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Abstract

Quantitative Systems Pharmacology has the potential to change the way we approach Biomedical

research and to ensure more robustly design studies to reduce the failure rate in the clinical phases

of drug development. This thesis is focused on the study of different therapeutic ligands and drugs

from a computational perspective in order to design, optimize and improve drug treatments.

First, the thesis explores different ligand-receptor models to understand the mechanisms of ac-

tion of asymmetric ligands such as the growth hormone (GH) and the erythropoietin (EPO) which

binds their receptors sequentially to form a 1:2 ligand receptor active complex configuration. The

final model is able to explain the singular signaling dynamics of these systems. Furthermore, the

model unveils the regulatory role of each of the two different ligand binding sites, which can help

to optimize the design of agonist and antagonist molecules in order to develop more efficient treat-

ments against GH- and EPO-related diseases.

The next publication of this thesis presents the first mathematical model to test and optimize

selective chimeric drugs, using as a case of study a chimera composed of the epidermal growth

factor (EGF) linked to different mutants of interferon (IFN), with selective potential toward tumoral

cells over-expressing the EGF receptor. This model quantitatively reproduces all the experimen-

tal results, illustrating how chimeras using mutants of IFN with reduced affinity exhibit enhanced

selectivity against cell over-expressing EGF receptor.

Then, a more complex theoretical framework based on the previos model was designed in order

to study the behavior of chimeric combinatorial therapies in cell populations, predicting that drug

combination of selective drugs is synergistic in terms of their selective potential. This study provides

a way to gain optimal selective potential at reduced doses compared to the same drugs when

applied individually.

The last contribution of the thesis presents the first global analysis of how the network nonlin-
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Abstract

earities can influence the cellular response to a given drug treatment. Here it was created a high-

throughput framework to study the response to molecular inhibition of three-node generic signaling

pathways with different regulatory motifs. Most of the analyzed networks show that the initial state

of activation of the nodes strongly influences the outcome of the treatment. The network architec-

ture can induce multiple dose-response curves where the drug efficiency increases or decreases

depending on the initial state of activation of the proteins of the pathway. Several novel modes of

bistability and hysteresis were characterized, illustrating how this dependence of the drug effect on

the initial state of the network may affect the reproducibility of drug studies and clinical trials.
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La Farmacología Cuantitiva de Sistemas tiene el potencial de cambiar nuestro el enfoque de la

Investigación Biomédica y asegurar un diseño de los estudios más robusto, para así poder reducir

la tasa de fracaso en las fases clínicas de desarrollo de fármacos. Esta tesis doctoral se centra en

el estudio de diferentes fármacos y ligandos terapéuticos desde un punto de vista computacional,

con el objetivo de diseñar, optimizar y mejorar los tratamientos farmacológicos.

Inicialmente, la tesis explora distintos ejemplos de ligando-receptor para comprender los mecan-

ismos de acción de moléculas como la hormona del crecimiento (GH) y la eritropoyetina (EPO),

que se unen a sus receptores de manera secuencial para formar un complejo activo de con-

figuración 1:2 de ligando-receptor. El modelo matemático final es capaz de explicar la singular

dinámica de señalización de estos sistemas. Además, el modelo revela el papel regulador de los

distintos sitios de unión de los ligandos, lo cual puede ayudar a la optimización del diseño de

moléculas agonistas y antagonistas para poder desarrollar tratamientos más eficientes de enfer-

medades relacionadas con GH y EPO.

La siguiente aportación presenta una herramienta matemática para evaluar y optimizar fárma-

cos quiméricos selectivos (quimeras), utilizando como modelo a un compuesto resultado de la

fusión del factor epidérmico del crecimiento (EGF) y diferentes mutantes del interferón (IFN),

con selectividad hacia células tumorales que sobre-expresan el receptor de EGF. Este modelo

matemático reproduce cuantitativamente los resultados experimentales de la misma quimera, e

ilustra cómo las quimeras cuya subunidad citotóxica (el interferón) posee una mutación que la

hace menos afín a su receptor, poseen mayor selectividad hacia las células tumorales, que sobre-

expresan el receptor de EGF.

A continuación se diseñó una plataforma teórica basada en el modelo matemático anterior para

así poder estudiar el comportamiento de las quimeras en terapias combinatorias aplicadas a pobla-

ciones celulares. Los resultados predicen que la combinación de quimeras es sinérgica en térmi-

nos de selectividad, aportando así una manera de aumentar su selectividad, reduciendo al mismo

tiempo la cantidad de dosis, en comparación con las mismas quimeras aplicadas individualmente.

La última contribución de esta tesis doctoral presenta el primer análisis global de cómo las

no-linealidades en las redes de señalización pueden influenciar la respuesta celular a tratamien-

tos farmacológicos. Para ello, se estableció una plataforma teórica donde estudiar la respuesta

a la inhibición molecular en redes de señalización genéricas de tres nodos con diferentes inter-

acciones no lineales (autorregulación, bucles de retroalimentación, etc.). La mayor parte de las
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Abstract

redes analizadas muestran que el estado inicial de activación de los nodos implicados en la red

afecta enormemente a la respuesta al tratamiento. La arquitectura de la red puede inducir múlti-

ples curvas de dosis-respuesta, donde la eficacia del fármaco puede incrementarse o reducirse

dependiendo del estado inicial de activación de las proteínas de la ruta de señalización. Por último,

se caracterizaron nuevos tipos de biestabilidad e histéresis en la respuesta a la señal, lo cual ilus-

tra cómo esa dependencia entre el estado inicial del sistema y el efecto de la droga podría estar

afectando a la reproducibilidad de los estudios farmacológicos y ensayos clínicos.
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1 Introduction

1.1 Quantitative Systems Pharmacology

The progress in basic biomedical research is driven by major advances in biotechnology tech-

niques and increasing R&D budgets. Nonetheless, the pharmaceutical industry faces unprece-

dented challenges in discovering new drugs and moving them into the clinic: the current drug

development cost is rising rapidly (the average cost of bringing a drug to market is $1.5 billion, over

10 times higher than the cost in the 1970s) while the number of truly innovative drugs approved

has decreased significantly in the last ten years [1]; only 10% of drug development programs suc-

cessfully make it to market.

The clinical phases of development (especially Phase II and III), where the dosage, safety and

efficacy of the drug are assessed, have the greatest impact on the overall cost of drug development

[2]. This mainly derives from high failure rates at these stages, considering that the success rates

are 20-30% for Phase II and 30-50% for Phase III.

The emerging discipline of Quantitative Systems Pharmacology (QSP) has the potential to

change the way we approach biomedical research and to reverse the continued decline of R&D

productivity by shifting compound attrition from late clinical development to earlier stages, ensuring

more robustly designed studies and improving confidence in the compound.

QSP is defined as an approach to translational medicine that combines computational and ex-

perimental methods to elucidate, validate and apply new pharmacological concepts to the devel-

opment and use of small molecule and biological drugs [3]. QSP provides an integrated systems-

level approach to determine mechanism of action of new and existing drugs in preclinical and

animal models and in patients, enabling the prediction of efficacy and safety of those compounds

at all stages of drug discovery and development. This emerging discipline has drawn an increasing

awareness and focus in recent years.

The field of QSP has its origin in inherently quantitative disciplines like classical pharmacology
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1 Introduction

and physiology. Classical Pharmacology had two basic pillars — the study and quantification of

drug behavior in the body comprising pharmacokinetics and pharmacodynamics (what the body

does to the drug and what the drug does to the body, respectively) and the "receptor hypothesis",

the idea that drug action is mediated through binding to specific target molecules or receptive

substances. In Classical Pharmacology, drug discovery relied on phenotypic screening, that is, the

identification of compounds that cause a desirable change in phenotype. This approach does not

require a prior understanding of the molecular mechanism of drug action and even after the activity

and efficacy of the drug are determined. Nonetheless, the classical approach has resulted in many

successful drugs.

Beginning in the 1980s, advances in molecular biology and genomics led to phenotypic screens

largely replaced by target-based screening [4], which measures the effect of compounds on a

purified target protein via in vitro assays.

The idea of merging the disciplines of Pharmacology and Systems Biology is conceptually com-

pelling because they share an interest in precise, mathematical relationships between perturba-

tions — such as drug dose and exposure, but also genotypic and environmental variation – and

physiological consequences in terms of drug action.

The discipline of Systems Biology has important historical roots in physiology. Claude Bernard

is considered the first systems biologist [5]. He established the homeostatic basis of modern phys-

iological science with his concept of the systems principle of control of the internal environment (le

milieu intérieur ) in 1865. It is much less well known that Bernard also predicted the development

of mathematical biology when he wrote ’this application of mathematics to natural phenomena

is the aim of all science, because the expression of the laws of phenomena should always be

mathematical’ [6]. More historical origins of Systems Biology can be found in Hodgkin & Huxley’s

ground-breaking mathematical reconstruction of the nerve impulse [7] or Noble’s first mathematical

model of the working heart [8]. Systems Biology flourished in the second half of the twentieth cen-

tury due to the spectacular growth of molecular biology and gained a huge interest in the last 10

years, as biology enters into the challenging "post-genomic era". While an understanding of genes

and proteins continues to be important, the focus is now on explaining the structure and dynamics

of biological systems, complementing reductionist molecular biology by integrative approaches [9].

Systems biology combines mathematical modeling and quantitative experimental data as a way

of generating formal representations of biological processes and revealing emergent properties

which cannot be inferred by the study of individual components.
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Contemporary systems biology: four complementary approaches 
Systems biology is advancing in four distinct but complementary directions, all of which are relevant to 
pharmacology. The first involves largescale measurement and network inference. This approach aims 
to discover  interactions among hundreds or even  thousands of genes and proteins using systematic, 
highthroughput measurements (e.g. mRNA profiling, twohybrid screening, mass spectrometrybased 
proteomics  and  metabolomics).  The  resulting  data,  which  typically  derive  from  highthroughput 
genomic, proteomic or other –omic approaches are assembled into complex networks whose properties 
are  studied  using  graphbased methods  derived  from  computer  science.  Networks  of  this  type  have 
been used to characterize drug targets in a systematic manner [3032] and are increasingly important 
in developing disease classifiers based on sequence or  transcription data (sometimes called “systems 
medicine”  [28,  33]).  The  second  direction  involves  attempts  to  elucidate  the  principles  of  biological 
design  or  function  based  on  analogies  with  engineering  or  physics.  Properties  elucidated  for  one 
biological  network  may  be  generalized  into  concepts  such  as  “feed  forward  control”,  “robustness”, 
“adaptation”,  etc.  A  notable  success  of  these  efforts  has  been  the  recognition  that  noise  plays  an 
important  role  in  limiting  the  accuracy  of  biochemical  circuits  and  in  creating  celltocell  variability; 
conversely, the ability of some regulatory motifs (positive feedback for example) to increase precision 
in the face of this variability has attracted  interest  in  it as a design feature [34].  The third thrust  in 
systems biology involves combining mathematical modeling of regulatory and signaling pathways with 
multiplex  and  singlecell  experimental  data  as  a  means  to  understand  the  precise  biochemistry, 
dynamics and functions of the networks that control normal cellular physiology and cause disease.  This 
approach  is  a  natural  complement  to  molecular,  structural  and  cellular  biology  [35,  36].  At  the 
moment,  this  type  of  analysis  is  often  limited  to  pathways  of  20100  components,  but  the  size  of 
networks  that  can  be  analyzed  is  expected  to  increase  rapidly  in  the  future.  Because  systems 
pharmacology is necessarily multiscale, all three of these systems biology approaches are expected to 
be  important  in  the  future  development  of  the  field.    The  fourth  approach, which may have  a  large 
impact in the long term, is “synthetic biology”. The synthetic strand in systems biology aims to create 
fundamentally  new  biological  devices  based  on  discoveries  from  other  areas  of  systems  biology  and 
new approaches to genetic engineering.   Synthetic biology adds the  fields of biochemical engineering 
and industrial process optimization to systems biology and also adds problems outside the purview of 
conventional biomedicine, such as bioenergy and bioremediation.   

Figure 4. Horizontal and vertical 
integration in systems biology 
and pharmacology. One 
representation of horizontal and 
vertical integration emphasizing 
changes in physiological 
complexity, which tends to parallel 
changes in time scales (from 
seconds and minutes to years and 
lifespans). The goal for QSP is to 
bring networklevel understanding 
of drugs to the complex physiology 
of patient responses. The arrows 
denote trend lines. 

Achieving horizontal and vertical integration through multiplex measurement and modeling 
The 2008 white paper on quantitative and systems pharmacology (summarized in Appendix 1) carefully 
considered  the  complementary  strengths  of  “horizontal”  (Appendix  2)  and  “vertical”  (Appendix  3) 
integration in pharmacology (Figure 4). Many practical and conceptual challenges remain in achieving 
effective horizontal and vertical integration of biological knowledge, and the difficulties are magnified by 
the tendency of practitioners to focus on a single type of data (proteomics or genomics, for example) 
and  of  funding  agencies  and  academic  organizations  to  value  specialists  over  integrators.  Cultural 

Figure 1: Representation of the horizontal and vertical integrative approaches in the fields of Sys-

tems Biology and Pharmacology. Quantitative Systems Pharmacology aims to provide a network-level

insight to the Classical Pharmacology field, in order to determine the mechanisms of action of new and

existing drugs in cell cultures, animal models and patients. Figure adapted from [3].

Quantitative Systems Pharmacology is the application of systems biology principles to the Phar-

macology field. While Systems Biology is more horizontally integrated, studying multiple receptors,

signaling networks, metabolic pathways or cell types at the same time, Systems Pharmacology

adds vertical integration by integrating data from multiple spatial and temporal scales, moving from

molecules to cells, tissues and organisms (see Fig. 1) [10, 11].

In this thesis the author uses QSP approach in order to understand drug response in three

different directions:

• To determine the full mechanisms of action of different ligands and drugs on diverse disease

states and increase the effectiveness of selective drugs (sections 3.1 and 3.2 in ’Results’).

• To predict and analyze effective combination therapies (section 3.3 in ’Results’).

• To underline the effect of the architecture of signaling pathways and the initial conditions of

a system in the response to drug inhibitory treatments (section 3.4 in ’Results’).
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1 Introduction

1.2 Signaling pathways

In order to adapt to their environment, cells have to sense and respond to external stimuli. The

process by which a cell converts this extracellular stimuli to a specific response is called signal

transduction. A typical signal transduction event involves the binding of a signaling molecule, or

ligand, to a specific cellular protein called receptor that initiates a response in the target cell.

Receptors

In most cases, receptors are transmembrane proteins on the target cell surface. When they bind

an extracellular signal molecule, they become activated and generate a cascade of intracellular

signals that alter the behavior of the cell. In other cases, the receptors are inside the target cell,

and the signal molecule has to enter the cell to activate them [12].

Cell-surface receptors can be classified as: ion-channel-linked receptors, involved in rapid synap-

tic signaling between electrically excitable cells, G-protein-linked receptors, which regulate the ac-

tivity of a separate plasma-membrane-bound target protein, and enzyme-linked receptors.

In this thesis, the author focuses on two families of receptors inside the enzyme-linked receptor

group: the tyrosine-kinase-associated receptors and the receptors tyrosine kinases (RTKs).

Tyrosine-kinase-associated receptors are cell-surface receptors which depend on tyrosine phos-

phorylation for their activity but they lack a tyrosine kinase domain. These receptors associate with

cytoplasmatic tyrosine kinases, like the JAnus Kinase or JAK, which phosphorylates and activates

a set of latent gene regulatory proteins called STATs (signal transducers and activators of transcrip-

tion). STATs move into the nucleus and stimulate the transcription of specific genes. This cascade

is called the Jak-STAT signaling pathway.

Cytokine receptors are the the largest and most diverse class of tyrosine-kinase-associated re-

ceptors and respond to ligand binding and stimulation by forming oligomeric active assemblages.

More than 30 cytokines and hormones activate the Jak-STAT pathway by binding to cytokine re-

ceptors (see bellow).

On the other hand, the receptor tyrosine kinases (RTKs) have intrinsic catalytic activity and

they are able to phosphorylate specific tyrosines on a small set of intracellular signaling proteins.

After the binding of a ligand, RTKs form oligomers; even some monomeric ligands, such as the

epidermal growth factor (EGF), bind to two receptors simultaneously and cross-link them directly.

The oligomerization induces the cytosolic kinase domains (also called tails) to rearrange and cross-

phosphorylate each other on multiple tyrosines, a process referred to as autophosphorylation. This
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1.2 Signaling pathways

event contributes to the RTK activation by increasing the kinase activity of the tails and by creating

high-affinity docking sites for the binding of a number of intracellular signaling proteins.

RTKs phosphorylation has been particularly well studied as a signaling mechanism involved in

the control of animal cell growth and differentiation. This family includes the receptors for most

growth factors: epidermal growth factor (EGF), hepatocyte growth factor (HGF), insulin or the

macrophage-colony-stimulating factor (M-CSF). In particular, the EGF receptor (EGFR), a very

important piece of this thesis, is commonly over-expressed on the surface of many types of tumor

cells, such as squamous carcinoma [13], breast cancer [14], and human epithelial cancers [15],

being a extremely relevant therapeutic target for cancer treatment.

Signal molecules

Cells in higher animals communicate by means of hundreds of kinds of signal molecules. These

include proteins, small peptides, amino acids, nucleotides, steroids, retinoids, fatty acid derivatives,

and even dissolved gases such as nitric oxide and carbon monoxide.

Most ligands are unable to cross the cell membrane, so they bind to cell surface receptors. Clas-

sical examples of these soluble ligands include growth factors (which control cell growth, differen-

tiation and survival in their target cells), neurotransmitters (the messengers that mediate signals

transmission across a chemical synapse) or peptide hormones (for instance, insulin or cytokines).

In contrast, some signaling molecules are small and lipid-soluble, thus cross the plasma membrane

to bind receptors inside the target cell, either in the cytosol or in the nucleus. Steroid hormones are

the typical small hydrophobic signaling molecules, but also the thyroid hormone, vitamin D3, and

retinoic acid are intracellular signaling proteins [16].

The research presented herein is focused on the ligand-receptor system of the cytokines EPO

(erythropoietin) and GH (growth hormone) (in ’Results’, section 3.1), and also on the use of the

interferon IFN↵2a as one of the components of a chimeric selective cancer treatment (see sec-

tion 1.4 and ’Results’, sections 3.2 and 3.3). Interferons are cytokines secreted by leukocytes cells

in response to viral infection, inducing in the neighboring cells an increase in their resistance to

viral infection or having an anti-proliferative effect. In 1986, interferons IFN↵2a and IFN↵2b were

the first recombinant cytokines to be FDA approved for the treatment of a malignancy (hairy cell

leukemia) and at the moment, it is used as treatment of many other types of cancer diseases [17],

hepatitis B and C [18] and multiple esclerosis.

The erythropoietin (EPO) is a glycoprotein hormone synthesized and secreted by cells in the

kidney into the bloodstream after a lack of oxygen or a shortage of erythrocytes, which stimu-
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lates erythrocyte precursor cells to survive, proliferate, and differentiate, ultimately increasing the

production of erythrocytes. Recombinant EPO is approved for clinical use of iron deficiency and

anemia resulting from chronic kidney disease and chemotherapy, and has a neuroprotective role

for immature central neural system [19].

The growth hormone (GH) is secreted by endocrine cells into the bloodstream and participates

in the regulation of many physiological processes, promoting growth and controlling metabolism.

Growth hormone therapy is used to treat Turner’s syndrome, Prader-Willi syndrome, chronic kidney

disease hGH deficiency or insufficiency and preterm infants development [20].

EPO and GH are similar in structure, with two independent binding sites with asymmetrical affini-

ties toward the receptor. This important feature will be addressed in the ligand-receptor modeling

systems presented in this thesis.

Signal Transduction Pathways and Networks

Receptor activation by ligand-receptor interaction modifies the behavior of a chain of several inter-

acting intracellular proteins. This cascade of biochemical reactions induced by receptor activation

is called signal transduction pathway (or signaling pathway). The key players of these signaling

pathways are the kinases and phosphatases, which act as key regulators of cell function by catalyz-

ing (facilitating) the addition of a negatively charged phosphate group to proteins. These signaling

cascades ultimately lead to induction of gene transcription and translation into specific proteins.

Cell signaling pathways interact with one another generating complex networks of protein interac-

tions (’signaling networks’). The crosstalk between pathways starts at the level of receptors (e.g.

growth factor receptors interact with multiple pathways like the mitogen-activated protein kinase

(MAPK) pathway [21], the Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway and the

phospholipase-C pathway [22]).

These highly complex networks are extremely hard to analyze in the context of the classical

Molecular Biology approach and claim for a more quantitative perspective. From a drug develop-

ment perspective, those non-linear interactions (auto-regulations, feedback loops, etc.) between

circuit components endow signaling networks with emergent properties that modify the effects of

drug action and need to be taken into account. In section 1.3, the author will address signaling

network emergent behaviors.
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1.3 Emergent Properties of Signaling Pathways

1.3 Emergent Properties of Signaling Pathways

Many biological processes are irreversible and this is not a trivial property since the basic biochem-

ical reactions are all reversible. For example, the differentiated state of cells is stable and cells

remain differentiated for years after the stimulus triggering their differentiation disappeared. How

will the reversible activation of cell signaling pathways possibly give rise to irreversible changes in

cell fate, despite the short lifetime of the involved molecules and the stimulus?

Forty years ago, Monod and Jacob tried to addressed that question in a highly influential paper

[23], claiming that the wiring of the signal transduction systems was responsible for the cell cycle

irreversibility. Furthermore, they depicted specific signaling topologies capable of remembering a

transient differentiation stimulus after it was removed. Mimicking electronic engineering principles,

the visionary idea that signaling networks could remember and process signal information, was

supported by many subsequent studies, and it is one of the basic concepts of systems biology field.

One of the highest achievements of Molecular Cell Biology in the 1980-2000 period was to identify

components of the biological networks and their basic interactions with each other. But biological

systems cannot be fully understood just by knowing their parts and interconnections. Nowadays,

the real challenge of molecular systems biology is to understand, predict, and intervene in the

decision-making of the cell based on these interactions between proteins, genes or metabolites.

For that purpose, we should first identify the basic information-processing modules —network

motifs [24] — in protein regulatory networks and characterize their functional significance in signal

processing and cell response. This type of characterization uses many concepts and analytical

tools from Nonlinear Dynamics like stability, feedback loop, autoregulation or bifurcation diagram

[25].

Network motifs are patterns of activatory or inhibitory interactions between a small number of

genes, proteins or mRNAs, usually with identifiable information-processing functions in real regu-

latory and signaling networks [26]. Network motifs appear at different levels of complexity (from

bacteria and yeast to plants and animals) and present a wide range of functional roles in signal

processing and cell response like adaptation, ultrasensitivity, homeostasis or bistability. A network

motif is represented as a diagram of nodes — the species involved in the motif — interacting with

each other via the arrows, which can be positive or negative. Fig. 2a shows some examples of

network motifs, based on the excellent review of Dr. Alon [24].

Some of the most simple and ubiquitous motifs in regulatory networks are the autoregulatory
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Figure 2: Network motifs and signal processing behaviors (a) Abbreviated list of two- and three-

component network motifs. (b) Typical stimulus input dynamics for a system with perfect adaptation. While

the change in the input is sustained over time (dashed red curve), the system responds to the input (black

curve) but it recovers its prestimulated level after a while. (c) Dose-response characteristic curves for a

hyperbolic response (dashed grey curve) and a ultrasensitive response (dashed red curve) with its typical

sigmoidal shape: the response raises with stimulus in a steep manner, before saturation.

circuits which can involve direct (a protein autoactivating itself) or indirect (with intervening links)

feedback loops that can be positive or negative. Examples of positive feedback loop (PFBL) motifs

are shown in Fig. 2a(1,2), often observed in systems that exhibit ultransensitive switch behavior or

bistability.

Another network motif that, under the right conditions, can exhibit bistabilty, is the double-negative

feedback loop, which consists of two nodes repressing or inhibiting each other [27]. Each of the

circuits with memory abilities of the previously cited work of Monod and Jacob [23] were variations

of a double-negative feedback circuit (see Fig. 2a(3)).

Negative feedback loops are functionally associated with systems that show strong noise resis-

tance to perturbations [28] (Figs.2a(4-7)). Furthermore, three-node feedback loops (Fig. 2a(6,7))

associate with sustained oscillatory systems under constrained conditions. The repressilator, a

synthetic gene network built by Elowitz & Leibler, demonstrated the capacity of a simple negative

FBL to generate sustained oscillations in single cells [29].

Another network architecture, which is highly enriched in bacterial transcriptional circuits, is the
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feedforward loop (FFL), in which a single upstream node fans out to regulate two distinct down-

stream pathway branches of different lengths, but then these branches converge on an integrating

node further downstream (see Fig. 2a(8,9)). Incoherent feedforward loops (Fig. 2a(9)) are associ-

ated with perfect adaptation in signal transduction networks (see ’sniffers’ in [30]) and with signal

integration in developmental biology (stripe-forming patterns [31]). In general, feedforward loops

(Figs. 2a(8,9)) present noise-suppressive characteristics [32].

At this point, the author will give a more detailed description of some of the functional roles of

network motifs: adaptation, ultrasensitivity and bistability. Adaptation refers to the system’s ability

to respond to a change in input stimulus and then return to its pre-stimulated output level, even

when the change in input persists in time ([33], see Fig. 2b). This behavior is typical of chemotac-

tic systems, which respond to an abrupt change in attractants or repellents, but then adapt to a

constant level of the signal. It is present in different organisms like bacteria [34] or neutrophils [35].

The maintenance of homeostasis in the presence of perturbations is another example of adapted

response (e.g. the calcium homeostasis in mammals [36]).

Ultrasensitivity defines a situation where a small increase in the input concentration causes a

significant change in the output, in a "switch-like" manner [37]. Fig. 2c represents a hyperbolic and

an ultrasensitive response as a function of the stimulus. Ultrasensitive responses resemble like

those of cooperative enzymes, but they are not necessarily produced by cooperativity. Many mech-

anisms apart from positive feedback loops (Fig. 2a(1,2)) can generate ultrasensitive responses

such as zero-order ultrasensitivity processes, multistep mechanisms, stoichiometric inhibitors. An

exhaustive review of ultrasensitivity can be found in [38]). Ultrasensitivity is present in a wide range

of biological processes like cell cycle regulation [39–41] or metabolic states [42].

Ultrasensitivity is a basic building block of many other emergent behaviors shown by signaling

networks. It allows the effective transmission of signals down a signal transduction pathway and

contributes to the generation of bistability when combined together into positive feedback loops

and also oscillations when combined together into negative feedback loops [38].

The concept of bistability is addressed in the forth contribution of the thesis (see ’Results’ sec-

tion 3.4) and is crucial to understand behaviors such as decision-making processes in cell cycle

progression, cellular differentiation or apoptosis. A system is bistable when the same input state

can lead to two different, stable outputs. A simple example of a bistable system is the ultrasensitive

positive feedback, which is an autoregulatory system (Fig. 2a(1)) where a cooperative feedback

loop: X is phosphorylated to X active (X⇤) by the stimulus S, but it can also autoactivate itself by

9
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autophosphorylation in a cooperative manner (i.e. we need n molecules of X

⇤ to activate X via

autophosphorylation). Now, the strength of the positive feedback increases more than linearly with

X

⇤, leading to an ultrasensitive feedback loop (more information about the system can be found in

[43]). A diagram of the system can be found in Fig. {fig:adapt1a.

The change in X

⇤ concentration is given by:

dX

⇤

dt

=

✓
k

f

[S] +

k

a

· [X

⇤
]

n

[X

⇤
]

n

+ K

a

MM

◆
· (1 � [X

⇤
]) � k

r

· [X

⇤
] (1.1)

where k

f

is the forward rate constant (M�1
sec

�1), k

r

is the reverse rate constant (in sec

�1), k

a

is

the autophosphorylation rate constant (M�1
sec

�1) and n is the Hill coefficient (degree of cooper-

ativity; here n>1).

Now, we decompose dX

⇤

dt

into a rate of production PR and a rate of removal RR of X

⇤:
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⇤
]
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]
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MM
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RR = k

r

· [X

⇤
]

(1.2)

The intersection of both rates corresponds to dX

⇤

dt

= 0. In Fig. 3b, we plot both production and

removal rates as a function of X

⇤. The steady states of the system correspond to the intersection

of both curves (black circles). That graphical representation is called the rate-balance plot, which

provides an intuitive method to determine the stability characteristics of a network.

The feedback curve is sigmoidal which allows both rate curves to intersect in three different

steady states: two stables and one unstable, the latter corresponding to the the threshold concen-

tration. If the system is on the left side of the threshold, it will settle into the off-state, but if it is on

the right of the threshold, it will stay on the on-state. The concentration threshold is an unstable

steady state since any perturbation will send the system either to the on-state or to the off-state

[43].

Fig. 3c shows the bifurcation diagram of the system, which plots the steady-state response

(stable and unstable) as a function of signal strength. Again, solid circles are the stable steady-state

points while empty circles are the unstable steady-state points. S

crit

is the critic S concentration

where stable and unstable branches coalescence [25].

The presence of nonlinearities in a given signaling network can induce bistability or adaptation

and these behaviors may have a strong impact on the physiological response of cells to drug treat-

ments. The effect of a drug in a specific target will not necessarily correlate with its concentration
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Figure 3: Ultrasensitive positive feedback system. (a) Diagram showing X phosphorylation by S (and its

corresponding forward rate constant k

f

) and X cooperative autorregulation. k

r

is the reverse rate constant

of X

⇤ dephosphorylation. (b) Rate-balance plot for PR (rate of production) and RR rate of removal of

X

⇤. Solid circles = stable steady-state points. Empty circles = unstable steady-state points. PR varies for

different [S]. (c) Bifurcation diagram for X

⇤ showing the stable branch (black curves) and the unstable branch

(dashed curves). S

crit

is the critical point where both branches colapse (also called bifurcation point) .

when the target is embedded in a network presenting nonlinear interactions, and the application of

an inhibitory treatment may have unexpected results. Therefore, it is highly relevant to understand

the architecture of the targeted network and its emergent properties in order to design reliable

drug treatments. All these features must be considered in early phases of drug development and

demand, as we have previously pointed out in section 1.1, for those quantitative and computational

approaches offered by Quantitative Systems Pharmacology field. A more detailed analysis on the

impact of nonlinearities on targeted therapies will be addressed in ’Results’ section 3.4.

