
Escuela Politécnica Superior

Dpto. de Ingenieŕıa Informática

Doctorado en Ingenieŕıa Informática y de Telecomunicación

Doctoral Thesis

New Swarm-Based Metaheuristics
for Resource Allocation and

Scheduling Problems

Author

ANA MARIA NOGAREDA VILARIÑO

Advisor

Dr. D. DAVID CAMACHO FERNÁNDEZ

Thesis submitted for the degree of:

Doctor of Philosophy

July 2017

Department: Ingenieŕıa Informática
Escuela Politécnica Superior
Universidad Autónoma de Madrid (UAM)
SPAIN

PhD Thesis: “New Swarm-Based Metaheuristics for Resource Allocation
and Scheduling Problems”

Author: Ana Maŕıa Nogareda Vilariño
Ing. Math. Dipl. EPFL
Ecole Polytechnique Fédérale de Lausanne, Switzerland

Advisor: David Camacho Fernández
Doctor Ingeniero en Informática
(Universidad Autónoma de Madrid)
Universidad Autónoma de Madrid, SPAIN

Year: 2017

Committee: President:

Secretary:

Vocal 1:

Vocal 2:

Vocal 3:

Dedicado a Mateo y a David,

porque mamá siempre teńıa muchos deberes,

y a Vincent,

sin él, este trabajo no hubiera sido posible.

“La nature hait l’uniformité et aime la diversité. C’est là peut-être que se reconnâıt
son génie.”

“La naturaleza odia la uniformidad y ama la diversidad. Quizás ah́ı sea donde
radica su genio.”

“Le temps que vous lisiez ces lignes, sept cents millions de fourmis seront nées sur
la planète. Sept cents millions d’individus dans une communauté estimée à un

milliard de milliards, et qui a ses villes, sa hiérarchie, ses colonies, son langage, sa
production industrielle, ses esclaves, ses mercenaires...”

“En el tiempo que necesita para leer estas ĺıneas, 700 millones de hormigas habrán
nacido en el planeta. 700 millones de individuos en una comunidad estimada a un

billón de billones, que tiene sus ciudades, su jerarqúıa, sus colonias, su lenguaje, su
producción industrial, sus esclavos, sus mercenarios...”

Bernard Werber, Les Fourmis

Bernard Werber, Las Hormigas

Abstract

Optimization problems have been intensively studied, especially since the develop-
ment of operations research and computer science. Nowadays a huge number of
complex problems are NP-hard, which implies that they cannot be optimally solved
in a reasonable amount of time if the size of the problem is too large. This is the
case for the Vehicle Routing Problem (VRP) that consists in finding a set of routes
to serve a list of customers with a specific fleet of vehicles; a brute force approach
is not efficient if the amount of customers is too large. Another example is the
Course Timetabling Problem whose objective is to find a timetable with no clashes
for students and teachers and that considers, most of the time, a lot of additional
constraints such as teacher availability or room capacity.

Due to this complexity, several metaheuristics have been proposed to find near-
optimal solutions that go from basic strategies, such as random search, to more
sophisticated approaches, such as bio-inspired metaheuristics. An important com-
ponent of the latter is the Genetic Algorithm (GA), which applies the selection
processes found in nature to the solutions of an optimization problem. Another im-
portant bio-inspired metaheuristic is the Ant Colony Optimization (ACO), which is
based on the foraging behavior of ants.

This dissertation is focused on how heuristic approaches and metaheuristics can be
adapted to solve real optimization problems. The analysis and the adaptation of the
ACO metaheuristic in particular is done for several combinatorial problems, among
them Resource Allocation Problems and Scheduling Problems, such as Timetabling
and VRP. Those problems are first modeled as Constraint Satisfaction Optimiza-
tion Problems (CSOP). Then new heuristic algorithms, metaheuristics and hybrid
metaheuristics are designed and applied to solve those CSOP. The results are then
compared to different resolution methods such as GA or commercial tools in order
to analyze their performance.

One of the problems studied in this dissertation consists in allocating students to
classes in Swiss secondary schools, where students have different profiles due to their
level in some fields or to the elective courses they attend. The pedagogical objective
is to have a high diversity of profiles within a class and similarity between classes. In
order to achieve this goal, the problem is modeled as a Resource Allocation Problem,
where students are resources. The Resource Allocation Problem is then solved in two
different ways, with a standard solver for CSOP, and with ACO. Eight real datasets
are used to compare their performance. ACO provides better solutions than the

V

VI

CSOP solver and in a shorter time. Results show that the pheromones used in ACO
help to find better solutions in a much smaller amount of time.

The same problem has been modeled as a many-objective optimization problem,
where the composition of classes combines pedagogical objectives with resource and
economic objectives. In a many-objective problem, usually objectives are not com-
patible and improving one objective will penalize one or more of the other objectives.
Therefore, there are several optimal solutions, whose set is called the Pareto front.
To solve this many-objective problem, we adapt three approaches based on ACO,
Harmony Search, and GA (NSGA-II). Eight real datasets from different schools are
used and all approaches find several non-dominated solutions for each of them. Two
methods are proposed to compare their performance, a simple one with a direct
hypervolume comparison and a smoothing method where Pareto fronts are approxi-
mated with several runs for each approach. In four datasets, the three approaches are
competitive, in the other four datasets NSGA-II outperforms the other approaches.

Resource allocation and timetabling problems can both be found in universities where
students can select courses before or after the timetabling is done. In this disser-
tation, both problems, seat allocation and timetabling, are modeled separately and
combined as CSOP. Two algorithms are designed and implemented to find a solu-
tion to both problems simultaneously maximizing the satisfaction of students using a
CSOP solver and ACO for the timetabling problem. The results of both algorithms
are then compared. Three real datasets from the Ecole Hôtelière de Lausanne have
been used to carry out a complete experimental analysis. High quality solutions are
obtained in a few minutes with both approaches; those solutions are currently used
at the Ecole Hôtelière de Lausanne.

Another type of problem described in this dissertation is a complex VRP with many
different constraints: time windows, heterogeneous fleet, multiple depots, multiple
routes and incompatibilities. Five different approaches are presented and applied to
fifteen real datasets. Those approaches are based on ACO and GA and are applied
in their standard formulation and combined as hybrid metaheuristics, ACO-GA and
GA-ACO. The results are compared regarding quality and computation time with
two commercial tools. Considering the number of customers that cannot be served,
one of the tools and ACO-GA outperform the others. Considering the cost, GA and
GA-ACO provide better results. The computation time needed for one iteration is
much better in GA and GA-ACO.

Resumen

Los problemas de optimización han sido intensamente estudiados, especialmente
desde el desarrollo de la investigación operativa y la informática. Hoy en d́ıa una
gran cantidad de problemas complejos son NP-hard, lo que implica que no pueden
ser resueltos de forma óptima en un tiempo razonable si el tamaño del problema es
demasiado grande. Este es el caso del Vehicle Routing Problem (VRP) que consiste
en encontrar un conjunto de rutas para visitar una serie de clientes con una flota es-
pećıfica de veh́ıculos; atacar el problema con fuerza bruta no es eficiente si el número
de clientes es demasiado grande. Otro ejemplo es el Course Timetabling Problem
cuyo objetivo es encontrar una planificación sin conflictos horarios para estudiantes
o profesores, y teniendo en cuenta, muchas veces, restricciones adicionales como la
disponibilidad de los profesores o la capacidad de las salas.

Debido a esta complejidad, se han desarrollado varias metaheuŕısticas para encontrar
soluciones cercanas al óptimo, que van desde estrategias básicas, como la búsqueda
aleatoria, hasta enfoques más sofisticados, como las metaheuŕısticas bio-inspiradas.
Un ejemplo importante de estas metaheuŕısticas es Genetic Algorithm (GA) que
aplica los procesos de selección que existen en la naturaleza a soluciones de un pro-
blema de optimización. Otra metaheuŕıstica bio-inspirada importante es Ant Colony
Optimisation (ACO) basada en el comportamiento de las hormigas cuando buscan
comida.

Esta tesis se centra en cómo adaptar las estrategias heuŕısticas y metaheuŕısticas
para resolver problemas reales de optimización. Se analiza en particular ACO para
varios problemas combinatorios, entre ellos Resource Allocation Problems (RAP)
y Scheduling Problems, tales como la planificación de horarios y el VRP. En una
primera etapa, se modelan esos problemas como Constraint Satisfaction Optimisation
Problems (CSOP). En una segunda etapa se diseñan y aplican nuevos algoritmos
heuŕısticos, metaheuŕısticas y metaheuŕısticas h́ıbridas para resolver esos CSOP. Los
resultados se comparan con otros métodos de resolución como GA o herramientas
comerciales para analizar su desempeño.

Uno de los problemas analizados en esta tesis consiste en asignar alumnos a clases
en colegios de Suiza, donde los alumnos tienen perfiles distintos debido a su nivel
en algunas asignaturas o a las optativas a las que asisten. El objetivo pedagógico
es tener una gran diversidad de perfiles dentro de una clase y similitud entre las
distintas clases. Para lograr este objetivo, el problema se modela como un RAP,
en el que los alumnos son recursos. El RAP se enfoca de dos maneras distintas,

VII

VIII

con un solver estándar para CSOP y con ACO, y se compara el rendimiento de las
dos estrategias mediante ocho conjuntos de datos reales. ACO proporciona mejores
soluciones que el solver CSOP en un tiempo más corto. Los resultados muestran
que las feromonas utilizadas en ACO ayudan a encontrar mejores soluciones en un
tiempo mucho menor.

Ese mismo problema se modela como un problema de optimización multi-objetivo,
incluyendo objetivos pedagógicos, económicos y de recursos. En un problema multi-
objetivo, por lo general, los objetivos no son compatibles y la mejora de un objetivo
penaliza uno o más de los otros objetivos. Por lo tanto, hay varias soluciones óptimas,
cuyo conjunto se llama el frente de Pareto. Para resolver este problema multi-
objetivo, se adaptan tres estrategias basadas en ACO, Harmony Search y GA (NSGA-
II). Las tres estrategias encuentran varias soluciones no dominadas para cada uno de
los ocho conjuntos de datos. Dos métodos permiten comparar su rendimiento, uno
simple con una comparación directa de hipervolumen y un método suavizado donde
los frentes de Pareto se aproximan con varias ejecuciones para cada estrategia. En
cuatro conjuntos de datos, los tres métodos son competitivos, en los otros cuatro,
NSGA-II supera los demás.

En las universidades en las que los estudiantes pueden seleccionar cursos antes o
después de que se realice la planificación de horarios, se encuentran problemas de
asignación de recursos y de planificación de horarios. En esta tesis, ambos problemas,
asignación y planificación, se modelan por separado y combinados como CSOPs. Se
diseñan e implementan dos algoritmos para encontrar una solución a ambos proble-
mas simultáneamente maximizando la satisfacción de los estudiantes mediante un
solver estándar de CSOP y un algoritmo ACO para el problema de planificación de
horario. Para comparar los resultados de ambos algoritmos, se utilizan tres conjun-
tos de datos reales de la Ecole Hôtelière de Lausanne para llevar a cabo un análisis
experimental completo. Soluciones de alta calidad se obtienen en pocos minutos con
ambas estrategias; esas soluciones se utilizan actualmente en la Ecole Hôtelière de
Lausanne.

Otro tipo de problema tratado en esta tesis es un VRP complejo con muchas res-
tricciones diferentes: ventanas de tiempo, flota heterogénea, múltiples depósitos,
múltiples rutas e incompatibilidades. Cinco estrategias diferentes se han aplicado a
quince conjuntos de datos reales. Esas estrategias se basan en ACO y GA que se han
aplicado en su formulación estándar y combinadas como metaheuŕısticas h́ıbridas,
ACO-GA y GA-ACO. Los resultados se han comparado en calidad y en tiempo de
cálculo con dos herramientas comerciales. Considerando el número de clientes que
no pueden ser servidos, una de las herramientas y ACO-GA superan a los demás.
Teniendo en cuenta el coste, GA y GA-ACO proporcionan mejores resultados. El
tiempo de computación necesario para una iteración es mucho mejor en GA y GA-
ACO.

Agradecimientos

Los agradecimientos siempre se quedan para el final... y a estas horas de la noche,
empieza a ser complicado juntar cuatro palabras para que tengan sentido, pero hay
algunas personas muy queridas que tengo que mencionar aqúı.

El primero, mi marido, Vincent, que nunca ha fallado. Niños, cenas, compras, y
mucho más. Lo primero aguantarme durante estos años, y en especial este último
año en el que le ha tocado pasar muchas horas, muchos d́ıas, e incluso varias semanas
con los niños fuera de casa para dejarme trabajar tranquila en este proyecto.
Je t’aime mon coeur.

A mis niños, David y Mateo, que ya están más que hartos de los deberes de mamá
que no puede ir al parque, ni de vacaciones, ni a veces leer el cuento para dormir.
A partir de mañana, cariños, ya estaré mucho más con vosotros, para leer, jugar y
para hablar también antes de dormir porque tenemos muchas Parlations de retraso.

A mes parents et à mes beaux-parents, qui ont toujours été là, prêts à s’occuper des
enfants, de l’intendance de la maison et même de mon mari.

A David por haberme animado desde el principio, por haber encontrado siempre las
palabras para darme más ganas de conseguirlo todav́ıa, por haber contestado a mis
correos nocturnos, de fines de semana y de vacaciones y por haber hecho realidad
este proyecto a pesar de la distancia.

A Sonia por haber aguantado esos correos y esas llamadas fuera de horario laborable,
por haber facilitado mis estancias en Madrid, por su cariño y por su amistad.

A mis compañeros de AIDA que siempre me han acogido en el laboratorio como una
más.

A Javier por sus consejos sobre los problemas de optimización multi-objetivo.

A Jean-François Theubet pour avoir toujours eu le temps de m’expliquer avec pa-
tience les complexités du nouveau système éducatif du Canton de Vaud.

A mon équipe pour son soutien et sa compréhension dans ma dernière ligne droite,
en particulier à Armine pour être bien plus qu’une collaboratrice.

A Fabien et à Pierre qui m’ont non seulement encougée, mais ont toujours cru en
moi dans tous mes projets, y compris celui-ci.

A la Universidad Autónoma de Madrid por ofrecerme la oportunidad de realizar esta
tesis doctoral.

A l’Ecole Hôtelière de Lausanne pour m’avoir permis de saisir l’opportunité de
réaliser ce projet.

A todos vosotros, muchas gracias.

A vous tous, mille mercis.

Contents

Abstract V

Resumen VII

Contents XI

List of Figures XV

List of Tables XVII

1 Introduction 1

1.1 Motivation of the dissertation . 1
1.2 Problem statement . 3
1.3 Research Questions . 5
1.4 Structure of the thesis . 6
1.5 Publications and Contributions . 7

2 State of the Art 13

2.1 Bio-inspired Metaheuristics . 13
2.1.1 Ant Colony Optimization (ACO) . 15

2.1.1.1 Ant System . 16
2.1.1.2 Elitist strategy . 17
2.1.1.3 Max-Min Ant System . 18
2.1.1.4 Local search . 18
2.1.1.5 Applications of ACO algorithms 18

2.1.2 Genetic Algorithms (GA) . 19
2.1.2.1 Selection of parents . 21
2.1.2.2 Reproduction . 21
2.1.2.3 Replacement . 23

2.1.3 Harmony Search (HS) . 23
2.2 Constraint Satisfaction Problems (CSP) . 24

XI

XII Contents

2.2.1 Examples of CSPs . 25

2.2.1.1 The n-Queens Problem . 25

2.2.1.2 The Graph-Coloring Problem . 26

2.2.1.3 The Sudoku Game . 27

2.2.2 Constraint Satisfaction Optimization Problems (CSOP) 28

2.2.2.1 The Traveling Salesman Problem (TSP) 28

2.2.3 Search algorithms to solve CSPs and CSOPs 29

2.2.4 Integration of ACO and CSP models . 30

2.3 Application fields . 32

2.3.1 The Resource Allocation Problem (RAP) 32

2.3.1.1 Example of RAP: The Course Allocation Problem 34

2.3.1.2 Example of RAP: The Course Timetabling Problem 36

2.3.2 The Many-objective Resource Allocation Problem (MORAP) 37

2.3.2.1 The Hypervolume Metric . 39

2.3.2.2 The Crowding Distance . 40

2.3.3 The Vehicle Routing Problem (VRP) . 40

3 Heuristic and ACO Approaches for Resource Allocation Problems 43

3.1 Introduction . 43

3.2 Description of the problem . 44

3.2.1 Objectives . 46

3.3 The complete model for the combined CTT & RAP 47

3.3.1 Concepts . 47

3.3.2 Solution . 48

3.3.3 Hard Constraints . 49

3.3.4 Soft Constraints . 50

3.4 Complexity of the problem . 51

3.5 The model for the CLass Allocation Problem (CLAP) 52

3.6 The CSOP model for the CLAP . 54

3.7 The ACO approach for the CLAP . 54

3.8 Experimentation . 56

3.9 Conclusions . 58

3.10 Case Study: The Course Timetabling Problem 59

3.10.1 The ITC-2007 Course Timetabling Problem 59

3.10.2 The ACO approach . 61

3.10.3 The datasets . 62

3.10.4 The results . 62

3.10.5 Conclusions . 65

4 Heuristic and Hybrid Metaheuristic Approaches for RAP Combined
with a Scheduling Problem 67

4.1 Introduction . 67

4.2 The Course Allocation Problem (CAP) . 68

4.3 The Course Timetabling Problem (CTT) . 70

4.4 The Course Greedy Algorithm (CGA) for the CAP 71

Contents XIII

4.4.1 Example . 72

4.5 The CSOP approach for the CAP . 72

4.6 The CSOP approach for the CAP&CTT . 73

4.6.1 The CSOP algorithm for the CAP&CTT 74

4.7 The ACO approach for the CAP&CTT . 75

4.8 Experimentation: Greedy versus CSOP for the CAP 76

4.8.1 The results . 77

4.9 Experimentation: CSOP versus ACO for the CAP&CTT 80

4.9.1 Results for the CSOP approach . 81

4.9.2 Results for the ACO approach . 82

4.9.3 Comparison of CSOP and ACO . 82

4.9.4 Computation time . 82

4.10 Conclusions . 86

5 Comparison of Three Metaheuristics to Handle Many-objective RAP 87

5.1 Introduction . 87

5.2 Description of the Problem . 88

5.3 Problem Statement . 88

5.3.1 The Pedagogical Objective . 89

5.3.2 The Number of Lessons and Teachers . 90

5.4 The ACO Approach . 90

5.5 The HS Approach . 92

5.6 The NSGA-II Approach . 93

5.7 Experimentation . 95

5.7.1 Datasets . 95

5.7.2 Parameters . 95

5.7.3 Hypervolume Comparison . 95

5.7.4 Results and Discussion . 96

5.7.4.1 Datasets 12-9 and 21-9 . 97

5.7.5 Computation time . 99

5.7.6 Hypervolume Comparison . 99

5.8 Conclusions . 99

6 Hybrid Metaheuristics to Manage Complex Vehicle Routing Pro-
blems 101

6.1 Introduction . 101

6.2 Problem statement for the maVRP . 102

6.3 The ACO approach . 105

6.3.1 The pheromones’ update . 106

6.3.2 The ACO-3-opt approach . 107

6.4 The GA approach . 109

6.5 The ACO-GA approach . 110

6.6 The GA-ACO approach . 110

6.7 Experimentation . 111

6.7.1 The datasets . 111

XIV Contents

6.7.1.1 The hard constraints . 112
6.7.1.2 The objective . 113

6.7.2 The parameters . 114
6.7.3 The results . 114

6.7.3.1 Results for the ACO approaches 114
6.7.3.2 Results for the GA approaches 115
6.7.3.3 Comparison . 116

6.8 Conclusions . 119

7 Conclusions and Future Work 123

7.1 Conclusions . 123
7.2 Future Work . 126

8 Conclusiones y Trabajo Futuro 129

8.1 Conclusions . 129
8.2 Trabajo futuro . 132

A Notation used in Chapter 3 135

B Complete Results for the maVRP 137

Bibliography 143

List of Figures

2.1 Ants behavior. Left: At the beginning, no pheromone is present on the paths,
the selection is random. Right: After some time, more pheromone is present on
the shortest path, more ants select this path. 16

2.2 Genetic algorithm. The initial parent population generates an offspring popula-
tion and then a new parent population is selected among them. 20

2.3 Generation of offsprings through k-point crossover. Left: One-point crossover.
Right: Two-points crossover. 22

2.4 Generation of offsprings through uniform crossover. 22

2.5 Mutation. 23

2.6 Solution to the 4-queens problem. 26

2.7 Solution to a Graph-Coloring problem with 5 vertices and 3 colors. 26

2.8 Solution to a Sudoku 9× 9 grid, with nine 3× 3 sections in white/grey. 27

2.9 Two different solutions for the same TSP with 10 cities. 29

2.10 Steps in a Depth-first search with backtracking. 30

2.11 Example of a Pareto front (F1) and of the successive Pareto fronts (F2, F3, . . .). . 38

2.12 Two approximations of the Pareto set. 39

2.13 The crowding distance. 40

2.14 A VRP problem with 3 depots, 14 customers and 4 routes. 41

3.1 Canton de Vaud: Week structure: 5 days split into 2 half-days (except Wednes-
day) and 4 quarter-days (grey). 47

3.2 Results for schools 2112-9-VG and 3621-10-VG, with ACO. 57

3.3 Evolution of the solution cost for the ACO algorithm in 1 run. 58

3.4 Example of a week structure: 5 days with 4 periods per day. 59

3.5 Example of visibility difference when D(c) > 1. Periods belonging to the white
days have a smaller visibility for the corresponding lecture. 62

3.6 Evolution of the best solution cost for the dataset 17. 66

4.1 50 students - Results: Value of the metric (TSG) in the different solutions found
by CSOP and time when these solutions are found. 78

4.2 50 students - (TSG) value for CGA and CSOP for each of the ten datasets in the
first solution and after 10 seconds, 1 minute, 15 minutes and 1 hour of computation. 79

4.3 150 students - (TSG) value for CGA and CSOP for each of the ten datasets in the
first solution and after 10 seconds, 1 minute, 15 minutes and 1 hour of computation. 79

XV

XVI List of Figures

4.4 Value of the metrics (TRG) and (WRG) and number of slots needed in the diffe-
rent solutions found by CSOP. 83

4.5 Value of the metrics (TRG) and (WRG) in the different solutions found by ACO. 84

5.1 NSGA-II approach. 93
5.2 Non-dominated solutions for six datasets. Horizontal axis: Sum of f ti . Vertical

axis: Sum of f li . Size of the circles: f0. Left: ACO approach. Middle: HS
approach. Right: NSGA-II approach. 98

6.1 Example. m = 3 vehicles serve n = 7 customers in 5 routes. The sequence of
customers is X = {C2, C3, C4, C1, C6, C7, C5} . 103

6.2 Left: Solution µ before local search. Right: Solution µ after a step of the 3-opt
local search. 108

6.3 Left: Solution µ before mutation. Right: Solution µ after a mutation. 110
6.4 Number of customers not served in the best solution and in the global best solution

for the ACO approaches and 5 datasets. 120
6.5 Number of customers not served in the best solution and in the global best solution

for the GA approaches and 5 datasets. 121

B.1 Number of customers not served in the best solution and in the global best solution
for the ACO approaches and 5 datasets. 138

B.2 Number of customers not served in the best solution and in the global best solution
for the GA approaches and 5 datasets. 139

B.3 Number of customers not served in the best solution and in the global best solution
for the ACO approaches and 5 datasets. 140

B.4 Number of customers not served in the best solution and in the global best solution
for the GA approaches and 5 datasets. 141

List of Tables

3.1 Available Options for VP and VG. 45

3.2 Example of allocation of students to sessions. 46

3.3 Size of the datasets used. 56

3.4 Results: average, standard deviation, best and worst result with 10 runs. 57

3.5 Notation for the CTT problem. 59

3.6 Size of the datasets of the ITC-2007. 65

3.7 Results in the different datasets of the ITC-2007. All solutions are feasible, except
dataset 05. 66

4.1 Example. Ranking: Position of each course for all students: For each student
s ∈ {1,2,3,4}, Ps(ci) is the number of courses that s prefers over ci Results:
Allocation of courses to students and metrics value for CGA: µ(ci) is the list of
students assigned to course ci. 72

4.2 Experimentation. Distribution of preferences of the students over courses. 77

4.3 50 students, 10 datasets - Comparison CGA-CSOP, Mean ± Standard Deviation
of the two metrics (TSG) and (WSG). 77

4.4 150 students, 10 datasets - Comparison CGA-CSOP, Mean ± Standard Deviation
of the two metrics (TSG) and (WSG). 79

4.5 Size of the datasets. The number of courses is given with the average ± the
standard deviation. 80

4.6 Data after canceling courses. The number of courses is given with the average ±
the standard deviation. 81

4.7 Values of the two metrics (TRG) and (WRG) for the CSOP and the ACO ap-
proaches. 85

4.8 Distribution of the RankGap value for the students for the CSOP and the ACO
approaches. 85

4.9 Computation time for the CSOP and the ACO approaches [mm:ss]. 85

5.1 Experimentation. Size of the datasets. 95

5.2 Non-dominated solutions for a run for the dataset 34-10 with the ACO approach. 96

5.3 Comparison of f0 by ACO, HS and NSGA-II in 100 runs and in 10 sets of 10 runs
each for the datasets 12-9 and 21-9. 97

5.4 Comparison of the computation time in seconds for each approach in the six
datasets. 99

XVII

XVIII List of Tables

5.5 Comparison of the portion of the hypercube dominated by each approach in the
six datasets with the simple hypervolume and the smoothing hypervolume. . . . 100

6.1 Example of the 3-opt local search. C2 becomes the successor of C3. 108
6.2 Datasets. Number of depots, customers and vehicles per dataset. Average weight

of the customers’ goods and average capacity of the vehicles. 113
6.3 Experimentation. Parameters for the ACO approaches. 114
6.4 Experimentation. Results for the ACO approaches. 115
6.5 Experimentation. Results for the GA approaches. 116
6.6 Experimentation. Comparison of four approaches and two commercial tools re-

garding the first objective: To serve a maximum of customers. For Tool1 and
Tool2: Number of customers not served. For proposed approaches: Number of
runs with all customers served out of the ten runs. 117

6.7 Experimentation. Comparison of the four approaches and the two commercial
tools regarding the second objective: To minimize the total cost. For Tool1
and Tool2: Cost of the single solution. For proposed approaches: Average and
standard deviation of the cost in the runs when all customers are served out of
the ten runs. 118

6.8 Experimentation. Computation time in mm:ss. 119

A.1 Notation: Input data - Part I. 135
A.2 Notation: Input data - Part II. 136
A.3 Notation: Output results. 136

Chapter 1

Introduction

This chapter provides a general overview of this PhD dissertation. Section 1.1 motivates the
work carried out in this PhD dissertation. Section 1.2 describes the problem that has motivated
this work and Section 1.3 contains the different objectives in which this dissertation is focused.
The dissertation structure is then described in Section 1.4 and, finally, the main contributions
and the associated publications are described in Section 1.5.

1.1 Motivation of the dissertation

A large number of complex problems can be found in the research literature. Those problems
belong most of the time to fundamental (or classical) research or to industrial problems. An
example of a classical research problem is the Travelling Salesman Problem (TSP) [4, 92, 99, 140].
The TSP consists of a list of cities, a salesman and a travel cost associated to each pair of cities.
The objective of the problem is to find a sequence of those cities so that the salesman visits all
cities and the total cost is minimized. The Graph Coloring Problem is also a classical problem
that consists in minimizing the number of colors needed to color the vertices of a graph so that
each vertex has a color that is different from the colors used for the vertices connected to it with
an edge, [28]. Another example is the n-Queens problem that consists in placing n queens on a
n× n chessboard so that none of them is threatened by the others.

In the industrial field, most of the problems have an optimization objective often related
to quality or to cost, or to both of them. An example of such problems is the Vehicle Routing
Problem (VRP), which is a generalization of the TSP. The VRP consists in finding a set of routes
that serve a list of customers with a specific fleet of vehicles, [85, 87, 137, 147]. The Course
Timetabling Problem (CTT) can also be classified as an industrial problem that is found in
universities and schools, [31, 80, 104]. The objective of the standard CTT is to find a timetable
with no clashes for the students that considers, most of the time, a lot of additional constraints
that are specific to the school or to the university. The Resource Allocation Problem (RAP)
is an additional example that consists in assigning a limited number of resources to objects
that compete to get those resources. Objects can be activities as in communication systems
[102, 154], or tasks as in scheduling problems [68, 95]. The resources are for example goods [67],
people [68, 95], money [47], or seats in courses [17, 106]. Usually a RAP has a unique objective

1

2 Chapter 1. Introduction

such as maximizing satisfaction or productivity, but it can be multi-objective (MORAP) and
have objectives that might be opposite. In asset management, for example, the objective is to
maximize revenue, but the risk has to be minimized at the same time, [47]. A different example
of MORAP can be found in staff scheduling, where the operational cost has to be minimized,
but the working conditions have to be improved, [95].

Part of those problems are combinatorial optimization problems. A simple definition of
such a problem states that a combinatorial optimization problem consists in finding in a
finite set of solutions a solution or the solutions that optimize the objective of the problem.
An important characteristic of those classical and industrial problems is that they might be
NP-hard problems, which implies that the time needed to find a solution to those problems
increases exponentially if the size of the problem increases linearly, [54, 152]. Therefore exact
algorithms that provide systematically the best solution of the problem can be used only for
small instances of the problem. For example, the best solution to the TSP can be found with
an exact algorithm only if the number of cities is small. If there are n cities to visit, the number
of possible solutions is 1

2 · (n− 1)!. With 6 cities, there are 60 solutions, with 10 cities there are
181’440 solutions, with 20 cities, there are 6×1016 solutions. An optimal solution to a problem
with 85’600 cities was found in 2006, but this took 136 CPU-years, [4].

Due to this situation with NP-hard problems and to the importance of such problems in
the research and in the industry, many heuristic algorithms and metaheuristics have been
developed to find good solutions, if not the best, to those problems, [12, 15, 89]. The main
difference with exact algorithms is that those approximation methods explore only part of the
search space instead of the complete search space. As part of the solutions are not explored, the
search is faster than with exact algorithms, but there is no guarantee that the best solution to
the problem is found. The main advantage of those heuristic methods is that they can usually
find a good solution in a relatively short time. Their main drawback is that this solution may
be a local optimal solution, and the algorithm may have no opportunity to escape from the area
of this solution in order to explore new areas in the search space.

The main difference between a heuristic algorithm and a metaheuristic is that the first
one is often designed to solve a specific type of problem and is not adapted to other problem
types. A metaheuristic on the other hand can be used to solve many types of problems, for
example VRPs or CTTs. Ant Colony Optimization, Genetic Algorithms, Iterated Local Search,
Simulated Annealing and Tabu Search are some examples of metaheuristics, [13].

Metaheuristics can be classified according to different characteristics, one of them being
the number of solutions that are improved. Simulated Annealing and Iterated Local Search
are examples of single solution metaheuristics, whose objective is to modify and improve the
current solution. Ant Colony Optimization (ACO) and Genetic Algorithms (GA) are examples of
population-based metaheuristics, where several solutions are used and contribute together
to the search, [13].

Another category of metaheuristics is composed of the bio-inspired metaheuristics, whose
design is inspired by systems found in nature. GA is an example based on the natural selection
process whose idea was developed by Darwin. GA is a population-based metaheuristic whose
individuals are going to evolve and improve through crossover, mutation and selection. ACO is
also a bio-inspired metaheuristic based on the ants’ foraging behavior. Harmony Search (HS),
based on the way musicians compose harmonies, is an additional example that is sometimes
classified as a bio-inspired metaheuristic, [55]. However the parallel between HS and music

1.2. Problem statement 3

composition is often criticized in the research community due partly to the fact that the human
creativity process is difficult to represent with a simple metaheuristic.

Among the bio-inspired metaheuristics, the swarm-based metaheuristics are based on
the intelligence of colonies or swarms of simple individuals that interact with each other and
with their environment (e.g., ACO). The individuals apply very simple rules and through their
interactions achieve a collective intelligent behavior, even if there is no centralized system that
leads their behavior and their decisions. Apart from ACO, there are several swarm-based meta-
heuristics, such as Particle Swarm Optimization or Artificial Bee Colony, [14, 76].

Metaheuristics have also been hybridized to improve their performance, [12]. The hybridiza-
tion consists in combining a metaheuristic with another optimization approach that might be
another metaheuristic or come from a different field like exact algorithms.

1.2 Problem statement

The hybridization of metaheuristics and their application to real optimization problems is the
main objective of this dissertation. Most of the benchmark datasets that can be found in the
literature have characteristics that are much more complex in real-life problems. The benchmark
datasets are very useful when the objective is to compare a novel approach to the existing ones.
Nevertheless those approaches might be successful when applied to those benchmark datasets,
but might not be adapted to real problems that can be found in the industry.

In this dissertation, different approaches, among them swarm-based and hybrid metaheuris-
tics are applied to four types of problems. Three of them are real-life problems found in a
business school, in Swiss secondary schools and in a logistics company. The fourth uses bench-
mark datasets for the university course timetabling problem.

Heuristic and ACO Approaches for Resource Allocation Problems

Chapter 3 presents and solves partly a real problem found in Swiss secondary schools.

The first problem analyzed in this dissertation is faced by secondary schools in the Canton
de Vaud in Switzerland. It consists in allocating students to main classes. Students in the same
main class attend part of the lessons together, but they are then split and grouped differently
for some special subjects where the students’ level is the grouping factor. As the pedagogical
objective is to have main classes as mixed as possible regarding the different levels, the splitting-
grouping process for the special subjects may lead to a scheduling issue. If the grouping of
students coming from different main classes is not possible, the number of lessons and of teachers
needed for those special subjects increases. It is therefore important to find an allocation of
students to main classes so that the classes’ composition is as mixed as possible, but it is also
critical to ensure that this allocation enables then the splitting-grouping process minimizing the
number of lessons and of teachers needed.

In the first part of this chapter, a complete constraint-based model is proposed for the
problem that combines both the class allocation problem and the scheduling problem. In the
second part, a model and two resolution approaches are presented for the allocation of students
to classes in order to have classes as mixed and similar as possible. This allocation problem is

4 Chapter 1. Introduction

first modelled as a Constraint Satisfaction Optimization Problem (CSOP), [148]. The CSOP
is then solved with a CSOP solver and with ACO, [38, 44, 136]. Eight datasets from different
schools in Canton de Vaud are used to compare the performance of the two approaches.

This chapter also includes a special case of the Course Timetabling Problem that corresponds
to the datasets of a benchmark developed for an international competition (ITC), [111]. The
approach presented in this chapter is based on ACO completed with a local search based on a
CSOP solver.

Heuristic and Hybrid Metaheuristic Approaches for RAP Combined with a
Scheduling Problem

Chapter 4 presents and solves a real problem from a business school, the Ecole Hôtelière de
Lausanne (EHL).

The second problem analyzed in this dissertation to test the efficiency of different approaches
is a combinatorial optimization problem that exists in EHL: the allocation of elective courses
to students depending on their preferences and on constraints related to the courses and their
different combinations. There are several constraints that have to be satisfied: a student cannot
be allocated to similar courses, courses have to be schedulable over a week, and some of them can
be canceled if the demand is not sufficient. Therefore, the RAP is combined with a scheduling
problem. The objective of the problem is to maximize students’ satisfaction, which means to
allocate them to their favorite courses.

In a first phase, random datasets with different sizes are generated for the simple RAP, which
is solved with two approaches. The first one is a greedy algorithm that considers an order of
students based on their grades and assigns students on a first-come first served basis, considering
their preferences. The RAP is then modeled as a CSOP and the second approach uses an exact
algorithm to solve the CSOP that runs for a limited amount of time.

In the second phase, the RAP is combined with the scheduling problem and two approaches
are used to solve it. The combined problem is first modeled as a CSOP. The first approach is
the same CSOP solver as in the simple RAP with a timeout. The second approach hybridizes
ACO with the CSOP solver. Both methods are applied to three real datasets from EHL.

Comparison of Three Metaheuristics to Handle Many-objective RAP

Chapter 5 is based on the same problem as chapter 3, the class allocation problem existing
in Swiss secondary schools.

The problem of the educational system in Canton de Vaud presented in chapter 3 is mo-
deled as a many-objective resource allocation problem (MORAP). The seven objectives of this
MORAP are related to the number of lessons, the number of teachers and the pedagogical
goal. Three bio-inspired approaches are compared: ACO, HS and GA. The three of them are
adapted to a many-objective problem, the GA adaption is NSGA-II, which is a well-known
multi-objective metaheuristic. The three of them use the crowding distance value to sort the so-
lutions, together with the successive Pareto fronts in NSGA-II and HS. This sorting is then used
to guide the search: the best solutions deposit more pheromones in ACO, the worst solutions
are removed from the population in NSGA-II and from the harmony memory in HS.

Hybrid Metaheuristics to Manage Complex Vehicle Routing Problems

1.3. Research Questions 5

Chapter 6 presents a real vehicle routing problem from a logistics company.

The complexity of this VRP lies in the fact that many constraints have to be considered to
find a solution that can be used by the company, and in the fact that such a solution has to be
found very quickly. A different set of several customers has to be served every day. The time is
very short since the scheduling of those customers in routes and vehicles is done the day before at
the very end of the day when most information is known and sent to the information systems of
the company and to the vehicles’ drivers. Due to the constraints, there is often a small number
of solutions that include all customers. The company uses currently two commercial tools, one
of them provides a solution very quickly, but is sometimes not able to include all customers in
routes and some are not served. The second tool solves this problem, but the computation time
varies a lot between days and the quality of the solution provided is not always good regarding
costs.

Five different approaches are proposed to solve this VRP. Two of them are based on classical
metaheuristics, ACO and GA. One is based on ACO and includes a local search. The other two
approaches are hybrid metaheuristics that combine both of them, ACO and GA. In one of them,
ACO-GA, ACO is the main metaheuristic and GA is used for local search. In the other, GA-
ACO, GA is the main metaheuristic and ACO is used to break ties instead of using randomness
when a decision has to be made in order to complete the solution. Those approaches and the
two commercial tools are applied to fifteen real datasets in order to analyze the performance of
the proposed hybrid metaheuristics.

1.3 Research Questions

As explained previously, there is a wide range of real complex problems that cannot be solved
with exact algorithms and therefore need heuristic approaches to be solved. One of these heuris-
tic approach is a swarm-based metaheuristic, Ant Colony Optimization. In order to be really
efficient, the ACO algorithms have to be combined with a local search that intensifies the search
in a promising area of the search space.

The main goal of this thesis can be formulated as the analysis and improvement of current
models and metaheuristics based on ACO algorithms and their application to real combinatorial
optimization problems.

This general research goal can be broken down into more specific research goals:

G1 To review the state of the art related to bio-inspired metaheuristics, mainly centered on
Ant Colony Optimization, but including other approaches such as Genetic Algorithms and
Harmony Search.

G2 To review the state of the art related to Constraint Satisfaction Problems and how they
can be solved with metaheuristics.

G3 To review the state of the art in the different application fields analyzed in this dissertation:
Resource Allocation Problems and Scheduling Problems, specially Timetabling and Vehicle
Routing Problems.

