a survival/selection model where a fitness function is
used to select the best individuals from each generation. Once the fittest individuals have been
selected, the algorithm reproduces, crosses and mutates them trying to obtain new individuals
(chromosomes) with better features than their parents. The new offspring and, depending on the
algorithm definition, their parents, will pass to the following generation. This kind of algorithms
have been usually employed in optimization problems [6, 75], where the fitness function tries
to find the best solution among a population of possible solutions that are evolving. In other
approaches, such as clustering, the encoding and optimization algorithm are used to look for the
best set of groups that optimizes a particular feature of the data.

Several of these evolutionary clustering algorithms use a single optimization criteria as an
objective function, such as modularity [161]. There are also GAs where the community detection
is solved as a multiobjective optimization problem, generally optimizing two criteria [83, 143].
This thesis aims to carry out a comparative assessment of measures related to the topology of the
network (Density, Triangle Partition Ratio, Clique Number, Clustering Coefficient, Separability,
etc...), analysing their possible use as optimization criteria in order to find new approaches to
improve CDAs based on GAs.
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1.2 Motivation of the dissertation

The CDP has been the subject of many studies in the field of Data Mining [23, 137] and
Social Network Analysis [20, 159]. Several methodologies have been applied to find optimal
groups of nodes into communities. Usually these methods require a vast amount of memory
and computational time to process large-scale networks in real world domains such as the World
Wide Web, citation networks, social networks, or biochemical networks amongst others [58].

A major problem in graph clustering and CDPs is to look for a quantitative definition of
a good community (or cluster), due to the definition often depends on the specific application
domain. But, according to the nature of the considered problem, there must be more edges within
each community than edges linking with the rest of the graph. There are several definitions
related to what it means a good community within a graph in the literature. For this reason,
a large number of different methodologies have been applied to solve this problem [154], where
most of them are typically based on the topology information of the graph.

Other problem is derived from the fact that CDAs are based on the topology information of
the graph to partition it. Due to this, usually these algorithms obtain goods results depending on
the graph structure. For example, the algorithms based on the greedy optimization of modularity
tends to form large communities rather than small ones, which often obtains poor values of
modularity. Therefore this type of algorithms is not usually able to achieve good results for
sparse graphs with small communities.

This dissertation aims to look for new evolutionary approaches that can aid to manage theses
problems, providing new methods to find overlapping and stable communities within a graph.
For this purpose several algorithms have been designed using different encodings, and fitness
functions, to guide the searching process.

In addition, to evaluate the usefulness of the CDA algorithms in a real domain, this disser-
tation also includes the application of them to identify opinion communities related to Public
Healthcare topics in Social Networks. Currently, social groups related to vaccines have emerged
influencing on the opinion of population about vaccination. This fact could bring on disease
outbreaks because they are more common when vaccination rates decrease [95, 136, 169].

In the related literature, there are several works investigating knowledge acquisition from
social networks about vaccine sentiments using classification techniques [33, 113, 153]. These
classification techniques usually obtain better results than Clustering techniques as a conse-
quence of its supervised nature. However, clustering techniques are able to discover hidden
information (or patterns) on a dataset, and they do not need a previous human-labelling pro-
cess. Any human-labelling process can be really time-consuming, or even impossible, for huge
datasets extracted from SN as Twitter. For this reason, this dissertation proposes the use of
CDAs, which do not require that human-labelling process, to identity communities in Twitter
which are disseminating vaccine opinions. Then, these communities can be analysed using differ-
ent network metrics to identify the most relevant users, and to analyse how them can influence
to the rest of users in a particular community, zone, or country.
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1.3 Problem statement

The clustering problem can be defined as a blind search on a dataset whose objective is to
partition the dataset into groups of elements sharing similar features. Some classical solutions
such as K-means (for a fixed number of clusters) [120] or Expectation-Maximization [56] (for a
variable number of clusters), amongst others, are based on distances or metrics that are used to
determine the similarity between the elements of the dataset.

When the dataset is represented as a graph (such as in the CDPs), the clustering problem
is called graph clustering, and it consists of the grouping of the nodes belonging to this graph
into clusters. Therefore, the aim of the CDAs is similar to the graph clustering. Graph models
are useful for diverse types of data representation, and nowadays they have become especially
popular, being widely applied in the social networks area. Graph models can be naturally used
in these domains, where each node or vertex can be used to represent an agent, and each edge
is used to represent their interactions. Later, algorithms, methods and graph theory have been
used to analyse different aspects of the network, such as: structure, behaviour, stability or even
community evolution inside the graph [55, 73, 128, 175]. Depending on the methodology applied
to perform the graph partitioning, there are several different methods for graph clustering such
as cutting, multi-level partitioning, spectral analysis, or connectivity analysis, amongst others
[156].

GAs [90] have been traditionally used in a large number of different domains, mainly related
to optimization problems [26, 39, 51, 65, 155]. This kind of algorithms is one of the most
successful algorithm in the Evolutionary Computation (EC) area. The EC is a field of AI,
inspired in the biological evolution where all the EC techniques share three characteristics: (1)
they use a population of individuals that represent solutions, (2) individuals are modified using
at least one genetic operator, and (3), individuals are under a selective pressure, where the
fittest ones can reproduce their characteristics. The result is an evolving population of partial
solutions that would eventually converge to a global solution.

GAs have demonstrated to be robust algorithms able to find satisfactory solutions in prob-
lems with large search space evaluating a minimum number of points. In particular to solve
graph clustering problems, GAs have been used to look for the best partition of the graph in
groups of nodes (clusters) optimizing a particular feature of the graph structure.

Regarding to the measures used to guide the algorithms finding optimal clusters, there are
two main approaches [61]: the first one computes some values from the vertices and then classify
them into clusters; the second one compute a fitness measure over the set of possible clusters
choosing the optimal among all cluster candidates. For the first approach, there are several
similarity, or distance, metrics that can be applied such as the Euclidean Distance, the Jaccard
index or Cosine similarity, among others [119]. The other approaches use connectivity measures
computed over the set of possible graph clusters such as density, clustering coefficient or clique
number, as fitness function of the algorithm [173].

Taking into account the different existing methodologies, the first algorithms designed and
implemented in this thesis are based on the idea of combining classical clustering methods
with the graph clustering methods based on connectivity measures (K-fixed and K-adaptive
GCF-I). These new algorithms adopt an evolutionary approach to optimize the search of the
communities, using different fitness functions that combine distances metrics based on node
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features, with measures related to the network topology of the graph.

Both GCF-I algorithms require that each node has a set of features associated, which al-
low to measure its distance or similarity related to the rest of nodes belonging to the graph.
However, many dataset collections representing graphs do not have features associated to their
nodes. Therefore, a new version of the algorithm (GCF-II) was implemented where the graph
partitioning is only performed optimizing measures based on the own network topology of the
graph. For this purpose, a new fitness function has been implemented combining several mea-
sures extracted from Graph Theory (Density, Centralization, Heterogeneity, Neighbourhood,
Clustering Coefficient).

Once the first generation of algorithms are experimentally tested, it can be noticed that
they present the same problem as the CDAs of the State of the Art. These algorithms show
a dependence on the graph structure. In order to handle with this problem, these algorithms
are extended to multi-objective approaches trying to promote solution diversity, in a second
generation of previous algorithms (MOGA-OCD). The fitness function designed for this pro-
posed approach optimizes simultaneously two objective functions: one is used to maximize the
internal connectivity of the node groups, whereas the second one tries to minimize the external
connections to the rest of the nodes. For this purpose, several internal and external connectivity
measures from the graph theory, are used as the optimization criteria of the algorithms. Since
many connectivity measures can be used as the objective functions, a comparative assessment of
these metrics has been carried out in this thesis. This study allow to identify the most suitable
measures for partitioning the graph into overlapping communities.

Finally, the last part of this thesis has been focused on the application of the CDAs to
identify opinion communities related to Public Healthcare topics in Social Networks. Both,
classical algorithms and the new algorithms implemented, have been used to detect communities
in Twitter that are talking about vaccines. Finally, an experimental analysis of the influence of
these communities to the rest of users, in a particular zone or country, is carried out proving
how useful is this new knowledge to Public Healthcare Organizations. With these information,
these organizations could improve their strategies, increasing control and preventive measures
in the risk zones identified.

1.4 Research Questions

This PhD Thesis aims to analyse, and study, the possible combination of graph clustering
methods and GAs in order to understand in depth the process of these algorithms, and to find
new approaches to improve the classical techniques for solving the CDP. In addition, a detailed
study of the most appropriate measures related to the topology structure of the networks has
been carried out. This fact allows to select the most suitable metrics such as objective functions
to guide the search of the GAs. To achieve these main objectives the main research questions
of this thesis can be described as follows:

• Q1: Is it possible to combine clustering methods based on distances with genetic graph-
based approaches to improve the results obtained by classical overlapping community
detection algorithms?
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• Q2: Are these algorithms able to identify quality communities only using network topology
measures as objective functions?

• Q3: How can multi-objective genetic algorithms deal with the problem of dependence on
the graph structure shown by the classic algorithms?

• Q4: How can these algorithms be applied to real social domains to acquire useful infor-
mation?

1.5 Structure of the thesis

The dissertation has been structured in six chapters. A brief description of the chapter contents
are given as follows:

• Chapter 1: Introduction. It provides a general context and motivations related to the
dissertation. In addition, the main objectives and research questions are introduced, as
well as the main contributions and publications generated in this thesis.

• Chapter 2: State of the Art. It introduces the State of the Art related to Community
Detection Algorithms and Genetic Algorithms in order to contextualize the different con-
tributions of this PhD thesis. For this purpose, firstly some basic definitions from Graph
Theory are presented. Finally, some current applications using information extracted from
SNs are described as possible real domains of application.

• Chapter 3: Genetic Graph-based Approaches for Overlapping Community De-
tection. This chapter presents the first algorithms developed based on a Genetic Algo-
rithms and Graph Theory to solve Overlapping Community Detection Problems (OCDPs).
These new algorithms optimize the search of the communities using different fitness func-
tions, which combine distance metrics based on features of the nodes, with measures related
to the network topology of the graph. Here, the analysis is focused on the different encod-
ings and fitness functions which can deal with the CDP. Finally, all the new algorithms
implemented have been experimentally evaluated using the Eurovision Contest dataset,
that can be considered as a well-known SN.

• Chapter 4: Multi-Objective Genetic Approaches for Overlapping Community
Detection. It describes the second generation of algorithms based on a multi-objective
approach, that extends the previous generation to deal with the problem of the dependence
on the graph structure. Two different encodings are designed, one based on nodes whereas
the other one is based on edges, to evaluate the two different approaches that are current in
use for finding communities. Finally, the proposed algorithms have been compared among
themselves, and evaluated against other well-known algorithms from the state of the art.

• Chapter 5: Applications for detecting communities on Social Graph-based In-
formation. This chapter presents the application of the Community Detection Algorithms
designed in a real domain using social graph-based information. In this particular case, the
algorithms are applied to detect communities in Twitter that are disseminating opinions
about vaccination. In addition, an analysis of the influence of these communities to the
rest of users, in a particular zone or country, is carried out. This provides an idea of how
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useful can be this new knowledge for the Public Healthcare Organizations, to improve their
immunization strategies, or even to apply preventive measures in the risk zones identified.

• Chapter 6: Conclusions and Future Work. The Research Questions described in
Chapter 1 are addressed in order to provide some answers, based on the results obtained
from this research. Finally, taking into account all the analysis carried out, a summarize
of the possible future works is presented.

1.6 Publications and Contributions

This Section shows the contributions that have been generated during the development of this
thesis. These publications have been organized by journals and conferences, and sorted by year.

International Journals

(IJ-1) Gema Bello-Orgaz, Hector D. Menendez, David Camacho: Adaptive K-Means Algorithm
for overlapped graph clustering. International Journal of Neural Systems. Ed. By World
Scientific. Vol. 22 Issue 5, pp. 1-19, 2012.
Impact factor = 5.054 (JCR, 2012) [Q1].

• Contribution: This contribution is related to Section 3.1.

(IJ-2) Gema Bello-Orgaz, Hector D. Menendez, Shintaro Okazaki, David Camacho: Combin-
ing Social-based Data Mining Techniques to Extract Collective Knowledge from Twitter.
Malaysian Journal of Computer Science. Ed. By World Scientific. Vol. 27, Issue 2, pp.
95-111, 2014.
Impact factor = 0.405 (JCR, 2014) [Q4].

• Contribution: This contribution is related to Section 2.3.

(IJ-3) Gema Bello-Orgaz, Jason J. Jung, David Camacho: Social big data: Recent achievements
and new challenges. Information Fusion, Ed. By Elsevier. Volume 28, pp. 45–59, 2016.
Impact factor = 4.353 (JCR, 2015) [Q1].

• Contribution: This contribution is related to Sections 2.2 and 2.3.

(IJ-4) Gema Bello-Orgaz, Julio Cesar Hernandez-Castro, David Camacho: Detecting Discussion
Communities on Vaccination in Twitter. Future Generation Computer Systems, Ed. By
Elsevier, Vol. 66, pp. 125-136, 2017.
Impact factor = 2.43 (JCR, 2015) [Q1].

• Contribution: The content of this paper is directly related to Chapter 5.
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International Conferences

(IC-1) Gema Bello, Raul Cajias, David Camacho: A Study on the Impact of Crowd-Based Voting
Schemes in the ’Eurovision’ European Contest. In proceedings of 1st International Con-
ference on Web Intelligence, Mining and Semantics (WIMS’11). ACM press. Sogndal,
Norway, 25-27 May 2011.

• Contribution: This contribution is related to Sections 3.1.3 and 3.3.

(IC-2) Gema Bello, Hector D. Menendez and David Camacho: Using the Clustering Coefficient
to guide a Genetic-based Community Finding Algorithm. In Proceedings of the 12th Inter-
national Conference on Data Extraction and Automated Learning (IDEAL 2011). Lecture
Notes in Computer Science (LNCS), Vol. 6936, pp. 160-169. Springer Berlin / Heidelberg.
Norwick, UK, September 2011. Core-ERA C.

• Contribution: This contribution is related to Section 3.1.1.

(IC-3) Gema Bello, Hector Menendez, Shintaro Okazaki and David Camacho: Extracting Col-
lective Trends from Twitter using Social-based Data Mining. In Proceedings of the 5th
International Conference on Computational Collective Intelligence (ICCCI 2013). Ed. by
Springer-Verlag, Vol. 8083, pp. 622-630. Craiova, Romania, September 11-13, 2013.
Core-ERA C.

• Contribution: This contribution is related to Section 3.1.1.

(IC-4) Gema Bello-Orgaz and David Camacho: Evolutionary clustering algorithm for commu-
nity detection using graph-based information. In proceedings of 2014 IEEE Congress on
Evolutionary Computation (IEEE CEC). pp. 930 – 937. Beijing, China, 6-11 July 2014.
Core-ERA B.

• Contribution: This contribution is related to Section 3.2.

(IC-5) Gema Bello-Orgaz, Julio Hernandez-Castro, and David Camacho: A survey of social web
mining applications for disease outbreak detection. IDC 2014: 8th International Sympo-
sium on Intelligent Distributed Computing, Vol. 570, pp. 331-340. September 3-5, 2014
Madrid, Spain.

• Contribution: This contribution is related to Section 2.3.2.

Submitted International Journals

(SIJ-1) Gema Bello-Orgaz, Sancho Salcedo, David Camacho. Multi-Objective Genetic Algorithm
for overlapping community detection using graph-based information. Swarm and Evolu-
tionary Computation –SWEVO. Submitted 2017.
Impact factor = 2.963 (JCR, 2015) [Q1].

• Contribution: This contribution is related to Chapter 4.



Chapter 2

State of the Art

“To understand the things that are at our door is the best preparation”
for understanding those that lie beyond.”

- Hypatia of Alexandria

This chapter starts with a general introduction to some basic definitions from Graph Theory
which are usually used in graph clustering techniques. After this brief introduction, an overview
of community detection algorithms is presented. Later, genetic algorithms are introduced show-
ing how they can be applied to improve these techniques. Finally, some current applications to
Social Networks of these type of data mining methods are described.

2.1 Basic Definitions of Graph Theory

Graph theory is an area of important contribution for research in data analysis. Graph models
are useful to represent diverse types of data. They have become especially popular in the
last years, and have been widely applied in the Social Networks (SN) area. These models can
be naturally applied in these domains, where each node, or vertex, can be used to represent an
user, and each edge is used to represent their interactions. Later, algorithms, methods and graph
theory have been used to analyse different characteristics of the network, such as: structure,
behaviour, stability or even community evolution inside the graph [55, 73, 128, 175]. Most of the
community detection algorithms use concepts and metrics extracted from graph theory in order
to split a graph into clusters or communities. For this reason, and before describing the different
existing approaches in the state of the art, some of the basic concepts from graph theory are
briefly introduced.

Definition 2.1.1 (Graph). A graph G = (V,E) is a set of vertices or nodes V denoted by
{v1, . . . , vn} and a set of edges E where each edge is denoted by eij if there is a connection
between the vertices vi and vj .

Graphs can be directed or undirected. If all edges satisfy the equality ∀i, j, eij = eji, the
graph will be undirected.

The most usual approach to represent a graph is through its adjacency matrix which can be
defined as:

9
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Definition 2.1.2 (Adjacency Matrix). An adjacency matrix of G, AG, is a square n×n matrix
where each coefficient satisfies:

(aij) =

{
1, if eij ∈ E
0, otherwise

When it is necessary to work with weights in the edges, a new kind of graph needs to be
defined:

Definition 2.1.3 (Weighted Graph). G is a weighted graph if exists a function w : E → R
which assigns a real value to each edge.

Any algorithm that works with the vertices of a graph needs to analyse each node neighbours.
The neighbourhood of a node is defined as follows:

Definition 2.1.4 (Neighbourhood). Taking two edges, eij ∈ E and eji ∈ E, we say that vj is
a neighbour of vi. The neighbourhood of vi Γvi is defined as Γvi = {vj | eij ∈ E and eji ∈ E}.
Then, the number of neighbours of a vertex vi is ki = |Γvi |

Once the most general and simple concepts from graph theory are defined, we can proceed
with the definition of some basic metrics, based on previous definitions, which will be later used
in the algorithms designed in this thesis. There are two basic types of metrics that can be
used to provide a quantitative measure of the goodness for a graph partition [182]: internal
community connectivity, and external connectivity of the community related to the rest of the
network. A ‘good’ community should be cohesive, compact, and well connected internally. On
the other hand, and regarding to external connectivity, it should be well separated from the rest
of network nodes. According to this classification of connectivity types, the connectivity metrics
used in this thesis are described below.

2.1.1 Metrics based on internal connectivity

1. Triangle Participation Ratio (TPR) [182]:

This is a measure of graph cohesion, which is defined as the fraction of nodes in a graph
that belongs to a triangle. A triangle, in graph theory, is a planar undirected graph with
3 vertices and 3 edges generating a complete graph in the form of a triangle, as shown in
Figure 2.1.

V1 V2

V3

Figure 2.1: A triangle example into a graph.
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Taking this into account, the TPR can be defined as follows:

TPR =
|{u : u ∈ V, {(v, w) : v, w ∈ V, (u, v) ∈ E, (u,w) ∈ E, (v, w) ∈ E} 6= ∅}|

|V |
(2.1)

This ratio can take values from 0 to 1. If every node belongs to a triangle, the TPR value
is equal to 1. Otherwise its value will be 0.

2. Local Clustering Coefficient (LCC)[55, 176]:

This coefficient measures the transitivity of a node into the graph, and it is usually used
for undirected graphs to represent the probability that two neighbours of a vertex are
connected. The transitivity property in a graph can be observed when triangles are formed.
As was defined by Watts and Strogatz [176], suppose that a vertex vi has ki neighbours;
then a maximum of ki(ki − 1)/2 edges can exist between them. This happens when every
neighbour of vi is connected to every other neighbour of vi. Taking this into account, the
LCC of a node vi is defined as the fraction of the number of connected pairs between all
neighbours of vi, and this maximum possible number of edges between all neighbours:

LCCi =
2×

∑
j,h ajhaijaihajiahi

ki(ki − 1)
(2.2)

The LCC measure provides values ranging from 0 to 1. Where 0 means that the node and
its neighbours do not have clustering features, so they do not share connections between
them. Whereas, the value 1 means that they are completely connected, as shown in Figure
2.2.

V1 V2

V3

V4 V4

V3

V2V1

V4

V3

V2V1

V3

V1

V4

V2

  LCC (V1) = 1   LCC (V1) = 2/3 LCC (V1) = 1/3 LCC (V1) = 0

Figure 2.2: Examples of Local Clustering Coefficient for the node V1 showing different possible
graphs, and their related LCC value.

3. Local Weighted Clustering Coefficient (LWCC)[15]:

To study weighted graphs, the definition of LCC can be extended. Following the same
assumption of LCC definition, let W be the weight matrix with coefficients wij and A be
the adjacency matrix with coefficients aij , if we define:

Si =

|V |∑
j=1

aijajiwij (2.3)

Then, the Local Weighted Clustering Coefficient can be defined as :

LCCw
i =

2×
∑

j,h
(wij+wih)

2 ajhaijaihajiahi

Si(ki − 1)
(2.4)
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For this new definition, the connections between the neighbours of a particular node are
considering, but now adding the weight information related to the original node. This new
measure calculates the distribution of the weights of the node that we are analysing, and
shows how good the connections of that cluster are. The LWCC has the same value than
the LCC when all the weights are fixed to the same value

4. Global Clustering Coefficient (GCC) [176]:

This coefficient measures the global transitivity of the graph providing a general overview
of the graph structure. GCC is defined as the ratio of the triangles and connected triplets
in the graph:

GCC =
3× |Triangles|
|Triples|

(2.5)

It provides values from 0 to 1. If all possible connections among the neighbours of all the
nodes into the graph are available, GCC gives a value of 1. A network with GCC close to
1 contains highly connected clusters. Otherwise, if there are no connections between the
neighbours nodes, this coefficient has a value of 0.

5. Density(D) [174]:

This is defined by the number of edges in the graph G divided by the total number of
possible edges, it can be expressed as follows:

D =
m

n(n− 1)/2
(2.6)

where the number of the nodes within the graph is n = |V |, and the number of edges is
m = |E|.

The density is a real value between 0 and 1. Any graph that does not contain any edge, so
all the nodes will be isolated, will have a density of 0, whereas for a full connected graph,
where every node is connected to the rest of the nodes in the network, will have a density
of 1.

6. Clique Number (CN) [10]: A clique of a graph is a subset of mutually adjacent vertices
in V (every two vertices in the subset are connected by an edge). It means that the induced
subgraph from these nodes is complete. A clique is called maximal if it is not contained
in any other clique, as shown in Figure 2.3. The size of the maximum clique is called the
clique number of the graph that is denoted by ω(G) [10].

The Maximum Clique Problem is one of the classic NP-complete problems, and there are
several proposed algorithms in the literature to manage it. The Bron-Kerbosch algorithm
[34] is one of the most well-known and widely used method based on a recursive back-
tracking search. Tomita et al. [167] proposed a similar technique to the Bron-Kerbosch
algorithm using a depth-first search algorithm with pruning methods. Finally, in the last
years, different variations of the Bron-Kerbosch algorithm have been implemented to be
applied into larger graphs as the method presented by Eppstein et al. [62].
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V2

V3 V4

V5

V1

V5

V4V3

V2V1 V1 V2

V3 V4

V5

not a clique 3-clique (not maximal) 4-clique (maximal)

Figure 2.3: Examples of different cliques contained in a graph containing 5 nodes.

7. Centralization (CD) [74]:

This metric is based on the concept of degree centrality of the nodes of a graph, which is
defined as the number of edges incident upon of them. According to this, the degree cen-
trality (Cd(vi)) of a vertex vi for a given indirected graph G is defined as its neighbourhood
(ki) (see Figure 2.4). In the case of a directed graphs, it is possible to define two distinct
measures of degree centrality; namely indegree and outdegree. Accordingly, indegree
centrality corresponds to the number of links directed to the node, otherwise outdegree
centrality is the number of links that the node directs to the rest of nodes of the graph.

V1

V2

V3

V4

V5

V7

V6

Figure 2.4: Example of degree centrality. In this graph, the degree centrality for the V 1 node is
Cd(V 1) = 6, whereas for the rest of nodes, this value is 1.

The definition of degree centrality on the node level can be extended to the whole graph.
Freeman [74] provided a measure of graph centralization based on differences for the node
centralities. This index of graph centralization has two main features: (1) it should index
the degree to which the centrality of the most central node exceeds the centrality of all
other nodes, and (2) it should be expressed as a ratio of that excess to the maximum
possible value for a graph containing the same number of nodes. The maximum difference
for node centralities in a graph takes place when the graph contains one central node to
which all other nodes are connected (a star graph), as shown in Figure 2.4. In this case the
difference has a value equal to n2 − 3n+ 2 where n = |V |. Thus, let v∗ be the node with
highest degree centrality, the degree centralization of the graph G is defined as follows:

Cd(G) =

∑n
i=1 [Cd(v∗)− Cd(vi)]

n2 − 3n+ 2
(2.7)

As previously mentioned, Freeman proved that this measure takes its maximum value, 1,
for those graphs whose topology is a star or a wheel, whereas decentralized graphs are
characterized by having a centralization close to 0.
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8. Heterogeneity (H) [57]:

The heterogeneity of the degree distribution has been the focus of considerable research in
recent years. Many measures of network heterogeneity are based on the variance of the con-
nectivity. This measure notices the tendency of a network to contain ”hub” nodes. Dong
and Horvath [57] defined this measure as the coefficient of variation of the connectivity
distribution:

H =

√
variance(k)

mean(k)
(2.8)

2.1.2 Metrics based on external connectivity

1. Expansion (Exp) [182]:

This metric measures the average number of external edges per node in a community of
the graph. Figure 2.5 shows an example of a community containing 4 nodes (market in
dark blue) where it can be appreciated the external edges for this community, which are
connecting the nodes belonging to this community, to others outside of it (marked in bold).

V1

V2
V3

V4

V5

V7 V6

Figure 2.5: Example of external edges of a community belonging to a graph. The nodes V1, V3,
V4 and V7 belong to a community where the external edges of it are marked in bold.

Then, let C be a subset of nodes in the graph, the expansion of C is defined as the ratio
between the number of external (boundary) edges in the subset, and the number of nodes
belonging to it:

Exp(C) =
|{(u, v) ∈ E : u ∈ C, v /∈ C}|

|C|
(2.9)

2. Separability (Sep) [182]:

Separability measure is used to represent how communities are separated from the rest
of the graph. This metric is the ratio between the number of internal edges and external
edges in a community. Figure 2.6 presents an example of a graph containing a community
where the internal edges belonging to it are marked in bold. Following the same example,
in previous Figure 2.5, it can be viewed which are the external edges of this community.
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V1

V2
V3

V5

V7 V6V4

Figure 2.6: Example of internal edges of a community belonging to a graph. The nodes V1, V3,
V4 and V7 belong to a community where the internal edges of it are marked in bold.

So, let C be a subset of nodes in the graph, the Sep value of this subset is defined as
follows:

Sep(C) =
|{(u, v) ∈ E : u ∈ C, v ∈ C}|
|{(u, v) ∈ E : u ∈ C, v /∈ C}|

(2.10)

3. Cut Ratio (CR) [182]

This metric provides the ratio between the number of external edges in a community (see
Figure 2.5) and all the possible edges leaving the community. If nc represents the number
of the nodes in the community (nc = |C|), and n is the number of nodes in the graph
(n = |V |), the maximal possible number of external edges of a particular community will
be nc(n− nc). Taking this into account the CR is defined as follows:

CR(C) =
|{(u, v) ∈ E : u ∈ C, v /∈ C}|

nc(n− nc)
(2.11)

2.2 Community Detection Algorithms

The main goal of graph partitioning on Graph Theory [40, 154] is similar to the idea of Commu-
nity Detection Problem (CDP). In computer science, the process of identifying the underlying
structure of the data in terms of grouping the elements is called clustering [94], and a cluster in a
graph can be called community. Therefore, graph clustering [61, 124] is the task of grouping the
vertices into clusters or communities considering the edge structure of the graph. A complete
roadmap of graph clustering can be found in the paper carried out by Schaeffer [156], where dif-
ferent clustering methods are described and compared using different types of graphs: weighted,
directed and undirected. These methods are: cutting, spectral analysis and degree connectivity
(an exhaustive analysis of connectivity methods can be found in Hartuv and Shamir work [89])
amongst others. This roadmap also provides an overview of computational complexity from a
theoretical and experimental point of view for the studied methods.

There are several definitions related to what it means a good community within a graph in
the literature. For this reason a large number of different methodologies have been applied to
solve this problem [154], and most of them are typically based on the topology information of the
graph. However, usually there are two main approaches to deal with the CDP [93]: partitional
and overlapping (or non-exclusive).
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This section starts with a description of the main measures usually applied to evaluate the
quality of the resulting communities detected by the CDAs. Then, a general introduction of
the partitional techniques, which perform a disjoint division of the data where each element
belongs only to a single community, are introduced. Following, an overview of overlapping
methods that allow to each node belonging to multiple communities is described. And finally,
some relevant evolutionary approaches that try to improve the computational complexity of
previous methods are described.

2.2.1 Evaluation Metrics

There are two main measures frequently used to evaluate the effectiveness of the community
detection algorithms; the Modularity and the Normalized Mutual Information (NMI).
Modularity is one of the most popular quality function to assess a graph partition. It is based
on the computing of the density for the subgraphs contained into this partition, and it can be
used for any dataset that can be represented as a graph. On the other hand, NMI is a metric
related to the Information Theory that can be used to calculate the similarity between two graph
partitions. Therefore, applying NMI to a dataset with ground-truth (the dataset has been pre-
tagged by a human expert), it is possible to evaluate the accuracy of the outcomes achieved
by a specific algorithm. However, the standard definitions of these measures are only used to
compare disjoint partitions, and the algorithms mentioned in this thesis have been designed to
detect overlapping communities. So it is necessary to used extensions of these standard measures
for partitions with overlaps:

• Modularity (Q): The modularity given by Newman and Girvan [80] is a well-known
quality measure to evaluate the goodness of a partition. This metric is based on the idea
that a subgraph can be considered modular, or a community, if the density of the subgraph
is higher than that expected for a corresponding random subgraph. Therefore, to calculate
the modularity for a graph partition, the subgraphs contained in it are compared against
a random subgraphs with the same number of nodes, the same number of edges, and the
same degree distribution as in the original subgraph, but with the edges among nodes
randomly generated. This is called the called ‘null-model’.