1.4 Deregulation of Signaling Pathways in Cancer and Targeted Therapy

Coordinated regulation of cellular processes allows cells to maintain homeostatic balance and

make decisions as to whether to divide, differentiate, or die. Oncogenic mutations disturb the nor-

mal behavior of those signaling pathways involved in cell fate, triggering the transformation of cells

from healthy to tumoral. These mutations confer cells with six capabilities or "hallmarks" (described

by Hanahan & Weinberg, [44]) which enable their malignant behavior: sustained proliferative sig-

naling, insensitivity to growth suppressors, resistance cell death, replicative immortality, induction

of angiogenesis, and tissue invasion and metastasis (see Fig. 4).
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number and thus maintenance of normal tissue architecture and
function. Cancer cells, by deregulating these signals, become
masters of their own destinies. The enabling signals are
conveyed in large part by growth factors that bind cell-surface
receptors, typically containing intracellular tyrosine kinase
domains. The latter proceed to emit signals via branched intra-
cellular signaling pathways that regulate progression through
the cell cycle as well as cell growth (that is, increases in cell
size); often these signals influence yet other cell-biological prop-
erties, such as cell survival and energy metabolism.
Remarkably, the precise identities and sources of the prolifer-

ative signals operating within normal tissues were poorly under-
stood a decade ago and in general remain so. Moreover, we still
know relatively little about the mechanisms controlling the
release of these mitogenic signals. In part, the understanding
of these mechanisms is complicated by the fact that the growth
factor signals controlling cell number and position within tissues
are thought to be transmitted in a temporally and spatially regu-
lated fashion from one cell to its neighbors; such paracrine
signaling is difficult to access experimentally. In addition, the
bioavailability of growth factors is regulated by sequestration in
the pericellular space and extracellular matrix, and by the actions
of a complex network of proteases, sulfatases, and possibly
other enzymes that liberate and activate them, apparently in
a highly specific and localized fashion.
The mitogenic signaling in cancer cells is, in contrast, better

understood (Lemmon and Schlessinger, 2010; Witsch et al.,
2010; Hynes and MacDonald, 2009; Perona, 2006). Cancer cells
can acquire the capability to sustain proliferative signaling in
a number of alternative ways: They may produce growth factor
ligands themselves, to which they can respond via the expres-
sion of cognate receptors, resulting in autocrine proliferative
stimulation. Alternatively, cancer cells may send signals to stim-
ulate normal cells within the supporting tumor-associated
stroma, which reciprocate by supplying the cancer cells with
various growth factors (Cheng et al., 2008; Bhowmick et al.,
2004). Receptor signaling can also be deregulated by elevating
the levels of receptor proteins displayed at the cancer cell

Figure 1. The Hallmarks of Cancer
This illustration encompasses the six hallmark
capabilities originally proposed in our 2000 per-
spective. The past decade has witnessed
remarkable progress toward understanding the
mechanistic underpinnings of each hallmark.

surface, rendering such cells hyperre-
sponsive to otherwise-limiting amounts
of growth factor ligand; the same
outcome can result from structural alter-
ations in the receptor molecules that
facilitate ligand-independent firing.
Growth factor independence may also

derive from the constitutive activation of
components of signaling pathways oper-
ating downstream of these receptors,
obviating the need to stimulate these
pathways by ligand-mediated receptor

activation. Given that a number of distinct downstream signaling
pathways radiate from a ligand-stimulated receptor, the activa-
tion of one or another of these downstream pathways, for
example, the one responding to the Ras signal transducer,
may only recapitulate a subset of the regulatory instructions
transmitted by an activated receptor.
Somatic Mutations Activate Additional Downstream
Pathways
High-throughput DNA sequencing analyses of cancer cell
genomes have revealed somatic mutations in certain human
tumors that predict constitutive activation of signaling circuits
usually triggered by activated growth factor receptors. Thus,
we now know that !40% of human melanomas contain
activating mutations affecting the structure of the B-Raf protein,
resulting in constitutive signaling through the Raf to mitogen-
activated protein (MAP)-kinase pathway (Davies and Samuels
2010). Similarly, mutations in the catalytic subunit of phosphoi-
nositide 3-kinase (PI3-kinase) isoforms are being detected in
an array of tumor types, which serve to hyperactivate the PI3-
kinase signaling circuitry, including its key Akt/PKB signal
transducer (Jiang and Liu, 2009; Yuan and Cantley, 2008). The
advantages to tumor cells of activating upstream (receptor)
versus downstream (transducer) signaling remain obscure, as
does the functional impact of crosstalk between the multiple
pathways radiating from growth factor receptors.
Disruptions of Negative-Feedback Mechanisms that
Attenuate Proliferative Signaling
Recent results have highlighted the importance of negative-
feedback loops that normally operate to dampen various types
of signaling and thereby ensure homeostatic regulation of the
flux of signals coursing through the intracellular circuitry (Wertz
and Dixit, 2010; Cabrita and Christofori, 2008; Amit et al.,
2007; Mosesson et al., 2008). Defects in these feedback mech-
anisms are capable of enhancing proliferative signaling. The
prototype of this type of regulation involves the Ras oncoprotein:
the oncogenic effects of Ras do not result from a hyperactivation
of its signaling powers; instead, the oncogenic mutations
affecting ras genes compromise Ras GTPase activity, which

Cell 144, March 4, 2011 ª2011 Elsevier Inc. 647

Figure 4: The Hallmarks of Cancer. This illustration encompasses the six hallmark capabilities originally

proposed in Hanahan and Weinberg perspective. The past decade has witnessed remarkable progress

toward understanding the mechanistic underpinnings of each hallmark. Adapted from [44]

This thesis is focused on studying therapies that target the ability of cancer cells to sustain

chronic proliferation, which constitutes an essential trait for cancer development. Healthy cells have

meticulous control over the production and release of growth-promoting signals that orchestrate cell

growth-and-division cycles, ensuring homeostasis of cell number and thus maintenance of normal

tissue architecture and function. A deregulation of key signaling cascades results in uncontrolled

proliferation in an autonomous way. These signals are mainly growth factors that typically bind

receptors tyrosine kinase (RTKs), which transmit signals via the signaling pathways involved in cell

fate (see section 1.2). Cancer cells can acquire sustained proliferation in different ways:

• Autocrine or paracrine proliferative stimulation: Tumoral cells may produce growth factors,

to which they can respond by expressing their corresponding receptors; they can also send

signals to stimulate normal cells (paracrine signaling).

• Receptor overexpression: Mutations can elevate the levels of cell surface receptors, render-

ing such cells hyperresponsive to growth factor ligands.

• Receptor structural alterations, giving rise to ligand-independent activation.
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90 Interdiscip Sci Comput Life Sci (2013) 5: 85–94

2003), or even Hopf (Strogatz, 1994) and Turing insta-

bilities (Lengyel and Epstein, 1992). These nonlinear

systems have been shown to respond to external per-

turbations exhibiting a rich variety of nontrivial behav-

iors (Mı́guez, 2010a; Mı́guez et al., 2006; Mı́guez et al.,

2009; Mı́guez et al., 2005).

An important example of these highly nonlinear

pathways is the AKT signaling cascade, one of net-

works most targeted by mutations in early and ad-

vanced cancers. Hyperactivation of the pathway leads,

among other phenotypes, to insulin resistance, uncon-

trolled cell proliferation and metastasis, as well as en-

hanced resistance to drug treatment (Hennessy et al.,

2005). Fig. 4(a) represents a simplified version of this

signaling cascade (for a more detailed description of the

pathway (Manning and Cantley, 2007; Bellacosa et al.,

2005; Engelman et al., 2006)). One of the key com-

ponents of the pathway is the kinase AKT, a signaling

hub for multiple cell decisions, which is indirectly regu-

lated by the balance between the kinase PI3K and the

phosphatase PTEN. The amplification of the genes cod-

ing for subunits of PI3K has been identified in around

40% of ovarian cancers (Shayesteh et al., 1999), 35%

of breast cancers (Li et al., 2006), and in a high per-

centage of other cancers (Samuels et al., 2004). On the

other hand, PTEN is one of the most commonly lost
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Fig. 4 Nonlinear e�ects in the AKT pathway. (a) Simplified structure of the pathway, focused on the nonlinear regulations
of the signaling. (b) Illustration of the null-clines of a two-variable system with reverse bistability. Before treatment,
the system rests on the low steady state. A strong enough inhibition shifts the system to the higher steady state. (c)
Illustration of a dose-response curve in a system with reverse bistability. The response to treatment is weaker after
an initial inhibition, resulting in a desensitization of the system.

Figure 5: Nonlinear interactions of the PI3K-Akt pathway. Simplified diagram of the signaling pathway,

including positive and negative feedback loops related to this network. Figure adapted from [45].

• Constitutive activation of components of signaling pathways downstream RTKs, making cells

independent of growth factor stimulation.

The PI3K-Akt Pathway

An important example of nonlinear pathway highly involved in cancer initiation and progression is

the PI3K-Akt pathway. DNA sequencing analyses of cancer cell genomes have shown mutations

that predict constitutive activation of signaling circuits usually triggered by activated growth factor

receptors, like the PI3K-Akt pathway (see Fig. 5 based on [46]). At the core of the pathway it stands

the serine/theonine kinase Akt (Protein kinase B), a central regulator of cell proliferation, differentia-

tion, migration, survival and metabolism [47]. Akt is activated by a variety of stimuli, through growth

factor receptors, in phosphatidylinositol 3-kinase (PI3K)-dependent manner. PI3K-dependent Akt

activation is counterbalanced by PTEN (Phosphatase and Tensin Homolog), a tumor suppressor

phosphatase [48], which appears mutated in many human cancers.
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A vast set of tumor tissues shows mutations in PI3K (Phosphatidylinositol-4,5-bisphosphate 3-

kinase), which lead to the hyperactivation of the PI3K signaling circuitry, including Akt [49]. Further-

more, numerous studies confirm that the blockage of Akt signaling results in apoptosis and growth

inhibition of tumor cells. Several members of the PI3K-Akt pathway are kinases, considered one of

the most ’druggable’ classes of intracellular targets. Therefore, the PI3K-Akt pathway is extremely

attractive as a target for cancer therapeutic strategies and constitutes an ideal landscape for the

development of small molecule inhibitors.

The PI3K-Akt pathway presents a high number of nonlinear interactions that can potentially affect

the way cells respond to drugs targeting this network. Insulin signaling is regulated by feedback

inhibition of the expression of IRS1 (insulin receptor substrate 1) (Fig. 5(1)): the activation of the

PI3K-Akt pathway leads to the formation of the complex mTOR (mechanistic target of rapamycin)-

Raptor complex that phosphorylates S6K1, which finally induces IRS1 degradation by phosphory-

lation [50]. In cancer cells, the cross-talk between the PI3K-Akt pathway and the mitogen-activated

protein kinase (MAPK) pathway creates a negative feedback loop between mTOR-Raptor and the

MAPK pathway activation in a PI3K-dependent manner Fig. 5(2) [46]. The activation of Akt in

response to insulin promotes the phosphorylation of IRS1 on serine residue in turn generating a

positive-feedback loop for insulin action [51](Fig. 5(3)). A positive feedback loop has been observed

in PIP3 (Phosphatidylinositol (3,4,5)-trisphosphate) in cell polarity during eukaryotic chemotaxis

[52] (Fig. 5(4)). In human breast carcinoma cells, PI3K presented a positive feedback in a cross-talk

interaction with the ErbB2 receptor and hyaluronan [53] (Fig. 5(5)). In some cancers, Akt presents

a positive regulation through the fatty acid synthase (FAS) (Fig. 5(6)) [54]. Lastly, the equilibrium

between mTOR-rictor and mTOR-raptor, one positively regulating Akt and the other negatively

regulating Akt (mTOR-rictor and mTOR-raptor, respectively) might play an important role in the

response to treatments targeting one of these complexes (see Fig. 5(7)) [45].

Cancer Targeted Therapy

Kinases have emerged as one of the most intensively pursued targets in current pharmacological

research and the largest target group for anticancer therapy [55], due to their critical roles in cellular

signaling.

Small-molecule kinase inhibitors (SMKIs) have experienced an outstanding success in the last

10-15 years, powered by tremendous progress in both academic and industrial settings; 31 SMKIs

have already been approved by the US Food and Drug Administration (FDA) and several other

kinase inhibitors are enrolled in clinical trials at different phases [56] — an exceptional achievement
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1.4 Deregulation of Signaling Pathways in Cancer and Targeted Therapy

in the history of pharmaceutical research —.

SMKIs are englobed in the so-called targeted therapy, which is one the major procedures for can-

cer treatment, along with hormonal therapy or cytotoxic chemotherapy. Targeted cancer therapy is

defined as a drug or another substance which acts by: (1) Blocking the action of specific molecules

(involved in growth, progression, and spread of tumors), (2) helping the immune system to kill ma-

lignant cells or (3) delivering toxic substances directly to damaged cells. Targeted therapies are

less likely to harm healthy cells than cytotoxic chemotherapy, ideally presenting less side effects.

In this thesis, the author focuses on two different targeted therapy agents: the already addressed

small molecule inhibitors and selective chimeric ligands.

Chimeric ligands (abbreviated: ’chimeras’) are built by the fusion of a targeting element that

discerns between undamaged and damaged cells, and an activity element that repairs or triggers

apoptotic signals only in cells targeted by the targeting element.

The most extensive family of chimeras are immunotoxins: Cytotoxic agents comprising a mod-

ified toxin linked to a targeting domain derived from an antibody, a growth factor, a carbohydrate

antigen, or a tumor-associated antigen [57]. Examples of immunotoxins with good clinical perfor-

mance are Ontak, [58], LMB-2 [59] or IL13-PE [60]. Another family of chimeric proteins combines

an antiproliferative agent such as TRAIL (TNF-related apoptosis-inducing ligand), with an antibody

fragment as a cell surface tumor marker. Type-1 interferons have also been fused with tumor-

specific ligands, for instance, in antiCD20-interferon (antiCD20-IFN)[61] or IFN↵2a-asparagine-

glycine-arginine peptide [17]. IFN↵2a has also been combined with the epidermal growth factor

(EGF) to target EGF receptors (EGFR)-overexpressing cells. Chimeric ligands follow a sequential

mechanism of action where the first binding event creates a local concentration of drug, which

facilitates the interaction of the free subunit with its corresponding receptor, triggering the cytotoxic

response.

In the second publication (see ’Results’, section 3.2), the author presents a mathematical frame-

work to design and optimize synthetic chimeric ligands using IFN↵2a-EGF as a model. This math-

ematical model was also applied in the third manuscript 3.3 to combined chimeric ligands in cell

populations.

Drug combination therapies (also known as polytherapies) are successfully used to treat many

diseases like cancer [62, 63] or HIV’s [64]. When two or more drugs are applied simultaneously, the

interaction between them (i.e., when two drugs alter each other pharmacological effect) results in a

complex and multi-scale problem [65]. Drug interactions are classified into additive, synergistic or
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antagonistic. When drugs do not interact with each other, or are mutually exclusive by competing

for the same target, they are considered as additive [66] (i.e., the effect of the combination is

equal to the sum of their individual effects). Antagonism occurs when one of the drugs mitigates

or counteracts the action of the other, i.e, the combination is always less effective than the single

agents at the same concentration. Finally, synergism occurs when the combination of both drugs

is more effective than each agent separately at the same total concentration, i.e., one of the agents

enhances the actions of the other [67]. This can occur either via direct interaction, i.e, one drug

increases the bioavailability of the other, or indirectly, i.e, the two drugs cooperate on targets on

the same or different pathways involved in the same process. Thus, the total concentration of drug

administered to achieve a certain effect is reduced, which also potentially reduces side effects,

drug resistance and undesired off-target interactions.

The next section is an introduction to mathematical modeling of ligand-receptor biochemical

systems and signaling network interactions.

1.5 Mathematical Modeling in Biochemical Reactions

Models are simplified representations of — our assumptions of — reality [68]. They can be informal

(in which the symbols are mental, verbal, or pictorial) or formal, in which the symbols are mathe-

matical. The election of the model should be determined by the questions being asked and the

available data. Because of the quantitative and non-linear nature of the biological systems we are

studying and the questions stated in this thesis, we will focus on formal — mathematical — models.

Mathematical models allow us to simulate systems, generate predictions and test hypotheses in

silico prior to the bench work. Furthermore, models have to evolve with our knowledge and iterate

with experimental data: new experiments can suggest model modifications and model predictions

can guide new experimental designs [3]. In this thesis, a mathematical modeling approach is used

to elucidate the mechanism of action of different signaling molecules and synthetic selective drugs

and help to get a more accurate prediction of the effect of drug treatments applied to deregulated

signaling pathways. In order to study those biological systems, the author uses a mathematical

deterministic framework based on ordinary differential equations (ODEs) following the law of mass

action. The initial formulation of the law of mass action derives from the research performed by

Guldberg and Waage in 1864 [69]. Suppose we have a system where two chemicals, A and B,

react upon collision with each other to form product C with a rate constant k:

A + B

k!C (1.3)
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According to the mass-action principle, the rate of this reaction (formation of C) is proportional

to the product of the concentrations of the reactants (A and B): dC = k · [A] · [B], where k is

the constant of proportionality or rate constant for the reaction. For thermodynamic reasons, all

chemical reactions are reversible, so eq. 1.3 should be rewritten as:

A + B

kf

�
kr

C (1.4)

where k

f

and k

r

are the forward and reverse rate constants of reaction, respectively. The double

arrow symbol indicates that the reaction is reversible. The law of mass action states that when

the reaction reaches the equilibrium, the concentrations of the chemicals involved bear a constant

relationship to each other, which is described by an equilibrium constant:

k

r

k

f

⌘ K

eq

=

[A]

eq

· [B]

eq

[C]

eq

(1.5)

While the first presented publication (’Results’, section 3.1) uses mass action to develop a the-

oretical approach which describes the specific ligand-receptors systems like the growth hormone

and the EPO interactions with their corresponding receptors, in the second publication we cre-

ated a chimeric ligand-receptor model based on the monovalent ligand-receptor interaction model

[70] which also applies the principles of mass-action kinetics. The third publication of this thesis

(’Results’, section 3.3) extends the chimeric ligand-receptor model to a heterogeneous cell popu-

lation exhibiting phenotypic variability and heritability. The last contribution of this thesis (’Results’,

section 3.4) creates a theoretical framework to model biochemical interactions of small signaling

networks and to predict the effect of inhibitory treatments depending on the topology of those

interactions.

Most of the biochemical reactions in a signal transduction pathway are performed by enzymes.

Enzymes are catalysts, generally proteins, that help convert other molecules called substrates

into products, but they themselves are not changed by the reaction. To account for how enzymes

behave, the most prevalent model in biochemistry is the Michaelis-Menten rate law [71].

A model to explain the deviation from the law of mass action was first proposed by Michaelis

and Menten [72]. In their reaction scheme, the enzyme E converts the substrate S into the product

P through a two-step process. First E combines with S to form a complex SE which then breaks

down into the product P releasing E in the process:

S + E

kf

�
kr

SE

kcat! P + E (1.6)
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Formation of SE is characterized by a forward rate constant (k
f

; units of M

�1
sec

�1), a reverse

rate constant ((k
r

; in sec

�1), and a catalytic rate constant (k
cat

; in sec

�1). As reaction rates are

typically measured under conditions where P is continually removed, which prevents the reverse

reaction (P ! SE) from occurring, thus we can consider that catalytic step as irreversible. There

are two ways to analyze this equation: the equilibrium approximation and the quasi-steady-state

approximation; both methods give similar results. The equilibrium approximation was proposed

by Leonor Michaelis and Maud Menten in 1913, where they performed a "time-scale separation"

assuming that the formation of the complex SE was a faster process than the formation of product

P. In the typical in vitro situation in which substrate is in substantial excess over enzyme, this time-

scale separation seems intuitively reasonable. By assuming SE to be in equilibrium with E and

S, they derived an analytic approximation for the dynamics of the slower phase in which a direct

link could be made between experimental data and reaction rate constants. Briggs and Haldane

derived a more general formulation [73] by assuming that the rates of formation and breakdown of

the intermediate complex SE are approximately equal thus dC/dt ⇡ 0. This is called the quasi-

steady state approximation. In both approximations, the reaction velocity V (rate of P formation)

takes the form:

V ⌘ d[P ]

dt

= �d[S]

dt

=

k

cat

· [E0] · [S]

(K

M

+ [S])

=

V

max

· [S]

(K

M

+ [S])

(1.7)

where V

max

= k

cat

· [E0] is the maximum reaction velocity, attained when all the enzyme is

complexed with the substrate and K

M

is the Michaelis constant which is the concentration of the

substrate at which the reaction rate is equal to one half of the maximal velocity for the reaction V

max

.

Fig. 6a represents the reaction rate as a function of the substrate concentration. Both approaches

give different mathematical meanings to K

M

. In the equilibrium approximation, K

M

=

kr
kf

, while

in the quasi-steady state approximation K

M

=

kr+kcat
kf

, which is the contemporary form of the

Michaelis constant.

To describe the relation between a drug and its elicit response after a specified exposure time,

we use dose-response curves (Fig. 6b) where we plot the effect of the drug (drug response) for

each drug concentration (dose). To measure drug efficacy, we use the half-maximal effective con-

centration or EC50 which represents the concentration of a drug that induces one half of the

maximum response after drug exposure. Dose-response curves can be fitted as sigmoidal curves.

A dose-response curve with a steep slope indicates that a small increment in drug concentration

results in a high response increase (see section 1.3 and Fig. 2c). While the second publication in

this thesis (’Results’ section 3.2) studies selective drugs at the single cell, these models do not
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1.5 Mathematical Modeling in Biochemical Reactions
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Figure 6: Michaelis-Menten approach and dose-response representation (a) Reaction velocity V versus

substrate concentration : V

max

is the maximum reaction velocity, when all the enzyme is complexed with the

substrate. K

M

is the Michaelis constant which is the concentration of the substrate at which the reaction rate

is equal to one half of the maximal velocity for the reaction V

max

. (b) Dose-response curve: Cell response

for each drug dose. Half maximal effective concentration (EC50 ) is the drug concentration that induces one

half of the maximum response (max. response) after drug exposure.

allow to explore the impact of cell-to-cell variability and phenotypic cell inheritance on drug ther-

apies. The third publication (’Results’ section 3.3) applies combinations of selective drugs to an

heterogeneous population of cells. Given that the physiological response of each individual cell to

the treatment depends on the concentration and efficiency of each drug, the level of expression

of their corresponding receptors, and the exposure time to treatment, the authors considered a

model of cells proliferating in the presence of the drug treatment, where each cell decides its fate

(division, apoptosis) depending on the drug efficacy, the time of exposure to the treatment and its

own phenotype. This stochastic model is the simplest scenario to simulate cell population dynam-

ics and permits to include heritability in the expression of cell surface receptors in order to predict

drug resistance mechanisms in cancer cell populations.
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2 Objectives

The general objective of this thesis is to understand the mechanism of action of different therapeutic

ligands and which factors may influence their effect using Quantitative Systems Pharmacology

tools in order to design, optimize and improve drug treatments. The main goals of this thesis are:

• To understand the consequences of the mechanisms that regulates the active complex as-

sembly of the growth hormone (GH) and the erythropoietin (EPO), two ligands with a par-

ticular 1:2 asymmetric and sequential ligand-receptor scheme, using mathematical models

informed by experimental data, in order to test and improve drug treatment design in GH-

and EPO-related diseases.

• To explore new strategies to facilitate the design of therapeutic treatments with higher se-

lectivity at reduced drug concentrations by developing a mathematical framework informed

by experimental results using the chimeric ligand composed of the epidermal growth factor

(targeting element) linked to different mutants of the interferon (cytotoxic element) as a case

of study, in order to test and optimize drug treatments with selective drugs.

• To generalize the previous mathematical approach for combinatorial treatments in hetero-

geneous cell populations in order to understand the behavior of chimeric ligands applied

in combination and to study the effect of cell-to-cell variability and receptors heritability in

selective drug combination treatments.

• To study the effect of the topology of signaling networks and the initial conditions of the

system in the response to inhibitory treatments such as small molecule inhibitors, through

the design of a high-throughput framework that explores the response to molecular inhibition

of all possible three-node generic signaling pathways with different regulatory motifs and

compares those responses for different initial conditions of the system.
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3 Results

3.1 Theoretical Approaches to Growth Hormone Signaling

Background, Introduction and Author Contribution

The following publication continues with the line of research of ’Dynamical Modeling for Cellular

Ligand-receptor Systems’ started by Dr. David Míguez Gómez, head of the the Systems Biology

and co-director of the author of the thesis. This research resulted in a previous publication [74],

which presented a general kinetic and mechanistic model for systems with asymmetric 1:2 ligand-

receptor interaction, such as the erythropoietin (EPO) and the growth hormone (GH) systems.

The following publication relies on that previous article [74], giving a more exhaustive view on

mathematical modeling of those specific 1:2 ligand-receptor systems.

Both EPO and GH bind to cytokine receptors (see ’Introduction’, section 1.2 ), and respond to

ligand binding and stimulation by forming dimeric active assemblages. These two ligands present

interesting structural similarities, showing two binding sites with completely different affinities to-

wards its receptor [75]. Each binding site interacts with a receptor to form the active complex in a

1:2 ligand-receptor configuration.This asymmetric 1:2 interaction scheme strongly determines the

dynamics of the system, inducing interesting regulatory properties which have been extensively

studied theoretically and validated with experimental data.The active complex assembly occurs se-

quentially: first, one binding site of the ligand interacts with a receptor to form a 1:1 complex; then,

the other available binding site binds a second receptor to complete a 1:2 ligand-receptor com-

plex [76] that can activate transcription. Because one of the binding sites of the ligand is around

10

3 times weaker than the other, this weakest interaction is often neglected, leading to a simplified

1:1 interaction scheme. However, the key properties of GH and EPO system, such as the increase

in activity of the ligand homodimer and the auto-inhibition effect, are a consequence of due to

this differential and sequential binding. Finally, each of the two different affinity binding sites of
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3 Results

the ligand have distinct roles in the regulation of the signaling, which can be characterized using

mathematical tools, like those presented in this publication.

The author of this thesis has contributed to the following publication by implementing several

mathematical models with increasing complexity and analyzing the dynamical properties of each

model to unveil the role of each of the two different ligand binding sites in the EPO and GH signal-

ing.The author has also participated in the elaboration of the manuscript.

The publication starts from the simplest scenario of one ligand molecule interacting reversibly

with a single receptor (1:1 interaction model), to then describe the 1:2 symmetric interaction model,

a more realistic approximation where the ligand has two equal binding sites and binds two free re-

ceptors in a single step to form the active complex. (In this approach both ligand binding sites have

the same binding and unbinding rates). The next model proposed includes the sequential binding

of the symmetric ligand (1:2 symmetric and sequential interaction scheme) which inevitable leads

to the last scenario, the 1:2 asymmetric and sequential interaction model, where the ligand is asym-

metric presenting two different binding sites that bind sequentially to their corresponding receptors

to build the active complex. The 1:2 asymmetric and sequential interaction configuration is able

to explain the singular dynamic properties of EPO-EPOR and GH-GHR systems like adaptation,

self-antagonism and homodimer enhanced activation.
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Chapter

THEORETICAL APPROACHES TO GROWTH
HORMONE SIGNALING

Victoria Doldán-Martelli and David G. Mı́guez⇤
Departamento de Fı́sica de la Materia Condensada,

Universidad Autónoma de Madrid, Facultad de Ciencias, 28049 Madrid.

Abstract

Growth hormone is at the focus of many pharmacological interests,
due to its implication in the regulation of key biological processes. Its
characteristic ligand-receptor interaction scheme, in an asymmetric and
sequential 1:2 configuration, induces important self-regulatory properties
that determine the dynamics and strength of the signaling. Here we use
a mathematical approach to unveil the consequences of the differential
binding process and its relevance in the regulation of the assembly of
the active complex. Several mathematical models are developed to an-
alyze the role of each of the two different affinity binding sites of the
ligand towards each of the receptors in the complex. The models allow
us to study the emergence of key properties of the system due to the dif-
ferential and sequential binding, such as adaptation, self-antagonism at
high ligand concentrations and homodimer enhanced activation. These
theoretical and computational approaches help us to optimize the design
of agonist and antagonist molecules to develop more efficient treatments
against growth hormone related diseases.

⇤E-mail address: david.gomez.miguez@uam.es
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1. Introduction
Cells translate extracellular information into internal responses using surface-
receptors embedded in the plasma membrane. A cell surface-receptor is a highly
specialized integral membrane protein that binds to a specific family of ligands,
including cytokines, neurotransmitters, peptide hormones or growth factors [1].
The interaction of ligand and receptor initiates a chain of intracellular events
and biochemical reactions referred as signal transduction, leading to physio-
logical changes and regulating essential cell processes, such as differentiation,
development, proliferation or apoptosis. The understanding of the regulation
of cell-surface receptors and the interaction with their corresponding ligands
constitutes an extremely active area of research, mainly due to their pharmaco-
logical importance as selective targets for chemotherapeutic agents. At present,
receptors-based drugs represent more than 60% of medicines in the pharmaco-
logical market [2], designed to treat several diseases like autoimmune illnesses,
infectious diseases or even cancer.

Growth hormone receptor (GHR) is a member of the cytokine receptor
superfamily. Most of the members of this family respond to ligand binding
and stimulation forming heterooligomeric active assemblages [3]. However,
the GHR, along with the erythropoietin receptor (EPOR), prolactin and throm-
bopoietin receptor, bind to their ligands as homodimers, forming the homod-
imeric cytokine receptor subgroup inside the class-1 cytokine receptors fam-
ily [4, 5]. Among them, GHR and EPOR have been extensively characterized,
and share the same 1:2 ligand-receptor interaction scheme: the active complex
is formed by a single ligand molecule flanked by two identical receptors using
the two different available binding sites in the ligand [6, 7, 8]. Growth hormone
receptor binds growth hormone (GH) [9], a peptide hormone that participates
in the regulation of many physiological processes, promoting growth and con-
trolling metabolism in animals and humans [10]. EPOR binds to erythropoietin
(EPO), a glycoprotein which is the primary regulator of the production of circu-
lating erythrocytes by preventing apoptosis of erythroid progenitors [11], and it
is also expressed in neural stem cells, endothelial cells, and cancer cells.
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EPO and GH share the spotlight of therapeutic interests. Recombinant hu-
man growth hormone (hGH) is used to treat growth disorders and metabolic
dysfunctions, related or unrelated to growth hormone deficiency. For instance,
hGH is used as treatment in children with chronic kidney disease [12], in pa-
tients with Crohn’s disease [13], Turner syndrome or Noonan syndrome [14].
GHR is also the target of GH antagonist in acromegaly treatment. The annual
market for recombinant human growth hormone was 2 billion US dollars in
2007, with sales continuing to grow [15]. Recombinant EPO, on the other hand,
is at the top of protein therapeutics, with global sales of EPO in 2006 of 12
billion US dollars [16].