6 Chapter 1. Introduction

G4 To develop different types of models for combinatorial optimization problems: Resource
Allocation Problems and Scheduling Problems, specially Timetabling and Vehicle Routing
Problems.

G5 To design new heuristic and metaheuristic approaches based on ACO.

G6 To hybridize metaheuristics and analyze their performance.

G7 To apply those new approaches and metaheuristics to real industrial problems.

G8 To compare their performance in those problems.

In order to reach those goals, three real optimization problems are used in this dissertation:

1. A course allocation problem in a business school;

2. A class allocation problem in secondary schools;

3. A vehicle routing problem in a logistics company.

Those three problems are modeled as Constraint Satisfaction Optimization Problems and
different approaches are used to find solutions to them. In this dissertation, we also show how
metaheuristics and hybrid metaheuristics can be applied to these real problems. The results
obtained are compared with other traditional approaches and with commercial tools. Several
real datasets from the three organizations have been used to perform this comparison.

1.4 Structure of the thesis

The dissertation has been structured in eight chapters. A brief description of each chapter’s
content is provided below.

� Chapter 1: Introduction. It provides a general background, context and motivations
of this dissertation. The main objectives and research questions are stated, as well as the
dissertation structure, main contributions and publications.

� Chapter 2: State of the Art. It introduces the State of the Art about bio-inspired
metaheuristics and Constraint Satisfaction Problems. It also contains the State of the Art
in three different industrial problems, RAP, MORAP and VRP.

� Chapter 3: Heuristic and ACO Approaches for Resource Allocation Problems.
This chapter presents the allocation problem of students to classes in Swiss secondary
schools. Two models are proposed, the first combines the class allocation problem with a
scheduling problem. The second model includes only the allocation problem and is solved
with two approaches, a CSOP solver and an ACO algorithm.

� Chapter 4: Heuristic and Hybrid Metaheuristic Approaches for RAP Com-
bined with a Scheduling Problem. This chapter describes and solves a Course Alloca-
tion Problem combined with a Course Scheduling Problem. Two approaches are proposed

1.5. Publications and Contributions 7

to solve the Course Allocation problem, a greedy algorithm and a CSOP approach. The
CSOP approach is then adapted to solve the combined problem and compared to an ACO
approach.

� Chapter 5: Comparison of Three Metaheuristics to Handle Many-objective
RAP. In this chapter, ACO and HS are adapted to solve a many-objective RAP. Their
performance is compared to the well-known NSGA-II. The data used to compare their
performance come from Canton de Vaud and is the same as the data used in chapter 3.

� Chapter 6: Hybrid Metaheuristics to Manage Complex Vehicle Routing Pro-
blems. This chapter describes and solves a complex Vehicle Routing Problem with many
different constraints: time windows, heterogeneous fleet, multiple depots, multiple routes
and incompatibilities. Five different approaches are presented based on two metaheuris-
tics, ACO and GA that are applied in their standard formulation and combined as hybrid
metaheuristics. The results are compared with two commercial tools.

� Chapter 7: Conclusions and Future Work. The Research Questions described in
Chapter 1 are addressed in order to provide some answers, based on the results obtained
from this research.

1.5 Publications and Contributions

During the development of this work several publications have been generated. This section
provides a short description of them, and the chapters where these contributions can be found
in the thesis. Finally, these publications have been organized by journals and conferences, and
sorted by year.

� Journals accepted

– A.-M. Nogareda and D. Camacho. Optimizing satisfaction in a multi-courses alloca-
tion problem combined with a timetabling problem. Soft Computing, pages 1–10, 2016

* Short summary: The resource allocation problem and the timetabling problem
are traditional kinds of NP-hard problems. Both problems can be found in univer-
sities where students can select courses they would like to attend before or after
the timetabling is done. When demand exceeds capacity, the universities may
allocate the available seats independently from the timetabling, but students may
have then to decide which courses they are going to attend because of clashes in
their timetable. To avoid this situation, some universities prepare their timetable
considering students’ selection. In addition to that, students may submit prefe-
rences over courses, and the school administration has to assign seats and do the
timetable considering both preferences and clashes. In this paper, both problems,
seat allocation and timetabling, have been modeled separately and combined as
Constraint Satisfaction Optimization Problems (CSOP). Two algorithms have
been designed and implemented to find a solution to both problems simultane-
ously maximizing the satisfaction of students using a CSOP solver and an Ant
Colony Optimization algorithm for the timetabling problem. The results of both

8 Chapter 1. Introduction

algorithms are then compared. The allocation and timetabling procedures are
based on preferences for courses defined by students, and on the administration’s
constraints at the Ecole Hôtelière de Lausanne. Three real data sets have been
used to carry out a complete experimental analysis. High quality solutions are
obtained in a few minutes with both approaches; those solutions are currently
used at the Ecole Hôtelière de Lausanne.

* JCR: Q2, 2015 Impact factor: 1.630

* The contribution of this paper is fundamental for Chapter 4. It includes two
approaches used to solve the problem that combines the Course Allocation and
the Course Timetabling.

– A.-M. Nogareda and D. Camacho. A constraint-based approach for classes setting-
up problems in secondary schools. International Journal of Simulation Modelling
(IJSIMM), 16(2), 2017

* Short summary: In this paper, we present the problem of allocating students to
classes in Swiss secondary schools, where students have different profiles due to
their level in some fields or to the options they attend. The pedagogical objective
is to have a high diversity of profiles within a class and similarity between classes.
In order to achieve this goal, the problem is modelled as a resource allocation
problem (RAP), where students are resources, using a constraint satisfaction op-
timization approach (CSOP). The RAP is then solved in two different ways, with
a solver for CSOP, and with an ant colony optimization algorithm (ACO). Eight
real datasets are used to compare their performance. The ACO algorithm pro-
vides better solutions than the CSOP solver in a shorter time. Results show that
the pheromones used in the ACO help to find better solutions in a much smaller
amount of time. The short computation time enables the school’s directors to
simulate different compositions of their future classes before having the final re-
sults of the last exams.

* JCR: Q2, 2015 Impact factor: 1.683

* The contribution of this paper is fundamental for Chapter 5. It includes the
approaches based on ACO and on CSOP used to solve the problem of class allo-
cation.

� Journals under review

– A.-M. Nogareda, D. Camacho, and J. Del Ser. A comparison of bio-inspired heuristics
applied to many-objective resource allocation problems. Soft Computing, Submitted
2017

* Short summary: In this article, we present a many-objective optimization pro-
blem found in secondary education in Switzerland, where the composition of

1.5. Publications and Contributions 9

classes combines pedagogical objectives with resource and economic objectives.
In this type of problem, it is usually not possible to find one optimal solution
since, most of the time, objectives are not compatible and improving one objective
will penalize one or more of the other objectives. Therefore, there are several op-
timal solutions to the problem, whose set is called the Pareto front. To solve this
many-objective problem, we adapt three multi-objective approaches, based on
the ant colony optimization algorithm (ACO), on the harmony search algorithm
(HS), and on an evolutionary algorithm (NSGA-II). Eight real datasets from
different schools were used and all our approaches find several non-dominated
solutions for each of them. Two methods are used to compare the performance
of those approaches, a simple one with a direct hypervolume comparison and a
smoothing method where Pareto fronts are approximated with several runs for
each approach. In four datasets, the three approaches are competitive, in the
other four datasets NSGA-II outperforms the other approaches.

* JCR: Q2, 2015 Impact factor: 1.630

* The contribution of this paper is fundamental for Chapter 5. It introduces the
class allocation problem as a MORAP and the three different approaches to solve
it based on ACO, GA and HS. It also includes the hypervolume indicator and a
variant of it, the Smoothing Hypervolume, to compare the results of the three
approaches.

– A.-M. Nogareda, J. Del Ser, and D. Camacho. Hybrid metaheuristics to manage
complex vehicle routing problems. Engineering Applications of Artificial Intelligence,
Submitted 2017

* Short summary: This paper addresses a multi-attribute Vehicle Routing Pro-
blem, the maVRP, with time constraints, heterogeneous fleet, multiple depots,
multiple routes and incompatibilities of goods. Four different approaches are
presented and applied to fifteen real datasets. They are based on two meta-
heuristics, Ant Colony Optimization (ACO) and Genetic Algorithm (GA), that
are applied in their standard formulation and combined as hybrid metaheuristics
to solve the problem. As such ACO-GA is a hybrid metaheuristic using ACO as
main approach and GA as local search. GA-ACO is a memetic algorithm using
GA as main approach and ACO as local search. The results regarding quality
and computation time are compared with two commercial tools currently used to
solve the problem. Considering the number of customers served, one of the tools
and the ACO-GA approach outperform the others. Considering the cost, ACO,
GA and GA-ACO provide better results. Regarding computation time, GA and
GA-ACO are the most competitive among the benchmark.

* JCR: Q1, 2015 Impact factor: 2.368

* The contribution of this paper is fundamental for Chapter 6. It presents the VRP
and four different approaches based on ACO and GA. It also includes the results
of two commercial tools in order to compare the performance of the proposed
approaches.

10 Chapter 1. Introduction

� Conferences

– A. M. Nogareda and D. Camacho. Integration of ant colony optimization algorithms
with gecode. In Principles and Practice of Constraint Programming (Doctoral Pro-
gram CP 2014), International Conference on, pages 59–64, 2014

* Short summary: The objective of this study is to integrate an Ant Colony Opti-
mization (ACO) algorithm with a Constraint Satisfaction Problem (CSP) model
using Gecode, which is a C++ library developed to solve CSPs. The resul-
ting hybrid heuristic will be tested with several problems of Course Timetabling:
some benchmark examples and a real problem. The combination of ACO and
CSP should produce interesting results since ACO algorithms are efficient when
dealing with huge problems and CSPs models are well-adapted to handle hard
constraints. Another goal is to test different variants of this heuristic in order to
tune its components and analyze their performance.

* Core: A

* The contribution of this paper is fundamental for Section 3.10. It introduces the
Course Timetabling Problem and the ACO approach applied to it.

– A. M. Nogareda and D. Camacho. Constraint-based model design for timetabling
problems in secondary schools. In Innovations in Intelligent SysTems and Applica-
tions (INISTA), 2015 International Symposium on, pages 1–6. IEEE, 2015

* Short summary: In this paper, we propose a constraint-based model for the
combination of a course timetabling problem and a course allocation problem
for secondary schools in Switzerland. Course timetabling has been widely stu-
died for Universities, but for schools, solutions have only been proposed for spe-
cific countries or even for specific schools. In fact, timetabling problems present
the difficulty of being case-specific through specific satisfaction constraints. In
addition, due to a recent reform of the education system in Switzerland, the
timetabling problem is combined with a course allocation problem that has an
important impact on timetables. Indeed, some topics are defined by a curricu-
lum but each student may be assigned to up to five different options depending
on past grades and student choices. Both problems, timetabling and allocation
must be solved simultaneously and educational objectives are related to both
composition of classes and timetables of students. A description of the problem
and the educational objectives to consider are presented. Finally, a complete
constraint-based model based on hard and soft constraints has been designed to
solve the combined problem, both types of constraints are described in detail and
a qualitative complexity analysis of this model is given.

* Core: C

1.5. Publications and Contributions 11

* The contribution of this paper is fundamental for Chapter 3. It introduces the
complete model for the class allocation problem combined with a timetabling
problem.

– A.-M. Nogareda and D. Camacho. Optimizing satisfaction in a multi-courses alloca-
tion problem. In Intelligent Distributed Computing IX, pages 247–256. Springer, 2016

* Short summary: The resource allocation problem is a traditional kind of NP-
hard problem. One of its application domains is the allocation of educational
resources. In most universities and business schools today, students select the
courses they would like to attend by ranking the proposed courses. However, to
ensure the quality of a course, the number of seats is limited, so not all students
can enroll in their preferred courses. Therefore, the school administration needs
some mechanism to assign the available resources as soon as possible, trying to
optimize the students’ wishes. In this paper, the course allocation problem has
been modeled as a Constraint Satisfaction Optimization Problem (CSOP) and
two metrics have been defined to quantify the satisfaction of students. The pro-
blem is solved with Gecode, and its results are compared with a greedy-based
algorithm showing how the CSP approach is able to optimize the allocation of
resources optimizing the students’ satisfaction. Another contribution of this work
is related to the possibility to allocate simultaneously several courses, generating
feasible solutions in a short time. The allocation procedures are based on pre-
ferences for courses defined by students, and on the administration’s constraints
that define the available resources at the Ecole Hôtelière de Lausanne. Ten
datasets have been generated using the distribution of preferences of students for
courses, and a complete experimental analysis has been carried out using these
datasets evaluating the performance of the algorithms considered.

* The contribution of this paper is fundamental for Chapter 4. It includes the two
approaches used to solve the course allocation problem, the greedy algorithm and
the CSOP solver.

12 Chapter 1. Introduction

Chapter 2

State of the Art

This chapter is dedicated to the current state of the art in the main research fields that compose
the heart of this thesis. The first part of it expounds three bio-inspired algorithms; it starts with
an overview of a swarm-based algorithm, Ant Colony Optimization, which is a recurrent theme
in this thesis, and is completed with two other population-based algorithms, Genetic Algorithm
and Harmony Search.

The chapter continues with the definition of Constraint Satisfaction Problems and with
several examples of application of this theory. This part is completed with two approaches used
to solve such problems.

It continues with the Resource Allocation Problem that includes two special cases of this pro-
blem. The first case is about the allocation of courses to students in universities, and the second
one deals with the course timetabling problem, where several resource types have to be allocated
to courses: timeslots and rooms. This topic is then generalized to the Many-objective Resource
Allocation Problem that includes a metric used to compare different resolution approaches.

The last section of this chapter describes the Vehicle Routing Problem, different variants of
it and the different approaches that have been applied to this classical problem.

2.1 Bio-inspired Metaheuristics

The research community has been trying and addressing optimization problems for several cen-
turies. In the 17th century, Pierre de Fermat worked on the minimization and maximization of
mathematical functions. Since then, this research field has been intensively studied, especially in
the 20th century with the development of operations research during the World Wars and, some
years later, with the development of computer science. The first optimization methods were
mostly based on mathematical theories and on exact methods [152]. Nevertheless, as the com-
plexity of the studied problems increased, those exact methods became difficult to use because
of the time needed to find optimal solutions. Stochastic or heuristic search became popular in
the middle of the 20th century.

The complexity of the problems increased with the industrial evolution of our society. Nowa-

13

14 Chapter 2. State of the Art

days a huge number of the complex problems found in the research community and in the in-
dustry are NP-hard, which implies that they cannot be optimally solved in a reasonable amount
of time if the size of the problem is too large. This is the case, for example, for the Vehicle
Routing Problem that consists in finding a set of routes that serve a list of customers with a
specific fleet of vehicles. If the number of customers is small, an optimal solution can easily be
found, but if the amount of customers is too large, a brute force approach is not efficient [87].
Another example is the Course Timetabling Problem whose objective is to find a timetable with
no clashes for students and teachers and that considers, most of the time, a lot of additional
constraints such as teacher availability or room capacity [89].

More formally, NP-hard stands for Non-deterministic Polynomial time. The validation of a
solution of an NP-hard problem can be done very quickly, in a polynomial time. But there is
currently no efficient method that would find an optimal solution to the problem in a reasonable
amount of time [54, 87].

Due to this complexity, several heuristic approaches and metaheuristics have been proposed
to find near-optimal solutions to those problems that range from basic strategies, such as random
search, to more sophisticated approaches, such as bio-inspired metaheuristics [13, 15, 38].
The latter method has its origins in Evolutionary Computing that are inspired by the natu-
ral evolution theory of Darwin. An important component of this area is Genetic Algorithm
(GA) that became popular in the 1970s [130, 151]. Those approaches apply the selection pro-
cesses found in nature to the solutions of a problem by combining and modifying them through
crossover, mutation and selection operators. Another important bio-inspired metaheuristic is
Ant Colony Optimization (ACO) based on the foraging behavior of ants [45, 44, 43, 94]. When
they are looking for food, ants deposit pheromones on the paths they use to inform other ants
that they have used this path. This pheromone concept is used in ACO as probabilities that
guide the search to and through areas of the search space that are interesting and promising
because good solutions have been previously found there.

Other examples of bio-inspired metaheuristics are Particle Swarm Optimization (PSO), Coral
Reef Optimization (CRO) or Harmony Search (HS). PSO is based on the behavior of bird flocks
or fish schools and defines a position and a velocity for each particle; the position corresponds
to a possible solution and the velocity contains information about how this solution is going
to evolve [25, 49, 144]. CRO is based on coral reefs’ reproduction; after reproduction, corals,
that correspond to possible solutions, must fight to find a space in the reef, some of them die
because of this fight and this corresponds to the evolution of the population [126]. HS is inspired
from the composition process of musicians; harmonies correspond to possible solutions and new
solutions are developed using existing harmonies or randomness [55, 84, 96].

The difference between a heuristic algorithm and a metaheuristic lies in the fact that a
heuristic algorithm is often designed to solve a specific problem, but is usually not adapted to
any other type of problem. On the contrary, a metaheuristic is a stochastic approach independent
from any type of problem that defines a framework with a set of rules. The rules in GA describe
the operations that can be performed on existing solutions in order to find new solutions to the
problem. The rules in ACO explain how the pheromones can be used to calculate the probability
to select a component of the solution. A metaheuristic is thus a strategy that enables a guided
search through the complete space search with the objective of finding (near) optimal solutions,
but with no guarantee that the optimal solution will be found [12, 15].

The metaheuristics can be classified into different categories [13, 15]. Some of them are

2.1. Bio-inspired Metaheuristics 15

population-based metaheuristics, as the bio-inspired examples mentioned above. They are
based on a population of solutions: particles in PSO, ants in ACO, chromosomes in GA, corals
in CRO and harmonies in HS. Some of them rely on the evolution of those populations, the
individuals interact with each other to generate new individuals, as GA, CRO or HS. Some
of them make use of individuals that look for a solution on their own independently from
the others, those metaheuristics are the swarm-based metaheuristics, as ACO and PSO, the
intelligence depends on the collective behavior of individuals.

Another category is the local search metaheuristics which use a single solution that will
be changed iteratively with usually small moves. This category uses the neighborhood of a
solution that contains all the solutions that can be reached through these small moves. Simulated
annealing is an example that uses a move strategy similar to the annealing process in metallurgy
that consists in controlling the heating and cooling of a material in order to reduce its defects
[81]. Tabu search uses a memory to store past moves that are forbidden for a given number of
steps during the search [58].

Hybrid metaheuristics have also been proposed to improve their performance [12, 40, 52,
59, 121, 150]. The hybridization consists in combining a metaheuristic with another optimization
approach that might be another metaheuristic or come from a different field like exact algorithms.
ACO often uses a local search component in order to improve the quality of the solutions found
by the ants, the same occurs to GA. Both metaheuristics are efficient when they explore the
search space looking for a promising area in it, but lack sometimes efficiency when they want
to explore in a more systematic way a promising area. When GA is combined with such a local
search, the resulting hybrid metaheuristic is often called memetic algorithm [118].

Those metaheuristics are applied to many different types of problems, among them NP-hard
problems [5, 66, 89]. Examples can be found in classical problems, as the n-Queens problem. But
they are also used to solve real complex problems, as the Resource Allocation Problem whose
objective is to assign a limited number of resources to objects that compete to get those resources
[49, 113]. Part of those problems are combinatorial optimization problems whose objective is
to find in a finite set of solutions a solution or the solutions that optimize the objective of the
problem.

In the rest of the current section, three bio-inspired metaheuristics are presented with more
details, Ant Colony Optimization, Genetic Algorithm and Harmony Search.

2.1.1 Ant Colony Optimization (ACO)

The swarm-based metaheuristics are part of the population-based metaheuristics. They
are inspired from the behavior of entities that have simple rules as individuals, but a very
complex interaction level between individuals. Among those swarm-based metaheuristics, the
most popular are ACO inspired by the ants’ foraging behavior and PSO inspired by birds’
behavior.

This section is dedicated to ACO. Section 2.1.1.1 presents the first ACO algorithm and two
variants of it are presented in Sections 2.1.1.2 and 2.1.1.3. Section 2.1.1.5 gives a few examples
of applications of ACO algorithms.

16 Chapter 2. State of the Art

Figure 2.1: Ants behavior. Left: At the beginning, no pheromone is present on the paths, the
selection is random. Right: After some time, more pheromone is present on the shortest path, more
ants select this path.

2.1.1.1 Ant System

As explained in [44, 136], Ant System (AS), the first ACO algorithm introduced by Dorigo in
1992, is a probabilistic algorithm based on the foraging behavior of real ants. When an ant has
found food, it deposits a pheromone on its way back to the nest. This pheromone is then de-
tected by other ants that prefer to follow trails where more pheromone was deposited. However,
pheromones evaporate over time, which implies that either more ants deposit pheromone on a
trail or the pheromone on this trail disappears. Ants follow thus the shortest path to reach the
food source since on this path ants go faster and therefore more pheromone is deposited than
on the longer paths.

This behavior was shown with a real experimentation in 1989, where a colony of ants that
had to go from their nest to the food source [65]. The ants had to select between two paths, one
of them being shorter. At the beginning of the experimentation, the selection of the path was
completely random, but after some time, more and more ants selected the shorter path. Figure
2.1 illustrates this behavior.

This problem is similar to finding the shortest path between two vertices in a graph. In an
ACO algorithm, a specific number of artificial ants build a solution step by step selecting the
next edge considering the quantity of pheromone deposited there by the previous ants. If more
pheromone is deposited, the probability is higher that the ant selects this edge. When this ant
finds a solution, it deposits pheromone on the edges it has selected before, whose quantity may
depend on the quality of the solution it found.

In addition to the pheromones, artificial ants may use heuristic information, the visibility,
that depends on the analyzed problem, to select a path. For instance, in the Traveling Salesman
Problem, the visibility may be related to the distance from the current city to the other unvisited
cities. The probability that in step t the city i is connected to the city j, which means that the
arc (i, j) is selected, by ant k is thus given in AS by Expression 2.1 [45].

pkij(t) =

ταij(t)·η

β
ij∑

u∈Nk
i
ταiu(t)·η

β
iu

if j ∈ Nk
i

0 if j /∈ Nk
i

(2.1)

Where τij(t) is the quantity of pheromones on arc (i, j) in step t, ηij is the visibility of arc
(i, j), Nk

i is the list of cities that can be connected to the city i, and α and β are two parameters
that balance the importance of the pheromones’ quantity versus the visibility. If the pheromones

2.1. Bio-inspired Metaheuristics 17

become more important, then a promising area of found solutions is deeper explored. On the
other hand the visibility enables to explore new areas that might be promising as well.

At the end of a complete iteration, that is when all ants have built a solution, the quantity
of pheromones on each path, that is on each arc (i, j), has to be updated as in Expression 2.2

τij(t+ 1) = ρ · τij(t) + ∆τij(t) = ρ · τij(t) +
m∑
k=1

∆τkij(t) (2.2)

where

∆τkij(t) =

{
ϕ
Lk

if ant k has selected arc (i, j) in step t

0 otherwise
(2.3)

Where m is the number of ants, ρ is the evaporation rate, whose objective is to avoid the
convergence to a local optimal solution, ϕ is a constant and Lk is an indicator of the quality of
the solution, for example the length of the tour in the case of the TSP.

An ACO algorithm can be seen as a construction metaheuristic, which is a method that is
going to build a solution step-by-step. At each step, each ant builds a new part of the solution
by selecting an arc, but does not try to improve or change what has already been built in the
previous steps.

Algorithm 1 represents the simplest ACO algorithm where at each iteration, solutions are
built by each ant of the colony and pheromones are updated before the next iteration starts.

Algorithm 1: The basic ACO

1 Initialize pheromones, visibility and probabilities
2 for i = 1, . . . , NbIterations do
3 Solutions are built by ants
4 Local search is applied if needed
5 Pheromones are updated

2.1.1.2 Elitist strategy

The elitist strategy consists in giving a higher importance to the global best solution found
in the previous iterations [45]. If the value of the indicator of the quality of the best solution
found so far is L∗, then pheromones are updated at the end of an iteration as in Expression 2.4

τij = ρ · τij + ∆τij + e · ϕ
L∗

(2.4)

Where e is the number of elitist ants. If more elitists ants are considered, more importance
is given to the best solution found so far. But if e is too large, then the global best solution leads
all ants to find a solution in the neighborhood of it and after some time, all ants find exactly
the same solution.

18 Chapter 2. State of the Art

2.1.1.3 Max-Min Ant System

The difference between AS and the Max-Min Ant System (MMAS) depends on the pheromone
update. While in AS, all ants update the pheromones at each iteration, in MMAS, this is no
longer the case [141].

In MMAS, only the ant that found the best solution of the iteration deposits pheromone on
the trails, this best solution being the one from the current iteration or the global one, as in
Expression 2.5. This characteristic allows to exploit more the best solutions by exploiting more
their neighborhood and searching a more promising area of the search space.

τij = ρ · τij + ∆τ bestij (2.5)

Another characteristic of MMAS is the fact that the quantity of pheromones deposited on a
trail is bounded, that is limited to a maximum τmax and a minimum τmin. If, after the update,
τij is greater than τmax, its value is reduced and τij = τmax. If, after the update, τij is smaller
than τmin, its value is increased and τij = τmin. These limits for the pheromones avoid the
stagnation of the search in the neighborhood of the best solution and enable the exploration of
other areas in the search space.

At the beginning of the search, the pheromones are initialized to the maximum τmax, this
initialization is performed again from time to time during the iterations in order to avoid local
optimal solutions.

2.1.1.4 Local search

In combinatorial problems, such as TSP, ACO algorithms are more efficient when combined with
a local search that improves the solutions found by the ants [94, 99, 140].

Local search approaches are neighborhood searches where the initial solution is improved by
small changes [93, 140]. These small changes can be performed until the best solution in the
neighborhood is found or only once.

In [140], to solve TSP, the local search mechanism is the 2-opt heuristic that consists in
exchanging 2 edges, and the 3-opt mechanism that consists in exchanging 3 edges. This local
search is applied to all solutions found by the ants or only to the best solution of the iteration.

Tabu search is another popular local search combined with ACO algorithms [93, 155]. In a
tabu search approach, a small change can be accepted even if the solution becomes worse, for
example to escape from a local optimum. In order to avoid to go back to this local optimum, a
tabu list of solutions is kept and changes that would lead to a tabu solution are forbidden.

2.1.1.5 Applications of ACO algorithms

ACO algorithms have often been used to solve different types of optimization problems. In the
early years of this metaheuristic, most of the problems where ACO was used could be represented

2.1. Bio-inspired Metaheuristics 19

with a graph, such as the Traveling Salesman Problem [140] or the Vehicle Routing Problem
[10, 153].

Very quickly ACO algorithms spread across the research community and were used in many
different fields, for example ACO has been used to define the location of hubs in a network and
to allocate each node of this network to one of the hubs [122]. ACO algorithms have also been
adapted to solve a multi-objective resource allocation problem [23], a timetabling problem [133]
or a course allocation problem [106].

ACO algorithms have also been applied to classical problems, such as the Graph Coloring
Problem [28, 46] or the Quadratic Assignment Problem [53, 142].

Another field of application of ACO algorithms is video games [63, 64]. The objectives in
this type of problem can be very different, from automatically solving a level of the game to
generating automatically a new level.

2.1.2 Genetic Algorithms (GA)

Considering Darwin’s evolution theory, a population evolves considering four main characteris-
tics among others:

� Genes are used to code and store the characteristics of individuals. The genotype of an
individual will thus contain all those characteristics.

� The individuals fit more or less in their environment depending on their genotype.

� One or several individuals together will generate new individuals that inherit characteris-
tics of the generators through the inheritance of genes.

� The individuals that fit more in their environment reproduce themselves more than the
ones that are not adapted. The new individuals should thus be more adapted to the
environment than the previous generations.

Those characteristics are the basic fundamentals of GA that were introduced by John Holland
[71] and that can be used, as ACO, to solve optimization problems [1, 7, 151].

GA start with an initial population of individuals that is usually generated randomly. Each
individual corresponds to one solution of the optimization problem that has to be solved. This
solution has thus to be representable with a genotype which is usually coded as a linear vector
of numerical values. For example, in the case of a TSP, this vector can be the sequence of the
cities that are visited in the corresponding solution, each gene is thus a position in the sequence.

In order to evaluate a solution, that is the fitness of the individual in the environment, GA
need an evaluation function, often called fitness function. The objective of the optimization
problem is to minimize or to maximize this fitness function. Different solutions can thus be
compared to each other, the ones with a better fitness function fit better in their environment.

The existing solutions in the population, often referred to as parent population, are used to
create new individuals, often called children or offspring solutions. This generation of solutions
is based on the following steps:

20 Chapter 2. State of the Art

Figure 2.2: Genetic algorithm. The initial parent population generates an offspring population
and then a new parent population is selected among them.

� Selection of parents: One or more solutions are selected among the parent population.
The selection process is described in Section 2.1.2.1.

� Reproduction: The chosen parent solutions generate a new individual through repro-
duction that consists in two main operators:

– Crossover: When two or more solutions are selected among the parent population,
they are combined together in order to generate a new individual.

– Mutation: A single solution may be selected, it generates a new individual through
a mutation process.

The reproduction process is described in Section 2.1.2.2.

� Replacement: Individuals in the parent population may be replaced by new individuals
generated by reproduction. The replacement process is described in Section 2.1.2.3.

In all steps, two important factors have to be considered. The diversity of the population
is critical to ensure that the search space is explored in an effective way. If the diversity is
reduced too early in the search process, this one might be stuck in a search area that does not
contain the optimal solution. On the other hand, the selection pressure gives a higher chance
to be selected to the individuals that have a better fitness function. Increasing the selection
pressure leads to a high convergence rate, but diversity decreases and the solution found might
be a local optimal. Reducing the selection pressure favors diversity, but the search may then
become random if the fitness function is not considered.

Figure 2.2 represents the steps of the genetic algorithm: the initial parent population gene-
rates an offspring population and then a new parent population is selected among both popu-
lations. Algorithm 2 represents the steps of a simple genetic algorithm. The initial population
is generated randomly, then at each step of the process, the fitness function is evaluated for all
individuals and a new population is created with offspring solutions.

2.1. Bio-inspired Metaheuristics 21

Algorithm 2: Simple Genetic Algorithm

1 Initialize population P randomly
2 for i = 1, . . . , NbIterations do
3 Evaluate fitness function for all individuals I ∈ P
4 Pnew ← ∅
5 while Pnew is not complete do
6 Select parents in P
7 Generate an offspring solution Inew with the selected parents
8 Pnew ← Pnew ∪ {Inew}
9 Select the solutions for P in P ∪ Pnew

2.1.2.1 Selection of parents

The selection of parents might be based on several methods. Two of them, proportionality and
tournament, are explained in this section.

The proportionality rule calculates the probability p(Ii) of each solution Ii to be selected
using the fitness value of Ii. A solution with a better fitness should have more probability to
be selected than a worse solution, for example as in Expression 2.6, where n is the size of the
population. The best solution with the highest fitness value has the highest probability to be
selected.

p(Ii) =

f(Ii)∑n
l=1 f(Il)

If the objective is to maximize the fitness function

1− f(Ii)∑n
l=1 f(Il)

If the objective is to minimize the fitness function
(2.6)

In the tournament method, a set of nt solutions are randomly selected among the n solutions
of the population, nt ≤ n. This selection can be with or without replacement, which means that
one solution can be selected several times or only once respectively. The chosen parent will then
be the best solution of this set of nt solutions.

2.1.2.2 Reproduction

The reproduction process generates the new individual, the offspring solution, with the selected
parents. Two operators are used in GA, the crossover and the mutation. Both of them are
explained in this section.

The crossover consists in using the genes of two or more individuals to generate the offspring
solution. Several methods that use two parents are described here.

The simplest crossover is the one-point crossover [71]. As the solution corresponding to one
individual is represented with a linear vector of numerical values, this technique will randomly
select a crossover point and exchange the beginning and the end genes of both parents as shown

22 Chapter 2. State of the Art

Parent 1 Parent 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Parent 2 Parent 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⇓ ⇓
Offspring 1 Offspring 1

1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

Offspring 2 Offspring 2

0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1

Figure 2.3: Generation of offsprings through k-point crossover. Left: One-point crossover. Right:
Two-points crossover.

Parent 1

1 1 1 1 1 1 1 1 1

Parent 2

0 0 0 0 0 0 0 0 0

⇓
Offspring 1

1 0 0 1 0 1 1 0 1

Offspring 2

0 1 1 0 1 0 0 1 0

Figure 2.4: Generation of offsprings through uniform crossover.

in the left illustration of figure 2.3. The left part of parent 1 is completed with the right part of
parent 2 in order to create offspring 1, and offspring 2 is generated with the remaining genes of
both parents.

The two-points crossover is similar to the one-point crossover, but two crossover points are
used as in the right illustration of figure 2.3. The parent that supplies the genes changes at each
crossover point.

Another crossover technique, called the uniform crossover, consists in using each gene indi-
vidually instead of using sequences of genes. Each gene of the offspring will come from one of
the parents with a probability that is usually 0.5. Each gene of a parent has thus a probability
of 0.5 to become part of the offspring.

The mutation operator is used to randomly change the value of genes with a mutation
probability. It introduces in this way new values for genes that may not exist in the population.
As crossover uses existing genes in the population, this might lead to a situation where diversity
is lost and genes have the same value in all solutions of the population. The mutation operator
ensures that the exploration of the complete search space is possible. Nevertheless if the mutation
probability is too high, the search might not converge to the optimal solution [61]. With a low
mutation probability, the selection pressure is high, but the search might converge to a local
optimum. Figure 2.5 illustrates the mutation of a solution. One gene is randomly selected and

2.1. Bio-inspired Metaheuristics 23

1 1 1 1 1 1 1 1 1

⇓
1 1 1 1 1 0 1 1 1

Figure 2.5: Mutation.

its value is changed.

2.1.2.3 Replacement

Once the offspring population is generated, a method has to be implemented in order to decide
which individuals will be kept in the population among the parent and the offspring solutions
[130, 149]. In the generational GA, the offspring population completely replaces the parent
population as in algorithm 2. In the steady-state GA, each generated offspring solution might
replace an individual in the parent population. A strategy for the selection of the replaced
individual has thus to be defined, it can be for example the parent or the worst solution in the
population or the oldest one. Replacing the worst solution increases the selection pressure.

2.1.3 Harmony Search (HS)

Harmony Search (HS) is a metaheuristic approach proposed in 2001 to solve optimization pro-
blems [56, 55, 96]. It is inspired from the music improvisation process whose objective is to
find a pleasant harmony. A harmony is composed when each musician plays a note with their
instrument. For example, in a trio of musicians, each musician plays a note and the trio of those
notes composes a harmony.

HS is a population-based metaheuristic, algorithm 3 represents the steps of the HS. The
population is stored in the harmony memory (HM) that contains harmonies already created.
This population has to be initialized in the same way as the initial population in GA. Then
step-by-step, new harmonies are improvised using HM, each musician selects an existing note in
HM or generates it randomly from all possible notes of their instrument. If this new harmony
is better than the worst harmony in HM, it replaces it. If not, it is rejected.

The Harmony Memory Considering Rate (HMCR) is the parameter that determines if
the note selected by the musician comes from HM or is randomly generated. The HMCR ranges
from 0 to 1 and a value of 0.95 means that the new note has a probability of 95% to come from
the HM and of 5% to be randomly generated.

The second parameter of HS is the Pitch Adjusting Rate (PAR) which allows to tune the
note to a note that is close to the one initially generated. A value of 0.1 for the PAR means
that there is a probability of 10% that the generated note is changed to a neighboring note.

In HS, each note corresponds to a component of the solution and a harmony is a solution
to the problem. As in GA, a solution can be a linear vector of numerical values. When a new
solution is created, for each variable of this vector, there is a probability of HMCR to select

24 Chapter 2. State of the Art

its value among the values already assigned to it in an existing harmony in HM. There is a
probability of 1-HMCR to assign a random value to this variable. If the value comes from HM,
then this value is changed to the closest upper value with a probability PAR/2 or to the closest
lower value with a probability PAR/2.

Algorithm 3: Harmony Search Algorithm

1 Populate HM with random allocations
2 for i = 1, . . . , N do
3 for Each variable do
4 if rand(0, 1) < HMCR then
5 Select randomly a solution in HM
6 Assign to the variable its value in this solution
7 if rand(0, 1) < PAR then
8 Change the value to the closest upper or lower value with a probability of

0.5 each

9 else
10 Assign a random value to the variable

11 else
12 Assign a random value to the variable

13 if The new solution is better than the worst solution in HM then
14 Replace the worst solution with the new solution in HM

2.2 Constraint Satisfaction Problems (CSP)

Many problems in the field of Artificial Intelligence can be modeled as Constraint Satisfaction
Problems (CSP) which are in fact problems where a set of objects (variables) should be assigned
to a state (values) that satisfies a set of constraints. Once a problem is modeled as a CSP,
different techniques can be used in order to find solutions to the problem, as for example ACO,
GA or HS.

As described in [62, 148], a Constraint Satisfaction Problem (CSP) is a problem that
can be defined with three sets (X,D,C). The first set X contains the variables of the problem,
X = {X1, X2, . . . , Xn}. The set D = {D1, D2, . . . , Dn} contains the domains of the variables;
for each variable Xi, all the possible values that can be assigned to Xi belong to its domain Di.
A finite set of constraints C = {C1, C2, . . . , Cm} limits the possible combinations of values that
can be assigned to the variables.

Definition 2.2.1. An assignment A for a CSP is the allocation of a value xi to variables Xi ∈ X.

A = {(X1, x1), (X2, x2), . . . , (Xm, xm)}

such that the value assigned to a variable belongs to its domain and any assigned variable has
one single value assigned to it:

2.2. Constraint Satisfaction Problems (CSP) 25

∀(Xi, xi) ∈ A : xi ∈ Di

∀(Xi, xi), (Xj , xj) ∈ A : Xi = Xj ⇒ xi = xj

If there are variables in X that have no value assigned, the assignment is said to be partial.
If values are assigned to all variables, the assignment is said to be complete. If all constraints
Ci ∈ C are satisfied by an assignment, the assignment is said to be consistent. If there is one or
more constraints not satisfied, the assignment is said to be inconsistent. An assignment that is
complete and consistent solves the CSP and is therefore a solution to the CSP.

2.2.1 Examples of CSPs

Different NP-hard problems can be modeled as CSPs [16]. A few classical examples are briefly
described in this section.

2.2.1.1 The n-Queens Problem

The n-Queens Problem consists in placing n chess queens on a n × n chessboard so that no
queen threatens another queen. There exist solutions for n ≥ 4 [70]. A constraint satisfaction
model of the problem has the three following sets:

� X = (X1, X2, . . . , Xn) has n variables, one for each queen, each queen being already
assigned to a row in the chessboard, that is Xi is assigned to row i.

� The domain for each variable is the set of the columns in the chessboard, so:

Di = {1, . . . , n}

� The constraints consist in forbidding the placement of two queens such that they are
threatening each other:

– One row contains one and only one queen. This is the case since Xi belongs to row i.

– One column contains one and only one queen:

∀i, j ∈ {1, . . . , n} : i 6= j ⇒ Xi 6= Xj

– Any diagonal (complete or short) contains no more than one queen:

∀i, j ∈ {1, . . . , n} : |i− j| 6= |Xi −Xj |

where | · | represents the absolute value.