Nicosia et al. [134] extend this definition taking into account that each node can belongs to
many communities with a certain strength for each one. Therefore, in this new definition of
the modularity will be considered a set of “belonging factors” where each factor represents
how strongly a node i belongs to a community c. In addition, a coefficient belonging to
each community for edges incoming to, or outgoing from, a node is defined. The definition
of this function is somewhat arbitrary, for example, it could be define as the product of
the belonging coefficients of the nodes involved, or the maximum coefficient, etc... Using
both new concepts, the modularity is reformulated according to a given community can
be weighted by the corresponding belonging coefficients. As in the standard definition, a
higher positive value of this extended Modularity corresponds to a more modular partition,
being a better partition of the graph in terms of quality. A result close to 0 is given when
the communities detected are similar to a randomly partition of the graph. And finally,
higher negative values means worst partitions without structure.

• Normalized Mutual Information: When the ground truth of the community structure
is known for a dataset, the Normalized Mutual Information (NMI) [50] can be applied to
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measure the similarity between partitions. This allows to compare covers, which in this
specific case is the division of a network into communities detected by a specific algorithm,
against the division given in the ground-truth of the dataset.

The NMI definition was extended by Lancichinetti et al. [109] to the the case of overlap-
ping communities. Mutual information is a measure related to the inherent dependence
expressed in the joint distribution of X and Y relative to the joint distribution of X and Y
under the assumption of independence. It can be expressed using the marginal entropies
of X (H(X)) and Y (H(Y )). In this extension for overlapping partition, the membership
of the node is considered as a binary array with a length equal to the number of com-
munities of the partition. In this array, each element represents if the node belongs to a
particular community or not. Taking into account this information, the joint distribution
are reformulated to consider all possible belongings of a node to different communities.
The value of NMI will be 1 when the clusters are fully matched with the ground truth.

2.2.2 Partitional Methods

In partitional methods a disjoint division of the graph is performed, so each vertex (a graph
node) will only belong to a single community. One of the most well-known partitional algorithms
for community detection is the Edge Betweenness Centrality (EBC) proposed by Girvan and
Newman [133]. This method uses a similarity measure called ”edge betweenness” based on
the number of the shortest paths between all vertex pairs. The proposed algorithm iteratively
removes links with the highest betweenness score (edges lying between communities) to achieve
the isolation of the communities. The EBC algorithm can be summarized as shown in Algorithm
1.

Algorithm 1: Edge Betweenness Centrality Algorithm

Input: A graph G = (V,E) where V is a set of vertices denoted by {v1, . . . , vn} and E is
a set of edges E denoted by eij representing whether there is a connection
between the vertices vi and vj .

Output: Communities extracted from the Dendrogram of removals (D)
1 while E 6= ∅ do
2 B ← calculateBetweenness(E)
3 eij ← selectEdgeHighest(B,E)
4 E ← E − eij
5 D ← dendrogramRemovals(eij))

6 return D

Figure 2.7 shows how EBC algorithm will partition a graph following the process previously
described. In this example, the graph is partitioned into three communities removing three
edges. In the first step, the edges which have higher betweenness value are e(4, 5) and e(4, 6),
thus one of them should be removed. As shown this figure the first edge removed is e(4, 6). In
the second iteration of the algorithm, the edge with higher betweenness will be e(4, 5), which
will be removed. Finally, computing all the edge betweenness in the third iteration, the edge
e(7, 9) will obtain the highest betweenness value, and the process is finished. The final result
after applying the EBC algorithm is a top-down dendrogram where the input graph is split
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up into different communities. As shown in Figure 2.7 the three resulting communities of this
example are: {1, 2, 3, 4}{5, 6, 7, 8}{9}.

(a) (b)

Figure 2.7: Example of EBC algorithm execution. It has been taken from [184].

On the other hand, many authors have been employed the Modularity as basis of their
algorithms to identify community structures into networks. As described in Section 2.2.1, this
is the most popular evaluation metric to measure the quality of a graph partition, and it is
frequently used on graph clustering techniques. The algorithms based on this metric usually
show and excellent performance when the size of the network is small [41, 131]. Updating the
modularity matrix in the Newman algorithm involves a large number of useless operations, due
to the sparsity of the adjacency matrix. This was improved by Clauset et al. [40] work using
the matrix of modularity variations to perform more efficiently. But, the major disadvantage of
these types of algorithms is still the high computational complexity of this metric on networks
of very large sizes.

For this reason, this modularity measure has been modified trying to reduce the compu-
tational demands significantly through several new approaches. Currently, there are several
algorithms based on good approximations of the modularity which are able to detect communi-
ties in a reasonable time. The first technique based on a greedy optimization of modularity was
proposed by Newman [132] (called fastgreedy). It is an agglomerative hierarchical clustering
algorithm, where groups of vertices are successively joined to form larger communities such that
modularity increases after the merging.

The greedy optimization of modularity tends to form large communities rather than small
ones which often obtains poor values of modularity. In order to solve this problem, Danon et
al. [49] proposed to normalize the modularity variation in order to improve the identification of
small communities. This approach obtains better results especially when communities are very
different in size. Another approach to avoid the formation of large communities was proposed
by Schuetz and Caflisch [157] merging more community pairs at each iteration. Moreover this
modification of the greedy algorithm is combined with a procedure, where single vertices are
moved to the neighboring community, that yields the maximum increase of modularity.

Despite the improvements and modifications of the accuracy of these greedy algorithms,
they usually do not obtain good results. For this reason, Newman reformulated the modularity
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measure in terms of eigenvectors by replacing the Laplacian matrix with the modularity matrix
named spectral optimization of modularity [131]. This improvement have been also applied to
improve the results of other optimization techniques [150, 172].

Finally other well-known algorithm, based on modularity, is the Multi-Level [28]. This
is a bottom-up algorithm, where initially every vertex belongs to a separate community, and
vertices are moved between communities iteratively in a way that maximizes the vertices local
contribution to the overall modularity. The algorithm stops when it is not possible to increase
this modularity.

Random walks [152, 146, 187] can also be useful for finding communities. If a graph
has a strong community structure, a random walker spends a long time inside a community
because of the high density of internal edges and the consequent number of paths that could be
followed. Therefore, there are several algorithms to detect communities in the literature using
this approach. Walktrap algorithm [146] is based on the idea that short random walks tend to
stay in the same community. This work proposed a new measure of similarity between vertices
based on random walks which can be computed efficiently, and and it is used in an efficient
hierarchical agglomerative algorithm that detects communities in a network. Other approach
was propoed by Zhou and Lipowsky [187], based on the fact that walkers move preferentially
towards vertices that share a large number of neighbours. They defined a proximity index that
indicates how close a pair of vertices is to the rest of vertices in the graph. Then communities
are detected using a procedure called NetWalk, which is an agglomerative hierarchical clustering
method where the similarity between vertices is expressed by their proximity.

Finally, another approach based on random walks is the Infomap algorithm proposed by
Rosvall et al. [152]. It uses the probability flow of random walks on a network, as a proxy for
information flows in the real system. Then the network is decomposed attempting to find a
partition that yields the minimum description length of an infinite random walk on the network.
The result is a map that simplifies, and highlights, the regularities in the structure, and their
relationships as shown in Figure 2.8.

Figure 2.8: Example of the Infomap algorithm detecting communities by compressing the descrip-
tion of information flows on networks. This example has been taken from [152].

Another approach based on the Label Propagation of the vertex was described by Raghavan
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et al. [147]. In this new algorithm, initially each vertex is assigned to a different label. Then,
all the vertices are iteratively labeled with the dominant label of its neighbourhood (see Figure
2.9). This process generates densely connected groups, which form a consensus with an unique
label. The algorithm ends when all vertices reach a consensus.

Figure 2.9: Example of Label Propagation algorithm [147], where nodes are updated one by one
from left to right. In this case, and due to a high density of edges, finally all nodes acquire the same
label.

Based on Potts statistical model , Reichardt and Bornholdt proposed a method to detect
communities. This method maps the graph onto a zero-temperature q-Potts model with nearest-
neighbor interactions [149]. This model describes a system of spins that can be in q different
states. The interaction is ferromagnetic, i.e. it favors spin alignment, so at zero temperature all
spins are in the same state. In this work spin variables are assigned to the vertices of a graph
with community structure, and the interactions are between neighboring spins.

Finally, Table 2.1 shows a summary of the main partitional methods for CD that have been
previously mentioned, providing a brief description for each one.

2.2.3 Overlapping Methods

A partition is a division of a graph into clusters, or communities, where each vertex belongs to
only one cluster. But in real networks vertices may belong to different communities. In these
cases, it would be interesting to perform a division of the graph into overlapping communities. In
Xie et al. [178] a review of the state of the art in overlapping community detection algorithms is
shown. A common feature observed by several algorithms in real-world networks, is the relatively
small fraction of overlapped nodes (typically less than 30%), usually each of them belongs only to
2 or 3 communities. Therefore, the results of this work suggest that the overlapping community
detection in real networks is still not yet fully solved.

Generally, there are two types of assignments in these type of algorithms: crisp (non-fuzzy)
or fuzzy assignment. In a crisp assignment, the relationship between a node and a cluster is
binary, whereas in a fuzzy assignment, each node is associated to a community with a belonging
factor. Fuzzy community detection algorithms quantify the strength of association between all
pairs of nodes and communities. In these algorithms, a belonging factor [87] is calculated for each
node. A method combining spectral mapping, fuzzy clustering and the optimization of a quality
function, has been presented by Zhang et al. [186]. The algorithm consists on three phases:
Firstly, vertices are embedded in an Euclidean space; Secondly, the corresponding vertex points
are grouped in a given number of clusters; And finally, a modularity function is maximized over
the set of groups found in the second step.
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Name Author Type Description

EBC Girvan and Newman
[133]

Divisive Iteratively removes links with the
highest betweenness score

Clauset-
Newman-
Moore

Clauset et al. [41] Modularity
Optimization

Using matrix of modularity variations

Fastgreedy Newman [132] Modularity
Optimization

Improves the high computational com-
plexity based on the greedy optimiza-
tion of modularity

Leading
Eigenvector

Newman [131] Modularity
Optimization

Reformulate the modularity measure
in terms of eigenvectors

Multi-Level Blondel et al. [28] Modularity
Optimization

Iterative algorithm that calculates
modularity based on nearest neigh-
bours

NetWalk Zhou and Lipowsky
[187]

Random
Walks

Agglomerative hierarchical method
where the similarity between vertices
is expressed by their proximity

Walktrap Pons et al. [146] Random
Walks

Agglomerative hierarchical method
based on the idea that short random
walks tend to stay in the same com-
munity.

Infomap Rosvall et al. [152] Random
Walks

Uses the probability flow of random
walks on a network to generate regu-
larity maps of the structure

Label Propa-
gation

Raghavan et al.
[147].

Iterative
Method

All the vertices are iteratively labeled
with the dominant label of its neigh-
bourhood

Reichardt-
Bornholdt

Reichardt and Born-
holdt [149]

Statistical
Model

Mapping the graph onto a zero-
temperature q-Potts model with
nearest-neighbour interactions

Table 2.1: Summary of Partitional methods for CDP.

One of the most popular non-fuzzy overlapping technique is the Clique Percolation Method
(CPM). This method tries to find communities using k-cliques (this concept was described in
section 2.1.1) [138]. As shown in Algorithm 2, this method starts computing all the cliques of
size k into the graph. Then a clique graph is created where all the cliques are represented as
nodes, and if two cliques share k− 1 nodes is represented as an edge between them. Finally, the
outcome of the algorithm will be the connected components of this clique graph which represent
the found communities.

Figure 2.10 shows the corresponding clique graph generated by the CPM algorithm for the
graph shown in the subsection (a) of this figure. In the example the cliques of sizes equal to
3 (k = 3) have been computed to create the clique graph. As described in Algorithm 2, the
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Algorithm 2: Clique Percolation Method

Input: A graph G = (V,E) where V is a set of vertices denoted by {v1, . . . , vn} and E is
a set of edges E denoted by eij representing whether there is a connection
between the vertices vi and vj . And a positive number k representing the clique
size.

Output: Overlapping Communities extracted from connected components of
cliqueGraph (CG)

1 Cliques← calculateCliquesSize(G, k)
2 V C ← ∅
3 EC ← ∅
4 for i← 1 to |Cliques| do
5 for j ← 1 to |Cliques| do
6 V C ← V C + vCliquei
7 V C ← V C + vCliquej
8 nShareNodes = calculateShareNodes(cliquei, cliquej)
9 if nShareNodes > k − 1 ∧ i 6= j then

10 EC ← EC + eCliqueij

11 return ConnectedComponents(CG) where CG = (V C,EC)

connected components of the clique graph are returned as communities. In this example, the
CPM resulting communities will be: {1, 2, 3}{8, 9, 10}{3, 4, 5, 6, 7, 8}. It can be noticed that
nodes 3 and 8 belong to two communities, so these communities are overlapping.

(a) Original Graph (b) Clique Graph

Figure 2.10: Example of Clique Graph (b) created by CPM algorithm using the cliques (k = 3)
obtained from a graph (a). This example has been taken from [184].

The complexity of CPM procedure can be very high, and the computational time needed
to find all k-cliques of a graph is an exponentially growing function related to the graph size.
Therefore, Kumpula et al. [107] have developed a fast implementation of the CPM, named
the Sequential Clique Percolation algorithm (SCP). It works detecting k-clique communities by
sequentially inserting the edges of the graph at study, one by one, starting from an initial empty
graph.

The Cluster-Overlapping Newman Girvan Algorithm (CONGA) [85] extends EBC divisive
algorithm allowing to a node be a member of multiple communities. In EBC the basic op-
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eration is removing an edge, and this extended version introduces a second operation to split
vertices. To provide a way to decide when a node should be split, a new concept named split
betweenness is introduced. In this work, the split betweenness of a vertex v is defined as the
number of shortest paths that would pass between the two parts of v if it were split. The EBC
algorithm is extend so in each step is considered the split betweenness of every vertex as well
as the edge betweenness. And, if the maximum split betweenness is greater than the maximum
edge betweenness, the corresponding vertex is split. However, this algorithm inherits the high
computational complexity of EBC algorithm.

For this reason, a new version named CONGA Optimized Algorithm (CONGO) [86] was
implemented using a local betweenness measure to optimize the computational time. The edge
betweenness is expensive to compute because it counts all shortest paths in the graph. One way
to avoid this is to count only maximum number of the shortest paths. Therefore, for CONGO
algorithm, is used the local edge betweenness that is defined as the number of shortest paths
running along the edge whose length is less than or equal to h (a parameter of the algorithm).

A model-based approach was proposed by Yang et al. [181] that considers an underlying
model of statistical nature to generate the division of the network. The Cluster Affilitation Model
for Big Networks algorithm (BIGCLAM ) was designed for networks where the overlaps of
communities are more densely connected than the non-overlapping parts. This algorithm is based
on the notion that nodes in the same community are more likely to share an edge. It captures
the probability that a pair of nodes are connected as a function of that shared membership,
and formulates community detection as a variant of Non-negative Matrix Factorization (NMF),
which aims to learn factors that can recover the adjacency matrix of a given network.

Subsequently, Communities through Directed Affiliations algorithm (CoDA) appears as an
extension of the previous algorithm incorporating the use of edges to discover communities
[183]. This improvement allows CoDA algorithm to hanlde networks with millions of nodes. In
addition, its nature allows to detect communities in directed as well as undirected networks.
It extends the traditional definitions of network communities including the concept of dense
interlinked nodes in two different ways: in cohesive communities (a node can sends and receives
links from other members) or 2-mode communities (modelled with unidirectional memberships
where some members mostly send/create links while others mostly receive from them). Other
model-based approach was proposed by Yang et al [181] that considers an underlying model of
statistical nature that can generate the division of the network.

Other approach to discover community structure in a graph is based on the idea of parti-
tioning links instead of nodes. Recent studies suggested that defining clusters as sets of edges
can be a promising strategy to analyse graphs with overlapping communities [64]. Ahn et al. [8]
proposed to group edges with an agglomerative hierarchical clustering technique, called hierar-
chical link clustering. They use a similarity measure for a pair of (adjacent) edges that expresses
the size of the overlap between the neighbourhoods. Groups of edges are merged pairwise in
descending order of similarity, until all the edges are together in the same cluster. In Kim and
Jeong [105] work, the Infomap algorithm is extended to the line graph, which encodes the path of
the random walk on the line network under the Minimum Description Length (MDL) principle.

Finally, Table 2.2 presents a summary of the main overlapping methods for CD that were
previously introduced, providing a brief description of them.
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Name Author Type Description

CPM Palla et al. [138] Clique Discovery Find communities using k-cliques
where k is an input parameter

CONGA Gregory [85] Divisive Extended version of EBC with second
operation to split vertices based on a
new concept (split betweenness)

CONGO Gregory [86] Divisive Extended version of CONGA using a
local betweenness that is defined as the
number of shortest paths running along
the edge

MakeFuzzy Gregory [87] Modularity Op-
timization

Based on a belonging probability factor
per node

BIGCLAM Yang et al. [181] Model Based Formulate the CDP as a variant of
NMF using a probability that a pair
of nodes are connected as a function of
that shared membership

CoDA Yang et al. [183] Model Based Extension of BIGCLAM that incorpo-
rates the use of edges to discover com-
munities

Evans-
Lambiotte

Evans and Lam-
biotte [64]

Edge Divisive Defining clusters as sets of edges in-
stead nodes

Hierarchical
link clustering

Ahn et al. [8] Edge Divisive Use a similarity measure for a pair of
(adjacent) edges that expresses the size
of the overlap between the neighbour-
hoods

Kim-Jeong Kim and Jeong
[105]

Random Walks Infomap algorithm is extended to en-
code the path of the random walk on
the line network under the MDL prin-
ciple

Zhang Zhang et al. [186] Fuzzy clustering
and Quality Op-
timization

Combining spectral mapping, fuzzy c-
means clustering and the optimization
of a quality function

Table 2.2: Summary of Overlapping methods for CDP.

2.2.4 Evolutionary Approaches

This section provides a briefly introduction to the different types of algorithms existing in the
Evolutionary Computation area have been introduced, and how these algorithms have been
applied to the CDP.
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2.2.4.1 Introduction on Evolutionary Algorithms

Evolutionary Computation (EC) algorithms are a population-based algorithms that search
through the space of possible solutions using the Darwin’s evolution theory based on the natural
selection and the survival of the fittest.

All EC algorithms share three main characteristics [14, 60]: (1) they use a population of
individuals that represent solutions, (2) individuals are modified using at least one genetic
operator, and (3) individuals are under a selective pressure, where the fittest ones can pass
their characteristics to the next generation. From an AI point of view, EC is a set of stochastic
search algorithms.

As previously mentioned, each individual represents a possible solution to the problem,
and its characteristics are encoded into different genes that compose the genotype. Therefore,
the genotype describes the genetic composition of an individual and the genes represent the
smallest, and inheritable, units of information. Also, individuals contain a phenotype, that is
the representation of the genotype in the solution space.

In EC the fittest individuals are determined by the fitness function that provides the quality
of a given individual of the population. The fitness value of any individual will determine its
reproduction probability, i.e. individuals with better fitness will have more probabilities to
reproduce offspring for the next generation and thus transmit its genes.

The general process of any EC algorithm has been shown in Algorithm 3. The algorithm
is composed by a population (Pt) that contains n randomly initialized individuals. Once the
population has been initialized, the evolution process starts. Initially, every individual in the
population is evaluated (line 4) using the fitness function. Then, one, or more, parents will be
selected (line 7) from the population where usually individuals with ”better” fitness will have
more probabilities for being selected. Once the parents have been selected, the new offspring
are generated by the reproduction process (line 8). Finally, when the new population is fully
generated, the process starts again evaluating the new population.

Algorithm 3: Generic Evolutionary Algorithm

1 t← 0
2 Pt ← n initialized individuals
3 while termination criteria is not satisfied do
4 EvaluateFitness(Ii) ∀Ii ∈ Pt

5 P ∗ ← new empty population
6 while P ∗ is not full do
7 parents ← selectParent(Pt)
8 offspring ← reproductionProcess(parents)
9 includeOffspring(P ∗,offspring)

10 end
11 t← t+ 1
12 Pt ← P ∗

13 end

This process is repeated until a convergence criteria is satisfied, or a budget of computa-
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tional resources (time, iterations, etc) is exhausted. The complexity of the algorithm depends
on the encoding, and the operators that are used to perform the complete evolutive process
[44, 165]. The most common genetic operators int the reproduction process are the mutation
and crossover. The first one introduces random changes in the individuals, while the second
ones imitates the reproduction process, joining the genetic material of two individuals to gen-
erate a new offspring. The operators of the genetic algorithms can also be modified depending
on the application domain. Some examples of these modifications can be found in Poli and
Langdon approach [144] where the algorithm is improved through backward-chaining, creating
and evaluating individuals recursively reducing the computation time.

When a EC algorithm is applied to any problem, there are three issues that must be taken
into account:

1. Genotype encoding. The encoding of the genotype influences the selection and repro-
duction processes. Also, the encoding influences in the performance of the algorithm.

2. Selection operator. This operator is used in order to select those individuals that will
produce the offspring for the next generation. The most commonly used selection operators
are: random, proportional, and tournament selection. The first one is the simplest selection
operator where all the individuals have the same probability to be selected. In the second
operator, better individuals have more probabilities to be selected. A popular sampling
method, that uses the proportional operator, is called roulette wheel sampling. Assuming
that the fitness values are normalized and the goal is to maximize the fitness function,
The probability distribution can be seen as a roulette wheel, where the size of each slice is
proportional to the normalized selection probability computed. Finally, in the tournament
selection operator, individuals are randomly selected from the population. Then the fitness
values for the chosen individuals are compared and the individual with the best fitness is
selected.

3. Reproduction process. The reproduction process is the responsible of generating the
new offspring once the parents have been selected. This process is composed by two
operators, crossover and mutation. The crossover operator generates a new offspring by
combining the genetic material of two, or more, parents which have been selected using
one of the methods described in the selection operator. There are different crossover
techniques in the literature, but the simplest crossover operators are called One-Point and
Two-Points crossover [63, 90] (see Figure 2.11). Finally, the mutation operator is the
process of randomly changing the values of the genes in a chromosome. The main goal
of this operator is to increase the genetic diversity. If the genes contains binary data,
the application of this operator consists in selecting the genes randomly, and according
to a mutation probability, the corresponding bit values are negated. In the case that
the genotype contains more complex genes, the mutation operator consists in including a
variation to the value of these genes.

Depending on how individuals are represented and how they are modified, several types of
algorithms can be found. The four fundamental families of this kind of algorithms are listed
below:

• Genetic Algorithms (GAs): These algorithms are based on a linear vector representation
(usually binary or integer) in the genotype [82, 90], and they are commonly used as function
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parent1 parent2

child1 child2
(a) One-Point Crossover

parent1 parent2

child1 child2
(b) Two-Points Crossover

Figure 2.11: Graphical representation of one-point, and two-points crossover for a GA.

optimization methods. The individual selection is carried out according to their fitness
function values, where the better individuals will be selected with a greater probability.
On the other hand, the mutation probability is usually low, so the solution diversity on the
search in these algorithms are based on the recombination of the individuals to generate
new solutions. This is the most distinctive feature of this type of algorithms.

• Genetic Programming (GP): Its main feature is that the individuals of the population
are programs represented by trees [106, 145]. In this case, the initialization mechanisms
and variation operators have to deal with the problem of generating non-valid individuals.
The crossover operator exchanges random sub-trees of two parents, while the mutation
operator introduces a new sub-tree into a random node of the tree. Finally, the evaluation
of individuals is as simple as executing the program that represents each one, and analysing
it result to determine how it works.

• Evolutionary Programming (EP): where the structure that is evolved is based on a
finite automata [70, 71]. The distinctive feature of these algorithms is the emphasis that
make on the relationship between the parents and their offspring, rather than the genetic
relationship which is taken into account in GAs. Each individual of the population is a
progenitor, generating λ offspring from it using only the mutation operator. In this family
of EC algorithms the crossover operator is not used.

• Evolutionary Strategies (ES): They are focused on the numeral optimization in the
space of real numbers which are normally used in the optimization of problems with con-
tinuous parameters [24, 158]. Generally, the mutation applied to individuals in this algo-
rithm is a random change following a normal distribution N(µ, σ). On the other hand,
the crossover usually consists on the random selection of an element, from different indi-
viduals, swapping its values. The selection of these individuals is deterministic according
to the order that each individual occupies in the ranking of their fitness function values,
and it is not biased by these values. Regarding to the encoding of individuals, a vector
of real numbers is usually used where the parameters µ and σ defined for the mutation
are included. This lets their co-evolution at the same time as the individuals, giving rise
to a new methodology that has been termed self-adaptation. The self-adaptation is the
most important contribution of the ES to the field of evolutionary computation, and this
improvement has also later use in other evolutionary algorithm families.

All the techniques previously mentioned about EC come from the premise that only has one
objective to be optimized as fitness function. However, many of the real-world problems are
multi-objective problems, where the quality of a given solution is defined by its performance
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according to several different objectives. A possible approach to deal these problems is to assign
a numerical weight for each objective according to it importance to measure the quality of the
solution. Finally, all these different objectives are grouped into a single value by a weighted
sum, known as scalarization [42].

Other option is to consider jointly all the objectives and establish a single quality value
among them. For this purpose is necessary to define the concept of dominant solution. One
solution is dominant with respect to another solution, if it improves the other solution for all
objectives. On the contrary, a solution is called non-dominated, or Pareto optimal, with respect
to a set of objectives, if there exists no other solution in the decision space, that improves simul-
taneously all its objectives. All Pareto optimal solutions are considered equally good, because
them simultaneously optimize each objective. Therefore, there are several multi-objective evo-
lutionary algorithms based on the finding of the representative set of Pareto optimal solutions,
such as NSGA-II [53] or the SPEA-2 [188].

2.2.4.2 Applications of GAs to Graph Clustering

GAs [90] have been traditionally used in a large number of different domains such as Data
Mining [18, 125], Mission Planning [148], Malware detection a classification [121] or optimization
problems [26, 39, 51, 65, 75, 155], amongst others. GAs have been demonstrated to be robust
algorithms able to find satisfactory solutions in highly multidimensional problems with complex
relationships between the variables. In this kind of problems, GAs are able to find a optimal
solutions in a large search space evaluating a minimum number of points.

The evolutionary approaches for clustering try to improve the results using different fitness
functions to tune up the cluster sets selection. In these approaches, the encoding and optimiza-
tion algorithm are used to look for the best set of groups optimizing a particular feature of the
data. Hruschka et al. [93] provide a complete review on evolutionary algorithms for clustering.
There are several methods based on evolutionary approaches from different perspectives, for
example: modifing the fitness considering cluster asymmetry, coverage and specific information
of the studied case [7]; using a compact spherical cluster structure and a heuristic strategy to
find the optimal number of clusters [168]; using the clustering algorithm for metric optimization
trying to improve the cluster centre positions [122]; applyng an Extend Classifier Systems that
is a kind of Learning Classifier System to guide the search, in which a fitness of the classifier is
determined by the measure of its prediction’s accuracy [164]; using Differential Evolution that
optimizes a problem by iteratively trying to improve a candidate solution with regard to a given
measure of quality [51].

In particular to solve graph clustering problems, GAs have been used to look for the best
partition of the graph in groups of nodes (clusters) optimizing a particular feature of the graph
structure. Several graph clustering algorithms such as K-means or Fuzzy C-means [22, 116, 123,
127] have been improved using GAs techniques.

Regarding the optimization criteria used to detect the clusters (group of nodes), there are
serveral approaches in the literature. Many evolutionary graph clustering algorithms use a single
optimization criteria as the objective function, being the modularity one of the most common
criteria used [161]. However, there are also works where the community detection is solved as
a multi-objective optimization problem. In Gong et al. [83] a multi-objective evolutionary al-
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gorithm based on graph decomposition is proposed maximizing the density of internal degrees,
and minimizing the density of external degrees simultaneously. The multi-objective genetic al-
gorithm for networks (MOGA-Net) [143] optimizes two objective functions to identify densely
connected groups of nodes having sparse inter-connections. The first objective function uses the
concept of community score [109] to measure the quality of the network division into commu-
nities, whereas the second defines the concept of node fitness [141] measuring the membership
of a node to a module. Then the algorithm iteratively finds modules having the highest sum of
node fitness. Finally, Liu et al. [118] design three objective functions to guide a multi-objective
evolutionary algorithm measuring quality, separation and overlapping communities respectively.

Other different approach was proposed by Pizzuti [142], where a GA is used to detect over-
lapping communities using a line graph as input the algorithm (GA-Net+). In the line graph,
nodes represent the edges of the original node graph, while edges represent the adjacent rela-
tionships of original edges. So, this method requires that for each iteration, the communities
in the line graph are converted into communities of the original graph. This transformation
between line graph and node graph has a highly computationally cost, so this fact decreases the
effectiveness of this method.

All these algorithms are based on the idea of node clustering. However, as mentioned in the
description of overlapping methods, recently studies have suggested that partitioning the graph
into clusters of edges is a good strategy to identify overlapping communities. For this purpose,
Shi et. al. [163] proposed a GA for edge clustering of graphs (GaoCD) by optimizing the Density
as objective function. The most significant contribution of this work is a new encoding schema
based on the edges, where the number of communities can be automatically determined. The
experimental results of this work show that GaoCD algorithm can effectively identify overlapping
communities, and moreover it can be able to detect larger communities which is more useful for
real world networks. This is due to real world networks are usually very sparse, and the cliques
contained in them are often small, so the CD algorithms tend to find small communities.

Finally, as in the previous sections, Table 2.2 shows a summary of the main approaches based
on GAs for CD that have been presented in this section. This table provides a brief description
for each one.

2.3 Applications

The Web is one of the most important sources of data in the world producing every day vast
amounts of public information. The exponentially increasing of websites and online web services
in the last years has allowed new interdisciplinary challenges for several fields and computer
science, such as Marketing Campaigns [17, 23, 38], Financial Prediction [13] or Public Healthcare
[37, 45, 97], amongst others.

The next subsections introduce two application examples of data extracted from the Web
and SN to acquire new knowledge by applying data mining techniques. Both examples will be
later used as application domains to test the new algorithms proposed in this thesis.
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Name Author Type Description

Shang Shang et al. [161] GA Modularity as single optimization criteria

Gong Gong et al. [83] MOGA Maximizing the density of internal degrees,
and minimizing the density of external degrees
simultaneously

GA-Net+ Pizzuti [142] GA Using a line graph in the GA to detect com-
munities instead of the original graph

MOGA-Net Pizzuti [143] MOGA Using as objective functions a score to measure
the quality of the network division into com-
munities, and a measure of the membership of
a node to a module

Liu Liu et al. [118] MOGA Three objective functions measuring quality,
separation and overlapping communities re-
spectively

GaoCD Shi et. al. [163] GA With edge-based encoding, and optimizing the
density as objective function

Table 2.3: Summary of Evolutionary approaches for CDP.