EPO and GH ligand molecules also share very interesting structural similar-
ities, showing two independent binding sites with radically different affinities
towards its receptor [17]. Each of the binding sites is used to interact with a
receptor to form an active complex (1:2 ligand-receptor configuration). This
asymmetric 1:2 interaction scheme strongly influences the dynamics of the sys-
tem, inducing interesting regulatory mechanisms that have been widely ana-
lyzed theoretically and validated with experimental data. The mechanism for
EPOR and GHR active complex assembly is ordered and sequential: first, the
receptor forms a 1:1 complex by interacting with one of the binding sites of the
ligand. Then, an additional receptor molecule binds to the other available site
of the ligand, resulting in a 1:2 ligand-receptor complex [18] that can activate
transcription. Since one of the binding sites of the ligand is around 10

3 times
weaker than the other, the weakest interaction is often neglected and the system
is simplified as a 1:1 interaction scheme. Unfortunately, many of the unique
characteristics of GH signaling, such as the increase in activity of the ligand
homodimer and the auto-inhibition effect, are direct consequence of the dual
affinity of the ligand towards the two receptors of the complex. Furthermore,
each of the binding sites has an essential role in the regulation of the signaling,
which can be easily studied and characterized using simple mathematical tools.

2. MathematicalModeling of Ligand-Receptor Systems
With the rising of systems and quantitative biology, experimental findings are
more often complemented by mathematical approaches where predictions and
hypotheses can be tested in silico prior to the bench work. In the context of
ligand-receptor systems, mathematical models are developed to analyze the pro-
cesses that take place after ligand stimulation, and to study the consequences
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of the mechanisms that regulates the assembly of the active complex. These
theoretical approaches to ligand-receptor systems constitute one of the first suc-
cessfully implemented mathematical models in molecular biology [19] , due to
their simple mathematical formulation and accurate characterization of the rate
constants involved, both in vitro and in vivo. Among the most studied ligand-
receptor systems, growth hormone stands as one of the most interesting ex-
amples to test mathematically, due to its mentioned sequential and asymmetric
interaction scheme.

Models for ligand-receptor systems consist basically of simple chemical
equations, where both ligand and receptor are chemical species interacting by
direct binding governed by kinetic constants for their binding and unbinding
rates (k

on

and k

off

, respectively). The strength of the signaling is often simply
assumed as proportional to the amount of active complexes formed during lig-
and stimulation. The formation of the active complex is usually modeled as a
reversible reaction, with the dissociation constant defined by k

D

= k

off

/k

on

.
More elaborated models include also spatial constraints such as receptor diffu-
sion, receptor orientation, or the presence of lipid rafts. Other more complex
modeling approaches, such as compartmentalized models or boolean networks
are also used, although they constitute a different family of mathematical mod-
els and their analysis is far from the scope of this chapter.

Mathematical modeling is often used to validate experimental data or to
predict features of an experimental system. In this chapter, we develop a sim-
plified mathematical framework to unveil the consequences of the particular 1:2
asymmetric interaction scheme of growth hormone ligand-receptor system. We
will proceed by analyzing the dynamics of increasingly complex versions of the
interaction scheme, comparing them to understand the source of several spe-
cific features of the GH system: the adaptation mechanism, the self-antagonist
effect at high ligand concentrations, and the enhanced efficiency of synthetic
homodimers of GH ligand. For the sake of simplicity, we will only focus on
the regulatory processes occurring at the membrane level, where the physical
interaction between ligand and receptor takes place. The effect of intracellular
regulatory processes, such as receptor expression, degradation and recycling,
also impacts the dynamics of the system. Therefore, a full model including
membrane ligand-receptor binding and intracellular regulatory processes can be
found in [20].

Regarding the integration of the model equations, most of the mathematical
models for EPOR and GHR are often computed using a classical deterministic
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approach. Despite the chemical nature the model equations, the integration of
the model must be done carefully, taking into account that cells usually maintain
very low numbers of free GH receptors available (typically no more than a few
hundred molecules) [21]. Under these conditions, the dynamics of the system
will be highly dependent on stochastic fluctuations in the number of receptors
and active complexes formed, so it is likely that a deterministic integration of
the model equations will not reflect accurately the behavior of the system. We
present here both deterministic and stochastic approaches for each of the models
presented, analyzing in each case the importance of the fluctuations and com-
paring the outcome with the classical case. Values for the parameters used to
numerically solve the model equations are listed in table 1.

Table 1. Kinetic, physical and structural parameters for GH

Parameter Value Reference and notes
R

T

300 molec./cell Ref. [22, 23]
k1,off

0.029min

�1 Ref. [24]
k

on

0.029min

�1
nM

�1 Ref. [24]
K1,D

1 nM Ref. [17]
k2,off

29min

�1 Ref. [17]
K2,D

920 nM Ref. [17]
k3,in

0.06min

�1 Ref. [24]
Q

R,0 10 nMmin

�1 Ref. [22, 23]
k

rec

0.036min

�1 Ref. [24]
k

deg

0.024min

�1 Ref. [24]
k

R,in

0.01min

�1 Ref. [25]
V 4 ⇥ 10

�10 L/cell Ref. [25]
L0 0.2 nM Ref. [17]
r 8.5 µm for Hela cells. Ref. [26]
D 0.084 µm

2
/s Ref. [27]

h 7.27 ⇥ 10

�3
µm Ref. [28]

a 3 ⇥ 10

�3
µm Ref. [28]
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3. 1:1 Interaction Model
The simplest scenario to capture mathematically the dynamics of ligand-
receptor interaction is to consider a 1:1 interaction scheme, where one molecule
of ligand interacts reversibly with a single receptor to form an active complex.
The active complex then activates downstream signaling and is internalized for
degradation or recycling processes. This mechanism is schematized in figure 1.
This simplified scenario has been extensively used to understand the basis of
ligand-receptor systems with a more complex interaction scheme, such as trans-
ferrin receptor (TfR), low-density lipoprotein (LDLR) or epidermal growth fac-
tor (EGF) [25]. 1:1 models have been also used to model GH and EPO recep-
tors systems, where the formation of the active complex is simplified as a single
binding event, assuming that its dynamics is mostly governed by the strong
binding. In this context, the weak binding is considered as a fine-tune for the
signaling, and therefore it is often neglected. Since many experimental studies
have univocally shown that both binding events are required to form the active
complex, these 1:1 models applied to GHR or EPOR constitute a very strong
approximation to the real situation, and they miss several important character-
istics which are consequence of the 1:2 interaction scheme, so they are only
usefu to a certain extent. Here, we used this simple 1:1 model as a basis to de-
velop more realistic approximations to GH system, and compare the dynamics
of these simplified models with the outcome of the real 1:2 asymmetric model in
the following sections. Equations for the case of 1:1 ligand-receptor interaction
can be written as follows:

R + L

kon����
����
koff

C (1)

C

kin��! S (2)

where R represents the total number of free receptors, L is the concentration of
extracellular ligand, C is the active ligand receptor complex and S represents
the amount of internalized complexes, with a rate of internalization k

in

. Ex-
perimentally, the number of molecules of freely diffusing ligand is much larger
than the amount of free receptors so, for modeling purposes, L is assumed con-
stant during the process of ligand stimulation. Numerical integration of the
model equations using the values in Table. 1 is shown in Fig. 2. (using values
for the binding and unbinding rates corresponding to the high affinity site, so
K

D

=K1,D

in Table. 1).
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Figure 1. Scheme for the 1:1 interaction model.
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Figure 2. Numerical solution of the model corresponding to 1:1 configuration
after ligand stimulation at t = 0. (a) Temporal evolution corresponding to three
independent stochastic integrations of the model. (b) Profile of the dynamics for
the deterministic model. Error bars correspond to standard deviation calculated
over 50 different integrations of the stochastic model.

After ligand stimulation at t = 0, the number of free receptors rapidly de-
creases while active complexes (C) are being formed and internalized (S). The
model predicts a maximum amount of active complexes C=16.5 at time t = 37
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minutes and an average of C = 6.3 at t = 300 minutes. In presence of lig-
and, the amount of free receptors remaining at the membrane decreases due
to the internalization of the active complex. The consumption of free recep-
tors (from R

t=0 = 300 to R

t=300 = 100) restricts the length and strength of
signaling, inducing a refractory state in the event of an increase in ligand con-
centration. In conclusion, this oversimplified mathematical model successfully
captures several key aspects of the dynamics of GH, such as the effect of the
endocytic down-regulation as a mechanism of adaptation observed after GHR
stimulation [25]. Nonetheless, it does not reproduce many fundamental charac-
teristics of the system, captured by more realistic mathematical approximations
such as, for instance, the correct configuration for the active complex.

4. 1:2 Symmetric Interaction Model
The following equations reflect the fact that two free receptors R are necessary
to form the active complex C .

2R + L

kon����
����
koff

C (3)

C

kin��! S (4)

As a first approximation to the more realistic 1:2 scheme for GH receptor,
we simply assume that the formation of the complex occurs as a single step in
equation 3, i.e., involving just one affinity k

on

and one dissociation k

off

rate
constants, as shown in Fig 3. Numerical integration of these model equations
can be examined in Fig. 4, where we consider the binding and unbinding rates
corresponding to the high affinity site to compare the dynamics with the previ-
ous 1:1 model (K

D

=K1,D

in Table. 1).
The 1:2 configuration does not influence the dynamics of free receptors R,

but the signal strength given by the amount of active complexes diminishes to
about 1/2 of the value predicted by the 1:1 model (an average maximum of C =

8.3 at t =37 min, reduced to 3.2 at t = 300 minutes). This improved 1:2 model
applied to GHR represents a slightly more realistic scenario, since it takes into
account the correct configuration of the active complex, even if it still misses
many key aspects of the system induced by the fact that the assembly of the
complex requires two binding events, and therefore, it is a two-step process.
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Figure 3. Scheme for the 1:2 interaction model.
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Figure 4. Numerical solution of the model corresponding to 1:2 configuration
after ligand stimulation at t = 0 when just one binding event is considered. (a)
Profile of the dynamics for three different stochastic integrations of the model.
(b) Profile of the dynamics for the deterministic model. Error bars correspond
to standard deviation calculated over 50 different integrations of the stochastic
model.

5. 1:2 Symmetric and Sequential Interaction Model
When we consider that the active complex assembly involves two binding
events, the previous equations need to be reinterpreted as a sequential process
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(i.e., the ligand first binds to a free receptor and after to the second receptor
of the complex). This mechanism is captured in Fig. 5 and in the following
mathematical formulation.

L

R

Ckoffk on

S

k in

koff

k on

C1

Figure 5. Scheme for the 1:2 sequential interaction model.

R + L

kon����
����
koff

C1 (5)

R + L1
kon����

����
koff

C (6)

C

kin��! S (7)

The first step in the formation of active complex (eq. 5) results in an inter-
mediate inactive complex (C1), where the ligand is bound to the receptor using
one affinity site, but still has the other site available to bind to a second receptor.
This way, the formation of this intermediate complex creates a local concen-
tration of ligand close to the cell surface (named L1) that is available for the
second receptor to form the active complex C via equation 6. This local ligand
concentration L1 is assumed to be distributed in a gasket around the cell surface
and it can be calculated as a function of the Avogadro’s numberN

Av

, the height
of the receptor l, and the cell radius r:
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L1 =

C1

N

Av

V0
=

3C1

4�N

Av

1

(r + l)

3 � r

3
(8)

The sequential process induces key changes in the dynamics of the sys-
tem, as we can see in the numerical solution of the equations (see Fig. 6) when
compared to previous versions of the model. There is an increase in the rate
of production of active complexes C via reaction 6 (a maximum of 20 actives
complexes), while the number of free receptors in the membrane is rapidly re-
duced and it is almost completely consumed before the simulation reaches 300
minutes. At this time, almost all the initially available free receptors are in the
form of internalized complexes (S = 150).
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Figure 6. Numerical solution of the model corresponding to 1:2 symmetric con-
figuration after ligand stimulation at t = 0 when just two sequential binding
events are considered. (a) Profile of the dynamics for three different stochas-
tic integrations of the model. (b) Profile of the dynamics for the deterministic
model. Error bars correspond to standard deviation calculated over 50 different
integrations of the stochastic model.

To understand the increase in the rate of formation of the active complex
when the sequential binding is introduced, we compute the local ligand concen-
tration L1 in Fig. 7. The average local ligand concentration (black solid line) is
higher than the initial ligand concentration L (gray solid line), facilitating the
creation of the active complex C . This higher amount of C results in faster
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internalization rate and therefore, faster consumption of receptor at the mem-
brane.

Interestingly, the model predicts that the amount of intermediate complexes
C1 at the membrane is very low, since its rate of consumption via reaction 6 is
twice the rate of its production via reaction 5 (L1 ⇡ 2L along the experiment,
see Fig. 7). This very low values for C1 propitiate strong stochastic fluctuations
in the local concentration L1 (dots in Fig. 7). In fact, the local concentration
for this parameter values appears to be quantized in discrete values, since the
source of local concentration is rapidly interacting with a free receptor to form
an active complex C .
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M
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Time [min]

Figure 7. Plot of the local concentration L1 corresponding to the 1:2 sequential
model. Dots correspond to a single stochastic integration of the model. Black
solid line corresponds to the deterministic integration. Gray solid line corre-
sponds to the extracellular ligand L.

6. 1:2 Asymmetric and Sequential Interaction Model
Next step is to consider both binding sites of the ligand to be different in
strength, as the experiments show. The asymmetric configuration of the lig-
and induces two very different affinities towards each of the receptors of the
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active complex, with a difference in their K

D

around 10

3 (see Table 1). If we
assume again, that the process is sequential, each binding between a ligand and
a free receptor forms an intermediate complex able to bind to a second receptor
only via its free binding site. Therefore, if the first binding occurs via the strong
binding site (K1D), it forms an intermediate complex (C1) that induces a local
concentration of ligand (L1) able to bind to a free receptor via its low affinity
site (K2D), and vice versa. Equations for this interaction scheme are as follows:

R + L

kon�����
�����
k1,off

C1 (9)

R + L

kon�����
�����
k2,off

C2 (10)

L1 + R

kon�����
�����
k2,off

C (11)

L2 + R

kon�����
�����
k1,off

C (12)

C

kin��! S (13)

The values for the local concentration are calculated taking into account that
two different local concentrations for the ligand are originated: L1 corresponds
to the concentration of ligand bound to the receptor via the interaction site 1,
so it only can interact with the free receptor via its site 2 (eq. 11). L2 then
corresponds to ligand able to use only its binding site 1, since it is using the
bing site 2 to interact with the receptor (eq. 10). Expressions for each of the
local concentrations are detailed bellow:

L1 =

C1

N

Av

V0
=

3C1

4�N

Av

1

(r + l)

3 � r

3
(14)

L2 =

C2

N

Av

V0
=

3C2

4�N

Av

1

(r + l)

3 � r

3
(15)

It is often assumed for these type of ligands with dual binding properties, that
the affinity constant k

on

is equivalent for both binding sites of the ligand (k
on

is assumed to be dependent on structural and rotational aspects of the system),
with the difference between the two dissociation rates residing in the value of
the dissociation rate k

off

. From here on, the ligand’s stronger interaction will
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be labeled with subindex 1, while its weaker interaction will be labeled with
subindex 2. Therefore, we define:

K1,D

= k1,off

/k

on

(16)
K2,D

= k2,off

/k

on

(17)
K1,D

<< K2,D

(18)

The scheme for this system is shown in Fig. 8, where the two different in-
termediate complexes C1 and C2 are illustrated. The numerical solution cor-
responding to this system using the values for K1,D

and K2,D

in table 1, is
represented in Fig. 8.

L

R
C

k2,offkon

S

k in

k2,off
kon

C1

k1,off

kon
k1,offkon

C2

Figure 8. Scheme for the 1:2 sequential and asymmetric interaction scheme.

The numerical solution shows that the dynamics of the system are now gov-
erned by the intermediate species C1, which represents the amount of interme-
diate complex C1 waiting to interact with a free receptor to form the full active
complex. This interaction occurs via equation 11 and involves the weak binding
site 2. This indicates clearly that it is indeed the weaker interaction the one ulti-
mately regulating the formation of the active complex. To analyze how, despite
its very high dissociation constant, this weak reaction occurs, we need to com-
pute the local concentration originated by the intermediate complex C1 (shown
in Fig. 10).
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Figure 9. Numerical solution of the model corresponding to 1:2 asymmetric
configuration after ligand stimulation at t = 0. (a) Profile of the dynamics for
three different stochastic integrations of the model. (b) Profile of the dynamics
for the deterministic model. Error bars correspond to standard deviation calcu-
lated over 50 different integrations of the stochastic model.

We can see that the local concentration L1 is now 10

2 times higher than the
value of the free ligand concentration L, strongly facilitating the binding via the
weak interaction of equation 11. This univocally shows that the effect of the
local concentration increase due to the sequential binding is essential to form
the active complex. The predicted amount of active complexes is low when
compared to the models previously analyzed (around 4 C complexes at t = 42
minutes and around zero active complexes at t=300 min), as a consequence of
the low affinity site being 1000 times weaker than before. The intermediate
complex C2 is almost zero at all times (and its associated local concentration
L2 is also zero), which means that the low affinity interaction only occurs due
to the extra increase in the local concentration of the ligand able to interact via
its low affinity site (L1).

7. Self-Antagonist Effect
One of the main characteristics of EPO and GH dynamics is the quenching of
the signal at high ligand concentrations. This inhibition is often interpreted as
an additional layer of regulation under conditions of very high stimulation of
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(b)

Figure 10. Plot of the local concentration L1 corresponding to the 1:2 sequential
asymmetric model (L2 value is around zero along the experiment). (a) Three
independent stochastic integrations of the model. (b) Deterministic integration
of the model. Error bars correspond to standard deviation calculated over 50
different integrations of the stochastic model. Solid line corresponds to the local
concentration L1. Dashed line corresponds to the value of free ligand L.

the system, and it is a direct consequence of the interaction scheme between lig-
and and receptor. Figure 11 shows this effect in the 1:2 asymmetric sequential
model, where we performed different numerical simulations for several values
of the external ligand concentration and monitored the number of molecules at
a fixed time. As we can see, increasing the ligand concentration decreases the
amount of free receptors (solid gray line) while it increases the amount of in-
termediate complexes (dotted gray line). The weak intermediate complex C2

remains close to zero for all concentrations used. On the contrary, the amount
of active complexes and the amount of internalized complexes reaches a max-
imum at a certain ligand concentration and gets strongly reduced at higher lig-
and concentrations (from an average of C

max

= 7 to C = 2.5 at L = 5

nM). This reduction occurs due to the consumption of free receptors to form
inactive intermediate complexes (around 250 inactive C1 complexes at L = 5

nM). These intermediate complexes find very low number of free receptors for
the second ligand-receptor interaction to occur, so active complexes cannot be
formed. This mechanism, known as self-antagonist effect, has been widely re-
ported in GH [18] and EPO [29] systems, and it is a unique feature provided
by the asymmetric nature of the interaction, since the previous models do not
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reproduce the self-antagonist effect, as we show in figure 12 (neither S nor C

gets reduced when we increase the ligand concentration).
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Figure 11. Effect of the increase of ligand concentration in GH signaling for the
2:1 asymmetric and sequential model. (a,c) three independent integrations of
the stochastic model. (b, d) Deterministic integration of the model. Error bars
correspond to the standard deviation calculated over 50 different integrations
of the stochastic model. Values represented correspond to a simulation time of
t = 40 minutes.

8. Enhanced Efficiency of GH Ligand Homodimers
It is also well described experimentally that synthetic versions of the GH ligand
designed with two linked molecules of GH exhibit a strong increase in activ-
ity, when compared to the endogenous ligand stimulation. This enhanced ho-
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Figure 12. Effect of the increase of ligand concentration in GH signaling for
the (a) symmetric sequential in section 5. and (b) symmetric 1:2 non sequential
in section 4.. Values represented correspond to a simulation time of t = 10

minutes.

modimer ligand acts in such a way that replaces the weak binding site with an
additional strong binding site, therefore, the active complex is hold together us-
ing two strong binding affinity sites (K1,D

= K2,D

= K

D

). This homodimer
ligand lacks the regulatory role of the weak binding, and the sequential asym-
metric process becomes symmetric. Consequently, the system composed of
ligand symmetric homodimer interacting with two receptors be modeled simply
using the equations developed in section 5.. Comparison of the model outcome
for symmetric (figure 6) and asymmetric (figure 9) shows that the symmetric
configuration predicts much higher stimulation than the asymmetric version of
the sequential model, as the experiments show [30, 31, 32, 33]. Again, this en-
hanced activity of synthetic GH dimers compared with ligand monomers can
only be understood using models that include the asymmetric nature of the en-
dogenous ligand.

9. Receptor Monomer Versus Receptor Dimer
Hypotheses

Mathematical modeling also allows us to explore other key aspects of the
receptor-ligand interaction that remain unclear. For instance, there is contro-
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versy regarding the configuration of the unstimulated receptor and the effect of
the ligand in the 1:2 complex [34]. Several experimental studies suggest that
unstimulated receptors are monomers freely diffusing in the cell membrane.
Ligand binding brings two receptors together, and the interaction between the
two receptors activates downstream signaling. On the contrary, there are in-
creasing evidences that the receptors are already pre-dimerized before ligand
stimulation, and the role of the ligand is just to induce a conformational change
that activates the receptor complex [35, 36, 37, 38, 39, 40].

In terms of the dynamics of the system this means that, if receptors are
monomers, a ligand-receptor inactive complex has to diffuse to encounter a free
receptor in the membrane to interact with. On the other hand, if receptors are
already dimers, receptor diffusion across the lipid bilayer will not influence the
rate of formation of the active complex C [36, 37]. To consider the effect of
diffusion, the affinity rate needs to be rewritten in the form [41],

k

�
on

= (

1

k

on

+

1

k

diff

)

�1 (19)

whereas an effective affinity rate constant k

�
on

is calculated as a combination
of two effects: the affinity of ligand-receptor interaction k

on

, and the effect
of the collision rate between C1 complexes and free receptors R. This k

diff

(expressed in the appropriate units of M

�1
min

�1) for collisions in a two-
dimensional medium, is calculated based on physical considerations as fol-
lows [41]:

k

diff

=

2�D

ln(b/a)

N

Av

l (20)

N

Av

is the Avogadro’s number, D and l are the diffusion coefficient and the
extracellular height of the receptors, respectively. Parameter a is the diameter
of the receptor. Parameter b is the average distance between free receptors in the
cell, calculated for an homogeneous distribution of receptors on the cell surface
of radius r as follows:

b =

�
4r

2

R

(21)

Since the number of free receptors R diminishes after ligand stimulation, the
collision rate constant k

diff

and therefore the affinity rate constant k�
on

are time-
dependent variables, and the system can change from being reaction-limited
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(k
coll

>> k

on

) to a diffusion-limited (k
coll

<< k

on

) process along the exper-
iment. If we compute the temporal evolution of the effective affinity constant
k

�
on

(figure 13), we observe that this value experiences a 6% decrease due to the
reduction of free receptors. Overall values for k

coll

are in the range of values for
k

on

, so the diffusion in the free monomer receptor hypothesis should effectively
reduce the amount of active complexes to around 1/2 of the value, when the
situation is that of unstimulated receptors as homodimers.
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Figure 13. Plot of the effective affinity constant k

�
on

modulated by receptor
diffusion. (a) there independent integrations of the stochastic model. (b) Aver-
age over 50 integrations of the stochastic model. Deterministic integration of
the model. Error bars correspond to the standard deviation calculated over 50
different integrations of the stochastic model.

10. Conclusion
This chapter uses a mathematical approach to unveil the implications of the
interaction scheme of GH ligand with its receptor. To do that, we explore dif-
ferent versions of a mathematical model where we increasingly include rele-
vant characteristics of GH system. We start from a general model that includes
few aspects of the dynamics (a simple 1:1 configuration), finishing with a more
complex version which captures the key features of the system such as the self-
antagonist effect and the enhanced homodimer configuration of the ligand. This
approach allows us to explain the source of the key aspects of GH signaling, in-
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duced by interactions at the membrane level. More complex models including
the effect of intracellular processes, such as free receptor and active complex
recycling, receptor degradation and downregulation of receptor production after
pathway activation are studied in [20].

These type of simple kinetic models are also useful to reveal the different
roles that the two binding sites of the GH ligand play during the formation of
the active complex. The fact that the assembly of the complex needs to occur
in a sequential manner (i.e., it needs two binding events) induces a local con-
centration of ligand close to the cell surface that strongly facilitates the second
binding event. This is of key importance in the case of GH and EPO, where one
of the bindings needed to form the 1:2 complex is too weak to occur without
this increase in local concentration.

The mathematical model also reveals that this weak binding site is the one
tightly controlling the signal strength and the amount of active signaling com-
plexes. This regulatory role of the weak binding is also evident when the weak
binding site in the ligand is replaced by a strong binding site. This is the sit-
uation when homodimers of the ligand (with two strong binding sites) inter-
act with the two receptors of the complex. In this case, the theoretical model
confirms the experimental data, predicting an strong increase in activity when
compared to the ligand-monomer case. The strong binding site also regulates
the self-antagonist effect at high ligand concentrations and the optimal ligand
concentration that induces maximum activity of the complex.

The mathematical approach studied here does not consider changes in the
conformation of ligand after the first binding, which will affect the dissociation
constant of the second binding event, as suggested by several authors. NMR
experiments that compare the crystal structure of free EPO and EPO inside the
active complex show a very similar topology in the two situations [42]. Small
changes in the vicinity of the binding sites have been reported, but this slight
shift may be a consequence of the ligand being inside the two-receptor complex,
and not due to the first binding reaction. Therefore, we can assume that the
dissociation constant of both binding sites of the ligand remains unaltered after
the first interaction with the receptor occurs.

Regarding the structure of unstimulated GHR as monomers or dimers, the
model shows that the effect of receptor diffusion in the membrane reduces the
amount of active complexes being formed. Model calculations show that the
rate of collision k

diff

is on the same order of magnitude than the affinity rate
constant k

on

, and remains more or less constant along the duration of the exper-
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iment.
The addition of the effect of diffusion does not change the dynamics of the

system, so the mathematical model does not allow to discriminate between both
hypotheses. Nevertheless, it seems that the self-antagonist and the ligand ho-
modimer effect are incompatible with the homodimer receptor hypothesis, un-
less the receptor homodimer is capable of housing a pair of ligands, resulting in
a 2:2 ligand-receptor configuration. Different studies propose that the GHR ex-
tracellular domain is flexible enough to productively accommodate GH dimers
[43, 31]. On the other hand, the self-antagonist effect requires that two unbound
ligands fail in inducing the conformational change required to activate the com-
plex. A third hypothesis contemplates that two GHR can weakly dimerized,
undergoing conformational changes after ligand binding [34].

Altogether, our mathematical models show that the interaction scheme of
the GH system strongly determines its dynamics and regulation, and the combi-
nation of the effect of the sequential binding with the asymmetric nature of the
ligand dictates essential aspects of the system. These type of mathematical ap-
proaches can be also used to predict the effect of mutations that should increase
or decrease differentially each of the binding sites in the signaling. A better
comprehension of the details of activation of GH system will permit to develop
more efficient drugs to overcome many diseases related to GH dysfunction.
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3 Results

3.2 A Mathematical Model for the Rational Design of Chimeric Ligands in Selective

Drug Therapies

Background, Introduction and Author Contribution

This publication belongs to line of work of ’Dynamical Modeling for Cellular Ligand-receptor Sys-

tems’ and explains the behavior of the synthetic chimeric ligand formed by an activity element, the

interferon IFN↵2a, a linker, and a targeting element, the epidermal growth factor (EGF).

While the EGF subunit targets cells over-expressing the EGF receptor (EGFR), the IFN↵2a

subunit is responsible for triggering the apoptotic signal. The mechanism of action of chimeric

ligands is sequential: the ligand binds its corresponding receptor via one of its subunits and this

first binding event increases its local concentration, facilitating the second binding event to form the

active complex. These chimeric ligands induced IFN↵2a signaling in an EGFR-dependent manner

in HeLa cells, A431 cells and Daudi cells over-expressing EGFR [77]. The emph{chimera was

patented in 2011 [78] together with a mathematical model of the binding of chimeric ligands to

target cells.

The contribution of the author to this publication includes a curation of the original mathematical

model for chimeric ligand design and optimization, a calibration of the model using experimental

data extracted from [77] and the validation of the model solving the equations numerically on

different mutants of the chimera for two cell lines with differential EGFR expression. The author

performed a exhaustive literature search to obtain the experimental parameter values involved in

the system.

The author of the thesis analyzed the efficiency and selectivity of those ligands in simulations

comparing cells with differential EGFR expression. In order to get a measure of the chimeric anti-

proliferative effect, the author calibrated the model with experimental results, using only IFN↵2a

monomer cell toxicity assays ([77]).

The model explains aspects that determine the selective potential of the chimera and to optimize

its design by testing variants with increased selectivity and efficiency. The model quantitatively fits

all experimental results, showing how different versions of the chimera exhibit enhanced selectivity

towards specific cell type. Furthermore, this theoretical framework permits to test the dependence

of the efficiency of the chimera on receptor abundance, length of the linker between both ligand

subunits, and diffusion of membrane receptors. This general model can be easily tailored to other

chimeric compounds to be used as a tool to understand the experimental observations as well as

52



3.2 A Mathematical Model for the Rational Design of Chimeric Ligands in Selective Drug Therapies

to optimize the design of potential chimeric constructs with improved selectivity.
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Next-generation therapeutic drug development integrates 
tools from genomics, biotechnology, molecular modeling, 
and computational chemistry to reduce costs and time nec-
essary to bring new drugs to market. This redesigned drug 
development pipeline incorporates quantitative approaches 
to overcome the challenge of better, more reliable, and more 
efficient treatments. In the context of cancer and other cell-
based diseases, the ideal “perfect” drug can be envisaged as 
a compound that only affects diseased cells without harming 
the healthy surrounding cellular environment. These types of 
selective drugs are chimeric in nature, composed of a target-
ing element that discerns between undamaged and damaged 
cells, and an activity element that repairs or triggers apoptotic 
signals only in cells targeted by the targeting element. The 
most extensive family of chimeras are immunotoxins: cyto-
toxic agents comprising a modified toxin linked to a targeting 
domain derived from an antibody, a growth factor, a carbohy-
drate antigen, or a tumor-associated antigen.1 Examples of 
immunotoxins with good clinical performance are Ontak (the 
only agent approved to use for refractory cutaneous T-cell lym-
phomas by the US Food and Drug Administration),2 LMB-23 
BL22,4 and IL13-PE.5

Another family of therapeutic chimeric proteins combines 
an antiproliferative agent, such as TRAIL, with an antibody 
fragment or a natural ligand as an specific cell surface tumor 
marker:6 scFv425:sTRAIL,7 scFvCD7:sTRAIL (specific for 
CD7),8 and scFvCD19:sTRAIL (targeting CD19-positive 
cells).9 Researchers also synthetized sFasL fusion proteins 
to target the T-cell leukemia–associated antigen CD710 
or CD20.11 Type-1 interferons have also been fused with 
tumor-specific ligands, for instance, in antiCD20-interferon 
(antiCD20-IFN)12 or IFN -2a-asparagine-glycine-arginine 
peptide13 in which the asparagine-glycine-arginine pep-
tide targets the aminopeptidase N expressed in tumor ves-
sels. IFN -2a has also been combined with the epidermal 

growth factor (EGF) to target EGF receptors (EGFR)-over-
expressing cells.14

The sequential mechanism of action of chimeric ligands 
(Figure 1) starts by a freely diffusing chimera (Figure 1a) 
that binds via one of its subunits to its complementary 
membrane receptor (Figure 1b,c). This first binding event 
maintains the other free subunit of the chimera in the vicin-
ity of the membrane, facilitating the interaction with its cor-
responding receptor. The efficiency of the chimeric system 
depends on the balance between binding and unbinding 
rates of both ligand–receptor interactions, concentration of 
receptors for the targeting and activity elements, diffusion 
of both receptors on the membrane, and internalization of 
complexes, etc.