Figure 2.6 shows a possible solution to the 4-queens problem, where the sets of variables,
domains and constraints of the CSP are:

� Variables: X = {X1, X2, X3, X4}.

� Domains: D1 = D2 = D3 = D4 = {1, 2, 3, 4}

26 Chapter 2. State of the Art

q
q

q
q

Figure 2.6: Solution to the 4-queens problem.

Figure 2.7: Solution to a Graph-Coloring problem with 5 vertices and 3 colors.

� Constraints:

X1 6= X2 X1 6= X3 X1 6= X4

X2 6= X3 X2 6= X4 X3 6= X4

|X1 −X2| 6= 1 |X1 −X3| 6= 2 |X1 −X4| 6= 3
|X2 −X3| 6= 1 |X2 −X4| 6= 2 |X3 −X4| 6= 1

2.2.1.2 The Graph-Coloring Problem

One variant of the Graph-Coloring Problem is based on a graph G = (V,E) with n vertices
V and m edges E:

V = {v1, v2, . . . , vn} E = {(vi1, vj1), (vi2, vj2), . . . , (vim, vjm)}

This problem consists in assigning a color to each vertex so that adjacent vertices do not
share the same color. An example is given in figure 2.7

A constraint satisfaction model of the problem has the three following sets:

� X = {X1, X2, · · · , Xn} has n variables, one for each vertex.

� The domain for each variable is the set of available colors: Di = {c1, c2, · · · , ck}, where k
is the number of available colors.

� The constraints consist in forbidding to use the same color for two adjacent vertices:

∀(vi, vj) ∈ E : Xi 6= Xj

2.2. Constraint Satisfaction Problems (CSP) 27

1 2 3 4 5 6 7 8 9

4 5 6 7 8 9 1 2 3

7 8 9 1 2 3 4 5 6

9 1 2 3 4 5 6 7 8

3 4 5 6 7 8 9 1 2

6 7 8 9 1 2 3 4 5

8 9 1 2 3 4 5 6 7

2 3 4 5 6 7 8 9 1

5 6 7 8 9 1 2 3 4

Figure 2.8: Solution to a Sudoku 9× 9 grid, with nine 3× 3 sections in white/grey.

2.2.1.3 The Sudoku Game

Another example of CSP is the Sudoku Game. A classic Sudoku game with a 9 × 9 grid, as
in figure 2.8, modeled as a CSP has the following sets:

� X = {X1, X2, . . . , X81}, where each variable Xi corresponds to one of the cells in the 9×9
grid.

� D = {D1, D2, . . . , D81}, where each domain Di corresponds to the possible values of Xi,
which means that Di = {1, 2, 3, 4, 5, 6, 7, 8, 9},∀i ∈ {1, 2, . . . , 81}.

� C = {C1, C2, C3} where:

– C1: Any row of the grid contains all the values {1, 2, 3, 4, 5, 6, 7, 8, 9}
∀i ∈ {1, 10, 19, 28, 37, 46, 55, 64, 73} : Alldifferent(Xi, Xi+1, Xi+2, . . . , Xi+8)

– C2: Any column of the grid contains all the values {1, 2, 3, 4, 5, 6, 7, 8, 9}
∀i ∈ {1, 2, 3, . . . , 9} : Alldifferent(Xi, Xi+9, Xi+18, . . . , Xi+72)

– C3: Any 3× 3 section of the grid contains all the values {1, 2, 3, 4, 5, 6, 7, 8, 9}
∀i ∈ {1, 4, 7, 28, 31, 34, 55, 58, 61} :
Alldifferent(Xi, Xi+1, Xi+2, Xi+9, Xi+10, Xi+11, Xi+18, Xi+19, Xi+20)

where Alldifferent(·) means that all listed variables have a different value.

Figure 2.8 contains a solution to the 9 × 9 Sudoku problem. One value is assigned to each
variable, so the assignment is complete. Every row, column and 3× 3 section contains all values
in {1, 2, 3, 4, 5, 6, 7, 8, 9}, so the assignment is consistent.

The Sudoku game can also be modeled as a graph-coloring problem where each cell corre-
sponds to a vertex. If two cells are in the same row, column or 3 × 3 section, then those cells
are connected with an edge. Nine colors are available, each of them corresponding to a number
in {1, 2, 3, 4, 5, 6, 7, 8, 9}.

28 Chapter 2. State of the Art

2.2.2 Constraint Satisfaction Optimization Problems (CSOP)

In a CSP, all constraints are hard constraints, that means that all of them must be satisfied in
order to have a consistent solution. Nevertheless, in most problems, another type of constraints
has to be considered, the soft constraints that should be satisfied, but may be violated.

For example, when classes are scheduled in a school, there are hard constraints such as
the fact that a teacher cannot teach two or more classes simultaneously. There are also soft
constraints such as preferences of teachers who might prefer to teach in the afternoon. In
different situations, a constraint may be soft or hard, a teacher can prefer to teach in the
afternoon, which is a soft constraint, but another teacher is not available in the morning, which
is a hard constraint.

The soft constraints are considered most of the time as a cost that should be optimized.
This cost can be considered as the objective of the problem and is similar to the fitness function
defined in Section 2.1.2.

As defined in [38, 148], a Constraint Satisfaction Optimization Problem (CSOP) is a
CSP that has an objective to optimize. Those problems can thus be described with three sets
and one function (X,D,C, f), where X, D and C are the set of variables, their domains and
the set of constraints. f is a function that maps a numerical value to each possible solution.

As in a CSP, a solution to a CSOP is defined as an assignment of one value to each variable
so that the value of each variable belongs to its domain and all the constraints of C are satisfied,
as defined in Definition 2.2.1. The objective of the problem is not only to find one solution to
the problem or the set of all possible solutions, but the goal in a CSOP is to optimize the value
of f , that is to maximize or to minimize its value depending on the problem.

2.2.2.1 The Traveling Salesman Problem (TSP)

An example of a CSOP is the Traveling Salesman Problem, where there is a list of cities, a
salesman and a travel cost associated to each pair of cities [4]. The problem consists in finding
a sequence of those cities so that the salesman visits all cities and the total cost is minimized.
The function f is thus the sum of the travel cost between the neighboring cities in the sequence.

The TSP can be modeled as a CSOP with the following sets:

� X = {X1, X2, . . . , Xn}, where each variable Xi corresponds to the city in position i of the
sequence.

� D = {D1, D2, . . . , Dn}, where each domain Di corresponds to the possible values of Xi,
which means that Di = {1, 2, · · · , n},∀i ∈ {1, 2, . . . , n}. Di is thus the list of cities.

� The set of constraints C forces to have Xi 6= Xj , ∀i, j ∈ {1, 2, · · · , n}.

If c(i, j) is the travel cost between cities i and j, then the fitness function f for any solution
{(X1, x1), (X2, x2), . . . , (Xn, xn)} is calculated as given in Expression 2.7. The objective of the

2.2. Constraint Satisfaction Problems (CSP) 29

Figure 2.9: Two different solutions for the same TSP with 10 cities.

CSOP is to minimize the value of f .

f =
n∑
i=1

c(xi, xi+1) (2.7)

Figure 2.9 represents an example of a TSP with 10 cities and two different solutions to visit
all cities.

2.2.3 Search algorithms to solve CSPs and CSOPs

Different search algorithms can be used to solve CSPs and CSOPs, most of them are based on:

� Depth-first search with backtracking is a recursive algorithm where each step consists
in selecting an unassigned variable and assigning a value to it. If all the constraints of C
are satisfied afterwards, the partial solution is said to be consistent. If not, another value
has to be tested. If no consistent value exists for this variable, then the algorithm goes
back to the last assigned variable and assigns to it a value that has not been tested yet.
The drawback of this method is that it might be time consuming for NP-hard problems
whose size is large or even for mid-size problems.

� Local search algorithms consist in improving locally an assignment, by making small
changes at each step, for example changing the value assigned to one variable. The draw-
back of this method is that there is no guarantee that the search does not fall in a local
minimum in case of a CSOP.

� Stochastic search methods are used to speed up the search process. As many real
problems are NP-hard, an exact approach or a local search are not efficient. A stochastic
search consists in looking for solutions in a random way, that may be guided through
some rules as in ACO. The drawback of this method is that there is no guarantee that the
search finds the optimal solution and it is usually very difficult to know how far the found
solution is from the optimal one.

There are several solvers that are available to model and solve CSPs and CSOPs such as
Gecode, Choco or OR-Tools. Gecode is a software library developed in C++ that can be used

30 Chapter 2. State of the Art

Figure 2.10: Steps in a Depth-first search with backtracking.

to solve both types of problems [131]. It contains all the tools needed to model a CSP: variables
and their domain, and constraints. It also has engines that can be used to find solutions to the
problem. As it is an open system, it allows users to implement their own variables, constraint
definitions and search engines.

A constraint is implemented through a propagator that will remove from the domain of a
variable all the values that are not compatible with this constraint. Gecode has already several
standard propagators that are implemented, such as distinct that enforces integer variables to
be all different, as the Alldifferent constraint in the Sudoku game in Section 2.2.1.3. Another
example is the linear propagator that posts linear constraints like

∑n−1
i=0 ai · xi = c.

Regarding the structure of the search, Gecode is provided with options that allow the user
to decide which variable should be considered next and which value should be considered for
this variable, for example the variable with the smallest domain or the smallest value.

Two search engines are implemented in Gecode:

� Depth-first search (DFS) with backtracking that will either return complete solu-
tions or inform that no solution exists.

� Branch-and-bound that can find, if it exists, the best solution to a problem that has an
objective function.

The branch-and-bound splits the search space into smaller spaces (branching) and calculates
a bound for the fitness function in those smaller spaces. This bound allows then to prune part
of the tree and to speed up the search.

Several problems have been modeled and solved with Gecode, some of them are presented
in the user manual [131]. Another example can be found in [69] where Hellkvist and Sjöstedt
propose a model to solve a course timetabling problem. Gecode was also used to solve a multi-
robot path planning problem modeled as a CSP [125]. Between 2008 and 2012, Gecode finished
first in all categories of the MiniZinc Challenge, which is a competition of CSP solvers that uses
a variety of benchmarks.

2.2.4 Integration of ACO and CSP models

The exact methods presented in Section 2.2.3 that can be used to solve CSPs are not always
efficient when dealing with problems with a huge search space, but those methods are well-
adapted to hard constraints. The situation is different for ACO algorithms which are efficient
with huge search space, but not always with hard constraints.

2.2. Constraint Satisfaction Problems (CSP) 31

The idea of combining an ACO algorithm with a CSP model has been proposed by Solnon
in 2002 in [135], and in 2000 in [134] for a permutation CSP, which is a CSP where the values
assigned to the n variables must be a permutation of n known values and must satisfy a set of
constraints.

Since then, a few approaches have been proposed to integrate both methods and have been
tested on real problems.

� In [136], an ACO algorithm is used to solve a classic CSP: the car sequencing problem.

� In [78], the standard backtracking procedure is replaced by an ACO search and this method
is applied to the car sequencing problem.

� In [40], some variables are assigned with an ACO algorithm and some others with a branch-
and-bound or a depth-first procedure. This hybrid metaheuristic is then applied to the
problem of balancing a bike sharing system. The implementation of those methods was
done using Gecode.

Algorithm 4 represents the ACO algorithm used to solve a CSOP. For each variable Xi ∈ X
and each x ∈ Di, a pheromone is associated to this assignment: τ(Xi, x). The initialization, line
1, consists in assigning an initial value to all pheromones as in Expression 2.8.

∀Xi ∈ X,∀x ∈ Di : τ(Xi, x) = τinit (2.8)

At each iteration, every ant builds a solution assigning a value to all variables. The proba-
bility of selecting a value x for a variable Xi depends on the pheromone corresponding to the
assignment (Xi, x) and on a heuristic contribution, the visibility η(Xi, x). The visibility gives
an indication about the interest of an assignment, for example in the TSP, two cities that are
close should have a higher probability, so a higher visibility, to be consecutive in the sequence
than two cities distant from one another.

The probability of selecting a value x ∈ Di for the variable Xi ∈ X is given by Expression
2.9 where η(Xi, x) is the visibility of the assignment (Xi, x), α is the weight of the pheromone
and β is the weight of the visibility.

∀Xi ∈ X,∀x ∈ Di : Prob(Xi, x) =
τ(Xi, x)α · η(Xi, x)β∑

di∈D τ(Xi, di)α · η(Xi, di)β
(2.9)

At the end of the iteration, the pheromones evaporate from all assignments and the ant
that found the best solution deposits pheromones on the assignments of its solution. The
probability to select those assignments in a future iteration will thus be incremented. This
increment ∆τ(Xi, x) is proportional to the quality of the solution found µ, if the solution is
better, ∆τ(Xi, x) is bigger. Expression 2.10 may be used to calculate ∆τ(Xi, x) when the
objective is to minimize the value of the fitness function f where ϕ is a parameter of the ACO

32 Chapter 2. State of the Art

Algorithm 4: The ACO algorithm for a CSOP

Input: Number of iterations, number of ants
Output: Solution µ

1 Initialise pheromones, visibility and probabilities
2 for i = 1, . . . , NbIterations do
3 µiter = ∅
4 for j = 1, . . . , NbAnts do
5 µ = ∅
6 for k = 1, . . . , n do
7 Select a value x ∈ Dk for Xk with a probability Prob(Xk, x)
8 µ = µ ∪ (Xk, x)

9 Calculate f(µ)
// The best solution of the iteration is updated if the solution

found by the ant is better

10 if f(µ) is better than f(µiter) then
11 µiter = µ

// The global best solution is updated if the solution of the iteration

is better

12 if f(µiter) is better than f(µbest) then
13 µbest = µiter

// The pheromones and the probabilities are updated

14 for k = 1, . . . , n do
15 for x ∈ Dk do
16 τ(Xk, x) = (1− ρ) · τ(Xk, x) + ∆τ(Xi, x)

17 Calculate the probabilities Prob(Xi, x),∀i ∈ {1, . . . , n} and x ∈ Di

algorithm.

∀Xi ∈ X,∀x ∈ Di : ∆τ(Xi, x) =

ϕ

f(µ)
if (Xi, x) belongs to the solution µ

0 otherwise
(2.10)

2.3 Application fields

2.3.1 The Resource Allocation Problem (RAP)

The Resource Allocation Problem (RAP) consists in assigning a limited number of resources
to objects (or agents). For example, we have RAPs in the following situations:

� In production, when tasks are assigned to people in a scheduling problem, the tasks are
the objects and the people are the resources [68, 95].

2.3. Application fields 33

� In asset management, the resource is the amount of money that can be invested and the
objects are the different available assets [47].

� In universities, the students have to be allocated to courses, they are the objects and the
seats in the different courses are the resources [17, 106].

A RAP can be modeled as a CSP where the variables correspond to the allocation of resources
to agents, the domains contain the available resources and the constraints ensure an assignment
that can be used as a solution to the problem [106]. Another option, more flexible, is that
the variable Xij represents if resource j is allocated to agent i, in this case, the domain of all
variables is {0, 1}. A variable Xij = 1 means that resource j is allocated to agent i, if Xij = 0
then j is not allocated to i.

A detailed example can be found in Section 4.5 where the course allocation problem presented
in Section 2.3.1.1 is modeled as a CSOP. The variables represent the courses (resources) allocated
to students (agents). The domain of each variable is thus the list of courses offered. The
constraints limit the number of students per course and the combinations of courses that can
be allocated to a student.

Most of the RAPs include hard constraints that have to be considered. If any of those
constraints is not fully satisfied in a solution, this solution is not consistent, as described in
Definition 2.2.1. We can find for example capacity constraints as in the course allocation problem
mentioned above [67, 17, 106]. Skills constraints are also important, for example when human
resources are allocated to tasks, such as when nurses are allocated to shifts in [95].

Usually a RAP has an objective such as maximizing satisfaction or productivity, in which
case, the RAP can be modeled as a CSOP: besides the sets of variables, domains and constraints,
there is an objective function. In the three examples presented above, possible objectives for
those RAPs are:

� In production: Maximize productivity.

� In asset management: Maximize revenue or Minimize risk.

� In universities: Maximize students’ satisfaction.

If the objective is influenced by both sides, objects and resources, the RAP is often referred to
as a matching problem [139]. For example, when seats are allocated to students in a university,
students may submit preferences for the courses, in which case, the simple objective might be to
maximize students’ satisfaction [106]. If professors have also preferences for students, because
of their background or their grades, then both types of preferences, students’ and professors’,
have to be considered in order to find a good solution to the problem.

A classic example of matching problems is the stable marriage problem. In this problem
there are two sets of elements of the same size, similar to a set of resources and a set of agents.
Each element of a set has a ranking of preferences for the elements of the other set. A matching
consists in mapping each element of one set to one element of the other set.

When comparing two solutions of a matching problem, there are two important character-
istics: stability and Pareto-efficiency. A matching is said to be stable if there is no element A

34 Chapter 2. State of the Art

in the first set and B in the second set such that A prefers B over the element A is currently
mapped to, and B prefers A over the element B is currently mapped to. A matching µ is said to
be Pareto-efficient if there is no other new matching such that in the new matching, all elements
are at least as satisfied as in the first matching and at least one element is more satisfied than
in the first matching.

Two examples of RAP are presented in the following sections: the first describes the Course
Allocation Problem and the second the Course Timetabling Problem. In Section 2.3.2, the
RAP is generalized to a many-objective RAP where several objectives have to be considered
simultaneously.

2.3.1.1 Example of RAP: The Course Allocation Problem

The Course Allocation Problem (CAP) is critical in many universities and business schools.
When students can select the courses they would like to attend, they often submit preferences,
but have no guarantee that they will get a seat in all the courses they want to enroll in due
mainly to quality and security constraints, that limit the number of seats available in a course
[1, 21, 22].

Students may submit their preferences through different systems and seats are allocated with
mechanisms often designed to maximize students’ satisfaction [18, 41, 82, 106, 124, 138]. Two
examples of those systems are:

� A Ranking system, where students rank the courses from their first choice to their last.
Depending on the institutions, one or several courses may be ranked as a first choice. A
formal definition of a ranking is presented below.

� A Bidding system that enables students to indicate how much they prefer a course over
the others. Each student is credited with a specific amount of points and he bids points
on his favorite courses. The number of points given to the different courses depends on
the strategy of the student and on his preferences.

Definition 2.3.1. Let’s consider S as the list of students and C as the list of courses. The
ranking of a student s ∈ S is a relation �s, such that ∀ci, cj ∈ C:

ci �s cj ⇔ s strictly prefers ci over cj
ci =s cj ⇔ s has no preference of ci over cj or cj over ci

With both systems, several allocation methods can be used. The simplest method is based
on a First-come First-served approach. The first student to submit preferences is immediately
allocated, as all courses are empty, this student receives his first choices. This process is applied
to all students submitting preferences. This mechanism is very simple, but its main drawback is
the unfairness for students: the last student to submit preferences is treated much worse than
the first student.

Budish and Cantillon compare two mechanisms that use the Ranking system [17]. Both
methods are applied once all students have submitted their preferences. The first mechanism,
used in Harvard Business School, consists in allocating one course to each student at each step

2.3. Application fields 35

of the process. For the first step the priority order of students is random and this order is
reversed in each subsequent step. The second mechanism is the Random Serial Dictatorship
which considers a random order of students and allocates all courses to one student at each step;
it is a First-come First-served mechanism where the arrival sequence is defined by the random
order.

Sönmez & Ünver analyze mechanisms that use the Bidding system [138]. The first one
is similar to what is used at the University of Michigan Business School, which uses Bidding
information to infer students’ preferences. In this approach, the first choice of a student is the
course on which he bids the highest number of points. Their conclusions show that this method
results in an efficiency loss since there might be situations where a student bids more on a
popular course and consequently is not assigned to his preferred course. From the student’s
point of view, this bidding is the only way to get this popular course, since a lot of students
probably bid more points on it. This strategy leads to a situation where the student bids too
few points to his favorite course and is therefore not assigned to it.

Diebold & al. analyze four matching methods to allocate a course to each student using
three different metrics to compare the results [41]. In this problem, both the students and the
courses have preferences over each other, which means that there is a ranking of the courses
from the students and a ranking of the students from the courses. This second ranking might
be due to the fact that professors prefer students with good grades.

Among the matching methods, Diebold & al. compare the First-come First-served (FCFS)
and the Random Serial Dictatorship (RSD).

The Gale-Shapley Student-Optimal Stable Mechanism (SOSM) is a deferred acceptance al-
gorithm. At each step, each student who still has to be allocated applies for his favorite course
among the courses he hasn’t applied to in the previous steps. Each course c has a capactiy qc
and selects a maximum of qc students among the ones who applied for it in this step and who
have been tentatively assigned to it in the previous one. Those students are tentatively assigned
to this course, the others are rejected. The algorithm stops when no student is rejected.

The SOSM is represented in algorithm 5. Lc(s) is the list of courses from which student s
has not been rejected. Ls(c) is the list of students who applied for c and have not been rejected.
Sr is the list of students who have to apply to a course because they have been rejected from
the ones they have already applied.

The SOSM is a mechanism that produces stable matchings, but that might be not Pareto-
efficient.

The fourth matching method proposed by Diebold & al. is the Efficiency Adjusted Deferred
Acceptance Mechanism (EADAM) and uses SOSM. EADAM runs SOSM and at the end of
SOSM, students tentatively assigned to a course and rejected during the last step of SOSM, are
identified. The course they were rejected from in this last step is removed from their preferences
and SOSM is run again with those updated preferences. SOSM is run iteratively removing
each time preferences from students. It stops when no course is removed from the students’
preferences.

The first comparison metric is the average rank, that measures the global welfare of students.
Each course has a rank for each student that is the position of this course in the student’s ranking.
The average rank calculates the average of the ranks of the courses allocated to students.

36 Chapter 2. State of the Art

Algorithm 5: The Gale-Shapley Student-Optimal Stable Mechanism

Input: List of courses C, List of students S, Capacity qc of each course c ∈ C, Ranking
of courses by students �s, Ranking of students by courses �c

Output: List of students Ls(c) assigned to each course c ∈ C
1 for s ∈ S do
2 Lc(s) = C

3 for c ∈ C do
4 Ls(c) = ∅
5 Sr = S
6 while Sr 6= ∅ do
7 for s ∈ Sr do

// Each student who has been rejected applies for his favorite

course among the ones from which he has not been rejected

8 c = {c ∈ Lc(s) : c �s ci,∀ci ∈ Lc(s)}
9 Ls(c) = Ls(c) ∪ {s}

10 Lc(s) = Lc(s)\{c}
11 Sr = Sr\{s}
12 for c ∈ C do

// Each overbooked course rejects the less favorite students among

the ones who applied for it

13 while Card(Ls(c)) > qc do
14 s = {s ∈ Ls(c) : s �c si,∀si ∈ Ls(c)}
15 Ls(c) = Ls(c)\{s}
16 Sr = Sr ∪ {s}

The second comparison metric is the popularity, that compares matchings considering the
number of students who prefer a matching over the other. A matching is more popular than a
second matching if more students prefer the first matching to the second one.

Finally, the rank distribution compares how many students were assigned to their first choice,
how many to their second choice, and so on.

Their conclusion is that SOSM and EADAM provide solutions fairer for students than FCFS
or RSD since there is no order of students that defines a priority. The EADAM approach
improves the global satisfaction of students compared to the SOSM.

2.3.1.2 Example of RAP: The Course Timetabling Problem

The Course Timetabling problem (CTT) has been widely studied for several decades. Ne-
vertheless as every educational institution has its own requirements, the real problems that have
to be solved are almost always different since they include constraints specific to one or several
institutions [115]. The main components used on a CTT are resources (teachers, rooms, time-
slots and students), activities (lectures, meetings, laboratory sessions, etc.) and constraints:
Resources have to be assigned to activities and this assignment must satisfy the constraints.

2.3. Application fields 37

Usually activities have to take place within 5 weekdays. This weekly schedule is then applied
during a specific period of time, e.g. one semester or one year.

For schools, solutions have been proposed for specific countries or even specific schools [9,
117]. As each school has its own set of constraints, it is sometimes difficult or impossible to
apply the same method that was used to solve a problem in a different school with different
rules.

For universities, the CTT problem has been more studied than for schools. This is probably
partly due to the fact that benchmark datasets have been provided through an international
competition [103, 111]. Therefore two main variants of the CTT have been widely studied.
In the Post-enrolment based variant (PE-TT), students have to select the courses they want
to attend before the timetable is constructed. In the Curriculum-based variant (CB-TT), the
university proposes several curricula, each of them containing a set of courses; to avoid clashes
the courses of one curriculum should not overlap. In the first variant, PE-TT, the allocation
of students to the courses is a constraint and clashes for students have to be avoided. In the
second variant, a student selects a curriculum, and clashes are not admitted in a curriculum, so
students have no clashes in their timetable [39, 90, 100].

The CTT problem can be modeled as a Constraint Satisfaction Problem (CSP), but as it
is NP-hard, the search space is usually huge. The exact algorithms that have been developed
to solve CTT problems can be classified into three main categories: Tree Search, like Branch-
and-Bound; Dynamic Programming and Integer Programming. Due to the complexity of the
problem, exact algorithms work properly only with small size problems. Therefore, from the
first years of research in this field, metaheuristics have often been used to solve them [6, 89].
Evolutionary Algorithms and Tabu Search are the most popular methods [9, 89, 115, 121, 129].
Other techniques have also been used for example ACO [110, 132, 133] or PSO [143]. The
drawback of some of those methods is that they are not always efficient dealing with hard
constraints.

2.3.2 The Many-objective Resource Allocation Problem (MORAP)

In most real optimization problems, there are rarely situations where a single objective has to
be considered in order to find a good solution to the problem. For example, when a family is
looking for a house, it would ideally be close to work, close to school, big and cheap. Usually
such objectives are not compatible and the solution that is selected, in the end, has to meet a
trade-off between all objectives.

In a single objective optimization problem, there is often one single optimal solution. When
dealing with several objectives, there are usually several solutions, whose set is called the Pareto
front. A solution in the Pareto front is said to be non-dominated since it is not possible to
improve one objective in it without penalizing one or more of the other objectives. All solutions
in the Pareto front are equally good since there is no way to compare them considering only
the objectives of the problem. Usually the objectives are opposite, as in asset management,
maximize revenue and minimize risk [47], or in staff scheduling, minimize operational cost and
improve working conditions [95].

In some situations, the objectives can be combined into a weighted function so that the
problem becomes a single-objective RAP. When there are two or three objectives, the problem

38 Chapter 2. State of the Art

Figure 2.11: Example of a Pareto front (F1) and of the successive Pareto fronts (F2, F3, . . .).

is referred to as a multi-objective problem (MORAP) and the Pareto front can be easily
visualized in a chart. When there are four or more objectives, the problem is called a many-
objective problem and the visualization of the Pareto front becomes impossible if all objectives
must be depicted.

Figure 2.11 illustrates a two-objective Pareto front, where both objectives have to be max-
imized. Each circle corresponds to a solution. The grey ones are dominated: there is at least
one black point that is better for one of the objectives and at least as good for the other ob-
jective. The black ones are in the Pareto front, there is no solution that dominates them. This
figure illustrates also how the solutions can be grouped into successive Pareto fronts. F1 is the
first Pareto front and contains all non-dominated solutions; F2 is the second Pareto front and
contains the solutions that are dominated only by solutions that belong to F1; and so on.

Many approaches have been proposed in the past to solve multi-objective or many-objective
optimization problems (MOOP), with Evolutionary Algorithms among the most popular tech-
niques [24, 32, 57, 75, 156]. Other approaches have also been used such as PSO [25, 49], CRO
[128], Simulated Annealing [3], HS [101, 127], or ACO [2, 120], among others.

When it comes to evolutionary algorithms, the well-known Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) [33] has become a standard approach and is often used as a benchmark
against which the performance of other algorithms is assessed [114, 48]. The NSGA-II is based
on the identification of successive Pareto fronts, each of them being dominated by the previous
ones. Those successive fronts along with a second criterion focused on the maximization of the
crowding distance enable the selection of the best solutions that are used to continue the search
[50].

In the recent years, different problems have been modeled as MORAP and solved with
different types of approaches. Dynamic programming has been used to optimize a portfolio in a
project financing firm [8]. Neighborhood search [91], PSO [49] and GA [113] have been applied
to the classical problem of assigning workers to jobs where the objectives are to maximize
the efficiency and to minimize the cost. Evolutionary algorithms have also been used for the
allocation of projects to students where five different objectives had to be considered [119] and
for the allocation of resources to projects over several periods of time [57].

2.3. Application fields 39

Figure 2.12: Two approximations of the Pareto set.

A common example can be found in finance, where investment portfolios are most of the time
optimized considering return and risk. Usually the objective of a portfolio is to maximize the
return, that is the expected revenue, and at the same time to minimize the risk. Nevertheless,
when a high return is expected, the risk level is normally also high, and with a low risk level,
the expected return is also low. There is no solution in the Pareto front better than the other
solutions in the Pareto front. The selection of a non-dominated solution is based on other criteria
such as the risk aversion of the investors.

2.3.2.1 The Hypervolume Metric

The hypervolume metric is an indicator often used to compare the performance of different
approaches applied to many-objective optimization problems [73, 116, 156]. In a maximization
problem, the hypervolume between the origin and the optimal Pareto front is maximized if all
points of the optimal Pareto front are considered. When two approximations of the Pareto
front are compared and one of them covers a greater hypervolume than the other, the latter is
dominated.

Figure 2.12 contains an example with two approximations of the Pareto front of a MORAP
with two objectives. For a MORAP with two objectives, the hypervolume corresponds to the
surface between the origin and the Pareto front. The hypervolume of the first approximation
covers the dashed area. The hypervolume of the second approximation covers the grey surface.
Even if one solution of the dashed Pareto front is not dominated by the grey Pareto front, the
grey hypervolume is greater than the dashed hypervolume. The hypervolume metric indicates
that the grey approximation is better than the dashed approximation.

Monte Carlo simulation can be used when the computation of the hypervolume is too com-
plex. A simple hypercube has to be considered, which contains all the non-dominated solutions,
and whose hypervolume can easily be computed. In figure 2.12, the hypercube could be the
rectangle that contains all non-dominated solutions. A number N of random points are then
generated randomly in this hypercube. Among those N points, n are dominated by the approx-
imation of the Pareto set. The hypervolume can thus be approximated by n

N ·HV , where HV
is the hypervolume of the hypercube.

40 Chapter 2. State of the Art

Figure 2.13: The crowding distance.

2.3.2.2 The Crowding Distance

When two solutions belong to two different successive Pareto fronts, as illustrated in Figure 2.11,
both solutions can be compared since one of them dominates the other. When two solutions
belong to the same front, the crowding distance enables this comparison . The crowding distance
of a solution provides an estimation of the density of solutions around this solution. It is
computed considering its neighbors for each objective in the front the solution belongs to.

One example for the computation of the crowding distance is given here. Let Fi be one of
the successive fronts. For one objective and its fitness function f , let V = {v1, . . . , vk} be all the
distinct values taken by f in the solutions belonging to Fi, those values are sorted in ascending
order. For a solution µ ∈ Fi, if f(µ) = vi, its crowding distance for f is given by Expression
2.11 and its global crowding distance is the sum of the crowding distances for all objectives as
given by Expression 2.12. Figure 2.13 illustrates the crowding distance of a solution i.

CDf (µ) =

1 if i ∈ {1, k}
vi+1 − vi−1
vk − v1

otherwise
(2.11)

CD(µ) =
∑
f

CDf (µ) (2.12)

2.3.3 The Vehicle Routing Problem (VRP)

The Vehicle Routing Problem (VRP) was first presented formally by Dantzig and Ramser in
1959 as a problem of gasoline delivery from a bulk terminal to a large number of service stations
[29]. The VRP consists in finding routes to serve a given number of customers from one or
several depots, that is to collect or to deliver goods to those customers [29, 85, 147]. Figure 2.14
represents a VRP with 3 depots (houses) and 14 customers (circles). All customers are served
from one depot since each of them belongs to one of the 4 routes.

2.3. Application fields 41

Figure 2.14: A VRP problem with 3 depots, 14 customers and 4 routes.

The VRP is a generalization of the TSP, presented in Section 2.2.2. A simple definition of a
simple VRP can be made with a graph G = (V,E,C) where V = {v0, v1, v2, . . . , vn} is the set of
vertices, E = {(vi, vj) : vi, vj ∈ V, i 6= j} is the set of arcs and C = {cij} is a cost matrix that can
represent distances, travel times or costs associated to each arc of E. A VRP consists in finding
a set of routes that all start and finish at the vertex v0, the depot, and visit all other vertices
{v1, v2, . . . , vn} exactly once, considering different types of constraints [19]. The objective is to
minimize the total cost of those routes.

Several variants of the VRP have been studied, each of them with different types of con-
straints, among them:

� VRP with Time Windows (VRPTW). Each customer has a time window and has to be
served within this time window. A customer has an earliest service time, it cannot be
served before, and a latest service time, it cannot be served after this deadline [137, 150].

� Capacitated VRP (CVRP). The vehicles have a limited capacity and the goods loaded on a
vehicle cannot exceed this capacity [51, 79]. The fleet in this variant can be homogeneous,
all vehicles have the same characteristics [29], or heterogeneous, vehicles have different
capacities or different time characteristics regarding for example availability [60, 42, 98].

� VRP with Multiple Trips (VRPMT). A vehicle can do more than one route, it can have a
sequence of routes, each of them serving a sequence of customers.

� VRP with Simultaneous Pickup and Delivery (VRPSPD). Serving a customer means to
deliver goods to him or to pick up goods from him or both simultaneously [37, 34].

Those variants are often combined since in real-life problems, several constraints’ types have
to be considered, as a heterogeneous fleet for pickup and delivery with time windows at the
customers [5, 11].

In a more generalized version of VRP, at each vertex, there is a customer with a given
demand for delivery or for pickup, a depot or a fleet of vehicles. The objective is to find a set
of routes that visit all or a maximum of customers and minimize the total cost. A vehicle can
perform one or more routes and each route starts at a vertex where a vehicle is available and

42 Chapter 2. State of the Art

finishes at a vertex that corresponds to a parking lot. In addition, there is a set of constraints
that have to be satisfied in order to have a feasible solution to the problem. Those constraints
consider for example:

� Time: time windows or loading or unloading time at the customer’s facility and depots,
time availability of the vehicles, maximum working and driving times [83];

� Compatibility: between vehicle and customer, between customer and depot, between cus-
tomers served in the same route [36];

� Capacity: of vehicles, of depots.

Regarding the cost, in addition to the travel cost for each edge used by the routes, several
costs have to be considered most of the time. For example, there can be a cost associated with
the working time of the routes or a fixed cost generated per use of a vehicle, in which case it
might be interesting to have more travel costs, but fewer vehicles. All those costs can also vary
depending on the time of day [66]. There might even be a cost penalty due to delivery delay
[35]. The objective of a VRP is usually to minimize the total cost of the solution.

Many different approaches have been used to solve VRPs. Some of them are exact methods
such as Branch-and-Bound [86, 146], or Dynamic Programming [83], but those exact methods
become inefficient when the size of the problem grows as VRPs are NP-hard problems [87].
Therefore, most of the approaches proposed in the literature are approximate methods applied
to a given variant of the VRP. Part of those approaches can be roughly classified as metaheuristics
or heuristics.

PSO is an example of a metaheuristic that has been used to solve different variants such as
VRP with simultaneous pick-up and delivery or with time windows [11, 59, 72, 97]. Another
metaheuristic is ACO that has been applied to several variants of VRPs [10], for example with
multi-compartment vehicles [123], or with time windows with uncertain travel times [145]. GA
have also often been used to solve VRPs [7, 77, 112, 118]. Tabu Search is another metaheuristic
used to solve different variants of the VRP, among them the simple one and the multi-depot
variant, with and without time windows [27].

Chapter 3

Heuristic and ACO Approaches for
Resource Allocation Problems

This chapter presents the problem of allocation of students to classes in secondary schools in
Switzerland where students are grouped in main classes and split and grouped differently for
some subjects. In the first part, a complete constraint-based model is proposed for the problem
that combines the class allocation problem with a scheduling problem that considers the different
classes and how the schedule of the students has to be organized in order to minimize the number
of lessons and of teachers.

In the second part, a model and two resolution approaches are presented for the allocation of
students to classes in order to have classes as mixed as possible regarding the profile of students.
This allocation problem is first modeled as a CSOP. The CSOP is then solved with a CSOP
solver and with an ACO algorithm. Eight real datasets from schools in Canton de Vaud are
used to compare the performance of the two approaches.

The last section deals with a special case of the Course Timetabling Problem. This special
case has been developed as a benchmark and is very often used to compare the performance
of different algorithms proposed to solve timetabling problems. The benchmark datasets have
been used in an international competition in 2007, but are currently still used in the field. The
approach presented here is based on ACO hybridized with a local search.

3.1 Introduction

This chapter is based on the Course Timetabling (CTT) problem faced by secondary schools
in Canton de Vaud, a French-speaking part of Switzerland. A new educational system was
launched in 2013, [30, 104]. Before 2013, students were allocated to classes and then a traditional
timetabling problem was solved with a commercial software in almost all schools in Canton de
Vaud, since all students in a class attended the same lessons. In the new system, there still exist
classes, but a student will be part of one main class and of several other classes depending on
the lessons he has to attend. Students in the same main class are therefore split and grouped
differently with other students for some activities scheduled during the week. This splitting-

43

44 Chapter 3. Heuristic and ACO Approaches for Resource Allocation Problems

grouping process is not specific to Switzerland, it exists in high schools in Greece [9], Germany
[74] and Australia [80]. This process allows to have students in the same main class who are split
for some subjects as for elective courses or because of their level in the subject. In Switzerland,
those subjects represent sometimes more than half of the timetable of a student.

In most cases, the splitting-grouping of students has an impact on the timetable, but is
not considered as an objective. In Canton de Vaud, a student can be described with a profile
with the options he selected and his level in the different fields. The pedagogical objective
is to have main classes as mixed as possible and to have a similar diversity between classes.
Mixed classes are preferred in order to avoid situations where students with the same profile are
allocated to the same class. Students can thus be seen as resources allocated to main classes, and
the objective of the RAP is the diversity within each class and the similarity between classes.
Regarding diversity, classes are competitors since an assignment may lead to one class perfectly
mixed penalizing the others. Regarding similarity, classes have to distribute students in a fair
way among them in order to satisfy this objective as much as possible.

In the first part of this chapter, we propose a complete constraint-based model for the Canton
de Vaud problem that combines both a CTT and a RAP. In the second part, we present a model
and two resolution approaches for the allocation of students to classes in order to have classes as
mixed and similar as possible. This second problem is first modeled as a Constraint Satisfaction
Optimization Problem (CSOP), [148]. The CSOP is then solved with a CSOP solver, Gecode
[131], and with an ACO algorithm, [38, 44, 136].

The rest of the chapter is structured as follows. Section 3.2 describes the problem in Canton
de Vaud. Sections 3.3 and 3.4 present the model for the combined problem CTT & RAP and its
complexity. Section 3.5 describes the model for the simple RAP, the class allocation problem.
Sections 3.6 and 3.7 describe the CSOP and the ACO approaches. Section 3.8 contains the
description of the results. Section 3.9 contains the conclusions.