2.3.1 Eurovision Song Contest

The Eurovision Song Contest can be understood as a complex system [29], where interactions
between countries are heavily influenced by factors like geography, shared history, culture and
migration patterns. Voting patterns for each country seem to be dictated, not by the artistic
value of the song, but by a latent affinity between countries. These voting patterns revalue
the contest as more than a search for current trends in music, because it provides an active
forum, where countries are free to give opinions about the rest of the participants without fear
of economic or political backlash [66, 140].

2.3.1.1 Historical Background

The Eurovision song contest is an annual competition among members of the European Broad-
casting Union [59], running continuously ever since it’s inauguration in 1956. In this contest,
each country submits a song and a performer to compete. All songs are then performed live,
in a transmission available to all participating countries. Once all songs have been performed,
votes are casted and a winner is selected.

The contest has undergone a series of changes throughout the years, in an effort to keep it
fresh and maximize viewer attention. From 1956 to 1996, votes where cast by a jury of rep-
resentatives sent from each of participating countries. Jurors then cast all of ten individual
point-votes ranging from 1-8, 10 and 12 points with no repetitions. In 1997 televoting was intro-
duced in five countries, to gradually displace the jury-based system until 2004 when televoting
was made mandatory for all participants.
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Televote technology allows viewers to cast their votes via phone, sms or the internet for a set
window of time, normally within the live broadcast. After the voting window closes, all votes
are tallied, and points are given in decreasing order: the participant with most votes receives 12
points, the next highest receives 10, and so on.

In 2004 a semi-finals round was introduced to offset the increasing number of participants
in the contest. In order to participate in the Eurovision contest, participants must clear this
preliminary round, thereby limiting the number of participants to a manageable size. That
year’s host-country and the so-called ”Big Four” are exempt from this filter. The ”Big Four”
being the four highest contest contributors: France, Germany, Spain and the United Kingdom.
However, all countries, finalists or not, are allowed to vote in the final round, which inflates the
number of countries that vote and overall score of the winners each year. Critics contested that
because of migration patterns, televoting had a tendency to favour certain countries, 2009 saw
the implementation of the current voting system. A hybrid system of televoting and a jury was
implemented, whereby each part contributes half of the total vote tally for each country.

2.3.1.2 Studies on the Eurovision Contest

The Eurovision contest has been analyzed by applying different data mining techniques such
as clustering methods [179, 180], regression analysis [79], dynamical networks [66], or analytical
identification of statistically significant tends [77]. However, all the previous research works were
focused on grouping the participant countries into blocks of similar behaviour, acquiring new
social knowledge about European Union.

One of the earliest analyses was carried out by Yair [179, 180], which presents an analysis
based on the annual voting matrix of the contest, using network analysis to identify the generic
structure of the relationships between the participant countries. The study contemplated two
perspectives, firstly looking for existing clusters or cliques into the network. And secondly,
detecting those members who have an equivalent role within the network, and therefore a similar
voting pattern. The results related to the clustering detection revealed that the Eurovision
community was split into three main blocs (see Table 2.4): The Mediterranean Bloc, the North
Bloc and the Western Bloc. In this model, the western bloc consistently amassed the highest
number of votes, and was the largest of the three. Briefly, the Western block can be seen as a
coalition based on historical and political interests. The North Block have common languages
(German roots), and primarily cultural similarities. And finally, the Mediterranean block is the
most unstable alliance based on their similar cultures. In contrast to the blocks found with the
first method, the second analysis obtained a greater dispersion identifying blocks much more
varied. These groups mostly have similarities in language and cultural roots. However, it is very
interesting that again the Western block has the most important role.
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Block Name Belonging Countries

Mediterranean Italy, Greece, Spain, Yugoslavia, Turkey and Monaco

North Germany, Sweden, Norway, Denmark and Belgium

Western England, Ireland, France, Netherlands, Switzerland, Malta,
Luxembourg and Israel

Table 2.4: Blocks of participant countries in Eurovision detected by Yair work [180].

In a first work carried out by Derek Gatherer [76], it was analysed the period from 1975
to 2002 using statistical techniques, and two large blocks were identified : The Viking Empire
(Scandinavian and Baltic countries) and The Warsaw Pact (Russia, Romania and the old re-
public of Yugoslavia). In a further paper, this author presented a non-analytical approach to
the problem, simulating each year according to a Monte Carlo method. This allows the empir-
ical estimation of an statistical threshold to compare the real data against the simulated data.
When a country votes above the threshold to another country (reciprocally) is identified as a
vote pattern. The results showed that the two large blocks detected in his previous work were
growing, being more influential from 2001. In 2003 and 2005 the vote of the ”Balkan Block”
was able to make a member belonging to it win, as happened in 1999 and 2002 with the ”Viking
Empire” block. Moreover, these results demonstrate the emergence of strong voting patterns. If
only the contest result depended on the quality of the songs, comparing with a enough number
of years the distribution of votes should be random. But, this fact didn’t happened in this study.

On the other hand, Fenn et al. [66] used dynamic network analysis to study voting partner-
ships, observing that these may not be static, but are instead susceptible to change over time.
This paper performed a network analysis on two levels: an initial study of the global properties
of the network; and later an analysis focused on local properties of specific parts (nodes and
edges). In the global analysis, the clustering coefficient for each year were calculated and com-
pared against the clustering coefficient values obtained from a random network. The clustering
coefficient value was always greater than the value obtained from a random graph, therefore this
demonstrated the existence of voting patterns. Then, the countries were grouped according to a
similarly behaviour using clustering techniques, and to measure the distance between countries,
it was used the average of votes cast by those countries (see Figure 2.12). Finally, analysing from
a local perspective the links between the nodes belonging to each cluster, UK had the greater
number of reciprocal and stable links, contradicting the popular notion that UK is often not
consistent with the European Union. On the opposite side, countries such as France or Spain
had the smallest number of stable links.

Finally, Ginsburgh and Noury [79] analysed data from 1975 to 2003 using a regression equa-
tion to compare the votings of a given year with the previous two years. This equation contained
variables on linguistic and cultural distances between countries. The authors found voting pat-
terns that disappeared by applying a correction of linguistic and cultural distances. This fact
confirmed that countries were voting according to pre-established cultural trends rather than
based on the alliance formation (for example, the vote of immigrants).
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Figure 2.12: Dendrogram showing the voting clusters within Eurovision graph taken from [66].

2.3.2 Public Healthcare

The research on AI techniques, applied to develop technologies allowing the monitoring of web
data sources for detecting public health events, has been emerged as a new relevant discipline
called Epidemic Intelligence (EI) [46, 88, 97, 139].

EI can be defined as the early identification, assessment, and verification of potential public
health risks [139], and the timely dissemination of the appropriate alerts. This discipline in-
cludes surveillance techniques such as automated and continuous analysis of unstructured free
text information available on Web from social networks, blogs, digital news media or official
sources. Surveillance systems are nowadays widely used by public health organizations such as
World Health Organization (WHO) or the European Centre for Disease Prevention and Control
(ECDC) [88]. Tracking and monitoring mechanisms for early detection are critical in reducing
the impact of epidemics giving a rapid response. For instance, several of these systems are able
to discover early events of the disease breakout during the A(H1N1) influenza pandemic in 2009
[46].

Traditional epidemic surveillance systems are implemented using virology and clinical data,
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which is manually collected, and these traditional systems often have a delay reporting the
emerging diseases. But in situations like epidemic outbreaks, real-time feedback and a rapid
response is critical. Social Web media is a profitable medium to extract the society opinion in real
time. Blogs, micro-blogs (Twitter), and social networks (Facebook), enable people to publish
their personal opinions in real time, including geo-information about their current locations.
These big data, including situation and context aware information about the users, provide an
useful source for public healthcare. However, the extraction of information from the web is a
difficult task due to its unstructured definition, high heterogeneity, and dynamically changing
nature. Because of this diversity in the data format, several computational methods are required
for its processing and analysing (Data Mining, Natural Language Processes (NLP), knowledge
extraction, context awareness, etc...) [97].

This section presents a survey on current data mining applications, and web systems, based
on web data for public healthcare over the last years. It tries to take special attention to machine
learning and data mining techniques, and how they have been applied to these web data sources,
to extract collective knowledge from social networks as Twitter.

2.3.2.1 Epidemic Intelligence Systems

Nowadays, large amounts of emergency and health data are increasingly coming from a large
range of web and social media sources. This information can be very useful for disease surveil-
lance and early outbreak detection, and several public surveillance projects in this field have
emerged over the recent years.

One of the earliest surveillance systems is the Global Public Health Intelligence Network
(GPHIN) [126] developed by Public Health Agency of Canada in collaboration with WHO. It is
a secure web-based multilingual warning tool, which is continuously monitoring and analysing
global media data sources, to identify information about disease outbreaks and other events
related to public healthcare. The information is filtered for relevancy by an automated process,
and categorized based on a specific taxonomy of categories. From 2002 to 2003 years, this
surveillance system was able to detect the outbreak of Severe Acute Respiratory Syndrome
(SARS).

Since 2006, BioCaster [46] is an operational ontology-based system for monitoring online
media data. This system is based on text mining techniques for detecting and tracking the
infectious disease outbreaks through the search of linguistic signals. The system continuously
analyses documents reported from over 1700 RSS feeds, Google News, WHO, ProMED-mail, and
the European Media Monitor, among others providers. The extracted text are classified by their
relevance, and plots them onto a Google map using geo-information. The system consists on four
main stages: topic classification, named-entity recognition (NER), disease/location detection,
and event recognition. In the first stage, the texts are classified into relevant or non-relevant
categories, which are later used to train a naive Bayes classifier.

HealthMap project [35] is a global disease alert map that uses data from different sources
such as Google News, expert-curated discussion such as ProMED-mail, and official organization
reports such as World Health Organization (WHO) or Euro Surveillance. This is an automated
real-time system that monitors, organizes, integrates, filters, visualizes, and disseminates online
information related to emerging diseases.
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Other system that collects news from the Web, related to human and animal health, is
EpiSpider [103], plotting the data on a Google Maps mashupare. This tool automatically extracts
infectious disease outbreak information from several sources, including ProMed-mail and medical
web sites, and it is used as a surveillance system by public healthcare organizations, several
universities, and health research organizations. In addition, this system automatically converts
these topics and location information of the reports into RSS feeds.

MedISys system [117] is also used by a Public Health Organization (The European Centre
of Disease Prevention and Control), monitoring human and animal infectious diseases, as well
as chemical, biological, radiological and nuclear (CBRN) threats in open-source media. This
system automatically collects articles concerning public health in various languages from news,
which are classified according to pre-defined categories.Users can display world maps in which
event locations are highlighted as well as statistics on the reporting about diseases, countries
and combinations of them.

Google search data is used by Google Flu Trends [36] to estimate flu activity during two
weeks giving an early detection of disease activity, as shown in Figure 2.13. This web service
correlates search term frequency with influenza statistics reported by the Centers for Disease
Control and Prevention (CDC). It allows a quicker response in a potential pandemic of influenza,
thus reducing its impact. Internet users perform search queries [78], and post entries in blogs
using terms related to influenza illness as its diagnosis and symptoms. An increase, or decrease,
in the number of illness searches and posts in blogs, reflects a higher or lower potential outbreak
focus for influenza illness.

Figure 2.13: Google Flu Trends showing flu activity during two weeks. This screenshot has been
taken from the Google Flu Trends Web (http://www.google.org/flutrends/).

Finally all previous mentioned systems, with their main characteristics, have been listed in
Table 2.5.
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Name Website Data Sources Description

GPHIN - News wires and Web
Sites

Warning tool to detect dis-
ease outbreaks

BioCaster http://born.nii.ac.jp RSS feeds, Google News,
WHO, ProMED-mail
and European Media
Monitor

Ontology-based system for
monitoring online media
data

HealthMap http://www.healthmap.org Google News, ProMED-
mail, WHO and Euro
Surveillance

Global disease alert map

EpiSpider http://www.epispider.org/ ProMed-mail and medi-
cal web sites

Human and animal disease
alert map

MedISys http://medusa.jrc.it/
medisys/homeedition/
en/home.html

Articles concerning pub-
lic health from news

Monitoring tool for human
and animal infectious dis-
eases and chemical, biolog-
ical, radiological and nu-
clear threats

Google
Flu
Trends

http://www.google.org/
flutrends/

Google search and CDC
reports

Monitoring system of in-
fluenza

Table 2.5: Summary of Epidemic Intelligence Systems.

2.3.2.2 Disease outbreaks Detection

Text mining techniques have been widely applied to biomedical text corpus for NER, text
classification, terminology extraction, or relationship extraction [43]. These methods are human
language processing algorithms that allow to convert unstructured textual data, from large-scale
collections into a specific format, filtering them according to the needs of the application domain.

The text analysis methods can be used for trend detection, identifying potential sources of
disease outbreaks. But this goal can be difficult because the same word can refer to a different
thing depending upon context. Furthermore, a specific disease can have multiple names and
symptoms associated, which increases the complexity of the problem. Ontologies can help to
automate human understanding of key concepts and relations between them and allow that a
better level of filtering accuracy can be achieved. Biomedical ontologies contain lists of terms
and their human definitions, which are then given as unique identifiers and classified into classes
with common properties according to the specific domain treated. Currently there are various
available ontologies that contain all the biomedical terms necessary. For example, BioCaster
ontology (BCO) [47] is in the OWL Semantic Web language to support automated reasoning
across terms in 12 languages.

Discovering the time and location of the text is a crucial value added by EI systems to be able
to detect disease outbreaks as quickly as possible, and thus to take the best decisions in order
to control them. In practice, location names are often highly ambiguous because geo-temporal
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disambiguation is so difficult, and because of the variety of ways in which cases are described
across different texts. Keller et al. [104] work provides a review of the issues for epidemic
surveillance, and present a new method for tackling the identification of a disease outbreak
location based on neural networks, which are trained on surface feature patterns in a window
around geo-entity expressions.

A new unsupervised machine learning approach is proposed by Fisichella et al. [69] to detect
public health events. This new approach defines a generative model for predictive event detection
from a document by modelling the features based on trajectory distributions. The novelty of this
work is that allows to identify public health events even if cannot be found matching keywords
or linguistic patterns.

A different solution for outbreak detection is shown in Leskovec et al. paper [115], where
the problem is modelled as a network, in order to detect the spreading of the virus or disease
as quickly as possible. They present a new methodology for selecting nodes to detect outbreaks
of dynamic processes spreading over a graph. This work shows that many objective functions
for detecting outbreaks in networks, such as detection time, likelihood, and population affected,
are sub-modular. This means that, for instance, reading only a few blogs provides more new
information than reading it after we have read many ones. They use this characteristic to
develop an efficient approximation algorithm (CELF) that achieves near-optimal solutions and
it is 700 times faster than a simple greedy algorithm.

The increasing popularity and use of micro-blogging services, such as Twitter, provides a
new valuable data source for web-based surveillance due to its message volume and frequency.
Twitter users may post messages related to illness, and in addition their relationships in the
network can give information about which people could be in contact with. Furthermore, user
posts retrieved from the public Twitter API can come with GPS-based location tags, which can
be used to detect potential disease outbreaks for a health surveillance system. Recently, several
works have already appeared shown the potential of Twitter messages to track and predict
disease outbreaks.

Ritterman et al. [151] work is focused on using prediction market to model public belief about
the possibility that H1N1 virus will become a pandemic. In order to forecast the future prices
of the prediction market, they decided to use the Support Vector Machine (SVM) algorithm to
carry out regression. A document classifier to identify relevant messages is presented in Culotta
et al. paper [48]. In this work, Twitter messages related to flu were recollected during 10
weeks using keywords such as flu, cough, sore throat or headache. Then, several classification
systems, based on different regression models to correlate these messages with CDC statistics,
were compared finding that the best model achieves a correlation value of 0.78 (simple model
regression).

Aramaki et al. [11] presents a comparative study of several machine-learning methods to
classify tweets related to influenza into two categories: positive or negative. Their experimental
results show that SVM model using a polynomial kernel achieves the highest accuracy (FMeasure
of 0.756) and the lowest training time.

A novel real-time surveillance system to detect cancer and flu is described in paper [114]. The
proposed system continuously extracts text related the two specific diseases from twitter using
Twitter streaming API and applies spatial, temporal, and text mining to discover disease-related
activities. The output of the three models is summarized as pie charts, time-series graphs, and
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US disease activity maps on the project website (http://pulse.eecs.northwestern.edu/ kml649/flu/)
as can be seen in Figure 2.14. This system can be useful not only for early prediction of disease
outbreaks, but also for monitoring distribution of different cancer types and the effectiveness of
the treatments used.

Figure 2.14: A novel real-time surveillance system to detect cancer and flu from Twitter messages.
The screenshot has been taken from the Project Web Site.

Severak well-known regression models are evaluated on their ability to assess disease out-
breaks from tweets in Bodnar et al. [30]. Regression methods such as Linear, Multivariable
an SVM, are applied to the raw count of tweets that contain at least one of the keywords re-
lated to a specific disease, in this case ”flu”. The results confirmed that even using irrelevant
tweets and randomly generated datasets, regression methods were able to assess disease levels
comparatively well.

Finally, a summary for all the systems mentioned, and the machine learning techniques used,
is listed in Table 2.6. It can be noticed that most of the works use regression models, and these
works are usually focused on the detection of influenza outbreaks. These works demonstrate
that there are health evidences in social media which can be detected. However, it can appear
complications regarding the possible incorrect predictions due to the huge amount of social data
existing compared with the small amount of relevant data related to potential diseases outbreaks.
Therefore, it is necessary to test and validate carefully all the models and methods used.
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Work Name Machine Learning Techniques Description

Ritterman et al. [151] Prediction market model and SVM Predict flu outbreak detection

Culotta et al [48] Regression models Classifier to identify flu relevant
messages

Aramaki et al. [11] SVM using a polynomial kernel Classifier of influenza tweets into
positive or negatives

Lee et al. [114] Spatial, temporal, and text mining Surveillance system to detect
cancer and flu

Bodnar et al. [30] Regression models Disease outbreak detection

Table 2.6: Summary of tracking and monitoring epidemic works using Twitter data.

2.3.2.3 Analysing vaccination sentiments and attitudes

Recent outbreaks of preventable diseases such as measles, polio, and influenza show the effect
of the decrease in immunization rates. The MMR vaccine is an immunization vaccine against
measles, mumps, and rubella, generally administered to children around the age of one year,
with a second dose before starting school (4-5 years). The first 20 years of licensed measles
vaccination in the United States prevented an estimated 52 million cases of the disease. The
reported cases decreased from hundreds of thousands to tens of thousands per year since the
introduction of the vaccine in 1963 [27]. Fewer than 200 cases have been reported year on year
since 1997, and the disease is no longer considered endemic.

In the UK, the MMR vaccine was the subject of much controversy after the publication of a
paper by Andrew Wakefield et al. [170]. This work reported the results of a study of the MMR
vaccine on twelve children who had bowel symptoms along with autism or other disorders in
1998. The research was declared fraudulent in 2011 by the British Medical Journal [81]. However
the MMR-autism controversy covered by popular media caused a decline in vaccination rates.
Before this publication, the rate for MMR vaccination in the UK was 92%, decreasing after to
below 80%. In 2003, a study by Jansen et al. [95] shown that if the low level of MMR vaccine
persisted, the increasing number of unvaccinated individuals will make a measles epidemic again.
In fact, the number of new cases has heavily increased over the last years [96]. As shown in
Figure 2.15, while in 2000 there were 104 measles cases from UK, in 2013 there were 1919 cases,
with 1 confirmed death.

Public Health Wales reported at the end of 2014, 44 cases in measles outbreak detected
in that year. This outbreak has been linked to four schools in the Neath and Swansea area,
and it follows the largest ever occurred in Wales with more than 1,200 cases in the same area
between November 2012 and July 2013. In that outbreak, 88 people were hospitalised and one
adult died. Although more than 70,000 catch up doses of MMR were given across Wales during
the last outbreak, around 30,000 children and young people in the 10 to 18 age group remain
unprotected.

In April 2014, Health officials of New York City reported that at least 25 persons, including
13 children, have contracted the measles virus. The outbreak emerged in northern Manhattan
and the Bronx, and later spread downtown to the Lower East Side. Furthermore, a case of
diphtheria was recently detected in Spain on 30 May 2015. A six year old child, who had not
been immunized against the disease, was being treated with an antitoxin that proved ineffective,
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Figure 2.15: Number of measles reported cases between 2000 and 2013 from United Kingdom.

and the child died. There has not been a single case of diphtheria in Spain for the previous 28
years.

Another example of the potential effects on public health care due of distrust in vaccines is
the influenza A(H1N1) vaccine. In June 2009, the World Health Organization (WHO) declared
the influenza A(H1N1) pandemic. The influenza A(H1N1) virus was monitored around the
world for changes in virulence or epidemiology, to have vaccines ready, but vaccine supply was
insufficient in some areas [112]. The population wants to be assured that there will be enough
vaccine when an outbreak occurs, but at the same time some were questioning the safety and
effectiveness of the vaccine.

Finally, the controversy over polio vaccination happened in northern Nigeria between 2003
and 2004. It leds to a resurgence of the disease and contributed to reinfection in 20 previously
polio-free countries, reaching as far as Indonesia and still affecting Nigeria [100, 111].

The previous studies show that social groups related to vaccines can influence the opinion of
population about vaccination, decreasing the immunization rates in some cases. Furthermore,
this can bring on disease outbreaks because these outbreaks emerge when vaccination rates
decrease. Therefore, Healthcare Organizations may try to use the detection and tracking of
these groups, or communities, to avoid or mitigate new outbreaks of eradicated diseases. For
this purpose, currently, there are several works related to knowledge acquisition from web sources
focused on vaccine sentiments.

VASSA (Vaccine Attitude Surveillance using Semantic Analysis) framework [33] combines
Semantic Web and Natural Language Processing (NLP) techniques with online data for the
assessment, and analysis of vaccination attitudes and beliefs. Blog posts were sampled using the
Google.ca search engine to search terms such as “immunize”, “immunization”, “vaccine”, and
“vax”, among others. Then, using the Vaccine Sentiment Ontology (VASON) the framework
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identifies the concepts and relationships between them, which can be used to infer vaccination
attitudes and beliefs. The annotation scheme generated has been tested on a small sample of
blog posts. The authors proposed as future improvements the application of their method for
extraction and classification onto a larger sample to validate it.

In Botsis et al. [32], a multi-level text mining approach is presented for automated text clas-
sification of reports collected from the US Vaccine Adverse Event Reporting System (VAERS).
A total of 6034 VAERS reports for the H1N1 vaccine were classified by medical officers as posi-
tive or negative, generating a corpus of text files. Firstly, text mining techniques were applied to
extract three feature sets of relevant keywords. Then, several machine learning classifiers were
trained and tested. The results of this work showed that Rule-based classifies, boosted trees,
and weighted Support Vector Machines performed well in terms of macro-recall, however at the
expense of a higher misclassification error rate.

A novel modelling framework combining Social Impact Theory (SIT) characterization, with
a game-theoretical analysis to study vaccination decision making is proposed by Shang et al.
[177]. They used a social network representation of individuals to model the structure of their
relationships. Moreover, they modelled using SIT characterization the strength of social in-
fluence on changing vaccination decisions by the influence of others, and the associated costs.
The simulation results obtained suggest that individuals with high social influence increase the
vaccination coverage, if the cost of vaccination is low. However, if individuals are social fol-
lowers, the resulting vaccination rates depend on the vaccination sentiment rather than the
associated costs. Another framework is presented in Shaw et al. [162] by modelling the spread
of pathogens throughout a population to generate policies that minimize the impact of those
pathogens. This framework combines agent-based simulation, mathematical analysis and an
Evolutionary Algorithm (EA) to determine the optimal distribution of vaccine supply.

In 2010, The Vaccine Confidence Project was launched to monitor and generate online reports
about vaccines, vaccination programmes, and vaccine-preventable diseases, using data collected
from the HealthMap system [113]. These reports were manually analysed, and categorised by
concern, vaccine, disease, location, source of report, and overall positive or negative sentiment
towards vaccines. Data from 10.380 reports (from 144 countries) was analysed between May 1,
2011, and April 30, 2012 showing that 69% of the collected corpus contained positive or neutral
content, and 31% contained negative content. To further improve the system, extra efforts were
focused on automating the data gathering and classification as much as possible.

Salathe et al. [153] proposed an hybrid approach based on naive Bayes classifier, and a max-
imum entropy classifier were applied to classify tweets. These tweets were labelled as negative,
positive or neutral with respect to the user intent of getting vaccinated with the influenza H1N1
vaccine. Moreover, a study of the spread of health sentiment was performed. For this purpose,
a statistical approach was used to measure the individual temporal effects of a large number of
variables based on social network statistics. They found that negative sentiments are contagious
while positive sentiments are generally not. These results suggest that the effects of behaviour
spread on social networks are strongly content-dependent.

Finally, a summary for all the approaches mentioned, and the machine learning techniques
used, is listed in Table 2.7. It can be noticed that most of the works are focused on the
sentimental analysis of the people perceptions about vaccines, and how people can be influenced
by social opinions. However, another interesting point of view, it could be to identify and track
these groups of persons that are influencing individuals about vaccination, to prevent their
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possible effects.

Work Name Techniques Description

VASSA [33] Semantic Web and NLP Assessment and analysis of vaccination at-
titudes and beliefs using online data

Botsis et al. [32] Text mining and several classi-
fiers

Automated text classifier of reports col-
lected from a reporting system about vac-
cines (VAERS)

Shang et al. [177] Social impact theory, and
game-theoretical analysis

to Framework to simulate and study the
social influence on the vaccination decision
making

Shaw et al. [162] Agent-based simulation,
mathematical analysis and
EAs

Framework to determine the optimal dis-
tribution of vaccine supply in a population

Salathe et al. [153] Naive Bayes and a maximum
entropy classifiers

To classify tweets as negative, positive or
neutral with respect user intention about
influenza H1N1 vaccination

Table 2.7: Summary of works to analysis vaccination sentiments and attitudes.



Chapter 3

Genetic Graph-based Approaches
for Overlapping Community

Detection

‘Imagination is the discovering faculty, pre-eminently.
It is that which penetrates into the unseen worlds around us,

the worlds of Science.”

- Ada Lovelace

This chapter introduces three soft clustering methods based on a Genetic Algorithms and
Graph Theory to tackle Overlapping Community Detection Problems (OCDPs). The two first
algorithms are based on distances to guide the search for partitioning the graph, and these
algorithms are called K-fixed and K-adaptive GCF-I. In both algorithms, the fitness functions
uses distances to calculate the similarity between the graph nodes, and metrics from the graph
theory to perform the split of the graph according to them. However, in the first version of the
algorithm (K-fixed GCF-I), the number of communities to partition the graph is fixed (K), and
it is given as input parameter of the algorithm. On the other hand, in the afterwards version of
the algorithm (K-adaptive GCF-I), a new encoding has been designed to achieve the automatic
adaptation of the number of communities (K).

For GCF-I algorithm is necessary that such node has associated a set of features which allow
to measure its distance regarding to the rest of graph nodes. Many graphs do not have features
associated to their nodes, therefore the third version of the algorithm (GCF-II) tries to find
solutions optimizing only metrics based on the own network topology of the graph. For this
purpose, a new fitness function has been implemented combining several metrics extracted from
Graph Theory. Finally, all these new algorithms have been experimentally evaluated using the
Eurovision Contest dataset, that can be considered as a well-known SN.

3.1 Genetic-based Community Finding Algorithm based on distances (GCF-
I)

The Genetic-based Community Finding (GCF-I) Algorithm uses a genetic algorithm to detect
the best K communities in a graph, where any particular node can belong to different commu-
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nities or clusters. In this initial approach, a simple version of the algorithm has been developed
with a binary encoding using a fixed value for K, which is called K-fixed GCF-I or simply K-
fixed algorithm. Later, a more complex encoding has been designed to include the value of K
in the evolutionary process. This new approach is called K-adaptive GCF-I, and it has been
compared against the K-fixed version in order to evaluate which of them achieve better overall
results. This section describes both versions of the algorithm including the encoding, the genetic
operators, and the fitness functions designed.

3.1.1 K-fixed GCF Algorithm (K-fixed GCF-I)

The initial version of the algorithm is based on a standard genetic algorithm, with a binary en-
coding used to represent the graph partition into communities. The number of the communities
to detect (K) is predefined as an algorithm parameter.

3.1.1.1 Encoding

In the first version of the algorithm the genotypes are represented as a set of binary values. Each
allele represents a node of the graph, and each chromosome is used to represent a community.
Therefore, the chromosome length will be equal to the graph size. This encoding defines a direct
relationship between each node in the graph and the allele of the chromosome. In this binary
representation the value ”1” means that the node belongs to a community, and the value ”0”
the opposite as shown in Figure 3.1.

Figure 3.1: A chromosome representing a community. Each allele represents a node of the graph
and its belonging, or not, to the current community. In this example, a community built by three
nodes from a general graph composed by 8 nodes.

3.1.1.2 Fitness Functions

In this first approach four fitness functions have been implemented, each of them with a different
goal. The first one tries to find nodes with a similar rating behaviour (Minimal Distance Fitness),
the second one tries to find communities using the clustering coefficient (Maximum Clustering
Coefficient Fitness), the third one is similar to the previous one but using the weighted cluster-
ing coefficient and, finally, the last fitness function (Hybrid Fitness) combines both strategies
(Minimal Distance and Maximum Clustering Coefficient) to find communities with a similar
rating behaviour, and whose members are connected between them. These fitness functions can
be described as follows:

• Minimal Distance Fitness (MDF). The objective of this fitness function is to find
similar nodes to form a community. The evaluation of this fitness function is done using
the following criteria:
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1. Each node belonging to a community is represented as a vector of attributes. The
definition of these attributes depends on the problem to be solved.

2. The average euclidean distance between vectors of attributes within a community is
calculated. The fitness calculates distances to be taken into account from peer to
peer, between all vectors.

3. The fitness value for the community is the average distance of the values calculated
in the previous step. This average distance will be called din as shown in Figure 3.2.

4. This fitness penalizes those cases where the community has a single node giving it a
high value. This is due to the necessity to minimize the MDF to find similar nodes,
so the worst values are the highest ones.

• Maximum Clustering Coefficient Fitness (MCCF). The goal of this fitness is to
discover communities whose members are strongly connected between them. It is measured
through the clustering coefficient, defined as follows: the fitness takes the sub-graph defined
by the community and calculates its clustering coefficient. It returns the inverse value,
because the genetic algorithm tries to minimize the fitness function.