Herein, we present a mathematical framework to design 
and enhance synthetic chimeric ligands. As a case study, 
we apply our model to different mutants of a IFN -2a-EGF 
chimera developed in ref. 14, in which the EGF subunit tar-
gets cells overexpressing EGFR and the IFN subunit triggers 
apoptotic signals. These chimeras induced IFN  signaling in 
an EGFR-dependent manner in HeLa, and A431 cells, as well 
as in Daudi cells engineered to overexpress EGFR into the 
Daudi cell line (300× higher than the parental cell line). The 
Daudi cell line comes from a human Burkitt lymphoma and 
is susceptible to IFN  antiproliferative activity. Antiprolifera-
tive assays comparing Daudi and Daudi-EGFR cells showed 
that the inhibition of cell proliferation by chimeric proteins 
depended on the presence of EGFR on the cell surface.

The model allows us to understand the key aspects that 
determine the selective potential of the chimera and to opti-
mize its design by testing variants with increased selectivity 
and efficiency. Our model quantitatively fits all experimental 
results, showing how different versions of the chimera exhibit 
enhanced selectivity (measured as the differential IFN activity 
of the chimera in Daudi-EGFR compared with Daudi cells). The 
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model also allows us to test the dependence of the efficiency 
of the chimera on receptor abundance, length of the linker 
between both ligand subunits, and diffusion of membrane 
receptors. This general model can be easily tailored to other 
chimeric compounds to be used as a tool to understand the 
experimental observations as well as to optimize the design of 
potential chimeric constructs with improved selectivity.

RESULTS
Activity of the chimera is enhanced in cells over-
expressing EGFR
Figure 2 compares the dynamics of the different complexes Ci 
in Daudi (Figure 2a–c) vs. Daudi-EGFR cells (Figure 2d–f). 
After ligand stimulation at t = 0, the number of complexes 
increases initially to later drop due to internalization. The 
amount of IFN ligand–receptor complexes formed decreases 
when using IFN mutants with reduced affinity. In all cases, 
the maximum amount of IFN complexes formed is higher in 
Daudi-EGFR cells (Figure 2d–f) than in Daudi cells, with 
most of the IFN complexes also bound via the EGF subunit to 
EGFR (blue line). The dynamics of the EGF and IFN recep-
tors (IFNR) is plotted in Supplementary Figure S1 online.

Given that transcription of IFN-induced genes has been 
shown to correlate to IFNR occupancy,15 the maximum activ-
ity of the chimera can be monitored in terms of the maximum 
number of IFN complexes formed. Figure 2g–j plots the 
maximum amount of IFN complexes in monomer vs. chimeric 
configurations in both cell lines. The control cell line shows no 
difference in activity between monomer and chimeric ligand 

due to its low endogenous EGFR expression (Figure 2g,h). 
On the contrary, the chimeric ligand induces higher IFN com-
plex formation in cells overexpressing EGFR, as compared 
with the monomer (Figure 2i,j). These results correlate with 
the measurements reported in ref. 14, at which the activity of 
the pathway is monitored in terms of pSTAT1 levels (a read-
out of IFN stimulation). Overall, the model shows how the effi-
ciency of chimeric ligands is achieved: the formation of the IFN 
complex is enhanced by the presence of EGFR, which binds to 
the EGF subunit of the chimera while maintaining the IFN sub-
unit close to the cell surface. This intermediate configuration 
increases the local concentration of IFN at the vicinity of the 
cell surface, facilitating the binding to IFNR. This mechanism 
increases the effective activity of IFN mutants with very low 
efficiency as monomers (K133A and R144A). With respect to 
chimeric configuration, these IFN variants outperform the wild 
type in terms of selectivity (see Selectivity is enhanced in chi-
meras with reduced IFN affinity section).

a

a

a

R1 R2

V1

h1

V2

R2

R1 C2
C3

C1

h2

k1
on k1

off
k2

on
k2

u

k1
u

k2
c

k1
c

k1
e

k2
e k3

e

k2
off

a b

c
d

Figure 1 Scheme of the chimeric ligand/receptor interaction. (a) 
The chimeric ligand is formed by two subunits (blue and green) 
connected by a protein linker of length “a.” Each subunit of the free 
ligand can bind to its corresponding receptor forming intermediate 
complexes (b) C1 and (c) C2. Vi is the effective reaction volume 
where the free ligand subunit is distributed (b–c) and hi corresponds 
to the height of receptor Ri (i = 1, 2) above cell surface. (d) Once 
both subunits of the ligand are bound to their corresponding 
receptors, complex C3 is formed, which gets internalized following 
the endocytotic constant    .

WT chimera2,000

1,500

1,000

N
um

be
r 

of
 c

om
pl

ex
es

500

0

2,000

1,500

1,000

N
um

be
r 

of
 c

om
pl

ex
es

500

0

2,000

1,500

1,000

M
ax

im
um

 n
um

be
r o

f I
F

N
ac

tiv
e 

co
m

pl
ex

es

500

0

0 2 4

Time (hours)

6 8 0 2 4

Time (hours)

Daudi-EGFR cells

6 8 0 2 4

Time (hours)

6 8

0 2 4

Time (hours)

6 8 0 2 4

Time (hours)

6 8 0 2 4

Time (hours)

6 8

K133A chimera

Daudi cells

R144A chimera

WT chimera

WT R144A
K133A

monomer

WT R144A
K133A
chimera

Daudi cells Daudi-EGFR cells

WT R144A
K133A

monomer

WT R144A
K133A
chimera

K133A chimera R144A chimera

EGF-only

IFN-only

EGF-IFN

EGF-only

IFN-only

EGF-IFN

a b c

d e f

g h i j
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in EGFR overexpressing cells. Dynamics of formation of IFN 
complexes at L = 1 nmol/l in (a–c) Daudi and (d–f) Daudi-EGFR 
cells during 8 h. Black line corresponds to EGF complexes only 
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Selectivity is enhanced in chimeras with reduced IFN 
affinity
The efficacy of drugs in triggering apoptotic responses is often 
characterized in terms of percentage of viable cells in a popu-
lation after treatment, in the form of dose–response curves.14 
To correlate the model predictions with the experimental dose–
response curves in ref. 14, we perform a calibration using val-
ues for the wild-type IFN monomer in both cell lines tested 
(see Methods section). This calibration translates the maxi-
mum number of IFN complexes formed into percentage of via-
ble cells, and is used to calculate theoretical dose–response 
curves for the rest of monomer mutants and chimeric con-
structs, to be compared with their corresponding experimen-
tal curves. Other measurements of the chimeric activity, such 
as the sum of the number of IFN complexes formed until the 
maximum is reached, have also shown good correlation with 
experimental data (see Supplementary Figure S2 online).

Figure 3 shows the dose–response curves calculated for 
the two cell lines and the three different IFN mutants in mono-
meric and chimeric configurations. In Daudi cells  (Figure 
3a,c,e) the difference between chimera and monomer is 
negligible for all mutants. On the other hand, Daudi-EGFR 
cells (Figure 3b,d,f) present stronger response to chimeric 
ligand vs. monomer for all three IFN mutants. This difference 

increases when using mutants with reduced IFN affinity, 
resulting in a wider range of concentrations at which the 
monomer has a minimal effect whereas the chimera shows a 
strong effect in terms of percentage of viable cells.

Figure 3g–j plots the half maximal effective concentra-
tion (EC50) values of the ligand predicted by the model and 
the experimental data for each chimera in Daudi and Daudi-
EGFR cells in ref. 14. The EC50 of the monomer (Figure 3g,h) 
increases as the affinity of the IFN mutants decreases, i.e., 
progressively higher ligand concentrations are required to trig-
ger apoptosis in 50% of the cells. Of note, each IFN monomer 
mutant exhibits a higher EC50 in Daudi-EGFR cells as com-
pared with the parental Daudi cell line, evidencing higher resis-
tance of Daudi-EGFR cells to treatment with the IFN monomer. 
We hypothesize that this higher resistance is caused by the 
proliferative activity derived from EGFR overexpression.

EC50 values for the different chimeras are equivalent to 
their corresponding monomers when applied to Daudi cells, 
as expected (Figure 3g,i). On the contrary, EC50 values are 
lower for all chimeric mutants in Daudi-EGFR cells (compare 
Figure 3i with Figure 3j), meaning that low concentrations of 
the chimera can trigger stronger effect on these cells than on 
Daudi cells. This difference determines the selective power of 
chimeric constructs when applied to a population of cells, and 

100

75 WT
monomer

Daudi cells Daudi-EGFR cells Daudi cells Daudi-EGFR cells

WT
chimera

K133A
monomer
K133A
chimera

R144A
monomer
R144A
chimera

R144A
monomer
R144A
chimera

K133A
monomer
K133A
chimera

WT
monomer
WT
chimera50

%
 V

ia
bl

e 
ce

lls

25

0
10 2 100

Ligand concentration (nmol/l)
102

100

75

50

%
 V

ia
bl

e 
ce

lls

25

0
10 2 100

Ligand concentration (nmol/l)
102

100

75

50

25

0
10 2 100

Ligand concentration (nmol/l)
102

100

75

50

%
 V

ia
bl

e 
ce

lls

25

0

0
0.2

0.5 0.2 0.2 0.2
1.0

0.5 0.5
0.9

1.5 1.6

7.0

10

1.0 1.0

10 8.6

36

50

WT K133A R144A

WT K133A R144A WT K133A R144A

WT K133A R144A

0.2 1.5 1.7

10 7.510

20

E
C

50
 v

al
ue

s 
fo

r 
m

on
om

er
 (

nm
ol

/l)

0

2

4

6

8

10

E
C

50
 v

al
ue

s 
fo

r 
ch

im
er

as
 (

nm
ol

/l)

30

40
Experimental data

Theoretical data

Experimental data

Theoretical data

50

0

10

20

0

2

4

6

8

10

30

40

50

10 2 100

Ligand concentration (nmol/l)
102

100

75

50

25

0
10 2 100

Ligand concentration (nmol/l)
102

10 2 100

Ligand concentration (nmol/l)
102

100

75

50

25

0

a b

c d

e f

g h

i j

Figure 3 Theoretical dose–response curves predict highest selectivity for lowest affinity interferon mutants. Dose–response curves to 
compare cytotoxicity of the monomeric (green dotted lines) and chimeric (blue dotted lines) proteins in (a,c,e) Daudi and (b,d,f) Daudi-
EGFR cell lines. (g–j) Bar diagram representing experimental and theoretical half maximal effective concentration (EC50) values for (g–h) 
monomer and (i–j) chimeric ligands (see Methods section). Numbers above each bar correspond to the EC50 (nmol/l) values for each 
condition. Note the different scale in the y-axis. EGFR, epidermal growth factor; WT, wild type.



CPT: Pharmacometrics & Systems Pharmacology

Rational Design of Chimeric Ligands in Selective Drug Therapies 
Doldán-Martelli et al

4

when the activity element induces a stronger response in cells 
overexpressing the receptor of the targeting element. When 
overexpression of this receptor is a marker of disease, these 
chimeric constructs can trigger cytotoxic activity in unhealthy 
cells, leaving healthy cells unharmed. Therefore, comparison 
between Figure 3i,j shows that the mutant with the lowest IFN 
affinity (R144A) presents the highest selectivity, having a strong 
effect on unhealthy Daudi-EGFR cells whereas leaving healthy 
cells undamaged for a wide range of ligand concentrations.

Overall, the model quantitatively reproduces the experi-
mental data for different monomers and chimeric constructs,14 
and shows that the most selective chimera is the mutant 
with reduced affinity toward IFNR, again, consistent with the 
experiments.

Efficiency of the chimera depends on the balance 
between EGFR and IFNR expression
In the previous section, the model illustrates how the selectiv-
ity of chimeric constructs is achieved between cells expressing 

low and high levels of the targeting element receptor. However, 
in vivo cells do not express a disease marker in an on/off fash-
ion but in a wide range of expression levels.16 To understand 
how the expression level of receptors influences the efficiency 
of the chimera, we calculate the maximum number of IFN 
complexes formed for different values of initial EGF and IFNR 
after stimulation with 1 nmol/l of chimeric ligand. Results are 
represented in Figure 4, in which each point in the graph cor-
responds to the maximum number of IFN complexes formed 
at certain values of IFNR and EGFR. Blue color represents 
harmless levels of IFN complex formed and red represents 
IFN complex levels high enough to trigger apoptosis in all 
cells of a population. IFNR and EGFR expression levels for 
Daudi (white circle) and Daudi-EGFR (white asterisk), in our 
experimental model system, are marked in all panels.

For a constant ligand concentration, wild-type chimera activ-
ity (Figure 4a) does not depend on EGFR expression levels, 
respectively. This means that upon crossing a certain threshold 
in IFNR levels, all cells will die independently of the expression 
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Table 1 Kinetic parameters used in the chimeric model

Parameter Value Ref.

koff
1 0.24 min−1 30

kon
1 0.09 nmol/l−1 min−1 30

ke
1 0.15 min−1 31

h1 90 Å 32,33

D1 2–2.4 × 10−10 cm2/s 34

koff
2  WT

0.66 min−1 29

kon
2  WT

0.22 nmol/l−1 min−1 29

ke
2  WT

0.046 min−1 28

koff
2  K133A

1.08 min−1 29

kon
2  K133A

0.041 nmol/l−1 min−1 29

ke
2  K133A

0.046 min−1 28

koff
2  R144A 2.58 min−1 29

kon
2  R144A 0.021 nmol/l−1 min−1 29

ke
2  R144A 0.046 min−1 28

h2 50 Å 35

D2 10−10 cm2/s 21

A 900 µm2 23

a 48.5x10−4 µm 14

R1(0) Daudi cells 22 molecules 14

R2(0) Daudi cells 2,800 molecules 14

R1(0) Daudi-EGFR cells 5,640 molecules 14

R2(0) Daudi-EGFR cells 3,600 molecules 14

C1(0) = C2(0) = C3(0) 0 molecules

Parameter values of EGF and IFN binding, unbinding, and endocytotic 
rates for a quantitative analysis of our system, corresponding to EGF-
EGFR wild-type system and IFN-IFNR wild-type and mutants of IFN, 
from recent publications. EGF, epidermal growth factor; EGFR, epidermal 
growth factor receptor; IFNR, interferon receptor.
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levels of our disease marker, EGFR. On the other hand, the 
R144A mutant chimera (Figure 4c) shows low activity in cells 
with low numbers of EGFR, but also reduced efficiency in cells 
with intermediate levels of EGFR expression, with the result that 
potentially harmful cells can be left undamaged. The mutant 
with intermediate affinity, K133A (Figure 4b), exhibits the best 
trade-off between selectivity and efficiency, with strong activ-
ity in cells expressing high and intermediate levels of EGFR 
(disease cells) and low activity in cells expressing low levels of 
EGFR (healthy cells).

Taken together, these results show that the expression lev-
els of both targeting and activity receptor elements modulate 
the efficiency and selectivity of the chimera, and that different 
versions of the chimera can be designed and optimized in 
specific situations to achieve the best compromise between 
selective killing and efficiency.

Selectivity of the chimera depends on linker length and 
receptor diffusion
As discussed in the Methods section, formation of C3 complex 
via Eqs. 4 and 5 depends on two factors: first, both receptor 
types must become close enough on the cell surface. This pro-
cess is controlled by diffusion and favored by longer chimera 
linkers a (see Eq. 7). In addition, the effective affinity constant 
k i

on  (Eq. 9) decreases with linker length because the effec-
tive reaction volume increases for longer linkers. The global 
coupling rate kc

i  in Eq. 6 is dominated by the slowest process: 
if diffusion of receptors is slow k kc

i i~ diff, and the reaction is 
said to be diffusion limited. On the other hand, for fast diffusive 
transport, k kc

i i~ on , and the process becomes reaction limited. 
Between both regimes, there could be an intermediate optimal 
linker that maximizes the activity.

In ref. 14, the linker is formed by a chain of seven identical 
subunits of Gly4-Ser residues. The linker length a is estimated 
as the average end-to-end distance of a protein polymer con-
taining N Kuhn segments (the Gly4-Ser subunits), using a 
worm-like chain model:17

(1)

where N is the number of subunits, lc = N·aK and lp = aK/2 are 
the contour and persistent lengths, respectively. The Kuhn 
segment length, aK, is calculated as aK = 5·Cd, where Cd = 3.8 
Å is the length of a residue.

To study the impact of receptor diffusion and linker length 
on the selectivity of chimeras, we calculated the difference in 
activity (measured as the maximum number of IFN complexes 
formed) between Daudi and Daudi-EGFR cells varying system-
atically the diffusion coefficient and the number of linker sub-
units.  Figure 5 plots this differential activity in a color code as a 
function of linker length across a physiologically relevant range 
of diffusion coefficients for receptors in the membrane (D  
10–11–10–9 cm2/s). Calculations corresponding to the experimen-
tal values are marked as asterisks. White lines mark a shallow 
maximum in differential activity as a function of linker length. For 
the wild-type chimera (Figure 5a), C3 formation is mainly diffu-
sion limited, because the differential activity slightly increases 
with the linker length. For the K133A and R144A mutants 
 (Figure 5b,c) the selectivity increases as expected, and C3 for-
mation is mainly reaction limited, meaning that shorter linkers 
enhance the selective potential of the chimera. This presents a 
practical advantage because shorter linkers are easier to syn-
thesize and longer chimeras are prone to cleavage in vivo.

DISCUSSION

In this article, we present a theoretical model for chimeric 
ligands that allows us to study and optimize the selectivity of 
these types of constructs toward specific cell types. Some of 
these synthetic compounds have been developed as selective 
drugs,1,6,7,10,12 allowing high activity at very low drug concentra-
tion and therefore, reducing side effects. Our model provides an 
in silico tool to design and test the efficiency of new synthetic 
compounds, as well as to optimize the existing ones by testing 
variants with improved selective potential.

When tailored to the specific case of IFN-EGF chimera 
using parameter values from ref. 14, our model quantitatively 
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Figure 6 Calibration curves for the IFN wild-type monomer in Daudi-
EGFR and Daudi cell lines. (a,b) Model prediction of maximum IFNR 
activation for different ligand concentrations. (c,d) Experimental 
dose–response curves from ref. 14 fitted as sigmoidal curves. 
(e,f) Calibration curves to correlate predicted IFNR activation with 
experimental cytotoxic activity for a given ligand concentration. 
Parameters for the sigmoidal fitting of the calibration curves: (e) for 
Daudi cells are maximum value (Emax) =100, minimum value (E0) = 
0, Inflection Point (IP) = 160.9, Slope (S) = −3.3 and (f) for Daudi-
EGFR cells are Emax = 100, E0 = 0, IP = 814, S = −3.4. Sigmoidal 
fitting perfomed using an in-house MATLAB script. EGFR, epidermal 
growth factor receptor; IFN, interferon; IFNR, interferon receptor.
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reproduces the experimental results of the different chimeric 
constructs in terms of pathway activation (Figure 2g–j) and 
cytotoxic potential (Figure 3g–j).

We restricted our model to interactions occurring at the 
membrane level, calibrating downstream events using the 
experimental dose–response curve for the WT-IFN monomer 
(see Methods section). A detailed mathematical implementa-
tion of all downstream molecular interactions that ultimately 
trigger cytotoxic response will reduce the generality and sim-
plicity of our model, so we consider this approach far from the 
scope of this contribution. In addition, internalization of C3 is 
computed as the sum of the internalization constants of both 
C1 and C2 complexes, assuming they are independent. How-
ever, the proximity of both complexes when in C3 configuration 
may induce dependence on the internalization of proximal 
active receptors linked to the same chimeric molecule.

Membrane diffusion of receptors and complexes is assumed 
uniform, so the well-known heterogeneity of the plasma mem-
brane can impact diffusion of the components on the mem-
brane. Moreover, the dimeric nature of both EGF and IFN 
complexes18,19 is not considered for the sake of generality. 
Instead, a simpler 1:1 ligand–receptor interaction scheme is 
considered. Given the accuracy of the 1:1 model reproducing 
the experimental results (Figure 3g–j), we hypothesize that 
receptor homodimerization is not playing a significant role in 
the dynamics of the system. In addition, the model does not 
include synthesis and degradation of free receptors, assum-
ing a dynamic equilibrium that keeps a constant concentra-
tion of free receptors in unstimulated conditions.

The model also assumes that both subunits of the chime-
ric ligand are bound to receptors of the same cell. However, it 
is known that chimeras can act in a paracrine manner, cross-
linking receptors of nearby cells.7 Finally, as previous studies 
suggested, EGF may have prosurvival signals, which are not 
considered in our model, and would counteract the cytotoxic 
activity of IFN.20 A detailed model including the effect of EGF 
stimulation on cell proliferation at cell population level is in 
progress.

Despite all simplifications and assumptions, the model 
accurately reproduces the experimental data14 for all com-
pounds and both cell lines tested in a quantitative fashion. 
The present model provides a reliable and systematic tool 
to design chimeric ligands, allowing us to determine optimal 
configurations before synthesis and in vivo tests. All experi-
mental data used here correspond to the IFN-EGF specific 
scenario, but the generality of the model ensures a straight-
forward customization to model other chimeric designs, 
using different combinations of activity and targeting ele-
ments to design selective compounds against specific cell 
types.

METHODS

The chimeric ligand–receptor system can be considered as 
an extension of the monovalent ligand–receptor interaction 
model,21 assuming a sequential process with a single ligand 
able to interact with two different receptors following the 
scheme:

(2)R L C
k

k

kon

off

e
1 1

1

1

1 ⇀↽ 

(3)

(4)

(5)

Eqs. 2 and 3 correspond to the individual binding of each sub-
unit of the chimeric ligand L to its complementary receptor Ri to 
produce intermediate complexes Ci, where i = 1, 2 corresponds 
to each of the two targeted species (Figure 1b,c). These inter-
mediate complexes are formed by one ligand subunit linked to 
its corresponding receptor whereas the other subunit is free and 
available to interact with its receptor via Eqs. 4 and 5 to gener-
ate the complex C3 (Figure 1d). This second binding event is 
modulated by two factors: the two-dimensional diffusion of the 
receptors at the cell membrane and the increase in local con-
centration close to the cell membrane due to the first binding 
event.22 The coupling rate constant ( kc

i ) is calculated as:21

(6)

The diffusive rate constant, k i
diff, is calculated using the 

model for binding of cell surface molecules to receptors from 
ref. 21, where the intermediate complexes C1 and C2 are con-
sidered as numbers of membrane molecules:

(7)

Here D = D1 + D2 is the sum of diffusion coefficients on the 
cell membrane for both receptor species, and A is the typi-
cal cell surface area for mammalian cells.23 The parameter bi 
represents the average half-distance between receptors Ri 
on the cell surface, and is estimated as:

(8)

The parameter a corresponds to the linker length between 
ligand subunits (Eq. 1). Normalization of k i

diff  by cell surface 
area A, Eq. 7, is necessary to express the diffusive rate con-
stant in # molecules−1 min−1, the same units as k i

on  below. 
We remark that all molecular species, Ri, Ci, are given in mol-
ecule numbers.

On the other hand, k i
on  is the effective affinity constant 

recalculated for a two-dimensional binding process21 as 
follows:

(9)

where k i
on  is the corresponding three-dimensional rate affin-

ity constant in Eqs. 2 and 3, Nav is Avogadro’s number, and 
Vi is the effective reaction volume for the second binding 
event assumed as a spherical gasket above the cell surface 
where the free subunit gets distributed after the first binding 
event (see Figure 1b,c). This volume is calculated as Vi = 
A·(hi + a), where hi is the height of the extracellular domain 
of the receptor. Finally, the uncoupling rate ku

i  in Eqs. 4 and 
5 can be written as:

(10)
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Where 
i

i i ik k kon diff on
 the “capture probability” factor 

for receptor Ri, quantifying the probability that closely associ-
ated Ri and Cj (i, j = 1, 2) bind to become a C3 complex.21 ke 
represents the internalization constant of each of the differ-
ent complexes after ligand binding, assuming k k ke e e

3 1 2 , 
because internalization of the two complexes in C3 is consid-
ered to be independent. The set of reactions 2–5 is translated 
into the following differential equations:

(11)

(12)

(13)

(14)

(15)

Note that, in contrast to other models of signal transduction 
by receptors,24 we consider extracellular ligand concentra-
tion as a constant in our equations. This choice is justified in 
 Supplementary Text S1 online. To solve Eqs. 11–15 numeri-
cally, we developed an in-house MATLAB (MathWorks, Natick, 
MA) script (data not shown) using parameters for the chimeric 
system described.14 The system is composed by EGF as tar-
geting element linked to different mutants of the IFN -2a as the 
activity element. The activity of the chimera corresponds to the 
cytotoxic effect of the IFN -2a subunit. This chimeric design is 
assumed to guide the antiproliferative and apoptotic effect25,26 of 
interferon toward cells overexpressing EGFR (upregulated in a 
number of tumoral cell lines).27 Mutants of IFN exhibiting different 
affinity toward the IFNR were tested in Daudi cells engineered 
to overexpress EGFR cells (~300× the levels of the Daudi con-
trol cell line). For our study, we selected the wild-type form of 
IFN -2a and the mutant variants, K133A and R144A,28,29 with 
progressively less avidity toward IFNR. Parameter values are 
taken from experimental studies28–35 and are listed in Table 1. 
Within our modeling scheme, variable R1 represents EGFR, R2, 
IFNR, C1 and C2 represent EGF and IFN complexes alone (i.e., 
complexes formed by the receptor and one end of the chimera, 
with the other chimera subunit free to bind to its corresponding 
receptor). C3 corresponds to the chimera linked to EGFR and 
IFN at the same time. The initial number of EGFR and IFNR is 
written as R1 (0) and R2 (0), and the initial amount of complexes 
C1, C2, and C3 is equal to 0 (see Table 1).

To compare the theoretical predictions with experimental 
measurements, we established a correlation between cytotoxic 
effect of IFN and number of IFN complexes predicted. To do so, 
we compute the maximum value of IFN ligand–receptor com-
plexes (i.e., C2 +C3 in the model) for the range of ligand concen-
trations experimentally used, resulting in the sigmoidal curves 
in Figure 6a,b. The prediction of maximum IFN complexes for 
each ligand concentration is correlated with its cytotoxic effect 
using the experimental dose–response curves for the wild-type 
IFN monomer ligand in ref. 14 for Daudi and Daudi-EGFR cells 
(both are sigmoidal curves reinterpreted in Figure 6c,d). The 
resulting calibration curves for both cell types are shown in 

Figure 6e,f, correlating the number of IFN complexes predicted 
with its activity in terms of percentage of viable cells. The cali-
bration curve is then used to calculate the predicted cytotoxicity 
for other mutants of IFN monomer and all chimeric variants.

Supplementary Figure S2 online plots the dose–response 
curves and EC50 values calculating the IFN activity as the sum 
of the number of IFN complexes formed before the maximum 
(to be compared with Figure 3, calculated using the maximum 
value of IFN complexes). Both methods produce equivalent 
results in complete agreement with the experimental data.

The quantitative fit of the EC50 values for the different IFN 
monomers with the experimental data provides a good vali-
dation of the model, because changes in the affinity of the 
IFN ligand fully correlate with the experimental phenotype.
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WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?

Chimeric ligands achieved their selective potential 
by taking advantage of the differential expression 
of disease markers targeted by one subunit of the 
chimera, whereas the other subunit triggers repairing 
or cytotoxic responses.

WHAT QUESTION DID THIS STUDY ADDRESS?

In this study, we present a mathematical model that 
allows in silico design and optimization of chimeric 
constructs in terms of their selectivity and efficiency.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

 To our knowledge, our study provides the first math-
ematical framework that focuses on chimeric drugs, 
allowing us to understand the results of chimeras al-
ready tested experimentally, as well as to investigate 
new designs with improved selective potential.

HOW THIS MIGHT CHANGE CLINICAL 
 PHARMACOLOGY AND THERAPEUTICS

Our model constitutes a step forward toward a more 
systematic and reliable design of selective chimeric 
compounds before their in vivo implementation.

Study Highlights



CPT: Pharmacometrics & Systems Pharmacology

Rational Design of Chimeric Ligands in Selective Drug Therapies 
Doldán-Martelli et al

8

1. Kawakami, K., Aggarwal, B.B. & Puri, R.K. Cytotoxins and Immunotoxins for Cancer 
Therapy: Clinical Applications 1st edn., (CRC Press, Taylor & Francis, Boca Raton, FL, 
2004).

2. Turturro, F. Denileukin diftitox: a biotherapeutic paradigm shift in the treatment of lymphoid-
derived disorders. Expert Rev. Anticancer Ther. 7, 11–17 (2007).

3. Kreitman, R.J. et al. Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) 
in patients with hematologic malignancies. J. Clin. Oncol. 18, 1622–1636 (2000).

4. Kreitman, R.J. et al. Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in 
patients with B-cell malignancies. J. Clin. Oncol. 23, 6719–6729 (2005).

5. Kioi, M., Husain, S.R., Croteau, D., Kunwar, S. & Puri, R.K. Convection-enhanced delivery 
of interleukin-13 receptor-directed cytotoxin for malignant glioma therapy. Technol. Cancer 
Res. Treat. 5, 239–250 (2006).

6. Ruoslahti, E., Bhatia, S.N. & Sailor, M.J. Targeting of drugs and nanoparticles to tumors. J. 
Cell Biol. 188, 759–768 (2010).

7. Bremer, E. et al. Simultaneous inhibition of epidermal growth factor receptor (EGFR) sig-
naling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand 
(TRAIL) receptor-mediated apoptosis induction by an scFv:sTRAIL fusion protein with 
specificity for human EGFR. J. Biol. Chem. 280, 10025–10033 (2005).

8. Bremer, E. et al. Target cell-restricted apoptosis induction of acute leukemic T cells by a 
recombinant tumor necrosis factor-related apoptosis-inducing ligand fusion protein with 
specificity for human CD7. Cancer Res. 65, 3380–3388 (2005).