Appendix A contains a glossary of the notation used in this chapter.

3.2 Description of the problem

In Canton de Vaud, a new organization for the compulsory schooling has been introduced step
by step since August 2013 for the new students; the previous structure was kept for the students
who were already in secondary school in 2013. The secondary school includes three years of
the Swiss educational program (grades 9 to 11, around years 12 to 15) and there are about 90
schools in Canton de Vaud.

Sections. Students are divided into two sections: Voie Générale (VG) and Voie Prégymna-
siale (VP) depending on their grades. VP students are prepared to access a high school, VG
students are prepared to access a vocational school.

Options. Each student assigned to VP has to select one specific option (OS) among four
topics. Each student assigned to VG has to select two options (OCOM), one among two topics
and one among six other topics. Students in VG may select an OS instead of two OCOMs if
some criteria are satisfied, in which case those VG students attend the OS lessons with the VP
students. Table 3.1 contains the list of the available options for both sections.

3.2. Description of the problem 45

Section Group Topic

Economics and Law
VP / Latin
OS Italian

Math and Physics

1
French
Math

2

Creative and Manual Activities
VG / Visual Arts

OCOM Economics, Law and Citizenship
Nutrition Education

Technology
Natural Science

Table 3.1: Available Options for VP and VG.

Levels. VG students are also classified into levels for three important subjects: French,
German and Mathematics (FGM), again depending on their grades. Levels 1 and 2 are part of
the VG section, i.e. a class has only VG students; students with level 3 attend the subject with
the VP students.

For each grade and each section, one or several classes are open in a school; each class may
contain up to 24 students. All students of a class attend the standard courses together, i.e.
courses with no options and no levels, such as English, Sports, etc. Students who selected an
OS are split into groups and each student attends his own OS course together with the students
of other classes who also selected the same OS. Nevertheless, due to capacity constraints, there
might be several sessions for a popular OS, in that case, students who selected this OS are split
among those sessions. The same rule applies for OCOMs and for levels in FGM subjects.

At the end of each semester, a student may be assigned to a different section (from VG to
VP or from VP to VG) or to a different level for the three FGM subjects.

Considering the levels for FGM and the options OS and OCOM, for each grade in a school
there might be up to 4 different profiles for VP students and up to 432 profiles for VG students
in schools that propose 6 OCOMs. A school must propose at least 2 OCOMs out of the 6
available, and even with only 2 OCOMs, they have up to 216 different profiles.

Example. Let’s consider two classes: Q1 and Q2 with 4 students each and their French
level as given in Table 3.2. In that case, each session of the English course is assigned to a whole
class. But students’ allocation to French sessions depends on their levels. Session 1 contains
only students with level F1 and session 2 contains only students with level F2. If capacity
constraints limit the number of students per session to 4, there would be three French sessions
since 5 students have level F1.

In all schools, the director is in charge of assigning students to classes and of creating a
timetable. For the timetabling problem, they use a software that was sufficient before the intro-
duction of the new school organization in 2013. However since 2013, the timetabling problem is
combined with the problem of allocating students to main classes. The directors currently solve

46 Chapter 3. Heuristic and ACO Approaches for Resource Allocation Problems

Class 1 Class 2
Student S1 S2 S3 S4 S5 S6 S7 S8
French level F1 F1 F2 F2 F1 F1 F1 F2

With no capacity constraints

Session 1 Session 2
English course S1 S2 S3 S4 S5 S6 S7 S8
French course S1 S2 S5 S6 S7 S3 S4 S8

With capacity constraints: ≤ 4 students/session

Session 1 Session 2 Session 3
French course S1 S2 S5 S6 S7 S3 S4 S8

Table 3.2: Example of allocation of students to sessions.

the problem in two steps: first, students are manually allocated to classes and then the timetable
is created by running the software. However, due to options and levels, the way the students are
allocated to classes may lead to unfeasible timetables because of resource constraints. Therefore
it might be a long process since directors have to test different allocations. This is a problem
since on one hand the students’ results are known only at the end of the academic year, but on
the other hand the teachers must know the courses they are going to teach before the end of the
academic year and the director must have time to recruit new teachers if needed.

3.2.1 Objectives

There are two educational objectives to consider, each of them is described below. Their sequence
indicates their priority: the first objective has the highest priority and the second the lowest.

Similar difficulty. One educational objective is to have the same difficulty level for all
weekdays. There are some hard subjects, such as Mathematics, German, etc. and some lighter,
such as Sports, Visual Arts, etc. One weekday should not contain only hard subjects while
another contains only light subjects.

Mixed classes. Another educational objective is that the composition of one VG class
should be as mixed as possible regarding the profile of the students in the FGM courses and
the composition of different VG classes of the same grade should be as similar as possible. For
example, if we consider the French course, 10 students with level F1 and 10 students with level
F2, it is better to have 2 classes, each of them with 5 students of level F1 and 5 students of
level F2, than to have 2 classes, one of them with 10 students of level F1 and the other with 10
students of level F2.

However the timetabling of mixed classes is much more constrained since the schedule of
several classes must be aligned. In the mixed option of the previous example, both classes must
have the same schedule for the French lessons since all students in F1 must attend the same
lessons (as do F2 students). Moreover, two French teachers are needed since lessons for F1 and
for F2 are simultaneous. If the school has only one French teacher, then classes cannot be mixed

3.3. The complete model for the combined CTT & RAP 47

D1 D2 D3 D4 D5

Lunch break

Figure 3.1: Canton de Vaud: Week structure: 5 days split into 2 half-days (except Wednesday)
and 4 quarter-days (grey).

for French, therefore all F1 students must be in the same class (as do all F2 students) and the
teacher teaches French in both classes at different times.

3.3 The complete model for the combined CTT & RAP

This section describes the proposed model in detail. Section 3.3.1 describes the different concepts
that have to be considered in the problem of Canton de Vaud. Section 3.3.2 contains the
results that correspond to a complete solution to the problem. Section 3.3.3 describes the hard
constraints that have to be satisfied in order to have a feasible timetable and Section 3.3.4
explains how the soft constraints are considered as a cost for the optimization problem.

3.3.1 Concepts

One week is divided into different concepts, figure 3.1 represents the structure of one week in
Canton de Vaud: Day (d ∈ D), Half-day, Quarter-day and Period (p ∈ P). Each day has
up to 2 half-days separated by a lunch break. Each half-day has up to 2 quarter-days separated
by a small break. Each quarter-day has up to 3 periods. A period p cannot be divided into
smaller items; it belongs to day PD(p) and may be the first or the last period of a half-day or
quarter-day PHF (p), PHL(p), PQF (p), PQL(p) ∈ {0, 1}.

A period has a neighborhood PN(p) of 1 or 2 periods. If PQF (p) = 1, then p is the
first period of a quarter-day and PN(p) contains the period that follows p. If PQL(p) = 1,
then p is the last period of a quarter-day and PN(p) contains the period that precedes p. If
PQF (p) = PQL(p) = 0, then PN(p) contains both periods, the successor and the predecessor
of p.

Grade. In Canton de Vaud, there are 3 grades in secondary schools: 9, 10 and 11. For all
grades, a student cannot have more than Pmax periods per day. Pmax = 8 in Canton de Vaud.

Subjects. A subject is an area of study, e.g. Mathematics, English, Visual Arts, etc.

Rooms, r ∈ R. The information needed for a room is if it requires travel time, RT (r) ∈
{0, 1}.

48 Chapter 3. Heuristic and ACO Approaches for Resource Allocation Problems

Teachers, t ∈ T . Each teacher has a maximal and a minimal number of periods he can
work per week, TWmax(t) and TWmin(t), and a list of periods when he is available TP (t).

Categories, k ∈ K. In the model proposed in this chapter, a category is a concept that
implies a specific grouping of students. A grade-section is a category, e.g. Grade 9-VP and
Grade 10-VG are categories. A grade-OS subject is also a category, e.g. Grade 11-Latin, as
is a grade-OCOM subject, e.g. Grade 10-Visual Arts. Each level of subjects with levels is a
category, e.g. Grade 9-Math-Level 1, Grade 10-French-Level 3.

A category is defined with a maximal number of students per class KSmax(k), its grade
KG(k) and its type KT (k) ∈ {section,OS,OCOM, level}. For all types, except section, a
category has a single subject. For every grade, there is only one category whose type is section.

Classes, q ∈ Q. A class is a grouping of students and is defined with a category QK(q) ∈ K.
All students who belong to a category must be allocated to one class of this category. The number
of classes of a category depends on the number of students belonging to this category.

Courses, c ∈ C. A course belongs to a class CQ(c) ∈ Q. A class has one or several courses
depending on its category: A class of a grade-section category will include all courses with no
levels and no options. The classes of the other categories’ types have only one course.

A course has a list of adapted rooms CR(c) ∈ R, a list of skilled teachers CT (c) ∈ T , a
maximum number of lessons per day CDmax(c), and a weight CW (c).

Some courses shouldn’t be followed or preceded by others, each course has therefore non-
desirable neighbors CF (c), e.g. a German lesson right after an English lesson. On the other hand
some courses should be scheduled just before or after others, each course has therefore desirable
neighbors CN(c), e.g. Visual Arts and Music should be scheduled in consecutive periods since
students will have 2 periods fortnightly instead of 1 period per week for both courses.

Lesson, l ∈ L. A lesson is a teaching unit of a course that can be scheduled in one period. It
is defined with its course LC(l) ∈ C. A course has therefore a list of lessons {l ∈ L : LC(l) = c}.

Students, s ∈ S. A student is defined with the categories he belongs to SK(s). A student
belongs to one single category whose type is section.

3.3.2 Solution

A solution to the complete CTT & RAP problem is described in Definition 3.3.1.

Definition 3.3.1. A solution S = {µk, µT , µR, µP } to the complete CTT & RAP is defined as
the set of the assignments described below, where k ∈ K, l ∈ L, t ∈ T, r ∈ R, p ∈ P . There are
Card(K) + 3 sets in S since there is one set per category k ∈ K.

µk: (s, q) ∈ µk ⇔ q = µk(s) is the class of category k allocated to student s
Note: If k /∈ SK(s), then µk(s) = ∅

µT : (l, t) ∈ µT ⇔ t = µT (l) is the teacher allocated to lesson l
µR: (l, r) ∈ µR ⇔ r = µR(l) is the room allocated to lesson l
µP : (l, p) ∈ µP ⇔ p = µP (l) is the period allocated to lesson l

3.3. The complete model for the combined CTT & RAP 49

The list of lessons a student has to attend can thus be deduced. A student has to attend the
lessons whose course belongs to the one of the classes the student is assigned to:

νL(s) = {l ∈ L : LC(l) ∈ µk(s) ∧ k ∈ SK(s)} (3.1)

3.3.3 Hard Constraints

The hard constraints in an optimization problem must always be satisfied in order to have a
feasible solution. The hard constraints for the CTT&RAP are described below; they are classified
into three categories according to their type. Basic Constraints exist in almost all timetabling
problems. Assignment Constraints are related to the assignment of students to classes and to
the assignment of lessons to periods. Resources Constraints refer to the use of the available
resources.

� Basic Constraints

– A lesson must be assigned to one period, one room and one teacher, ∀l ∈ L:

(µP (l) ∈ P) ∧ (µR(l) ∈ R) ∧ (µT (l) ∈ T)

– A student cannot attend 2 lessons at the same time, ∀s ∈ S, ∀l1, l2 ∈ L:

l1, l2 ∈ νL(s)⇒ µP (l1) 6= µP (l2)

– A teacher cannot teach 2 lessons at the same time, ∀l1, l2 ∈ L:

µP (l1) = µP (l2)⇒ µT (l1) 6= µT (l2)

– A room cannot host 2 lessons at the same time, ∀l1, l2 ∈ L:

µP (l1) = µP (l2)⇒ µR(l1) 6= µR(l2)

– All lessons of a course must be assigned to the same teacher, ∀l1, l2 ∈ L:

LC(l1) = LC(l2)⇒ µT (l1) = µT (l2)

– All lessons of a course must be assigned to the same room, ∀l1, l2 ∈ L:

LC(l1) = LC(l2)⇒ µR(l1) = µR(l2)

� Assignment Constraints

– A student must be assigned to one class of each category he belongs to, ∀s ∈ S,∀k ∈
K:

k ∈ SK(s)⇒ µk(s) ∈ Q

– A student cannot attend more than Pmax lessons per day, ∀s ∈ S,∀d ∈ D:

Card({l ∈ νL(s) : PD(µP (l)) = d}) ≤ Pmax

50 Chapter 3. Heuristic and ACO Approaches for Resource Allocation Problems

– A course cannot have more than CDmax(c) lessons scheduled per day, ∀c ∈ C,∀d ∈ D:

Card({l ∈ L : LC(l) = c ∧ PD(µP (l)) = d}) ≤ CDmax(c)

– A student can have an idle period only if it is the first or the last period of a half-day,
∀s ∈ S,∀p ∈ P :

p /∈ {µP (l) ∈ P : l ∈ νL(s)} ⇒ (PHF (p) = 1) ∨ (PHL(p) = 1)

– The lessons of courses that cannot be neighbors cannot be consecutive, ∀l1, l2 ∈ L :

LC(l1) ∈ CF (LC(l2))⇒ µP (l1) /∈ PN(µP (l2))

– The lessons of neighboring courses must be consecutive, ∀c1, c2 ∈ C:

c2 ∈ CN(c1)⇒ ∃l1, l2 ∈ L : (LC(l1) = c1) ∧ (LC(l2) = c2) ∧ (µP (l1) ∈ PN(µP (l2)))

� Resources Constraints

– The number of lessons of a teacher is limited, ∀t ∈ T :

TWmin(t) ≤ Card({l ∈ L : µT (l) = t}) ≤ TWmax(t)

– A teacher can teach only if he is available, ∀l ∈ L:

µT (l) = t⇒ µP (l) ∈ TP (t)

– A teacher can teach only if he is skilled in the course, ∀l ∈ L:

µT (l) ∈ CT (LC(l))

– Courses and rooms must be compatible, ∀l ∈ L:

µR(l) ∈ CR(LC(l))

– The number of students per class is limited, ∀q ∈ Q:

Card({s ∈ S : µk(s) = q}) ≤ KSmax(QK(q))

– Lessons scheduled in rooms that require travel time must be placed before or after a
break, ∀l ∈ L:

RT (µR(l)) = 1⇒ PQF (µP (l)) = 1 ∨ PQL(µP (l)) = 1

3.3.4 Soft Constraints

Soft Constraints are constraints that should be satisfied as much as possible. Usually a timetable
where all the soft constraints are satisfied does not exist. Therefore a cost is associated with
a soft constraint that is not satisfied and the objective of the problem is to minimize the total
cost of the solution. The two objectives described in Section 3.2.1 are the soft constraints of the
problem.

3.4. Complexity of the problem 51

Similar difficulty. The difficulty level of day d for student s is the sum of the difficulty
level of each lesson that is on his schedule for that day; the difficulty level of a lesson being the
weight of the corresponding course: CW (LC(l)). The list of lessons that s has to attend on d
is

νLD(s, d) = {l ∈ νL(s) : PD(µP (l)) = d} (3.2)

Therefore, the weight of d ∈ D for s ∈ S is

νW (s, d) =
∑

l∈νLD(s,d)

CW (LC(l)) (3.3)

The difficulty level of all days should be between Wmin and Wmax, the total cost is defined by
an overweight cost COW and an underweight cost CUW

CUW =
∑
d∈D

∑
s∈S

(Wmin − νW (s, d))+ (3.4)

COW =
∑
d∈D

∑
s∈S

(νW (s, d)−Wmax)+ (3.5)

Mixed classes. Let’s consider a class q ∈ Q and a category k ∈ K. The number of students
in q that belong to category k is

νS(q, k) = Card({s ∈ S : µk(s) = q}) (3.6)

Two classes q1, q2 ∈ Q are similar for a category k ∈ K, if νS(q1, k) = νS(q2, k). The classes of
a section category km are perfectly mixed if they are all similar for any category corresponding
to a level. Therefore we can define the following cost:

CM =
∑
km

∑
kl

∑
q1

∑
q2

(νS(q1, kl)− νS(q2, kl))
+ (3.7)

where

km ∈ {k ∈ K : KT (km) = section}
kl ∈ {k ∈ K : KT (k) = level ∧KG(kl) = KG(km)}
q1 ∈ {q ∈ Q : QK(q1) = km}
q2 ∈ {q ∈ Q : QK(q2) = km ∧ q2 6= q1}

Total cost. The total cost of a timetable and an assignment of students to classes is given
by Expression 3.8.

Cost = α · CUW + β · COW + γ · CM (3.8)

where α, β and γ are parameters that have to be tuned according to the objectives of the
timetabling problem.

3.4 Complexity of the problem

The CTT problem is NP-hard, it is therefore not possible to find the optimal solution for any
instance in a time that is reasonable for a school, [26]. In addition to that there might be

52 Chapter 3. Heuristic and ACO Approaches for Resource Allocation Problems

instances, i.e. schools, where the constraints are such that there is no feasible solution because
the resources are scarce compared to the needs or where only a few feasible solutions exist, but
may be quite difficult to find.

Regarding the allocation of students to classes, there is a big difference between situations
where there are VG students that attend VP courses and situations with 2 independent sections
that only share rooms and teachers, but not students.

The subjects with levels are also critical for the timetable. If students of different main classes
have to be mixed and split for the French course, there must be enough teachers available to
teach French simultaneously. Constraints related to teachers play also an important role here.

In Canton de Vaud a lot of teachers work part-time and the number of subjects a teacher
is skilled in is limited. Therefore the constraints related to teachers should be considered first
since they reduce significantly the search space. Regarding rooms, most schools have only one
or two rooms adapted to a few specific subjects, e.g. Gym hall for Sports. Neighboring subjects
imply that when one of them is planned, only 1 or 2 periods are possible for the other.

Considering this information, the subjects can be classified according to the difficulty of
scheduling their lessons in the timetable:

1. Subjects that share VP and VG students

2. Subjects with levels in VG

3. Subjects with teachers with little availability

4. Subjects with a specific room

5. Subjects with neighbors

6. Other subjects

3.5 The model for the CLass Allocation Problem (CLAP)

This section describes the RAP model for the Class Allocation Problem (CLAP) in detail. The
concepts of the CLAP are part of the concepts defined in Section 3.3:

� Grade, g ∈ G.

� Categories, k ∈ K.

� Classes, q ∈ Q. In this section, the classes that are considered are only the section classes,
since the way the students are split in the other classes has no impact on the objectives.

� Students, s ∈ S.

3.5. The model for the CLass Allocation Problem (CLAP) 53

Definition 3.5.1. A solution µ = {(s, q) ∈ {S × Q}} to the class allocation problem contains
the assignment of students to classes:

(s, q) ∈ µ⇔ Student s is assigned to class q (3.9)

Definition 3.5.2. A solution is said to be feasible if the following hard constraints are satisfied:

1. A student must be assigned to one class of each category he belongs to. Expression 3.10
states that if a student belongs to a category, there exists a unique class of this category
to which the student is allocated. Expression 3.11 says that if a student is allocated to a
class, the this student belongs to the category of this class.

∀s ∈ S, ∀k ∈ SK(s) : ∃!(s, q) ∈ µ : QK(q) = k (3.10)

∀(s, q) ∈ µ : QK(q) ∈ SK(s) (3.11)

2. The number of students per class is limited and depends on its category as described in
Expression 3.12

∀q ∈ Q : Card({s ∈ S : (s, q) ∈ µ}) ≤ KSmax(QK(q)) (3.12)

In the CLAP, the objective is to have diversity within section classes and similarity between
them. The similarity objective contains implicitly the diversity objective. Indeed if all classes
are similar, then they are equally diverse.

For an allocation µ, the number of students in a class q that belong to a category k is given
by Expression 3.13. The average number of students of a category k ∈ K allocated to a section
class should be the number of students belonging to k divided by the number of section classes
of the grade of k, as in Expression 3.14 where Qk is the list of section classes that belong to the
same grade as k, as defined in Expression 3.15.

νS(q, k) = Card({(s, q) ∈ µ : k ∈ SK(s)}) (3.13)

QN(k) = Card({s ∈ S : k ∈ SK(s)})/(Card(Qk)) (3.14)

Where

Qk = {q ∈ Q : KG(QK(q)) = KG(k) ∧KT (QK(q)) = “section”}) (3.15)

Definition 3.5.3. Two section classes qi, qj ∈ Q that belong to the same grade, i.e. QK(qi) =
QK(qj), are similar for a category k if they have the same number of students for this category,
that is if νS(qi, k) = νS(qj , k).

54 Chapter 3. Heuristic and ACO Approaches for Resource Allocation Problems

Definition 3.5.4. The section classes of a grade are similar if they are all similar for any
category, that is if Expression 3.16 is satisfied.

∀qi, qj ∈ Q, k ∈ K : QK(qi) = QK(qj)⇒ νS(qi, k) = νS(qj , k) (3.16)

Definition 3.5.5. The absolute deviation of a category k ∈ K is defined in Expression 3.17 and
measures how far this category is from the optimal similarity.

AbsDev(k) =
1

Card(GS(k))

∑
q∈GS(k)

|νS(q, k)−QN(k)| (3.17)

The similarity objective is modeled with the minimization of the sum of the absolute devia-
tion for all categories as in defined in Expression 3.18.

Cost(µ) =
∑
k∈K

AbsDev(k) (3.18)

3.6 The CSOP model for the CLAP

For the CSOP model, the variables X = {X1, . . . , Xn} are the section class allocated to students,
where n = Card(S) is the number of students, e.g. Xs is the section class allocated to student
s. The domain Ds for each variable Xs ∈ X is the list of the section classes corresponding to
the student s as defined in Expression 3.19. The constraints of this model are the capacity of
the classes: the number of students allocated to a class cannot exceed its capacity as defined in
Expression 3.20.

∀s ∈ S : Ds = {q ∈ Q : QK(q) ∈ SK(s) ∧KT (QK(q)) = “section”} (3.19)

∀q ∈ Q : Card({Xi ∈ X : Xi = q}) ≤ KSmax(QK(q)) (3.20)

3.7 The ACO approach for the CLAP

In the ACO algorithm 6 presented in this chapter, each assignment (s, q) of a student to a
section class has a quantity of pheromones on it which is used to calculate the probability of
including this assignment in the solution of an ant. At each iteration, each ant of the colony
builds a solution step by step selecting one assignment (s, q) for each student, lines 10 to 13.
At the beginning of the algorithm, all pheromones τs,q are initialized to a given value, line 4.
At the end of an iteration, part of the pheromones evaporate, which means that the value of
τs,q decreases, line 18. The fitness of the solutions found by the ants during the iteration is
computed and compared, lines 14 to 16. The best ant deposits pheromones on the assignments
(s, q) that belong to its solution, the value of τs,q increases, line 18.

3.7. The ACO approach for the CLAP 55

Algorithm 6: Model. The ACO algorithm

Input: List of students with their categories, List of section classes with their capacity
Output: Allocation µ: Assignment of each student to one section class

1 µ← ∅ for q ∈ Q do
2 ηq = 1 // Visibility initialisation

3 for (s, q) ∈ (S ×Q) do
4 τs,q = τinit // Pheromones initialisation

5 for i = 1, . . . , NbIterations do
6 µiter ← ∅
7 for j = 1, . . . , NbAnts do
8 µant ← ∅
9 for s = 1, . . . , NbStudents do

10 Select a section class q of the grade of s
11 µant ← µant ∪ (s, q)
12 if Card({(si, q) ∈ µj}) = KSmax(QK(q)) then
13 ηq = 0 // Visibility update

14 Calculate the fitness function f(µant) =
∑

k∈K AbsDev(k)
15 if f(µant) < f(µiter) then
16 µiter ← µant

17 for (s, q) ∈ (S ×Q) do
18 τs,q ← (1− ρ) · τs,q // Pheromones evaporation

19 for (s, q) ∈ µiter do
20 τs,q ← τs,q + ϕ

f(µiter)
// Pheromones deposition

21 if f(µiter) < f(µ) then
22 µ← µiter

In addition to the pheromones, the ants also use the visibility ηq they have on their own
partial solution. Indeed when it is building a solution, each ant knows which assignments are in
its partial solution and the capacity of the classes. As classes should never be overbooked, the
ant has to know somehow if a class can still be assigned to a student or not. The visibility is
updated after each allocation of a student to a class and its value is given by Expression 3.21.
The probability to select a section class q for a student s is given by Expression 3.22, where Qs
is the list of section classes that belong to the same grade as s, as defined in Expression 3.23.

ηq =

{
1 if there are still seats available in q

0 if q has no more seats available
(3.21)

p(s, q) =
τs,q · ηq∑
i∈Qs τs,i · ηi

(3.22)

Qs = {q ∈ Q : QK(q) ∈ SK(s) ∧KT (QK(q)) = “section”} (3.23)

56 Chapter 3. Heuristic and ACO Approaches for Resource Allocation Problems

School
Grade 2112 1213 3411 3621

9-VG
Students 113 71 78 68
Section classes 6 4 5 4
Categories 16 14 15 17

10-VG
Students 137 90 78 66
Section classes 8 5 5 4
Categories 15 16 15 16

Table 3.3: Size of the datasets used.

When an assignment (s, q) belongs to the best solution of an iteration, pheromone is deposited
on it at the end of the iteration, the values of τs,q and therefore of p(s, q) are increased. In the
next iteration, q has a higher probability to be allocated to s than in the iteration that just
finished. The parameters used in this ACO algorithm are the number of iterations, the number
of ants, the evaporation rate ρ, and the deposition rate ϕ.

3.8 Experimentation

The eight datasets used in this chapter come from the Direction Générale de l’Enseignement
Obligatoire from Canton de Vaud in Switzerland. They correspond to two different grades of
four schools and to the academic period 2015-2016. The available data is the list of students
with the categories they belong to and the number of section classes per grade. One student
belongs usually to 5 categories, few of them belong to only 3 or 4. Table 3.3 contains the number
of students, of section classes and of categories per school and per grade-section.

The computation was done on an Intel® Core�i5-5300U CPU 2.30 GHz. Gecode was used
to solve the CSOP model, [103]. Gecode has been configured to perform parallelized simulations
with three threads while the ACO approach runs simulations in series on a single processor.
In Gecode, the selection of the variables is always the same and depends only on the sequence
of students in the file, the selection of their value for the branching is done randomly, and the
runtime is 10 minutes. 80 iterations with 60 ants are used for the ACO approach, one run needs
between 1 and 3 seconds.

The algorithms were launched 10 times, with different seeds each time, for each dataset in
order to have average and standard deviation. Table 3.4 contains the results: average, standard
deviation, best and worst results. Regarding the average, ACO clearly outperforms the CSOP
solver, which is between 14% and 44% worse. Regarding the best solution found among the 10
runs, the CSOP solver outperforms or is identical to ACO in four datasets.

Figure 3.2 shows how students are spread in the different section classes for each category in
a solution found by ACO. For each category, the closer the points are, the better the solution
is. Category 1 corresponds to the section category. For category 1 in school 3621, the size of
the section classes is between 18 and 19 students in Figure 3.2, and they are thus similar. For
the other categories, the difference in the number of students per class is between 1 and 4, e.g.
in category 7, class 3 has 9 students of this category and class 2 has 12 of them.

3.8. Experimentation 57

ACO CSOP 10 minutes
School Grade Av.±St. Dev. Best Worst Av.±St. Dev. Best Worst

2112 9-VG 58.4 ± 5.7 52 68 79.0 ± 10.2 62 96
10-VG 75.2 ± 4.8 67 81 103.0 ± 19.0 61 139

1213 9-VG 26.8 ± 4.1 22 34 37.2 ± 5.7 30 46
10-VG 39.2 ± 5.3 33 47 56.6 ± 13.5 33 79

3411 9-VG 38.2 ± 3.8 34 44 51.4 ± 4.3 44 58
10-VG 37.8 ± 3.5 33 45 51.4 ± 9.9 37 69

3621 9-VG 29.2 ± 3.5 22 34 33.2 ± 8.2 22 46
10-VG 27.0 ± 2.9 22 32 36.6 ± 8.9 22 56

Table 3.4: Results: average, standard deviation, best and worst result with 10 runs.

Figure 3.2: Results for schools 2112-9-VG and 3621-10-VG, with ACO.

58 Chapter 3. Heuristic and ACO Approaches for Resource Allocation Problems

Figure 3.3: Evolution of the solution cost for the ACO algorithm in 1 run.

Figure 3.3 shows the cost of the current best solution during one run of the ACO algorithm
for two different sections of two schools. The convergence takes place after 1 to 3 seconds,
depending on the school and the grade considered.

3.9 Conclusions

In this chapter we have developed a constraint-based model for the CTT problem in secondary
schools that have two types of courses: section courses that are defined by a curriculum and are
taught to a whole class, and courses that are not taught per class, but to groups of students
who have the same level in a specific subject or have selected the same elective course. Besides
that, the model includes the fact that students are allocated to classes at the same time as the
timetable is built. Both problems, allocation and timetabling are linked since the way students
are allocated to classes has a direct impact on the timetable constraints.

We have also presented two approaches to solve the class allocation problem modeled as a
resource allocation problem. The objective is to have all classes with a similar composition for
all topics, which means that students with the same profile on a topic have to be spread among
the available classes. This maximizes also the diversity of each class, since a maximum number
of different profiles are allocated to each of them.

Two approaches have been applied to eight real datasets coming from schools located in
Canton de Vaud. They are based on ACO and on CSOP. The ACO algorithm provides better
solutions than the CSOP solver in a shorter time. As both of them use randomness for the
allocation of resources, our results prove that the pheromones in the ACO approach help to find
very good solutions in a much smaller amount of time.

As the computation time is short for the ACO approach, the school’s directors, who are
in charge of the allocation of students and of the timetable, can simulate multiple scenarios of
possible sets of profiles in their school. They can then analyze the impact of those scenarios
on the pedagogical objective with the solution proposed in this chapter and on the timetable
problem with the commercial software available in the different schools.

3.10. Case Study: The Course Timetabling Problem 59

3.10 Case Study: The Course Timetabling Problem

This section describes one variant of the CTT problem mentioned in Section 2.3.1.2 and the
method used to tackle it, two ACO algorithms combined with a local search. This metaheuristic
will then be applied to the datasets of the International Timetabling Competition ITC-2007
so that its performance can be compared to the different published results, [111]. Table 3.5
contains a sum-up of the notation used in this chapter.

Notation Description

q ∈ Q Curricula of the CTT problem.
c ∈ C Courses of the CTT problem.
Q(c) ⊂ Q Curricula to which the course c ∈ C belongs, Q(c) 6= ∅, i.e. c belongs to at

least one curriculum.
N(c) Number of students in course c ∈ C.
T (c) ∈ T Teacher of course c ∈ C
D(c) Minimum number of days which at least one lecture of c ∈ C is allocated to.
p ∈ P Periods of the CTT problem, periods are numbered from 1 to Card(P).
D(p) Day of the period p ∈ P , if p1 < p2, then D(p1) ≤ D(p2).
l ∈ L Lessons of the CTT problem.
C(l) ∈ C Course of lesson l ∈ L; ∀l ∈ L,∃c ∈ C : c(l) = c.
t ∈ T Teachers of the CTT problem.
TP (t) ⊂ P List of periods where t ∈ T is available.
r ∈ R Rooms of the CTT problem.
CAP (r) Capacity of room r ∈ R.

Table 3.5: Notation for the CTT problem.

3.10.1 The ITC-2007 Course Timetabling Problem

In the ITC-2007 instances, the timetable is built for a typical week. This week is structured in
five or six days and each day contains several periods. Figure 3.4 contains an example of a week
structure with five days and 20 periods spread among the five days.

Timeslot Day 1 Day 2 Day 3 Day 4 Day 5

1 Period 1 Period 5 Period 9 Period 13 Period 17
2 Period 2 Period 6 Period 10 Period 14 Period 18
3 Period 3 Period 7 Period 11 Period 15 Period 19
4 Period 4 Period 8 Period 12 Period 16 Period 20

Figure 3.4: Example of a week structure: 5 days with 4 periods per day.

A course c ∈ C has a specific number of students N(c) and one teacher T (c) ∈ T assigned.
A course has nc lectures {l1c , . . . , lncc } ⊂ L and each lecture l ∈ L corresponds to a course c ∈ C.
A course belongs to one or several curricula and a curriculum is made of one or several courses.
Each lecture has to be allocated to a room r ∈ R and to a period p ∈ P , i.e. a day d ∈ D and a
timeslot s ∈ S.

60 Chapter 3. Heuristic and ACO Approaches for Resource Allocation Problems

Definition 3.10.1. A solution to a CTT problem is made of two allocations µ and ν such that
∀l ∈ L:

µ(l) ∈ R Each lesson is assigned to a room.
ν(l) ∈ P Each lesson is assigned to a period.

When a timetable is built, two types of constraints have to be considered: hard and soft
constraints. All the constraints mentioned below come from the rules set for ITC-2007.

The following hard constraints must be satisfied in order to have a complete solution:

� All lectures of a course must be scheduled, and they must be assigned to distinct periods:

∀l1, l2 ∈ L : C(l1) = C(l2)⇒ µ(l1) 6= µ(l2) (3.24)

� Two lectures cannot take place in the same room in the same period:

∀l1, l2 ∈ L : ν(l1) = ν(l2)⇒ µ(l1) 6= µ(l2) (3.25)

� Lectures of courses in the same curriculum or taught by the same teacher must be all
scheduled in different periods:

∀l1, l2 ∈ L : Q(C(l1)) = Q(C(l2))⇒ µ(l1) 6= µ(l2) (3.26)

∀l1, l2 ∈ L : T (C(l1)) = T (C(l2))⇒ µ(l1) 6= µ(l2) (3.27)

� The lectures of a course have to be allocated to periods when the teacher of the course is
available:

∀l ∈ L : ν(l) ∈ TP (T (C(l))) (3.28)

Definition 3.10.2. For a solution (µ, ν), Hard(µ, ν) is the number of hard constraints that are
not satisfied. A solution to a CTT problem is feasible if all constraints 3.24 to 3.28 are satisfied,
i.e. Hard(µ, ν) = 0.

A maximum number of the following soft constraints should be satisfied. For each constraint
that is not satisfied, a penalty is applied. A solution has therefore a cost associated to it, the sum
of all the penalties related to the violation of the soft constraints. The value of those penalties
were set for the ITC-2007.

� For each lecture, the number of students that attend the course should be less or equal
than the number of seats of all the rooms that host its lectures

∀l ∈ L : ν(l) = r ⇒ N(C(l)) ≤ CAP (r) (3.29)

Penalty: Each student above the capacity counts as 1 point. The total amount of those
penalty points correspond to the cost CCR

3.10. Case Study: The Course Timetabling Problem 61

� The lectures of each course should be spread into a minimum number of days

∀c ∈ C : Card({d ∈ D : ∃l ∈ L : C(l) = c ∧D(µ(l)) = d}) ≥ D(c) (3.30)

Penalty: Each day below the minimum counts as 5 points. The total amount of those
penalty points correspond to the cost CMD

� Lectures belonging to a curriculum should be adjacent to each other (i.e., in consecutive
periods) if those lectures are assigned to the same day

∀d ∈ D, q ∈ Q : Card(λQD(q, d)) > 1⇒ ∀l1 ∈ λQD(q, d) :

∃l2 ∈ λQD(q, d) : µ(l1) = µ(l2)± 1 (3.31)

where λQD(q, d) is the set of lessons that belong to a course of curriculum q and are
allocated to day d:

λQD(q, d) = {l ∈ L : Q(C(l)) = q ∧D(µ(l)) = d} (3.32)

and Card(·) denotes cardinality of a set. Penalty: Each isolated lecture in a curriculum
counts as 2 points. The total amount of those penalty points correspond to the cost CIL

� All lectures of a course should be given in the same room

∀l1, l2 ∈ L : C(l1) = C(l2)⇒ ν(l1) = ν(l2) (3.33)

Penalty: Each distinct room used for the lectures of a course, but the first, counts as 1
point. The total amount of those penalty points correspond to the cost CNR

Definition 3.10.3. A feasible solution to a CTT problem, µ and ν has an associated cost given
by:

Cost(µ, ν) = CCR + CMD + CIL + CNR (3.34)

Considering definitions 3.10.2 and 3.10.3, a solution (µ1, ν1) is better than a solution (µ2, ν2)
if one of those situations is true:

� Hard(µ1, ν1) < Hard(µ2, ν2)

� Hard(µ1, ν1) = Hard(µ2, ν2) and Cost(µ1, ν1) < Cost(µ2, ν2)

3.10.2 The ACO approach

In the approach presented in this chapter, two colonies of ants assign rooms and periods to
the lectures. One colony is dedicated to the room’s assignment and the other to the period’s
assignment. Each colony has its own pheromones.

Algorithm 7 describes the initialization of the pheromones and the visibility. All pheromones
are initialized to an initial value τinit. Regarding rooms allocation, the visibility for a lecture is
smaller for rooms with insufficient capacity than for the other rooms. The visibility of a period

62 Chapter 3. Heuristic and ACO Approaches for Resource Allocation Problems

Lecture Day 1 Day 2 Day 3 Day 4 Day 5

1

2

3

Figure 3.5: Example of visibility difference when D(c) > 1. Periods belonging to the white days
have a smaller visibility for the corresponding lecture.

for a lecture is smaller if the corresponding teacher is not available on this period. The periods
visibility also considers the soft constraint 3.30 which requires a minimum number of days where
the lectures of a course are spread. If there is such a minimum, i.e. D(c) > 1, then D(c) lectures
of the course are selected randomly and each of them has a smaller visibility on D(c)− 1 days.
Figure 3.5 contains an example with 5 days in the week and D(c) = 3, then 3 lectures of c are
selected randomly and their visibility is reduced on 2 different days for each of them.

Algorithm 8 describes the ACO algorithm. At every iteration, each ant of the colony builds
a solution (µ, ν). This solution is then locally improved, line 12, which consists in trying to swap
the lectures that break a hard constraint with the rest of the lectures. Two lectures are swapped
by exchanging their room and their period. If the swapped solution is better than the initial
solution, the swapped one is kept and the swapping continues until all hard-breaker lectures are
tested for the improvement.

A the end of the iteration, the best solution of the iteration is also locally improved, line 17.
This local search is slightly different from the ant improvement since all lectures are candidates
for a swap. This swap is followed by a room-swap where the period is not changed, only the
room exchange is considered, so the two candidates of a swap have to be assigned to the same
period.

3.10.3 The datasets

Table 3.6 contains the size of the 21 datasets that were used for the ITC-2007: number of rooms,
of periods, of courses, of lectures and of curricula. The number of constraints indicated in the
last column corresponds to the total number of periods when a teacher is not available, that is
when a lecture cannot be assigned.

3.10.4 The results

The ACO approach was launched 10 times with 500 iterations each and a colony of 30 ants.
The results are presented in table 3.7.

All solutions found are feasible, except for the dataset 05, where only four runs produced
feasible solutions, five runs produced a solution with one broken hard constraint and one run pro-
duced a solution with two broken hard constraints. In dataset 11, the ACO approach produced
several solutions with a cost 0, that is as good as the best known solution.