• Maximum Weighted Clustering Coefficient Fitness (MWCCF). This fitness is
similar to the Clustering Coefficient fitness. The main difference between them is the way
they consider the community definition. As described in the state of the art, Weighted
Clustering Coefficient considers to be stronger those communities whose sub-graphs have
higher weight values. It also returns the inverse value, because the genetic algorithm tries
to minimize the fitness function.

• Hybrid Fitness(HF). This last fitness function combines both, the Clustering Coeffi-
cient and the Distance fitness metrics: it tries to find a set of communities satisfying
both conditions previously defined. With this method we try to find strong and similar
communities (members that are highly connected between them, and that show similar
behaviour). The function defined is a simple weighted function: suppose that F (x, y) is
the fitness function, CC the clustering coefficient and din the distance average between
nodes, then the value of HF fitness is calculated as follows:

Fi(CC, din) = w1
CCi

Max({CCi}Ki=1)
+ w2

(
1− dini

Max({dini}Ki=1)

)
(3.1)

Where wi represents the weights given to each fitness: wi ∈ (0, 1). The values were fixed
experimentally to w1 = 0.1 and w2 = 0.9.

A

B C

diniab

Ci

dinibc

diniac

dini

Figure 3.2: Sample illustrating a community and the distance that is calculated by the fitness
function of the algorithm. The distance din represents the average distance calculated between the
nodes which belong to a community.
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3.1.1.3 The GCF Algorithm

The GCF-I Algorithm with a fixed K works as shown in Algorithm 4. Firstly a random popu-
lation of communities is generated, containing λ individuals with a length equal to the number
of nodes belonged to the graph (line 1). The population evolves using a standard GA until a
fixed number of generations, or a convergence value, are reached (lines 2 to 19).

For each generation the individuals are evaluated using the fitness function. When a new
offspring is created applying crossover and mutation operators, there is a high probability of
loosing the best community (individual). So the algorithm performs an elitism selection method
that firstly copies the µ best communities to the new population (line 7 and 8).

(a) Crossover (b) Mutation

Figure 3.3: Genetic operators of GCF-I algorithm. The crossover operator (a) used a two point
approach, which simply interchanges some elements from Community 1 to Community 2. The (b)
example shows how is applied the mutation operator, the fourth allele has been selected, and the bit
has been changed using the mutation probability. So this node is now excluded from the community.

To apply the crossover, the algorithm randomly chooses two individual from the µ (lines 10
to 12) performing then a two point crossover operation as shown in Figure 3.3.a. Afterwards,
an uniform mutation operator is applied to the two new individuals (lines 13 and 14). This
operator is applied to prevent the falling of all solutions into a local optimum of the problem.
For a binary encoding, this operator changes the value of the chosen alleles (using probability
mutpb) between 0 and and 1 or viceversa (see Figure 3.3.b).

Finally, the individuals that are the K-best solutions of the algorithms are selected as output
(lines 20 to 37). This entails a subsumption process where will prevail the communities that have
good fitness and a larger size. Therefore, an individual subsumes another when the subgpraph
that represents its community, contains at least all the nodes and connections of the other one
(lines 28 to 31). In this process, a ranking of the K best individuals is done by removing those
individuals which are contained by another individual of the ranking.

3.1.2 K-adaptive GCF Algorithm (K-adaptive GCF-I)

From the previous version of the algorithm, one of the possible improvements that can be
performed is to allow calculating the parameter K (the number of communities which the graph
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Algorithm 4: Genetic-based Community Finding Algorithm with a fixed number of com-
munities (K-fixed GCF-I)

Input: A graph G = (V,E) where V is a set of vertices denoted by {v1, . . . , vn} and E is
a set of edges E denoted by eij representing whether there is a connection
between the vertices vi and vj . And positive numbers ngen, µ, λ and mutpb are
the main GA parameters to be fixed.

Output: K-best individuals
1 C ← InitRamdomPop(λ, |V |)
2 for j ← 1 to λ do
3 Fj ← Fitness(Cj)

4 i← 1
5 convergence← 0
6 while i ≤ ngen ∧ convergence = 0 do
7 Cbest← SelectNBest(C,F, µ)
8 C ← Cbest
9 for j ← µ to λ do

10 p1, p2← RandomSel(Cbest)
11 c1, c2← Crossover(p1, p2)
12 c1, c2←Mutation(c1, c2,mutpb)
13 C ← C ∪ {c1, c2}
14 i← i+ 1
15 for j ← 1 to λ do
16 Fj ← Fitness(Cj)

17 convergence← CheckConvergence(Cbest, C, F )

18 Cbest← ∅
19 i← 1
20 count← 0
21 SortedCbest← SortNBest(C,F )
22 while count ≤ K do
23 j ← 1
24 stop← 0
25 while j ≤ count ∧ stop = 0 do
26 if SortedCbesti ⊆ Cbestj ∨ Cbestj ⊆ SortedCbesti then
27 Cbest← Cbest/Cbestj
28 Cbest← Cbest ∪ SelectBigCom(Cbestj , SortedCbesti)
29 stop← 1

30 j ← j + 1

31 if j = count then
32 Cbest← Cbest ∪ SortedCbesti
33 count← count+ 1

34 i← i+ 1

35 return Cbest
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is divided) during the execution of the evolutionary process. For this purpose, the encoding and
the fitness function have been modified in the new version of the algorithm.

3.1.2.1 Encoding

In this new approach, the possible solutions can contain groups of communities, and not just
an unique community. For this reason, the genotypes (chromosomes) are represented as a set of
vectors of binary values. Each allele represents a community that is composed by a set of binary
values, one for each node in the graph. This binary vectors are similar to the chromosomes
of the previous encoding, the value 1 means that the node belongs to the community, and the
value 0 the opposite. The number of binary vectors (communities) contained in the chromosome
(group of communities), corresponds to the value of the parameter K, as shown in Figure 3.4.

0 1 0 1 1 0 0 0

1 0 1 0 0 0 0 0
K = 2

Chromosome
Size = N x K

Community 1

Community 2

N = 8

Figure 3.4: A chromosome representing a group of communities of the graph. Each allele is a
particular community where its binary vector represents the nodes of the graph and if they belong,
or not, to the current community. So N is the number of nodes contained in the graph. In this
example the solution contains 2 vectors representing two different communities, hence the K is equal
to 2.

In this new encoding the length of a particular chromosome could vary according to the
number of communities (K) in which the graph is partitioned. This variable length of the
chromosomes will be adequately managed in the generation process of the initial population.
In this process, individuals with different sizes can be created using a initial setup parameter
(maxK) of the algorithm (from 2 to maxK).

In addition, the crossover operator will take into account this parameter to generate correct
individuals in the evolutionary process. Therefore, if a chromosome represents a graph partition
of K communities, and the number of nodes of the graph is N (length of each allele), the total
number of bits contained into this chromosome will be NxK (see Figure 3.4).

3.1.2.2 The Clustering Centroid Fitness Function

The previous encoding only allows to use metrics related to measures of a member belonging
to one community, because one individual only represents a single community. However, this
new encoding, which can represent a group of communities, makes possible to include measures
between the different communities encoding on it.

For this new approach a new fitness function, called Centroid Fitness (CF), have been
designed to measure the distance between the community centres belonging to a particular
chromosome. This new metric is called dout and it has been represented in Figure 3.5 With this
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new measure, large distances between centres could be desirable because it represents a bigger
gap between clusters or communities.

Figure 3.5: Graph sample illustrating three communities and the distances that are calculated using
the fitness function of the algorithm. The distance din represents the average distance calculated
between the nodes which belong to a community. The distance dout represents the distance between
community centres.

As a result of this new measure, which can be calculated for each individual, a new fitness
function which combines the Clustering Coefficient, the distance between nodes (din) and finally
the distance between centres (dout) can be designed. The idea of this new fitness is to find a
set of communities that could satisfy all of the previously defined conditions. This new fitness
tries to find groups of communities where each community is strongly connected and has similar
nodes, but also whose nodes are as different as possible with the rest of communities.

The function defined is a simple weighted function: let F (x, y) be the fitness function, CC
the clustering coefficient, din the distance between nodes, and dout the distance between centres,
the value of the new fitness is calculated as follows:

Fi(CC, din, dout) = w1
CCi

Max({CCi}Ki=1)
+ w2

(
1− dini

Max({dini}Ki=1)

)
+ w3

douti
Max({douti}Ki=1)

(3.2)

Where wi are the weights given to each fitness: wi ∈ (0, 1). The values were experimentally
fixed to w1 = 0.05 , w2 = 0.05 and w3 = 0.9.

3.1.2.3 The Algorithm

The GCF-I Algorithm with adaptive K evolves using a standard GA. The steps of the process
are similar to the previously described in the GCF-I algorithm with fixed K. However, the
finally subsumption process is no longer required, because any individual represents a group
of communities. So in this new approach, the chromosome that has the best fitness function
value is selected as a final solution (see Algorithm 5).
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Algorithm 5: Genetic-based Community Finding Algorithm with an adaptive number of
communities (K-adaptive GCF-I).

Input: A graph G = (V,E) where V is a set of vertices denoted by {v1, . . . , vn} and E is
a set of edges E denoted by eij representing whether there is a connection
between the vertices vi and vj . And positive numbers ngen, µ, λ, mutpb and
maxK are the main GA parameters to be fixed.

Output: Best individual
1 C ← InitRamdomPop(λ, |V |,maxK)
2 for j ← 1 to λ do
3 Fj ← Fitness(Cj)

4 i← 1
5 convergence← 0
6 while i ≤ ngen ∧ convergence = 0 do
7 Cbest← SelectNBest(C,F, µ)
8 C ← Cbest
9 for j ← µ to λ do

10 p1← RandomSel(Cbest)
11 p2← RandomSel(Cbest)
12 c1, c2← CrossoverComm(p1, p2)
13 c1←MutationComm(c1,mutpb)
14 c2←MutationComm(c2,mutpb)
15 C ← C ∪ {c1, c2}
16 i← i+ 1
17 for j ← 1 to λ do
18 Fj ← Fitness(Cj)

19 convergence← CheckConvergence(Cbest, C, F )

20 return Best(Cbest)

In the process of random population generation, there is an input parameter (maxK) that
specifies the maximum number of communities per individual (line 1). For each individual gen-
erated, a random value is selected between 2 and the value of maxK parameter, corresponding
to the K communities that contains this solution. Therefore, this individual has a size of K
binary vectors (with length equals to |V |), representing each one a different community of the
graph partition. In addition, these binary vectors will be randomly generated too.

Due to the new encoding designed for the algorithm, the genetic operators had to be extended
for working with groups of communities as shown in Figure 3.6. To apply the crossover operator,
the algorithm chooses a random crossover point. Then, every community preceding this point
is copied from both parents to create a new child, and every community succeeding this point
is copied to create a second new child (sub-figure a). Once the crossover operator has finished,
the mutation is executed. The algorithm randomly chooses some values of the vectors (with
a mutpb probability) representing the communities, and change their values from 0 to 1 or
viceversa (sub-figure b).
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(a) Crossover (b) Mutation

Figure 3.6: Genetic operators for the k-adaptive GCF-I algorithm. In the Crossover example (a),
two groups of communities with different K are selected. As shown in the example, the K value is
adaptive during the evolution process, where the best graph partitions will survive. In the mutation
operation (b), two nodes randomly selected from two different communities have been changed.

3.1.3 Experimental Results

3.1.3.1 Dataset Description

As introduced in the State of the Art chapter, The Eurovision Song Contest has been studied
using different Data Mining techniques since the nineties [135, 77, 179]. The main interest in this
dataset was the study and analysis of alliances between countries, which had been reflected in
form of communities or country clusters. All of these works were able to group the participating
countries into blocks of similar behaviour demostrating a community structure in the Eurovision
dataset. For this reason this dataset has been selected to carry out the experimental phase of the
different versions of GCF algorithm. The data used in these experiments have been extracted
from Eurovision’s official website [2].

3.1.3.2 Study and comparison of the Eurovision network against a random context

In order to validate that the Eurovision network shows voting patterns, a simple comparison of
this graph and a random graph, generated using the same rules applied in the contest, has been
carried out. Simulating the contest voting, from each node (participant country) of the graph
will be randomly created 10 edges to other 10 different nodes. This simulated graph is called
Random Network.



52 Chapter 3. Genetic Graph-based Approaches for Overlapping Community Detection

Figure 3.7: Graph representing the votes emitted in the Eurovision Song Contest (2009 year).

The Random Network model assumes that a given country does not favours or penalize other
countries and all songs have equal musical quality. So a country X will give points randomly
to another ten countries. If, for example, there are N countries then the probability that a
country X votes to country Y is given by P = 10/(N-1). Usually, in social networks, two vertices
with corresponding edges to a third vertex have a higher probability of being connected to
each other. Hence, it may be possible to observe the same effect in the Eurovision network.
Therefore, to study this effect it is reasonable to carry out a comparative assessment of the
clustering coefficient of both Random and Eurovision networks.

Figure 3.8 shows the clustering coefficients calculated for years between 1992 and 2010. The
clustering coefficient for the Eurovision network is always higher than the value achieving to the
Random network. It means that the graph distribution of edges is not random, therefore, it can
be concluded that exist an “intention of vote” between countries. So, these results provide an
evidence that the voting system is not random, and there exist alliances between countries that
can be seen as ”communities”.

3.1.3.3 Preliminary analysis of fitness functions

In the previous data analysis using the clustering coefficient, the existence of clusters or commu-
nities in the Eurovision graph representation has been confirmed. Specifically, the 2009 year has
the greatest difference on the clustering coefficient, meaning that this year contains communities
with stronger connectivity. Hence, this year have been chosen to perform an initial study for all
the fitness functions designed and described in previous section.
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Figure 3.8: Comparative assessment of the CC between the Eurovision network, and the random
graph simulated for each year.

Table 3.1 shows the set-up for the K-fixed and K-adaptive versions of the algorithm used in
the experiments. All the parameters have been experimentally obtained.

Algorithm K-fixed K-adaptive

Mutation probability 0.2 0.03
Generations 2500 500
Population size (λ) 3000 1000
Selection criteria (µ) 300 100
K value 6 -

Table 3.1: Parameters values for both versions of GCF-I algorithm.

To compare the results obtained by the different fitness functions, the following measures
(which have been previously defined) are considered:

• din: It provides information related to the node similarity within communities.

• CC: It provides information related to the inner connections of the communities.

• dout: It provides information related to the distances between the centroids of the commu-
nities.

Then, to analyse in detail the results achieved, this preliminary study has been divided in
two parts, one for each version of the algorithm (K-fixed and K-adaptive) as shown below:

1. Fitness Function Analysis for the K-fixed algorithm.

Table 3.2 shows the values of the clustering coefficient and the distances (din and dout)
obtained for each fitness function using the K-fixed version of the algorithm. As shown
in this table, in terms of distance measures, the hybrid fitness (HF and WHF) functions
greatly improve the results. The distance between centres (dout) increases dramatically
from the MCCF and MWCCF functions to the hybrid ones. Therefore, the communities
found are far from each other, and they can be better differentiated. The intra-cluster
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distance (din) obtains lower values, meaning that the found communities have more similar
members. Finally, the clustering coefficient takes similar and very high values in all of the
analysed cases.

MCCF MWCCF HF WHF

din 21,15 21,56 18,2 19,02
dout 5,4 6,39 11,26 11,99
CC 1 1 0,9 1

Table 3.2: Values for clustering coefficient and distances din and dout obtained using weighted and
unweighted fitness functions for K-fixed algorithm (2009 dataset).

On the other hand, the addition of weights to the functions improves the distance (dout),
and the clustering coefficient fitness functions. However, it worsens the distance (dout) in
the hybrid fitness. Based on these experimental results it can be concluded that overall
the hybrid approaches perform better, and the weights in the clustering coefficient do not
greatly affect the outcome.

2. Comparison of fitness functions for K-fixed and K-adaptive algorithms.

Using the previous experimental conclusions, the next experiments have been executed
using the K-adaptive algorithm, and the clustering coefficient (without weights). Figure
3.9 shows the experimental results comparing both versions of the algorithm. Fitness
functions labelled with an asterisk represent the results for the K-adaptive algorithm.

Figure 3.9: Values for the clustering coefficient and the distances din and dout, obtained using the
designed fitness functions with both versions of the algorithm. The fitness functions labelled with
an asterisk show the values for the K-adaptive algorithm.

As shown in this figure, the first two fitness functions, (MDF and MDF ∗), obtain the
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minimum (din) distance and the maximal dout distance, but the value of the CC is 0 in
both cases. It means that the members of the communities are not connected between
them. In the next two functions (MCCF , MCCF∗) the opposite situation is noticed. The
maximum possible value of CC is reached, but the distance measures are dramatically
worse.

Both approaches have been combined into new hybrid fitness functions (HF , HF ∗) that
try to find new communities with better values for all the considered measures. Figure 3.9
shows that the distance between centres (dout) and the intra-cluster distance (din), take
values lying between the first and second functions. Finally, the clustering coefficients (0,9
and 0,75 respectively) are closer to the values obtained by the second fitness functions,
that obtain the maximum possible value (1).

The last fitness function considered, the centroid fitness function (CF ), obtains similar
results for CC and din values and improves the dout distance. This expected result comes
from the own definition of this function, that uses the distance between centroids to de-
termine how to build the community.

Finally, all the experimental results from these fitnesses are compared for both versions of
the algorithm. It can be noticed that the K-adaptive algorithm obtains similar or better
results than the K-fixed algorithm in all the studied cases. Therefore, the CF function has
been selected to experimentally test the new community finding approach against other
classic community finding algorithms.

3.1.3.4 Comparative assessment of algorithms

In this section, two classic and well-known algorithms for community detection, CPM and EBC,
are compared against the two versions (K-fixed and K-adaptive) of the GCF-I algorithm. In order
to carry out this comparative assessment, 10 different graphs have been chosen, representing
the contest voting from different years. Taking into account the history of Eurovision, the
periods used in the comparison must be carefully picked to prevent noise produced by the many
evolutions of the voting system. Therefore, the periods which have been selected are:

• 1992-1996: Jury-based voting system was used exclusively.

• 2004-2008: Televoting was used exclusively, as well as having a semi-finals round.

Because the period from 1997 to 2003 saw a slow adoption of the televote system, the data
is not representative, and it has not been included in this study.

Figure 3.10 shows that the din measure is minimized by both genetic algorithms, however
the first version of the algorithm obtains better results. The new approach has closer results and
there is a big gap between the genetic algorithms and EBC or CPM. It means that the nodes of
the GCF-I algorithms have more similar nodes than the EBC and CPM algorithms.

Figure 3.11 shows the CC measure results, and as it can be observed, its value is maximized
by both genetic algorithms. In this case the new genetic algorithm approach, using the K-
adaptive version, obtains the best results, followed by the K-fixed version of GCF. The EBC



56 Chapter 3. Genetic Graph-based Approaches for Overlapping Community Detection

1992 1993 1994 1995 1996

14

15

16

17

18

19

20

21

22

23

24

Years

In
tr

a−
C

lu
st

er
 D

is
ta

nc
e 

(D
in

)

CPM
EBC
GCF
GCF*

2004 2005 2006 2007 2008

14

15

16

17

18

19

20

21

22

23

Years

In
tr

a−
C

lu
st

er
 D

is
ta

nc
e 

(D
in

)

CPM
EBC
GCF
GCF*

Figure 3.10: din comparison of a dataset collection extracted from the Eurovision Song Contest.

and CPM algorithms obtain the worst CC results, meaning that there are fewer connections
between nodes within communities.

Regarding the dout measure, Figure 3.12 shows that it is maximized by both genetic algo-
rithms. As in the previous case, the K-adaptive approach obtains the best results. It was one
of the original goals of the algorithm improvements. The difference observed in cluster centroid
distance, between the results obtained by K-fixed version and those through by EBC and CPM
algorithms, is not too significant. Nonetheless, the K-adaptive version always improves that
value.

Finally, from an overall analysis of all the studied metrics, it can be noticed that the new K-
adaptive GCF algorithm improves the results in all the cases comparing to the results obtained
through the classic methods for community detection.
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Figure 3.11: CC comparison of a dataset collection extracted from the Eurovision Song Contest.

3.1.3.5 Community Interpretation

In this section a human interpretation is given to the results obtained by the different algorithms.
For this purpose, one particular year is selected (2006) to make a more detailed analysis. The
found communities, for each algorithm, have been plotted in a geographical context to study
the establishment of alliance between countries.

The first map plots the results applying the CPM algorithm (Figure 3.13). As shown in
this figure, there are big communities with great overlapping, where overlapped countries are
marked in bold. Analysing the neighbourhood between countries, a high correlation between
neighbouring countries, and their membership to the same communities, can be appreciated.
This effect can be appreciated in some subsets of the detected communities as shown below:

• Baltic States (Lithuania, Latvia, Estonia) belonging to the community 3.
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Figure 3.12: dout comparison of a dataset collection extracted from the Eurovision Song Contest.

• Nordic Countries (Norway, Sweden and Finland) belonging to the community 4.

• Balkan Countries (Macedonia, Albania, Serbia, Bosnia and Herzegovina, Croatia and
Slovenia) belonging to the community 4.

• Countries from the former Soviet Union (Russia, Belarus, Ukraine and Armenia) belonging
to the community 7.

These results show that several of the communities identified by CPM algorithm comprise
neighbouring countries sharing common cultural roots, and even the language in some cases.
However, regarding the metrics used to evaluate the algorithms in the previous section, this
algorithm obtains low values related to din and CC. It means that the country voting pattern
is not too similar, and in addition there is a sparse connectivity between the member countries
of the communities.
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Figure 3.13: CPM Cluster Results for Eurovision 2006. The communities are: 1[Spain, Bosnia
and Herzegovina and Finland], 2[France, Netherlands and Turkey], 3[Iceland, Ireland, United
Kingdom, Poland, Lithuania, Latvia, Estonia and Finland], 4[Norway, Sweden, Finland, Macedo-
nia, Albania, Serbia, Bosnia and Herzegovina, Croatia and Slovenia and Denmark], 5[Belgium,
Romania and Greece], 6[Turkey, Bosnia and Herzegovina] and 7[Russia, Belarus, Ukraine, Ar-
menia].

On the other hand, the communities resulting from the K-adaptive GCF-I algorithm are
smaller as shown in Figure 3.3. This is expected if we consider that the new algorithm tries
to find communities whose members are highly connected between them, and also have similar
characteristics. Regarding to the neighbourhood of the countries, there is still a high correlation
between neighbouring countries and their membership to the communities. Although in this case,
the subset of neighbouring countries are smaller than in CPM results (for example communities
2 and 4). However, related to the evaluation metrics, as mentioned previously, all the metrics
have been improved by the new approach. Therefore, the K-adaptive GCF-I algorithm is able
to achieve better outcomes in terms of quality, minimizing the distance between the elements
which belong to a community, and maximizing the cluster centroid distance.

Finally, analysing in detail the found members of the communities identified by both CPM
and K-adaptive GCF-I algorithms, an important issue appears immediately. Each community
generated by the genetic algorithm is contained, or partially contained, in a community generated
by the CPM algorithm. Table 3.3 shows for each community obtained, using the new genetic
algorithm, the related CPM community which contains it. For example, that is the case for the
community formed by Sweden, Norway and Finland or the formed by Lithuania, Latvia and
Ireland shown in this table. Both communities are fully contained in the related communities
detected by CPM algorithm.

Taking into account all the experimental findings, it can be concluded that this new approach
is able to reach better results than the other classical approaches studied. The K-adaptive GCF-
I algorithm finds communities that have an appropriate size, reduced overlapping, and closer
distances between the nodes belonging to the communities detected.
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Figure 3.14: K-adaptive GCF-I Cluster Results for Eurovision 2006. The communities are:
1[Ireland, Finland, Ukraine], 2[Turkey, Macedonia, Bosnia and Herzegovina], 3[Lithuania, Latvia
and Ireland], 4[Sweden, Norway and Finland], 5[Greece, Turkey and Romania].

K-adaptive GCF-I CPM Overlap (%)

Ireland, Finland, Ukraine Iceland, Ireland, United Kingdom, Poland,
Lithuania, Latvia, Estonia, Finland

66%

Turkey, Macedonia, Bosnia
and Herzegovina

Norway, Sweden, Finland, Macedonia, Al-
bania, Serbia, Bosnia and Herzegovina,
Croatia, Slovenia, Denmark

66%

Lithuania, Latvia, Ireland Iceland, Ireland, United Kingdom,
Poland,Lithuania, Latvia, Estonia,
Finland

100%

Sweden, Norway, Finland Norway, Sweden, Finland, Macedonia,
Albania, Serbia, Bosnia and Herzegovina,
Croatia, Slovenia, Denmark

100%

Greece, Turkey, Romania Belgium, Romania, Greece 66%

Table 3.3: Comparative analysis between the communities detected by K-adaptive GCF-I, and
the resulting communities detected by CPM for Eurovison 2006 dataset. The countries of the com-
munities detected by K-adaptive GCF-I that are contained in a CPM community are marked in
bold.

3.2 Community Finding Algorithm based on network topology metrics
(GCF-II)

In the previous version of the algorithm, the fitness functions used distances (intra-cluster and
inter-cluster distances) to guide the search for partitioning the graph. To calculate distances
between the graph nodes, it is necessary that such nodes have associated a set of features
which allow to measure them. Many graphs do not have features associated to their nodes,
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therefore it would be interesting that the algorithm tries to find solutions optimizing metrics
based on the own network topology of the graph. For this purpose, a new fitness function has
been implemented combining several metrics from the network topology in order to tune up the
community sets detection.

3.2.1 The Fitness Function based on network topology metrics

The new fitness function designed combines metrics from the Network Topology area. It tries
to find a set of communities where their members are highly connected between them, and
they have similar behaviour. To combine several network metrics in a single fitness function, a
weighted function based on these metrics chosen has been designed. The measures used in the
fitness function, and their weights, can be changed in the algorithm setting. This function is
calculated as follows:

F =

n∑
i=1

wi ∗Metrici (3.3)

Where Metrici is a network metric extracted from the graph theory to guide the evolution-
ary algorithm, and wi are the weights given to each metric: wi ∈ (0, 1). In order to compute
the metrics chosen and their weights, a preliminary analysis of them is done in the next section.
This fitness function will be based on the following metrics: clustering coefficient, density, cen-
tralization and heterogeneity. Previous metrics derive from the graph theory, and all of them
were introduced in the chapter related to the state of the art.

3.2.2 Analysis of network metrics

The previous data analysis of Eurovision graphs performed using the CC confirmed the existence
of clusters or communities in these dataset. Specifically, the graph representing the 2009 year
had the greatest difference in the CC values. It means that this year contains communities with
a stronger structure than the rest of the analysed years. Hence, this year has been selected to
perform a detailed study for different network measures which can be later used to tune up the
new fitness function designed.

Table 3.4 shows the parameter setting of the genetic algorithm used throughout the analysis
of the network metrics used in the fitness function. These parameters were obtained experimen-
tally by performing several tests with different range of values.

Parameter Value

Mutation probability 0.03
Generations 100
Population size 500
Selection criteria (µ+ λ) 500 + 50

Table 3.4: Parameter setting of the Genetic Algorithm for community detection based on networks
metrics.
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The concept of good partition for a set of elements is sometimes quite subjective. There
are two objective functions in clustering literature to measure the cluster quality: intra-cluster
distance (elements within a cluster should be close) and inter-cluster distance (elements from
different clusters should be away). These two distance measures have been calculated to compare
the results obtained by each network measure used in the fitness function. The values obtained
for each measure are shown in Table 3.5.

Metric Com. Countries Intra Dis. Inter Dis.

Density 1 Denmark Greece 19,25 15,79
2 Norway Romania
3 Albania Russia

Centralization 1 Belgium Ireland Ukraine Hungary 21,32 14,66
2 Albania Serbia

Heterogeneity 1 Norway Sweden Armenia Albania Moldova 20,72 4,92
Israel Denmark Finland Ukraine Turkey Azerbaijan

2 Norway Croatia Estonia Sweden Albania Moldova Israel Denmark
Finland Lithuania Ukraine Turkey Germany Azerbaijan

3 Croatia Sweden BosniaandHerzegovina Armenia Albania Malta
Russia Finland Romania Lithuania Ukraine Germany Azerbaijan

4 Croatia Sweden BosniaandHerzegovina Malta Moldova Denmark
Finland Lithuania Ukraine Iceland Germany

5 Norway Armenia Moldova Israel Denmark Finland Spain
Iceland Turkey Azerbaijan

6 Estonia BosniaandHerzegovina Albania Moldova Israel
Denmark Ukraine Iceland Germany Azerbaijan

CC 1 Norway Ukraine Azerbaijan 21,27 7,01
2 Moldova Ukraine Azerbaijan
3 Russia Ukraine Azerbaijan

Table 3.5: Comparative assessment of network measures for the graph representing the contest
votes of the 2009 year.

The algorithm goal is to discover communities consistent internally, but clearly different
from the rest. Members within a community should be as similar as possible (lower intra cluster
distance), and members in one community should be as dissimilar as possible from members in
other communities (higher inter cluster distance). As shown in Table 3.5, the fitness function
based on Density metric obtains the better results (with a lower intra cluster value and the
higher inter cluster value). However, these detected communities are small and no-overlapping.
On the other hand, using the Heterogeneity metric as fitness function, the best results have
been achieved in terms of the size and the overlapping of the communities. In this case the
communities detected are bigger with great overlapping. Therefore, both measures have been
combined in the new weighted fitness function trying to detect communities with better results
considering all the features.

Once the best network measures for the fitness function have been selected (Density and
Heterogeneity), it is necessary to perform the estimation related to the best weight for each
measure within the function. For this purpose, a comparative assessment of weights for both
measures is carried out as shown in Figure 3.15. Analysing the results, with Density equals to
0.9 and Heterogeneity equals to 0.1 (0.9D-0.1H) the intra cluster distance is minimized and the
inter cluster measure takes the highest values. The intra cluster distance progressively is worse
while its value increases. Therefore, these values have been finally selected to fix the fitness
function.
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Figure 3.15: Comparative evaluation of weights for the network metrics used as fitness function.
The x-values represent the weight considered for Density (i.e 0.9D) and for Heterogeneity (i.e 0.1H).

3.3 Comparative assessment of algorithms

Finally, the results obtained for the two different approaches of GCF algorithm, one based on
distances (GCF-I), and the other based on network measures (GCF-II), have been compared
against the results of CPM algorithm. For this purpose the graphs chosen for these experiments
are the same as in the experimental phase of GCF-I algorithm, representing the contest voting
before and after the establishment of the televoting system. The analysis of the experimental
results for GCF-I shown, that the K-adaptive version is be able to detect better communities.
So, this version of the GCF-I algorithms is used for the following experiments.