9. Stieglmaier, J. et al. Selective induction of apoptosis in leukemic B-lymphoid cells by a 
CD19-specific TRAIL fusion protein. Cancer Immunol. Immunother. 57, 233–246 (2008).

10. Bremer, E., ten Cate, B., Samplonius, D.F., de Leij, L.F. & Helfrich, W. CD7-restricted acti-
vation of Fas-mediated apoptosis: a novel therapeutic approach for acute T-cell leukemia. 
Blood 107, 2863–2870 (2006).

11. Bremer, E. et al. Superior activity of fusion protein scFvRit:sFasL over cotreatment with 
rituximab and Fas agonists. Cancer Res. 68, 597–604 (2008).

12. Xuan, C., Steward, K.K., Timmerman, J.M. & Morrison, S.L. Targeted delivery of interferon-
alpha via fusion to anti-CD20 results in potent antitumor activity against B-cell lymphoma. 
Blood 115, 2864–2871 (2010).

13. Zhang, B., Gao, B., Dong, S., Zhang, Y. & Wu, Y. Anti-tumor efficacy and pre-clinical im-
munogenicity of IFNa2a-NGR. Regul. Toxicol. Pharmacol. 60, 73–78 (2011).

14. Cironi, P., Swinburne, I.A. & Silver, P.A. Enhancement of cell type specificity by quantita-
tive modulation of a chimeric ligand. J. Biol. Chem. 283, 8469–8476 (2008).

15. Hannigan, G. & Williams, B.R. Transcriptional regulation of interferon-responsive genes is 
closely linked to interferon receptor occupancy. EMBO J. 5, 1607–1613 (1986).

16. Spencer, S.L. & Sorger, P.K. Measuring and modeling apoptosis in single cells. Cell 144, 
926–939 (2011).

17. O’Brien, E.P., Morrison, G., Brooks, B.R. & Thirumalai, D. How accurate are polymer mod-
els in the analysis of Förster resonance energy transfer experiments on proteins? J. Chem. 
Phys. 130, 124903 (2009).

18. Yarden, Y. & Schlessinger, J. Self-phosphorylation of epidermal growth factor receptor: 
evidence for a model of intermolecular allosteric activation. Biochemistry 26, 1434–1442 
(1987).

19. Uze, G., Lutfalla, G. & Mogensen, K.E. In Guidebook to Cytokines and Their Receptors 
(ed. Nicola, N.A.), 115–118 (Oxford UniversityPress, Oxford; New York; Tokyo, 1994).

20. Caraglia, M. et al. Interferon-alpha induces apoptosis in human KB cells through a stress-
dependent mitogen activated protein kinase pathway that is antagonized by epidermal 
growth factor. Cell Death Differ. 6, 773–780 (1999).

21. Lauffenburger, D.A. & Linderman, J. Receptors: Models for Binding, Trafficking, and Sig-
naling 130–180 (Oxford University Press, Huntington Beach, CA, 1996).

22. Adam, G. & Delbruck, M. Structural Chemistry in Molecular Biology 198–215 (Freeman, 
San Francisco, CA, 1968).

23. Zhao, L., Kroenke, C.D., Song, J., Piwnica-Worms, D., Ackerman, J.J. & Neil, J.J. Intra-
cellular water-specific MR of microbead-adherent cells: the HeLa cell intracellular water 
exchange lifetime. NMR Biomed. 21, 159–164 (2008).

24. Shankaran, H., Resat, H. & Wiley, H.S. Cell surface receptors for signal transduction and 
ligand transport: a design principles study. PLoS Comput. Biol. 3, e101 (2007).

25. Darnell, J.E. Jr, Kerr, I.M. & Stark, G.R. Jak-STAT pathways and transcriptional activation in 
response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).

26. Pestka, S., Langer, J.A., Zoon, K.C. & Samuel, C.E. Interferons and their actions. Annu. 
Rev. Biochem. 56, 727–777 (1987).

27. Arteaga, C.L. The epidermal growth factor receptor: from mutant oncogene in nonhuman 
cancers to therapeutic target in human neoplasia. J. Clin. Oncol. 19, 32S–40S (2001).

28. Dunne, S.L., Bajzer, Z. & Vuk-Pavlovic, S. Kinetics of receptor-mediated uptake and 
processing of interferon-alpha 2a and tumor necrosis factor-alpha by human tumor cells. 
Growth Factors 2, 167–177 (1990).

29. Piehler, J., Roisman, L.C. & Schreiber, G. New structural and functional aspects of the 
type I interferon-receptor interaction revealed by comprehensive mutational analysis of the 
binding interface. J. Biol. Chem. 275, 40425–40433 (2000).

30. Hendriks, B.S., Orr, G., Wells, A., Wiley, H.S. & Lauffenburger, D.A. Parsing ERK activa-
tion reveals quantitatively equivalent contributions from epidermal growth factor receptor 
and HER2 in human mammary epithelial cells. J. Biol. Chem. 280, 6157–6169 (2005).

31. Resat, H., Ewald, J.A., Dixon, D.A. & Wiley, H.S. An integrated model of epidermal growth 
factor receptor trafficking and signal transduction. Biophys. J. 85, 730–743 (2003).

32. Ogiso, H. et al. Crystal structure of the complex of human epidermal growth factor and 
receptor extracellular domains. Cell 110, 775–787 (2002).

33. Garrett, T.P. et al. Crystal structure of a truncated epidermal growth factor receptor extra-
cellular domain bound to transforming growth factor alpha. Cell 110, 763–773 (2002).

34. Xiao, Z., Zhang, W., Yang, Y., Xu, L. & Fang, X. Single-molecule diffusion study of activated 
EGFR implicates its endocytic pathway. Biochem. Biophys. Res. Commun. 369, 730–734 
(2008).

35. Roisman, L.C., Piehler, J., Trosset, J.Y., Scheraga, H.A. & Schreiber, G. Structure of the 
interferon-receptor complex determined by distance constraints from double-mutant cycles 
and flexible docking. Proc. Natl. Acad. Sci. U.S.A. 98, 13231–13236 (2001).

CPT: Pharmacometrics & Systems Pharmacology is an  
open-access journal published by Nature Publishing 

Group. This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivative Works 3.0 License. To view a copy of 
this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Supplementary Information accompanies this paper on the Pharmacometrics & Systems Pharmacology website  
(http://www.nature.com/psp)



3 Results

3.3 Synergistic Interaction between Selective Drugs in Cell Populations Models

Background, Introduction and Author Contribution

This publication analyzes the effect of combinatorial treatments with chimeric ligands from a theo-

retical perspective to explore the design of better treatments with reduced side effect and enhanced

efficiency. To do that, the author of this thesis developed a population model where two sets of

cells expressing different levels of a target molecule are treated with different concentrations of two

chimeric drugs simultaneously. inheritance The model used by the author is an extension of the

ligand-receptor model presented in the previous section, but it was rewritten to take into account

the simultaneous interaction of two chimeric ligands. As in the case of the previous contribution,

the model was calibrated with experimental dose-response curves in [77] and informed with ex-

perimental parameter values. Finally, it was numerically solved for different ligand combinations —

in monomeric and chimeric configuration— and concentrations in proliferating populations of cells.

Unlike the previous publication, this model permits to add cell-to-cell receptors variability to the

system and also phenotypic inheritance of the amount of receptors (such us in diseases caused

by genetic mutations). The model predicts that drug combination of selective drugs can selectively

affect a given cell population at reduced concentrations compared to single drug treatment, that is,

chimeric ligands are synergistic in terms of their selective potential.

62
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Abstract
The design of selective drugs and combinatorial drug treatments are two of the main
focuses in modern pharmacology. In this study we use a mathematical model of chimeric
ligand-receptor interaction to show that the combination of selective drugs is synergistic in
nature, providing a way to gain optimal selective potential at reduced doses compared to
the same drugs when applied individually. We use a cell population model of proliferating
cells expressing two different amounts of a target protein to show that both selectivity and
synergism are robust against variability and heritability in the cell population. The reduction
in the total drug administered due to the synergistic performance of the selective drugs can
potentially result in reduced toxicity and off-target interactions, providing a mechanism to
improve the treatment of cell-based diseases caused by aberrant gene overexpression,
such as cancer and diabetes.

Introduction
The field of modern pharmacology aims to develop novel approaches to improve disease treat-
ment, reduce side effects, minimize costs and enhance the efficiency of targeted therapy. These
major challenges require a rational design of novel drugs and improved treatment strategies. In
this direction, two of the main approaches currently being pursued involve the development of
selective drugs and the design of optimal drug combination therapies.

Drug selectivity can be defined as the ability of a compound to exhibit enhanced effect to-
wards a particular cell population in preference to others. To achieve that, a drug must be de-
signed to target specific cellular components that are differentially expressed in two cell types.
In the context of diseases that involve cells overexpressing certain genes, such as oncogenes in
cancer [1], this targeting potential can be used to selectively affect only cells with increased lev-
els of the overexpressed protein. Once selectivity is achieved, the drug can be designed to either
restore normal cellular function when possible, or to trigger apoptosis of the unhealthy cells
without harming the healthy cellular environment. In general, selective drugs are composed of
a targeting element (TE) that recognizes and binds to the target protein, and an activity element
(AE) that is directed towards the selectively targeted cells. Many of these synthetic chimeric
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compounds have shown good in vivo performance, and several of them have been approved by
the FDA or currently undergoing clinical trials [2–15].

On the other hand, drug combination therapies have shown enhanced efficiency compared
to individual drug therapy in many diseases [16], including cancer [17, 18] and HIV’s [19].
The interaction between drugs in multicomponent therapies is a complex and multi-scale
problem [20] that requires full characterization of the direct and indirect molecular aspects of
the interaction, which are often unknown. Due to this, experimental studies and discoveries of
successful drug combinations are often based on empirical intuition and trial-and-error ap-
proaches. In general, drug interactions can be classified based on their effect when combined,
compared to their effect when applied alone. Drugs that do not interact with each other, or are
mutually exclusive by competing for the same target are considered as additive [22]. This basi-
cally means that the lower concentration which produces a certain effect corresponds to the
most potent drug, and there is no gain due to the combination of the two drugs. On the other
hand, antagonism occurs when one of the drugs mitigates or counteracts the action of the
other, i.e, the combination is always less effective than the single agents at the same concentra-
tion. Finally, synergism occurs when the combination of both drugs is more effective than each
agent separately at the same total concentration, i.e., one of the agents enhances the actions of
the other [21]. This can occur either via direct interaction, i.e, one drug increases the bioavail-
ability of the other, or indirectly, i.e, the two drugs cooperate on targets on the same or different
pathways involved in the same process [23]. Thus, the total concentration of drug administered
to achieve a certain effect is reduced, which potentially also reduces side effects, drug resistance
and undesired off-target interactions.

In the context of selective drugs, synergism and antagonism can be also defined in terms of
the enhanced or reduced selective potential of the two drugs when combined [24], i.e, their
ability to target selectively a specific cell population, compared to their selective potential when
applied individually. In this way, two drugs are synergistic if their combination is more selec-
tive than the two drugs acting alone at the same total concentration. Here, we explore the
mechanism of interaction between selective drugs in combination from a theoretical perspec-
tive. To do that, we develop a population model where two sets of cells expressing different lev-
els of a target molecule are treated with different concentrations of two drugs simultaneously.
In principle, these two drugs can be monomeric non-selective ligands (i.e., they do not differen-
tiate between healthy and unhealthy cells), or chimeric ligands, composed of an AE and linked
to a TE, allowing them to selectively target unhealthy cells, leaving the healthy
environment undamaged.

Two different approaches are taken into account: first, we analyze the effect of combinations
of two different chimeric ligands when applied simultaneously to an heterogeneous population
of cells; next, we combine the effect of individual chimeric drugs based on the Loewe additivity
model [22]. Both models predict that drug combination of selective drugs is synergistic in
terms of their selective potential. Finally, we introduce phenotypic inheritance in the cell popu-
lation to show that both selectivity and synergism also occur in a context where the amount of
target proteins of the daughter cells depends on the mother cell, such as in diseases caused by
mutations in specific genes. Our results show that the concentration to obtain a desired selec-
tivity can be minimized by simultaneous treatment of selective drugs.

Models
To analyze the effect of selective drug combinations in a multicellular approach, we develop a
mathematical framework where we allow two asynchronous populations of cells with two dis-
tinct average number of target molecules to proliferate for a given time. Cells are treated with
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different concentrations of monomers and chimeric drugs alone or in combination, to then
monitor and compare the dynamics of proliferation of the two cell populations. The dynamics
of the effect of chimeric drugs at the cellular level is calculated based on a chemical kinetics
model for the ligand-receptor interaction [25]. The model used is an extension of our previous
contribution to the study of the dynamics of chimeric ligands, where we develop a mathemati-
cal framework to predict the selective potential of chimeric drugs, based on the affinity of both
AE and TE subunits of the ligand towards their targets (activity element receptor, AER, and
targeting element receptor, TER, respectively), the concentration of the target molecules and
the linker length between AE and TE in the chimera [25]. The model is rewritten to take into
account the simultaneous interaction of two chimeric ligands, resulting in the following set of
interactions:

Ri þ Lj Ð
koni; j

koffi; j

Ci;j ð1Þ

C1;j þ R2 Ð
kc
2;j

ku
2; j

C3;j ð2Þ

C2;j þ R1 Ð
kc
1;j

ku
1; j

C3;j ð3Þ

Ci;j;C3;j %!
kei;j ;k

e
3; j

∄ ð4Þ

where Ri corresponds to the i receptor (i = 1,2) and Lj corresponds to each of the two different
ligands (j = 1,2) used in the combined treatment. Each ligand Lj is composed of a AE and TE,
and it can bind to R1 or R2 via reaction 1 to give an intermediate complex Ci,j (Fig. 1A–C).
These intermediate complexes facilitate reactions 2 and 3 by originating a local concentration
of the free subunit of the ligand Lj in the vicinity of the complementary receptor, to generate
the complex C3,j (Fig. 1D). The coupling (kci;j) rate constants in reaction 2 and 3 are calculated

as follows:

kci;j ¼
1

kdiffi

þ 1

kon0i;j

 !%1

ð5Þ

where the diffusive rate constant kdiffi is modulated by the diffusion Di of the receptors Ri at the
membrane as [26, 27]:

kdiffi ¼ 2pð
P

DiÞ
A ' log ðbi=aÞ

ð6Þ

being A the average cell surface area, bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ðpRiÞ

p
corresponds to half the average distance

between R1 and R2, and a is the linker length. Effective affinity and dissociation rates for the re-
actions that take place at the membrane are calculated as [26]:

kon
0

i;j ¼
koni;j

Nav ' Vi

ð7Þ

kui;j ¼ ð1% gi;jÞk
off
i;j ð8Þ

Synergistic Interaction between Selective Drugs

PLOS ONE | DOI:10.1371/journal.pone.0117558 February 11, 2015 3 / 19



where Nav is Avogadro’s number and Vi = A ' (hi + a) is the effective reaction volume for the
second binding event, assumed as a spherical gasket above the cell surface where the free sub-
unit gets distributed after the first binding event (see [25]), being hi the height of Ri above the

cell surface. gi;j ¼ kon0i;j =ðk
diff
i þ kon0i;j Þ corresponds to the capture probability factor for receptor

Ri and ligand Lj, explained in detail in [26].
For a given constant concentration of both ligands Lj, the equations are solved for each indi-

vidual cell in the population, based on its amount of R1 and R2 receptors, identified as TER and
AER, respectively. The maximum value of AER-AE complexes formed in each cell is then cor-
related with the physiological response produced by the AE using experimental dose-response
curves (this correlation is a multi-step process explained in detail in Ref. [25]). Typical dose-
response curves are often fitted to a four-parameter sigmoidal [25], such as:

RðLÞ ¼ A% D

1þ ðL=EC50Þ
B þ D ð9Þ

where the physiological response R(L) for a given drug concentration L is characterized by its
maximal D and minimal A asymptotes, B is the slope parameter of the curve, and EC50 is the

Fig 1. Scheme of the model for the simultaneous interaction of two chimeric ligands with their corresponding receptors. (A) Each one of the ligands
Lj consists of two subunits which can interact with their corresponding receptors to form intermediate complexesCi,j. (B,C) This first binding event induces an
increase in the local concentration of the free subunit of the ligand facilitating the interaction with its corresponding receptor to form complexC3,j (D).

doi:10.1371/journal.pone.0117558.g001
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half-maximal effective concentration of the ligand, that is, the inflection point of the curve.
S1A Fig. shows a schematic representation of the workflow used to solve the model equations
and obtain the dynamics of growth of the heterogeneous cell population.

As a numerical solution, the model is informed with data from a synthetically designed chi-
meric ligand composed of the Epidermal Growth Factor (EGF) as TE and different mutants of
Interferon alfa-2a (IFNα-2a) as AE [15]. Thus, the apoptotic effect triggered by IFNα-2a stimu-
lation is directed towards cells overexpressing the Epidermal Growth Factor Receptor (EGFR).
The physiological response of the cells to the treatment corresponds to the apoptotic effect in-
duced by IFNα-2a, measured experimentally as the percentage of surviving cells after 60 hours
of treatment.

Since EGFR is an oncogene overexpressed in a number of tumor cells [28], this chimera can
be potentially used to selectively target cancer cells without affecting the healthy surrounding
tissue. Different mutants of the IFNα-2a molecule are tested as monomers (Mwt,M1,M2 and
M3), and as AE’s in chimeric configuration, identified here as Chwt for the chimera composed
of the wild type version of the IFNα-2a linked to EGF, and Ch1, Ch2 for the experimentally
available mutants of IFNα-2a with reduced affinity towards the IFNα-2a receptor linked to the
targeting element EGF [15]. Other potential chimeras composed of EGF linked to IFNα-2a
mutants with decreasing affinity towards the AER combined with EGF, named Ch3 and Ch4,
are included in the analysis (Table 1 shows the dissociation constants for each IFN monomer).

To mimic the experimental conditions, cells in the population are allowed to proliferate for
60 hours in the presence of the drug treatment, and the physiological response of each cell to
the treatment depends on the amount and efficiency of each ligand, the amount of TER and
AER receptors expressed, and the exposure time to treatment. Given that the physiological re-
sponse of the cells is apoptosis, we set the decision between survival or death for each cell in the
population as follows: for a given physiological response (0< R(L)< 1), the probability of un-
dergoing apoptosis at every time point is computed as θ = (1 − R(L))Δt/T, being T the total
length of the experiment and Δt the time step in the simulation. Then, a random number
(0< γ< 1) from a uniform distribution is assigned for each cell in the population and

Table 1. Parameters used in the population model. Values of IFNα-2a (AE) dissociation rates (kD),
corresponding to IFNα-2a-IFNR wild type and mutants of IFNα-2a, from recent publications [15, 39] and
theoretical ligands (M3 and M3). Mean values of EGF and IFN receptors expressed by Daudi and Daudi-
EGFR cells, extracted from [15].

Parameter Value Units Reference

kD Mwt 3 nM Ref. [39]

kD M1—K133A 26 nM Ref. [39]

kD M2—R144A 120 nM Ref. [39]

kD M3 240 nM theoretical

kD M4 480 nM theoretical

kD EGF 2.47 nM theoretical

[EGFR]healthy 22 molecules Ref. [15]

[IFNR]healthy 2800 molecules Ref. [15]

[EGFR]unhealthy 5640 molecules Ref. [15]

[IFNR]unhealthy 3600 molecules Ref. [15]

# of cells at t = 0 100 cells theoretical

Average cell cycle 27.5 hours Ref. [29, 40]

Total time 60 hours theoretical

doi:10.1371/journal.pone.0117558.t001
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compared to the value of θ at every time step. If γ( θ, the cell survives. On the contrary, if γ<
θ, then the cell dies and it is no longer considered in the simulation.

A cell division occurs when the age of a given cell reaches the numerical value for the cell
cycle length assigned to that particular cell. This value is obtained from a gamma distribution
with mean m = 27.5 hours [29, 30] and standard deviation of 2 hours. The amount of surface
receptors are also gamma distributed [31], with a mean value obtained from experimental data
[15] (see Table 1) and a coefficient of variation of 0.3, to mimic cell-to-cell variability in both
populations. Mean values of the final cell numbers are obtained from 10 independent runs of
the model. Numerical solution of the model equations and other calculations are performed
using a in-house Matlab script (code available upon request).

Results
Selectivity of chimeric drugs versus monomers in a cell population
The model described above is used to illustrate the effect of monomers versus chimeric ligands
in a heterogeneous cell population. Fig. 2 illustrates the dynamics of growth of healthy (blue
curve) and unhealthy (red curve) cell populations under nonselective monomers versus selec-
tive chimeric ligand treatment. To characterize and compare its selective potential, we define a
threshold based on the amount of cells of both populations that remain after 60 hours of treat-
ment (i.e., the duration of the experiments in [15], where the dose-response curves and other
experimental data are obtained). Thus, a given treatment is considered as efficient when the
number of unhealthy cells does not increase, while the population of healthy cells grows to at
least 80% of its potential size. These two threshold values are marked in Fig. 2A–I as dashed
red and blue horizontal lines for the unhealthy and healthy cells, respectively. These threshold
values will be used to categorize the selective potential of a given treatment.

Low concentrations ofMwt are harmless to both cell populations, which can grow exponen-
tially (Fig. 2A). Intermediate concentrations (Fig. 2B) have a much stronger effect in healthy
cells than in unhealthy cells, due to higher resistance to IFNα-2a treatment in the unhealthy
cell population (reported experimentally in [15], where authors hypothesized that this effect is
mainly due to the anti-apoptotic potential of the EGFR overexpression [32] that may counter-
act the effect of IFNα-2a stimulation). Higher concentrations of the monomer are able to re-
duce the number of unhealthy cells in the system, but affecting the healthy population even
more (Fig. 2C). This type of response is similar for all mutants of the monomer of IFNα-2a, as
shown in the S2 Fig.

On the other hand, chimeric ligands show enhanced effect in cells overexpressing EGFR.
The dynamics of Chwt ligand treatment, composed of EGF linked to wild type IFNα-2a, is
shown in Fig. 2D–F. Low concentrations do not affect the growth rate of both cell populations.
Intermediate and high values of chimeric ligand affect both healthy and unhealthy cells, reduc-
ing both cell populations simultaneously.

Optimal treatment can be achieved by the chimeric ligand composed of EGF linked to a mu-
tant of IFNα-2a with reduced affinity towards the IFN receptor, as shown in Fig. 2G–I. Low
concentrations of ligand Ch2 do not affect any of the populations, while intermediate values do
allow the healthy cells to proliferate and prevent the unhealthy cell population to expand in
size. Again, high concentrations of the ligand start to affect the healthy population that cannot
grow above its 80% potential size. Dynamics for other chimeric ligands are plotted in S3 Fig.

Fig. 2J–M plots the amount of TER and AER for each cell of the healthy (blue) and unhealthy
(red) population before treatment (Fig. 2J) and after 60 hours of treatment with intermediate
concentrations ofMwt (Fig. 2K), Chwt (Fig. 2L) and Ch2 (Fig. 2M). Interestingly, despite the fact
that the apoptotic potential of the monomers and chimeras directly depends on the amount of
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Fig 2. Dynamics of the cell populations after individual drug treatment. (A–C) Numerical solution of the
model equations showing the time evolution of healthy (blue line) and unhealthy (red line) cells after
treatment with low, intermediate and high concentrations of theMwtmonomer. (D–F) Time evolution after
treatment with different concentrations of Chwt. (G–I) Time evolution after treatment with different
concentrations of Ch2, which at intermediate values is able to achieve the threshold of 80% survival of healthy
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AER expressed by each individual cell, the model predicts that a number of cells with high val-
ues of AER does not undergo apoptosis after 60 hours of treatment. This is due to the fact that
the physiological response of a given cell depends on the time that it has been under treatment
and, since cells are continuously being born during the simulation, at t = 60 hours some recently
born cells may not have been enough time under the influence of the drug to trigger apoptosis.

The above data evidences that selectivity in terms of the threshold of 80% can only be
achieved using low affinity mutants of the AE subunit of the chimera, which are only efficient
at very high concentrations of ligand (around 2 nM concentration for Ch2). This concentration
representes a 4X increase compared to the concentration for Chwt = 0.5nM, which is the mini-
mum concentration required to prevent the expansion of the unhealthy cell population at the
expense of affecting strongly the healthy cells. This increase is also reported experimentally in
[15], where the minimum concentration of Ch2 to prevent the unhealthy cell population to ex-
pand leaving the 80% of the healthy surrounding undamaged is 1.5nM, 3 times higher than the
value of 0.5nM of Chwt that prevents the growth of the unhealthy cell population. Unfortunate-
ly, this higher doses of drug required to achieve selectivity can result in the emergence of other
potential undesired effects, such as toxicity, or increased off-target interactions [33]. Therefore,
strategies to reduce the total drug concentration for a given selective effect are relevant. In the
next section, we show how combinations of selective chimeric ligands can reduce the concen-
tration of total drug administered maintaining the selective potential.

Synergistic interaction of selective chimeric drugs
Mutant monomers of the same molecule act against the same target, therefore they behave as
mutually exclusive and their interaction when combined is additive by definition. In this way,
the lowest concentration to obtain a given effect always corresponds to the monomer with
stronger binding affinity towards its receptor. Fig. 3A–C corresponds to simultaneous treat-
ment of a fixed concentration ofMwt = 0.5nM with the minimal concentration of the mutants
of IFNα-2a able to affect at least 20% of the unhealthy cells. According to their additive interac-
tion, none of the potential combinations tested allows us to reduce the total drug concentration
of IFNα-2a administered. In addition, none of the multiple combinations tested is able to miti-
gate the strong effect that the monomers exhibit towards the healthy cell population, as illus-
trated also in the next section.

Multi-drug treatment using selective drugs is shown by Fig. 3D–I, where we plot the dynam-
ics of the two cell populations at the minimal concentration of total drug required to achieve
the selectivity threshold for different combinations of the chimeras. Combinations of the poor-
ly selective Chwt with chimeras Ch2, Ch3 and Ch4 are able to mitigate the expansion of the un-
healthy cell population while meeting the 80% survival threshold of the healthy cells
(Fig. 3D–F). The threshold is also achieved when combining the rest of the chimeras with Ch1,
as shown in Fig. 3G–I.

Bars in each panel represent the minimal concentration of total drug to achieve the thresh-
old of selectivity for each combination of ligands, compared to the same ligands as single treat-
ment. We observe a slight reduction in the total concentration used for the combinatorial

cells, while the unhealthy cells are maintained. Solid line and error bars correspond to the average and
standard deviation of 10 independent runs of the model. (J–M) Distribution of the AER and TER receptors for
the two cell populations at (J) initial conditions, and after 60 hours of treatment with (K)Mwt = 0.52 nM, (E)
Chwt = 0.2 nM and (M) Ch2 = 2.5 nM (i.e, same concentrations of Fig. 2B,E,H, respectively) Each dot
corresponds to a cell in the population. Notice thatMwt treatment affects mainly the unhealthy cells (blue line,
B,C), whileCh2 treatment shows a greater effect on the unhealthy population (red line, H–I).

doi:10.1371/journal.pone.0117558.g002
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treatment compared to the individual treatment (values for the percentage of each reduction in
the total concentration at threshold are listed in Table 2). Overall, the gain in performance of
the dual treatment is more evident when combining a poorly selective ligand as Ch1 with a low
affinity but highly selective chimera, such as Ch3. In this situation, we can achieve the threshold
of optimal selectivity with a 50% reduction in the total drug concentration administered, com-
pared to the concentration of Ch3 as individual treatment.

The effect of combinatorial treatment can be estimated based on the
effect of single treatment strategies
Detailed analysis of the drug interaction for each combination of two given ligands, as per-
formed in the previous section, requires extensive computational resources. To overcome this,
we use an additional approach to calculate the effect of a combination of drugs based on their

Fig 3. Synergistic performance of selective ligands. (A–C) Numerical solution of the model equations
showing the time evolution of healthy (blue line) and unhealthy (red line) cells after treatment with different
combinations of monomers, at the minimal concentration required to affect 20% of the unhealthy cell
population. (D–F) Time evolution of different combinations of Chwt with other chimeric ligands at the minimal
concentration required to achieve the threshold for selectivity. (G–I) Time evolution of different combinations
of Ch1 with other chimeric ligands at the minimal concentration required to achieve the threshold for
selectivity. Bars in each figure correspond to the minimal concentration for the threshold for single treatment
and dual treatment with the chimeras used in each panel.

doi:10.1371/journal.pone.0117558.g003
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effect when applied individually, using the following equation [22]:

I ¼
Lc;1

L1

þ
Lc;2

L2

ð10Þ

where Lc,1 and Lc,2 correspond to the concentrations of the two drugs that produce a given
effect when applied together, and L1 and L2 are the concentrations that induce the same effect
when applied alone. The interaction index I depends on the type of interaction between the
two drugs: synergistic (I< 1) additive (I = 1) or antagonistic (I> 1). In our particular case,
since both ligands share common binding sites (i.e., they are mutants of the same molecule
with reduced affinity), they behave as mutually exclusive and therefore, they follow the princi-
ple of Loewe additivity so the interaction index I in Eq. 10 is set to 1 [22] (a detailed analysis of
the general equation for drug interaction in conditions of drug additivity, synergy or antago-
nism can be found as S1 Text).

Next, the Loewe additivity model is applied to drugs that induce a typical dose-response
curve [25], as described in Eq. 9. Thus, we solve Eq. 9 for L and substitute into Eq. 10 for both
ligands (L = L1 and L = L2), to obtain:

1 ¼
Lc;1

EC50;1

RðLc;1; Lc;2Þ % D1

A1 % RðLc;1; Lc;2Þ

 !ð1=B1Þ

þ
Lc;2

EC50;2

RðLc;1; Lc;2Þ % D2

A2 % RðLc;1; Lc;2Þ

 !ð1=B2Þ

ð11Þ

This equation can be solved numerically to obtain the physiological response R(Lc,1, Lc,2) for
each potential combination of Lc,1 and Lc,2. The typical shape of the curve is shown in S4A Fig.

Therefore, Eq. 11 allows us to calculate directly the effect of the two drugs when applied
simultaneously, significantly reducing the computational cost of the process. S5 Fig. plots the
dynamics of several combinations of monomers and chimeras using this method (to be com-
pared with Fig. 3, computed using the simultaneous drug stimulation of the system to show
that both methods produce equivalent results). This simplified method allows us to compute
the effect of any combination between two given drugs to develop isobolograms representing
the final number of cells, after 60 hours of combined treatment for each combination of mono-
mers (Fig. 4A–B) and chimeras (Fig. 4D–E).