The bad quality of the results come mainly from the local search that does not consider

3.10. Case Study: The Course Timetabling Problem 63

Algorithm 7: Pheromones and visibility initialization

Input: Dataset of the ITC-2007
Output: Allocations µ and ν: Assignment of each lecture to one room and one period

1 for (l, r) ∈ (L×R) do
2 τR(l, r) = τinit // Rooms pheromones initialization

// Rooms visibility initialization

3 if CAP (r) < N(C(l)) then
4 ηR(l, r) = CAP (r) ∗ νmin // Room with insufficient capacity

5 else
6 ηR(l, r) = N(C(l)) ∗ νmax // Room with sufficient capacity

7 for (l, p) ∈ (L× P) do

8 τperiodl,p = τinit // Periods pheromones initialization

// Periods visibility initialization

9 if p ∈ TP (T (C(l))) then
10 ηP (l, p) = 1 // Teacher available

11 else
12 ηP (l, p) = 0.1 // Teacher not available

13 τP (s, q) = τinit // Pheromones initialization

// Visibility includes information about soft constraint 3.30

14 for c ∈ C do
15 if D(c) > 1 then
16 Select D(c) lectures of c → Ld(c)
17 Reduce to 0.5 the visibility of l ∈ Ld(c) on D(c)− 1 days

// Calculate probabilities

18 for (l, r) ∈ (L×R) do

19 ProbR(l, r) =
(τR(l, r))α · (ηR(l, r))β∑

ri∈R(τR(l, ri))α · (ηR(l, ri))β

20 for (l, p) ∈ (L× P) do

21 ProbP (l, p) =
(τP (l, p))α · (ηP (l, p))β∑

pi∈R(τP (l, pi))α · (ηP (l, pi))β

64 Chapter 3. Heuristic and ACO Approaches for Resource Allocation Problems

Algorithm 8: The ACO algorithm for the CTT problem

Input: Dataset of the ITC-2007
Output: Allocations µ and ν: Assignment of each lecture to one room and one period

1 Visibility initialization
2 for i = 1, . . . , NbIterations do
3 µiter = ∅
4 for j = 1, . . . , NbAnts do
5 µ = ∅
6 ν = ∅
7 for l = 1, . . . , Card(L) do
8 Select a period p for l with probability ProbP (l, p)
9 µ = µ ∪ (l, p)

10 Select a room r for l with probability ProbR(l, r)
11 ν = µ ∪ (l, r)

12 Improve locally (µ, ν)
13 Calculate Hard(µ, ν) and Cost(µ, ν)

// The best solution of the iteration is updated if the solution

found by the ant is better

14 if (µ, ν) is better than (µiter, νiter) then
15 µiter = µ
16 νiter = ν

17 Improve locally (µiter, νiter)
// The global best solution is updated if the solution of the iteration

is better

18 if (µiter, νiter) is better than (µbest, νbest) then
19 µbest = µiter
20 νbest = νiter
21 Improve locally (µbest, νbest)

22 else
23 Improve locally (µbest, νbest)

24 for (l, p) ∈ (L× P) do
25 τP (l, p) = (1− ρP) · τP (l, p) // Pheromones evaporation

26 for (l, p) ∈ µiter and (l, p) ∈ µbest do

27 τP (l, p) = τP (l, p) +
ϕP

Cost(µiter, νiter)
// Pheromones deposition

28 for (l, r) ∈ (L×R) do
29 τR(l, r) = (1− ρR) · τR(l, r) // Pheromones evaporation

30 for (l, r) ∈ νiter and (l, r) ∈ νbest do

31 τR(l, r) = τR(l, r) +
ϕR

Cost(µiter, νiter)
// Pheromones deposition

32 Calculate the probabilities ProbP (l, p) and ProbR(l, r) as in algorithm 7

3.10. Case Study: The Course Timetabling Problem 65

Dataset Rooms Days Per./Day Periods Curr. Courses Lectures Constraints

01 6 5 6 30 14 30 160 53
02 16 5 5 25 70 82 283 513
03 16 5 5 25 68 72 251 382
04 18 5 5 25 57 79 286 396
05 9 6 6 36 139 54 152 771
06 18 5 5 25 70 108 361 632
07 20 5 5 25 77 131 373 667
08 18 5 5 25 61 86 324 478
09 18 5 5 25 61 86 324 478
10 18 5 5 25 67 115 346 694
11 5 5 9 45 13 30 162 94
12 11 6 6 36 150 88 218 1368
13 19 5 5 25 66 82 308 468
14 17 5 5 25 60 85 275 486
15 16 5 5 25 68 72 251 382
16 20 5 5 25 71 108 366 518
17 17 5 5 25 70 99 339 548
18 9 6 6 36 52 47 138 594
19 16 5 5 25 66 74 277 475
20 19 5 5 25 78 121 375 691
21 18 5 5 25 78 94 327 463

Table 3.6: Size of the datasets of the ITC-2007.

how the costs are computed. For example, the cost CNR that corresponds to the number of
rooms used for a course is seldom improved if lectures are considered individually as in the swap
process. When half of the lectures are assigned to one room and the other half to another room,
then moving one single lecture does not improve that cost; all lectures assigned to one room
should be simultaneously moved to the other room.

Figure 3.6 shows the cost evolution for the best solution of the 500 iterations for one of the
datasets. A clear convergence is visible, even if the result is three times worse from the best
solution found in the literature.

3.10.5 Conclusions

The first results obtained with the ACO approach and a simple local search are encouraging,
but far from specific and optimized algorithms developed especially for the ITC-2007 datasets.
Feasible solutions have always been found, that means with no hard constraint broken.

To improve quality and performance of the ACO approach, two aspects must be improved.
First the local search must be adapted to consider how the costs are computed. Second the
parameters of ACO have to be tuned to speed up the computation and the convergence.

66 Chapter 3. Heuristic and ACO Approaches for Resource Allocation Problems

Dataset Results (Av. ± Std Dev.) Best Best known

01 9 ± 2.3 6 5

02 147 ± 33.1 56 10

03 158 ± 17.8 127 38

04 103 ± 9.5 88 35

05* 640 ± 72.5* 487* 114

06 138 ± 13.5 109 16

07 110 ± 9.8 92 6

08 106 ± 12.6 89 37

09 108 ± 11.7 89 66

10 110 ± 14.0 91 4

11 3 ± 1.7 0 0

12 548 ± 60.2 492 53

13 132 ± 9.1 115 48

14 141 ± 8.9 126 51

15 158 ± 17.8 127 41

16 134 ± 11.2 120 13

17 159 ± 8.5 151 44

18 171 ± 20.6 143 0

19 193 ± 13.0 169 49

20 162 ± 13.9 138 0

21 195 ± 15.7 171 0

Table 3.7: Results in the different datasets of the ITC-2007. All solutions are feasible, except
dataset 05.

Figure 3.6: Evolution of the best solution cost for the dataset 17.

Chapter 4

Heuristic and Hybrid
Metaheuristic Approaches for

RAP Combined with a Scheduling
Problem

This chapter describes a Course Allocation Problem combined with a Course Scheduling Problem
found at the Ecole Hôtelière de Lausanne. Both problems, the Course Allocation and the
Course Scheduling, are first formally defined with their constraints and their objective. Two
approaches are then proposed to solve the Course Allocation problem, a greedy algorithm and
a CSOP approach. Both of them are compared using the real data from the Ecole Hôtelière
de Lausanne. The latter is then adapted to solve the combined problem and compared to an
ACO approach using the same data and adding the constraints related to the Course Scheduling
Problem.

4.1 Introduction

The course allocation problem (CAP) is critical in many universities and business schools.
When students can select the courses they would like to attend, they often submit preferences,
but have no guarantee that they will get a seat in all the courses in which they want to enroll
due mainly to quality and security constraints, that limit the number of seats available in a
course, [22].

In the scheduling problem presented in this chapter, there is no curriculum, students can
attend any combination of courses, but they submit preferences, they do not select courses,
[106].

Two methods are proposed to solve the CAP: the first is based on a greedy approach, the
second is based on CSOP. The generation of our sample data is based on courses offered to
students in their final semester at the Ecole Hôtelière de Lausanne (EHL); students indicate
their preferences with a ranking of all the available courses.

67

68
Chapter 4. Heuristic and Hybrid Metaheuristic Approaches for RAP Combined with a

Scheduling Problem

� The Course Greedy Algorithm (CGA) assigns students to courses so that a course is
filled with students who ranked it in their first choices.

� The CSOP approach assigns students to courses so that the global welfare of students is
maximized and the satisfaction of the worst off is optimized.

Two models CAP&CTT are proposed and include both problems, the allocation of students
to courses considering their preferences and the timetabling of those courses. Both problems,
CAP and CTT, are solved simultaneously so that the allocation of students to courses is com-
patible with a feasible timetable.

The first approach proposed is based on CSOP. Both the CAP and the CTT are modeled as
CSOP and solved with the solver Gecode, [131]. The objective is to find a solution that optimizes
the students’ satisfaction and that can be scheduled considering the timetabling constraints.

In the second approach an ACO algorithm is used to solve the timetabling problem, [43, 103,
135]. Each ant is going to look for a feasible timetable, the timetable becomes thus a constraint
for the CAP, which is then solved with Gecode. The objective for the ant colony is to find a
timetable that allows the CSOP solver to provide good solutions to the CAP.

The rest of the chapter is structured as follows. Section 4.2 describes the CAP and the
metrics used to compare different allocations. Section 4.3 is dedicated to the CTT. Sections 4.4
and 4.5 describe the CGA and the CSOP model for the CAP. Sections 4.6 and 4.7 contain the
CSOP model and the ACO approach used to solve the CAP&CTT. Section 4.8 presents the
results of the two approaches CGA and CSOP applied to solve the CAP. Section 4.9 provides
the results of the two approaches CSOP and ACO for the combined CAP&CTT for three real
datasets from EHL. Finally in Section 4.10 the conclusions are exposed.

In this chapter, the following notation is used:

� S = {s1, . . . , sn} is the list of students and G(s) is the average grade of student s;

� C = {c1, . . . , cm} is the list of available courses and K(c) is the capacity of course c, i.e. a
maximum of K(c) students can be assigned to course c;

� γ is the number of courses that should be assigned to each student. Enough seats are
available to allocate γ courses to each of the n students, that means∑

c∈C
(K(c)) ≥ n · γ (4.1)

4.2 The Course Allocation Problem (CAP)

In most business schools, elective courses with a limited number of seats are allocated to students.
Each student has to rank the available courses and is assigned to courses depending on his
preferences. Without loss of generality, we may consider that the number of courses allocated
is the same for all students. A formal definition of the problem is presented in this section.

4.2. The Course Allocation Problem (CAP) 69

Definition 4.2.1. The ranking of a student s ∈ S is a relation �s, such that ∀ci, cj ∈ C:

ci �s cj ⇔ s strictly prefers ci over cj

ci =s cj ⇔ s has no preference of ci over cj or cj over ci

A ranking is said to be total if all courses are ranked by all students.

Definition 4.2.2. The rank of a student s ∈ S for a course c ∈ C is a function Ranks, such
that ∀c, ci, cj ∈ C,∀s ∈ S:

Ranks(ci) < Ranks(cj) ⇔ ci �s cj
Ranks(ci) = Ranks(cj) ⇔ ci =s cj

Ranks(c) ∈ {0, 1, ..., Card(C)}

Definition 4.2.3. An allocation µ of courses to students is a function such that ∀c ∈ C,∀s ∈ S:

µ(c) = {sc1, . . . , scCard(µ(c))} is the list of students assigned to c

µ−1(s) = {cs1, . . . , csCard(µ−1(s))} is the list of courses allocated to s

Definition 4.2.4. An allocation µ of courses to students is said to be feasible if

∀c ∈ C : Card(µ(c)) ≤ K(c)

∀s ∈ S : Card(µ−1(s)) = γ

∀s1, s2 ∈ µ(c) : s1 6= s2

∀c1, c2 ∈ µ−1(s) : c1 6= c2

Definition 4.2.5. The position Ps(c) of a course c ∈ C for a student s ∈ S is defined by the
number of courses that s strictly prefers over c:

Ps(c) = Card(ci ∈ C : ci �s c) (4.2)

The favorite courses of a student have a position 0, since there are no courses preferred over
them.

Definition 4.2.6. A student s has a strict ranking if

∀ci, cj ∈ C with i 6= j : csi ≺s csj or csi �s csj which means Ps(ci) 6= Ps(cj) (4.3)

With a strict ranking, there is no indifference: for any pair of courses, a student always
strictly prefers one of them over the other, [124].

Definition 4.2.7. For an allocation of courses µ, the satisfaction gap SatGapµ(s) of a student
s ∈ S is defined by

SatGapµ(s) =
∑

c∈µ−1(s)

Ps(c) (4.4)

For each course allocated to a student, the satisfaction gap SatGapµ(s) counts the number
of courses that the student strictly prefers over this course. For example, let’s consider a student

70
Chapter 4. Heuristic and Hybrid Metaheuristic Approaches for RAP Combined with a

Scheduling Problem

who is assigned to 2 courses whose positions are 5 and 3. That means that there are 5 courses
that he prefers over the first course and 3 courses that he prefers over the second course. His
satisfaction gap with this allocation is then 8. So the smaller SatGapµ(s) is, the happier the
student is.

Definition 4.2.8. For an allocation of courses µ, the rank gap RankGapµ(s) of a student s ∈ S
is defined by

RankGapµ(s) =
∑

c∈µ−1(s)

Ranks(c) (4.5)

So the smaller Rankµ(s) is, the happier the student is.

The quality of an allocation can be measured with different parameters. The metrics used
in this chapter to analyze the quality of an allocation µ are:

� Total Satisfaction Gap (TSG). Sum of the satisfaction gap of all students.

(TSG) =
∑
s∈S

SatGapµ(s) (4.6)

If the ranking is strict, then (TSG) has a lower bound: (TSG) ≥ n · γ·(γ−1)2

� Worst Satisfaction Gap (WSG). Worst satisfaction among students. The students
whose satisfaction gap is equal to (WSG) are the worst off.

(WSG) = max
s∈S

SatGapµ(s) (4.7)

� Total Rank Gap (TRG). Sum of the rank gaps of all students.

(TRG) =
∑
s∈S

RankGapµ(s) (4.8)

� Worst Rank Gap (WRG). The students whose rank gap is equal to (WRG) are the
worst off.

(WRG) = max
s∈S

RankGapµ(s) (4.9)

As the satisfaction of a student is the number of courses he prefers over the ones allocated
to him, the objective is to minimize those metrics.

4.3 The Course Timetabling Problem (CTT)

In the CTT problem presented in this chapter, the resources are timeslots and teachers and
the activities are the courses. Each course has a pre-assigned teacher. A formal definition of a
timetable can be found in Definition 4.3.1. The compatibility of a timetable with an allocation
is defined in Definition 4.3.2.

4.4. The Course Greedy Algorithm (CGA) for the CAP 71

Definition 4.3.1. If TS is the list of the available timeslots, a timetable ν for the courses is a
function such that

∀c ∈ C : ν(c) ∈ TS is the time slot assigned to c

∀ts ∈ TS : ν−1(ts) = {cs1, . . . , csCard(ν−1(ts))} is the list of courses assigned to the timeslot ts

Definition 4.3.2. A timetable ν for the courses is compatible with an allocation µ if it contains
no clash for students or teachers.

∀s ∈ S, ∀ci, cj ∈ µ−1(s) : ci 6= cj ⇒ ν(ci) 6= ν(cj)

∀ci, cj ∈ C : Teacher(ci) = Teacher(cj) ∧ ci 6= cj ⇒ ν(ci) 6= ν(cj)

4.4 The Course Greedy Algorithm (CGA) for the CAP

In this section, the number of available seats is identical to the number of needed seats, that is∑
c∈C(K(c)) = n · γ. To apply the CGA, students must be ordered using a specific criteria, in

the following sections, students are ordered by their grades, ties are randomly broken.

In the first step of the CGA, the available seats of each course are allocated to the students
who ranked the course first. In step k, only the courses that still have available seats are
considered and those seats are allocated to the students who ranked the course in position k. If
a student is already assigned to γ courses, he won’t be considered in the following steps. This
algorithm is sketched in Algorithm 9. To avoid infeasibility, a course becomes mandatory if the
number of remaining seats is equal to the number of students who have not been assigned to
enough courses.

Algorithm 9: Course Greedy Algorithm

Input: List of students S = {s1, . . . , sn} ordered by their grades:
∀i, j ≤ n : i > j ⇒ G(si) ≤ G(sj)

Output: Feasible allocation µ
1 ∀c ∈ C: µ(c)← ∅
/* Loop per position */

2 for k ← 0 to m− 1 do
/* Loop per course */

3 for j ← 1 to m do
4 if Card({s ∈ S : µ−1(s) < γ}) = K(cj)− Card(µ(cj)) then

/* The course becomes mandatory to avoid infeasibility */

5 µ(cj)← µ(cj) ∪ {s ∈ S : µ−1(s) < γ}
6 if Card(µ(cj)) < K(cj) then

/* Loop per student */

7 for i← 1 to n do
8 if Psi(cj) = k and Card(µ−1(si)) < γ then
9 µ(cj)← µ(cj) ∪ {si}

72
Chapter 4. Heuristic and Hybrid Metaheuristic Approaches for RAP Combined with a

Scheduling Problem

Ranking

s Ps(c1) Ps(c2) Ps(c3) Ps(c4)

1 0 2 2 0

2 0 3 1 2

3 1 2 0 3

4 0 2 0 3

Results
µ(c1) µ(c2) µ(c3) µ(c4)

{s1, s2} {s3, s4} {s3, s4} {s1, s2}

Table 4.1: Example. Ranking: Position of each course for all students: For each student s ∈
{1,2,3,4}, Ps(ci) is the number of courses that s prefers over ci
Results: Allocation of courses to students and metrics value for CGA: µ(ci) is the list of students
assigned to course ci.

4.4.1 Example

Consider a CAP with m = 4, γ = 2 and four students S = {s1, ..., s4} with G(s1) > G(s2) >
G(s3) > G(s4). Their rankings are given in Table 4.1.For example P1(c1) = 0 means that this
course is the favorite course of s1 together with c4 since P1(c4) = 0. As P1(c2) = P1(c3) = 2, s1
has no preference among those courses, but he prefers c1 and c4 over c2 or c3.

This table contains also the solution obtained when applying the CGA. µ(ci) is the list of
students assigned to course ci, for example µ(c1) = {s1, s2} means that s1 and s2 are assigned
to course c1. The results are (TSG) = 6 and (WSG) = 2.

4.5 The CSOP approach for the CAP

As defined in Section 2.2, a CSOP can be described with three sets and one function (X,D,C, f).
The variables X = {xij : i = 1, . . . , n, j = 1, . . . , γ} for the CAP are the courses allocated to each

student, e.g. X1 = {x11, . . . , x1γ} are the courses allocated to student 1. The domain Di is the
same for all the variables, it is the list of the available courses ∀i = 1, . . . , n : Di = {c1, . . . , cm}.

The constraints of the model are of two types:

� Unicity: A course cannot be allocated more than once to a student

∀s ∈ S : alldifferent(Xs) (4.10)

� Capacity: The number of students assigned to a course cannot exceed its capacity

∀c ∈ C : Card(xji ∈ X : xji = c) ≤ K(c) (4.11)

The objective function has to take into account the metrics defined in Section 4.2 with the
following priorities:

4.6. The CSOP approach for the CAP&CTT 73

� Priority 1: Minimize (TSG). The total satisfaction gap must be as small as possible, so
that the global satisfaction of students is maximized.

� Priority 2: Minimize (WSG). The least satisfied student must be as satisfied as possible.

4.6 The CSOP approach for the CAP&CTT

In this section, the number of available seats is greater than or equal to the number of needed
seats, that is

∑
c∈C(K(c)) ≥ n · γ. Therefore, courses with a low demand can be canceled.

As in Section 4.5, for the CAP, the variables X are the courses allocated to students and the
domains D contain the list of the available courses.

There are three types of constraints, Unicity and Capacity as in Section 4.5, and a third
constraint:

� Compatibility: Students cannot be allocated to courses that are not compatible

∀{c1, . . . , cj} ⊂ C not compatible, ∀s ∈ S : {c1, . . . , cj} * Xs

The objective function has to take into account the metrics defined in Section 4.2 with the
following priorities:

Priority 1 Minimize (WRG). The least satisfied student must be as satisfied as possible.

Priority 2 Minimize (TRG). The total rank gap must be as small as possible, so that the global
satisfaction of students is maximized.

Let us consider µ as an assignment of the CAP variables X defined previously. In order to
apply these priorities, the objective function fCAP is the linear function defined in Expression
4.12, where the weight α > 0 used for (WRG) is higher than the weight β > 0 used for (TRG).
This function fCAP is defined in Expressions 4.12 and 4.13 and has to be minimized.

fCAP = α · (WRG) + β · (TRG)

= α ·maxs∈S
(
RankGapµ(s)

)
+ β ·

∑
s∈S

(
RankGapµ(s)

) (4.12)

where

RankGapµ(s) =

γ∑
i=1

(Ranks(x
s
i)) (4.13)

For the CTT, the variables Y = {y1, . . . , ym} are the timeslots allocated to courses. The
domain of yi is the list of the possible slots. The constraints for the CTT are:

74
Chapter 4. Heuristic and Hybrid Metaheuristic Approaches for RAP Combined with a

Scheduling Problem

� No-clashes for students: If a student is allocated to courses ci and cj , those courses
cannot be scheduled on the same slot.

∀s ∈ S,∀ci, cj ∈ Xs : yci 6= ycj

� No-clashes for teachers: If ci and cj have the same teacher, those courses cannot be
scheduled on the same slot.

∀ci, cj ∈ C : Teacher(ci) = Teacher(cj) ∧ ci 6= cj ⇒ yci 6= ycj

Instead of considering it as a hard constraint, the maximum number of slots has been im-
plemented as the objective function fCTT , which represents the excess of the number of slots
needed. As for fCAP , fCTT has to be minimized. fCTT is defined in Expression 4.14 where
MaxNbSlots is the maximum number of slots that can be used.

fCTT = max
c∈C

(yc −MaxNbSlots)+ (4.14)

When both problems are simultaneously solved, the variables and the constraints are the
same as in CAP and CTT. The objective function is the linear function fCAP&CTT defined in
Expression 4.15 that combines both objectives. As the number of slots is a hard constraint
modeled as a soft constraint, γ has to be much higher than α or β.

fCAP&CTT = α ·maxs∈S
(
RankGapµ(s)

)
+ β ·

∑
s∈S

(
RankGapµ(s)

)
+ γ ·maxc∈C(yc −MaxNbSlots)+

(4.15)

4.6.1 The CSOP algorithm for the CAP&CTT

As both problems are NP-hard, the optimal solution to the combined problem, CTT&CAP,
cannot be found in a reasonable amount of time. We have therefore implemented an algorithm
that uses a CSOP solver with a timeout to find a solution to the CTT or to the CAP or to both
problems simultaneously. The algorithm is presented in Algorithm 10.

In the first stage of this algorithm, lines 1 to 6, the courses that don’t have enough students
are canceled. The criterion used to cancel a course is the number of students allocated to it. If
there is at least one course with less than a minimum number of studentsMinst, then the smallest
course is canceled and the new CAP, with one course less, is solved again. After canceling a
course, disappointed students may fill another course that was also below the minimum in the
first step, that is why the new CAP is solved again and several courses are never canceled
simultaneously. The CTT problem is then solved with the CAP allocation considered as a
constraint.

If the CTT solution found in the first step needs more slots than available, the second stage
of this algorithm, lines 7 to 13, is executed. The CAP&CTT are then simultaneously solved.

4.7. The ACO approach for the CAP&CTT 75

After that, if more slots than available are still needed, additional compatibility constraints
are added to the CAP and the second stage starts again in line 7, with the new compatibility
constraints and the courses already canceled.

In lines 10 to 12, the compatibility constraints that should be added are selected. One course
and one slot not assigned to this course are selected. The combinations of this course and the
courses assigned to this slot are forbidden, so that this course can be assigned to this slot. The
selection of the course is based on the slot load: the slot of the selected course is the slot that
is assigned to the smallest number of courses. The selected slot is the one that minimizes the
number of students affected by the new constraints.

Algorithm 10: The CSOP approach

Input: List of courses C; List of students S; Ranking Ranks(c), ∀c ∈ C, s ∈ S; Capacity
K(c),∀c ∈ C

Output: Allocation µ, Timetable ν
1 Solve CAP;
2 while minc∈C(Card(µ(c))) < Minst do
3 Select c ∈ {c ∈ C : Card(µ(c)) = minc∈C(Card(µ(c)))}
4 K(c)← 0 ;
5 Solve CAP ;

6 Solve CTT for the last allocation µ found in the previous step;
7 if Nb slots needed > Nb slots available then
8 Solve CAP & CTT ;
9 if Nb slots needed > Nb slots available then

/* Add CAP constraints to reduce the number of slots needed */

10 Select c ∈ C so that Card(ν−1(ν(c))) is minimal ;
11 Select ts ∈ TS so that ts 6= ν(c) and Card({s ∈ µ(c) : s ∈ µ(ν−1(ts))} is minimal;
12 Forbid the combinations (c, ci), ∀i ∈ ν−1(ts);
13 Back to 7;

4.7 The ACO approach for the CAP&CTT

Algorithm 11 describes the steps of the ACO approach. The courses are canceled and the CAP
is solved in the same way as in the first stage of Algorithm 10, lines 1 to 6. In the second stage,
instead of combining both problems to find a complete solution, the ants are used to find a
feasible timetable first, line 11. This timetable is then a constraint for the CAP since clashes
are forbidden, line 14, and then the CAP is solved as a CSOP.

At the end of an iteration, the best solution will correspond to the best solution found by all
the ants of this iteration. At the end of the algorithm, the global best solution will correspond
to the best solution of the solutions of the iterations.

At the end of each iteration, the pheromones evaporate partially and both, the best solution
of the iteration and the global best solution, deposit pheromones on the corresponding timetable.
Algorithm 12 contains the description of the evaporation and deposition process where ρ ∈ (0, 1)
is the evaporation rate and ϕ is the weight for the solution cost.

76
Chapter 4. Heuristic and Hybrid Metaheuristic Approaches for RAP Combined with a

Scheduling Problem

Algorithm 11: The ACO approach

Input: List of courses C; List of students S; Ranking Ranks(c), ∀c ∈ C, s ∈ S; Capacity
K(c),∀c ∈ C; Number of iterations NbIter; Number of ants NbAnts

Output: Allocation µ, Timetable ν
1 Solve CAP-CSOP ;
2 while minc∈C(Card(µ(c)) < Minst do
3 Select c ∈ {c ∈ C : Card(µ(c)) = minc∈C(Card(µ(c))};
4 K(c)← 0;
5 Solve CAP-CSOP → Allocation µ;

6 Solve CTT-CSOP for the last allocation µ found;
7 if Nb slots needed > Nb slots available then
8 Initialize pheromones;
9 for i← 1, NbIter do

10 for a← 1, NbAnts do
11 Solve CTT-Ant → Timetable ν;
12 for {ci, cj} ∈ C do
13 if ν(ci) = ν(cj) then
14 Forbid combination (ci, cj);

15 Solve CAP-CSOP;
16 Update best solution of the iteration;

17 Update pheromones for the best solution of the iteration;
18 Update global best solution;
19 Update pheromones for the global best solution;

4.8 Experimentation: Greedy versus CSOP for the CAP

Ten sets of data have been generated for the ranking of 50 students over 10 courses. This ranking
is based on the distribution of the preferences of the students over the courses given in Table
4.2: the courses with a higher probability will have a higher probability to be among the first
choices of students. For example, course 4 has a probability of 7% to be the first choice of a
student.

All courses have a capacity of fifteen seats, ∀c ∈ C : K(c) = 15. Three courses are allocated
to each student: γ = 3. The generated ranking is a strict ranking, which means that even if a

Algorithm 12: Pheromones update in the ACO approach

Input: Timetable solution ν; Pheromones τ ; Timetable solution cost Cost
Output: Updated pheromones τ

1 for c ∈ C do
2 for ts ∈ TS do
3 τ tsc = (1− ρ) · τ tsc // evaporation

4 τ
ν(c)
c = τ

ν(c)
c + ϕ/Cost // deposition

4.8. Experimentation: Greedy versus CSOP for the CAP 77

Course 1 2 3 4 5 6 7 8 9 10

Probability 5% 5% 6% 7% 10% 10% 12% 12% 15% 18%

Table 4.2: Experimentation. Distribution of preferences of the students over courses.

CGA
CSOP
10 sec

CSOP
1 min

CSOP
Best known

Best

(TSG) 226 ± 19 217 ± 21 215 ± 21 211 ± 20 CSOP

(WSG) 12 ± 3 8 ± 1 8 ± 1 7 ± 1 CSOP

Table 4.3: 50 students, 10 datasets - Comparison CGA-CSOP, Mean ± Standard Deviation of the
two metrics (TSG) and (WSG).

student s is assigned to his first three choices c1, c2 and c3, the position of this courses for s will
be Ps(c1) = 0, Ps(c2) = 1, and Ps(c3) = 2. Therefore for any allocation µ and any student s ∈ S
we have:

SatGapµ(s) ≥ 3 (TSG) ≥ 150 and 24 ≥ (WSG) ≥ 3.

To solve the CSOP, we have used Gecode, [103, 131]. The computation was done with one
single processor on an Intel® Core� i5-3320M CPU 2.60 GHz.

4.8.1 The results

Table 4.3 contains the results. For CGA, the solution is found in less than 1 second. For CSOP,
the table contains the results after 10 seconds of computation, after 1 minute and the best known
solution.

Regarding (TSG), CSOP is on average 4% better than CGA after 10 seconds, and 6.6%
better for the best known solution. The ten charts in Figure 4.1 correspond to the ten datasets
analyzed and contain the value of (TSG) for CGA, as this algorithm finds only one solution,
the value of (TSG) doesn’t change. The charts also contain the results for the CSOP method
where we can see for each solution found, the value of (TSG) and the computation time needed
to find it.

Regarding (WSG), the first solution obtained with CSOP is always better than with CGA.
After 10 seconds, CSOP is 33% better and even 42% better for the best known solution.

Figure 4.2 compares the value of (TSG) with CGA and CSOP for the first solution, after 10
seconds, 30 seconds, 1 minute and 15 minutes, and includes also the best known result for the
CSOP. The first solution obtained with CSOP is not always better than the CGA solution, but
after 10 seconds of computation, CSOP outperforms CGA in all datasets.

Additional simulations were done with ten datasets of 150 students in order to analyze the
possible loss of effectiveness for bigger datasets. Figure 4.3 and Table 4.4 compare the results

78
Chapter 4. Heuristic and Hybrid Metaheuristic Approaches for RAP Combined with a

Scheduling Problem

Figure 4.1: 50 students - Results: Value of the metric (TSG) in the different solutions found by
CSOP and time when these solutions are found.

4.8. Experimentation: Greedy versus CSOP for the CAP 79

Figure 4.2: 50 students - (TSG) value for CGA and CSOP for each of the ten datasets in the first
solution and after 10 seconds, 1 minute, 15 minutes and 1 hour of computation.

Figure 4.3: 150 students - (TSG) value for CGA and CSOP for each of the ten datasets in the first
solution and after 10 seconds, 1 minute, 15 minutes and 1 hour of computation.

obtained for (TSG) with CGA and the CSOP method for the first solution, after 10 seconds, 1
minute, 15 minutes and 1 hour, and also include the best known result with the CSOP. Regarding
(TSG), neither algorithm outperforms the other: CSOP is better in five sets and CGA is better
in the other five sets. Regarding (WSG), CSOP always outperforms CGA and on average the
results are 44% better.

CGA
CSOP
10 sec

CSOP
15 min

CSOP
Best known

Best

(TSG) 647 ± 31 652 ± 31 648 ± 31 648 ± 31 CGA

(WSG) 18 ± 5 10 ± 1 10 ± 1 10 ± 1 CSOP

Table 4.4: 150 students, 10 datasets - Comparison CGA-CSOP, Mean ± Standard Deviation of the
two metrics (TSG) and (WSG).

80
Chapter 4. Heuristic and Hybrid Metaheuristic Approaches for RAP Combined with a

Scheduling Problem

dataset 1 2 3

Number of courses offered 20 19 18

Number of students 326 279 271

Nb of courses with rank 0 per student 3.6 ± 1.4 3.9 ± 1.7 3.3 ± 1.2

Nb of courses with rank 0 or 1 per student 5.7 ± 2.3 6.2 ± 2.6 5.2 ± 1.7

Table 4.5: Size of the datasets. The number of courses is given with the average ± the standard
deviation.

4.9 Experimentation: CSOP versus ACO for the CAP&CTT

The three datasets used in this section are real data from EHL where elective courses are offered
to students for their last semester of the Bachelor program. The following constraints have to
be satisfied:

� Each student has to be allocated to 2 courses among those that have been offered.

� Each course has to be scheduled on one weekday (Monday to Friday) avoiding clashes in
the students’ timetable, so there are 5 timeslots.

� Each course has a capacity of 40 students.

� Some courses are similar. A student cannot be assigned to two courses that are similar.
Those pairs of courses are not compatible.

The ranking of the courses by the students contains no gap and at least 2 courses are the
first choice of each student, which means ∀s ∈ S:

� ∃ci, cj ∈ C : ci 6= cj ∧Rank(ci) = 0 ∧Rank(cj) = 0

� ∀ci ∈ C : Rank(ci) > 0⇒ ∃cj ∈ C : Rank(cj) = Rank(ci)− 1

Table 4.5 contains for each dataset the number of students and the number of courses offered.
It contains also some data about the distribution of the students’ ranking. We can see that the
dataset 3 may be more difficult since the average number of courses with a rank 0 or 1 is much
smaller than in the other datasets. Considering the same indicators the second dataset should
be easier.

Each semester, the offer exceeds the demand, which means that more courses than needed
are proposed to the students. The courses with the lowest demand are not opened, the students’
ranking is used to identify those courses. The number of courses that are canceled depends on
the students’ ranking. Table 4.6 contains the average number of courses with a rank 0 or 1 once
the least popular courses are canceled; this result is provided by both approaches, CSOP and
ACO. The most difficult dataset seems to be still the third one. Nevertheless the impact of

4.9. Experimentation: CSOP versus ACO for the CAP&CTT 81

dataset 1 2 3

Number of courses canceled 2 3 3

Nb of courses with rank 0 per student 3.4 ± 1.4 3.4 ± 1.5 3.1 ± 1.1

Nb of courses with rank 0 or 1 per student 5.4 ± 2.2 5.4 ± 2.3 4.8 ± 1.7

Table 4.6: Data after canceling courses. The number of courses is given with the average ± the
standard deviation.

closing the courses is more important on dataset 2 than on the dataset 3. datasets 1 and 2 are
similar for those indicators, even if 1 more course is closed in dataset 2.

The computation was done on an Intel® Core� i5-5300U CPU 2.30 GHz. Gecode, [131],
was used to solve the CSOP models: CAP, CTT, CAP&CTT. As the planification requires time
efficiency and it must be performed quickly, the computation time for each launch of Gecode
was limited to 10 seconds in the first stage and to 2 minutes in the second stage of the CSOP
algorithm. It was limited to 5 seconds for each ant in the ACO algorithm.

To solve the CTT problem with ACO, we have used a colony of 20 ants. With some CTT
solutions built by the ants, there was no solution to the CAP. The limit was not a number of
iterations, but a time limit of 14 minutes.

The total computation time for the CSOP approach is between 8 and 11 minutes for the
three datasets.

4.9.1 Results for the CSOP approach

Figure 4.4 contains the results for the three datasets for the CSOP approach. The charts contain
the value of the two metrics (TRG) and (WRG) and the number of slots needed for the best
solution found each time Gecode was launched. The CTT is not solved in the first stage of the
algorithm, the number of slots is therefore not available in the first solutions.

When a course is canceled just before launching Gecode (Algorithm 10, line 4), a square
is plotted on the best solution found by Gecode right after (Algorithm 10, line 5). When
constraints are added to the CAP just before launching Gecode (Algorithm 10, lines 10-12), a
circle is plotted on the best solution found by Gecode right after (Algorithm 10, line 8).

If we compare (TRG) for the first solution found, we can see that dataset 2 has a better
value. This can be compared with the conclusions from Section 4.9 where this dataset seemed to
be easier due to the higher average number of courses with rank 0 per student. In the same way
the dataset 3 has a worse value for (TRG) and it has also a smaller average number of courses
with rank 0 per student.

In the three charts, we can clearly see the impact of canceling a course on (TRG); in dataset
2, the second chart, this situation is worse since (TRG) goes from 25 to 87 (44 to 64 in dataset
1 and 50 to 89 in dataset 3). This happens also for (WRG), except for dataset 1. The smaller
impact on dataset 1 can be explained by the fact that there are some courses that are not
popular and the fact that those courses are not offered does not affect the students’ satisfaction

82
Chapter 4. Heuristic and Hybrid Metaheuristic Approaches for RAP Combined with a

Scheduling Problem

In the three datasets, new constraints had to be added to the CAP in order to find a feasible
timetable, since in all sets 8 slots were initially needed. Adding a new constraint has also an
impact on (TRG), but much less than canceling a course and has almost no impact on (WRG).
In dataset 2, after adding a second constraint, (WRG) is even better than before; this is probably
due to the fact that the computation time is limited and in the previous launch of Gecode, the
best solution was not found due to timeout.

4.9.2 Results for the ACO approach

Figure 4.5 contains the results for the three datasets for the ACO approach. The charts contain
the value of the two metrics (TRG) and (WRG) for the solution found by each ant for each
dataset; this solution includes the CTT solution found by the ant itself and the best solution
found by Gecode for the CAP. The number of slots used in the timetable is not included since
the ants build only feasible timetables with 5 slots.

In those charts, we can clearly see how the ACO approach converges to the best solution,
which is found in iteration 10 or 11 in the three datasets after a computation time of around
8-10 minutes.

4.9.3 Comparison of CSOP and ACO

Table 4.7 contains the indicators for the best solution found for each dataset and Table 4.8 gives
the detail of the distribution of (WRG) for all students, (WRG) = 0 being the best situation
for a student.

In Table 4.7, we can see that for the first dataset, the results for both methods are identical.
In the second dataset, ACO provides a solution that is better for both metrics. In the third
dataset, even if the result (TRG) is worse, as the weight used for (WRG) is α = 100 and the
weight used for (TRG) is β = 1, the objective function described in Expression 4.12 is much
better with ACO than with CSOP.

In Table 4.8, we can see that in the three datasets with both approaches, more than 70%
of the students have RankGap = 0, which means that they are fully satisfied since they are
allocated to 2 courses that belong to their first choices.

In the first dataset, even if the results for (WRG) and (TRG) are the same for both ap-
proaches, the ACO result is more interesting for the worst-off students since there are less
students with RankGap = (WRG). Nevertheless, this happened by chance since there is no
incentive in the objective function for this situation.

4.9.4 Computation time

Table 4.9 contains the computation times. The total computation time corresponds to the total
time used for the computation. Feasible solution gives the time needed to find a feasible solution
with 5 slots in the timetable.

4.9. Experimentation: CSOP versus ACO for the CAP&CTT 83

Figure 4.4: Value of the metrics (TRG) and (WRG) and number of slots needed in the different
solutions found by CSOP.