Modularity is one of the most used, and best known, quality measures to evaluate graph
clustering techniques, so this metric will be used to carry out the comparative assessment. The
standard definition of this metric is only used to assess disjoint partitions. Because all of the
algorithms applied in this comparative assessment detect overlapping communities, the definition
of the Modularity extended by Nicosia et al. [134] for overlapping partition is used. Using the
standard definition, a higher positive value corresponds to a better partitioning, being 1 the
greatest possible value.

As shown in Figure 3.16 the new version of the algorithm (GCF-II) improves the results
in all of the years. Before the establishment of the televoting system the improvement of this
evolutionary approach is greater than the rest of the algorithms. In these years the number
the of nodes and edges is lower, due to the fact that the semi-final rounds began in 2004, and
therefore, more participant countries can vote in the final round too. The results show how
this change in the network topology affects to the quality of solutions detected by the three
algorithms, although GCF-II still reach the best results. However, CPM and GCF-I present
very similar values on Modularity before the Televotin period, during this period, they begin
to take differentiated values. Therefore, the main conclusion that can be obtained is that these
algorithms are more dependent on the network topology.

Analysing the results of both GCF versions (I and II), it can be concluded that the best
results have been achieved finding communities only based in network metrics, without the
necessity of measuring distances related to the node features. Therefore the new algorithm
version (GCF-II) can be used to discover communities for a greater variety of types of graphs.
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Figure 3.16: Comparative assessment of algorithms using Modularity as evaluation metric.

Additionally, the communities detected for a specific year are plotted in a graph represen-
tation. This representation provides a better appreciation of the community structure and size
to analyse them. To carry out this analysis, the 2006 year has been selected, because is the
central year of the televoting period where this new system has already been totally established.
Analysing these features there are several remarkable aspects. As shown in Figure 3.17, CPM
algorithm splits the graph into a higher number of communities, which are big and with slightly
overlapping. However, as seen above this algorithm obtains the worst values related to mod-
ularity, meaning that the finding communities are less structured than those detected by the
evolutionary approaches (K-adaptive GCF-I and GCF-II).

On the other hand, the resulting communities for the genetic algorithms are smaller and
present more overlaps between them, as shown in Figure 3.18 and Figure 3.19. In particular,
the K-adapted GCF-I algorithm discovers 5 communities where all of them contain a node
belonging to two different communities. The size of all the communities is 3 which is a size quite
small. The algorithm tends to find communities according to the triangles contained in the
graph. The fitness function of this genetic algorithm uses the distances between centroids and
the distance between the nodes belonging to a group to guide the community detection. This
result could be expected, because the encoding designed does not considerer restrictions on the
community size. Therefore, it is more likely to find small communities containing very similar
nodes, and whose community centres are separated. The distances between the community
centres decrease according to their increased size. Finally, regarding the modularity metric,
K-adapted GCF-I algorithm improves the results achieved by CPM method, finding a graph
partition more structured from the point of view of the network connectivity.
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Figure 3.17: CPM communities detected for 2006 year. The graph has been partitioned into 7
communities containing 2 overlapping nodes. Nodes not assigned to any community are in grey.

Figure 3.18: GCF-I communities detected for 2006 year of Eurovision Song Contest. The graph
has been partitioned into 5 communities containing 3 overlapping nodes. Nodes not assigned to any
community appear in grey.

Comparing both evolutionary approaches, the new algorithm (GCF-II) obtains the same
modularity value (see Figure 3.16), so the structure level of the finding communities is similar.
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However, there are more communities detected using this new approach and with have larger
size, as shown in Figure 3.19. These results show that the new approach is able to reach better
overall outcomes. This new fitness function of this approach has been inspired by the network
topology analysis, and it is only based on the use of network measures to guide the search. It
means that the GCF-II algorithm is be able to find good solution to more types of graphs, and
not only those that have features associated to their nodes. These results demonstrate that the
new algorithm performs a better partition of the graph regardless the votes associated to each
node.

Figure 3.19: GCF-II communities detected for 2006 year of Eurovision Song Contest. The graph
has been partitioned into 6 communities containing 4 overlapping nodes. Nodes not assigned to any
community are in grey.



Chapter 4

Multi-Objective Genetic
Approaches for Overlapping

Community Detection

“Science and everyday life cannot and should not be separated.
Science, for me, give a partital explanation for live.

In so far as it goes, it is based on fact, experience and experiment.”

- Rosalind Elsie Franklin

This chapter presents two new Multi-Objective Genetic Algorithms for Overlapping Commu-
nities Detection (MOGA-OCD), which have been designed to use measures based on the Network
Connectivity as optimization criteria of the fitness function. The main difference between these
algorithms is based on the encoding used to represent the individuals. The encoding for the
first algorithm is node-based, where the alleles represent the nodes of the graph. Whereas, the
second algorithm uses an edge-based encoding, where each allele is related to specific edge of
the graph. In both algorithms, the value of K (number of communities to find in the graph) has
been directly encoding as part of the chromosome, so the evolutionary process will generate the
final number of communities as part of the solution.

On the other hand, the fitness function implemented in both algorithms, optimizes two
different objective functions; the first one that is used to maximize the internal connectivity
of the communities, and the second one that is used to minimize the external connections to
the rest of the graph. To select the most appropriate metrics for these objective functions, a
comparative assessment of several connectivity metrics has been carried out using a real-world
network. Finally, the two new algorithms have been compared among themselves, and evaluated
against other well-known algorithms from the state of the art in CDP. The experimental results
show that these new algorithms overall improve the accuracy and quality of current approaches
in CDP, showing its effectiveness as a new method for detecting structured communities.

4.1 Node-based MOGA-OCD Algorithm

This section introduces the new Multi-Objective Genetic Algorithm that has been designed and
implemented in this thesis to handle the OCD Problem. Following the same encoding type

67
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used in the algorithms presented in the previous chapter, a node-based representation of the
individuals has been designed for this algorithm. The next subsections describe in detail, this
node-based encoding, as well as the fitness function, and how the algorithm works.

4.1.1 Node-based Encoding

In the new algorithm, the genotypes (chromosomes) are represented as vectors of integer values.
Each chromosome is used to encode the partition of the graph into group of nodes, where
overlaps between the groups may exist. Their length is variable, and each allele represents a
node belonging to a community. Therefore, the value of these alleles is an integer value between
0 and n − 1, being n the number of nodes of the graph. Finally, there are some alleles with
a special value, equals to -1, which are used to identify the boundaries of the communities as
shown in Figure 4.1.

Figure 4.1: Chromosome representing a group of communities in a graph with 6 nodes. The
alleles with -1 value mark the boundaries of the communities. The rest of the alleles represents a
particular node in the graph. In this example the solution contains 3 different communities with two
overlapping nodes (2 and 5).

4.1.2 Fitness Function

The individual evaluation is one of the most important step in any evolutionary algorithm,
this evaluation is computed in terms of a fitness function measuring the quality of the found
solutions. As it has been previously described, a ‘good’ community should be cohesive, compact,
and internally well connected. Moreover, regarding to the rest of the graph, this community
should be well separated having relatively few external connections.

Taking into account both features, the fitness function implemented for the new algorithm
optimizes two objective functions, to identify internally connected groups of nodes and with
sparse externally connections to the rest of nodes. For this purpose, different topology metrics
of a graph, which have been previously described in State of the Art chapter, are used as an
optimization criteria for these objective functions:

1. The first objective function uses internal measures extracted from the graph theory
(Density, Triangle Participation Ratio, Clique Number and Clustering Coefficient), maxi-
mizing the internal connectivity of the communities detected by the algorithm.
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2. The second objective function is based on external measures (Expansion, Separability
and Cut Ratio) to identify separate communities in relation to each other. So, when the
Separability metric is used, this objective will be maximized too. However, in the case
of Expansion and Cut Ratio metrics, to find separate communities, these objectives must
be minimized. The specific metric used by each objective function can be changed in the
algorithm settings as an argument to execute it.

4.1.3 Algorithm Description

In the new community detection algorithm, the population evolves according to a Multi-Objective
Genetic Algorithm, where the found solutions (individuals) are evaluated using a Pareto-Optimality
Frontier (POF) of both optimization criteria described in previous section.

As shown in Algorithm 6, the first generation creates randomly a population of λ individuals
representing the partition of the graph into overlapping communities (line 6). The value of each
allele represents a node, therefore it has a value in a range between -1 and N-1. Where -1 is
used as a special symbol to define the community boundary, whereas N represents the number
of nodes in the graph. Furthermore, in this generation process, the alleles representing the
community boundary are added with a probability compb.

Then, the population evolves a maximum number of generations (ngen). However, if the
best µ individuals are the same during a number of generations (nconv) the algorithm stops,
considering that the evolutionary process has converged (line 4 and 23). From the second
generation, the genetic operators (crossover and mutation) are applied to create the new offspring
(lines 8 to 19). Initially, two individuals are randomly selected from the n-best individuals of
the current population. Then a two point crossover operation is performed over the selected
parents, resulting in two new offspring. Finally, some of the new individuals are randomly chosen,
using a predefined mutation probability (mutpb), to perform over them an uniform mutation
operator. This operator replaces the value of the chosen alleles (using probability indmutpb)
with a uniform random values selected between 0 and and N-1.

Once the new offspring population is generated, all the new individuals are evaluated using
the fitness function (line 20). As described in previous subsection, this function optimizes two
objectives to identify communities with high internal connectivity (mint), and low external
connectivity (mext) against the rest of communities found. Both measures can be chosen as
parameters of the algorithm from the internal and external connectivity metrics detailed in the
description of the fitness funcition implemented.

The algorithm performs an elitism selection according to the NSGA-II approach [53] that
creates a Pareto-optimal Front using the two objectives functions. The best µ individuals remain
from one generation to the next (lines 20 and 21). Finally, the Pareto Front of the final population
is calculated to retrieve the best non dominated individuals of the evolution which are returned
as final solutions (line 24).
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Algorithm 6: Multi-Objective Genetic Algorithm for Overlapping Community Detection
using a Node-based encoding (Node-based MOGA-OCD).

Input: A graph N = (V,E) where V represents the set of vertices denoted by
{v1, . . . , vn}, and E is the set of edges E denoted by eij that represents a
connection between the vertices vi and vj . Parameters mint and mext represent
the connectivity metrics used as the optimization criterias. Positive numbers
ngen, compb, nconv µ, λ, mutpb and indmutpb represents the main MOGA
parameters to be fixed.

Output: HoF contains the best individuals
1 C ←− ∅;
2 i← 0;
3 convergence← 0;
4 while i ≤ ngen ∧ convergence = 0 do
5 if ngen = 0 then
6 C ← InitRamdomPop(λ, |V | − 1, compb);
7 else
8 C ← Cbest;
9 for j ← µ to λ do

10 ind1← RandomSel(Cbest);
11 ind2← RandomSel(Cbest);
12 ind1, ind2← Crossover(ind1, ind2);
13 mutchoice = Random(0, 1);
14 if mutchoice < mutpb then
15 ind1←Mutation(ind1, indmutpb);

16 mutchoice = Random(0, 1);
17 if mutchoice < mutpb then
18 ind2←Mutation(ind2, indmutpb);

19 C ← C ∪ {ind1, ind2};

20 F ← Fitness(C,mint,mext);
21 Cbest← SelNBestNSGA2(C,F, µ);
22 i← i+ 1;
23 convergence← CheckConvergence(Cbest, nconv);

24 return ParetoFront(C);

4.2 Edge-based MOGA-OCD Algorithm

The State of the Art chapter present several studies using the edge information of the graph
to detect communities. Particularly, these methods are usually applied to real world networks,
which tend to be sparse, and where the node-based methods often have difficulties to find large
communities. For this reason, a new version of the MOGA-OCD algorithm, based on a edge-
encoding, has been designed and implemented. The rest of the algorithms developed in this
thesis use a node-based encoding, so the assessment of both approaches will allow to make
a comparative study of these different strategies. This section presents this new algorithm,
explaining in detail the edge-base encoding used, the decoding process that is required to convert
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this encoding to the resulting communities, and the genetic operators applied.

4.2.1 Edge-based Encoding

The edge-based MOGA-OCD Algorithm has been designed using the encoding proposed by Shi
et. al. [163] and using in the algorithm called GaoCD. The authors proposed a new encoding
schema based on the edges, where the number of communities is automatically determined into
the evolutionary process.

In node-based GAs for CD, each allele of the chromosomes represents a node belonging
to the graph. However, in this new encoding a particular allele correspond to a edge of the
graph. Therefore, given a graph G = (V,E), an individual of the population will have a size
equal to m, where this number is the total number of edges into the graph (m = |E|). The
position of each allele (i) correspond to a particular edge denoted by denoted by {e1, . . . , em}
that represents a connection between two vertices, and it takes a random value between the
adjacent edges to the specified edge (ei). In graph theory, two edges are adjacent if they share
one node in an undirected graph. Figure 4.2 illustrates an input graph, and a possible example
of a chromosome according to this edge representation. As shown in this Figure, there are 5
adjacent edges (2,3,4,5 and 7) associated with the edge 1. Therefore, the value of the first allele
corresponds to one of these edges (specifically the edge 3 in this case).

Figure 4.2: Chromosome representing a graph that contains nine edges. Each allele position refers
to a particular edge of the graph, and its value corresponds to a adjacent edge to this specific edge.
For example, the edge number 9 has three adjacency edges (6, 7 and 8), so the value of this allele is
8 that corresponds to one of these edges.

Any individual based on this encoding, cannot be directly transformed into node communities
of the graph as happens with the node encodings previously used. In this case, a decoding
phase is necessary to extract the resulting communities represented by each individual. The
process carried out by this phase can be seen in Algorithm 7, and it is divided into two main
parts: the process for extracting the communities of edges directly from the chromosome; and the
subsequent transformation process of these communities of edges into overlapping communities
of nodes.

If the value of an allele in the position i is j, this means that the edge ei and the edge ej have
one node in common, and therefore they should be assigned to the same community. Based on
this idea, the communities of edges are generated as shown in Algorithm 7 (lines 1 to 14). Then,
the overlapping communities of nodes can be extracted according to the link-based algorithm



72 Chapter 4. Multi-Objective Genetic Approaches for Overlapping Community Detection

proposed by Ahn et. al. [9]. Following this approach, each edge community is transformed into
a node community, which contains the source and target node for each edge belonging to the
original community (lines 15 to 23).

Algorithm 7: Decoding Algorithm to transform an individual with edge-based encoding
into a overlapping node partition of a graph.

Input: A graph N = (V,E) where V represents the set of vertices denoted by
{v1, . . . , vn}, and E is the set of edges denoted by {e1, . . . , em} that represents a
connection between the vertices. An individual I that is a set of alleles denoted
by {i1, . . . , im} where each ik represents an edge ek, and m is the total number of
edges (m = |E|).

Output: commNodes containing the communities of nodes decode from the individual
1 commsEdges←− ∅;
2 commE ←− ∅;
3 edgeUsed←− ∅;
4 while |edgeUsed| < |E| do
5 edgeid←− GetAndRemoveF irstElement(I);
6 while edgeid /∈ edgeUsed do
7 edgeUsed← edgeUsed ∪ {edgeid};
8 commE ← commE ∪ {edgeid};
9 edgeid←− GetAndRemoveElementAt(I, edgeid);

10 if edgeid /∈ commE then
11 commsEdges← commsEdges ∪ commE;
12 else
13 comm← GetCommWith(commsEdges, edgeid);
14 commE ← commE ∪ comm;

15 commsNodes←− ∅;
16 for i← 1 to |commsEdges| do
17 commE ←− commsEdgesi;
18 commN ←− ∅;
19 for j ← 1 to |commE| do
20 idNodeSource← GetIdNodeSource(G, commEj);
21 idNodeTarget← GetIdNodeTarget(G, commEj);
22 commN ← commN ∪ {idNodeSource, idNodeTarget};
23 commsNodes← commsNodes ∪ commN ;

24 return commsNodes;

Figure 4.3 illustrates an example of the final result obtained after applying the decoding algo-
rithm to an individual based on a edge encoding. In this example, the individual encodes a graph
partition into two communities with two overlapping nodes between them. The resulting edge
communities of the first part in the decoding process will be {3, 2, 5, 4, 1} and {7, 9, 8, 6}. Finally,
applying the second part of the process, these edge communities are transformed into node com-
munities by the extraction of the nodes associated to each edge. For example, the edge 3 in the
first community gives rise to the membership of nodes V3 and V4 in the corresponding commu-
nity of nodes. Therefore, continuing with the example, the node communities corresponding to
the previous edge communities mentioned will be {V 3, V 4, V 1, V 7} and {V 6, V 7, V 2, V 5, V 1}.
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Figure 4.3: Example of an individual with an edge-based encoding, and its corresponding node
communities after performing the decoding process. The input graph has 9 edges, so the size of the
individual is according to this value, and there are two resulting communities containing an overlap
of two nodes (V1 and V7).

4.2.2 Algorithm Description

In this new edge-based version of the algorithm, the population evolves according to a Multi-
Objective Genetic Algorithm where the individuals are evaluated using a POF, in the same
way as the node-based version of the algorithm. In addition the optimization criteria used as
objective functions are also the same described for this algorithm. Therefore, the pseudo-code
corresponding to both algorithms is the same as shown in Algorithm 6, except for the application
of the next three steps:

1. The first population is randomly generated (InitRandomPop method in line 6), taking into
account that in the edge-based encoding, each allele represents a particular edge of the
graph, and it has to get a random value only between the adjacent edges to this specified
edge.

2. The mutation operator has been modified to guarantee that new generated individuals
satisfy the encoding rules (Mutation method in line 18). Applying this operator, some
of the new individuals are randomly selected using a predefined mutation probability
(mutpb). Using the selected individuals, the mutation operation is performed, where some
chosen positions of the individual (using probability indmutpb) can be replaced with a
random value corresponding to a adjacent edge. For the crossover operator no changes
are needed due to its application fulfil the encoding rules. This operator exchange alleles
from two individuals randomly selected, and whose values are valid in both cases, so the
new individuals created are valid too.

3. To compute the connectivity metrics used in the fitness function (Fitness method in line
20), it will be necessary to have a partition of the graph into communities of nodes. So,
each individual should be decode before computing these metrics following the procedure
described in Algorithm 7.
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4.3 Experimental Results

In order to evaluate the performance of these two new evolutionary algorithms (node-based
and edgde-based MOGA-OCD) to discover overlapping communities, three main phases have
been carried out. The first one is focused on the analysis of the different measures, related
to the network connectivity, which later will be used as optimization criteria for both multi-
objective algorithms. For this purpose, a comparative assessment of internal and external metrics
previously described is performed using a well-know dataset. This analysis will allow us to
identify which are the most appropriate metrics for detecting overlapping communities, and to
tune up both versions of the MOGA-OCD algorithm.

Then, in the second phase, the new algorithms have been compared with the results ob-
tained using the previous evolutionary approach (GCF-II algorithm) in order to analyse the
differences of results obtained by single and multi-objective approaches. Finally, in the third
phase, both algorithms are assessed against different community detection algorithms extracted
from the state of the art. Two measures have been computed to evaluate the effectiveness of
the different algorithms; the Modularity and the Normalized Mutual Information (NMI). All the
algorithms used for the experiments identify overlapping communities, therefore, the Modularity
and NMI calculated are extended versions that can be applied to overlapping partitions. The
following subsections describe the datasets used for the experiments, and show the analysis of
the experimental results obtained for each phase.

4.3.1 Dataset Description and Experimental Setup

In the experimental phase, the MOGA-OCD algorithm has been evaluated measuring its quality
and accuracy. For this purpose, a dataset collection of real world networks has been selected
taking into account two main criteria: networks providing the ground truth of their community
structure, with their labels to measure the accuracy; and public and widely used networks to
compare the algorithm against others community detection algorithms. Table 4.1 shows the
details of the eight selected networks used for the experimental analysis. This table shows for
each network its total number of nodes (Nod.) and edges (Edg.), the number of communities
(Com.) contained within it, and if such network includes its ground truth information (GT). In
addition, two global measures of the network topology are shown (GCC and CN) to provide an
overview of the structure of the network regarding to its transitivity, and the size of the cliques
contained in it.

On the other hand, Table 4.2 shows the set-up for both versions of MOGA-OCD algorithm
that has been used during the experimentation phases. The different algorithm parameters have
been tuned up experimentally. The algorithm has been executed using a specific dataset (karate)
whose ground truth of the community structure is known to measure the accuracy achieved. The
best results obtained for this dataset has been used to fix the algorithm parameters.

4.3.2 Analysing the feasibility of the Connectivity Network Metrics as objective functions

As previously mentioned, the fitness function implemented optimizes two objectives. One is
based on internal connectivity metrics to find communities with high internal connections be-
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Dataset Description Nod. Edg. GCC CN TPR GT Com. Ref.

nba schedule Games played in the
2013-2014 NBA sea-
son

30 421 0,99 15 1 Yes 6 [171]

southernwomen Southern women so-
cial groups

32 93 0 2 0 No - [52]

karate Zachary’s karate
club

34 78 0,26 5 0,94 Yes 2 [129]

senate voting Senate voting data in
2014

87 1803 0,97 45 1 Yes 3 [84]

football American football
games in 2000

115 613 0,41 9 1 Yes 12 [129]

revolution Colonial American
dissidents

261 319 0 2 0 No - [67]

pgp Interactions in
pretty good privacy

10680 24340 0,37 25 0,44 No - [12]

Table 4.1: Description of the dataset collection of real networks used for the experimental phase.

Parameter Description Node-based Edge-based

λ Population size 1500 1000
compb Probability for each allele to be a boundary

community
0,1 -

µ Number of individuals to select for the next
generation

200 100

ngen Maximum number of generations 100 50
nconv Number of generations with same POF to

stop
10 10

mutpb Probability of mutating an individual 0,1 0,1
indmutpb Independent probability for each allele to be

mutated
0,1 0,1

Table 4.2: Genetic Parameters of MOGA-OCD algorithm.

tween their nodes. And the other one, is based on external connectivity metrics, to detect
communities having sparse externally connections to the rest of nodes of the graph. Therefore,
to select the most appropriate metrics to detect overlapping communities, a comparative as-
sessment of the connectivity metrics (internal and external) is carried out for both versions of
MOGA-OCD algorithm (node-based and edge-based). In these experiments the karate network
has been used as a training dataset (see Table 4.1 for details), and each test is running 10 times
using a different combinations of connectivity metrics as objective functions. Finally, the best
solution for each execution is selected as the final result. The following sections presents the
results obtained for each version of the algorithm with its corresponding analysis.
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4.3.2.1 Results for Node-based MOGA-OCD algorithm

The results obtained by the MOGA-OCD algorithm, using a node-based encoding for each
combination of a pair of connectivity metrics (internal and external), is shown in Table 4.3.
Since each test combining a pair of metrics is running 10 times, this table presents the average
and standard deviation values obtained by the different connectivity metrics.

Firstly, the results for each external metric used as optimization criteria (mext) have been
analysed. The chosen dataset contains two communities, so the Separability(Sep) and Expansion
(Exp) metrics obtain the best results regarding to the number of detected communities, getting
the worst results for the Cut Ratio (CR) metric. Analysing the results given by the connectivity
metrics, the design of the fitness function for MOGA-OCD algorithm should be considered. This
function has two objectives to identify communities with high internal connectivity (mint), and
sparse external connectivity (mext). According to the metric definitions presented in the State
of the Art, this means that all internal metrics which are Density (Davg), Triangle Participation
Ratio (TPRavg), Clique Number (CNavg) and Clustering Coefficients (LCCavg and GCCavg),
should be as high as possible. However, the external metrics should be as high as possible for
the Separability metric, and as low as possible for the others two metrics (Expavg and CRavg).
Taking this into account, Table 4.3 shows that the best results for almost all the connectivity
metrics have been obtained using the Sep as mext optimization parameter of the algorithm. For
this specific case (first row of Table 4.3), all the internal metrics and the Separability metric
achieves the higher values. In addition, the Expansion and CR metrics reach the lower values,
meaning that the external connection are minimized. Therefore, this metric has been selected
as one of the objective functions of the algorithm (mext).

Metric
N[C/Nod] Davg LCCavg TPRavg GCCavg CNavg Expavg Sepavg CRavgmext mint

Sep LCC [2/13,6] 0,32±0,07 0,76±0,10 0,95±0,05 0,48±0,12 4,44±0,30 1,48±0,79 1,78±0,67 0,070±0,025
GCC [2/14,8] 0,26±0,05 0,57±0,10 0,74±0,10 0,55±0,09 4,9±0,21 1,35±0,21 1,46±0,24 0,070±0,10
TPR [5,9/6,3] 0,44±0,13 0,36±0,34 0,47±0,42 0,25±0,23 2,95±0,96 2,22±1,09 0,91±1,51 0,079±0,031

CN [2/16,6] 0,30±0,04 0,64±0,11 0,92±0,06 0,40±0,06 4,8±0,35 0,64±0,13 4,12±1,78 0,039±0,007
D [2,7/11,8] 0,47±0,20 0,63±0,14 0,82±0,14 0,54±0,12 4,4±0,84 2,07±1,40 1,50±0,84 0,085±0,038

Exp LCC [2/13,5] 0,34±0,12 0,73±0,10 0,92±0,06 0,44±0,09 4,35±0,47 1,03±0,20 1,96±0,54 0,050±0,006
GCC [2,1/13,9] 0,25±0,09 0,56±0,15 0,72±0,21 0,55±0,14 4,25±0,68 1,16±0,39 1,57±0,65 0,059±0,020
TPR [10,4/2,6] 0,03±0,09 0±0 0±0 0±0 1,1±0,32 1,92±0,36 0,01±0,02 0,063±0,009

CN [2/14,3] 0,29±0,06 0,63±0,10 0,87±0,09 0,40±0,05 4,4±0,52 0,79±0,26 2,63±1,50 0,042±0,012
D [2,6/11,6] 0,37±0,28 0,53±0,26 0,76±0,22 0,40±0,28 3,5±0,82 1,68±0,82 1,07±0,46 0,074±0,021

CR LCC [2,1/10,8] 0,34±0,08 0,74±0,13 0,89±0,13 0,42±0,14 3,78±0,44 1,47±0,47 1,27±0,68 0,063±0,015
GCC [4,2/7,4] 0,19±0,10 0,37±0,18 0,39±0,19 0,54±0,32 2,9±0,32 1,44±0,49 0,43±0,21 0,056±0,025
TPR [11,9/2,6] 0,21±0,36 0±0 0±0 0±0 1±0 2,08±0,58 0±0 0,066±0,017

CN [3,3/8,4] 0,32±0,08 0,39±0,19 0,57±0,18 0,43±0,11 3,45±0,72 0,94±0,22 1,33±0,79 0,037±0,10
D [7,6/5,8] 0,42±0,25 0,29±0,23 0,39±0,31 0,32±0,22 2,7±0,45 1,64±0,42 0,45±0,11 0,059±0,021

Table 4.3: Comparative assessment of Connectivity Network Metrics using the karate dataset for
the node-based MOGA-OCD algorithm. The best average value reached by each metric is highlighted
in bold. Internal connectivity metrics are marked in light grey, whereas External connectivity metrics
are marked in dark Grey

Using the Sep as one of the objective functions (mext parameter), Table 4.3 shows that the
best values for all the external metrics are reached using the CN as second objective function.
On the other hand, many of the internal metrics (Davg, LCCavg and GCCavg) obtain the best
results when themselves are used as second objective function (mint). This is an expected
result, because any multi-objective algorithm try to find solutions optimizing simultaneously
both objectives (in this case the external and internal connectivity metrics). However, LCC and
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GCC also achieve the best results for TPRavg and CNavg, respectively.

It can be appreciated that there is not only a specific metric which achieves the best results.
Therefore, in order to select the most suitable metric to optimize the internal connectivity,
it is necessary to carry out a more detailed analysis. For this purpose, Figure 4.4 shows the
results grouped by internal metrics, showing the standard deviation to study the stability of the
solutions found, too. As shown in this Figure, using the TPR metric, the algorithm achieves
the worst results, with the lowest values for almost all of the metrics. In addition, analysing the
standard deviation, this metric obtains high values, which means that the solutions detected
are quite variable between different algorithm executions. D also reaches high values for the
standard deviation. For this reason, although this metric obtains good average values for the
rest of the metrics, it is not being the most suitable to solve the problem. On the other hand,
GCC, LCC, and CN achieve high or medium values for all the internal metrics. In addition,
these metrics have lowest values regarding to the standard deviation, which means that the
solutions optimizing these metrics are more stable.
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Figure 4.4: Results of network metrics grouped by internal connectivity metrics, using Sep as
external function objective, in the node-based MOGA-OCD algorithm.

Finally, and in order to evaluate the quality of the results for each internal connectivity
metric, the Modularity and NMI measures have been calculated and shown in Table 4.4 and
Figure 4.5. According to the results presented in previous table, in general terms the TPR
obtains the worst results, reaching bad outcomes on both metrics. It can be clearly noticed
that the CN obtains the best values regarding to the Modularity, but contrary to the NMI this
metric gets the worst values. The GCC achieves the greatest precision, finding the solutions
most similar to the ground truth for the karate dataset. However, the value of the Modularity
is low. As show in Figure 4.5, taking into account both evaluation measures, the LCC obtain
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good overall values, reaching a value very close to the best result of NMI and quite high related
to the Modularity.

In general terms, LCC achieves good results related to the rest of internal metrics, and the
best results according to the quality of the detected solutions. So, this metric has been selected
as the second objective function of the algorithm (mint). Based on these experimental results,
we can conclude that the optimization criteria which perform better in the algorithm are the
Sep as objective function for mext parameter, and the LCC as mint parameter.
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Figure 4.5: Comparison between evalua-
tion metrics, NMI and Q, for the node-based
MOGA-OCD algorithm. The size of the bub-
ble represents the NMI, whereas the color rep-
resents the Q.

Met. NMIb NMIavg Qb Qavg

CN 0,129 0,094±0,024 0,669 0,373±0,081
D 0,175 0,137±0,020 0,578 0,261±0,131
TPR 0,196 0,169±0,017 0,556 0,146±0,114
GCC 0,228 0,144±0,035 0,566 0,244±0,119
LCC 0,226 0,152±0,039 0,600 0,316±0,105

Table 4.4: Results of evaluation metrics (NMI
and Q) for each internal connectivity metric, us-
ing Sep as one of the objective functions (mext)
in the node-based MOGA-OCD algorithm.

4.3.2.2 Results for Edge-based MOGA-OCD algorithm

As shown in the previous version of MOGA-OCD algorithm, a detailed study for each combi-
nation of a pair of connectivity metrics (internal and external) has been carried out using the
edge-based version of the algorithm. This analysis enables to establish which of the metrics op-
timize better the search of communities, and therefore, these will be use as objective functions
in the algorithm. Table 4.5 shows the average, and standard deviation values, obtained by the
different connectivity metrics for each combination of metrics used as objective functions.