Finally, to compare the selective effect of multiple combination of ligands, we define the
performance P(Lc,1, Lc,2) of a given treatment as:

PðLc;1; Lc;2Þ ¼ N)
f ðLc;1; Lc;2Þhealthy % N)

f ðLc;1; Lc;2Þunhealthy ð12Þ

where N)
f ðLc;1; Lc;2Þhealthy and N)

f ðLc;1; Lc;2Þunhealthy correspond to the final number Nf of healthy

and unhealthy cells respectively, after 60 hours of combined treatment (i.e., the final point of

Table 2. Reduction in concentration at threshold for optimal selectivity. Percentage of reduction of
total drug concentration of combinatorial treatment versus single drug treatment for different selective
drug combinations.

Single drug Drug combination Reduction percentage

Ch1 = - Chwt + Ch1 = - -%

Ch2 = 2.2 Chwt + Ch2 = 2.0 7%

Ch3 = 4.2 Chwt + Ch3 = 3.3 22%

Ch4 = 10.1 Chwt + Ch4 = 8.6 14%

Ch2 = 2.4 Ch1 + Ch2 = 1.6 33%

Ch3 = 4 Ch1 + Ch3 = 2.3 42.5%

Ch4 = 10.1 Ch1 + Ch4 = 5.3 47.5%

doi:10.1371/journal.pone.0117558.t002

Synergistic Interaction between Selective Drugs

PLOS ONE | DOI:10.1371/journal.pone.0117558 February 11, 2015 10 / 19



the curves in Fig. 3) normalized to obtain values for the performance P(Lc,1, Lc,2) between −1
(minimal selectivity of treatment, i.e., 0% survival of the healthy cells) and 1 (optimal selectivi-
ty, i.e.,(80% survival of healthy and no growth in the unhealthy cell population). A workflow
scheme of this approach is shown in S1B Fig.

Fig. 4A–B illustrates the isobolograms for any concentration of monomersMwt andM1 for
healthy (Fig. 4A) and unhealthy cells (Fig. 4B) for a range of concentration values. The perfor-
mance map (Fig. 4C) evidences that monomer combinations are not selective (i.e, P* 0 at any
concentration). Isobolograms for Chwt and Ch1 combinations are shown for healthy (Fig. 4D)
and unhealthy (Fig. 4E) cell populations. The performance map (Fig. 4F) illustrates that the
combination shows regions of positive performance (P> 0), i.e., regions where the combinato-
rial treatment acts selectively towards the unhealthy cell population.

Performance colormaps for other combinations of chimeric drugs are shown in Fig. 5,
where regions in which the threshold of selectivity is achieved are marked in dark red. Simulta-
neous treatment of Chwt with Ch2, Ch3 and Ch4 show that, for each combination, optimal selec-
tivity can be achieved at slightly lower concentrations when using the two drugs
simultaneously, compared to the same drugs acting alone (i.e., [Chwt] = 0 in each panel). This
is more evident when combining Ch1 with the other chimeras (Fig. 5D–F), where the optimal

Fig 4. Isobolograms and performance colormaps for monomer and chimera combinations. (A–B) Isobolograms of the effect of the combination of
monomersMwt andM1 for (A) healthy and (B) unhealthy cells (final number of cells after 60 hours of treatment). (C) Performance of the combinatorial
monomer treatment, where all values are below 0, evidencing that the combination affects more strongly the healthy population. (D–E) Isobolograms of the
effect of chimerasChwt + Ch1 for (D) healthy and (E) unhealthy cells. (F) Performance of the combinatorial chimeric treatment, where all values are above 0,
evidencing that the combination affects more strongly the unhealthy population.

doi:10.1371/journal.pone.0117558.g004
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selectivity threshold is achieved at significantly lower concentrations using two selective drugs
instead of one (numerical values for the minimal concentration for the threshold of selectivity
as well as the reduction in total final concentration due to the combinatorial treatment are
shown in Table 2).

Synergistic interaction for selective chimeric drugs in cell populations
with heritability
Previous simulations assumed that both healthy and unhealthy cells are, as a first approxima-
tion, phenotypically different, with the expression levels of TER and AER obtained from
gamma distributions. Therefore, the amount of receptors expressed by a daughter cell depends
on its cell type, but it is independent on the amount of receptors expressed by the mother cell.
In other potential scenarios, the difference in phenotype between healthy and unhealthy cells
can be caused by genetic mutations, and therefore, the amount of receptors expressed by the
mother cell is inherited by the daughter cells. In these situations, a given treatment can become
inefficient, and it can potentially act as selective pressure, acting more strongly over weak cells
and ultimately inducing resistance to treatment in the population. This scenario has been ex-
plored extensively in vivo and in silico, and is one of the main causes of the short-lived response

Fig 5. Performance colormaps for different chimera combinations. (A–C) Combination of Chwt with other chimeras. (D–F) Combination of Ch1 with other
chimeras. Areas where the threshold of selectivity is achieved are marked in dark red. Since there is no negative values for the performance P, color bars are
now presented between 0 and 1.

doi:10.1371/journal.pone.0117558.g005
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of targeted therapy in cancer [18]. Recently, it has been shown theoretically and experimentally
that dual treatment strategies can dramatically reduce the possibility of development of resis-
tant cells, resulting in long-term disease control compared to single drug treatment, or even
sequential drug treatment [18].

To test the performance of dual selective treatment in the context of genetic inheritance of
the amount of receptors, we set the average amount of TER and AER expressed by a given
daughter cell as directly given by the amount of receptors expressed by the mother (with a
coefficient of variation of 0.3). Simulations are performed as in the previous section, and perfor-
mance colormaps can be computed for all possible concentrations of different ligand combina-
tions (Fig. 6). Comparison of Fig. 6A–F with the corresponding Fig. 5A–F evidences that
selectivity is more difficult to achieve in conditions of heritability (i.e., regions of optimal selec-
tivity (marked in dark red) are reduced and occur at higher concentrations). Numerical values
for the minimal concentration for the threshold of selectivity, as well as the reduction in total
final concentration due to the combinatorial treatment in conditions of heritability, are shown
in Table 3. Fig. 6 G–H, plots the values of AER and TER of the cells in the population before
(Fig. 6G) and after (Fig. 6H) 60 hours of treatment for the minimal concentration of Ch2 that
meets the threshold in conditions of heritability. Comparison of both distributions with condi-
tions of no heritability (Fig. 2J,M) evidences that heritability increases the variability in the ex-
pression levels of AER and TER in the population, resulting in a decrease in the performance of
the drug combinations and a reduction in the region of optimal selectivity (Fig. 6A–F).

Conclusions and Discussion
Chimeric ligands with selective potential constitute one of the forefronts in modern pharma-
cology. The development of strategies to affect only malfunctioning cells inside a healthy tissue
based on a sequential mechanisms of targeting is still in its early stages. Rational approaches
based on modulating the strength of the interaction between ligand and target has shown that
selectivity can be improved in a rational predictive manner [15, 25, 34]. Unfortunately, this
results in a marked increase of the total concentration of drug that needs to be administered,
which potentially increases the risk of toxicity and other undesired effects. Therefore, the prob-
lem of achieving selectivity at reduced drug concentrations is a main concern when developing
selective drugs.

Our previous modeling approaches [25, 34] allow us to predict the optimal value of the af-
finity and dissociation rates of both AE and TE for improved selectivity at the lowest drug con-
centration. Unfortunately, the affinity and dissociation rates in a given ligand-receptor
interaction cannot be modulated gradually, since single mutations in the ligand change abrupt-
ly the binding and unbinding rates with the complementary receptor. In this sense, combina-
tion of two ligands can, in principle, result beneficial to improve the selective potential of the
treatment since, for instance, highly potent ligands could affect cells expressing high TER con-
centrations, while more selective chimeras (i.e., with reduced potency in the AE subunit) could
discriminate better between healthy and unhealthy levels of the target protein.

To our knowledge, our results constitute the first studies focused on the combination of se-
lective drugs, by generalizing our previous results of single treatments with selective drugs [25]
to study selective drug combinations in cell population models. Our studies show that the com-
bination of selective drugs is synergistic in terms of their selective potential, i.e., the combina-
tion of selective drugs can reduce the total drug administered to achieve a given selective effect,
compared to the same drugs acting alone. We also show that using a explicit model of two
selective drugs is equivalent to a simplified model where the two drugs are assumed to interact
additively. This alternative method allows us to develop performance maps where selectivity is
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Fig 6. Performance colormaps for different chimera combinations in conditions of heritability. (A–C) Combination of Chwt with other chimeras. (D–F)
Combination of Ch1 with other chimeras. Areas where the threshold of selectivity is achieved are marked in dark red. Since there is no negative values for the
performance P, color bars are now presented between 0 and 1. (G–H) Distribution of the AER and TER receptors for the two cell populations before (G) and
after (H) 60 hours of treatment with Ch2 = 3 nM.

doi:10.1371/journal.pone.0117558.g006
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computed for any given concentration of the combined drugs. We used a cell population based
model to study how these types of treatments respond in a context of cell-variability and their
robustness in condition where the amount of target proteins is inherited from mother to
daughter cells. Interestingly, despite assuming additive interaction of the different chimeras
when combined (i.e., they compete for the same molecular targets), when looking at the selec-
tive potential of the treatment, chimeras behave as synergistic.

Several main assumptions are taken into account while developing the model. First, we as-
sume that production and degradation of each receptor is balanced in conditions of no ligand
stimulation. We also simplified all potential downstream regulation in receptor expression
after activation, focusing only on the regulation that takes place due to direct ligand stimula-
tion. We also assume that the activity triggered by the ligand-receptor interaction is propor-
tional to the amount of maximum active complexes formed. Other potential values such as the
total value of active complexes at a given time also produce equivalent results, as discussed in
[25] at the single cell level. Regarding the simulations of the population dynamics, we assumed
that all cells proliferate at the same mean rate, independently of the amount of EGFR receptors.
It is well-known that EGFR stimulation is correlated with the activation of proliferative signals
[32], but experimental data monitoring differences in cell cycle length for Daudi versus Daudi-
EGFR cells used to inform our model are not available [15]. In addition, the effect of heritabili-
ty in the expression of receptors was assumed to simply depend on the amount of receptors ex-
pressed by the mother cells. Other potential scenarios to capture the effect of mutations in the
regulation of the expression of receptors will be more realistic, but they will result in more free
parameters and assumptions. In addition, we assume that the effect of heritability will be more
relevant in longer experiments, i.e., when more generations of cells are allowed to develop. Un-
fortunately, experimental data are only available at the time point of t = 60h, corresponding to
an average of 2.2 generations, insufficient to observe the selective pressure effect induced by the
drug treatment. To mimic cell-to-cell variability in the population, we assumed gamma distri-
butions for the amount of receptors expressed and the cell cycle length, based on several publi-
cations. Other types of distributions were also tested (gaussian, lognormal), with almost no
difference in the results compared to the gamma distribution [35–38]. To quantitatively com-
pare the different combinatorial treatments, a threshold is defined in terms of the potential se-
lectivity of the treatment towards the different cell types expressing different concentrations of
the target proteins (80% survival of the healthy cells while the number of unhealthy cells is
maintained). Other potential threshold values defined also evidence the reported synergism
when combining two selective ligands, but at different drug concentrations.

In conclusion, we have shown that combination of selective drugs can selectively affect a
given cell population at reduced concentrations compared to single drug treatment. These

Table 3. Reduction in concentration at threshold for optimal selectivity in conditions of heritability.
Percentage of reduction of total drug concentration of combinatorial treatment versus single drug treatment
for different selective drug combinations.

Single drug Drug combination Reduction percentage

Ch2 = 2.9 Chwt + Ch2 = - -%

Ch3 = 5.3 Chwt + Ch3 = 4.5 15%

Ch4 = - Chwt + Ch4 = - -%

Ch2 = 2.9 Ch1 + Ch2 = 2.35 19%

Ch3 = 6 Ch1 + Ch3 = 3.45 42.5%

Ch4 = - Ch1 + Ch4 = - -%

doi:10.1371/journal.pone.0117558.t003

Synergistic Interaction between Selective Drugs

PLOS ONE | DOI:10.1371/journal.pone.0117558 February 11, 2015 15 / 19



types of theoretical studies focused on the rational design of selective drugs and treatments can
complement experimental efforts, allowing researches to develop a more reliable and efficient
approach to quantitative pharmacology.

Supporting Information
S1 Text. Response surface plots for drug interaction in conditions of drug additivity, syner-
gy or antagonism.
(TEX)

S1 Fig. Workflow to obtain the effect of a drug combination on a cell population. (A) Direct
simulation of two simultaneous treatments (see section Models: Eqs. 1–4 are solved directly for
two simultaneous ligands (j = 1,2) at a constant concentration. The value of AER-AE com-
plexes formed is then translated into a physiological effect using calibration with experimental
dose response curves obtained from [15]. Two populations of cells are defined with values for
AER and TER from gamma distributions for healthy and unhealthy cells. Eqs. 1–4 are solved
numerically for each cell in the two populations, obtaining the dynamics of growth for healthy
and unhealthy cell populations for a given constant concentration of L1 and L2. (B) Calculation
of the effect of combinatorial treatment assuming additive interaction between ligands: the
maximum number of AER-AE complexes is calculated for each combination of AER and TER
receptors concentrations by solving Eqs. 1–4 for a single ligand treatment (j = 1). The output of
the model is translated to a calibration curve [25], obtaining the theoretical dose-response
curves for each ligand. Physiological response curves are fitted to a four-parameter sigmoidal
(Eq.9), and the physiological response for any concentration of two ligands is then calculated
using the Loewe approximation for additive ligand interaction (Eq. 11). This response is then
used to perform simulations for healthy and unhealthy cell populations, following the same
procedure as in (A). Finally, the number of healthy and unhealthy cells after 60 hours of treat-
ment is plotted in the corresponding isobologram for each ligand combination. The final per-
formance colormap for each value of the combination of ligands is obtained by subtracting the
normalized isobolograms for unhealthy minus healthy cells. Values above threshold of perfor-
mance are highlighted in dark red.
(TIFF)

S2 Fig. Dynamics of the cell populations after individual monomer treatment. Numerical
solution of the model equations showing the time evolution of healthy (blue line) and un-
healthy (red line) cells after treatment with low, intermediate and high concentrations of
(A–C)M1 monomer, (D–F)M2 monomer, and (G–I)M3 monomer.
(TIFF)

S3 Fig. Dynamics of the cell populations after individual chimeric treatment.Numerical so-
lution of the model equations showing the time evolution of healthy (blue line) and unhealthy
(red line) cells after treatment with low, intermediate and high concentrations of (A–C) Ch1
chimera, (D–F) Ch3 chimera, and (G–I) Ch4 chimera.
(TIFF)

S4 Fig. Response surfaces for L1 + L2 combinations. Response surface plots using Eq.13 (see
S1 Text) for two ligands showing (A) additivity, α = 0, (B) synergy, α = 5 and (C) antagonism,
α = −0.5. The black curve is the isobol curve (i.e., curve of equal effect) for 50% (EC50) of physi-
ological response and it has different curvature depending on the interaction type.
(TIFF)
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S5 Fig. Numerical solution of the model equations showing synergistic performance of se-
lective ligands using the Loewe approximation (to be compared with Fig. 3 in the main
text, obtained using chemical dynamics simulation of two ligands simultaneously). (A–C)
Time evolution of healthy (blue line) and unhealthy (red line) cells after treatment with differ-
ent combinations of monomers, at the minimal concentration required to affect 20% of the un-
healthy cell population. (D–F) Time evolution of different combinations of Chwt with other
chimeric ligands at the minimal concentration required to achieve the threshold for selectivity.
(G–I) Time evolution of different combinations of Ch1 with other chimeric ligands at the mini-
mal concentration required to achieve the threshold for selectivity.
(TIFF)
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Supporting Information

Text S1: Response surface plots for drug interaction in conditions of

drug additivity, synergy or antagonism.

To explain graphically drug synergy, additivity, or antagonism we chose a response surface model

developed by Greco et al. [1], based on the equation for Loewe additivity (Eq. 10) and the extension for

logistic dose-response curves (Eq. 11), adding a third term multiplied by the interaction parameter ↵:
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where ↵ is the interaction parameters, R(L

c,1, Lc,2) is the physiological response for each potential

combination of L

c,1 and L

c,2 and all remaining parameters have been explain in the main text (see Eq. 11).

The first two terms on the right-hand expression of this equation are equivalent to the right-hand terms

of Eq. 11. It follows that Eq. 13 defines the interaction index I for a combination of two drugs with

dose-response curves following Eq. 9.
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Therefore, when ↵ > 0, the interaction index I is less than 1, Loewe synergism is indicated; when

↵ < 0, interaction index is greater than one, Loewe antagonism is indicated; and when ↵ = 0, Loewe

additivity is indicated (defaults to Eq. 10). The larger positive ↵ is, the smaller the interaction index

and the stronger the synergy.

Plots of the physiological response, R(L

c,1, Lc,2), of di↵erent combinations of two drugs that show addi-

tivity, synergy or antagonism are shown in Fig. S4A-C, respectively.

References

1. Greco WR, Bravo G, Parsons JC. (1995) The search for synergy: a critical review from a response

surface perspective. Pharmacological Reviews. 1995 Jun;47(2):331-85



Figure S1. Workflow to obtain the e↵ect of a drug combination on a cell population. (A)

Direct simulation of two simultaneous treatments (see section Models: Eqs. 1-4 are solved directly for

two simultaneous ligands (j = 1, 2) at a constant concentration. The value of AER-AE complexes formed

is then translated into a physiological e↵ect using calibration with experimental dose response curves

obtained from [15]. Two populations of cells are defined with values for AER and TER from gamma

distributions for healthy and unhealthy cells. Eqs. 1-4 are solved numerically for each cell in the two

populations, obtaining the dynamics of growth for healthy and unhealthy cell populations for a given

constant concentration of L1 and L2. (B) Calculation of the e↵ect of combinatorial treatment assuming

additive interaction between ligands: the maximum number of AER-AE complexes is calculated for

each combination of AER and TER receptors concentrations by solving Eqs. 1-4 for a single ligand

treatment (j = 1) . The output of the model is translated to a calibration curve [25], obtaining the

theoretical dose-response curves for each ligand. Physiological response curves are fitted to a four-

parameter sigmoidal (Eq.9), and the physiological response for any concentration of two ligands is then

calculated using the Loewe approximation for additive ligand interaction (Eq. 11). This response is then

used to perform simulations for healthy and unhealthy cell populations, following the same procedure

as in (A). Finally, the number of healthy and unhealthy cells after 60 hours of treatment is plotted in

the corresponding isobologram for each ligand combination. The final performance colormap for each

value of the combination of ligands is obtained by subtracting the normalized isobolograms for unhealthy

minus healthy cells. Values above threshold of performance are highlighted in dark red.



Figure S2. Dynamics of the cell populations after individual monomer treatment. Numerical

solution of the model equations showing the time evolution of healthy (blue line) and unhealthy (red line)

cells after treatment with low, intermediate and high concentrations of (A-C) M1 monomer, (D-F) M2

monomer, and (G-I) M3 monomer.



Figure S3. Dynamics of the cell populations after individual chimeric treatment. Numerical

solution of the model equations showing the time evolution of healthy (blue line) and unhealthy (red line)

cells after treatment with low, intermediate and high concentrations of (A-C) Ch1 chimera, (D-F) Ch3

chimera, and (G-I) Ch4 chimera.



Figure S4. Response surfaces for L1 + L2 combinations. Response surface plots using Eq.13 (see

Text S1 ) for two ligands showing (A) additivity, ↵=0, (B) synergy, ↵=5 and (C) antagonism, ↵=-0.5 .

The black curve is the isobol curve (i.e., curve of equal e↵ect) for 50% (EC50) of physiological response

and it has di↵erent curvature depending on the interaction type.



Figure S5. Numerical solution of the model equations showing synergistic performance of

selective ligands using the Loewe approximation (to be compared with Fig. 3 in the main text,

obtained using chemical dynamics simulation of two ligands simultaneously). (A-C) Time evolution of

healthy (blue line) and unhealthy (red line) cells after treatment with di↵erent combinations of monomers,

at the minimal concentration required to a↵ect 20% of the unhealthy cell population. (D-F) Time

evolution of di↵erent combinations of Ch

wt

with other chimeric ligands at the minimal concentration

required to achieve the threshold for selectivity. (G-I) Time evolution of di↵erent combinations of Ch1

with other chimeric ligands at the minimal concentration required to achieve the threshold for selectivity.



3 Results

3.4 The influence of network topologies in periodic drug treatments

Background, Introduction and Author Contribution

The last contribution of this thesis belongs to the line of work of ’Nonlinear regulation in pathways

and its impact on disease treatment’ which includes different publications ([45, 79] and addresses

different questions at many biological levels, such as: How can signaling networks integrate and

process information from different signals? How can they operate robustly in the presence of noise

and undesirable fluctuations? What is the relation between structure and function of simple signal-

ing networks? Which are the underlying mechanisms inducing variability in the cellular response

to drug treatments?

Herein, the author presents the last contribution (in preparation) of this thesis, which uses tools

from Nonlinear Dynamics to explore how the architecture of a signaling network influences a given

drug treatment.In this direction, the author created a computational high-throughput screening plat-

form to explore all posible three-node network topologies and monitored their response to inhibi-

tion, using different initial conditions for the system (i.e., the phosphorylation levels of each of the

involved nodes). The author of this thesis performed the analysis of the resulting dose-response

curves and characterized their behavior in terms of the type of dependence on the initial value

of the treatment. Using this approach, the author found interesting novel ways of response, sug-

gesting that the topology of the signaling network can induce complex dose-response curves and

nonlinear effects.
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Abstract

An accurate prediction of the outcome of a given drug treatment requires quantitative values for
all parameters and concentrations involved, as well as a detailed characterization of the network
of interactions where the target molecule is embedded. Here, we present a high-throughput in sil-

ico screening of all potential networks of three interacting nodes to study the effect of the initial
conditions of the network in the efficiency of a given drug treatment. Our study shows that most
network topologies can induce multiple dose-response curves, where different initial conditions
can enhance, reduce or even suppress the effect of treatment. The type of dual response observed
depends on how the potential bistable regimes interplay with the inhibition of one of the nodes in-
side a nonlinear pathway architecture. We propose that this dependence of the strength of the drug
on the initial state of activation of the pathway may be affecting the outcome and the reproducibility
of drug studies and clinical trials.
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Introduction

Some of the main potential contributions of Systems Biology to the field of Pharmacology are to help design
better drugs [10, 26]), to find better targets [21] or to optimize treatment strategies [11]. To do that, a number
of studies focus on the architecture of the biomolecular interaction networks that regulate signal transduction
and how they introduce ultrasensitivity, desensitization, adaptation and even oscillatory dynamics [31, 15].
To identify the source of these effects, large scale signaling networks are often dissected into minimal sets
of recurring interaction patterns called network motifs [23], which can be understood using computational
and analytical tools. Many of these motifs are nonlinear, combining positive and negative feedback and
feed-forward loops that introduce a rich variety of dynamic responses to a given stimuli.

In the context of protein-protein interaction networks, these loops of regulation are mainly based on inter-
acting kinases and phosphatases. The strength of these interactions can be modulated by small molecules
that can cross the plasma membrane [5] and block the activity of a given kinase in a highly specific manner
[4]. Inhibition of a dysfunctional component of a given pathway via small-molecule inhibition has been suc-
cessfully used to treat several diseases, such as cancer or auto-immune disorders. Nowadays, 31 of these
inhibitors are approved by the FDA, while many more are currently undergoing clinical trials [36].

Characterization of inhibitors and its efficiency and specificity towards all human kinases constitutes a
highly active area of research [13, 24, 18]. Importantly, since these inhibitors target interactions that are
embedded in highly nonlinear biomolecular networks, the response to treatment is often influenced by the
architecture of the network. For instance, treatment with the mTOR-inhibitor rapamycin induces reactivation
of the Akt pathway due to negative feedback regulation via IRS1, upstream of Akt [34]. In addition, this
nonlinear interplay induces a new steady state in the pathway with high Akt phosphorylation on T308 but
not S473. [25].

In addition, the nonlinear interactions in the MEK/ERK pathway have been shown to induce different
modes of response to inhibition [33], and even bimodal MAP kinase (ERK) phosphorylation responses after
inhibition in T-lymphocytes [3]. The same interplay between positive and negative feedbacks induces ERK
activity pulses, with a frequency and amplitude that can be modulated by EGFR (epidermal growth factor
receptor) and MEK (Mitogen-activated protein kinase kinase) inhibition, respectively [1].

One of the basic characteristics that nonlinear interactions can induce in a system is multi-stability,
commonly associated with the presence of a positive or a double negative feedback loop in the network.
Bistability has been observed in vitro [32, 22], in vivo [12, 19], as well as in synthetic circuits [8, 6]. In
the context of biological networks and drug treatment, multi-stability also induces dependence on initial
conditions, i.e., the same concentration of a given drug may result in different responses, depending on the
initial state of the system.

In general, an accurate prediction of the efficiency of a given drug treatment requires quantitative values
for all kinetic constants involved, as well as the concentration of each protein. As argued above, the archi-
tecture of the network is also relevant, since the dynamics of deactivation and activation depends strongly
on the topology of the interactions [2, 21]. Here, we investigate whether the initial conditions of activation
or deactivation in the proteins in a system also influence drug treatment efficiency. To do that, we set a
computational high-throughput screening to explore all possible 3-node network topologies and monitor the
response to inhibition. Starting from two different initial conditions, we generate two dose-response curves
for each set of parameter values. The comparison of these two curves allows us to characterize each
network topology in terms of its impact in the outcome of drug inhibition. Using this approach, we found
novel types of response, suggesting that the topology of the network of interactions can induce complex
dose-response curves, increasing, decreasing or even disrupting the strength of inhibition. Our results re-
veal that the initial state of the system determines the efficiency of a given drug in most of the possible
networks topologies, suggesting that this may compromise the reproducibility of in vitro and in vivo studies
that involve inhibitory treatments.

Materials And Methods

To study all potential network topologies that induce multiple dose-response curves and their dependence
on initial conditions, we set up a high-throughput approach that explores all possible connections between
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an input, a target and an output node, including positive and negative feedback auto-regulation (see Figure
1). This computational screening is inspired by previous studies that focus on network topologies inducing
adaptation [20], bistability and ultra-sensitivity [27]. Our approach introduces the effect of a drug inhibitor in
one of the nodes of the network, and focuses mainly on the characterization of the effect of the network in
shaping the response to the inhibition.

The core network is composed of three main components: an input node that receives a constant
external stimulus, a target node that is inhibited by the drug, and the output node, which is used as a readout
of the system activity. Details of the dynamics of the interaction between the nodes and automatization of the
screening are described in the Supplementary Material. In brief, the set of interactions can be generalized
in the following equation:
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is the state vector that contains the concentration of the active version of the 9 interacting
species (X1 for input, X2 for the target and X3 for output), a background activator (X4,X5,X6), and a
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and K
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.
Values of the interaction matrix I

i,j

are set to represent all possible interactions between input, target
and output (see Supplementary Material). To ensure that each node receives at least one activating and
one deactivating interaction, the required background enzymes (X4...X9) are automatically set for each of
the 5103 possible network topologies.

The effect of inhibitor is incorporated as a Hill function, assuming fast dynamics of binding and unbinding
to its target (quasi-steady state approximation) (see Supplementary material). Considering this, X2 is sub-
stituted by the expression X2/(1 + (K

a

⇥ inh)) when i = 2 in Eq. 1 (i.e., whenever X2 acts as an activating
or deactivating enzyme). This way, the effect of the inhibitor can be directly incorporated into the equations
independently of the architecture of the network, strongly facilitating the screening process. This approach
excludes from our screening all topologies where X2 autoregulates itself (see Supplementary Material).

To characterize the dependence on initial conditions, we proceed as follows (see Fig. 1): For each
particular network topology, all components k

i,j

and K

i,j

of the catalytic and Michaelis-Menten constant
matrices are randomly set between a desired range of values (see Supplementary Material). Then, the
system is numerically solved for two different constant concentrations of inhibitor (low and high) until a
steady state is reached. The two resulting sets of concentrations for input, target and output for low and
high inhibitor are used as initial conditions IC

low

= [X

f

1 , X

f

2 , X

f

3 ]

low

and IC

high

= [X

f

1 , X

f

2 , X

f

3 ]

high

for
numerical simulations where different concentrations of inhibitor are applied. For each simulation, a new
steady state is reached, labeled as SS

low

= [X

f

1 , X

f

2 , X

f

3 ]

low

and SS

high

= [X

f

1 , X

f

2 , X

f

3 ]

high

where the
subindexes low and high refer to the initial condition used in the simulation. This is repeated for different
constant concentrations of inhibitor to ultimately draw dose-response curves of the output of the network
X

f

3 against the inhibitor concentration. Finally, the two generated dose-response curves DS

low

and DS

high

are analyzed, compared and classified.
This process is repeated for each network topology 10000 times for different sets of parameters to

sample the phase space and determine regions where the treatment depends on initial conditions. Based
on this, all network topologies are classified depending on the relationship between the two dose-response
curves. This way, if both curves DS

low

and DS

high

are identical, the response of the inhibitor does not
depend on the initial conditions, while if the two curves are different, this means that the effect of the
inhibitor is dependent on the initial state of activation of the system.
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Figure 1: Scheme of the workflow for the high-throughput analysis. (A) Scheme of network with all
possible interactions between input, target, and output. (B) For each possible interaction matrix, we sample
the parameter space by randomly generate 10000 sets of parameter values for the catalytic (k), Michaelis-
Menten (K) matrices, and for initial values of active input, target and output (X0

1 , X

0
2 , X

0
3 ). For each of these

parameter sets, we numerically solve the system for two different inhibitor concentrations (low and high).
The two steady states are used as initial conditions for numerical simulations with several concentrations
of inhibitor. The steady state value of the output node (X3) is plotted against the inhibitor concentration to
generate dose-response curves DS

low

and DS

high

. Finally, both dose-response curves are compared.

Results

The strength of inhibition depends on the initial conditions for most of the net-
works.

At first inspection, our screening reports differences between the two dose-response curves for around
80% of all network topologies. This suggests that, for a region in the parameter space, the efficiency of
the inhibition depends on the initial conditions for most of the possible three-node network topologies. The
percentage of networks where the two dose-response curves do not coincide increases with the connectivity
of the network, as shown in Fig. 2 (blue bars and left vertical axis), up to 97% for networks with 8 links
between input, target and output (251 of all possible 256 networks of 8 links in our study). The percentage of
simulations that show multiple dose-response curves also increases with the number of links in the network
(green bars and right vertical axis in Fig. 2) up to 5.5% for the more connected topologies. The existence
of these dual dose-response curves is based on the presence of direct or indirect positive autoregulation in
one or more nodes of the network. These nonlinear loops induce regions of bistability in the phase space,
inducing a dependence of the strength of inhibition on the initial conditions of the system.