84
Chapter 4. Heuristic and Hybrid Metaheuristic Approaches for RAP Combined with a

Scheduling Problem

Figure 4.5: Value of the metrics (TRG) and (WRG) in the different solutions found by ACO.

4.9. Experimentation: CSOP versus ACO for the CAP&CTT 85

dataset 1 dataset 2 dataset 3

CSOP ACO CSOP ACO CSOP ACO

(TRG) 78 78 97 87 99 104

(WRG) 3 3 5 4 4 3

Table 4.7: Values of the two metrics (TRG) and (WRG) for the CSOP and the ACO approaches.

Rank
Gap
value

Number of students

dataset 1 dataset 2 dataset 3

CSOP ACO CSOP ACO CSOP ACO

0 265 263 223 224 200 200

1 49 51 34 34 48 45

2 7 9 9 12 19 19

3 5 3 8 7 3 7

4 0 0 4 2 1 0

5 0 0 1 0 0 0

Table 4.8: Distribution of the RankGap value for the students for the CSOP and the ACO ap-
proaches.

As in the ACO approach, the number of slots is a hard constraint, all found solutions are
feasible. If we consider that a good solution is the one that minimizes (WRG), depending on
the dataset, a good solution is found within 1 to 5 minutes. The best solution is found within
4 to 10 minutes. Regarding the CSOP approach, the number of slots is a soft constraint as are
the metrics (WRG) and (TRG). Therefore all these computation times are the same since the
computation is stopped as soon as a feasible solution is found.

Nevertheless, the computation time was not a criterion in our investigation. Those times
can certainly be reduced if we adjust the timeout for each launch of Gecode.

dataset 1 dataset 2 dataset 3

CSOP ACO CSOP ACO CSOP ACO

Total 8:43 14:00 10:43 14:00 8:42 14:00

Feasible 8:43 0:00 10:43 0:00 8:42 0:00

Good 8:43 2:46 10:43 1:17 8:42 4:39

Best 8:43 7:56 10:43 4:42 8:42 9:34

Table 4.9: Computation time for the CSOP and the ACO approaches [mm:ss].

86
Chapter 4. Heuristic and Hybrid Metaheuristic Approaches for RAP Combined with a

Scheduling Problem

4.10 Conclusions

In this chapter, we have analyzed and solved two different types of problem. The first type is a
simple Course Allocation Problem, and the second type combines a Course Allocation Problem
with a Course Timetabling Problem.

For the simple CAP, we have compared two different approaches to solve the problem of
allocating several courses to students, where each student gives his preferences with a strict
ranking of the available courses. Two metrics have been used to quantify the quality of a solution:
the Total Satisfaction Gap (TSG) analyzes the average level of satisfaction of the students and
the Worst Satisfaction Gap (WSG) corresponds to the level of satisfaction of the worst off. The
first approach, the Course Greedy Algorithm (CGA), allocates a course to the students who
ranked this course first, and if seats are still available, to those who ranked it second and so on.
This mechanism is fairer than a simple First-come First-served mechanism. The second approach
is based on a Constraint Satisfaction Optimization Problem (CSOP) and uses the solver Gecode
to optimize the value of both metrics. For small instances, the results for both metrics are
very quickly much better than with CGA. When the number of students increases, the benefit
regarding (WSG) is even more important than for smaller instances. However, the computation
time needed to obtain good results for (TSG) increases, and the benefit of this approach is less
important than for smaller instances since (TSG) with CSOP is similar to (TSG) with CGA
with 150 students. Nevertheless the allocations obtained with CSOP are much fairer for students
than the allocation obtained with CGA.

For the combined CAP&CTT, we have presented two approaches to solve a problem that
combines a timetabling problem with a multi-course allocation problem whose objective is to
maximize the satisfaction of students. The first approach uses a CSOP solver to find the solutions
to both problems simultaneously and to each problem individually. The second approach uses
the same CSOP solver for the courses allocation, but an ACO algorithm to solve the timetabling
problem. Both approaches provide very good results in a reasonable computation time. The
ACO approach is nevertheless much faster in finding good solutions. Moreover all the solutions
provided by the ACO approach are feasible as the timetable constraints are not considered as
soft, but as hard constraints. Those approaches are currently used at EHL to allocate the seats
in the courses and to guarantee that this allocation is compatible with the timetable constraints.

Chapter 5

Comparison of Three
Metaheuristics to Handle

Many-objective RAP

In this chapter, ACO and HS are adapted to a many-objective RAP. Their performance is
compared to the classic and well-known NSGA-II that is a GA adapted to many-objective
problems, the Non-dominated Sorting Genetic Algorithm II. The data used to compare their
performance come from Canton de Vaud and is the same as the one used in chapter 3.

5.1 Introduction

In this chapter, the problem of the educational system in Canton de Vaud presented in chapter
3 is modeled as a real many-objective optimization problem (MOOP). The seven objectives
of this MOOP revolve around the number of teaching hours, the number of teachers and the
pedagogical goal. Three bio-inspired approaches are applied to this problem and compared,
an ACO algorithm and a HS algorithm adapted to the MOOP, and the well-known NSGA-II,
the Non-dominated Sorting Genetic Algorithm II. The three of them use the crowding distance
value to sort the solutions, together with the successive Pareto fronts in NSGA-II and HS. This
sorting is then used to guide the search: the best solutions deposit more pheromones in the
ACO approach, the worst solutions are removed from the population in NSGA-II and from the
harmony memory in the HS approach.

The rest of the chapter is structured as follows. Section 5.2 describes the school’s problem
in Canton de Vaud. Section 5.3 presents the model for this problem. Sections 5.4, 5.5, and 5.6
explain the three approaches, ACO, HS and NSGA-II. Section 5.7 presents the results and the
two hypervolume methods used to compare the performance of the three approaches. Section
5.8 contains the conclusions and presents future work.

87

88 Chapter 5. Comparison of Three Metaheuristics to Handle Many-objective RAP

5.2 Description of the Problem

In secondary schools in Switzerland, students are assigned to main classes and all students of
a main class attend most courses together, except elective courses and courses with different
levels, hereinafter referred to as multi-level courses [104]. For the multi-level courses, students
are split according to their level and then grouped with students of other main classes who have
the same level. The same teacher can teach any level of a course for which he possesses the
required skills. In Canton de Vaud, three courses have different levels: French, German and
Mathematics.

If we consider only the timetabling problem that exists in all schools, the best solution for
the allocation of students is to assign students with the same profile to the same classes. The
splitting-grouping procedure is thus minimized or even not needed and scheduling is easier.

However the allocation of students to main classes must satisfy a pedagogical objective that
is not in line with the timetabling problem. The composition of a main class must be as mixed as
possible considering the different levels. The splitting-grouping phase thus becomes mandatory
and implies that the timetables of two or more main classes have to be compatible for multi-
level the courses. Furthermore, the compatibility of timetables for a course implies that more
teachers are needed, since two or more lessons of the same course take place simultaneously. If
timetables are not compatible, the lessons for the course have fewer students.

In this problem, we have three types of objectives and seven different objectives:

� The pedagogical objective, which establishes that classes should be as mixed as possible.

� The number of teaching hours for each of the three multi-level courses should be minimized.

� The number of teachers, which should be as low as possible for each of the three multi-level
courses. Teachers are difficult to find, especially when they teach just a few hours.

If, for a multi-level course, the slot in the timetable is the same for all main classes, the
number of hours is minimized since all students are available at that moment for this course.
The main classes can then be as mixed as possible, but as all lessons for this course take place
simultaneously, the number of teachers needed is not minimized. In order to minimize the
number of teachers, the lessons for this course should never have the same slots in the timetable
and the students in a main class should have the same level in order to minimize the number of
lessons.

5.3 Problem Statement

This allocation problem is a many-objective resource allocation problem (MORAP) and is mo-
deled in this chapter as a constraint satisfaction optimization problem (CSOP).

A CSOP for the MORAP is described with four sets (X;D;C;F), where X contains the
variables that have to be defined, the domain D contains the possible values that may take the

5.3. Problem Statement 89

variables and C is the set of constraints that must be satisfied by an assignment of values to
the variables so that this assignment is a feasible solution of the problem. F is the set of the
objectives of the MORAP, each objective being a fitness function that represents a quantitative
measure of the quality of an assignment for this objective.

The variables of the CSOP in the MORAP are X = {X1, . . . , Xn}, where n is the number
of students. The domain is the same for all variables, D = {d1, . . . , dm}, where m is the number
of main classes and di is an identifier for the i-th main class. The constraint of the CSOP is the
capacity of a main class, i.e. no more than Dmax students per class:

Card({Xi ∈ X : Xi = dj}) ≤ Dmax

where Card(·) denotes set cardinality.

An allocation µ = (x1, x2, . . . , xn) is defined as an assignment of a value xi ∈ D to each
variable Xi ∈ X, that is the assignment of one main class to each student. For s ∈ S, µ(s) is
the main class allocated to s. Hereinafter S is the set of students, D the set of main classes,
and C the set of courses with levels.

5.3.1 The Pedagogical Objective

The pedagogical objective can be evaluated comparing the diversity of the different main classes.
If the diversity is similar, then it is maximized in all main classes. To evaluate this similarity,
each level in every course is considered as a category k ∈ K, e.g. students with level 1 in French
belong to the corresponding category k1F . Therefore a student may belong to several categories,
the categories of a student s ∈ S are SK(s). Each course c ∈ C has also several categories
CK(c), each of them corresponding to a level.

For an allocation µ, the number of students in a main class d ∈ D belonging to a category
k ∈ K is given by Expression (5.1). The optimal similarity for a category k ∈ K is reached
if all main classes have the same number of students who belong to this category, this optimal
number is expressed in Expression (5.2):

DNµ(d, k) = Card({s ∈ S : xs = d ∧ k ∈ SK(s)}) (5.1)

DN(k) =
Card({s ∈ S : k ∈ SK(s)})

m
(5.2)

The similarity between classes - the first objective of the MORAP - can then be evaluated
as in Expression (5.3).

f0(µ) =
∑
k∈K

∑
d∈D
|DNµ(d, k)−DN(k)| (5.3)

90 Chapter 5. Comparison of Three Metaheuristics to Handle Many-objective RAP

5.3.2 The Number of Lessons and Teachers

The number of lessons and the number of teachers are determined by the number of occurrences
of a course and how those occurrences are scheduled in the timetable. In order to compute those
values, we define here the concept of groups of main classes.

The main classes are classified into groups: one group has a maximum of m main classes.
Classes within the same group must have the same timetable for the multi-level courses. Students
of this group are split and grouped to attend the lessons corresponding to their level.

There are several possible groupings of classes. For example, for m = 2, we have two
groupings: either both classes are in the same group, so there is only 1 group, or they are in
different groups yielding 2 groups.

For an allocation µ, a category k and a group g, the number of lessons is given by Expression
(5.4), that is the number of students with a given level who belong to this group divided by the
maximum number of students in a class, i.e.

Lk,g(µ) =

⌈
Card({s ∈ S : k ∈ KS(s) ∧Xs ∈ g})

Dmax

⌉
. (5.4)

Therefore, the number of lessons for a course c ∈ C is shown in Expression (5.5). As each
group has its own slots for a course, the total number of teachers corresponds to the maximum
number of lessons that take place simultaneously, which is given by Expression (5.6).

f lc(µ) =
∑
g

∑
k∈CK(c)

Lk,g(µ) (5.5)

f tc(µ) = max
g

 ∑
k∈CK(c)

Lk,g(µ)

 (5.6)

The objectives of the MORAP are thus to minimize f0 and f lc and f tc for all c ∈ C.

In the next three sections, the three approches are described: ACO, HS and NSGA-II.

5.4 The ACO Approach

For the MORAP presented in Section 5.3, an ant builds a solution by assigning a main class
to a student at each step. At the end of each iteration, solutions built by the ant colony are
compared by using the fitness functions. All non-dominated solutions of the iteration at hand
deposit pheromones.

Every possible assignment (s, d) ∈ (S,D) has, thus, a pheromone quantity τs,d. At the
beginning of the optimization process, pheromones are initialized to a value τinit. At the end

5.4. The ACO Approach 91

of each iteration, they are reduced by the evaporation rate ρ ∈]0, 1[, and reinforced by the non-
dominated solutions of the iteration, as in Expression (5.7). The reinforcement ∆s,d depends on
the crowding distance of the solution: the larger the crowding distance of the solution, the more
pheromone is laid on the corresponding assignments:

τs,d =

{
ρ · τs,d + ∆s,d if (s, d) belongs to a non-dominated solution

ρ · τs,d otherwise
(5.7)

The visibility represents the availability of seats in the different classes. If a class d ∈ D is
full, its visibility ηd is null. When an ant builds a solution, this visibility is updated at each step
(that is after assigning each student) as in Expression (5.8).

ηd =

{
1 if there are seats available in d

0 otherwise
(5.8)

When the ant builds the solution, at each step one student s is considered and the probability
to assign s to d is given by Expression (5.9).

ps,d =
τs,d · ηd∑

di∈D τs,di · ηdi
(5.9)

Algorithm 13 summarizes the steps needed to find the approximation of the Pareto front.
Two sets of solutions are used: Setbest contains the solutions found in the iteration that are not
dominated by any other solution found in this iteration, whereas Setglobal contains the solutions
found by the algorithm that are not dominated by any other solution found in previous iterations.
When a set is updated, the updated set keeps all non-dominated solutions.

Algorithm 13: Multi-objective ACO approach

Input:
Output: Set of non-dominated allocations Setglobal

1 Initialize pheromones
2 for i← 1, . . . , N do
3 Setbest = ∅
4 for ant← 1, . . . , A do
5 µant = ∅
6 for s ∈ S do
7 Select d ∈ D with a probability ps,d
8 µant ← µant ∪ (s, d)
9 Update ηd

10 Update Setbest with µant

11 Evaporate pheromones
12 Lay pheromones for all µ ∈ Setbest
13 Update Setglobal with Setbest

92 Chapter 5. Comparison of Three Metaheuristics to Handle Many-objective RAP

5.5 The HS Approach

In the model presented in Section 5.3, a harmony is a solution of the class composition problem,
each note is thus an allocation of a student to a main class and each musician is in charge of
allocating one student.

Algorithm 14 summarizes the steps of the HS approach used for the MORAP problem. The
generation of harmonies is performed N times, the initial HM is composed of random allocations
of students to main classes (line 1).

Algorithm 14: Multi-objective HS approach

Input:
Output: HM

1 Populate HM with HMsize random allocations for i← 1, . . . , N do
2 for s ∈ S do
3 if rand(0, 1) < HMCR then
4 Select randomly µs ∈ HM → ds = µs(s)
5 if rand(0, 1) < PAR then
6 ds ← ds + 1 with a probability of 0.5
7 ds ← ds − 1 with a probability of 0.5

8 else
9 Select randomly ds ∈ D

10 if Card(ds) < Dmax then
11 µ← µ ∪ (s, ds)

12 Allocate randomly all non-allocated students to non-full main classes
13 Update µ with the random allocations
14 if µ dominates the worst solution µw ∈ HM then
15 Replace µw by µ in HM

For the composition of a new harmony each musician selects an existing note in HM or gen-
erates a random note, depending on the value of the parameter Harmony Memory Considering
Rate (HMCR), which ranges from 0 to 1 (lines 3 to 7). A high value of HMCR means a high
probability to select an existing note in HM, a small value of HMCR means a high probability to
generate a random note. In addition to HMCR a second parameter called Pitch Adjusting Rate
(PAR) is used to avoid local minima. With a probability PAR, the note selected by a musician
is changed to the closest upper or lower note (lines 5 to 7).

In the model presented in Section 5.3, the class allocated to a student is selected among the
classes he is assigned to in the different solutions stored in HM with a probability HMCR and
is randomly selected with a probability 1-HMCR. If we assume that this class is d, it is then
changed to d+ 1 with a probability PAR/2 and to d− 1 with a probability PAR/2.

If a student cannot be allocated to the selected class, because it is full, he stays unallocated
until the end of the composition. Unallocated students are then allocated uniformly at random
to classes that are not full (lines 12-13).

5.6. The NSGA-II Approach 93

This new allocation µ replaces then the worst solution µw stored in HM if µ is better. µ is
better than µw if µ dominates µw or if none is dominating the other and the crowding distance
of µ is larger than the crowding distance of µw. The crowding distance has to be calculated with
the solutions that are in the same front as µ and µw in HM. The worst solution in HM is the
one with the smallest crowding distance that is dominated by the highest number of solutions
in HM.

5.6 The NSGA-II Approach

As explained in Section 2.1.2, genetic algorithms are based on the natural selection process.
They start with an initial population of Psize solutions. Those solutions are combined together
in order to create a new population, the offspring population. Both populations, the parent
population Pt and the offspring population Qt, compete then to be part of the next parent
population Pt+1 that includes the best solutions of both of them.

To select the next parent population, parent and offspring solutions of the current iteration
are put in a set of solutions Rt = Pt ∪ Qt. The non-dominated solutions of Rt are grouped in
a front set F1 and removed from Rt. Step by step, different front sets Fi are created with the
non-dominated solutions of the partially emptied Rt. All solutions of a front Fi are better than
the solutions of the following fronts Fi+k. Within a front, the crowding distance of each solution
is calculated, solutions with a higher value are considered to be better. When all the solutions
of a front cannot be selected because of the size of the parent population, only the best are
selected. Figure 5.1 illustrates the NSGA-II approach.

Figure 5.1: NSGA-II approach.

Algorithm 15 describes the steps to select the new parent population Pt+1 for the next
iteration among the parent and the offspring solutions of the current iteration.

Algorithm 16 describes the steps of the NSGA-II approach used for the MORAP problem.
The offspring generation is performed N times. For the MORAP presented in Section 5.3, the
initial parent population is composed of Psize random allocations of students to main classes
(line 1).

94 Chapter 5. Comparison of Three Metaheuristics to Handle Many-objective RAP

Algorithm 15: Select the next parent population

Input: Parent and offspring population Rt = {µi, i = 1, . . . , 2 ∗ Psize}
Output: New parent population Pt+1

1 Pt+1 = ∅
2 k = 1
3 while Card(Pt+1) < Psize do
4 for µi ∈ Rt do
5 if µi is non-dominated in Rt and Card(Pt+1) < Psize then
6 Pt+1 ← Pt+1 ∪ µi
7 Fk ← Fk ∪ µi

8 Rt ← Rt\Fk
9 k = k + 1

Each solution of the parent population is combined with another solution. The probability
of selecting µj as the second parent depends on the front of µj . If µj ∈ Fk, the smaller k is,
the higher the probability is that µj is selected as second parent. Better solutions have thus a
higher probability to be selected as second parent (line 6).

Algorithm 16: NSGA-II Approach

Input:
Output: Final parent population PN

1 Populate P0 with Psize random allocations
2 for t← 1, . . . , N do
3 Rt = Pt−1
4 for µi ∈ Pt−1 do
5 µ = ∅
6 Select the second parent µj ∈ Pt−1, j 6= i
7 for s ∈ S do
8 Select r ∈ {i, j} with a probability of 0.5 each
9 if Card(µr(s)) < Dmax then

10 µ← µ ∪ (s, µr(s))

11 Allocate randomly all non-allocated students to non-full classes
12 Update µ with the random allocations
13 Mutate µ with a probability Probmutation
14 Rt ← Rt ∪ µ
15 Select the new parent population Pt in Rt

A student who is in the same main class in both parents, is allocated to this class in the
offspring solution. A student who is in two different classes, is allocated to one of them randomly
(lines 7 to 10). If those classes are full and the assignment is thus impossible, the student stays
unallocated until the end of the crossover. Unallocated students are then allocated randomly to
classes that are not full (line 11).

Each offspring solution generated by a crossover has a probability to mutate. The muta-

5.7. Experimentation 95

Dataset 21-9 21-10 12-9 12-10 34-9 34-10 36-9 36-10

Students 113 137 71 90 78 78 68 66

Main classes 6 8 4 5 5 5 4 4

Table 5.1: Experimentation. Size of the datasets.

tion operation consists in selecting randomly two students allocated to different classes and in
swapping their allocation (line 13).

5.7 Experimentation

5.7.1 Datasets

Eight datasets were used to test the performance and compare the three approaches. They
contain a list of students with their level in three different courses, French, German and Ma-
thematics. These datasets come from different schools in Switzerland and correspond to the
academic period 2015-2016. Table 5.1 contains the number of students and the number of main
classes per dataset. The identifier of a dataset indicates the school and the grade, e.g. 21-9 is
the dataset for the grade 9 of the school 21.

5.7.2 Parameters

With the NSGA-II model, 80 iterations with a population of 80 solutions were used; the mutation
probability was set to 0.1. With the ACO approach, 80 iterations with a colony of 80 ants were
used; the evaporation rate ρ was set to 0.9. With the HS model, 6,400 iterations were used with
a memory size of 80 harmonies; HMCR was set to 0.7 and PAR was set to 0.1. 100 runs have
been applied to the eight datasets with the three approaches. It is important to remark that
the above parameters ensure a fair comparison in terms of complexity, as all approaches execute
the same number of fitness evaluations. The value of those parameters were set experimentally.

5.7.3 Hypervolume Comparison

Two methods have been used to compare the results of the three approaches in this chapter. The
first method is the simple hypervolume comparison (HC). The second method is the smoothing
hypervolume comparison (SHC). For the SHC, runs have been grouped into 10 sets of 10 runs
and a new Pareto front has been created for each set taking all the non-dominated solutions
found in the 10 runs of the set.

As the problem considered in this chapter is a minimization problem, a reference point has
to be chosen in order to play the role of the origin. This reference point has to be worse than
any other point in the Pareto front. This reference point together with the origin represent a
hypercube. As the computation of the hypervolume is complex due to the fact that it has seven

96 Chapter 5. Comparison of Three Metaheuristics to Handle Many-objective RAP

Solution f0 f l1 f l2 f l3 f ltotal f t1 f t2 f t3 f ttotal

1 12 5 4 4 13 5 4 4 13

2 12 5 5 5 15 3 3 3 9

3 12 6 6 6 18 2 2 2 6

4 28 5 4 5 14 3 2 3 8

5 28 5 5 4 14 3 3 2 8

6 34 5 4 4 13 3 2 2 7

7 60 6 5 6 17 2 2 2 6

8 64 5 6 6 17 2 2 2 6

9 66 6 6 5 17 2 2 2 6

10 86 5 5 6 16 2 2 2 6

11 92 5 5 5 15 2 2 2 6

Table 5.2: Non-dominated solutions for a run for the dataset 34-10 with the ACO approach.

dimensions coming from the seven objectives of the problem, a Monte Carlo simulation can be
used to estimate it. For each approach proposed in this chapter, a Monte Carlo simulation
estimates thus the portion of the hypercube covered by the Pareto set approximation of each
run. This portion corresponds to HC.

As the three methods in the benchmark are controlled by stochastic parameters and the
result for isolated runs might be strongly biased by local optima, the SHC minimizes this bias
by calculating a new approximation of the Pareto front combining the Pareto sets of several
runs. The values for SHC should thus be better than those for HC and more significant from a
statistical point of view for the comparison of the three algorithmic approaches.

For the estimation of the hypervolume with the Monte Carlo simulation, each value of the
reference point for each dataset is the worst value found for each objective among all the non-
dominated solutions of the 300 runs, independently for the approach. This reference point is then
used to calculate the hypervolume with both methods, HC and SHC, for the three approaches,
ACO, HS and NSGA-II. A sampling of 2,000 points has been generated for each dataset and
used for the three approaches.

5.7.4 Results and Discussion

As an example of the results, Table 5.2 contains the eleven non-dominated solutions found during
one run for the dataset 34-10 with the ACO approach.

As there are seven objectives, the solutions set cannot be plotted in a chart. In order to
visualize part of the properties of those sets, the total number of lessons f ltotal = f l1 + f l2 + f l3
and that of teachers f ttotal = f t1 + f t2 + f t3 have been computed. Figure 5.2 contains the solutions
for six datasets. The horizontal axis corresponds to f ltotal and the vertical axis corresponds to
f ttotal. Each circle corresponds to a solution and the size of the circle depends on the value of

5.7. Experimentation 97

12-9 21-9

Approach 100 runs 10 sets 100 runs 10 sets

Nb of runs with ACO 81 10 9 6

f0 minimal HS 76 10 2 2

NSGA-II 99 10 33 10

f0, average ACO 8.6±1.2 N/A 17.6±3.5 13.0 ± 1.3

± std dev. HS 8.5 ±0.9 N/A 18.1±2.1 14.8 ± 1.8

NSGA-II 8.02±0.2 N/A 14.3±2.0 N/A

Table 5.3: Comparison of f0 by ACO, HS and NSGA-II in 100 runs and in 10 sets of 10 runs each
for the datasets 12-9 and 21-9.

f0, the higher the f0, the larger the circle.

This simplification of the objectives enables the representation in a 2D chart, but the charts
must be assessed carefully. For example, in Table 5.2 solutions 4 and 5 are similar if we consider
f0, f

l
total and f ttotal, but if f li and f ti are considered, they are no longer similar. f l2 is better in

solution 4 and f l3 is better in solution 5. There are also solutions in some datasets where, if only
f0, f

t
total and f ltotal are analyzed, then the conclusion is that one solution dominates another one.

However, this conclusion is not correct if we consider f li and f ti .

For the dataset 21-10 a smooth Pareto front can be clearly identified in the chart. This is
partly due to the fact that this dataset produces in almost all runs more than 40 solutions. For
the dataset 34-10, there are three solutions aligned with each other - namely (13,7), (14,8) and
(15,9) - that are part of the Pareto front even in the simplified representation: the size of the
circle is smaller for (14,8) than the one for (13,7) and it is even smaller for (15,9).

5.7.4.1 Datasets 12-9 and 21-9

For the datasets 12-9 and 21-9, only one non-dominated solution was found. Both solutions
optimize all f ti and all f li . A lower bound for those values can be estimated by considering
the number of students in the dataset and the maximum number of students per class. The
non-dominated solution reaches this lower bound for both datasets.

Regarding f0, a lower bound such as the one mentioned above, is not straightforward. Ne-
vertheless, the three approaches can be compared to each other. The minimal values for 12-9,
f0 = 8, and for 21-9, f0 = 12, are found by using the three approaches in several runs.

Table 5.3 details the comparison between ACO, HS and NSGA-II. NSGA-II clearly out-
performs the other approaches in those datasets, except when runs are grouped in sets of 10
runs each for the dataset 12-9. In that case, the three methods are similar, no single method
outperforms the others.

98 Chapter 5. Comparison of Three Metaheuristics to Handle Many-objective RAP

Figure 5.2: Non-dominated solutions for six datasets. Horizontal axis: Sum of f ti . Vertical axis:
Sum of f li . Size of the circles: f0. Left: ACO approach. Middle: HS approach. Right: NSGA-II
approach.

5.8. Conclusions 99

Dataset ACO HS NSGA-II Best

36-10 0.2 10.8 2.2 ACO

34-10 2.6 9.4 3.4 ACO

21-10 243 263 313 ACO

12-10 2.8 13.2 3.7 ACO

36-9 0.7 10.6 1.7 ACO

34-9 2.2 8.8 2.9 ACO

12-9 0.8 8.3 1.6 ACO

21-9 9.6 15.6 10.5 ACO

Table 5.4: Comparison of the computation time in seconds for each approach in the six datasets.

5.7.5 Computation time

Table 5.4 contains the average computation time for one run. Those values are calculated as the
average of the 100 runs. ACO is always faster than the other approaches. The dataset 21-10 is
the biggest dataset, with the highest number of students and of classes. The computation time
for this dataset is also the longest.

5.7.6 Hypervolume Comparison

Table 5.5 contains the portion of the hypercube dominated by each approach in the six datasets
with the simple and the smoothing hypervolume methods. NSGA-II outperforms ACO and HS
in one dataset, while ACO dominates in two datasets. In the three other datasets, there is no
significant difference between the three methods, all of them are competitive. The portion of
the hypercube covered by the SHC is on average 11% greater than by HC.

5.8 Conclusions

In this chapter, we have presented three approaches applied to a many-objective optimization
problem, based on Ant Colony Optimization, Harmony Search and Genetic Algorithms. All
approaches have been applied to eight real datasets coming from schools in Switzerland, where
the allocation of students to classes must be done by optimizing the pedagogical objective and
minimizing both the number of lessons and the number of teachers for different courses.

We have used two different methods in order to compare the three approaches, both of them
based on the hypervolume indicator. Our results show that the NSGA-II approach outperforms
the other approaches in four datasets out of eight. The ACO approach outperforms the others
in one dataset. For the other three datasets, the three approaches are competitive and the three
of them provide good solutions.

Regarding the computation time, the ACO approach outperfoms the others. It is important

100 Chapter 5. Comparison of Three Metaheuristics to Handle Many-objective RAP

Simple Hypervolume, 100 runs

Dataset ACO HS NSGA-II Best

36-10 61% ± 6.8% 70.0% ± 3.8% 75.0% ± 0.6% NSGA-II

34-10 74% ± 0.5% 70.4% ± 0.7% 70.3% ± 1.5% ACO

21-10 76% ± 1.2% 76.2% ± 1.0% 80.0% ± 1.1% NSGA-II

12-10 81% ± 1.4% 82.0% ± 2.4% 81.0% ± 1.3% -

36-9 50% ± 0.8% 52.0% ± 0.9% 51.0% ± 1.2% -

34-9 61% ± 1.3% 62.0% ± 2.0% 62.0% ± 1.3% -

Smoothing Hypervolume, 10 sets of 10 runs

Dataset ACO HS NSGA-II Best

36-10 52% ± 3.2% 57.0% ± 4.9% 65.0% ± 8.5% NSGA-II

34-10 70% ± 1.3% 64.0% ± 2.0% 63.0% ± 6.7% ACO

21-10 69% ± 2.9% 72.0% ± 1.3% 75.0% ± 1.9% NSGA-II

12-10 73% ± 2.2% 77.0% ± 2.3% 76.0% ± 3.0% HS/NSGA-II

36-9 45% ± 1.1% 47.0% ± 1.6% 46.0% ± 3.8% -

34-9 53% ± 3.5% 54.0% ± 2.5% 55.0% ± 1.9% -

Table 5.5: Comparison of the portion of the hypercube dominated by each approach in the six
datasets with the simple hypervolume and the smoothing hypervolume.

to remark that the computation is much higher for the biggest dataset. The number of available
classes has an important impact on this time since the number of possible grouping of classes
increases exponentially with the number of classes.

Chapter 6

Hybrid Metaheuristics to Manage
Complex Vehicle Routing

Problems

This chapter describes and tackles a complex Vehicle Routing Problem with many different
constraints: time windows, heterogeneous fleet, multiple depots, multiple routes and incompa-
tibilities. Five different approaches are presented and applied to fifteen real datasets. Those
approaches are based on two metaheuristics, Ant Colony Optimization (ACO) and Genetic
Algorithm (GA) that are applied in their standard formulation and combined as hybrid meta-
heuristics. The results are compared with two commercial tools currently used in the company
that deals with this VRP.

6.1 Introduction

The problem presented in this chapter is a Vehicle Routing Problem (VRP) with a heterogeneous
fleet of capacitated vehicles, multiple depots, multiple trips and time-windows.

As defined in Section 2.3.3, a VRP consists in finding routes to serve a given number of
customers from one or several depots. In the first variant of the VRP introduced in [29], a set of
customers were delivered by a fleet of similar vehicles from one depot. Since that simple variant,
several variants were studied, some of them are presented in Section 2.3.3.

The variant analyzed in this chapter has the following characteristics for the vehicles, the
customers and the depots:

� The fleet is heterogeneous regarding:

– Capacity. The capacity of each vehicle might be different from the others.

– Availability. Vehicles have time restrictions and cannot be used during the whole
day, either because of driving time or because of availability of drivers.

101

102 Chapter 6. Hybrid Metaheuristics to Manage Complex Vehicle Routing Problems

– Features. Some vehicles have features that are needed by some customers to load
the goods. Those vehicles can also serve the customers that don’t need those features.

� There are several depots that can be a destination for the goods, a parking lot for the
vehicles (initial and end point) or both.

� The customers have the following characteristics:

– Time-windows.

– Loading time. Once the vehicle arrives at the customer, a moment is needed to
load the goods on the vehicle.

– Features. Some of the customers need a special feature in the vehicle that serves
them.

– Incompatibilities. Some customers cannot be served within the same route, but
can be served in different routes by the same vehicle.

– A customer is assigned to a depot.

This variant has thus several constraints that have to be satisfied in order to have a feasible
solution, this variant is named maVRP for multiple attributes VRP. Its objective is to minimize
the total cost that is the sum of two components:

� The distance cost is proportional to the number of kilometers of the solution.

� The time cost is proportional to the total duration of all the routes of the solution.

The following section presents the model that is used in the different approaches proposed
for the maVRP.

6.2 Problem statement for the maVRP

In the Traveling Salesman Problem (TSP), the goal is to find a sequence of customers so that
all customers are part of the route and the cost is minimized, [92]. The model for the maVRP
variant presented in this paper is similar to the TSP, a sequence has to be found with a maximum
number of customers served so that the total cost is minimized.

Let us consider that m vehicles are available to serve n customers. Let us denote the set of
vehicles as V = {V1, V2, . . . , Vm} and the set of customers as C = {C1, C2, . . . , Cn}. The objective
is to find a permutation X = {X1, X2, . . . , Xn} of the n customers, i.e. a sequence of positions
where each position corresponds to a customer. A vehicle V (Xi) ∈ V should be allocated to
each position Xi, if a position Xi has no vehicle allocated, then the corresponding customer is
not served. As a vehicle may do several routes, when a vehicle is allocated to a position, this
position must be assigned to a route in this vehicle. If a vehicle serves k customers, then it has
k routes or less, and the routes are numbered sequentially starting in 1.

Figure 6.1 illustrates a set of routes that serve n = 7 customers with three vehicles, V1, V3
and V4. The sequence of the customers is X = {X1, X2, . . . , X7} = {C2, C3, C4, C1, C6, C7, C5}.

6.2. Problem statement for the maVRP 103

Figure 6.1: Example. m = 3 vehicles serve n = 7 customers in 5 routes. The sequence of customers
is X = {C2, C3, C4, C1, C6, C7, C5}

In the sequence, each customer has a successor, for example C1 (X4) is the successor of C4 (X3).
Vehicle V1 is allocated to the two first positions of the sequence, X1 and X2, both positions are
allocated to the same route R1. Vehicle V3 serves one customer in its first route R2 and two
customers in R3. Vehicle V4 serves two customers in two different routes.

Definition 6.2.1. A solution δ = {µ, µV , µR} to the maVRP is defined as the set of three
assignments.

� µ is the assignment of a successor to each position in the sequence, µ(i) ∈ C is the successor
of Xi, that is µ(i) = Xi+1 and µ(n) = X1, ∀i ∈ {1, . . . , n}.

� µV is the assignment of one vehicle to each position. If a vehicle is allocated to Xi, then
µV (i) ∈ V, if not, then µV (i) = NULL.

� µR is the assignment of one route to each position assigned to a vehicle, that is if µV (i) ∈ V,
then µR(i) ∈ {1, . . . , n}, if not, then µR(i) = NULL.

Without any other constraint, there might be several identical solutions with different se-
quences X. For example, with n = 2 and m = 2, the solution with X = {C1, C2}, µV (X1) = V1
and µV (X2) = V2 is identical to the solution with X = {C2, C1}, µV (X1) = V2 and µV (X2) = V1.
Therefore, the model includes Expressions 6.1 to 6.6 to avoid this situation. Expression 6.2 as-
sumes that the vehicles are numbered according to a criterion, that might be the plate number
or the capacity for example; the vehicle allocated to a position has a number greater than or
equal to the vehicle allocated to the previous position. Expression 6.1 states that if a position is
not allocated to a vehicle, the subsequent positions are not allocated either. Expression 6.3 says
that if the first position of the sequence is allocated to a vehicle, then the corresponding route for
this position is 1. Expression 6.4 states that if no vehicle is allocated to a position, then no route
is allocated either. If two consecutive positions are allocated to different vehicles, Expression 6.5
implies that the routes allocated to those positions are consecutive. If two consecutive positions
are allocated to the same vehicle, Expression 6.6 states that the routes of those positions are
the same or consecutive.

104 Chapter 6. Hybrid Metaheuristics to Manage Complex Vehicle Routing Problems

∀i ∈ {1, . . . , n− 1} : µV (i) /∈ V ⇒ µV (µ(i)) /∈ V (6.1)

∀i ∈ {1, . . . , n− 1} : µV (i) = Vk ∈ V ⇒

{
µV (µ(i)) = Vt ∈ V where t ≥ k, or

µV (µ(i)) /∈ V
(6.2)

µV (1) ∈ V ⇒ µR(1) = 1 (6.3)

∀i ∈ {1, . . . , n} : µV (i) /∈ V ⇒ µR(i) = NULL (6.4)

∀i ∈ {1, . . . , n− 1} : µV (i) 6= µV (µ(i)) ∈ V ⇒ µR(µ(i)) = µR(i) + 1 (6.5)

∀i ∈ {1, . . . , n− 1} : µV (i) = µV (µ(i)) ∈ V ⇒ µR(µ(i)) =

{
µR(i) or

µR(i) + 1
(6.6)

The order of the customers in the sequence determines also the order in which those customers
are served. If Xi and Xi+k are assigned to the same vehicle, Xi is served before Xi+k, ∀i, k ∈
{1, . . . , n− 1}. It is important to note that even if Xi+1 is the successor of Xi in the sequence of
X, this doesn’t mean that both of them are allocated to the same route or to the same vehicle.
Indeed, even if Xi is allocated to a vehicle, Xi+1 might be unallocated.

Definition 6.2.2 defines a consistent solution, that is a solution that is feasible for the maVRP.
The Condition 4 in this definition includes all constraints that are specific to the addressed
maVRP, for example, the ones related to the time windows of the customers or to the capacity
of the vehicle. An exhaustive list is not possible since there are many of those constraints, but
a few examples are given in Section 6.1 and more can be found in [20].

Definition 6.2.2. A solution δ = {µ, µV , µR} to the maVRP is consistent if:

1. µ(i) ∈ {1, . . . , n},∀i ∈ {1, . . . , n}. All customers have a successor.

2. µ(i) 6= µ(j),∀i 6= j ∈ {1, . . . , n}. A customer cannot be the successor of two different
customers.

3. Expressions 6.1 to 6.6 are satisfied.

4. All constraints of the maVRP related to the vehicle and route assignments are satisfied:
time, capacity and compatibility constraints.

A consistent solution may not allocate all customers to a vehicle. If all customers are
allocated, the solution is said to be complete as defined in Definition 6.2.3.

Definition 6.2.3. A solution S = {µ, µV , µR} to the maVRP is complete if:

1. It is consistent

2. µV (i) ∈ V and µR(i) ∈ {1, . . . , n}, ∀i ∈ {1, . . . , n} (i.e.all customers are assigned to a
vehicle and to a route).

Definition 6.2.4 gives the criteria to compare the quality of two solutions.

6.3. The ACO approach 105

Definition 6.2.4. A solution δ = {µ, µV , µR} is said to be better than a solution δ′ = {µ′, µ′V , µ′R}
if at least one of the two following conditions is met:

� More customers are allocated to a vehicle in δ than in δ′:
Card({i ∈ {1, . . . , n} : µV (i) ∈ V}) > Card({i ∈ {1, . . . , n} : µ′V (i) ∈ V}),
where Card(·) denotes cardinality of a set.