Analysing the results obtained for each external metric, when it is used as optimization
criteria (mext), it can be noticed that Sep achieves the worst values in general (first row in the
table). As would be expected, the higher value in relation to Sepavg has been reached in this
case, besides with rather difference regarding the rest of external metrics (Exp and CR). This
fact also happens when the others external metrics are used as optimization criteria, but with
a lower difference on the improvement. However, the results of the internal metrics are worse
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Metric
N[C/Nod] Davg LCCavg TPRavg GCCavg CNavg Expavg Sepavg CRavgmext mint

Sep LCC [2,2/20,7] 0,26±0,05 0,72±0,05 0,96±0,02 0,36±0,07 4,7±0,26 0,74±0,15 14,58±5,42 0,054±0,009
GCC [2/20,6] 0,31±0,17 0,72±0,06 0,96±0,01 0,42±0,14 4,5±0,53 2,37±1,92 16,46±3,93 0,102±0,065
TPR [2/31,45] 0,15±0 0,58±0,01 0,95±0 0,26±0 5±0 0,12±0,03 24,22±1,24 0,043±0,008

CN [2/31,4] 0,15±0,01 0,58±0,01 0,95±0 0,26±0 5±0 0,11±0,05 25,56±2,84 0,040±0,009
D [2,1/21,9] 0,28±0,12 0,67±0,05 0,95±0,01 0,40±0,12 5±0 0,67±0,30 18,83±4,27 0,046±0,008

Exp LCC [2,9/20,8] 0,26±0,10 0,72±0,12 0,98±0,02 0,36±0,08 4,7±0,35 0,89±0,45 4,19±2,03 0,057±0,016
GCC [2/25,5] 0,20±0,03 0,61±0,04 0,95±0,01 0,32±0,03 5±0 0,34±0,11 8,26±3,13 0,043±0,010
TPR [2/32] 0,15±0 0,58±0,01 0,95±0 0,26±0 5±0 0,09±0,02 20,67±3,93 0,049±0,009

CN [2/31,7] 0,15±0,01 0,58±0,01 0,96±0 0,26±0 5±0 0,10±0,03 22,13±6,53 0,047±0,010
D [3,1/18,6] 0,37±0,24 0,65±0,11 0,95±0,02 0,34±0,12 4,1±0,88 0,66±0,49 8,19±5,54 0,053±0,003

CR LCC [3,5/15,5] 0,31±0,06 0,77±0,08 0,98±0,02 0,38±0,03 4,6±0,31 0,71±0,40 7,20±2,13 0,046±0,013
GCC [2,4/19,2] 0,28±0,13 0,65±0,06 0,95±0,01 0,38±0,13 4,9±0,32 0,53±0,26 6,00±1,87 0,035±0,007
TPR [2/22,1] 0,22±0,01 0,64±0,01 0,95±0,01 0,34±0 5±0 0,40±0,01 7,09±0,03 0,032±0,001

CN [2/22,2] 0,22±0,01 0,64±0,01 0,94±0,01 0,34±0 5±0 0,40±0,01 7,09±0,03 0,032±0,001
D [3,1/15,5] 0,35±0,17 0,64±0,03 0,94±0,01 0,35±0,02 4,4±0,97 0,69±0,35 5,01±2,36 0,038±0,007

Table 4.5: Comparative assessment of Connectivity Network Metrics using karate dataset for the
edge-based MOGA-OCD algorithm. The best average value reached by each metric is highlighted in
bold. Internal connectivity metrics are marked in light grey, whereas External connectivity metrics
are marked in dark Grey.

than the other two external metrics (Exp and CR).

Comparing the results obtained with regard to internal metrics for Exp and CR, overall,
CR obtains higher average values. But, as shown in the third row of Table 4.5, there is not
only a specific internal metric reaching the best values when it is used as second optimization
criteria (mint). Therefore, in order to chose the most suitable metrics to use in the algorithm, it
is necessary to carry out a more detailed analysis. For this purpose, the Q and NMI measures
have been show in Table 4.6 and Figure 4.6, to assess the quality of the solutions found when
CR is used as mext parameter of the algorithm.
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Figure 4.6: Comparison between evalua-
tion metrics, NMI and Q, for the edge-based
MOGA-OCD algorithm. The size of the bub-
ble represents the NMI, whereas the color rep-
resents the Q.

Met. NMIb NMIavg Qb Qavg

CN 0,150 0,122±0,036 0,536 0,534±0,003
D 0,150 0,142±0,009 0,532 0,513±0,022
TPR 0,150 0,129±0,034 0,538 0,533±0,003
GCC 0,155 0,144±0,009 0,545 0,519±0,021
LCC 0,175 0,157±0,008 0,538 0,449±0,068

Table 4.6: Results of evaluation metrics (NMI
and Q) for each internal connectivity metric, us-
ing CR as one of the objective functions (mext)
in the edge-based MOGA-OCD algorithm.



80 Chapter 4. Multi-Objective Genetic Approaches for Overlapping Community Detection

Analysing the results shown in previous table and figure, the worst outcomes for both mea-
sures (Q and NMI) has been reached when the D is used to optimize the search for communities.
According to the Q value, when the GCC is used as optimization criteria, the algorithm achieves
the highest value, and an intermediate NMI value. Conversely, the algorithm is able to detect
the solution most similar to the ground truth of the karate dataset, using the LCC. So this metric
reaches the higher precision, and a good result for the Q value. However, analysing the results
shown in Table 4.5 related to the different connectivity metrics, in general it can be noticed than
LCC obtains better results than GCC for most of these metrics, reaching even the best values in
some cases (LCCavg and TPRavg). Therefore, taking these experimental results into account,
the two metrics selected as objective functions for the edge-based MOGA-OCD algorithm have
been, the CR metric for mext parameter, and the LCC metric for mint parameter.

4.3.3 Preliminary comparison of MOGA-OCD algorithms against previous evolutionary
approach

In this section, the results obtained using the previous evolutionary approach (GCF-II algorithm)
have been compared against the results of the new multi-objective approaches (node-based and
edge-based MOGA-OCD algorithm). As presented in previous chapter, the GCF-II algorithm
was evaluated using a dataset collection, which consists of a series of graphs representing the
cast votes between the participant countries in the Eurovision Song Contest. Therefore, in order
to carry out a comparative analysis with it, the same dataset collection has been chosen. The
definition of the Q metric extended by Nicosia et al. [134] for overlapping partitions into graphs
is used to evaluate the outcomes obtained by each algorithm.

The three evolutionary approaches are based on GAs, using as fitness function metrics related
to the Graph Theory. The main difference between the previous algorithm, and the two new
algorithms presented in this chapter, is that MOGA-OCD algorithms optimize two objective
functions. As shown in Figure 4.7, both new algorithms significantly improve the results in all
of the cases.

Since 2004, the televoting system was established to vote in the final round of the contest.
From this point on, all the countries that are participant of the semifinals rounds, can also cast
votes in the final round. For these reasons, the network topology of the graph representing the
subsequent year changed. The graphs for the televoting period contain more nodes and edges.
This fact can be appreciated in the results that have a clearly variation, as shown in the Figure
4.7. However, the results of MOGA-OCD algorithms are still much better despite this fact.
Therefore, in general terms, it can be concluded that the multi-objective approach is able to
perform better, than the previous one based on a single-objective of the algorithm implemented
in this thesis.

On the other hand, comparing only the quality of the solutions found by MOGA-OCD
algorithms, it can be noticed that the variation for the televoting period in the Q values is
different in both cases. The Q values obtained by Node-based MOGA-OCD decrease in value
at this period, whereas the Q values increase for the edge-based version of the algorithm. This
may suggest that for graphs with higher connectivity, the edge-based algorithm outperforms
the node-based version. During the following the experiments, this aspect of the MOGA-OCD
algorithms will be considered more in detail to validate if this occurs with other kinds of graphs.
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Figure 4.7: Comparative assessment of evolutionary approaches for overlapping community detec-
tion using the Q value as evaluation metric. Each year is related to a graph representing the voting
of this year in the Eurovision Song Contest.

4.3.4 Comparative assessment of communities detection algorithms

This section shows an additional analysis, to evaluate the accuracy and quality of the new
MOGA-OCD algorithms, against other similar algorithms from the state of the art such as
Clique Percolation, Coda, Conga and Congo. For this purpose, two type of datasets have been
chosen: real world networks providing the ground truth of their communities which will be used
to evaluate the accuracy of these algorithms; and more complex real networks, without ground
truth, which will be used to evaluate the effectiveness and quality of detected solutions.

Taking into account the conclusions extracted from the previous analysis on connectivity
metrics, in the next experiments the node-base MOGA-OCD algorithm will be executed using
the Sep metric, and the LCC as objective functions, whereas the CR and LCC metrics will be
used for the edge-based version of the algorithm. In this experimental phase, the algorithm is
executed 10 times for each dataset, and the best solution of these 10 executions has been selected
as the final result to compare against the solutions generated by the others algorithms.

4.3.4.1 Experimental results for datasets with ground truth

Firstly, the different algorithms have been applied to the dataset with ground truth, measuring
their accuracy and quality through the NMI and Q measures, respectively. Table 4.7 presents
the results grouped by dataset, showing both metrics for each algorithm. In addition, this table
shows the number of communities detected (N. Com.), and the average number of nodes per
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community (Avg. Nodes), in order to compare the different graph partitions performed by each
algorithm.

DataSet Algorithm N. Com. Avg. Nodes Q NMI

nba schedule groundtruth 6 5 0,281 1
CPM 2 15 0,879 0,21
Coda 20 5 0,069 0,22
Conga 2 15 0,879 0,21
Congo 2 15 0,879 0,21
Node-based MOGA-OCD 2 15 0,879 0,21
Edge-based MOGA-OCD 2 15 0,879 0,21

senate voting groundtruth 3 42 0,810 1
CPM 1 87 0 0
Coda 79 15 0 0,43
Conga 2 44,5 0,852 0,75
Congo 2 44,5 0,852 0,75
Node-based MOGA-OCD 2 39,5 0,754 0,64
Edge-based MOGA-OCD 2 44,5 0,852 0,75

karate groundtruth 2 17 0,261 1
CPM 3 6 0,515 0,04
Coda 36 4 0 0,16
Conga 4 8,5 0,476 0,11
Congo 3 6 0,322 0,13
Node-based MOGA-OCD 2 14,5 0,605 0,23
Edge-based MOGA-OCD 4 10 0,443 0,17

football groundtruth 12 10 0,642 1
CPM 4 13 0,445 0,25
Coda 76 7 0 0,42
Conga 6 31,5 0,511 0,22
Congo 11 9 0,342 0,20
Node-based MOGA-OCD 5 9 0,183 0,48
Edge-based MOGA-OCD 8 24,75 0,386 0,47

Table 4.7: Comparative Assessment of Community Detection Algorithms for all the datasets with
ground truth.

As shown in this Table, most of the algorithms perform the same partition of the graph
related to the first dataset (nba schedule), whit the exception of Coda algorithm. This graph
only contains two connected components with 15 nodes (see a further description in Table 4.1),
and for this reason the algorithms tend to partition the graph into two communities, achieving
the same results in terms of NMI and Modularity. However, Coda algorithm detects a greater
number of communities, and it slightly improves the NMI metrics, but the Q value is much
worse being close to 0, which corresponds to a modularity for a randomly generated graph.

Something similar happens using the senate voting dataset. There are two highly connected
components in the graph, so four of the algorithms (Conga, Congo and both MOGA-OCD
algorithms) perform a partition into communities according to these components. In addition,
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in this case these components of the graph are very similar to the two communities given in
the ground truth. Therefore these algorithms achieve high values of NMI, while the other two
algorithms (CPM and Coda) obtains low values on both evaluation metrics. The best results are
obtained by Conga and Congo and edge-base MOGA-OCD algorithm, showing the node-based
version of the new algorithm results very close to them.

The outcomes of the following two datasets are more varied for each different algorithm,
because these graphs don’t have a network topology as structured as the previous graphs.
Analysing these results, in the karate dataset, both MOGA-OCD algorithms outperform the
NMI value, and in addition the node-based version the Q value is significantly improved. In
the results for the rest of the algorithms, it can be noticed that when a specific algorithm im-
proves a particular measure, its value in the other measure worsens. For example, the CPM
algorithm has a high value on Modularity, whereas it has the worst value on NMI. By contrast,
Coda algorithm obtains a higher value on NMI, having the worst value on Modularity. Only the
MOGA-OCD algorithms are be able to achieve a balanced value in both measures.

To analyse more in detail the results, a visualization of the communities detected has been
generated, proving a better appreciation of the structure of these node groupings. In Figure 4.8
the communities detected, using the karate dataset for each algorithm, are plotted using a graph
representation. The first sub-figure (a) shows the existing communities in the ground truth of
this dataset. For the rest of figures, the overlapping nodes have been coloured in gray, while the
unassigned nodes are shown in white. Due to the poor outcome obtained by Coda algorithm,
these results has not been included in the figure.

CPM, Congo, and Conga algorithms (Figure4.8.b, Figure4.8.c and Figure4.8.d) detect an
isolated community consisting of 5 nodes, which is clearly identified according to the topology
structure of the network. However, this community is not found in the ground truth related
to this dataset. This is because the ground truth has been manually labelling by a human,
and it may not necessarily correspond to the network structure. The edge-based MOGA-OCD
algorithm splits into two this isolated community, whereas the node-based version contains this
in a larger community as in the Ground-truth case. For that reason, the node-based MOGA-
OCD algorithm reaches the higher NMI value. The rest of nodes belonging to the graph have
been divided into 2 or 3 communities. In general terms, the resulting communities obtained by
the MOGA-OCD algorithms are the most similar to the ground-truth, and also obtain a medium
value of Q, meaning that are well structured too.

Finally, analysing the results of the last dataset with ground truth (football), Conga achieves
the best Q value, but with a low NMI value. On the other hand, both MOGA-OCD algorithms
obtain the best NMI values, but the node-based version has a low Q value, whereas the edge-
based version obtains a good value on Q. These results seems similar to those obtained with
the previous dataset, where for the algorithms that reach high values on Q, their accuracy
considerably decrease. This fact can be clearly observed in the case of Coda algorithm that
reaches the highest value of NMI for the algorithms from the state of the art, but it gets by
far the worst value of Q. There has been a slight decrease in the Q value for the edge-based
MOGA-OCD algorithm, but it is not close to 0 as occurs in the Coda algorithm, which means
that the partition detected is still structured from the point of view of the network topology.

Taking into account the results from all datasets, it can be concluded that most of the
community detection algorithms obtains similar results when they are applied to graphs with a
strong structured topology. In these cases, the new MOGA-OCD algorithms identify commu-
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(a) Ground-truth (b) CPM

(c) Congo (d) Conga

(e) Node-based MogaOCD (f) Edge-based MogaOCD

Figure 4.8: Visualization of resulting communities from different algorithms for the karate dataset.
Overlapping nodes are represented in gray colour, whereas the unassigned nodes are shown in white
colour.

nities according to the network topology, with good values in both evaluation metrics. On the
other hand, using datasets corresponding to less structured graphs, MOGA-OCD algorithms
improve the value for NMI measure, and they reach good values for the Q measure. It means
that the new evolutionary algorithms perform a good partition of the graph with regarding to
the Q value, being also the most similar partition to the ground truth, so reaching overall the
best results.

4.3.4.2 Experimental results for datasets without ground truth

In order to assess the effectiveness of the new algorithms, it is necessary to test them using more
complex networks as shown in Table 4.8. The first two datasets, southernwomen and revolution,
correspond to unstructured graphs. The CC and TPR in both datasets is 0, and they have a
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very low value of CN (2) too, as can be seen in Table 4.1 where a overall description of each
dataset was given. These datasets are used to test the algorithm behaviour on these type of
graphs. Due to the CC and CN values, the LCC metric can not be used as objective function
by the algorithms. Therefore, in these two cases the chosen metric for mint parameter has been
the D. Table 4.8 shows the results obtained on Q for each algorithm, including also the number
of communities detected (N. Com.), and the average number of nodes per community (Avg.
Nodes).

DataSet Algorithm N. Com. Avg. Nodes Q

southernwomen CPM - - -
Coda 51 4 0
Conga 4 11 0,475
Congo 3 14 0,665
Node-based MOGA-OCD 2 15,5 0,664
Edge-based MOGA-OCD 2 19 0,639

revolution CPM - -
Coda 45 57 0
Conga 60 5 0,001
Congo 63 5 0,001
Node-based MOGA-OCD 4 44 0,297
Edge-based MOGA-OCD 3 95 0,830

pgp CPM 734 3 0,568
Coda 100 135 0,560
Conga - - -
Congo - - -
Node-based MOGA-OCD 4 406,5 0,124
Edge-based MOGA-OCD 2135 8,9 0,188

Table 4.8: Comparative assessment of Community Detection Algorithms for a dataset collection
without ground truth.

Analysing the results of the first dataset in Table 4.8, it can be seen that Congo and both
MOGA-OCD algorithms achieve the best values of Q, being them values very close. However
the partition of the graph performed by each algorithm is different. Congo detects three commu-
nities, whereas MOGA-OCD algorithms identify only two communities, although the average
size of the communities detected is similar for all of them. The worst results have been ob-
tained using Coda algorithm, as already occurred using the datasets with ground truth. On
the other hand, CPM is not able to partition the graph. This is due to this algorithm have a
minimum clique size to find communities which is 3 by default. The average Clique Number of
the communities detected for the others algorithms is 2, so CPM algorithm is unable to find any
community that fulfils this requirement.

Comparing the Q values obtained for the revolution dataset, it is clear that MOGA-OCD
algorithms improve the results of the rest of the algorithms, having all the other algorithms a
very low value of Q that is close to 0. In addition, using the edge-based version, this improvement
is very significant. As in the previous dataset, the same effect happens with CPM algorithm that
it is unable to detect any community. Regarding the number and size of communities, the new
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algorithms find a less number of communities, but with a larger size. However, as mentioned
before, these communities are more structured, due to their higher value of Q.

Finally, Table 4.8 presents the results of the algorithms using a dataset of large size (pgp
dataset described in Table 4.1). As shown in this table, two algorithms are not able to perform a
partition of the graph (Conga and Congo). In this case Coda algorithm has a high value on the
Q, thereby being an exception, due to for the rest of datasets this algorithm had always obtained
the worst results. CPM algorithm obtains the best value of Q, but finding many communities
of very small size. In particular, the average size of these communities is 3, so this method is
returned as the graph partition the triangles contained in it. Otherwise, the node-based MOGA-
OCD identities few communities with a large size into the graph, reaching a good value of Q.
The edge-based version of the algorithm splits the graph into a large number of communities
with a intermediate size, and its Q value is better than for the node-based version. Therefore,
in general terms, MOGA-OCD algorithms are able to perform a good overlapping division of
the different types of graphs, specifically when they are compared against the algorithms from
the state of the art.

4.3.5 Experimental Conclusions

Taking into account all the experimental analysis carried out in this chapter, some main conclu-
sions can be drawn. Coda algorithm obtains the worst results in most of the experiments. This
algorithm tend to detects many unstructured communities with a very low value of Q, or even
equal to 0 in same cases. In addition the community overlapping is so high, making impossible
to differentiate the distinct communities, and having a precision very low for the dataset with
ground truth.

Conga and Congo algorithms usually have good results when the graph is very structured
and the algorithm can partition it according to its network topology. But when these algorithms
are applied using large size graphs are not able to perform an overlapping partition. In addition,
for unstructured or sparse graphs, the accuracy and quality of the partition detected by these
algorithms significantly decrease. This means that they are highly dependent on topology and
the structure of the input graph.

Using unstructured or sparse graphs, the node-based MOGA-OCD algorithm improves the
results in most of the cases. Related to the structured graphs, this version of the algorithm
obtains results similar, or closer, to the rest. On the other hand, the edge-based MOGA-OCD
algorithm obtains good results for both types of graphs (structured and unstructured).

Therefore, in general terms, the new MOGA-OCD algorithms have good results for the
different types of graphs analysed, including largest datasets such as pgp where the same algo-
rithms are not able to compute a graph partition. Furthermore, using the dataset collection
with ground-truth, the new algorithms reaches the best accuracy in most of the cases studied.
Therefore, the experimental results show that these new approaches improve overall the results
of the other classical approaches from the state of the art.



Chapter 5

Applications for detecting
communities on Social Graph-based

Information

“This world is not so kind, People trap your mind
It’s so hard to find someone to admire.”

- Madonna (Nobody knowns me - American Life)

This chapter presents the application of the community detection algorithms to identify opin-
ion communities related to Public Healthcare topics in Social Networks, acquiring new collective
knowledge about their behaviour, preferences, profiles, etc. For this purpose, both classical al-
gorithms and new algorithms implemented in this thesis will be used comparing their results to
evaluate them. In this particular work, these algorithms are applied to detect communities in
Twitter which are disseminating vaccine opinions. Finally, an analysis of the influence of these
communities to the rest of users, in a particular zone or country, is carried out proving how
useful is this new knowledge to Public Healthcare Organizations. These organizations could
improve their strategies increasing control and preventive measures in the risk zones identified.

For this purpose a dataset collected from Twitter, and the vaccination coverage rates re-
trieved from the immunization monitoring system of WHO, have been used to perform several
analysis. Using both datasets, an initial analysis is made focused on measuring the potential
influence of vaccine opinions based on the variation in the coverage rates. In this analysis two
factors are used: Topic Relevance Factor (quantifying the relevance of vaccine topic in a given
country) and Kurtosis of Vaccination Coverages (measuring the distribution changes of vaccina-
tion coverages rates). Afterwards, generating a network representation of the Twitter dataset,
Community Detection Algorithms have been applied to identify groups of similar users opin-
ing about vaccines. Finally, several centrality network metrics have been used to study these
communities, discovering the most relevant users and analysing their social influence.

5.1 Detecting Discussion Communities on Vaccination in Twitter

The use of vaccines has contributed to dramatically decrease mortality rates from infectious
diseases in the 20th century [72]. In 1920, 469,924 measles cases were reported in United States,
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and 7575 patients died. The number of cases decreased to fewer than 150 per year in the 50s,
and in 2008 there were only 64 suspected cases of measles in the world. However, currently,
social groups related to vaccines have emerged influencing on the opinion of population about
vaccination. This fact could bring on disease outbreaks because they are more common when
vaccination rates decrease [95, 136, 169]. These vaccination communities have taken advantage of
social media technologies to effectively disseminate its message and to spread their theories [99].
In recent years, several studies on various social media services such as YouTube [102], MySpace
blogs [101], and Social Networks (SN) [160], present this dissemination and their effects. In
addition, statistical analysis show how this vaccination information influences social media users
in their treatment decisions [166].

Currently, one of the most popular social networks (SN) is Twitter [4], producing huge
amounts of public information. Twitter users can generate new data sources of collective in-
telligence through their comments and interactions, allowing the application of data mining
techniques in several fields [21] such as marketing campaigns [38, 23], financial prediction [13]
or public healthcare [16, 19, 45], amongst others.

In the related literature, there are several works investigating knowledge acquisition from
social networks about vaccine sentiments using classification techniques [33, 113, 153] in most
cases. These classification techniques usually obtain better results than Clustering techniques
as a consequence of its supervised nature. However, clustering techniques are able to discover
hidden information (or patterns) on a dataset, and they don not need a previous human-labelling
process. Any human-labelling process can be really time-consuming, or even impossible, for huge
datasets extracted from SN as Twitter.

The information extracted from a SN can be represented as a graph, where the vertices
represent the users, and the edges represent the relationships among them (i.e. a re-tweet of a
message or a favourited tweet). This graph representation can be clustered into user groups, or
communities, based on the topology information of the graph. Each community should include
strongly interconnected vertices and few connections with the rest of graph vertices. Therefore,
the problem of community detection within a SN can be handled using graph clustering algo-
rithms [154]. These algorithms can automatically organize a set of users from a SN into similar
communities to acquire collective knowledge about their behaviour, preferences, profiles, etc.

This section presents an application of community detection algorithms to detect user groups
in Twitter which are disseminating vaccine opinions in order to analyse their influence to the rest
of users into their own community, zone, or country. Many people looks for vaccination informa-
tion on the internet, and the data found can impact on their vaccination decisions. Therefore,
Public Healthcare strategies could be improved through the application of the community detec-
tion techniques, increasing control and preventive measures in the identified risk zones. In this
particular work, the use of these algorithms are focused on discovering and tracking anti-vaccine
movements arising in SN. For this purpose, firstly an analysis of the Twitter Social Influence on
the vaccine coverage rates is carried out. Afterwards, a second part of the work is focused on the
study of a real re-tweet graph, representing the user interactions who talk about vaccination.
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5.1.1 Methodology to analysis the potential influence of social vaccine communities on
healthcare

This preliminary analysis is focused on measuring, and analysing, the potential healthcare in-
fluence of vaccine opinions from Twitter users. For this purpose, a comparative assessment of
two factors is carried out: Topic Relevance (TRf ), and Kurtosis of Vaccination Coverage Rates
(KV CR). TRf per country measures the importance of the countries which are talking about
vaccination (see eq. 5.2). On the other hand, KV CR per country measures the variation in
the coverage rates of population vaccinated by antigen in a particular country (see eq. 5.3).
Therefore, the comparative assessment between these two factors will allow us to perform an
influence analysis of opinions from social networks on vaccination decision making.

To carry out this social influence analysis, firstly a dataset which contains vaccine-related
tweets has been gathered. In addition, the vaccination coverage rates published by the immu-
nization monitoring system of the World Health Organization (WHO) [5] have been retrieved.
This official report shows, for each country, its official coverage estimation per year. Using both
datasets, two factors (TRf and KV CR) have been calculated per country in order to measure
the social influence on immunization rates.

The whole process of influence analysis includes four different sub-phases: Data Extraction,
Data Preprocessing to Identify Tweet Locations, Social Data Analysis, and Visualization of
Geo-Spatial Information. These are detailed in the following subsections.

5.1.1.1 Data Extraction

The data used in this work have been extracted from two sources:

• Twitter [4]: This is a Social Network where users share information about personal
opinions in tweets. Tweets are posts, limited to 140 characters, containing information
about opinions, photos, links, etc. A special kind of tweet is the re-tweet, which is created
when one user reposts the tweet of another user. Users on Twitter generate over 400 million
tweets every day, and they are available through public APIs that provide functionalities
for searching by keywords, hashtags, phrases, geographic regions, or user-names. The
information collected for this work were all the tweets containing the word ’vaccines’.

• WHO web site [5]: The immunization monitoring system of WHO, collects reports in-
cluding information such as the estimations of national Immunization Coverages, reported
cases of Vaccine Preventable Diseases (VPDs), Immunization schedules, or indicators of
immunization system performance, amongst others. This information is available by WHO
Member State, as well as summarized by WHO Region.

5.1.1.2 Data Preprocessing to identify Tweet locations

Data preprocessing methods prepare the data to be analysed. Immunization coverage rates
obtained from the WHO are reported per country, therefore the location information of the
tweets is necessary to analyse social influence on vaccination coverage. Location information
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on Twitter is available from two different sources: geotagging (users can optionally choose to
provide location information for the tweets using a system with GPS capabilities) or using the
user profile information (user location can be extracted from the location field in the user profile).

Only 1% of all Tweets are geolocated, and it is often necessary to use the user profile
information to determine location. In addition, the location string from the user profile must first
be translated into geographical coordinates. There are several on-line services (Bing, Google, and
MapQuest among others) which can take a location string as input, and return the coordinates
of the location as output. The granularity of the location is generally thicker in the case of large
regions, such as the center of town for a given city name. In this work the preprocessing process
has been divided into two further steps:

1. Geocoding Process: It is the process of converting addresses (for example: ”Mountain
View, California”) into geographic coordinates (37.42, -122.08). For this purpose, the http
geocoding service provided by the Google Maps API has been used.

2. Finding country location: This process translates the geographical coordinates into
a particular country. The Geospatial Data Abstraction Library (GDAL) is a translator
library for geospatial data formats Using this library the geographic coordinates have been
used to identify the origin country from the users.

5.1.1.3 Social Data Analysis

Once the vaccine information is extracted and preprocessed, two factors per country are calcu-
lated to measure the healthcare impact of vaccine opinions:

1. Topic Relevance Factor (TRf): The number of Twitter users who talk about vaccines
in a given country can be used to quantify the relevance of this topic for each country.
Countries with a higher number of tweets related to vaccination will be the most rele-
vant ones. However, there is a huge difference in Twitter usage per country, therefore
a normalization will be made. The web page of Statista [1] provides information on the
Twitter penetration per country. This measure is defined as the number of active twitter
users relative to the total amount of internet users. Taking into account this data, and
the information about internet users by country extracted from Internet Live Stats [3] (see
Figure 5.1), the TRf factor for each particular country is calculated as follows:

TRf (C) =
%NTwitterV accineUsers

%TwitterPenetration×%InternetUsers
(5.1)

Where C is a given country, %NTwitterV accineUsers is the percentage of users retrieved
who are talking about vaccines in this country, %TwitterPenetration is the percentage of
Twitter Penetration for this country, and %InternetUsers is the percentage of Internet
Users in the same country. Finally, to scale the factor values into a range of [0, 1], an
unity-based normalization is applied:

TRf (C) =
TRf (C)−min(TRf (C))

max(TRf (C))−min(TRf (C))
(5.2)
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2. Kurtosis of Vaccination Coverage Rates (KV CR): The potential influence of social
movements on vaccination coverages can be estimated by measuring the distribution of
changes of the coverages rates. In probability theory and statistics, kurtosis is the measure
of the ”peakedness” of the probability distribution, also showing how heavy the tails
are. A high kurtosis correspong to a distribution with a sharper peak and fatter tails,
whereas a low kurtosis distribution has a more rounded peak and thinner tails [54]. In
this work, the kurtosis value is calculated according to the Fisher’s definition [68] where
3.0 is subtracted to the kurtosis values in order to obtain a result of 0.0 for normal-like
distributions. Therefore, values equal to 0 correspond to a normal distribution, whereas
values greater than 0 are indicative of a leptokurtic distribution. Finally, a platykurtic
distribution correspond to values lower than 0. According to the variation of the coverage
vaccination rates, high kurtosis values represent a sharp change on these rates. These
changes can be used to detect strong variations in the immunization rates. In this work,
the kurtosis value has been calculated using the last 10 years of coverage vaccination rates
for each country as shown below:

KV CR(C) = n

∑n
i=1(Xi −Xavg)4

(
∑n

i=1(Xi −Xavg)2)2
− 3 (5.3)

Where C represents a given country, n is equal to 10 (the coverage rates in the 10 last
years are used as sample to calculate the metric), and Xi is the immunization coverage
rate of a specific year.
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Figure 5.1: Penetration of Twitter Users and Internet Users per country (Top 20). Data taken
from Statista and Internet Live Stats.
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Finally, to validate the potential influence on immunization coverages of twitter opinions,
the Spearman correlation coefficient [91] has been used. This coefficient is a nonparametric
measure of the linear relationship between two datasets. If both previous factors (TRf and
KV CR) are correlated, this could be due to a potential influence from social trends which affect
the vaccination decision-making. It means that the most relevant countries talking about vacci-
nation (with higher TRf ), are the countries having strong variations in vaccination rates (with
higher KV CR values). The values of Spearman’s correlation coefficient varies between -1 and
+1, with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship.
Positive correlations imply that as x increases, so does y. On the contrary, negative correlations
imply that as x increases, y decreases. A table of critical values of the Spearman correlation
coefficient for different significance levels is given in Zar [185]. In our work these critical values
are used to validate whether a significant correlation between both factors exits.