When comparing the effect of the initial steady state on the two dose-response curves, we can identify
different scenarios of how the initial conditions affect the efficiency of the drug treatment. The most common
scenario corresponds to a shift in the dose-response curve, i.e., when the initial condition changes, the
efficiency of the inhibitor changes. This behavior is characterized by a shift in the EC50 of the dose-
response curve (i.e., the concentration of inhibitor that induces a half-maximal effect in the output). An
example of this type of response is illustrated in Fig. 3a-d. The typical dual response in this mode is shown
in Fig. 3b, where the two dose-responsecurves for the two initial conditions IC

low

and IC

high

are plotted in
blue (DS

low

) and red (DS

high

), respectively. For this network configuration and these conditions, the EC50

of the inhibitor changes around 1.5 orders of magnitude. This type of dependence on the initial conditions
is simply a result of a bistable regime, as shown in the phase plane in Fig. 3c. Inside the bistable regime,
the nullclines for the inhibitor concentration marked in Fig. 3b show two stable fixed points coexisting for
the same conditions (blue and red circles), with each initial condition (IC

low

and IC

high

) evolving towards a
different final steady state SS

low

and SS

high

. Fig. 3d shows the bifurcation diagram with two stable branches
that coexist for a particular range of values of inhibitor. Supp. Movie 1 is an animation of how the two initial
conditions transit to their corresponding steady states for increasing concentrations of the inhibitor.

Another common scenario corresponds to one of the dose-response curves showing a standard re-
sponse to treatment, while the other is not responding for the same range of concentrations of inhibitor.
An example of this dual two dose-response curves is shown in Fig. 3f for the network illustrated in Fig. 3e.
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Figure 2: The percentage of cases with multiple dose-response curves to inhibition increases with
the network connectivity. Blue bars correspond to the percentage of network topologies (left vertical axis)
and green bars correspond to the percentage of simulations (right vertical axis). Values in each bar illustrate
the number of positive cases over the total number of cases.

In this scenario, the inhibitor acts as an activator of X3 when we start from IC

low

, but if the system starts
from IC

high

, it remains insensitive to changes in the concentration of inhibitor. This occurs when one of the
two stable branches in the bifurcation diagram (Fig. 3h) is stable for all the range of inhibitor concentration
tested, so X3 cannot switch from the upper to the lower stable branch when the concentration of inhibitor is
reduced.

Alternatively, different initial conditions can also switch the effect of a given drug. For instance, the same
treatment can result in inhibition or activation of the output signal, simply depending on the initial conditions.
An example of this behavior is shown in Fig.3i-l. The two dose-response curves in Fig. 3j for the network in
Fig. 3i show one of the curves (DS

low

) increasing when we increase the concentration of inhibitor, while the
other (DS

high

) decreases in X3 when the inhibitor increases. The phase diagram (Fig. 3k) for intermediate
values of the inhibitor shows also two stable fixed points while the bifurcation diagram (Fig. 3l) shows
the shape of the two stable branches, with the upper one decreasing and the lower one increasing due
mainly to a transition from a bistable to a monostable regime with higher X3. This discontinuous jump
in the dose-response curve is less pronounced for networks with higher connectivity, but we selected this
example since its simplicity allows us to illustrate its nullclines in a two-dimensional phase plane, instead of
a three-dimensional plot.

Different initial conditions can induce increased or decreased treatment efficiency

Among all motifs that induce multiple dose-response curves, we can further characterize the topologies in
terms of the comparison between the two curves with respect to the two initial conditions. The most common
scenario corresponds to the situation illustrated in Fig. 3b, where the less sensitive curve (higher EC50)
corresponds to the initial condition of low inhibitor IC

low

, and the more sensitive curve occurs when the
system starts from high inhibitor IC

low

. This increased sensitivity at intermediate concentrations of inhibitor
occurs whether the treatment results in deactivation (as in Fig. 3b) or activation (as in Supp. Fig. 3b) of the
target. This situation occurs because, in the bistable regime, each initial condition IC

low

and IC

high

evolves
to its closest steady state in the parameters space. An animation of how the steady states change for the
two initial conditions when the concentration of inhibitor is increased is presented as Supp. Movie 1.

Several network topologies also exhibit a different scenario, characterized by an inversion in the sensi-
tivity of the treatment between the two dose-response curves. This scenario is presented in Fig. 4b), and
shows the red (DS

high

) and blue curves (DS

low

) swapped compared to Fig. 3b. In this particular scenario,
the IC

high

has a reduced final X3 compared to IC

low

(red and blue circles in Fig. 3c), but, for intermediate
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Figure 3: The effect of initial conditions can shape the dose-response curve in different ways. (a-d)
Shift in the EC50, (e-h) insensitization of one of the dose-response curves, (i-l) Switch in the effect of the
drug. Panels (a,e,i) represent the network topologies for each mode. Arrows represent positive interactions
(activation) and no-arrow represents negative interaction (de-activation). Panels (b,f,j) represent the dose-
response curves DS

low

(blue) and DS

high

(red) for initial conditions IC

low

and IC

high

, respectively. The
rest of parameter values are the same between the two curves. Blue and red circles SS

low

and SS

high

represent the steady state solutions for a given concentration of inhibitor. Panels (c,g,k) show the phase
plane with vector field and nullclines (nullclines for X3 in blue and nullclines for X2 (c,g) and X1 (k) in
orange), representing the two steady states SS

low

(blue) and SS

high

(red) respectively. Panels (d,h,l) show
the bifurcation diagram of X3. Black curves are the stable branches and the dash red curve is the unstable
branch.
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Figure 4: The network architecture can induce inverse bistability. (a-d) Shift in the EC50. (e-h) In-
sensitization of one of the dose-response curves. Panels (a,e) represent examples of network topologies
that show two different cases of inverse bistability. Panels (b,f) represent the dose-response curves DS

low

(blue) and DS

high

red for initial conditions IC

low

and IC

high

, respectively. The rest of parameter values are
the same for the two curves. Blue and red circles SS

low

and SS

high

represent the steady state solutions
for a given concentration of inhibitor. Panels (c,g) represent the three-dimensional phase plane, with the
trajectories of each simulation starting from each of the two initial conditions, and the separatrix between
the two basins of attraction. Panels (d,h) show the bifurcation diagram of X3. Black curves are the stable
branches and the red dash curve is the unstable branch.

values, higher X3 transits to a steady state with low X3, while the lower X3 evolves to a steady state with
high X3 (blue and red rhombus in Fig. 3c). This is clearly shown by the trajectories (black dotted lines)
corresponding to two simulations with the same exact parameter values, but starting from the two different
initial conditions (IC

low

and IC

high

).
In terms of the effect of drug treatment, starting from a fully inhibited situation (IC

high

) reduces the
efficiency of the drug, compared to the non-inhibited initial condition (IC

low

). In other words, the EC50 of
DS

high

is now higher than DS

low

, as shown in Fig. 3b. This contrasts with the scenario of Fig. 3b, where
the EC50 of the drug is lower for DS

high

compared to DS

low

. To understand this behavior, we plot the
three-dimensional separatrix between the two basins of attraction of the bistable regime in Fig. 4c. Since
the separatrix divides the phase space vertically, the initial states EC50 of DS

high

are forced to perform a
long transition in X3 concentration towards the steady state in its basin of attraction. This is translated into
a shift in the dose-response curves in the bistable regime, and therefore, an increase in the EC50 when the
system is initially inhibited.

Since now each initial condition IC

low

and IC

high

does not transit to its closest steady state, but instead it
evolves to the steady state that is further away in X3 concentration, we will refer to this scenario as inverse
bistability. Supp. Movie 2 is an animation of how the two initial conditions transit to their corresponding
steady state for increasing concentrations of the inhibitor. This inversion of the bistable solutions, can also
occur in conditions where the inhibitor is acting as an activator of the output node, as illustrated in Supp.
Fig. 4b.
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Analog to the situation of Fig. 3e-h where the dose-response curve (DS

high

) becomes insensitive to the
drug, other topologies present the opposite scenario, i.e., the DS

high

responds to the drug but the DS

low

is
insensitive. This scenario is illustrated in Fig. 4f for the network topology of Fig. 4e. Here, DS

low

responds
by reducing X3 activation in less than 10%, while if we start from the highly inhibited initial condition IC

high

,
the dose-response curve (DS

high

) shows a much stronger inhibition of the output. Fig. 4g plots the three-
dimensional phase space for a particular inhibitor concentration in the bistable regime. Again, the separatrix
divides the space in such a way that the initial IC

high

transits to the steady state SS

high

with higher X3.

The network architecture can induce inverse hysteresis loops

As discussed above, the appearance of inverse bistability is based mainly on the interplay in phase space
between the initial conditions and the basins of attraction of the two final steady states. Nonetheless, our
screening revealed another family of topologies that show an equivalent scenario (i.e., initial states transit
to the farthest final steady state), but based on a different underlying mechanism. An illustrative example
of this behavior is shown in Fig. 5. The first example corresponds to a network topology of four links that
shows inverse bistability as defined in the previous section, i.e, two dose-response curves where the DS

high

has a higher EC50 than DS

low

. Luckily, since X2 does not receive input from X1 and X3, the phase space
is plotted in two dimensions to show the nullclines and the vector field (Fig. 5c). For a concentration of
inhibitor inside the bistable domain, we observe the two stable states, and the separatrix dividing vertically
the phase plane. Interestingly, the bifurcation diagram in Fig. 5d shows a more complex configuration
than in Fig. 4d, with the two stable branches now extending from low to high X3. This configuration induces
another interesting property to these types of networks: Inverse bistability does not only occur when we start
with fixed initial conditions, but also if the concentration of the inhibitor is gradually increased or decreased
from each initial condition. In other words, if the concentration of inhibitor is adiabatically varied, the system
follows a hysteresis loop that is reversed compared to the normal hysteresis observed in magnetism, optical
and other physical systems. To illustrate that, we developed an animation where the concentration of
inhibitor is gradually increased and decreased, and the evolution of steady states form an inverse hysteresis
loop (Supp. Movie 4).

To understand the interactions that induce this inverse hysteresis response, we compared (Fig. 5e) 100
different sets of parameters in a box plot where this topology produces normal (orange) and inverse bistabil-
ity (blue). This plot allows us to see that most values show overlapping distributions for both types of bista-
bility, while two of them are clearly separated (K23 and k13 for this particular network). Next, dose-response
curves are generated by changing these two parameters between their average values that produce normal
or inverse bistability (the rest of parameters are fixed and correspond to the average of the mean for both
orange and blue distributions). This analysis reveals that K23 mainly affects the response of X3 in the range
of low inhibition, k13 mainly affects the steady state in the range of high inhibition, while the intermediate
bistable region remains almost unchanged. When we vary both simultaneously (Fig. 5f), we clearly observe
that these changes in low and high range of inhibitor interplay to change the nature of the drug from inhibitor
to activator of the node X3.

This sequence also illustrates how, changing a set of parameters to reverse the effect of the inhibitor,
while maintaining a bistable region at intermediate inhibitor concentrations, the systems go from normal to
inverse bistability. To do that in this particular topology, the strength of the interaction between X1 and X3 is
reduced, while the interaction between X2 and X3 goes from a linear to a unconstrained regime. A different
topology with a similar mode of response, and similar transition from normal to inverse bistability is shown
in Supp. Fig. 6.

Another example of a network topology able to produce inverse bistability and inverse hysteresis is
shown in Fig. 6, with a different configuration of the dose-response curves (Fig. 6b), nullclines (Fig. 6c) and
bifurcation diagram (Fig. 6d). The box plot in Fig. 6e again shows two distributions of parameters that do not
overlap for both normal (orange) and inverse (blue) bistability (K13 and K23). In this particular scenario, the
normal bistability is irreversible (as in Fig. 3f), i.e., X3 is insensitive to changes in the inhibitor for one of the
initial steady states. Again, the Michaelis-Menten activation of X3 by X1 changes from saturated to linear,
affecting mainly the dose-response curves at high inhibitor concentrations. On the other hand, the activation
of X3 by X2 becomes saturated, mainly affecting the regime at low inhibitor concentrations. Combination
of these two effects, while maintaining a bistable regime at intermediate inhibitor concentrations, is able to
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Figure 5: The network architecture can induce inverse hysteresis. (a) Example of a network archi-
tecture that induces inverse hysteresis. (b) Dose-response curves DS

low

(blue) and DS

high

red for initial
conditions IC

low

and IC

high

, respectively. The rest of parameter values are the same between the two
curves. Blue and red circles SS

low

and SS

high

represent the steady state solutions for a given concentra-
tion of inhibitor. (c) Phase plane with vector field and nullclines (nullclines for X1 in orange, nullcline for
X3 in blue), representing the two steady states SS

low

(blue) and SS

high

(red) respectively. (d) Bifurcation
diagram of X3. Black curves are the stable branches and the red dash curve is the unstable branch. (e)
Box plot for all parameter sets that show normal and inverse hysteresis. Blue, green and red background
represents the saturated, unconstrained and linear regimes of the Michaelis-Menten kinetics, respectively.
(f) Changes in the dose-response curves when two parameters are varied from normal to inverse hysteresis
conditions.
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transform an irreversible bistability to an inverse bistability. Fig. 6f shows the evolution of the dose-response
curves when K13 and K23 are simultaneously changed from their average value at normal and inverse
bistability (the rest of parameters are kept constant and correspond to the average of the means of the two
distributions).

An overall characterization of the topologies reveals the minimal motifs that exhibit
inverse bistability.

To characterize the basic ingredients underlying the inverse bistability illustrated in Fig. 5 and 6, we proceed
to analyze all potential topologies that exhibit this behavior and find relationships and similarities between
them. When grouped by number of links, we observe that the percentage of networks that exhibit inverse
bistability increases with the connectivity of the network (yellow columns in Fig. 7a). To determine the
minimal ingredients for inverse bistability, we represent in Fig. 7b an atlas that correlates topologies by their
architecture, identifying topologies that contain another topology of lower connectivity. This representation
allows us to isolate 19 minimal motifs of 4 links that are contained in almost all the higher connected
topologies that show inverse bistability. These 19 minimal motifs are represented in Fig. 7b as matrix
plots (the three first rows and columns of the interaction matrix) are represented as follows: white is "1"
(activation), black is "-1" (deactivation) and grey is "0" (no interaction). The 4-link topologies that can also
induce an inverse hysteresis loop are highlighted in red. In the row below, these 19 topologies are grouped
in sets that only differ by two interactions (a given topologies can belong to different sets).

For all the topologies of four links, we always observe a combination of positive and negative interactions
(i.e, no networks where all interactions are positive or negative). In addition, all topologies contain at least
a positive feedback that can be direct or indirect (i.e, the self-activation of a node involves another node
of the network). The negative interaction can take the form of an indirect feedback loop (as in Fig. 6a), an
incoherent feed-forward loop, or not being part of a loop at all (as in Fig. 5a). We have found topologies
where the interactions modulated by the inhibitor can either influence the positive, the negative feedback and
feedforwad loops, and even several of them simultaneously. We suggest that inverse bistability results from
the interplay between the positive feedbacks (that generates the bistability) and the negative interactions
that shape the basins of attraction. Additionally, the inhibitor has to directly or indirectly affect the positive
feedback and induce a change between the two stable states at a given concentration.

Discussion

In this paper, we present the first global analysis to study how the network topology influences a given drug
treatment. To do that, we focus on small network motifs of three interacting nodes where one of the nodes is
the target of a small molecule inhibitor. To characterize the effect of the network topology, we compare the
dose-response curves of the same drug treatment starting from two different initial conditions in the activity
of the network. Our analysis reveals that the initial conditions affect the efficiency of the treatment in most
network topologies of three nodes. This dependence is translated into modifications in the dose-response
curves and changes in the EC50 as well as in the overall effect of the inhibitor.

Our analysis shows that this can occur in the majority of topologies of three nodes. Moreover, we
found network configurations that show a novel behavior characterized by the inversion of the steady states
respect to the initial conditions. In some conditions, this “inverse bistability” of the target node can also
result in “inverse hysteresis loops”, where the reduction of the efficiency of the treatment also occurs when
the concentration of inhibitor is varied gradually. Finally, our study shows that most of the topologies that
show this inverse bistability and hysteresis contain core motifs of four links composed by a positive feedback
and a negative regulation.

The design of the workflow mimics the experimental methodology to determine dose-response curves,
where serial dilutions of the drug are administered to equivalent samples in equivalent initial conditions. This
workflow is different from the typical studies of bistability in physical and chemical systems [32, 22], where
an input parameter is gradually increased or decreased (i.e., the initial condition for each point in the curve is
the previous point in the analysis). The fact that all the points in a dose-response curve have the same initial
condition influences how the bistable nature of a given network affects the treatment. Nonetheless, some
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Figure 6: The network architecture can induce inverse hysteresis. (a) Example of a network archi-
tecture that induces inverse hysteresis. (b) Dose-response curves DS

low

(blue) and DS

high

red for initial
conditions IC

low

and IC

high

, respectively. The rest of parameter values are the same between the two
curves. Blue and red circles SS

low

and SS

high

represent the steady state solutions for a given concentra-
tion of inhibitor. (c) Phase plane with vector field and nullclines (nullclines for X1 in orange, nullcline for
X3 in blue), representing the two steady states SS

low

(blue) and SS

high

(red), respectively. (d) Bifurcation
diagram of X3. Black curves are the stable branches and the red dash curve is the unstable branch. (e)
Box plot for all parameter sets that show normal irreversible bistability and inverse bistability. Blue, green
and red background represents the saturated, unconstrained and linear regimes of the Michaelis-Menten
kinetics, respectively. (f) Changes in the dose-response curves when two parameters are changed from
normal irreversible bistability to inverse bistability conditions.
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Figure 7: Characterization of reverse bistability and reversed hysteresis. (a) The percentage of topolo-
gies that show inverse bistability increases with the network connectivity. Blue bars correspond to the
percentage of topologies with the same dose-response curve for both initial conditions; green and yellow
bars correspond to the percentage of topologies that show increase or decrease of the EC50, respectively.
(b) Atlas for all network topologies that induce inverse bistability. Circles represent each of the topologies
where our screening has shown inverse bistable response to drug treatment. Networks of different connec-
tivity are represented in different colors. Gray lines link topologies that contain another topology of lower
connectivity. Networks of lower connectivity are represented as matrixplots for the interactions, where white
represents activation, black is deactivation and grey means no interaction. These minimal networks are then
grouped in families where just one or two interactions change. Matrix plots highlighted in red correspond to
topologies that can also produce inverse hysteresis loops.
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topologies also show inverse bistability when the inhibitor is gradually increased or decreased, generating
inverse hysteresis loops.

When comparing dose-response curves in normal bistability, DS

high

has increased sensitivity (reduced
EC50) compared to DS

low

, while in conditions of inverse bistability, DS

high

has decreased sensitivity (in-
creased EC50) compared to DS

low

. This reduction in sensitivity is very different from the well-studied
homologous or heterologous desensitization after repeated or prolonged receptor stimulation [14, 29]. Re-
ceptor desensitization is achieved mainly by negative feedback loop that reduces the number or the ef-
ficiency of receptors on the cell surface after a initial stimulation [16, 17]. This is translated into a initial
strong transient activation of the targets downstream, while a second application of the stimulus does not
show the same transient activation. While receptor desensitization focuses on transients responses, inverse
bistability refers to the final steady state of the network.

Our study is limited to topologies of three main nodes that play different roles in the network, in an
attempt to identify the minimal motifs that induce these dual dose-response curves. In principle, our re-
sults also apply to more larger networks with increasing number of nodes that interact linearly, since linear
protein-protein interactions can be reduced to smaller networks with equivalent dynamics without reducing
the spectrum of reported behaviors [2, 21, 35]. In larger networks with more nonlinear interactions, we ex-
pect a similar or even higher dependence on initial conditions, since our analysis shows that the percentage
of the networks with multiple dose-response curve increases with the connectivity of the network.

The characterization of the effect of a drug starts with an accurate and reproducible in vitro or in vivo
dose-response curve to establish the optimal dose or the optimal schedule or treatment. The fact that, for
most topologies, different initial conditions give different dose-response curves may compromise the repro-
ducibility of drug treatment between biological samples or even patients. In conclusion, when designing
drugs and treatments that target proteins embedded in highly inter-connected networks such as signal reg-
ulatory pathways, the efficiency of a given compound cannot be predicted if the initial state of activation of
the network is not known.
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Supplementary Material

High-throughput in silico screening of three-node networks. All programs and scripts have been devel-
oped in-house using Matlab© (The Mathworks©, Natick, MA). Code available as Supplementary Material.

This computational high-throughput screening strategy is inspired on previous studies focused on net-
work topologies that induce adaptation [20], bistability and ultrasensitivity [27]. The network is composed
of three interacting nodes: an input node, which receives a constant stimulus, a target node that is affected
by the presence of the inhibitor, and the output node, which serves as a readout of the network activity.
We use a Michaelis-Menten type of interaction kinetics [7] between these three nodes that can result in
activation or de-activation of each other. We also allow direct positive and negative feedback in input and
output nodes, and indirect feedback and feed-forward loops between all nodes. For simplicity, X1 is defined
as the concentration of the active form for the input node, X2 for the target and X3 for the output. We use
normalized values for the total concentration thus, 1 � X1 is the concentration of the inactive form of the
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input node, 1�X2 for the target and 1�X3 for the output. The conversion between both states is reversible.
The set of interactions is therefore simplified as one single equation:

@X

j

@t

=

9X

i=1

(�(Ii,j)(1)
(1 � X

j

) · X

i

· k

i,j

K

i,j

+ 1 � X

j

� �(Iij)(�1)
X

i

· X

j

· k

i,j

K

ij

+ X

j

) (2)

As explained in the main text, X

j

is the state vector (X1 is the concentration of active input, X2 is the
target and X3 is the output, X4, X5, X6 are the background activators, and X7, X8, X9 are the background
de-activators for input, target and output, respectively).

These background enzymes (X4,...,X9) are incorporated to provide a constant stimulus to balance the
activating or deactivating effect of the other nodes of the network when they do not receive an activating
or deactivation interaction. This way, when a given node X

i

does not receive a deactivating interaction
from either itself or the other nodes, a background enzyme X

j

is automatically added to compensate this,
otherwise the node will be always in its active form (X

i

= 1). The same occurs when a node does not
receive an activating interaction (a deactivating background reaction is automatically set). For simplicity, the
concentration of all background enzyme is fixed at 0.5 (a.u.).

Parameters k

i,j

and K

i,j

are the components of the k and K matrices, corresponding to the kinetic
rate and Michaelis-Menten constants for the interaction of X

i

on X

j

. For each given topology, we generate
10000 different k and K matrices where each component of the matrix is obtained from a uniform distribution
in logarithmic scale between values 0.1 and 10 for k

i.j

, and between 10

�3 and 10

2 for the Michaelis-Menten
constant (K

i,j

). Taking into account that the concentration of all substrates is normalized to 1, the range
for the Michaelis-Menten constant allows us to sample the regime of saturated K

ij

<< 1, unconstrained
0.1 < K

ij

< 1 and linear K

ij

>> 1 regimes for the Michaelis-Menten dynamics. The kinetics for three
values illustrating these regimes are plotted in Supp. Figure 1a. These regimes are illustrated in the box
plots in Figures 5, 6 and Supp. Figure 7 as blue, green and red background colors, respectively.

The interaction matrix I

ij

defines the links between the nodes, and takes the following explicit form:

I =

0

BBBBBBBBBBBB@

I1,1 I1,2 I1,3 0 0 0 0 0 0

I2,1 0 I2,3 0 0 0 0 0 0

I3,1 I3,2 I3,3 0 0 0 0 0 0

I4,1 0 0 0 0 0 0 0 0

0 I5,2 0 0 0 0 0 0 0

0 0 I6,3 0 0 0 0 0 0

I7,1 0 0 0 0 0 0 0 0

0 I8,2 0 0 0 0 0 0 0

0 0 I9,3 0 0 0 0 0 0

1

CCCCCCCCCCCCA

This matrix is used to generate all networks between input, target and output relevant to our study. This
way, a given component I

ij

of the matrix is zero if X

i

does not affect X

j

, 1 if the X

i

activates X

j

and �1 if
X

i

deactivates X

j

.
�(Iij)(1) and �(Iij)(�1) are Kronecker delta functions that are 1 when the value I

ij

is 1 or �1, respectively.
This way, the left part of the subtraction is nonzero when the component X

i

activates X

j

, while the right
part is nonzero when X

i

deactivates X

j

.
Finally, a constant stimulus in the input node is set as a constant ligand stimulation upstream of the

pathway. The dynamics of this stimulus is set as:

X1(t) = X1(0) � (1/e

k·t
) (3)

The value at t ! 1 is set at X

0
1 = 0.5, i.e, the stimulus is set to maintain a constant activation of the input

node at intermediate levels. Therefore, the following term is added in its differential form to the node X1 in
all simulations:

dX1/dt = (0.5 � X1) · k (4)

For our simulations, the value of k is fixed at 0.1 [s�1].
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Supplementary Figure 1. (a) Profile of the dynamics of the amount of target in active form depending on
the concentration of inhibitor. k+ = 10

7 [s�1
M

�1], k� = 1 [s�1], (a) Profile of the rate of Michaelis-Menten
kinetics for conditions of linear (K

ij

>> 1 [M]), unconstrained (0.1 > K

ij

> 1 [M]) and saturated (K
ij

<< 0.1

[M]) regimes.

Modeling Small Molecule Inhibition. Fundamentally, a chemical inhibitor acts by reversibly binding to
its target to reduce or block its enzymatic activity [33], following the scheme:

[X2] + [inh]

k+

�
k�

[X2 � inh] (5)

that takes into account the reversible binding of inhibitor inh and its target X2, to form a complex X2�inh.
Ideally, inhibitors should have high rates of binding (k+) and slow rates of unbinding (k�) to maximize
residence time with the target enzyme [28]. If these values are around 10

6
s

�1
M

�1 for k+ and 10

�2
s

�1 for
k�, as reported form some small molecules inhibitors in the literature [30], equilibrium is reached within a
few seconds. This equilibrium concentrations is:

[X2 � inh]

eq

=

k+

k�
[X2]eq · [inh]

eq

= K

A

· [X2]eq · [inh]

eq

(6)

where K

A

= k+/k� is the association constant of the interaction. Typically, the amount of molecules
present for the inhibitor is several orders of magnitude higher than the target (inhibitor is in the range
of 10

�9... 10

�6 M), so [X2 � inh]

eq

<< [inh]

eq

[10]. In these conditions, we can safely assume that the
concentration of inhibitor remains constant, so [inh]

eq

⇡ [inh]

T

(total concentration of inhibitor). Also, taking
into account that [X2(0)] = [X2 � inh]

eq

+[X2]eq, (X2(0) is the initial concentration of the active target node)
we can rewrite Eq. 6 as:

[X2(0)] � [X2]eq = K

A

· [X2]eq · [inh]

T

(7)

that rearranging terms becomes,

[X2]eq =

[X2(0)]

1 + K

A

· [inh]

T

(8)

Which expresses the equilibrium concentration of the target X2 in terms of the initial amount of target
X2(0) and the concentration of inhibitor. The typical shape of this curve is shown in Supp. Fig. 1b.

We assume the general case of reversible non-competitive inhibition, i.e, the inhibitor is a small com-
pound that binds to the active site of the target reducing its activity, without affecting the binding to its
substrate. This way, the inhibitor does not affect the K

M

of the interaction between enzyme and substrate.
Under these conditions, in the presence of inhibitor, X2 in Eq.1 can be substituted by its effective concen-
tration, calculated via Eq. 8. This approximation allows us to automatically perform the screening of all
possible topologies using the same set of equations independently of the interactions where X2 is involved.
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Supplementary Figure 2: Comparison of mass-action dynamics and quasi-steady state approxima-
tion for inhibitor concentration. (a-b) Scheme of interaction for the (a) mass action simulation and (b)
quasi-steady state approximation. (c-d) Simulations for (c) slow and (d) fast dynamics of inhibitor binding.
Solid curves correspond to mass action simulations, dotted curves correspond to the steady state assump-
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�3
s

�1.

To test the validity of this equilibrium approximation, we performed numerical simulations where we
compared the dynamics of the activation of the output X3 using mass action (Supp. Figure 2a) and the
equilibrium approximation (Supp. Figure 2b). The output is plotted in Supp. Figure 2c-d, for different
kinetics of binding k+ and unbinding k� but maintaining the same value of K

A

= k+/k�.
When values of k+ around 10

5
s

�1
M

�1 are used, the amount of active target X3 using mass action (yel-
low line) and equilibrium approach (black dotted line) do not match even after 60 seconds of the simulation.
On the other hand, when we use values of k+ closer to 10

6, comparable to several small molecule inhibitors
found in the literature [30], the equilibrium approximation is equivalent to the mass action dynamics after 15
seconds.

Unfortunately, the equilibrium approximation cannot be used in conditions where the target node is acti-
vating or deactivating itself. Therefore, in these networks, the effect of the inhibitor cannot be simplified as
an effective concentration of active X2 at equilibrium, and full mass action has to be simulated explicitly as
a sequestering interaction. To study these types of topologies, a different set of equations has to be written
for each particular network topology, and the simulation and analysis can not be automated using the same
script for all topologies. Therefore, we exclude from our analysis the possibility of positive or negative au-
toregulation in X2 (i.e, I2,2 = 0).
Calculation of all possible network topologies. The first three rows and columns of the interaction matrix
I

ij

between the three nodes of the network is:

I

i,j

=

0

@
I1,1 I1,2 I1,3

I2,1 I2,2 I2,3

I3,1 I3,2 I3,3

1

A

Where each value of I

i,j

= [�1, 0, 1], i.e if the component X

i

activates or deactivates X

j

, the value is
I

i,j

= 1, or I

i,j

= �1 respectively. I

i,j

= 0 if X

i

does not act on X

j

. To calculate all possible topologies,
we consider all 3 potential types of interaction between the three nodes. This gives us a total number of
possible networks of N = 3

3⇥3
= 19683.

Based on the previous section, all network topologies that contain positive or negative autoregulation of
the target node are not considered in our analysis. These topologies correspond to the interaction matrices
with the following form:
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I

i,j

=

0

@
I1,1 I1,2 I1,3

I2,1 1 I2,3

I3,1 I3,2 I3,3

1

A or I

i,j

=

0

@
I1,1 I1,2 I1,3

I2,1 �1 I2,3

I3,1 I3,2 I3,3

1

A

Therefore, we only take into account the networks where the interaction I2,2 = 0, resulting in N = 3

(3⇥3)�1
=

6561 networks.
Next, since we are interested in the effect of inhibition, we do not consider the topologies where the

target node X2 does not act on the other two nodes, i.e., all network topologies take the form:

I

i,j

=

0

@
I1,1 I1,2 I1,3

0 0 0

I3,1 I3,2 I3,3

1

A

That constitute a total of N = 3

(3⇥3)�3
= 729 network topologies. Finally, we eliminate from our analysis

all topologies where the output does not receive an interaction from the other two nodes, i.e., all interaction
matrices that take the form:

I

i,j

=

0

@
I1,1 I1,2 0

I2,1 0 0

I3,1 I3,2 I3,3

1

A

Which constitute another N = 3

(3⇥3)�3
= 729 network topologies. Considering this, the total number of

possible network topologies evaluated in our screening is N=5103.
Organization of all network topologies that show inverse bistability and inverse hysteresis.