� The same number of customers are assigned to a vehicle in δ and in δ′, but the total cost
of δ is smaller than the total cost of δ′.

6.3 The ACO approach

Algorithm 17 describes the steps of the ACO approach. Three solutions are used to store the
current solutions:

� δant is the solution found by the current ant.

� δbest is the best solution found in the current iteration.

� δGl.best is the best solution found in all the previous iterations.

In line 7, Succ is the set of the possible successors for a customer. This set is updated when
a successor is assigned to a customer, line 12, since in the maVRP model described in Section
6.2 a customer can be the successor of only one customer.

In line 8, pf (k) is the probability that the customer Ck is assigned to the first position of
the sequence, i.e. the probability that µ(n) = k. This assignment is also performed by the ant,
but the pheromones associated with it are independent from the pheromones associated with
the successors.

In line 11, p(i, k) is the probability that customer Ck becomes the successor of Ci, i.e. the
probability that µ(i) = k. This probability is calculated using the pheromones associated with
the assignment of successors.

We have thus two sets of pheromones:

� τij is related to the assignment of the customer j as the successor of the customer i in the
sequence.

� τk is related to the assignment of the customer k to the first position of the sequence.

Both pheromones are updated at the end of an iteration. Even if the first position selection
cannot be viewed as an ACO approach, the use of pheromones enables to favor the selection of
customers who may lead to good solutions when they are set to the first position of the sequence.

106 Chapter 6. Hybrid Metaheuristics to Manage Complex Vehicle Routing Problems

Algorithm 17: ACO algorithm for the maVRP

Input: Parameters of the ACO approach
Output: Solution to the maVRP

1 Initialize pheromones
2 δGl.best = ∅
3 for t← 1, . . . , N do
4 δbest = ∅
5 for ant← 1, . . . , Nants do
6 µant = ∅
7 Succ = {1, 2, · · · , n}
8 Select f ∈ Succ with a probability pfirst(f)→ µ(n) = k
9 Succ← Succ\{k}

10 for i← 1, . . . , n do
11 Select k ∈ Succ with probability p(i, k)→ µ(i) = k
12 Succ← Succ\{k}
13 Assign vehicles and routes → δant
14 Compute the cost and the number of customers with no vehicle assigned for δant
15 if δant is better than δbest then
16 δbest ← δant

17 Update pheromones and probabilities
18 if δbest is better than δGl.best then
19 δGl.best ← δbest

In line 15, δbest is replaced by δant only if this one is better as described in definition 6.2.4.

The assignment of a vehicle and a route to a customer, line 13, is described in algorithm
18. The first node to be served, f , is X1 in the maVRP model and is the first position to be
assigned to a vehicle. This algorithm guarantees that Expressions 6.1 to 6.6 are satisfied since
a customer is assigned to a vehicle only if the predecessor has already been assigned. In line
3, the current vehicle CurrV ehicle, the current route CurrRoute and the current position of
the sequence CurrPosition are initialized. The allocation always starts with the first vehicle
V1 as mentioned previously and the first customer to which a successor is assigned is the first
customer of the sequence f .

In line 6, the customer in the current position is assigned to the current vehicle and route if
this assignment produces a consistent solution, that means that µ has to satisfy conditions 1 and
3 from Definition 4. If not, it is assigned to a new route in line 12, but only if this assignment
produces a consistent solution. If not, the next vehicle is tested for this position. With this
strategy the allocation of vehicles to the positions of the sequence stops as soon as the solution
is no longer consistent if a vehicle is allocated to the next position.

6.3.1 The pheromones’ update

The parameters in the ACO algorithm are critical regarding the convergence of the search and
the diversification of the explored solutions. In the Max-Min Ant System (MMAS), [141], the

6.3. The ACO approach 107

Algorithm 18: Assignment of vehicles and routes

Input: Assignment of the successors µ, First node of the sequence f
Output: Assignment of a vehicle and a route to each position

1 for i← 1, . . . , n do
2 µV (i) = NULL; µR(i) = NULL

3 CurrRoute = 1; CurrV ehicle = 1; CurrPosition = f
4 while CurrV ehicle ≤ m do
5 if CurrPosition can be assigned to CurrV ehicle and to CurrRoute then
6 µV (CurrPosition) = CurrV ehicle
7 µR(CurrPosition) = CurrRoute
8 CurrPosition = µ(CurrPosition)

9 else
10 CurrRoute = CurrRoute+ 1
11 if CurrPosition can be assigned to CurrV ehicle and to CurrRoute then
12 µV (CurrPosition) = CurrV ehicle
13 µR(CurrPosition) = CurrRoute
14 CurrPosition = µ(CurrPosition)

15 else
16 CurrV ehicle = CurrV ehicle+ 1

value of the pheromones are bounded in order to avoid stagnation on a specific solution or
around a solution that would be mainly due to a situation where the quantity of pheromones
deposited on the assignments of this solution is much higher than the quantity of pheromones
deposited on other assignments. Another option proposed in the MMAS is the reinitialization
of pheromones in order to avoid the stagnation of the search.

The method presented in this section in order to avoid stagnation consists in having bounds
whose value is changed dynamically. The initial limits are set to τmin and τmax. If δGl.best has
not been updated for a given number of iterations NnoImp, the values of those limits are then
set to new values τ ′min and τ ′max, where τmin ≤ τ ′min ≤ τ ′max ≤ τmax.

Algorithm 19 describes the steps of the pheromones’ update. The bounds, UL and LL, used
to limit the value of the pheromones are different if the number of iterations without improvement
to the global solution has exceeded a predefined limit NnoImp. When the pheromones are
updated, those bounds are used as upper or lower limits for the value of the pheromones.

6.3.2 The ACO-3-opt approach

ACO is often much more efficient if it is combined with a local search, [52, 88]. In this section,
a local search is proposed in order to improve the performance of the simple ACO approach.

A Neighborhood Search (NS) consists in changing a solution iteratively with a small modi-
fication each time so that the new solution is close to the previous one. In the ACO approach
presented in this section, a NS is added in order to improve the solutions found by the ants. The
proposed NS consists in trying to move each customer from its current position to the different

108 Chapter 6. Hybrid Metaheuristics to Manage Complex Vehicle Routing Problems

Algorithm 19: Pheromones’ update for the ACO approach

Input: Assignment of the successors µ, Current number of consecutive iterations with no
improvement nnoImp, Increment value ∆

Output: Updated pheromones
1 if nnoImp > NnoImp then
2 UL = τ ′max
3 LL = τ ′min
4 nnoImp = 0

5 else
6 UL = τmax
7 LL = τmin

8 for i← 1, . . . , n do
9 for i← 1, . . . , n do

10 τ(i, j) = max(ρ · τ(i, j);LL)

11 for i← 1, . . . , n do
12 τ(i, µ(i)) = min(τ(i, µ(i)) + ∆;UL)

Sequence C3 C5 C6 C1 C4 C2 C7

New sequence C3 C2 C5 C6 C1 C4 C7

Table 6.1: Example of the 3-opt local search. C2 becomes the successor of C3.

possible positions in the sequence. Figure 6.2 represents an example of such a modification:
one customer has been inserted in another position in the sequence. Table 6.1 also contains an
example where the customer C2 becomes the successor of C3 with such a local modification.
This method is similar to the 3-opt local search proposed by Lin in [92] where the TSP is solved
step by step replacing 3 arcs by 3 other arcs in a solution.

Algorithm 20 contains the steps of this local search. For all possible pair of customers, one
of them becomes the successor of the other, the other successors are not changed.

Figure 6.2: Left: Solution µ before local search. Right: Solution µ after a step of the 3-opt local
search.

6.4. The GA approach 109

Algorithm 20: Local Search for ACO: 3-opt

Input: Assignment of the successors µ
Output: New assignment µ at least as good as the initial µ

1 for i← 1, . . . , n do
2 for j ← 1, . . . , n do
3 µold ← µ
4 µ(µ−1(j)) = µ(j)
5 µ(j) = µ(i)
6 µ(i) = j
7 Assign vehicles and routes to µ
8 Compute the cost K for µ
9 Compute the number of unassigned

NU = Card({i ∈ {1, . . . , n} : µV (i) = NULL})
10 if µold is better than µ then
11 µ← µold

6.4 The GA approach

As explained in Section 2.1.2, genetic algorithms are based on the natural selection process.
They start with an initial population of Psize solutions. Those solutions are combined together
in order to create a new population, the offspring population. Both populations compete then
to be part of the next parent population that includes the best solutions of both of them.

In the GA approach presented in this section, the mutation process is applied in a different
way than in the classic GA. Two parents are always selected and combined in order to generate
an offspring solution. The mutation is then applied to this new solution with a probability
Probmutation.

Algorithm 21 describes the steps of the GA approach. The population is first filled with
random solutions, line 2. At each iteration and for each parent in the population, another
parent is selected with a probability p(j), line 11. This probability depends on the quality of
the solution, it is higher for better solutions.

Once the second parent is selected, for each customer, a successor is selected. This successor
is the same as in the first parent or as in the second parent with a probability of 0.5 each, as
long as the successor has not been already assigned as successor to another customer, lines 13
to 16. If it has been previously assigned, the current customer is set aside and a successor is
randomly assigned once the crossover is finished, line 17.

The mutation operation, line 18, is the same as the local search 3-opt used in the ACO
approach and is described in algorithm 20. It consists in trying to move each customer from
its current position to the different possible positions in the sequence. Figure 6.3 represents an
example of a mutation: one customer has been inserted in another position in the sequence.

The assignment of vehicles and routes, line 19, is done as in the ACO approach with algorithm
18. The solution δbest, line 23, is used to store the best solution found so far by the algorithm.
At the end of the iteration, only the Psize best solutions among parent and offspring solutions

110 Chapter 6. Hybrid Metaheuristics to Manage Complex Vehicle Routing Problems

Figure 6.3: Left: Solution µ before mutation. Right: Solution µ after a mutation.

are selected to compose the next parent population, line 24. The selection of the first customer
in the sequence is done as in the ACO approach, line 7. The pheromones and the probabilities
are updated at the end of the iteration, line 25.

This process is repeated for several iterations and at the end of the last iteration, the popu-
lation contains the best solutions found.

6.5 The ACO-GA approach

As mentioned in Section 2.1.1.4, ACO is more efficient when combined with a local search. In
Section 6.3.2, a first local search method is proposed. In this section, another local search based
on GA is proposed. The new combined metaheuristic is named ACO-GA.

In addition to the pheromones, the ACO-GA approach stores a population of solutions that
contains the best solutions found so far. Once an ant has built a solution, this solution is
combined with the solutions of the population in the same way as two parents are combined in
the basic GA approach presented in Section 6.4.

Algorithm 22 describes the steps of this approach. In line 7, the ant finds a solution as in
algorithm 17 from line 5 to line 14. In line 10, the solution found by the ant is combined with
the solutions of the population as in the GA approach in algorithm 21, from line 12 to line 19. If
the combined solution is better than the original ant solution, this one is replaced immediately
by this new solution. After the combination, if the solution found by the ant is better than the
worst solution stored in the population P , the latter is replace by the ant’s solution.

As in the original ACO approach, δbest and δGl.best are used to store the best solution of the
current iteration and the global best solution. At the end of the iteration, the pheromones are
updated for both the sequence and the first customer in the sequence, and the new probabilities
are calculated for the next iteration as in algorithm 17.

6.6 The GA-ACO approach

The last proposed approach is also a combination of GA and ACO, the GA-ACO, but GA being
this time the main metaheuristic.

The GA-ACO algorithm is very similar to the original GA presented in Section 6.4. The
only difference lies in the choice of the successor for the customers that were not assigned by

6.7. Experimentation 111

Algorithm 21: GA for the maVRP.

Input: Parameters for the GA approach
Output: Population of solutions to the maVRP

1 δbest = ∅
2 Populate P0 with Psize random solutions
3 for t← 1, . . . , N do
4 Rt = Pt−1
5 for µi ∈ Pt−1 do
6 Succ = {1, 2, · · · , n}
7 Select k ∈ Succ with a probability pf (k)→ µ(n) = k
8 Succ← Succ\{k}
9 for i← 1, . . . , n do

10 µ(i) = NULL

11 Select the second parent µj ∈ Pt−1, j 6= i with a probability p(j)
12 for i← 1, . . . , n do
13 Select r ∈ {i, j} with a probability of 0.5 each
14 if µr(i) ∈ Succ then
15 µ(i) = µr(i)
16 Succ← Succ\{µ(i)}

17 Assign successors to the unserved customers keeping µ consistent
18 Mutate µ with a probability Probmutation
19 Assign the vehicles and the routes to µ→ δ = {µ, µV , µR}
20 Compute the cost and the number of customers with no vehicle assigned for δ
21 Rt ← Rt ∪ δ
22 if δ is better than δbest then
23 δbest ← δ

24 Select the new parent population Pt in Rt
25 Update the pheromones for the first customer of the sequence and calculate pfirst

any of the parents, line 17. This selection is random in algorithm 21. In the GA-ACO approach,
pheromones are updated at the end of each iteration with the global best solution found so
far. Those pheromones are then used to select the successors for the customers that have been
set aside. The candidate that has more pheromone has a higher probability to be selected as a
successor for a customer. The rest of the GA-ACO algorithm is identical to the initially proposed
algorithm 21.

6.7 Experimentation

6.7.1 The datasets

Fifteen datasets have been used to compare the performance of the three approaches. Those
datasets come from a company that collects goods at different customers, those customers differ
from one day to the other. This company has a fleet of vehicles that can do one or more routes

112 Chapter 6. Hybrid Metaheuristics to Manage Complex Vehicle Routing Problems

Algorithm 22: ACO-GA algorithm for the maVRP

Input: Parameters of the ACO approach, Size of the population Psize
Output: Solution to the maVRP

1 Initialize pheromones
2 Initialize population P = {δ1, . . . , δPsize}
3 δGl.best = ∅
4 for t← 1, . . . , N do
5 δbest = ∅
6 for ant← 1, . . . , Nants do
7 Find a solution δant
8 δAnt.best = δant
9 for i← 1, . . . , Psize do

10 Combine δant with δi → δC
11 if δC is better than δAnt.best then
12 δAnt.best ← δC

13 if δAnt.best is better than δbest then
14 δbest ← δAnt.best

15 Update P with δAnt.best

16 Update pheromones and probabilities
17 if δbest is better than δGl.best then
18 δGl.best ← δbest

per day and a set of depots where goods have to be delivered.

Table 6.2 contains some information about the datasets used in this chapter. For each
dataset, it gives the number of depots, customers and vehicles. It contains also the average
weight that has to be collected at the customers and the average capacity of the vehicles.

Each dataset has three or four types of goods which cannot be loaded within the same route,
but can be loaded in two different routes of the same vehicle. The use, working and driving
times depend on the vehicle and vary between 4h00 and 18h00. The loading and unloading
times vary from 20 to 90 minutes, and depend on the customer or on the depot respectively.

6.7.1.1 The hard constraints

As the proposed model and the approaches are adapted to any type of maVRP, the specific
constraints of the problem used for the experimentation are described in this section. Before
that, the different times of a route from its start time to its end time are listed here:

� Driving times: from the parking lot of the vehicle to the first customer, between cus-
tomers; from the last customer to the destination depot of the loaded goods; from the
destination depot to the parking lot of the vehicle (only for the last route of the vehicle).

� Waiting times: to load the goods at the customer’s facility; if the arrival time at a
customer’s location is before its time window; to unload the goods at the depot.

6.7. Experimentation 113

Dataset Depots Customers Aver. Weight Vehicles Aver. Cap.

07-13 5 42 4653 12 18083

07-14 6 53 3812 12 18083

07-15 6 56 3689 12 18083

07-18 6 43 4561 12 18083

07-19 6 43 4561 12 18083

10-11 5 44 4309 11 18364

10-13 5 43 4100 11 18364

10-14 5 56 3439 12 18083

10-17 5 37 4308 10 18000

10-18 5 45 4200 10 18700

10-19 6 47 3928 11 18364

10-20 5 44 3805 9 19111

10-21 5 54 3554 11 18364

10-24 5 38 4479 10 18700

10-25 5 48 3958 11 18364

Table 6.2: Datasets. Number of depots, customers and vehicles per dataset. Average weight of the
customers’ goods and average capacity of the vehicles.

The constraints that have to be satisfied are the following:

� Time constraints: the loading time of a customer is included in its time window; the
driving time of a vehicle does not exceed its maximum driving time; the use time of a
vehicle (from the start time of the first route to the end time of the last route) does
not exceed its maximum use time; the working time of a vehicle (sum of the driving and
waiting times) does not exceed its maximum working time.

� Capacity constraints: the capacity of a vehicle is not exceeded.

� Compatibility constraints: the features of the vehicle allocated to a customer are
adapted to this customer’s requirements; all goods loaded simultaneously in a vehicle are
compatible and have the same destination depot; a vehicle starts and finishes the day at
its depot, but can deliver goods to any depot.

6.7.1.2 The objective

The main objective is to serve as many customers as possible. The second objective is to
minimize the total cost which includes the distance cost and the time cost. The distance cost
is proportional to the total number of kilometers. The time cost is proportional to the total
working hours.

114 Chapter 6. Hybrid Metaheuristics to Manage Complex Vehicle Routing Problems

ACO

ρ 0.98 ϕ 3

τinit 15

τmin 1 τmax 30

τ ′min 5 τ ′max 15

Table 6.3: Experimentation. Parameters for the ACO approaches.

Those objectives cannot be combined together. As explained in definition 6.2.4 a solution is
better than another if more customers are served, no matter the cost of the solutions.

6.7.2 The parameters

The five approaches have been applied to the fifteen datasets. Two commercial tools currently
used by the company have also been used in order to compare the results of the three approaches.
The first tool is based on the savings algorithm, the second tool is based on a branch-and-bound
algorithm.

For the ACO approach, the number of iterations was set to 2000, for the ACO-3-opt and
ACO-GA, it was set to 400, for the GA and the GA-ACO, it was set to 800. The population or
colony size was 50 individuals. Ten runs were launched for the five approaches. The parameters
for ACO are given in table 6.3. The mutation parameter used for the GA approach is 0.1. The
population size for the local search GA in the ACO-GA approach is 5 individuals. The value of
those parameters were set experimentally.

6.7.3 The results

The results of the experimentation with the fifteen datasets are presented in this section. The
first part, Section 6.7.3.1, compares the three different ACO approaches, the simple ACO, and
the two ACO with local search ACO-3-opt and ACO-GA. The second part, Section 6.7.3.2,
contains the same comparison for the two GA approaches, the simple GA and the combined
GA-ACO.

The last part, Section 6.7.3.3, is dedicated to the comparison of the five approaches and
the two commercial tools. The comparison is done regarding the two objectives, to serve all
customers and to minimize cost, and the computation time.

6.7.3.1 Results for the ACO approaches

Table 6.4 contains the results for the three ACO approaches. For the simple ACO approach,
without local search, two data are given: the average number of customers that are not served,
i.e. not assigned to a vehicle, and the average time for one run. For the two other approaches,
with 3-opt and with GA for the local search, three data are given: the number of complete

6.7. Experimentation 115

Dataset ACO ACO-3-opt ACO-GA

Unass. Time Comp. Cost Time Comp. Cost Time

07-13 13 ± 2 00:40 8 3609 ± 9 04:47 9 3631 ± 16 02:21

07-14 24 ± 2 01:37 5 3944 ± 62 06:55 8 3936 ± 24 04:09

07-15 28 ± 1 01:58 1 3902 ± 0 09:04 4 3948 ± 37 03:46

07-18 16 ± 1 01:06 1 3787 ± 0 04:51 5 3964 ± 91 02:42

07-19 16 ± 2 01:05 4 3818 ± 34 04:47 8 3884 ± 87 02:41

10-11 17 ± 2 01:05 1 3642 ± 0 05:06 8 3704 ± 84 02:50

10-13 15 ± 2 01:06 2 3143 ± 0 04:52 7 3144 ± 1 02:41

10-14 21 ± 4 01:29 8 3453 ± 83 08:29 10 3579 ± 75 04:50

10-17 11 ± 3 00:39 5 2872 ± 3 03:10 7 2915 ± 92 01:41

10-18 17 ± 2 01:03 0 - - 0 - -

10-19 16 ± 2 01:06 10 3356 ± 74 05:38 8 3293 ± 82 03:36

10-20 18 ± 2 01:05 3 3129 ± 13 04:16 8 3163 ± 36 02:47

10-21 19 ± 2 01:15 1 3549 ± 0 08:49 4 3758 ± 46 04:20

10-24 10 ± 2 00:44 7 2919 ± 2 03:45 9 2922 ± 4 01:59

10-25 17 ± 4 01:07 7 3565 ± 59 06:31 5 3691 ± 87 03:12

Table 6.4: Experimentation. Results for the ACO approaches.

solutions, that is with all customers served, out of the ten runs, the average cost and the average
time for one run.

Even if the simple ACO without local search is much faster, the results are the worst,
it doesn’t find any solution with all customers served in any dataset. The ACO-3-opt finds
solutions with a lower cost, but the number of complete solutions found is almost always lower
and the computation time is always higher compared to ACO-GA.

6.7.3.2 Results for the GA approaches

Table 6.5 contains the results for the two GA approaches. Regarding the number of complete
solutions, there is no significant difference, GA is better in 5 datasets, GA-ACO is better in 6
of them. Regarding the cost, when both methods find complete solutions, the difference is not
significant, except for the datasets 07-19 and 10-25, where GA outperforms GA-ACO.

The fact that GA-ACO is not outperforming GA might be explained by the fact that the
randomness in the GA approach introduces more diversity than in the GA-ACO. In GA-ACO,
the selection pressure is higher since assignments that produced better results previously are
selected with a higher probability.

116 Chapter 6. Hybrid Metaheuristics to Manage Complex Vehicle Routing Problems

Dataset GA GA-ACO

Complete Cost Time Complete Cost Time

07-13 5 3626 ± 14 00:44 1 3603 ± 0 00:49

07-14 2 3914 ± 5 01:26 3 3933 ± 29 01:29

07-15 1 3854 ± 0 01:07 1 3851 ± 0 01:09

07-18 2 3798 ± 12 00:53 2 3807 ± 21 00:59

07-19 2 3809 ± 23 00:52 3 3994 ± 61 01:00

10-11 2 3642 ± 0 00:55 0 - -

10-13 1 3143 ± 0 00:54 0 - -

10-14 4 3522 ± 63 01:28 1 3534 ± 0 01:47

10-17 1 2875 ± 0 00:37 1 2870 ± 0 00:39

10-18 0 - - 0 - -

10-19 9 3290 ± 100 00:58 7 3276 ± 125 01:14

10-20 3 3120 ± 0 01:02 4 3120 ± 0 01:11

10-21 0 - - 1 3548 ± 0 01:15

10-24 1 2916 ± 0 00:44 2 2918 ± 3 00:46

10-25 6 3653 ± 39 01:12 7 3699 ± 138 01:16

Table 6.5: Experimentation. Results for the GA approaches.

6.7.3.3 Comparison

First objective: Complete solutions

Table 6.6 compares the success of the tools and four approaches in finding a complete solution,
that is with all customers served, which is the first objective of the problem. The simple ACO
is not competitive and therefore not included in this comparison.

Tool1 corresponds to the commercial savings approach; it gives always one single solution
per dataset and in eight datasets, it does not find a solution with all customers served. When
no complete solution is found, the number of customers not served is given into brackets.

Tool2 corresponds to the branch-and-bound approach; it gives always one single solution per
dataset and finds always a solution with all customers served, if it exists, no matter the time
needed to find it. As there is no time limit for this method to find a complete solution, the
comparison of these results is strongly biased.

Regarding the four approaches proposed in this chapter, the ACO-GA clearly outperforms
the others, except in two datasets where the results are nevertheless competitive.

None of the proposed approaches, nor Tool1, finds a complete solution for the dataset 10-18
in the 10 runs. This instance is the biggest if we compare the quantity that has to be collected
to the capacity of the vehicles. In the other instances, this ratio is between 87% and 97%, this

6.7. Experimentation 117

Dataset Tool1 Tool2 ACO-3-opt ACO-GA GA GA-ACO

Compl. Compl. Compl. Compl. Compl. Compl.

07-13 X X 8 9 5 1

07-14 - (3) X 5 8 2 3

07-15 - (7) X 1 4 1 1

07-18 - (1) X 1 5 2 2

07-19 - (2) X 4 8 2 3

10-11 - (2) X 1 8 2 -

10-13 X X 2 7 1 -

10-14 X X 8 10 4 1

10-17 X X 5 7 1 1

10-18 - (6) X - - - -

10-19 - (4) X 10 8 9 7

10-20 - (1) X 3 8 3 4

10-21 X X 1 4 - 1

10-24 X X 7 9 1 2

10-25 X X 7 5 6 7

Table 6.6: Experimentation. Comparison of four approaches and two commercial tools regarding
the first objective: To serve a maximum of customers. For Tool1 and Tool2: Number of customers
not served. For proposed approaches: Number of runs with all customers served out of the ten runs.

ratio is 101% for the dataset 10-18. As several routes are performed by the vehicles, the ratio
above 100% is not an issue, but this makes this instance more difficult than the others. Tool2
finds a solution to it, but as mentionned previously, this tool has no time limit for that.

Second objective: Cost

Table 6.7 compares the effectiveness of the tools and the four approaches regarding the cost,
which is the second objective of the problem.

For Tool1 and Tool2, as one single solution is found, and the solution is always the same,
the data is the cost of this single solution. For the four proposed approaches, if several complete
solutions were found, the data given is the average and the standard deviation. If only one
complete solution was found, no standard deviation is given. The best results are highlighted in
bold, with a margin of 0.1%, that means that a cost which is 0.1% higher than the lowest cost is
also considered as a best result and is highlighted, as for dataset 07-15 where GA and GA-ACO
are both considered as best.

Both tools and ACO-GA are clearly outperformed by the three other approaches. If the
margin is increased to 2%, the only approach that is not competitive is Tool1, the others have
between nine and thirteen datasets among the best.

The local search of ACO-3-opt is much more aggressive than the local search of ACO-GA. It

118 Chapter 6. Hybrid Metaheuristics to Manage Complex Vehicle Routing Problems

Dataset Tool1 Tool2 ACO-3-opt ACO-GA GA GA-ACO

07-13 3689 3636 3609 ± 9 3631 ± 16 3626 ± 14 3603

07-14 - 3929 3944 ± 62 3936 ± 24 3914 ± 5 3933 ± 29

07-15 - 3856 3902 3948 ± 37 3854 3851

07-18 - 3978 3787 3964 ± 91 3798 ± 12 3807 ± 21

07-19 - 3941 3818 ± 34 3884 ± 87 3809 ± 23 3994 ± 61

10-11 - 3670 3642 3704 ± 84 3642 ± 0 -

10-13 3330 3173 3143 ± 0 3144 ± 1 3143 -

10-14 3591 3423 3453 ± 83 3579 ± 75 3522 ± 63 3534

10-17 3075 2947 2872 ± 3 2915 ± 92 2875 2870

10-18 - 3874 - - - -

10-19 - 3249 3356 ± 74 3293 ± 82 3290 ± 100 3276 ± 125

10-20 - 3301 3129 ± 13 3163 ± 36 3120 ± 0 3120 ± 0

10-21 3787 3569 3549 3758 ± 46 - 3548

10-24 3154 2943 2919 ± 2 2922 ± 4 2916 2918 ± 3

10-25 3775 3621 3565 ± 59 3691 ± 87 3653 ± 39 3699 ± 138

Table 6.7: Experimentation. Comparison of the four approaches and the two commercial tools
regarding the second objective: To minimize the total cost. For Tool1 and Tool2: Cost of the single
solution. For proposed approaches: Average and standard deviation of the cost in the runs when all
customers are served out of the ten runs.

tries systematically to move each single customer from its current position to another position
in the sequence. This method is more efficient to find a local optima than the local search GA
that does not act so systematically since the ant solution is only combined once with each of
the five solutions of the GA population.

Computation time

Regarding the computation time, Tool1 finds the solution in two to five seconds on average.
For the other approaches, table 6.8 contains the average time needed for one run. No time is
given for the datasets and approaches where no complete solution was found. GA and GA-ACO
clearly outperform the others.

Evolution of the solutions

Figures 6.4, 6.5, and Appendix B represent the evolution of the number of customers that
are not served in the best solution, and in the global best, for the fifteen datasets and the four
approaches ACO-3-opt, ACO-GA, GA and GA-ACO. Those results come from one single run
with the same seed for all of them. The objective in those charts is to compare the evolution of
the quality of the solutions found by the different approaches.

In most of the datasets, the best solution is found after less than half of the iterations. Except
for the dataset 07-15, ACO-GA finds the best solution in much less time than ACO-3-opt.

6.8. Conclusions 119

Dataset Tool2 ACO-3-opt ACO-GA GA GA-ACO

07-13 05:02 04:47 02:21 00:44 00:49

07-14 03:22 06:55 04:09 01:26 01:29

07-15 04:42 09:04 03:46 01:07 01:09

07-18 04:00 04:51 02:42 00:53 00:59

07-19 04:56 04:47 02:41 00:52 01:00

10-11 03:00 05:06 02:50 00:55 -

10-13 00:44 04:52 02:41 00:54 -

10-14 04:10 08:29 04:50 01:28 01:47

10-17 00:52 03:10 01:41 00:37 00:39

10-18 07:08 - - - -

10-19 05:23 05:38 03:36 00:58 01:14

10-20 01:46 04:16 02:47 01:02 01:11

10-21 13:32 08:49 04:20 - 01:15

10-24 00:55 03:45 01:59 00:44 00:46

10-25 10:50 06:31 03:12 01:12 01:16

Table 6.8: Experimentation. Computation time in mm:ss.

6.8 Conclusions

In this chapter, five different approaches were presented to solve maVRP with many different
constraints: time windows, heterogeneous fleet, multiple depots, multiple routes and incompa-
tibilities. Those approaches were applied to fifteen real datasets and the results were compared
to two commercial tools currently used in the company that deals with this maVRP.

These approaches are based on well-known metaheuristics, Ant Colony Optimization (ACO)
and Genetic Algorithm (GA). Two approaches are hybrid metaheuristics that combine both of
them, ACO and GA. In one of them, ACO-GA, ACO is the main metaheuristic and GA is used
for the local search. In the other, GA-ACO, GA is the main metaheuristic and ACO is used to
break ties instead of using randomness when a decision has to be made in order to complete the
solution.

The results of the five approaches have been compared through two different perspectives:
quality of the solution and computation time. The quality of the solution has two components,
the number of customers that cannot be served and the financial cost of the solution, the first
one having a higher priority than the second.

Considering the first objective, maximizing the number of served customers, one of the tools
and the ACO-GA approach outperform the others. Considering the second objective, the cost,
the GA and GA-ACO provide better results. The computation time needed for one iteration is
much better in the GA approaches.

120 Chapter 6. Hybrid Metaheuristics to Manage Complex Vehicle Routing Problems

Figure 6.4: Number of customers not served in the best solution and in the global best solution
for the ACO approaches and 5 datasets.

6.8. Conclusions 121

Figure 6.5: Number of customers not served in the best solution and in the global best solution
for the GA approaches and 5 datasets.

122 Chapter 6. Hybrid Metaheuristics to Manage Complex Vehicle Routing Problems

Chapter 7

Conclusions and Future Work

This chapter summarizes the main conclusions of this dissertation and some future lines of work
that will be part of the next research steps.

7.1 Conclusions

As explained previously, there is a wide range of real complex problems that cannot be solved
with exact algorithms and therefore need heuristic approaches. This dissertation is centered on
a swarm-based metaheuristic, Ant Colony Optimization, applied to different types of problems,
mainly Resource Allocation Problems and Scheduling Problems. In order to be really efficient,
ACO algorithms have to be combined with a local search that intensifies the search in a promising
area of the search space.

The main goal of this thesis was the analysis and development of models and metaheuristics
based on ACO algorithms and their application to real combinatorial optimization problems.
This goal was pursued in all chapters comprising this dissertation. The main research ques-
tions presented in chapter 1 have been addressed in different chapters of this dissertation, the
contribution of each of them for each question is presented here below:

G1 To review the state of the art related to bio-inspired metaheuristics, mainly centered on
Ant Colony Optimization, but including other approaches such as Genetic Algorithms and
Harmony Search.

Chapter 2. A wide review of bio-inspired metaheuristics has been included in this chapter.
The metaheuristic based on ACO has been described with details together with two vari-
ants of it, the Elitist strategy and the Max-Min Ant System. The importance of a local
search process for ACO has been explained, as has been the relationship between ACO
and graphs. Several application fields of ACO have been presented to conclude this part.
The second metaheuristic included in this chapter is GA. The different operators needed
to implement GA have been described: selection, crossover, mutation and replacement.
The importance of diversity and selection pressure in population-based metaheuristics has
been explained. The last metaheuristic presented is HS, completed with a description of
its parameters.

123

124 Chapter 7. Conclusions and Future Work

Chapter 5. The extension of GA to multi-objective problems has been included in this
chapter, including the well-known NSGA-II, Non-dominated Sorting Genetic Algorithm
II.

G2 To review the state of the art related to Constraint Satisfaction Problems and how they
can be solved with metaheuristics.

Chapter 2. A detailed explanation of the main concepts of CSP has been presented in
this chapter: variables, domains, constraints and assignments. Several classical examples
have been given to illustrate those concepts: the n-Queens Problem, the Graph-Coloring
Problem and the Sudoku Game. CSP has been extended to CSOP which includes an
optimization objective. The Traveling Salesman Problem has been then depicted as an
example of CSOP. Different resolution methods have been presented for both problem
types, CSP and CSOP, including a solver that implements some of them. The ACO
metaheuristic adapted to solve them has also been described in detail, including examples
where ACO has been used to solve CSOP.

G3 To review the state of the art in the different application fields analyzed in this disserta-
tion: Resource Allocation Problems and Scheduling Problems, specially Course Allocation,
Timetabling and Vehicle Routing Problems.

Chapter 2. The RAP has been presented in this chapter with several examples of applica-
tions. The special case of the matching problem has been included and described with its
main characteristics. Two examples of RAP have been given with details: the Course Allo-
cation Problem that consists in allocating courses to students and the Course Timetabling
Problem which consists in assigning timeslots and rooms to courses. The Multi-objective
RAP has been explained with the Pareto front and the hypervolume metric that enables
the comparison of different resolution methods for multi-objective problems. Several exam-
ples and resolution approaches have been presented for the MORAP. Finally the Vehicle
Routing Problem has been described with some of its variants and different approaches
used to solve it.

G4 To develop different types of models for combinatorial optimization problems: Resource
Allocation Problems and Scheduling Problems, specially Timetabling and Vehicle Routing
Problems.

Chapter 3. In this chapter a constraint-based model for the Course Timetabling Problem
in Swiss secondary has been developed. This model includes the fact that students are
allocated to classes at the same time as the timetable is built.

Chapter 4. In this chapter, two different types of problems existing at the Ecole Hôtelière
de Lausanne have been analyzed and modeled. The first type is a simple Course Allocation
Problem (CAP), and the second type combines a Course Allocation Problem with a Course
Timetabling Problem (CAP&CTT). Both of them are modeled as CSOP.

Chapter 5. The model developed in this chapter is based on the models of chapter 3. This
MORAP model is dedicated to the class allocation problem where students have to be
split according to their profile while the resources needed have to be also considered.

Chapter 6. In this chapter, a model has been developed for a maVRP with many diffe-
rent constraints: time windows, heterogeneous fleet, multiple depots, multiple routes and
incompatibilities.

7.1. Conclusions 125

Chapter 3.10. A model has been developed for the benchmark datasets of a Course
Timetabling Problem (CTT).

G5 To design new heuristic and metaheuristic approaches based on ACO algorithms.

Chapter 3. We have presented two approaches based on ACO and on CSOP to solve the
class allocation problem modeled as a resource allocation problem.

Chapter 4. For the simple CAP, we have compared two different approaches to solve the
problem. The first approach, the Course Greedy Algorithm (CGA), allocates a course to
the students sequentially. The second approach is based on CSOP and uses the solver
Gecode. For the CAP&CTT, we have presented two approaches to solve it. The first
approach uses a CSOP solver to find the solutions to both problems simultaneously and
to each problem individually. The second approach uses the same CSOP solver for the
CAP, but an ACO algorithm to solve the scheduling problem.

Chapter 5. In this chapter, we have presented three approaches to solve a many-objective
optimization problem, based on ACO, HS and GA.

Chapter 6. In this chapter, five different approaches were presented to solve the maVRP,
all based on classical metaheuristics, ACO and GA.

Chapter 3.10. An ACO approach has been designed to solve the CTT problem, it includes
a local search based on a CSOP solver.

G6 To hybridize metaheuristics and analyze their performance.

Chapter 6. Two of the proposed approaches are hybrid metaheuristics that combine the
two metaheuristics, ACO and GA. In one of them, ACO-GA, ACO is the main metaheuris-
tic and GA is used for local search. In the other, GA-ACO, GA is the main metaheuristic
and ACO is used to break ties instead of using randomness when a decision has to be
made in order to complete the solution.

G7 To apply those new approaches and metaheuristics to real industrial problems.

Chapter 3. The heuristic and metaheuristic approaches proposed in this chapter have been
applied to eight datasets coming from different Swiss schools.

Chapter 4.The proposed approaches are currently used at the Ecole Hôtelière de Lau-
sanne to allocate the seats in the elective courses and to guarantee that this allocation is
compatible with the timetable constraints.

Chapter 5. The three proposed approaches have been applied to the same eight datasets
used in chapter 3.

Chapter 6. The proposed approaches have been applied to fifteen datasets coming from a
logistics company.

G8 To compare their performance in those problems.

Chapter 3. Two approaches have been compared, one based on ACO and one based on
CSOP. The ACO algorithm provides better solutions than the CSOP solver in a shorter
time. As both of them use randomness for the allocation of resources, our results prove
that the pheromones in the ACO approach help to find very good solutions in a much
smaller amount of time. As the computation time is short for the ACO approach, the
school’s directors, who are in charge of the allocation of students and of the timetable, can
simulate multiple scenarios of possible sets of profiles in their school.

126 Chapter 7. Conclusions and Future Work

Chapter 4. In the CAP, two metrics have been designed and used to quantify the quality
of a solution: the Total Satisfaction Gap (TSG) analyzes the average level of satisfaction of
the students and the Worst Satisfaction Gap (WSG) corresponds to the level of satisfaction
of the worst off. For small instances, CSOP outperforms CGA for both metrics. For
bigger instances, WSG is even better, but the computation time needed to improve TSG
increases: TSG with CSOP is similar to TSG with CGA with 150 students. For the
CAP&CTT, the two proposed approaches, CSOP and ACO, provide very good results in
a reasonable computation time. The ACO approach is nevertheless much faster in finding
good solutions.

Chapter 5. Two different methods have been used to compare the three approaches de-
signed in this chapter, both of them based on the hypervolume indicator. The results
show that NSGA-II outperforms the other approaches in four datasets out of eight. ACO
outperforms the others in one dataset. For the other three datasets, the three approaches
are competitive and provide good solutions.