5.1.1.4 Visualization of Geo-Spatial Information

Geo-spatial visualization can help to study the results obtained from the social data analysis.
The location information can be used to show the most interesting locations or countries dis-
cussing on a specific topic. A Map is the best choice to visualize this kind of information. It can
be used to effectively summarize location information, allowing an easy identification of interest
regions on the particular topic (with high number of users opining about vaccines). In this case,
the events measured have been the user locations grouping per countries. Therefore, the map is
generated based on the TRf factor per country, as previously calculated.

5.1.2 Vaccine Community Detection in Twitter

The main phase of this work is focused on the study of network structure to provide information
about two main aspects: on the one hand, the community detection of different user communities
into the social network that are talking about a topic; on the other hand, the most relevant users
of these communities to analyse the social information diffusion showing how each community
is opining about vaccination. For this purpose, a network representation of the dataset has
been generated. The users have been considered as the network nodes, and their relationships
represent the edges. The relationships which have been considered in this work are the re-
tweets. When any user re-tweets a message from other user, an edge between both users is
generated. Therefore, to carry out the social analysis of this re-tweet network, two different
steps are performed: Finding Social Communities and Analysing Social Network Data.

5.1.2.1 Finding Social Communities

Community detection algorithms have been studied extensively in computer science [154] but
in particular, for social media mining [13, 184]. Individuals often form groups based on their
common interests, and identifying groups of similar users can provide a global view of user
interactions and their behaviours. In addition, some behaviours are only observable into a
group and not on an individual level. This is because individual behaviour could easily change,
but collective behaviour is more robust to changes.
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There are several community detection algorithms in the state of the art, usually classified
into two types: member-based algorithms that find groups based on the characteristics of their
members; and group-based algorithms where the groups are formed based on the density of
interactions among their members. In this work, a comparative assessment of group-based algo-
rithms is carried out, to choose the most appropriate method for better identifying communities
talking on a particular topic (vaccination in this case). The algorithms selected for this pur-
pose were introduced in the section correspond to the state of the art, and they are as follows:
Fast-Greedy, InfoMap, Leading Eigenvector, Label Propagation, Multi-Level and Walktrap.

The evaluation of the community outcomes after applying the previous algorithm is a difficult
task. This is because the list of each community members is rarely known, as in this specific
case where the data used are gathered from Twitter. A good community, based on their network
structure, would be: modular, balanced, dense, and robust. Therefore, traditional metrics of
network topology can be useful to evaluate the results obtained. In this work the metrics used
to compare the results of all the algorithm are: Q, D, TPR, LCC and CN.

5.1.2.2 Analysing Social Network Data

After one algorithm is chosen to detect the anti-vaccine communities, there are several networks
metrics that can be used to discriminate the most relevant users within each community allowing
the study of their social influence. Usually, the importance, or influence, in a social network is
analysed through centrality measures. The most frequently used in social media analysis are
[184]:

1. Degree Centrality : It used to analyse the user importance through their interactions. Users
with higher number of connections, or larger degree values, will be considered the most
representative. The degree centrality for a node in an undirected graph is calculated as
the number of adjacent edges of this node.

2. Eigenvector Centrality : Using degree centrality, nodes with more connections are consid-
ered more important. However, in real-world cases, having more friends does not by itself
guarantee relevance. Instead of this, having more important friends usually provides a
higher relevance degree. This measure tries to generalize the degree centrality based on
this idea by incorporating also the importance of the neighbours.

3. Betweenness Centrality : Other approach for measuring the centrality is to compute the
number of shortest paths between a particular node and the ones that pass through it.
This measure shows how central is a node connecting any other pair of nodes into the
network.

Each of these measures provide a different view about who is important in the network. In
the context of a re-tweet network, these measures allow to detect different aspects: who are
the most re-tweeted users (Degree Centrality), who are the most influential users (Eigenvector
Centrality), and who are the users controlling the information flow (Betweenness Centrality).
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5.1.3 Experimental Results

5.1.3.1 Dataset Description

As described in previous sections, the data collected to perform the data analysis of vaccination
influence was extracted from two sources: Twitter APIs, and WHO Web Site. In particular the
data extracted from each source are as follows:

1. Twitter APIs [4]: The information collected from the Twitter APIs are comments men-
tioning the hashtags: ’vaccine, vaccines, #vaccine or #vaccines’. These comments have
been taken from all the countries between ’04-15-2014’ and ’11-08-2014’ (both dates in-
clusive). Table 5.1 shows the number of tweets gathered during this time period. As shown
in this table, less than the 1% of all tweets are geo-located. However, after performing
the preprocessing to identify tweet locations (described in previous subsection), this value
increases noticeably up to 51%.

Data Value

Total Number of Tweets 1.448.010
Number of Geolocated Tweets 11.566 (0,8%)
Number of Geolocated Tweets after Preprocessing 761.924 (51,2%)

Table 5.1: Number of tweets on vaccine related topics during seven months.

2. WHO Web Site [5]: The official country reported coverages are extracted at the last 10
years for five different vaccines:

(a) DPT1 : First dose of diphtheria toxoid, tetanus toxoid and pertussis vaccine.

(b) DPT3 : Third dose of diphtheria toxoid, tetanus toxoid and pertussis vaccine.

(c) HepB3 : Third dose of hepatitis B vaccine.

(d) MCV : Measles-containing vaccine.

(e) POL3 : Third dose of polio vaccine.

The total number of countries with data on vaccination coverages is equal to 194.

Using these information two factors (TRf and KV CR) have been calculated to measure the
social influence of social communities in Twitter on immunization coverage. In this section,
firstly a preliminary analysis of the results for TRf is performed to identify the most relevant
countries and their relevant regions. Finally, a comparative assessment between both factors
has been carried out, analysing the potential influence that opinions from social networks have
on vaccination decision making.

5.1.3.2 Preliminary analysis for Topic Relevance Factor (TRf )

Figure 5.2 shows the results obtained for TRf factor, where the values are sorted generating a
ranking of countries by relevance. It can be noticed that there are only few countries with large
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values while most countries have very low values. Figure 5.2 shows the top five countries that
have values higher than the mean plus one standard deviation. It means that most users talking
about vaccines belong to these group of countries, therefore it can be considered that they are
the most relevant for the topic.
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Figure 5.2: Values of TRf for the countries talking about the vaccination topic. The results are
shown in order as a ranking of countries by relevance.

To continue the analysis of results, a geo-spatial visualization has been performed to allow
for a visual analysis of the social data across all countries. For this purpose, a map summarizing
the location information of the users talking about vaccines is generated to identify the regions
of interest. This map is generated according to the TRf results obtained for each country as
shown in Figure 5.3. Analysing the results, tree distinct blocks of interest can be identified. The
first block is formed by Ireland, United States, United Kingdom, Canada and Australia which
are the countries more active opining on vaccination in Twitter. For this five countries the TRf

factor takes values much higher than for the rest. The second block is build by several countries
which show a moderate interest, such as France, Netherlands, Sweden, Malaysia, South Africa,
Spain and the Philippines. Whereas, the third block is composed by most of the countries, which
have very low values of relevance (less than 0.1). In the last block, there is not highly probable
that the users opinions influence over vaccination coverage.

5.1.3.3 Analysing the potential influence of Twitter vaccine communities on healthcare

Taking into account the previous results, countries belonging to the first block (top 5) are
the most relevant, and have been selected in order to continue the analysis. Table 5.2 shows
the results of both factors computed for these top five countries. If vaccine opinions affect
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Figure 5.3: World Map based on TRf , measuring the relevance of vaccination topics for each
country.

user vaccination decision making, the immunization coverage rates of vaccination would show
variations which can be analysed studying the KV CR values. In this work this measures are
calculated using the Fisher definition. If all immunization coverage values are identical during
the last 10 years, the value obtained will be -3, implying that there is not variation on the
distribution. On the other hand, high kurtosis values would indicate a sharp change in the
variation of vaccination. As can be seen in Table 5.2, almost all KV CR values are higher than
-3, being pretty high in cases such as Canada and Australia, which take values of 5.11 for
some vaccines. Therefore, it is possible to notice a change on the vaccination pattern in these
countries.

Country N. Users TRf
KV CR

DPT1 DPT3 HepB3 MCV POL3

Ireland 860 1 -1,14 -1,12 -0,67 -0,67 -1,12
United States 49278 0,78 -2 -0,63 -0,58 1,14 -0,5

United Kingdom 9560 0,74 -0,22 0,97 NaN -0,83 -0,97
Canada 4117 0,5 5,11 -0,63 -1,65 -1,27 -1,23

Australia 1719 0,48 -1,24 5,11 -1,49 -3,0 5,11

Table 5.2: TRf and KV CR values for the top 5 most relevant countries on vaccination discussion.
The KV CR values are calculated for the five vaccines, considered in the last 10 years. There is no
data available of HepB3 vaccine for United Kingdom.

To identify a potential social influence of twitter opinions on immunization rates, it should ap-
pear a linear relationship between both vaccination factors (TRf and KV CR). For this purpose,
the Spearman correlation coefficient [91] has been calculated for each vaccine. This correlation
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coefficient measures the dependency between variables. It allows evaluating if countries who are
talking more about vaccination correspond to countries with higher variations in vaccination
rates. The results obtained can be seen in Table 5.3.

In Zar [185] study, the critical values of the Spearman correlation coefficient for different
significance levels were presented. Specifically, for a ranking of 5 values, the minimal critical
value that shows a significant correlation between two variables, is 0,5. As shown in Table 5.2,
there is no data available for HepB3 vaccination coverages for United Kingdom. Therefore, the
minimal critical value is 0.6 for this specific case. Analysing the results shown in Table 5.3, two
values are higher than this threshold. This means that vaccine opinions from social groups could
influence the vaccination decision making for DPT3 and MCV vaccines.

Positive correlations mean that both variables simultaneously increase (MCV). On the other
hand, negative correlations mean that as one variable increases the other variable decreases
(DPT3). In the results obtained, there is one vaccination coverage rate (MCV) that shows
an increment directly related to the increase of TRf in the countries. On the other hand,
there is one vaccine (DPT3) where the opposite effect occurs. This may be because not all
social movements arising from Twitter are against vaccination. It can be due to there are also
supporting movements trying to increase immunization rates, as in the case corresponded to
MCV vaccine for this study.

Vaccine Spearman Coefficient pValue

DPT1 -0,2 0,74
DPT3 -0,82 0,08
HepB3 0,59 0,4
MCV 0,9 0,03
POL3 -0,3 0,62

Table 5.3: Values of Spearman Coefficient Correlation applied to TRf and KV CR vaccination
factors. This coefficient has been calculated using the top 5 relevant countries. For a ranking of 5
values, the minimal critical value is 0,5. In the HepB3 case, there is no data available for United
Kingdom, being 0,6 the minimal critical value.

5.1.3.4 Detecting communities on vaccination discussion

This section reports an additional analysis related to the social influence from twitter opinions
based on the data network structure. This analysis is focused on community detection for
users talking about vaccination. Then, using these communities detected, a study of the most
relevant users, user interactions, and their collective behaviour is performed. For this purpose,
a network representation of the dataset based on the user re-tweets is generated. To select the
most influential users, a minimum threshold number of re-tweets has been fixed. In this case this
threshold is set to 10 re-tweets. There are 2865 users exceeding this threshold in our dataset,
so these users have been selected to generate the network for the social study.

As mentioned in the state of the art, there are several community detection algorithms which
can be applied to solve this problem [28, 41, 130, 146, 147]. These algorithms can be divided into
two categories (Overlapping or Partitional) depending on the graph partitioning is performed
allowing overlaps between the different partitions. Therefore, firstly a comparative assessment
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of several algorithms is carried out to choose the most appropriate for each category. In this
way, the difference between the two categories of algorithms can be studied. Table 5.4 shows
for each algorithm if it detects overlapping communities (Overlap), as well as the number of
communities (N. Com.) identified by it, and the average number of nodes of these communities
(Nodesavg). In addition, four measures of the network topology are shown (CNavg, Davg, LCCavg

and TPRavg) to provide an overview of the structure of the communities detected regarding to
its internal connectivity, and the size of the cliques contained on it. Finally, to evaluate the
quality of the communities, the Q measure has been shown.

Algorithm Overlap N. Com. Nodesavg CNavg Davg LCCavg TPRavg Q

Fast-Greedy No 56 5,36 2,19 0,76 0,09 0,11 0,91
InfoMap No 76 3,95 2,16 0,71 0,08 0,10 0,82

Loading Eigenvector No 61 4,92 2,16 0,73 0,08 0,10 0,86
Label Propagation No 68 4,41 2,18 0,72 0,08 0,10 0,84

Multi-Level No 57 5,26 2,21 0,75 0,08 0,11 0,90
Walktrap No 74 4,06 2,16 0,77 0,07 0,09 0,86

CPM Yes 10 4,5 3,20 0,86 0,90 1 0,21
Coda Yes 60 4,85 2,25 0,52 0,14 0,17 0,37

Conga Yes 49 6,20 2,18 0,84 0,08 0,10 0,92
Node-based MOGA-OCD Yes 18 6,5 2,78 0,44 0,44 0,43 0,23
Edge-based MOGA-OCD Yes 98 3,75 2,09 0,84 0,05 0,06 0,70

Table 5.4: Comparative assessment of community detection algorithms using the network generated
from the twitter users opining about vaccines. The second column (Overlap) shows if the algorithm
allows to detect overlapping communities.

Analysing these results, in the case of partitional algorithms (node overlapping is not al-
lowed), the poor results of InfoMap algorithm can be can be clearly distinguished, achieving the
lowest values to almost all metrics. The rest of algorithms obtain similar values, being them fairly
low for almost of the metrics based on the network topology (CNavg, LCCavg and TPRavg)).
Regarding the Q measure, the Fast-Greedy algorithm obtains the best value, and Multi-Level
algorithm obtains a value that is very close. In addition, the partition detected by Fast-Greedy
algorithm has a average value higher for the CN, LCC and TPR measures than the Multi-Level
partitioning. Therefore, it can be concluded that the Fast-Greedy algorithm has obtained overall
the best results, and this algorithm has been chosen to perform the non-overlapping community
detection later on.

Continuing with the analysis of overlapping algorithms, it can be appreciated that the solu-
tions detected by these algorithms are different from the previous ones. Edge-based MOGA-OCD
algorithm identifies a much higher number of communities, but the size of these communities is
also lower, grouping only three nodes in many cases. CPM algorithm detects few communities,
and all of them with a high CN value. It means that this algorithm partitions the graph accord-
ing to the existing triad into it. Conga algorithm achieves the highest value of Q, however for
the almost the network measures this algorithm obtains poor values. Therefore, according to
these measures, the algorithm which obtains better overall results is Node-based MOGA-OCD
algorithm, although its modularity is low. However, this algorithm is be able to partition the
graph into communities with bigger size. In addition, these communities are more structured,
as shown the network metrics which all have values greater than 0.
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Taking all the above into account, Fast-Greedy and Node-based MOGA-OCD algorithms
have been applied using the vaccine user network to detect its communities on vaccination
discussion, and to carry out and social analysis of them. Table 5.5 shows the communities found
applying the Fast Greedy algorithm. To study the importance, or influence, of the different
users into the re-tweet network generated, centrality network metrics have been computed. In
addition, to identify the collective opinion for each community about the topic, a human-labelling
process of the most frequent re-tweets has been performed. For each community, the top 10 of
most frequent re-tweets are classified as positive or negative extracting the collective sentiment
for the community. The last column in Table 5.5 shows the most frequently re-tweet for each
community, and in the first column it can be seen the results of the human-labelling process,
showing if the community has a positive (P) or negative (N) opinion.

As shown this Table, there are 7 communities (1,2,4,5,7,8 and 10) talking positively about
vaccination against 4 which are talking negatively (3,6,9,11). Analysing the network structure,
negative vaccine communities often include few users and have low values regarding centrality
metrics. Specially, very low values are observed when Betweenness Centrality (representing the
users that control the information flow) metric is analysed. Otherwise, the positive vaccine
communities are generally bigger and have higher values of centrality metrics. This means that
the most important and influential users, and those controlling the information flow, belong to
positive communities. These results show that it is possible to identify vaccine movements from
Twitter applying community detection algorithms. These algorithms are unsupervised data
mining techniques, thereby human-labelling is not needed which is a big advantage for huge
datasets collected from social networks such as Twitter.

The same process of human-labelling to the most frequent re-tweets and the their sentimental
classification, has been carried out with the overlapping communities obtained by applying the
Node-based MOGA-OCD algorithm. The results of this process are detailed in Table 5.6 where
are shown 14 vaccination communities being 7 communities (1,4,5,8,9,11 and 12) opining with a
positively sentiment about vaccination, against 7 which are negatively discussing (2,3,6,7,10,13
and 14). Comparing these results with the results from the non-overlapping algorithm, it can
be immediately appreciated that the communities detected are smaller than the previous ones.
As a consequence of this fact, the greater and most influential community identified by the
first algorithm (1), in this case is divided into to communities (1 and 4). In addition the most
influential user of this community is overlapped belonging to both resulting communities. The
trend of anti-vaccine communities having low values related to centrality metrics is continuing.
However, both types of communities (positive an negatives) have a similar have similar size for
the overlapping algorithm. Regarding the overlapping users, the negative communities have a
greater number of overlaps which means a higher degree of connection between them. This
aspect can be very interesting to study the behaviour and relationships between the different
anti-vaccine communities which through their bad comments may have a negative effect on
vaccination decisions of other users. Therefore, these results show that the Node-based MOGA-
OCD is able to identify vaccine opining groups and their relationships between them allowing
for a better analysis of their social behaviour.

Regarding the social analysis of the communities found, each centrality metric shown in Table
5.5 provides a different aspect of its social influence. Firstly, analysing Degree Centrality, the
most re-tweeted users can be identified as seen in Figure 5.4. Using this metric, users with more
connections are considered as more relevant. In Figure 5.4 we can see two main communities (1
and 4) including most of the important users, or institutions, which are discussion on vaccination.
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Id. Top Users N.Users Degree Eigen. Betwe. Most Frequently Re-Tweet

1(P) VaccinesToday,WHO,
UNICEF, sanofipasteur,
BillGates

42 14 1 4236,75 eu research commissioner: ’the best
vaccine in the world is worth nothing if
people don’t use it - need social science

2(P) CNN, BeckOTR, cnni,
TIME, CNNVideo

13 6 0,11 691,77 worried about childhood vaccines?
don’t worry, evidence strongly sug-
gests they’re safe see why it’s impor-
tant

3(N) megtirrell, unicefusa, ae-
tiology, StephenAtHome,
sheridanmarfil

15 2 0,16 112,71 holy pharma deals: novartis buys gsk
cancer biz for $14.5b, gsk buys novar-
tis vaccines for $7.1b;...

4(P) CMichaelGibson, wash-
ingtonpost, MiaFarrow,
benoitbruneau, mikiebarb

26 7 0,22 3700,96 #cdc: vaccines prevent more than
700,000 child deaths in the u.s. reuters

5(P) timminchin, mattliddy,
LOLGOP, ChrisWarcraft,
carnivillain

14 6 0,01 1633,99 when discussing vaccines, remember:
stories work better than stats. help
me spread this letter...

6(N) UnusualFactPage,
SteveStfler, FemaleTexts,
BestProAdvice, LifeFacts

9 6 0 26 the scientist who developed the vac-
cine to fight leprosy is almost 100 years
old, and he still working...

7(P) AmerAcadPeds, Skeptic-
scalpel, kevinmd, AAPNews,
healthychildren

13 7 0,29 1106,50 immunize for a healthy future. know
which vaccines you need.#ruuptodate
with yours? if not...

8(P) CDCgov, marstu67,
MSF uk, MotherJones,
segmentis

21 5 0,18 1242,14 it’s national infant immunization
week! now is a great time to check
what vaccines your baby needs...

9(N) VaccineXchange, EVac-
cines, ELEN A,the refusers,
cinderstella

12 8 0 739,11 drug giant glaxosmithkline has been
using bribery and fudging its research
in china. they make vaccines...

10(P) VacciNewsNet, BBC-
World, GSK, OpposingTh-
umb, RealDeanCool

16 6 0,26 2645,47 how many vaccine-preventable out-
breaks have to happen before we re-
alize this?

11(N) FeminineHygiene, Follow-
Iceland, TheEyesOfTexas ,
ActOf1871, WeHateAmer-
ica

8 6 0 3,83 good morning patriots,enjoy
your #nwo supplied #chemtrails
#fakedebt #fluoride...

Table 5.5: Communities detected using the Fast Greedy algorithm. The centrality metrics (Degree
Centrality, Eigenvector Centrality and Betweenness Centrality) are related to the most influential
user of the community, and are marked in bold. The Id column shows if the community has a positive
(P in green) or negative (N in red) opinion on vaccination.

Several of these users correspond to relevant health organizations such as WHO, UNICEF or
VaccinesToday, which belong together in the same community (1). In addition, Bill Gates also
belongs to this community, and he is one of the most well-known and influential personalities
who actively supports pro-vaccination campaigns. In the other most relevant community (4)
based on Degree Centrality, an important international media as Washington Post appears. On
the other hand, there is only a highly re-tweeted user (Vaccine eXchange) belonging to a negative
vaccine community (9). This may be because negative communities tend to be small and poorly
connected, as was previously discussed in the network structure analysis.

Carrying out the same social analysis with the communities discovered by the Node-based
MOGA-OCD algorithm, Figure 5.5 shows the users with more connections whose are considered
as more relevant for each community. As shown in this Figure, there are three positive commu-
nities (1, 4 and 12) including most of the important users discussing on vaccination to support
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Id. Top Users N.Users Degree Eigen. Betwe. Most Frequently Re-Tweet

1(P) VaccinesToday , WHO,
UN, ArielPoliandri, STcom

7 14 1 4236,75 eu research commissioner: ’the best
vaccine in the world is worth nothing if
people don’t use it - need social science

2(N) KimTaeyeonRock, Unit-
edStateIX, ADavidRobin-
son, formulamom, US-
ASSG Enigma

9 2 0 106,5 #autism vaccine risks report ebook
download pdf-toxic ingredients, side
effects, autism, mer...

3(N) DHgovuk, KimTaeyeon-
Rock, davidfrum, publicroad,
Rene devries

8 2 0,01 264,85 has a medicine or vaccine made your
child sick? tell us today!

4(P) VaccinesToday , Bill-
Gates, gateshealth, sanofi-
pasteur

4 14 1 4236,75 i couldn’t agree more: vaccines are one
of the cheapest ways to save lives. via
@unicef

5(P) u38bkai, 8r4ruinedj,
92dtenshika, tamarakei-
thNPR, Freebies4Mom

10 2 0 3 compound boosts effect of vaccines
against hiv and flu

6(N) BroMuhd, BrotherJesse,
GiveBirthToAGod, Money-
wiseMoms, Freebies4Mom

7 2 0 92,66 it was the vaccine injuries that killed
my mother. - dr. horowitz

7(N) FactSoup, KimTaeyeon-
Rock, TheKnowIedge,
Rene devries, ggreenwald

7 2 0,01 996 a swine flu outbreak in 1976 killed one
person but, the vaccine for the swine
flu killed 25.

8(P) JodiesJumpsuit, Tabatha-
Southey, CitizenRadio

3 2 0,01 1,83 there is no vaccine debate. there are
just a lot of people who don’t under-
stand how vaccines work. that isn’t a
debate

9(P) allisonkilkenny, latimes,
STForeignDesk, nprnews,
tamarakeithNPR

6 2 0,01 2 40% of parents are skipping or delay-
ing their kids’ vaccines for no good rea-
son

10(N) DVERandy, JoshY-
ohe Trib, KenTremendous,
NPRHealth, BrotherJesse

7 2 0,01 2 miranda lambert just said v̈accines
cause autism!

11(P) ABC, STcom, STForeign-
Desk, seanmdav, Dutch

6 2 0,01 99,83 cause and demand: why there is no
standard ebola vaccine

12(P) UNICEF, chukudebelu,
Primary Immune

3 12 0,57 3481,09 vaccines are 1 of the most effective
health initiatives ever and all chil-
dren should have access to them #vac-
cineswork

13(N) torieannesalt, Disillu-
sioned7, fsuflores

3 2 0 2 a vaccine, but for feelings

14(N) FeminineHygiene, We-
HateAmerica , ActOf1871

3 6 0 3,83 good morning patriots,enjoy
your #nwo supplied #chemtrails
#fakedebt #fluoride...

Table 5.6: Overlapping Communities detected using the Node-based MOGA-OCD algorithm. The
centrality metrics (Degree Centrality, Eigenvector Centrality and Betweenness Centrality) are related
to the most influential user of the community, and they are marked in bold. The Id column shows
if the community has a positive (P in green) or negative (N in red) opinion on vaccination. Users
overlaps between communities are marked in italics.

it. As in the previous case, the main users of these communities correspond to relevant health
organizations. Moreover, Bill Gates who is one of the famous personalities supporting the vacci-
nation campaigns is included in these pro-vaccine communities (4). Regarding negative vaccine
communities, the Node-based MOGA-OCD algorithm detects more of them containing users
less influential than using the no-overlapping algorithm. However, analysing the community
overlays, it can be noticed that the negative communities have a greater number of overlapping
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Figure 5.4: Vaccine Communities showing the most re-tweeted users based on their Degree
Centrality metric (node size according to its value). Node labels are filtered by a degree value higher
than 4. Top 5 users: VaccinesToday(1)(P), UNICEF(1)(P), washingtonpost(4)(P), WHO(1)(P) and
BillGates(1)(P).

users showing that there is a link between them.

In real-world cases, users with more connections or number of re-twees do not have nec-
essarily to be the more influential individuals. Betweenness Centrality is based on this idea,
and it incorporates the importance of the neighbours to take into account the relevance of the
friends. Using this metric, it can be identified the most influential person talking about vaccines
from Twitter, as shown in Figure 5.7. The community that includes the most important users
based on Degree Centrality (1) still includes the largest number of influential users. But within
this community, new influential individuals appear such as Shakira, who is a famous public
personality. The most influential users of communities 4 and 7 (CMichaelGibson and AmerA-
cadPeds) remain as so in this new analysis based on social influence. Regarding the communities
against vaccination, Figure 5.7 shows that only one negative community (3) includes influential
personalities.

In the case of overlapping communities, Figure 5.7 shows that the results related to the
top 3 of most influential users is the same as in previous results. The main difference is that in
these communities with overlaps, the most influential users have been separated into two smaller
groups containing a user in common between them (VaccinesToday). Comparing these results
with the results based on Degree Centrality, it can be appreciated that in the communities
found by the Node-based MOGA-OCD algorithm the most important users for each community
correspond to the most influential users. In addition any anti-vaccine group include one of the
users with social influence. These findings are according to the previous analysis, where the
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Figure 5.5: Overlapping Vaccine Communities showing the most re-tweeted users based on
their Degree Centrality metric (node size according to its value). Node labels are filtered by
a degree value higher than 2. Top 5 users: VaccinesToday(1)(P), UNICEF(12)(P), WHO(1)(P),
BillGates(4)(P) and FeminineHygiene (14)(N).

negative communities neither have important users belonging to them.

To finalize the social influence study, the results of Betweenness Centrality measure have
been used. This metric takes into account how important are nodes connecting others (Figure
5.8 shows the results obtained). Users controlling the information flow can be identified using
this information. Therefore, analysing the results shown in Figure 5.8, communities 1 and
4 include the largest number of users controlling the information flow. However, there are
other communities that also include users with high values in this metric such as community
3 and 8. For example, a relevant health organization (CDCgov) belongs to community 8. In
order to detect communities corresponding to negative discussion on vaccination, two negative
communities (3 and 9) have been discovered. In addition community 3 has relevant users for
this measure.

Continuing the analysis of Betweenness Centrality, as shown in Figure 5.9, the number of
users controlling the information flow is higher. Within the positive communities, BillGates
appears again as a relevant user with one of the highest values in this metric. This is because he
is a very popular personality all over the world, and therefore he is an important user connecting
other people opinions. Communities discussing negatively on vaccination again have relevant
users based on this centrality metric, as also can be seen in the results of the no-overlapping
algorithm. As mentioned in different works on Social Networks [174, 153], this can be due to
the effects of behaviour spread on social networks that are typically strongly content-dependent.
Moreover, the negative sentiments are often contagious while positive sentiments are generally
not.
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Figure 5.6: Vaccine Communities showing the most influential users and institutions based on
the Eigenvector Centrality metric (node size according to its value). Node labels are filtered by
a eigenvector value higher than 0,15. Top 5 users: VaccinesToday(1)(P), WHO(1), UNICEF(1)(P),
BillGates(1)(P) and shakira(1)(P). Only one negative community (3) includes influential personali-
ties.

A geographical visualization of the communities detected can help to analyse the results.
Figure 5.10 shows a map summarizing the location information relating to communities. This
map allows quickly identification of regions of interest (positive or negative) on vaccination. For
this purpose, anti-vaccine communities are marked with red, while communities disseminating
positive comments are shown in green. Analysing the results, it can be seen that four of the most
relevant countries talking about vaccination (Ireland, United Kingdom, Canada, and Australia)
mainly include positive communities. The European countries belonging to the block which show
a moderate interest on vaccine topic such as France, Netherlands, or Sweden have only positive
communities. On the other hand, most of the negative communities are located in EEUU, and
as can be seen in the community detection results, these communities are relatively small and
disconnected. Therefore, it can be concluded that strong communities supporting vaccination
have emerged from the social networks.