We organized the 712 topologies that showed inverse bistability in a undirected graph or complexity
atlas, similarly to the work of Coterell and Sharpe [9]. Herein, the topologies are represented by nodes while
the bidirectional edges represent the similarity between topologies: Linked topologies (neighbors) present
the same connectivity pattern except for one interaction i.e., we could go from one to another neighbor by
adding or removing one interaction. The resulting connectivity matrix was reorganized by number of links
and plotted using the biograph function included in the Bioinformatics Toolbox of Matlab (The Mathworks,
Natick, MA). The 19 minimal motifs are represented as matrix plots, taking into account the three first
rows and columns of the interaction matrix for each of the topologies. This way, a positive interaction
from component i to component j of the network (i.e.,"1" in the parameter I

ij

in the interaction matrix) is
represented as a white square; a black square corresponds to a negative interaction from component i to
component j ("-1" in the parameter I

ij

of the interaction matrix) while a grey square means that there is no
interaction ("0" in the I

ij

in the interaction matrix).
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Supplementary Figure 3: The percentage of simulations with inverse bistability increases with the
connectivity of the network.
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Supplementary Figure 4: Dependence on the initial conditions with the inhibitor acting as activator
of the output node. Panel (a) represents the network topology used in this simulation. Arrow-headed
lines represent positive interactions (activation) and bar-headed lines correspond to negative interactions
(de-activation). Panel (b) represents the dose-response curves DS

low

(blue) and DS

high

red for initial
conditions IC

low

and IC

high

, respectively. The rest of the parameter values are the same between the two
curves. Blue and red circles SS

low

and SS

high

show the steady state solutions for a given concentration of
inhibitor. Panel (c) represents the phase plane with vector field and nullclines, representing the two steady
states SS

low

(blue) and SS

high

(red) respectively. Panel (d) shows the bifurcation diagram of X3. Black
curves are the stable branches and the dash red curve is the unstable branch.
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Supplementary Figure 5: Inverse bistability in conditions where the drug acts as an activator of the
output node. Panel (a) represents an examples of network topology that show inverse bistability. Panel (b)
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low
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represent the steady state solutions for a given concentration of inhibitor. Panel (c)
represents the three-dimensional phase plane, with the trajectories of each simulation starting from the two
initial conditions, and the separatrix between the two basins of attraction. Panel (d) shows the bifurcation
diagram of X3. Black curves are the stable branches and the red dash curve is the unstable branch.
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Supplementary Figure 6: The network architecture can induce inverse irreversible hysteresis. (a)
Example of a network architecture that induces inverse hysteresis with one of the dose-response curves
insensitive to treatment. (b) Dose-response curves DS
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red for initial conditions IC
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, respectively. The rest of parameter values are the same between the two curves. Blue and red
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represent the steady state solutions for a given concentration of inhibitor. Panel
(c) represents the three-dimensional phase plane and the separatrix between the two basins of attraction.
(d) Bifurcation diagram of X3. Black curves are the stable branches and the dash red curve is the unstable
branch.
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4 Discussion

This thesis combines computational tools with experimental data to unveil the mechanism of action

of different therapeutic ligands and which factors may have an impact on their physiological effect.

The first contribution of this thesis (see ’Results’, section 3.1) uses a computational approach

to understand the mechanisms of action of asymmetric ligands such as the growth hormone (GH)

and the erythropoietin (EPO).

To this end, the publication explores different versions of a mathematical model that gradually

includes more and more relevant characteristics of GH and EPO systems (see ’Introduction’ sec-

tion 1.2). The initial model incorporates only a few aspects of the active complex assembly, using a

1:1 ligand-receptor interaction scheme, while the last version of the model considers a 1:2 ligand-

receptor interaction scheme which is asymmetric and sequential. This final model reveals that key

aspects of GH and EPO signaling are induced by this particular ligand-receptor configuration. A

more detailed mathematical approach that includes the effect of intracellular processes, such as

receptors recycling, degradation and down-regulation by endocytosis, can be found in [80]. Fur-

thermore, the model unveils the distinct roles that each of the binding sites on the ligand is playing

in the process of the active complex formation. The assembly of the active complex occurs in a se-

quential manner and the strong binding is necessary to increase the local concentration of ligand

on the cell surface to facilitate the interaction with the receptor through the weak binding site. The

weak binding site is the one tightly controlling the signal strength and the amount of active signaling

complexes. This regulatory role is also evident when homodimers of the ligand — with two strong

affinity binding sites — interact with the receptors, the homodimers exhibit a strong increase in

activity, when compared to the endogenous ligand stimulation. Here, the model supports the ex-

perimental data, predicting a strong increase in activity when compared to the ligand-monomeric

case. Moreover, the strong binding site determines the self-antagonistic effect at high ligand con-

centrations and the optimal ligand concentration which induces maximum activity of the complex.
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4 Discussion

This theoretical approach does not consider the conformational change after the first binding

event, which would affect the dissociation constant of the second binding event, as suggested

by several authors. According to crystallographic measurements, the nuclear magnetic resonance

structures of free EPO and EPO inside the active complex show very high similarities [81], so the

model assumes identical dissociation constant before and after binding. Regarding the structure

of unstimulated EPO and GH receptors, the classical hypothesis of free monomeric receptors

diffusing on the cell membrane (receptor monomer hypothesis) implies that the active complex

assembly is modulated by the diffusion rate of the receptors. The alternative hypothesis claims

that receptors exist in dimeric form prior to ligand binding (receptor dimer hypothesis)[75, 82, 83];

in this case, the active complex formation would not be modulated by receptors diffusion.

The model predicts that the receptor dimer hypothesis doubles the number of active complexes

predicted by the receptor monomer hypothesis, which is consistent with the fact that receptors

diffusion is slowing down the formation of the complex by modulating the binding rate of complex

formation. Unfortunately, the addition of diffusion to the model does not change the system dynam-

ics, which prevents from discriminating between the two approaches by direct comparison with

experimental data. More measurements of the absolute values of active complex concentration

would be helpful to distinguish between both hypotheses.

Nevertheless, the model predicts that self-antagonism and ligand homodimer effect are incom-

patible with the dimer receptor hypothesis, unless the receptor dimer is capable of housing accom-

modating two ligands, resulting in a 2:2 ligand-receptor configuration. Different studies propose that

the GHR extracellular domain is flexible enough to productively accommodate GH dimers [84, 85].

On the other hand, the self-antagonistic effect at high ligand concentrations requires that two un-

bound ligands fail in inducing the conformational change required for complex activation. A third

hypothesis considers that two receptors can have a weak interaction between the inter-membrane

domains of two free unstimulated receptors [86].

In summary, the mathematical models of the first publication of this thesis show that the inter-

action scheme of GH-GHR and EPO-EPOR strongly determines their dynamics and regulation,

and that 1:2 ligand-receptor configuration combined with the sequential ligand binding and the

asymmetric nature of the ligand dictate fundamental aspects of the system. These mathematical

approaches can be used to predict the effect of mutations varying the binding sites affinities on the

signaling of the ligands. A better understanding of active complex assembly for GH and EPO sys-

tems will permit to develop more efficient drugs to overcome many GH- and EPO-related diseases.
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The asymmetric and sequential ligand-receptor binding constitutes the basis for the design of

some targeted delivery drugs like the chimeric ligands. The second publication (’Results’, section

3.2) introduces a theoretical model to simulate the dynamics and binding kinetics of chimeric lig-

ands as an alternative to conventional empirical design.

Many chimeric constructs have been developed synthetically to target specific cell types (see

[57, 87–90]) and most of them belong to the so-called cancer targeted therapy (see ’Introduc-

tion’, section 1.4), allowing high activity at very low drug concentration and therefore reducing side

effects. This model provides an in silico tool to design and test the efficiency of new synthetic

compounds with chimeric nature, and also to optimize those available ones by testing variants with

improved selective potential.

The presented model is able to quantitatively reproduce the experimental results of the differ-

ent chimeric constructs used in [77] in terms of pathway activation and cytotoxic potential. Those

synthetic compounds are monomeric and chimeric variations of a specific chimera formed by an

activity element, the interferon IFN↵2a, a linker, and a targeting element, the epidermal growth

factor (EGF). The model was informed with experimental parameter values from the literature.

In this publication the model is confined to interactions at the cell membrane level. The calibra-

tion of downstream events was performed using the experimental dose-response curve for the wild

type IFN↵2a monomer. A more detailed model including all involved downstream molecular inter-

actions (signaling networks) that ultimately trigger cytotoxic response will reduce the generality and

simplicity of the model, so this approach is far from the scope of this contribution.

The modeling framework does not consider the dimeric nature of both EGF and IFN↵2a active

complexes [91, 92] assuming a 1:1 ligand-receptor configuration. Given the accuracy of the 1:1

model reproducing the experimental results, it is hypothesized that receptor homo-dimerization is

not playing a significant role in the dynamics of the system.

The internalization of the active complex is calculated as the sum of the internalization constants

of both intermediate complexes, assuming that they are independent. However, the proximity of

both complexes in the active complex configuration may induce dependence on the internalization

of proximal active receptors linked to the same chimeric molecule.

The diffusion of free receptors and complexes is assumed to be uniform, although the plasma

membrane is highly heterogeneous, including lipid rafts, protein domains or shape fluctuations [93],

which may influence the diffusion of components on the membrane.

In addition, the model does not consider paracrine interaction of chimeric ligands, which has
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4 Discussion

been observed experimentally, cross-linking receptors of nearby cells [87].

The model also assumes a dynamic equilibrium in the concentration of unstimulated free recep-

tors and do not include synthesis and degradation of free receptors. It also simplifies all possible

downstream regulation in receptor expression after activation. In addition, it is considered that the

activity triggered by the ligand-receptor interaction is proportional to the amount of maximum active

complexes formed, although another potential values such as the total value of active complexes

at a given time also produce equivalent results. Finally, the pro-survival signals of the targeting

element EGF [94, 95] may antagonize the anti-proliferative and pro-death effects of the cytotoxic

subunit. This EGF interaction is also considered in the scientific paper where the chimeric ligand

was constructed and analyzed, but experimental data monitoring differences in cell cycle length for

Daudi versus Daudi-EGFR are not available [96].

Altogether, this model makes a series of necessary assumptions regarding the nature of the

ligands, complexes and receptors, including simplifications in their conformation, internalization,

diffusion or signaling mechanisms. Despite all the simplifications, the model is able to reproduce

the experimental data quantitatively [77] for all compounds and all tested cell types. Although this

scientific paper works only with the specific IFN↵2a-EGF chimeric ligand, the generality of the

model facilitates a straightforward customization to simulate other chimeric constructs, using differ-

ent combinations of activity and targeting elements to design selective compounds, with improved

therapeutic efficacy against specific cells.

The model implemented in this publication constitutes a reliable and systematic method to design

chimeric ligands allowing us to determine optimal configurations prior to synthesis and in vivo tests

at the single cell level.

The contribution in ’Results’, section 3.3 generalizes the chimeric ligand-receptor model for sin-

gle cells (previously discussed) to explore new strategies to facilitate the design of therapeutic

treatments with higher selectivity but reduced drug concentrations, from a prior-to-bench theoreti-

cal perspective.

The previous publication predicted the optimal values for the kinetic parameters of both activity

and targeting elements to achieve chimeric ligands with higher selectivity, but the affinity and dis-

sociation rates in a given ligand-receptor interaction cannot be modulated gradually since single

mutations in the ligand change those parameters abruptly.

This newer publication proposes the combination of two distinct chimeric ligands as a means

to improve the selective potential of a treatment; highly efficient chimeras could affect those cells
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with elevated number of target receptors (EGF receptors) while less potent but more selective

ligands could discriminate between healthy and unhealthy cells. Furthermore, the model considers

the effect of cell-to-cell phenotypic variability, applying the original ligand-receptor equations (see

’Results’ chapter, section 3.2) to populations of cells with heterogeneous receptor expression.

The model uses two approaches to simulate the combination of chimeras, with equivalent re-

sults: an explicit model of two drugs and a simplified model where the two drugs are assumed

to interact additively, based on the Loewe additivity model [97]. Using the second approach, it

was developed a ’performance map’ where selectivity was computed for any given concentration

of the combined drugs. Interestingly, the model revealed that chimeric drugs show synergism in

their selective potential (the combination of two selective drugs is more efficient than each agent

separately), despite the assumption of additivity interaction between chimeric ligands.

The basic ligand-receptor assumptions made by this mathematical framework are equivalent

to those presented in the original ligand-receptor model, i.e., those regarding the nature of the

ligands, complexes and receptors. Additionally, it is assumed that all cells proliferate at the same

rate, independently of the amount of EGFR receptors. As we have already mentioned, EGFR

stimulation is correlated with the activation of proliferative signals, but the differences in cell cycle

between Daudi and Daudi- EGFR cells used to inform the model have not been experimentally

measured and consequently, they can not be included in the model.

Some simulations include phenotypic heritability in the number of receptors for each cell of the

population. In this case, the expression of the receptors depends on the amount of cell surface

receptors expressed by the progenitors. Although there are other more realistic scenarios to cap-

ture the effect of mutations in the regulation of the expression of receptors, those scenarios were

discarded as they would result in more free parameters and assumptions.

In addition, it was presumed that the effect of heritability would be more significant in simulations

at higher times, i.e., when more generations of cells are allowed to develop. Unfortunately, exper-

imental data were only available at the time point of t = 60h, corresponding to an average of 2.2

generations, insufficient to observe the selective pressure effect induced by the drug treatment.

To mimic cell-to-cell variability in number of receptors and cell cycle length the model uses the

gamma distribution. Other distributions were also tested (gaussian, lognormal) with no significant

difference in the results [98–101]. In order to compare the different combinatorial treatments, a

threshold was established in terms of the potential selectivity of the treatment towards the different

cell types (expressing different concentrations of the target proteins): A treatment was considered
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as selective if 80% of the healthy cell population survived while the number of unhealthy cells was

maintained (or diminished). Other potential threshold values defined also evidenced the reported

synergism when combining two chimeric ligands, but at different drug concentrations.

In summary, the third scientific publication of this thesis shows that the combination of chimeric

drugs can selectively affect a given cell population at reduced concentrations compared to single

drug treatment. This publication constitutes the first computational study on the combination of

targeted delivery drugs by generalizing the previous results of single cell treatments with chimeras

(see ’Results’, section 3.2) to explore the effect of chimeric drug combinations in cell population

models.

The last contribution of this thesis (see ’Results’, section 3.4) presents the first global analysis

of the impact of network topology in the cellular response to a given drug treatment, focusing on

three-node networks treated with inhibitory treatments. The three interacting nodes have different

roles: the input node X1 receives a constant stimulus, the target node X2 is the one interacting

with the inhibitor, and the output node X3 serves as a readout of the network activity.

To characterize the effect of the network architecture on the response to inhibition, the manuscript

compares two dose-response curves resulted from applying a range of inhibitor concentrations to

the same network but with two different initial conditions.

The results reveal that most of the three-node network topologies exhibit a response to the

treatment that depends on the initial state of the network (i.e., the initial concentration of the three

nodes). This dependence is translated into dual dose-response curves and changes in the EC50

of the inhibitor as well as in the overall effect of the inhibitor.

The simulations were restricted to networks where the target node does not self-regulate since,

under these conditions, the effect of the inhibitor cannot be simplified as an effective concentration

of active target at equilibrium. In these topologies, the effect of the inhibitor has to be modeled

explicitly as a sequestering interaction will probably give rise to other interesting dose-response

scenarios. Unfortunately, the analysis of motifs with direct auto-regulation of the target would not

permit to use the same automated script to run and screen all possible simulations for all topologies

tested, and it has not been performed.

The analysis is constrained to small networks in an attempt to identify the minimal motifs that

induce dual dose-response curves. Since linear protein-protein interactions can be reduced to

smaller networks with equivalent dynamics without reducing the spectrum of behaviors reported

[24, 45, 102], it is assumed that those results can also apply to much larger networks with an
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increasing number of nodes that interact linearly. Furthermore, if the number of nodes increases,

the computational cost will increase exponentially and will not be easily manageable. The sacrifice

in the network size allows to perform a detailed search of the architecture space, where many

studies focus on just a selection of network topologies and explore a tiny fraction of the overall

space of topologies.

The minimal network motif for a pair of dose-response curves showing a shift in the EC50 (dual

dose-response) is a direct or indirect positive feedback loop in the network. This positive feedback,

under specific parameter conditions, induces a bistable regime in a region of the parameter space,

and the inhibitor has to be able to switch between the two stable branches of the system. These

dual response may occur in a narrow range of inhibitor concentration, mainly depending on the

topology, and the values of the catalytic and Michaelis-Menten constants.

Interestingly, there are some topologies that show a particular type of dual dose-response. In-

stead of a classical bistable response, these networks present an inversion in the sensitivity of the

treatment between the two dose-response curves, or ’inverse bistability’. The basic ingredients for

’inverse bistability’ are more complex to summarize, since several apparently unrelated topologies

show this behavior. Although inverse bistability occurs more often when the number of network

interactions increases, all the highly connected topologies which show inverse bistability can be

traced back to 24 minimal architectures with 4 interactions between nodes.

For all these 4-link topologies, there are at least two interactions: one positive and one nega-

tive.This is presumably because this behavior requires a positive feedback to generate the bistable

regime, and a negative or a combination of negative interactions to ’invert’ the bistability. In addi-

tion, these minimal topologies do not present any negative direct auto-regulatory interaction. These

4-link circuits are grouped in three main overlapping families (where a given topology can belong

to more than one family). On the other hand, the 24 topologies include the 11 minimal architec-

tures able to induce inverse hysteresis. There are two ways of achieving inverse bistability: The

first one implies that, due to the relationship between the values for the two fixed initial conditions

(IC

low

and IC

high

) and the conformation of the basins of attraction, the separatrix forces the tra-

jectories (starting from those ICs) to travel toward the steady state that is farther in the direction

of the X3 axis, creating an "inversion" between the two dose-response curves. The second option

is the result of the combination of the network topology and the kinetic parameters, giving rise to a

bifurcation diagram with an unusual profile and consequently, to this singular dose-response curve.

It is important to notice that while some topologies showing inverse bistability can induce this
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behavior via each of the alternatives explained above, other topologies only show one of the two

ways of acquiring inverse bistability. The relationship between these two possibilities and the com-

parison of parameter regimes where the two occur in the same topology is far from the scope of

this publication.

From the point of view of drug development, the fact that some network topologies induce a

different response to inhibition depending on the initial state of activation of the network nodes

is important when establishing the optimal target, the optimal dose or the optimal schedule or

treatment. The fact that the majority of topologies present different dose-response curves suggests

that the effect of the initial conditions in the efficiency of a given treatment is widespread and may

be impacting reproducibility of drug treatments, since the same concentration of inhibitor can result

in different outcomes.

The concept of inverse bistability is here used to illustrate the situation of initial conditions pre-

ferring to transit to the furthest steady state, instead of the closest one in the phase space. When

comparing dose-response curves corresponding to the low and high initial conditions, normal bista-

bility results in an increase of the sensitivity (reduced EC50), while inverse bistability results in a

reduction (higher EC50) of the effect of the inhibitor. This reduction of the sensitivity after a first

treatment is very different from the well-known homologous or heterologous desensitization after

repeated or prolonged receptor stimulation [103, 104]. Receptor desensitization is achieved mainly

by reducing the number or the efficiency of receptors on the cell surface, after a first stimulation.

This is translated into a initial strong transient activation of the targets downstream with a much

lower response after a second stimulus application. This type of desensitization serves as mech-

anism for attenuation of the signal, mediated mainly by a direct or indirect negative feedback loop

[105, 106].

While the receptor desensitization refers to transient activation, the inverse bistability reported

here refers to steady state of the network, and requires an interplay between positive and negative

feedback loops interactions between its elements.

This last contribution highlights that the efficiency of treatments targeting a regulatory signaling

network is highly influenced by the wiring of the network and consequently, the initial state of

the interconnected members (such as level of phosphorylation or concentration); all these factors

must be considered for an accurate prediction of the cell response when designing or optimizing a

treatment.

In conclusion, this thesis combines computational and experimental methods to understand the
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behavior of asymmetric ligands and targeted delivery drugs. On the other hand, it explores new

factors that may affect the outcome of drug treatments such as the initial conditions or the topol-

ogy of the system. The models here presented provide novel tools to design and optimize drug

treatments, contributing to the progress of the Biomedicine and Pharmacology fields.
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• A mathematical framework has been developed to understand the dynamics and regulation

of the interaction between EGF or EPO ligands and their receptors. The asymmetric and

sequential 1:2 ligand receptor mode is able to reproduce the main key features of the system

dynamics.

• The model unveils the different roles of the two binding sites of GH and EPO ligands: While

the weak binding site controls the signal strength and the amount of active complexes formed,

the strong binding site regulates the self-antagonist effect at high ligand concentrations.

These roles are essential in the regulation of the signaling.

• A second mathematical model was designed to study and optimize the selectivity of chimeric

ligands toward tumoral cells, being the first mathematical framework focused on synthetic

chimeric drugs.

• The model quantitatively reproduces the experimental results of the different chimeric com-

pounds in terms of pathway activation and cytotoxic potential and provides a systematic in

silico tool to design and test the efficiency and selectivity of chimeric compounds at the

single-cell level in order to determine optimal chimeric configurations prior to synthesis and

in vivo tests.

• The previous theoretical framework was generalized for combination therapies applied to

heterogeneous cell populations as a means to improve the selective potential of chimeric

drugs and to study the effect that phenotypic variability and heritability has on the output of

these treatments.

• The model reveals that chimeric drugs show synergism in terms of their selective potential,
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i.e., that the combination of two chimeras is more selective than each agent separately and

predicts that synergism of these selective drugs is robust to variability in receptors expression

and phenotypic heritability.

• The author presents the first global analysis of how the network nonlinearities can influence

the cellular response to a given drug treatment by creating a high-throughput framework to

study the response to molecular inhibition (using small molecule inhibitors) of all possible

3-node generic signaling pathways with different regulatory motifs.

• The results from the analysis illustrate that the efficiency of drug treatments is highly influ-

enced by the wiring of the targeted signaling network and by the initial state of activation

of the members; all these factors must be considered for an accurate prediction of the cell

response in drug studies and clinical trials.
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• Se ha desarrollado un modelo matemático con el objetivo de comprender la dinámica y

regulación de la interacción entre ligandos asimétricos como la hormona del crecimiento o la

eritropoyetina con sus receptores. El modelo 1:2 ligando-receptor de interacción asimétrica

y secuencial es capaz de reproducir los rasgos más distintivos de la dinámica de estos

sistemas.

• Dicho modelo desvela los diferentes roles de cada uno de los sitios de unión de GH y EPO:

mientras el sitio de unión más débil controla la fuerza de la señalización y el número de com-

plejos activos que se forman, el sitio de unión fuerte regula el efecto auto-antagonista que

poseen estos ligandos altas concentraciones. Ambos roles son esenciales para la regulación

de la señalización de ambas moléculas.

• Un segundo modelo fue diseñado para estudiar y optimizar la selectividad de las quimeras

hacia las células tumorales, y constituye el primer marco teórico centrado en las drogas

quiméricas.

• El modelo reproduce cuantitativamente los resultados experimentales para diferentes com-

puestos quiméricos en términos de activación de la ruta y de potencial citotóxico de la droga,

aportando una herramienta sistemática in silico para el diseño y evaluación de la eficacia

y selectividad de compuestos quiméricos a nivel celular, con el objetivo de determinar las

configuraciones quiméricas óptimas previamente a su síntesis y a ensayos in vivo.

• A partir del marco teórico anterior se creó un nuevo modelo aplicado terapias con combi-

naciones de quimeras actuando en poblaciones celulares heterogéneas con el objetivo de

mejorar el potencial selectivo de los tratamientos con quimeras y estudiar el efecto de la

variabilidad intracelular y la herencia fenotípica en la respuesta a los tratamientos combina-

torios.

• El modelo desvela que las quimeras son sinérgicas en términos de potencial selectivo, es

decir que la combinación de dos compuestos quiméricos es más selectiva que cada uno

de los agentes por separado, y predice que dicha sinergia es robusta a la variabilidad en la

expresión de receptores y a la herencia fenotípica.

• Por último, en esta tesis se presenta el primer análisis global de cómo las no-linealidades

en las redes de señalización pueden influenciar la respuesta celular a tratamientos farma-
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cológicos, a través de la creación de una plataforma teórica donde estudiar la respuesta a

inhibición molecular en redes de señalización genéricas de tres nodos con diferentes inter-

acciones no lineales.

• Los resultados de este análisis desvelan que la eficacia de los tratamientos farmacológicos

está enormemente influenciada por la topología de la red y por el estado inicial de acti-

vación de sus componentes; todos estos factores podrían afectar a la reproducibilidad de los

tratamientos y deberían ser considerados para una predicción más precisa de la respuesta

celular en estudios farmacológicos y ensayos clínicos.
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[100] M. R. Dowling, D. Milutinović, and P. D. Hodgkin. Modelling cell lifespan and proliferation: is likelihood

to die or to divide independent of age? Journal of The Royal Society Interface 2, 517 (2005).

(cited on p. 117)

[101] N. Friedman, L. Cai, and X. S. Xie. Linking stochastic dynamics to population distribution: An

analytical framework of gene expression. Phys. Rev. Lett. 97, 168302 (2006). (cited on p. 117)

[102] D. M. Wolf and A. P. Arkin. Motifs, modules and games in bacteria (2003). (cited on p. 118)

[103] H. C. Fehmann, J. F. Habener, and H. C. Fehmann. Homologous desensitization of the insulinotropic

glucagon-like peptide-i(7-37) receptor on insulinoma (hit-t15) cells. Endocrinology 128, 2880 (1991).

(cited on p. 120)

[104] Y. Sun, R. Olson, M. Horning, N. Armstrong, M. Mayer, and E. Gouaux. Mechanism of glutamate

receptor desensitization. Nature 417, 245 (2002). (cited on p. 120)

[105] N. J. Freedman and R. J. Lefkowitz. Desensitization of G protein-coupled receptors. Recent

progress in hormone research 51, 319 (1996). (cited on p. 120)

[106] R. R. Gainetdinov, R. T. Premont, L. M. Bohn, R. J. Lefkowitz, and M. G. Caron. Desensitization of G

protein coupled receptors and neuronal function. Annu. Rev. Neurosci 27, 107 (2004).

(cited on p. 120)

135





List of Figures

1 Representation of the horizontal and vertical integrative approaches in the

fields of Systems Biology and Pharmacology. Quantitative Systems Pharma-

cology aims to provide a network-level insight to the Classical Pharmacology field,

in order to determine the mechanisms of action of new and existing drugs in cell

cultures, animal models and patients. Figure adapted from [3]. . . . . . . . . . . . 3

2 Network motifs and signal processing behaviors (a) Abbreviated list of two- and

three-component network motifs. (b) Typical stimulus input dynamics for a system

with perfect adaptation. While the change in the input is sustained over time (dashed

red curve), the system responds to the input (black curve) but it recovers its prestim-

ulated level after a while. (c) Dose-response characteristic curves for a hyperbolic

response (dashed grey curve) and a ultrasensitive response (dashed red curve)

with its typical sigmoidal shape: the response raises with stimulus in a steep man-

ner, before saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Ultrasensitive positive feedback system. (a) Diagram showing X phosphoryla-

tion by S (and its corresponding forward rate constant k

f

) and X cooperative au-

torregulation. k

r

is the reverse rate constant of X

⇤ dephosphorylation. (b) Rate-

balance plot for PR (rate of production) and RR rate of removal of X

⇤. Solid cir-

cles = stable steady-state points. Empty circles = unstable steady-state points. PR

varies for different [S]. (c) Bifurcation diagram for X

⇤ showing the stable branch

(black curves) and the unstable branch (dashed curves). S

crit

is the critical point

where both branches colapse (also called bifurcation point) . . . . . . . . . . . . . 11

137



List of Figures

4 The Hallmarks of Cancer. This illustration encompasses the six hallmark capabil-

ities originally proposed in Hanahan and Weinberg perspective. The past decade

has witnessed remarkable progress toward understanding the mechanistic under-

pinnings of each hallmark. Adapted from [44] . . . . . . . . . . . . . . . . . . . . . 12

5 Nonlinear interactions of the PI3K-Akt pathway. Simplified diagram of the signal-

ing pathway, including positive and negative feedback loops related to this network.

Figure adapted from [45]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Michaelis-Menten approach and dose-response representation (a) Reaction

velocity V versus substrate concentration : V

max

is the maximum reaction velocity,

when all the enzyme is complexed with the substrate. K

M

is the Michaelis constant

which is the concentration of the substrate at which the reaction rate is equal to one

half of the maximal velocity for the reaction V

max

. (b) Dose-response curve: Cell

response for each drug dose. Half maximal effective concentration (EC50 ) is the

drug concentration that induces one half of the maximum response (max. response)

after drug exposure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

138



List of publications

Publications included in ’Results’:

• Doldán-Martelli, V. and Míguez, D. G. (2012). Theoretical Approaches to Growth

Hormone Signaling, in ’Growth Hormones: Synthesis, Regulation and Health Impli-

cations’. Eds. A. Andersdtr and J. Anderssen. ISBN 9781619426818. In ’Results’

section 3.1

• Doldán-Martelli, V., Guantes, R. and Míguez, D. G. (2013). A mathematical model

for the rational design of chimeric ligands in selective drug therapies. CPT: pharma-

cometrics & systems pharmacology 2, e26. ISSN 2163-8306. In ’Results’ section

3.2

• Doldán-Martelli, V. and Míguez, D. G. (2015). Synergistic interaction between se-

lective drugs in cell populations models. PloS one 10, e0117558. In ’Results’ section

3.3.

• Doldán-Martelli, V. and Míguez, D. G. The influence of network topologies in drug

treatments. In preparation. In ’Results’ section 3.4

139


	Abstract
	Introduction
	Quantitative Systems Pharmacology
	Signaling pathways
	Emergent Properties of Signaling Pathways
	Deregulation of Signaling Pathways in Cancer and Targeted Therapy
	Mathematical Modeling in Biochemical Reactions

	Objectives
	Results
	Theoretical Approaches to Growth Hormone Signaling
	A Mathematical Model for the Rational Design of Chimeric Ligands in Selective Drug Therapies
	Synergistic Interaction between Selective Drugs in Cell Populations Models
	The influence of network topologies in periodic drug treatments

	Discussion
	Conclusions
	Bibliography
	List of Figures
	List of publications