Considering all the results obtained for the different analysis performed, it can be concluded
that the application of Communities Detection Algorithms is able to discover and track the
discussion groups on vaccination arising by Twitter. In addition, the network structure analysis
of the resulting communities allow to identify the most relevant users analysing their social
influences, and their collective opinion, or sentiment, about the topic for each community. In
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Figure 5.7: Overlapping Vaccine Communities showing the most influential users and institutions
based on the Eigenvector Centrality metric (node size according to its value). Node labels
are filtered by a eigenvector value higher than 0,15. Top 5 users: VaccinesToday(1)(P), WHO(1),
UNICEF(13)(P), sanofipasteur(5)(P) and gateshealth(5)(P).
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Figure 5.8: Vaccine Communities showing the users who control the information flow based on
the Betweenness Centrality metric (node size according to its value). Node labels are filtered by
a betweenness value higher than 1100. Top 5 users: VaccinesToday(1)(P), CMichaelGibson(4)(P),
UNICEF(1)(P), washingtonpost(4)(P) and DoctorNatasha(3)(N).
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Figure 5.9: Overlapping Vaccine Communities showing the users who control the information
flow based on the Betweenness Centrality metric (node size according to its value). Node
labels are filtered by a betweenness value higher than 1100. Top 5 users: VaccinesToday(1)(P),
UNICEF(12)(P), WHO(1)(P), BillGates (4)(P) and sanofipasteur(4)(P).

Figure 5.10: Map summarizing the location information for the communities detected using
the Node-based MOGA-OCD algorithm. Anti-vaccine communities are marked in red and pro-
communities in green. The most relevant anti-vaccines communities appear in EEUU.

the case of overlapping communities, the overlaps between the communities allows also the
analysis of the relationships established to each other.
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5.2 Conclusions

This work shows a practical application of Data Mining Techniques to detect and analyse Twitter
communities which are disseminating vaccination opinions. Firstly, a preliminary analysis has
been carried out showing that vaccine opinions from Twitter users could affect the vaccination
decision-making process in some cases. However, it can be noticed that most of communities
discussion on vaccination from Twitter are not against vaccines. In fact, currently most of the
emerged movements are supporting vaccination and trying to increase the coverages rates.

The second part of the work is focused on the application of Community Detection Algo-
rithms in order to discover communities opining about vaccines. The results obtained show
that the most important and influential users belong to communities supporting vaccination
movement, whereas negative vaccine communities often include few users that are not well con-
nected. In addition, a geographical visualization of these communities shows that the most
relevant countries (Ireland, United Kingdom, Canada, and Australia) talking about vaccination
are filled with positive communities. On the other hand, most of the communities disseminating
negative opinions on vaccination are located in EEUU.

Taking into account all the experimental results presented, it can be concluded that the
CDAs applied are useful for this kind of analysis. The methodology proposed can be used to
find and track vaccine movements, discovering new knowledge in data that could be useful to
improve Public Healthcare immunization strategies. Moreover, this new acquired knowledge
could also be used to detect and locate communities against vaccination that could generate
future disease outbreaks in different parts of the world.
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Chapter 6

Conclusions and Future Works

“Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more, so that we may fear less.”

- Marie Curie

This chapter presents a discussion of the main conclusions reached in this thesis, as well
as the possible future lines of work that can be carried out, in order to extend the different
algorithms presented in this dissertation. Firstly, in the Conclusions section, a brief review
and contributions of the different algorithms proposed in this thesis is introduced. Then all the
research questions raised in the introduction section are answering according to the experimental
evidences obtained by these algorithms. Finally, a summary of the possible future lines of works,
based on these algorithms, is presented.

6.1 Conclusions

The main contribution of this PhD Thesis is the design of overlapping community detection
algorithms, which can combine the concepts of graph clustering and genetic algorithms, in order
to find new approaches to improve the classical CDAs that currently exist on the state of the
art. In addition, a detailed study of several measures related to the topology structure of the
networks has been carried out, analysing what are the most suitable measures to guide the search
of the GAs for finding good communities. Finally, both classical algorithms and new algorithms
implemented in this thesis, have been applied to a real domain, to prove how useful are the
new knowledge that these algorithms can provide. In particular, the algorithm are applied to
identify opinion communities related to vaccines in Twitter, analysing the influence of these
communities to the rest of the users.

To achieve the main objective of this dissertation, related to the design of the new overlap-
ping community detection algorithms combining the concepts of graph clustering with genetic
algorithms, two different generations of algorithms have been implemented:

1. The first generation is focused on the design of algorithms based on a single objective Ge-
netic Algorithm that uses a hybrid fitness function to guide the search of communities with
overlaps. This generation presents three different algorithms whose main characteristics
are as follows:
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• GCF-I (based on distances). There are two versions of this algorithm, but in
both versions the fitness functions are based on distances to calculate the similarity
between the graph nodes, and metrics from the graph theory:

– K-fixed GCF-I uses a binary encoding where the number of communities to
partitioning the graph is fixed as an input parameter.

– K-adaptive GCF-I uses a more complex encoding that allows to calculate the
parameter K (the number of communities of the partition) during the execution
of the evolutionary process.

• GCF-II (based on network topology metrics). In previous algorithms, it is
necessary that each node has a set of features associated to it, which allow to measure
a distance between them. However, many graphs do not have features associated to
their nodes, so this new algorithm tries to identify communities optimizing metrics
from the network topology of the graph.

2. The second generation is based on Multi-Objective Genetic Algorithms, where the fitness
function implemented optimizes two different objective functions; the first one that is used
to maximize the internal connectivity of the communities, and the second one that is used
to minimize the external connections to the rest of the graph. In this new generation, two
different algorithms have been designed and implemented, and their main differences are
related to the encoding used to represent the individuals:

• Node-based MOGA-OCD where the alleles of the individuals represent the nodes
of the graph.

• Edge-based MOGA-OCD where a new encoding scheme based on the edges is
used.

In both algorithms, the value of K (number of communities in the graph) has been directly
encoded as part of the chromosome.

Taking into account all the experimental analysis carried out for each algorithms proposed
in this thesis, it is possible to provide an answer to the main research questions that have been
briefly presented in the Introduction section. Next, a revision of these research questions is
carried out, and the answers are discussed on the basis of the experimental conclusions reported
in this dissertation:

• Q1: Is it possible to combine clustering methods based on distances with genetic graph-based
approaches to improve the results obtained by classical overlapping community detection
algorithms?

The classical clustering algorithms, such as K-means, typically use distance measures to
measure the similarity between the elements of the dataset for grouping them. On the
other hand, the classical CDAs are typically based on the topology information of the
graph to partition it.

Therefore, trying to validate if these two different methodologies can be combined to
improve the detection of overlapping communities within a graph, the two first algorithms
designed in the first generation have been implemented (K-fixed GCF-I and K-adaptive
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GCF-I). These algorithms are based on classical GAs with a single optimization criteria,
and in order to combine both methodologies, different fitness functions have been designed
combining distance metrics between the nodes, with metrics from the graph theory to guide
the search. The fitness functions based on distances will try to optimize the the quality
of the communities detected by minimizing the distance between the nodes which belong
to a same cluster, whereas the distance between the centroids of the communities will be
maximized.

The experimental findings obtained for these algorithms (see section 3.1.3), show that
the hybrid fitness function combining the distance between nodes (intra and inter cluster
distance), and the CC, is able to reach better results than the other classical CDAs studied.
In addition, from an overall analysis of all the studied metrics, it can be noticed that
the new K-adaptive GCF-I algorithm improves the results in all the cases comparing to
the results obtained by the K-fixed GCF-I algorithm. This new evolutionary approach
finds communities that have an appropriate size, reduced overlapping and closer distances
between the nodes.

Comparing K-adaptive GCF algorithm against CPM and EBC in more detail, it can be
noticed that the communities detected by the genetic algorithms are smaller than the
communities identified by the classical CDAs. In addition, it is important to observe that
each community generated by the genetic algorithm is contained, or partially contained,
in a community generated by the CPM algorithm. It means that the genetic algorithm
has tuned up the original community definition of this classical algorithm.

• Q2: Are these algorithms able to identify quality communities only using network topology
measures as objective functions?

The third algorithm from the first generation has been inspired by network topology anal-
ysis (GCF-II), and it is based on the use of network measures (Density, Centralization,
Heterogeneity, Neighbourhood, Clustering Coefficient) to guide the search. In order to
choose the better measures for the fitness function, a comparative assessment of network
measures has been carried out, and then this algorithm is compared to other CDAs, and
the previous versions of the algorithm (GCF-I).

The analysis of network metrics shown that Density obtains the better results, but the
communities detected are small and no-overlapping. On the other hand, using the Het-
erogeneity measure as fitness function, the algorithm is able to identify communities with
a good size and appropriate overlapping. Therefore, both measures have been combined
in the weighted fitness function of the algorithm to detect communities with good quality
considering all the features.

Finally, the results obtained by K-adapted GCF-I and GCF-II algorithms have been com-
pared against the results of CPM algorithm. The experimental results show that the new
version of the algorithm (GCF-II) improves the results in all of the cases studied. It means
that using a fitness function based only on measures related to the network topology, the
algorithm detects communities with an appropriate size, reduced overlapping, members
very connected, and close distances between the different communities detected. However,
the results show how the changes in the network structure of the dataset used, affects to
the quality of solutions detected by the all the algorithms. Therefore, it can be concluded
that these algorithms are dependent on the network topology.



112 Chapter 6. Conclusions and Future Works

• Q3: How can multi-objective genetic algorithms deal with the problem of dependence on
the graph structure shown by the classic algorithms?

In order to deal with the problem of the dependence on the network topology detected
previously in the experimental phase of the first generation of the algorithms (based on a
genetic algorithms with a single objective), a second generation of algorithms have been
designed using a multi-objective approach.

In CDP, it can be difficult to define what is a good community, because it can depends on
the application domain. However, according to the own structure of the graphs, a good
community can be defined as well connected internally, whereas it should be well separated
from the rest of the nodes of the graph. Taking into account these two features, the Multi-
Objective Genetic Algorithms will allows to find solutions optimizing simultaneously both
objectives using a Pareto-Optimality Frontier.

Currently, there are several studies in the literature showing that the use of the edge
information to detect communities into graphs is a good methodology. Particularly, when
these methods are applied to real world networks which tend to be sparse, and the node-
based methods often have difficulties finding large size communities. For this reason, in
the second generation of the algorithms of these thesis, two different algorithms (MOGA-
OCD) have been implemented whose main difference is based on the encoding. The first
algorithm (Node-based MOGA-OCE) uses an encoding where the individual represents
groups of nodes, whereas in the second algorithm the individual represents edges of the
graph.

Both algorithms have been evaluated against several overlapping algorithms from the state
of the art, using two different types of datasets: real world networks providing the ground
truth of their communities to evaluate the accuracy; and more complex real networks
without ground truth to evaluate the effectiveness and quality of detected solutions.

Analysing the experimental results obtained with all the datasets, some overall conclusions
can be drawn. The classical CDAs usually have good results when the graph is very
structured, and the algorithm can partition it according to its network topology. But when
these algorithms are applied using large size graphs, they have problems to partitioning
it into quality communities. In addition, for unstructured or sparse graphs, the accuracy
and quality of the communities detected by these algorithms significantly decrease. On the
other hand, using unstructured or sparse graphs, the node-based MOGA-OCD algorithm
improves the results in almost all the cases. Related to structured graphs, this version
of the algorithm obtains similar results, or closer, to the rest. However, the edge-based
MOGA-OCD algorithm obtains good results for both types of graphs (structured and
unstructured).

So,in general terms, the MOGA-OCD algorithms obtain good results for the different types
of graphs, including largest datasets where in some cases the classic algorithms are not
able to compute even a graph partition. Furthermore, using the dataset collection with
ground-truth, these proposed algorithms reaches the best accuracy in almost all cases.

• Q4: How can these algorithms be applied to real social domains to acquire useful informa-
tion?

The last part of the dissertation presents a practical CDAs application to discover and
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analyse Twitter communities, which are disseminating vaccination opinions. For this pur-
pose a dataset collected from Twitter, and the vaccination coverage rates retrieved from
the immunization monitoring system of WHO, have been used to perform several analysis.

Using both datasets, an initial study has been carried out focused on measuring the poten-
tial influence of vaccine opinions based on the variation in the coverage rates. The results
obtained in this preliminary analysis show that vaccine opinions from Twitter users could
affect the vaccination decision-making process in some cases. However, it can be noticed
that most of communities discussion on vaccination from Twitter are not against vaccines.
In fact, currently most of the emerged movements are supporting vaccination and trying
to increase the coverages rates.

Afterwards, a network representation of the Twitter dataset based on the user re-tweets
is generated to apply over it the CDAs extracting the user communities talking about
vaccines. The detailed analysis of these communities shows that the most important, and
influential users belonging to these communities, are supporting vaccination movement,
whereas negative vaccine communities often include few users that are not well connected.
In addition, a geographical visualization of these communities shows that the most relevant
countries (Ireland, United Kingdom, Canada, and Australia) talking about vaccination are
filled with positive communities. On the other hand, most of the communities disseminat-
ing negative opinions on vaccination are located in EEUU.

Therefore, taking into account all the experimental results presented, it can be concluded
that the application of CDAs is useful, and they can be used to find and track vaccine
movements, discovering new knowledge in data that could be useful to improve Public
Healthcare strategies about immunization. Moreover, this new knowledge can also be
used to detect and locate communities against vaccination, which could generate future
disease outbreaks in different parts of the world.

6.2 Future Works

Finally, there are several lines of work that could be extended in the near future related to the
different algorithms and applications presented in this dissertation:

• It could be interesting to extend the algorithms designed in this thesis, in order to handle
very large size networks, using Big Data frameworks for massive data processing such as
Apache Hadoop or Spark.

• Related to the connectivity measures used as objective functions in the fitness function,
it could be important to carry out a more detailed analysis of all of them to study which
one is the more suitable for each different graph topology.

• It could be interesting to develop a cooperative co-evolutionary approach of the algorithms,
dividing the problem into two subcomponents: one sub-population to search for an optimal
exclusive partition of the graph, and other to search for the optimal overlapping between
these communities.

• Due to the number of different connectivity measures that could used to guide the search
of solutions, it could be very interesting to design a self-adaptive version of the algorithms
for selecting the optimization criteria used as fitness function during the evolving process.
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Chapter 7

Conclusiones y Trabajos Futuros

“En la vida, no hay nada que temer, solo hay que comprender.
Ahora es el momento de entender más, para que podamos temer menos.”

- Marie Curie

Este caṕıtulo presenta las principales conclusiones alcanzadas en esta tesis, aśı como las posi-
bles ĺıneas de trabajo futuras que se pueden llevar a cabo, con el fin de ampliar los diferentes
algoritmos presentados en la tesis. En primer lugar, en la sección de conclusiones, se realiza
un breve resumen de los diferentes algoritmos propuestos en esta tesis, aśı como de sus con-
tribuciones. Seguidamente, se pasa a responder las preguntas de investigación planteadas en la
sección de introducción, a través de las evidencias experimentales obtenidas por los diferentes
algoritmos implementados. Finalmente, se plantean cuales podŕıas ser las posibles futuras ĺıneas
de trabajo, que se podŕıan realizar sobre estos algoritmos para mejorarlos.

7.1 Conclusiones

La principal contribución de esta tesis doctoral es el diseño e implementación de nuevos algo-
ritmos de detección de comunidades solapadas, combinando los conceptos de las técnicas de
clustering de grafos y algoritmos genéticos. El objetivo principal de estos nuevos algoritmos será
encontrar nuevos enfoques para mejorar los algoritmos clásicos que existen actualmente en el
estado del arte. Además, se ha realizado un estudio detallado de varias medidas relacionadas
con la estructura topológica de las redes, analizando cuáles son las más adecuadas para guiar los
algoritmos genéticos propuestos, y aśı realizar buenas divisiones de los grafos en comunidades.
Finalmente, tanto los algoritmos clásicos como los nuevos algoritmos implementados en esta
tesis, se han aplicado a un dominio real, para demostrar la utilidad del nuevo conocimiento
que estos algoritmos pueden proporcionar. En particular, dichos algoritmos se han aplicado
para identificar comunidades de opinión relacionadas con las vacunas en Twitter, analizando la
posible influencia de ellas sobre el resto de los usuarios, y estudiando un posible efecto sobre las
tasas de vacunación.

Para lograr el objetivo principal de esta tesis se han implementado dos generaciones diferentes
de algoritmos:

1. La primera generación se centra en el diseño de algoritmos basados en un algoritmo genético
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estándar con un solo objetivo, y que utiliza una función de aptitud h́ıbrida para guiar la
búsqueda de las comunidades con solapamientos. Esta generación presenta tres algoritmos
diferentes cuyas principales caracteŕısticas son las siguientes:

• GCF-I (basado en distancias). Hay dos versiones de este algoritmo, pero en ambas
versiones las funciones de aptitud se basan en distancias para calcular la similitud
entre los nodos del grafo, aśı como en métricas relacionadas con la teoŕıa de los grafos:

– El algoritmo K-fixed GCF-I utiliza una codificación binaria donde el número
de comunidades en las que dividir el grafo se fija como un parámetro de entrada.

– El algoritmo K-adaptive GCF-I utiliza una codificación más compleja que
permite calcular el parámetro K (úmero de comunidades de la partición) durante
la ejecución del propio proceso evolutivo de forma automática.

• GCF-II (basado en métricas de topoloǵıa de la red). En algoritmos anteriores,
es necesario que cada nodo tenga un conjunto de caracteŕısticas asociadas a él, lo que
va permite medir distancias o similitudes entre ellos. Sin embargo, muchos grafos
reales no tienen caracteŕısticas asociadas a sus nodos, por lo que este nuevo algoritmo
intenta identificar comunidades solamente utilizando métricas relacionadas con la
propia topoloǵıa de la red o grafo.

2. La segunda generación de algoritmos implementada se basa en Algoritmos Genéticos Multi-
Objetivo, donde la función de aptitud implementada optimiza dos funciones objetivos
diferentes simultáneamente; tratando el primer objetivo de maximizar la conectividad
interna de las comunidades, y el segundo tratando de minimizar las conexiones externas
con el resto de grafo. En esta nueva generación se han diseñado e implementado dos
algoritmos diferentes, cuyas principales diferencias están relacionadas con la codificación
utilizada para representar a los individuos:

• Node-based MOGA-OCD donde los alelos de los individuos representan los nodos
del grafo.

• Edge-based MOGA-OCD donde se utiliza un nuevo esquema de codificación
basado en los enlaces del grafo.

En ambos algoritmos, el valor de K (número de comunidades a detectar) se ha codificado
directamente como parte del cromosoma.

Teniendo en cuenta todos los análisis experimentales realizados para cada uno de los al-
goritmos propuestos en esta tesis, es posible dar una respuesta a las principales preguntas de
investigación presentadas en la sección de Introducción. A continuación se realiza una revisión
de estas preguntas de investigación, argumentando sus respuestas en base a las conclusiones
experimentales presentadas en los distintos caṕıtulos de la tesis:

• Q1: ¿Es posible combinar métodos de agrupación (clustering) basados en distancias, con
enfoques genéticos basados en grafos para mejorar los resultados obtenidos por los algorit-
mos clásicos de detección de comunidades solapadas?

Los algoritmos clásicos de agrupamiento (clustering), como K-means, suelen utilizar métricas
de distancias para medir la similitud entre los elementos de un conjunto de datos dado,
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y mediante esta información formar grupos de elementos similares. Por otro lado, los
algoritmos de detección de comunidades clásicos (CDAs), utilizan t́ıpicamente la propia
información de la topoloǵıa del grafo para dividirlo.

Por lo tanto, para intentar validar si estas dos metodoloǵıas diferentes pueden combinarse
para mejorar los métodos de detección de comunidades superpuestas, se han implementado
los dos primeros algoritmos pertenecientes a la primera generación de esta tesis (K-fixed
GCF-I y K-adaptive GCF-I). Estos algoritmos están basados en Algorithmos Genéticos
(GAs) clásicos con un solo criterio de optimización, y para combinar ambas metodoloǵıas,
se han diseñado diferentes funciones de aptitud (fitness) combinando métricas de distancia
entre los nodos, con métricas de la teoŕıa de grafos para guiar la búsqueda. Las funciones
de aptitud basadas en distancias intentarán optimizar la calidad de las comunidades detec-
tadas minimizando la distancia entre los nodos que pertenecen a un mismo grupo, mientras
que se maximizará la distancia entre los centros de las distintas comunidades.

Los resultados experimentales obtenidos para ambos algoritmos (ver sección 3.1.3) mues-
tran que la función de aptitud h́ıbrida combinando las distancias (entre nodos y centros) y
el coeficiente de clusterización (CC), es capaz de alcanzar mejores resultados que los otros
CDAs clásicos estudiados. Además, a partir de un análisis global de todas las métricas
estudiadas, se puede observar que el nuevo algoritmo K-adaptive GCF-I mejora los re-
sultados en todos los casos en comparación con los resultados obtenidos por el algoritmo
K-fijo GCF-I. Este nuevo enfoque evolutivo encuentra comunidades que tienen un tamaño
adecuado, reduciendo la superposición y distancias más cercanas entre los nodos.

Al comparar el algoritmo K-adaptive GCF-Icon CPM y EBC más detalladamente, se puede
observar que las comunidades detectadas por los algoritmos genéticos son más pequeñas
que las comunidades identificadas por los CDA clásicos. Además, es importante observar
que cada comunidad generada por el algoritmo genético está contenida, o parcialmente, en
una comunidad generada por el algoritmo CPM. Esto significa que el algoritmo genético
ha afinado la definición original de la comunidad de este algoritmo clásico, detectando
comunidades más compactas.

• Q2: ¿Son estos algoritmos capaces de identificar comunidades de calidad sólo usando me-
didas sobre la topoloǵıa de la red como funciones objetivo?

El tercer algoritmo implementado en la primera generación se ha inspirado en el análisis
de la topoloǵıa del grafo (GCF-II), y se basa en el uso de medidas de conectividad de la red
(Densidad, Centralización, Heterogeneidad, y Coeficiente de Clusterización) para guiar la
búsqueda. Con el fin de elegir las métricas que se adapten mejor a resolver el problema para
fijarlas como criterios de optimización de la función de aptitud del algoritmo, se realiza una
evaluación comparativa de todas las medidas de la red mencionadas. Finalmente el nuevo
algoritmo es comparado con otros CDAs, y las versiones anteriores del mismo (GCF-I).

El análisis de las métricas de red muestra que la Densidad obtiene mejores resultados
en cuanto a distancias, pero las comunidades detectadas son pequeñas y no suelen tener
solapes. Por otro lado, utilizando la medida de Heterogeneidad, el algoritmo es capaz de
identificar comunidades con un buen tamaño y la superposición adecuada. Por lo tanto,
ambas medidas se han combinado en la función de aptitud ponderada del algoritmo para
detectar comunidades con buena calidad considerando todas las caracteŕısticas.

Por último, los resultados obtenidos por K-adaptive GCF-I y GCF-II son comparados
con los resultados del algoritmo CPM. Los resultados experimentales muestran que la
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nueva versión del algoritmo (GCF-II) mejora los resultados en todos los casos estudiados.
Esto significa que utilizando una función de aptitud que se base solamente en medidas
relacionadas con la topoloǵıa de la red, el algoritmo detecta comunidades con un tamaño
apropiado, solapamiento reducido, miembros muy conectados y distancias cercanas entre
las diferentes comunidades detectadas. Sin embargo, los resultados muestran cómo los
cambios en la estructura de red del conjunto de datos utilizados, afecta a la calidad de las
soluciones detectadas por todos los algoritmos. Por lo tanto, se puede concluir que estos
algoritmos son dependientes de la topoloǵıa de red.

• Q3: ¿Cómo pueden los algoritmos genéticos multi-objetivo lidiar con el problema de la
dependencia de la estructura de los grafos mostrada por los algoritmos clásicos?

Con el fin de abordar el problema de la dependencia de la topoloǵıa de red detectada
previamente en la fase experimental de la primera generación de los algoritmos (basada
en algoritmos genéticos con un solo objetivo), se ha diseñado una segunda generación de
algoritmos utilizando un enfoque multi-objetivo.

En el problema de detección de comunidades, puede ser dif́ıcil definir lo que es una buena
comunidad, ya que puede depender del dominio de la aplicación. Sin embargo, según
la propia estructura de los grafos, de una forma general se podŕıa decir que una buena
comunidad puede ser aquella que esté bien conectada internamente, y poco conectada con
el resto de los nodos del grafo (separada del resto de comunidades). Teniendo en cuenta
estas dos caracteŕısticas, los Algoritmos Genéticos Multi-Objetivos permitirán encontrar
soluciones que optimicen simultáneamente ambos objetivos utilizando una Frontera de
Pareto-Optimalidad.

Actualmente, existen varios estudios en el estado del arte que muestran que el uso de
la información sobre los enlaces para detectar comunidades en un grafo es una buena
metodoloǵıa. Particularmente, cuando estos métodos se aplican a redes que representan
dominios del mundo real que tienden a ser dispersas, y los métodos basados en nodos a
menudo tienen dificultades para encontrar comunidades de gran tamaño. Por esta razón,
en la segunda generación de los algoritmos de esta tesis, se han implementado dos algo-
ritmos diferentes (MOGA-OCD) cuya principal diferencia se basa en la codificación. El
primer algoritmo (Node-based MOGA-OCD) utiliza una codificación donde el individuo
representa grupos de nodos, mientras que en el segundo algoritmo el individuo representa
los enlaces del grafo.

Ambos algoritmos han sido evaluados contra varios CDAs clásicos que permiten sola-
pamiento, utilizando dos tipos diferentes de conjuntos de datos: redes reales que propor-
cionan un etiquetado de sus comunidades para evaluar la precisión; Y redes reales más
complejas sin etiquetado para evaluar la efectividad y calidad de las soluciones detectadas.

Al analizar los resultados experimentales obtenidos con todos los conjuntos de datos, se
pueden extraer algunas conclusiones generales. Los CDA clásicos suelen tener buenos
resultados cuando el grafo está muy estructurado, y el algoritmo puede dividirlo según
su topoloǵıa de red. Pero cuando estos algoritmos se aplican utilizando grafos de gran
tamaño, tienen problemas para dividirlo en comunidades de calidad. Además, para grafos
no estructurados o dispersos, la precisión y calidad de las comunidades detectadas por
estos algoritmos disminuyen significativamente. Por otro lado, utilizando algoritmos no
estructurados o dispersos, el nuevo algoritmo MOGA-OCD basado en nodos mejora los
resultados en casi todos los casos. En relación con los grafos estructurados, esta versión del
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algoritmo obtiene resultados similares, o muy cercanos al resto. Sin embargo, el algoritmo
basado en enlaces obtiene buenos resultados para ambos tipos de grafos (estructurado y
no estructurado).

Por lo tanto, en términos generales, se puede concluir que los algoritmos MOGA-OCD
obtienen buenos resultados para los diferentes tipos de grafos, incluyendo conjuntos de
datos de mayor tamaño donde en algunos casos los algoritmos clásicos no son capaces de
realizar una partición del mismo. Además, utilizando la colección de conjuntos de datos
etiquetados (se indica la información de a qué comunidad debe pertenecer cada nodo),
los nuevos algoritmos propuestos alcanzan una mayor precisión en casi todos los casos
estudiados.

• Q4: ¿Cómo se pueden aplicar estos algoritmos a dominios sociales reales para adquirir
información útil?

La última parte de la tesis presenta una aplicación práctica de los algoritmos de detección
de comunidades para descubrir y analizar comunidades en Twitter, que están difundiendo
opiniones sobre la vacunación. Para ello se ha utilizado un conjunto de datos recopilado
de Twitter, aśı como información sobre las tasas de vacunación extráıdas de la web de la
Organización Internacional de la Salud (WHO).

Usando ambos conjuntos de datos, se ha realizado un estudio inicial enfocado a medir
la influencia potencial que pueden estar teniendo las opiniones sobre las vacunas disemi-
nadas en Twitter, en las tasas de vacunación de los páıses. Los resultados obtenidos en
este análisis preliminar muestran, que en algunos casos śı que podŕıa estar afectando las
opiniones de vacunas de los usuarios de Twitter, en el proceso de toma de decisiones de
vacunación de algunos páıses. Sin embargo, también se puede apreciar que la mayoŕıa de
las comunidades detectadas no están en contra de las vacunas. De hecho, actualmente la
mayoŕıa de los movimientos emergidos en Twitter sobre este tema están intentando apoyar
la vacunación, tratando de que haya un incremento de las tasas para tener una cobertura
lo mayor posible.

Posteriormente, se genera una representación en forma de grafo con los datos extráıdos de
Twitter basado en los re-tweets que se hacen entre los distintos usuarios. Sobre esta grafo
se van a aplicar distintos algoritmos de detección de comunidades, para identificar aquellas
comunidades están hablando sobre las vacunas y tienen opiniones similares. El análisis
detallado de estas comunidades muestra que los usuarios más importantes e influyentes
incluidos en ellas, están apoyando el movimiento de vacunación. Mientras que las comu-
nidades de vacunas negativas a menudo incluyen pocos usuarios, y que además no están
bien conectados. Finalmente, una visualización geográfica de estas comunidades muestra
que los páıses más relevantes (Irlanda, Reino Unido, Canadá y Australia) hablando del
tema están apoyando la vacunación. Por otro lado, la mayoŕıa de las comunidades que
difunden opiniones negativas se encuentran en EEUU.

Por lo tanto, teniendo en cuenta todos los resultados experimentales presentados, se puede
concluir que la aplicación de CDAs es útil, y pueden ser utilizados para encontrar y ras-
trear los movimientos de vacunas, aportando nuevo conocimiento que podŕıan ser útil
para mejorar las estrategias de Salud Pública sobre la inmunización. Además, este nuevo
conocimiento también puede utilizarse para intentar detectar y localizar donde podŕıan
generarse futuros brotes de enfermedades en diferentes partes del mundo, debido a que las
tasas de vacunación vayan a disminuir.
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7.2 Trabajos Futuros

Por último, existen varias ĺıneas de trabajo que podŕıan ampliarse en un futuro próximo en
relación con los diferentes algoritmos y aplicaciones presentados en esta tesis:

• Podŕıa ser interesante extender los algoritmos diseñados en esta tesis, con el fin de manejar
grafos de gran tamaño, utilizando herramientas de Big Data para el procesamiento masivo
de datos como Apache Hadoop o Spark.

• En relación con las medidas de conectividad utilizadas como criterios de optimización en
la función de aptitud, podŕıa ser importante realizar un análisis más detallado de todas
ellas para estudiar cuál es la más adecuada para cada topoloǵıa de grafo diferente.

• Podŕıa ser interesante desarrollar un enfoque co-evolutivo cooperativo de los algoritmos, di-
vidiendo el problema en dos subcomponentes: una subpoblación para buscar una partición
óptima del gráfico, y otra para buscar la superposición óptima entre estas comunidades.

• Debido a que existen varias medidas diferentes de conectividad que podŕıan utilizarse para
guiar la búsqueda de soluciones, podŕıa ser muy interesante diseñar una versión autoadapt-
able de los algoritmos. De esta manera, durante el propio proceso evolutivo, se seleccionaŕıa
automáticamente los criterios de optimización que sean mejores para encontrar mejores
soluciones.
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