Chapter 6. The results of the proposed approaches have been compared to two commercial
tools looking at the quality of the solution and the computation time. The quality of the
solution is measured by the number of served customers and the cost. Considering the
number of served customers, one of the tools and the ACO-GA approach outperform the
others. Considering the cost, GA and GA-ACO provide better results. The computation
time is much better in GA and GA-ACO.

Chapter 3.10. The first results obtained with the ACO approach and a simple local search
are encouraging, but far from optimized algorithms developed especially for the ITC-2007
datasets. Feasible solutions have always been found, that means with no hard constraint
broken.

7.2 Future Work

In this section, a brief description is given about the future lines of work that could be done to
continue and improve the current work and could be investigated in a new research work.

1. Bio-inspired Metaheuristics hybridizing
A new line of work is related to the approaches proposed to solve the MORAP. Three meta-
heuristics have been used to solve the problem individually, ACO, HS and GA. Hybridizing
those metaheuristics could improve their performance.

2. ACO tuning
The ACO algorithm requires several parameters defined by the user to control the opti-
mization (size of the colony, evaporation rate, balance between pheromones and visibility,
variation of the pheromone bounds). Even if the tuning of those parameters is very often
linked to the optimization problem itself, an analysis of the sensitivity of the approaches
regarding the value of those parameters could lead to the definition of ranges in which the
different problems would be solved efficiently.

3. Complete the MORAP with additional scheduling constraints
In Chapter 5, the optimization problem of the educational system in Canton de Vaud has

7.2. Future Work 127

been simplified by removing some constraints. To solve the complete problem, scheduling
constraints have to be considered, such as teachers’ and rooms’ availability. This might
lead to a much more complex problem and the computation time might then become an
issue that would have to be tackled.

4. ACO approach time efficiency
In most optimization problems and especially with large datasets, computation time be-
comes a key factor. For some applications, in particular industrial applications, the algo-
rithm must be as fast as possible. In ACO, each ant builds its solution independently from
the other ants. It would be interesting to parallelize the solution construction performed
by the ants.

5. Complete the comparison with benchmark datasets for the CTT problem
The ACO approach presented in chapter 3.10 to solve the CTT problem has to be further
developed and improved in order to become competitive with other approaches presented
in the literature.

128 Chapter 7. Conclusions and Future Work

Chapter 8

Conclusiones y Trabajo Futuro

Este caṕıtulo resume las principales conclusiones de esta tesis y algunas ĺıneas de trabajo futuras
que serán parte de los próximos pasos de investigación.

8.1 Conclusions

Como se explicó anteriormente, existe una amplia gama de problemas complejos reales que no
pueden ser resueltos con algoritmos exactos y por lo tanto necesitan enfoques heuŕısticos para ser
resueltos. Esta tesis se centra en una metaheuŕıstica basada en enjambre, Ant Colony Optimiza-
tion (ACO), aplicada a diferentes tipos de problemas, principalmente problemas de asignación
de recursos (Resource Allocation) y problemas de planificación con recursos (Scheduling). Para
ser realmente eficientes, los algoritmos ACO tienen que combinarse con una búsqueda local que
intensifique la búsqueda en un área prometedora del espacio de soluciones.

El objetivo principal de esta tesis ha sido el análisis y desarrollo de modelos y de meta-
heuŕısticas basadas en algoritmos ACO y su aplicación a problemas reales de optimización
combinatoria. Este objetivo se mantuvo a lo largo de los diferentes caṕıtulos que componen esta
tesis. Las principales preguntas de investigación presentadas en el caṕıtulo 1 se han tratado en
diferentes caṕıtulos de esta disertación, la contribución de cada uno de estos caṕıtulos a cada
pregunta se presenta a continuación:

G1 Revisar el estado del arte relacionado con metaheuŕısticas bio-inspiradas, centradas prin-
cipalmente en Ant Colony Optimization, pero incluyendo otros enfoques como Genetic
Algorithm (GA) y Harmony Search (HS).

Caṕıtulo 2. En este caṕıtulo se ha incluido una amplia revisión de las metaheuŕısticas bio-
inspiradas. La metaheuŕıstica basada en ACO ha sido descrita en detalle junto con dos
variantes, Elitist y Max-Min Ant System. Se ha explicado la importancia de un proceso
de búsqueda local para ACO, aśı como la relación entre ACO y grafos. Para concluir esta
parte, se han presentado varios campos de aplicaciones de ACO. La segunda metaheuŕıstica
incluida en este caṕıtulo es GA. Se han descrito los diferentes operadores necesarios para
implementar un GA: Selection, Crossover, Mutation y Replacement. Se ha explicado la

129

130 Chapter 8. Conclusiones y Trabajo Futuro

importancia de la diversidad y de la presión de selección en las metaheuŕısticas basadas
en poblaciones. La última metaheuŕıstica presentada es HS descrita con sus parámetros.

Caṕıtulo 5. La extensión de GA a problemas multi-objetivo ha sido descrita en este
caṕıtulo, incluyendo el bien conocido NSGA-II, Non-dominated Sorting Genetic Algorithm
II.

G2 Revisar el estado del arte relacionado con Constraint Satisfaction Problems (CSP) y cómo
pueden ser resueltos con metaheuŕısticas.

Caṕıtulo 2. Una explicación detallada de los principales conceptos de los CSP se ha
presentado en este caṕıtulo: variables, dominios, restricciones y asignaciones. Se han dado
varios ejemplos clásicos para ilustrar estos conceptos: n-Queens Problem, Graph-Coloring
Problem y Sudoku Game. El CSP se ha ampliado al CSOP, que incluye un objetivo
de optimización. El Traveling Salesman Problem se ha presentado como un ejemplo de
CSOP. Se han incluido distintos métodos de resolución para ambos tipos de problemas,
CSP y CSOP, aśı como un solver que implementa algunos de esos métodos. También se ha
descrito en detalle la metaheuŕıstica ACO adaptada para ese tipo de modelos, incluyendo
ejemplos en los que ACO se ha utilizado para resolver CSOP.

G3 Revisar el estado del arte en los diferentes campos de aplicación analizados en esta diser-
tación: Resource Allocation Problems y Scheduling Problems, especialmente asignación de
cursos, planificación de horarios y problemas de enrutamiento de veh́ıculos.

Caṕıtulo 2. El RAP se ha presentado en este caṕıtulo con varios ejemplos de aplicación.
El caso especial del problema de matching ha sido incluido y descrito con sus principales
caracteŕısticas. Dos ejemplos de RAP se han expuesto en detalle: el Course Allocation
Problem que consiste en asignar cursos a estudiantes y el Course Timetabling Problem
que consiste en asignar horarios y salas a cursos. También se ha descrito el RAP multi-
objetivo junto con el frente de Pareto y el indicador de hipervolumen que permite la
comparación de diferentes métodos de resolución de problemas multi-objetivo. Se han
presentado varios ejemplos y enfoques de resolución para el MORAP. Para finalizar el
caṕıtulo, se ha descrito el Vehicle Routing Problem (VRP) con algunas de sus variantes y
diferentes enfoques utilizados para resolverlo.

G4 Desarrollar distintos modelos para problemas de optimización combinatoria: Resource Al-
location Problems y Scheduling Problems, en particular Timetabling y Vehicle Routing
Problems.

Caṕıtulo 3. En este caṕıtulo se ha desarrollado un modelo basado en restricciones para
el Course Timetabling Problem que existe en los colegios suizos. Este modelo incluye el
hecho de que se asignan los estudiantes a las clases al mismo tiempo que se construye el
horario.

Caṕıtulo 4. En este caṕıtulo, se han analizado y modelado dos tipos diferentes de proble-
mas que existen en la Ecole Hôtelière de Lausanne. El primer tipo es un simple Course
Allocation Problem (CAP), y el segundo tipo combina un Course Allocation Problem con
un Course Timetabling Problem (CAP&CTT). Ambos se han modelado como CSOP.

Caṕıtulo 5. El modelo utilizado en este caṕıtulo se basa en los modelos desarrollados en
el caṕıtulo 3. Este modelo MORAP se centra en el problema de asignación de clases en el
que los estudiantes han de repartirse según su perfil y considerando el número de recursos
necesarios.

8.1. Conclusions 131

Caṕıtulo 6. En este caṕıtulo, se ha desarrollado un modelo para el maVRP con varias carac-
teŕısticas diferentes: ventanas de tiempo, flota heterogénea, múltiples depósitos, múltiples
rutas e incompatibilidades.

Caṕıtulo 3.10. Se ha desarrollado un modelo para los conjuntos de datos benchmark de
un Course Timetabling Problem.

G5 Diseñar nuevos enfoques heuŕısticos y metaheuŕısticas basados en ACO.

Caṕıtulo 3. Se han presentado dos enfoques basados en ACO y en CSOP para resolver el
problema de asignación de clases modelado como un problema de asignación de recursos.

Caṕıtulo 4. Para el CAP simple, se han comparado dos enfoques de resolución diferentes.
El primero, el Course Greedy Algorithm (CGA), asigna los cursos a estudiantes de forma
secuencial. El segundo enfoque se basa en CSOP y utiliza el solver Gecode. Para el
CAP&CTT, se han presentado dos enfoques para resolverlo. El primero utiliza un solver
CSOP para encontrar las soluciones a ambos problemas simultáneamente y a cada pro-
blema individualmente. El segundo enfoque utiliza el mismo solver CSOP que el CAP,
pero un algoritmo ACO para resolver el Scheduling Problem.

Caṕıtulo 5.En este caṕıtulo, hemos presentado tres enfoques para resolver un problema de
optimización de multi-objetivo, basados en ACO, HS y GA.

Caṕıtulo 6. En este caṕıtulo, se han diseñado cuatro enfoques diferentes para resolver el
maVRP, basados en las metaheuŕısticas clásicas, ACO y AG.

Caṕıtulo 3.10. Se ha propuesto un enfoque ACO para resolver el problema CTT, que
incluye una búsqueda local basada en un solver CSOP.

G6 Hibridar metaheuŕısticas y analizar su rendimiento.

Caṕıtulo 6. Se han hibridado ACO y GA de dos formas distintas para resolver el VRP,
en una de ellas GA es una búsqueda local de ACO, en la otra ACO influye en la toma de
decisiones de GA y reduce la parte aleatoria.

G7 - Aplicar estos métodos a problemas reales.

Caṕıtulo 3. Los enfoques heuŕısticos y metaheuŕısticos propuestos en este caṕıtulo se han
aplicado a ocho conjuntos de datos procedentes de varios colegios suizos.

Caṕıtulo 4. Las estrategias propuestas se utilizan actualmente en la Ecole Hôtelière de
Lausanne para asignar las plazas en las óptativas y garantizar que esta asignación sea
compatible con una planificación horaria.

Caṕıtulo 5. Los tres enfoques propuestos se han aplicado a los ocho conjuntos de datos
utilizados en el caṕıtulo 3.

Caṕıtulo 6. Las estrategias propuestas se han aplicado a quince conjuntos de datos proce-
dentes de una empresa de loǵıstica.

G8 Comparar el rendimiento de estos enfoques en estos problemas.

Caṕıtulo 3. Se han comparado dos enfoques, uno basado en ACO y uno basado en CSOP. El
algoritmo ACO proporciona mejores soluciones que el solver CSOP en un tiempo más corto.
Como ambos asignan los recursos de forma aleatoria, nuestros resultados demuestran que
las feromonas en ACO ayudan a encontrar muy buenas soluciones en un tiempo mucho
menor. Como el tiempo de cómputo es corto para ACO, los directores de colegio, a cargo

132 Chapter 8. Conclusiones y Trabajo Futuro

de la asignación de estudiantes y del calendario, pueden simular múltiples escenarios de
posibles conjuntos de perfiles en su escuela.

Caṕıtulo 4. En el CAP se han diseñado y utilizado dos indicadores para cuantificar la
calidad de una solución: el Total Satisfaction Gap (TSG) analiza el nivel medio de sa-
tisfacción de los estudiantes y el Worst Satisfaction Gap (WSG) corresponde al nivel de
satisfacción del estudiante más perjudicado. Para pequeñas instancias, CSOP da mejores
resultados para ambas métricas que CGA. Para instancias más grandes, WSG es todav́ıa
mejor, pero el tiempo de cálculo para mejorar TSG aumenta: TSG con CSOP es similar
a TSG con CGA con instancias de 150 estudiantes. Para el CAP&CTT, los dos enfoques
propuestos, CSOP y ACO, proporcionan muy buenos resultados en un tiempo de cómputo
razonable. Sin embargo, ACO es mucho más rápido para encontrar buenas soluciones.

Caṕıtulo 5. Se han utilizado ocho conjuntos de datos y dos métodos diferentes para
comparar los tres enfoques diseñados en este caṕıtulo, ambos basados en el indicador de
hipervolumen. Los resultados muestran que NSGA-II supera a los otros enfoques en cuatro
conjuntos de datos. ACO supera a los demás en un conjunto de datos. Para los otros tres,
las tres estrategias son competitivas y proporcionan buenas soluciones.

Caṕıtulo 6. Los resultados de las estrategias propuestas se han comparado con dos her-
ramientas comerciales a nivel de la calidad de la solución y del tiempo de cálculo. La
calidad de la solución se mide con el número de clientes que no pueden ser atendidos y el
coste. Para maximizar el número de clientes atendidos, una de las herramientas y ACO-
GA superan a los demás. Para la minimización del coste, GA y GA-ACO proporcionan
mejores resultados. El tiempo de cálculo es mucho mejor en GA y GA-ACO.

Caṕıtulo 3.10. Los primeros resultados obtenidos con el enfoque ACO y una simple
búsqueda local son prometedores, pero lejos de algoritmos espećıficos y optimizados desar-
rollados especialmente para los conjuntos de datos ITC-2007. Siempre se han encontrado
soluciones viables, lo que significa que no se violan restricciones duras.

8.2 Trabajo futuro

En esta sección se proporciona una breve descripción de las futuras ĺıneas de trabajo previstas
para continuar y mejorar el trabajo actual y que podŕıan desarollarse en un nuevo trabajo de
investigación.

1. Hibridar metaheuŕısticas bio-inspiradas
Una nueva ĺınea de trabajo está relacionada con las estrategias propuestas para resolver el
MORAP. Se han utilizado tres metaheuŕısticas independientes para resolver el problema,
ACO, HS y GA. Hibridar esas metaheuŕısticas podŕıa mejorar su rendimiento.

2. Ajustar ACO
El algoritmo ACO requiere varios parámetros definidos por el usuario para controlar la
optimización (tamaño de la colonia, evaporación, equilibrio entre feromonas y visibilidad,
variación de los ĺımites de feromonas). El ajuste de estos parámetros está muy relacionado
con el propio problema de optimización, sin embargo un análisis de sensibilidad de las
estrategias ACO al valor de esos parámetros podŕıa conducir a la definición de rangos que
permitiŕıan una resolución eficiente de los problemas analizados en esta tesis.

8.2. Trabajo futuro 133

3. Completar el MORAP con restricciones de programación de recursos adicionales
En el Caṕıtulo 5, el problema de optimización del sistema educativo del Cantón de Vaud
ha sido simplificado eliminando algunas restricciones. Para resolver el problema completo,
hay que considerar las restricciones de programación, como la disponibilidad de profesores
y salas. Esto podŕıa conducir a un problema mucho más complejo y el tiempo de cálculo
podŕıa convertirse en un problema que habŕıa que abordar.

4. Tiempo de cálculo en ACO
En la mayoŕıa de los problemas de optimización y especialmente con conjuntos de datos
grandes, el tiempo de cálculo se convierte en un factor clave. Para algunas aplicaciones,
en particular las industriales, el algoritmo debe ser lo más rápido posible. En ACO, cada
hormiga construye su solución independientemente de las otras hormigas. Seŕıa interesante
paralelizar la construcción de la solución realizada por las hormigas.

5. Completar el desarrollo y la comparación con los conjuntos de datos benchmark del pro-
blema CTT
El enfoque ACO presentado en el caṕıtulo 3.10 para resolver el problema de CTT tiene
que desarrollarse y mejorarse para ser competitivo con otras estrategias presentadas en la
literatura.

134 Chapter 8. Conclusiones y Trabajo Futuro

Appendix A

Notation used in Chapter 3

Tables A.1 and A.2 contains the list of the notations used for the data of the models presented
in Chapter 3 and table A.3 is used for the output results. The results are either the results of
the allocations or sets that are deduced from the allocations.

Notation Description

Pmax Max. number of lessons per day per student

Wmin Objective: Min. weight per day per student

Wmax Objective: Max. weight per day per student

d ∈ D Day

p ∈ P Period

PD(p) Day of p

PHF (p) ∈ {0, 1} =1 if p is the first period of a half-day

PHL(p) ∈ {0, 1} =1 if p is the last period of a half-day

PQF (p) ∈ {0, 1} =1 if p is the first period of a quarter-day

PQL(p) ∈ {0, 1} =1 if p is the last period of a quarter-day

PN(p) Period(s) before or after p in the quarter-day

k ∈ K Categories

KG(k) Grade of k

KT (k) Type of k ∈ {section,OS,OCOM, level}
KSmax(k) Max. number of students in a class of k

q ∈ Q Classes

QK(q) Category of class q

r ∈ R Rooms

RT ∈ {0, 1} = 1 if r requires travel time

Table A.1: Notation: Input data - Part I.

135

136 Chapter A. Notation used in Chapter 3

Notation Description

c ∈ C Courses

CQ(c) Class of c

CR(c) List of adapted rooms for c

CT (c) List of skilled teachers for c

CDmax(c) Max. number of lessons per day for c

CW (c) Weight of c

CF (c) ⊂ C List of forbidden neighbors of c

CN(c) ⊂ C List of desirable neighbors of c

l ∈ L Lessons

LC(l) ∈ C Course of l

t ∈ T Teachers

TWmax(t) Max. number of working periods

TWmin(t) Min. number of working periods

TP (t) ⊆ P Periods when t is available

s ∈ S Students

SK(s) ⊂ K List of categories to which s belongs

Table A.2: Notation: Input data - Part II.

Notation Description

Assignment

µk(s) ∈ Q Class assigned to s for k ∈ SK(s)

µR(l) ∈ R Room assigned to l

µT (l) ∈ T Teacher assigned to l

µP (l) ∈ P Period scheduled for l

Deduced sets

νL(s) List of lessons assigned to s

= {l ∈ νL(s) : PD(µP (l)) = d}
νLD(s, d) List of lessons assigned to s on day d

= {l ∈ νL(s) : PD(µP (l)) = d}
νW (s, d) Weight of lessons assigned to s on day d

=
∑

l∈νLD(s,d)CW (LC(l))

νS(q, k) Number of students assigned to q that belong to k

= Card({s ∈ S : µk(s) = q})

Table A.3: Notation: Output results.

Appendix B

Complete Results for the maVRP

This appendix contains all the charts for the maVRP presented in Chapter 6 and complete the
last part of Section 6.7.3.3.

137

138 Chapter B. Complete Results for the maVRP

Figure B.1: Number of customers not served in the best solution and in the global best solution
for the ACO approaches and 5 datasets.

139

Figure B.2: Number of customers not served in the best solution and in the global best solution
for the GA approaches and 5 datasets.

140 Chapter B. Complete Results for the maVRP

Figure B.3: Number of customers not served in the best solution and in the global best solution
for the ACO approaches and 5 datasets.

141

Figure B.4: Number of customers not served in the best solution and in the global best solution
for the GA approaches and 5 datasets.

142 Chapter B. Complete Results for the maVRP

Bibliography

[1] L. E. Agust́ın-Blas, S. Salcedo-Sanz, E. G. Ort́ız-Garćıa, A. Portilla-Figueras, and Á. M.
Pérez-Bellido. A hybrid grouping genetic algorithm for assigning students to preferred
laboratory groups. Expert Syst. Appl., 36(3):7234–7241, 2009.

[2] I. Alaya, C. Solnon, and K. Ghedira. Ant colony optimization for multi-objective opti-
mization problems. In ICTAI (1), pages 450–457. Citeseer, 2007.

[3] C. H. Antunes, P. Lima, E. Oliveira, and D. F. Pires. A multi-objective simulated annealing
approach to reactive power compensation. Engineering Optimization, 43(10):1063–1077,
2011.

[4] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The traveling salesman
problem: a computational study. Princeton university press, 2011.

[5] M. Avci and S. Topaloglu. A hybrid metaheuristic algorithm for heterogeneous vehicle
routing problem with simultaneous pickup and delivery. Expert Systems with Applications,
53:160–171, 2016.

[6] H. Babaei, J. Karimpour, and A. Hadidi. A survey of approaches for university course
timetabling problem. Computers & Industrial Engineering, 86:43–59, 2015.

[7] B. M. Baker and M. Ayechew. A genetic algorithm for the vehicle routing problem.
Computers & Operations Research, 30(5):787–800, 2003.

[8] A. Basso and L. A. Peccati. Optimal resource allocation with minimum activation levels
and fixed costs. European Journal of Operational Research, 131(3):536–549, 2001.

[9] G. N. Beligiannis, C. N. Moschopoulos, G. P. Kaperonis, and S. D. Likothanassis. Applying
evolutionary computation to the school timetabling problem: The greek case. Computers
& Operations Research, 35(4):1265–1280, 2008.

[10] J. E. Bell and P. R. McMullen. Ant colony optimization techniques for the vehicle routing
problem. Advanced engineering informatics, 18(1):41–48, 2004.

[11] F. Belmecheri, C. Prins, F. Yalaoui, and L. Amodeo. Particle swarm optimization algo-
rithm for a vehicle routing problem with heterogeneous fleet, mixed backhauls, and time
windows. Journal of intelligent manufacturing, 24(4):775–789, 2013.

143

144 Bibliography

[12] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli. Hybrid metaheuristics in combinatorial
optimization: A survey. Applied Soft Computing, 11(6):4135–4151, 2011.

[13] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and con-
ceptual comparison. ACM Computing Surveys (CSUR), 35(3):268–308, 2003.

[14] M. R. Bonyadi and Z. Michalewicz. Particle swarm optimization for single objective
continuous space problems: a review, 2017.

[15] I. BoussäıD, J. Lepagnot, and P. Siarry. A survey on optimization metaheuristics. Infor-
mation Sciences, 237:82–117, 2013.

[16] S. C. Brailsford, C. N. Potts, and B. M. Smith. Constraint satisfaction problems: Al-
gorithms and applications. European Journal of Operational Research, 119(3):557–581,
1999.

[17] E. Budish and E. Cantillon. The multi-unit assignment problem: Theory and evidence
from course allocation at harvard. The American economic review, 102(5):2237–2271,
2012.

[18] E. B. Budish and E. Cantillon. The multi-unit assignment problem: Theory and evidence
from course allocation at harvard. 2010.

[19] B. Bullnheimer, R. F. Hartl, and C. Strauss. Applying the ant system to the vehicle
routing problem. In Meta-heuristics, pages 285–296. Springer, 1999.

[20] J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera, and A. A. Juan. Rich vehicle routing
problem: Survey. ACM Computing Surveys (CSUR), 47(2):32, 2015.

[21] J. I. Cano, L. Sánchez, D. Camacho, E. Pulido, and E. Anguiano. Allocation of educa-
tional resources through happiness maximization. In Proceedings of the 4th International
Conference on Software and Data Technologies, 2009.

[22] J. I. Cano, L. Sánchez, D. Camacho, E. Pulido, and E. Anguiano. Using preferences to
solve student–class allocation problem. In Intelligent Data Engineering and Automated
Learning-IDEAL 2009, pages 626–632. Springer, 2009.

[23] S. K. Chaharsooghi and A. H. M. Kermani. An effective ant colony optimization algorithm
(aco) for multi-objective resource allocation problem (morap). Applied Mathematics and
Computation, 200(1):167–177, 2008.

[24] S. Chand and M. Wagner. Evolutionary many-objective optimization: A quick-start guide.
Surveys in Operations Research and Management Science, 20(2):35–42, 2015.

[25] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga. Handling multiple objectives with
particle swarm optimization. IEEE Transactions on evolutionary computation, 8(3):256–
279, 2004.

[26] T. Cooper and J. Kingston. The complexity of timetable construction problems. Practice
and Theory of Automated Timetabling, pages 281–295, 1996.

[27] J.-F. Cordeau and M. Maischberger. A parallel iterated tabu search heuristic for vehicle
routing problems. Computers & Operations Research, 39(9):2033–2050, 2012.

Bibliography 145

[28] D. Costa and A. Hertz. Ants can colour graphs. Journal of the operational research society,
48(3):295–305, 1997.

[29] G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Management science,
6(1):80–91, 1959.

[30] C. de Vaud. Contenus d’enseignement plan d’études romand (per), 2016.

[31] D. de Werra. An introduction to timetabling. European Journal of Operational Research,
19(2):151–162, 1985.

[32] K. Deb. Multi-objective optimisation using evolutionary algorithms: an introduction.
In Multi-objective evolutionary optimisation for product design and manufacturing, pages
3–34. Springer, 2011.

[33] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: Nsga-ii. In International Conference
on Parallel Problem Solving From Nature, pages 849–858. Springer, 2000.

[34] D. Dechampai, L. Tanwanichkul, K. Sethanan, and R. Pitakaso. A differential evolution
algorithm for the capacitated vrp with flexibility of mixing pickup and delivery services and
the maximum duration of a route in poultry industry. Journal of Intelligent Manufacturing,
pages 1–20, 2015.

[35] J. Del Ser, M. N. Bilbao, C. Perfecto, and S. Salcedo-Sanz. A harmony search approach
for the selective pick-up and delivery problem with delayed drop-off. In Harmony Search
Algorithm, pages 121–131. Springer, 2016.

[36] U. Derigs and M. Pullmann. Solving multitrip vehicle routing under order incompatibili-
ties: A vrp arising in supply chain management. Networks, 64(1):29–39, 2014.

[37] G. Desaulniers and Q. Groupe d’études et de recherche en analyse des décisions (Montréal.
The VRP with pickup and delivery. Montréal: Groupe d’études et de recherche en analyse
des décisions, 2000.

[38] L. Di Gaspero. Integration of metaheuristics and constraint programming. In Springer
Handbook of Computational Intelligence, pages 1225–1237. Springer, 2015.

[39] L. Di Gaspero, B. McCollum, and A. Schaerf. The second international timetabling com-
petition (itc-2007): Curriculum-based course timetabling (track 3). Technical report,
Technical Report QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1. 0, Queen’s University,
Belfast, United Kingdom, 2007.

[40] L. Di Gaspero, A. Rendl, and T. Urli. A hybrid aco+ cp for balancing bicycle sharing
systems. In International Workshop on Hybrid Metaheuristics, pages 198–212. Springer,
2013.

[41] F. Diebold, H. Aziz, M. Bichler, F. Matthes, and A. Schneider. Course allocation via
stable matching. Business & Information Systems Engineering, 6(2):97–110, 2014.

[42] R. Dondo and J. Cerdá. A cluster-based optimization approach for the multi-depot hetero-
geneous fleet vehicle routing problem with time windows. European Journal of Operational
Research, 176(3):1478–1507, 2007.

146 Bibliography

[43] M. Dorigo and M. Birattari. Ant colony optimization. In Encyclopedia of machine learning,
pages 36–39. Springer, 2010.

[44] M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. IEEE computational
intelligence magazine, 1(4):28–39, 2006.

[45] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by a colony of cooper-
ating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
26(1):29–41, 1996.

[46] K. A. Dowsland and J. M. Thompson. An improved ant colony optimisation heuristic for
graph colouring. Discrete Applied Mathematics, 156(3):313–324, 2008.

[47] M. Ehrgott, K. Klamroth, and C. Schwehm. An mcdm approach to portfolio optimization.
European Journal of Operational Research, 155(3):752–770, 2004.

[48] E. Fallah-Mehdipour, O. B. Haddad, M. M. R. Tabari, and M. A. Mariño. Extraction of
decision alternatives in construction management projects: Application and adaptation of
nsga-ii and mopso. Expert Systems with Applications, 39(3):2794–2803, 2012.

[49] K. Fan, W. You, and Y. Li. An effective modified binary particle swarm optimization
(mbpso) algorithm for multi-objective resource allocation problem (morap). Applied Ma-
thematics and Computation, 221:257–267, 2013.

[50] F.-A. Fortin and M. Parizeau. Revisiting the nsga-ii crowding-distance computation. In
Proceedings of the 15th annual conference on Genetic and evolutionary computation, pages
623–630. ACM, 2013.

[51] R. Fukasawa, H. Longo, J. Lysgaard, M. P. de Aragão, M. Reis, E. Uchoa, and R. F.
Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem.
Mathematical programming, 106(3):491–511, 2006.

[52] L. M. Gambardella and M. Dorigo. An ant colony system hybridized with a new local
search for the sequential ordering problem. INFORMS Journal on Computing, 12(3):237–
255, 2000.

[53] L. M. Gambardella, E. Taillard, and M. Dorigo. Ant colonies for the quadratic assignment
problem. Journal of the operational research society, pages 167–176, 1999.

[54] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-complete graph
problems. Theoretical computer science, 1(3):237–267, 1976.

[55] Z. W. Geem. State-of-the-art in the structure of harmony search algorithm. In Recent
Advances In Harmony Search Algorithm, pages 1–10. Springer, 2010.

[56] Z. W. Geem, J. H. Kim, and G. Loganathan. A new heuristic optimization algorithm:
harmony search. Simulation, 76(2):60–68, 2001.

[57] S. Ghorbani and M. Rabbani. A new multi-objective algorithm for a project selection
problem. Advances in Engineering Software, 40(1):9–14, 2009.

[58] F. Glover. Tabu search—part i. ORSA Journal on computing, 1(3):190–206, 1989.

Bibliography 147

[59] F. P. Goksal, I. Karaoglan, and F. Altiparmak. A hybrid discrete particle swarm opti-
mization for vehicle routing problem with simultaneous pickup and delivery. Computers
& Industrial Engineering, 65(1):39–53, 2013.

[60] B. Golden, A. Assad, L. Levy, and F. Gheysens. The fleet size and mix vehicle routing
problem. Computers & Operations Research, 11(1):49–66, 1984.

[61] A. González-Pardo, D. F. Barrero, D. Camacho, and M. D. R-Moreno. A case study on
grammatical-based representation for regular expression evolution. In Trends in Practical
Applications of Agents and Multiagent Systems, pages 379–386. Springer, 2010.

[62] A. Gonzalez-Pardo and D. Camacho. A new csp graph-based representation for ant colony
optimization. In 2013 IEEE Congress on Evolutionary Computation, pages 689–696. IEEE,
2013.

[63] A. Gonzalez-Pardo and D. Camacho. Environmental influence in bio-inspired game level
solver algorithms. In Intelligent Distributed Computing VII, pages 157–162. Springer, 2014.

[64] A. Gonzalez-Pardo, F. Palero, and D. Camacho. An empirical study on collective intelli-
gence algorithms for video games problem-solving. Computing and Informatics, 2015.

[65] S. Goss, S. Aron, J.-L. Deneubourg, and J. M. Pasteels. Self-organized shortcuts in the
argentine ant. Naturwissenschaften, 76(12):579–581, 1989.

[66] K. Harwood, C. Mumford, and R. Eglese. Investigating the use of metaheuristics for
solving single vehicle routing problems with time-varying traversal costs. Journal of the
Operational Research Society, 64(1):34–47, 2013.

[67] L. He and S. He. Solving water resource scheduling problem through an improved artificial
fish swarm algorithm. International Journal of Simulation Modelling (IJSIMM), 14(1),
2015.

[68] C. Heimerl and R. Kolisch. Scheduling and staffing multiple projects with a multi-skilled
workforce. OR spectrum, 32(2):343–368, 2010.

[69] H. Hellkvist and W. Sjöstedt. Toward automated timetabling at teknat. 2012.

[70] E. Hoffman, J. Loessi, and R. Moore. Constructions for the solution of the m queens
problem. Mathematics Magazine, 42(2):66–72, 1969.

[71] J. H. Holland. Adaptation in natural and artificial systems. an introductory analysis
with applications to biology, control and artificial intelligence. Ann Arbor: University of
Michigan Press, 1975, 1, 1975.

[72] W. Hu, H. Liang, C. Peng, B. Du, and Q. Hu. A hybrid chaos-particle swarm optimization
algorithm for the vehicle routing problem with time window. Entropy, 15(4):1247–1270,
2013.

[73] E. J. Hughes. Evolutionary many-objective optimisation: many once or one many? In
Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 1, pages 222–227.
IEEE, 2005.

148 Bibliography

[74] F. Jacobsen, A. Bortfeldt, and H. Gehring. Timetabling at german secondary schools:
tabu search versus constraint programming. In Proceedings 6th international conference
on the practice and theory of automated timetabling, PATAT2006, pages 439–442. Citeseer,
2006.

[75] H. Jain and K. Deb. An improved adaptive approach for elitist nondominated sorting
genetic algorithm for many-objective optimization. In International Conference on Evo-
lutionary Multi-Criterion Optimization, pages 307–321. Springer, 2013.

[76] D. Karaboga and B. Basturk. A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (abc) algorithm. Journal of global optimization,
39(3):459–471, 2007.

[77] S. Karakatič and V. Podgorelec. A survey of genetic algorithms for solving multi depot
vehicle routing problem. Applied Soft Computing, 27:519–532, 2015.

[78] M. Khichane, P. Albert, and C. Solnon. Integration of aco in a constraint programming
language. In International Conference on Ant Colony Optimization and Swarm Intelli-
gence, pages 84–95. Springer, 2008.

[79] B.-I. Kim and S.-J. Son. A probability matrix based particle swarm optimization for the
capacitated vehicle routing problem. Journal of Intelligent Manufacturing, 23(4):1119–
1126, 2012.

[80] J. H. Kingston. A tiling algorithm for high school timetabling. In International Conference
on the Practice and Theory of Automated Timetabling, pages 208–225. Springer, 2004.

[81] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, et al. Optimization by simulated annealing.
science, 220(4598):671–680, 1983.

[82] F. Kojima. Efficient resource allocation under multi-unit demand. Games and Economic
Behavior, 82:1–14, 2013.

[83] A. L. Kok, C. M. Meyer, H. Kopfer, and J. M. J. Schutten. A dynamic programming
heuristic for the vehicle routing problem with time windows and european community
social legislation. Transportation Science, 44(4):442–454, 2010.

[84] I. Landa-Torres, D. Manjarres, S. Salcedo-Sanz, J. D. Ser, and S. Gil-Lopez. A multi-
objective grouping harmony search algorithm for the optimal distribution of 24-hour med-
ical emergency units. Expert Syst. Appl., 40(6):2343–2349, 2013.

[85] G. Laporte. The vehicle routing problem: An overview of exact and approximate algo-
rithms. European journal of operational research, 59(3):345–358, 1992.

[86] G. Laporte, Y. Nobert, and S. Taillefer. Solving a family of multi-depot vehicle routing
and location-routing problems. Transportation science, 22(3):161–172, 1988.

[87] J. K. Lenstra and A. Kan. Complexity of vehicle routing and scheduling problems. Net-
works, 11(2):221–227, 1981.

[88] J. Levine and F. Ducatelle. Ant colony optimization and local search for bin packing and
cutting stock problems. Journal of the Operational Research Society, 55(7):705–716, 2004.

Bibliography 149

[89] R. Lewis. A survey of metaheuristic-based techniques for university timetabling problems.
OR spectrum, 30(1):167–190, 2008.

[90] R. Lewis, B. Paechter, B. McCollum, et al. Post enrolment based course timetabling: A
description of the problem model used for track two of the second international timetabling
competition. Cardiff Business School, 2007.

[91] Y.-C. Liang and C.-Y. Chuang. Variable neighborhood search for multi-objective resource
allocation problems. Robotics and Computer-Integrated Manufacturing, 29(3):73–78, 2013.

[92] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations research, 21(2):498–516, 1973.

[93] M. López-Ibánez, L. Paquete, and T. Stützle. Hybrid population-based algorithms for
the bi-objective quadratic assignment problem. Journal of Mathematical Modelling and
Algorithms, 5(1):111–137, 2006.

[94] M. López-Ibánez, T. Stützle, and M. Dorigo. Ant colony optimization: A component-wise
overview. Techreport, IRIDIA, Universite Libre de Bruxelles, 2015.

[95] B. Maenhout and M. Vanhoucke. An integrated nurse staffing and scheduling analysis for
longer-term nursing staff allocation problems. Omega, 41(2):485–499, 2013.

[96] D. Manjarres, I. Landa-Torres, S. Gil-Lopez, J. Del Ser, M. N. Bilbao, S. Salcedo-Sanz,
and Z. W. Geem. A survey on applications of the harmony search algorithm. Engineering
Applications of Artificial Intelligence, 26(8):1818–1831, 2013.

[97] Y. Marinakis and M. Marinaki. A hybrid genetic–particle swarm optimization algorithm
for the vehicle routing problem. Expert Systems with Applications, 37(2):1446–1455, 2010.

[98] I. Markov, S. Varone, and M. Bierlaire. Integrating a heterogeneous fixed fleet and a
flexible assignment of destination depots in the waste collection vrp with intermediate
facilities. Transportation Research Part B: Methodological, 84:256–273, 2016.

[99] M. Mavrovouniotis, F. M. Müller, and S. Yang. Ant colony optimization with local search
for dynamic traveling salesman problems. IEEE Transactions on Cybernetics, 2016.

[100] B. McCollum and N. Ireland. University timetabling: Bridging the gap between research
and practice. E Burke, HR, ed.: PATAT, pages 15–35, 2006.

[101] K. Nekooei, M. M. Farsangi, H. Nezamabadi-Pour, and K. Y. Lee. An improved multi-
objective harmony search for optimal placement of dgs in distribution systems. IEEE
Transactions on smart grid, 4(1):557–567, 2013.

[102] D. W. K. Ng, E. S. Lo, and R. Schober. Multiobjective resource allocation for secure
communication in cognitive radio networks with wireless information and power transfer.
IEEE Transactions on Vehicular Technology, 65(5):3166–3184, 2016.

[103] A. M. Nogareda and D. Camacho. Integration of ant colony optimization algorithms with
gecode. In Principles and Practice of Constraint Programming (Doctoral Program CP
2014), International Conference on, pages 59–64, 2014.

150 Bibliography

[104] A. M. Nogareda and D. Camacho. Constraint-based model design for timetabling problems
in secondary schools. In Innovations in Intelligent SysTems and Applications (INISTA),
2015 International Symposium on, pages 1–6. IEEE, 2015.

[105] A.-M. Nogareda and D. Camacho. Optimizing satisfaction in a multi-courses allocation
problem. In Intelligent Distributed Computing IX, pages 247–256. Springer, 2016.

[106] A.-M. Nogareda and D. Camacho. Optimizing satisfaction in a multi-courses allocation
problem combined with a timetabling problem. Soft Computing, pages 1–10, 2016.

[107] A.-M. Nogareda and D. Camacho. A constraint-based approach for classes setting-up
problems in secondary schools. International Journal of Simulation Modelling (IJSIMM),
16(2), 2017.

[108] A.-M. Nogareda, D. Camacho, and J. Del Ser. A comparison of bio-inspired heuristics
applied to many-objective resource allocation problems. Soft Computing, Submitted 2017.

[109] A.-M. Nogareda, J. Del Ser, and D. Camacho. Hybrid metaheuristics to manage complex
vehicle routing problems. Engineering Applications of Artificial Intelligence, Submitted
2017.

[110] C. Nothegger, A. Mayer, A. Chwatal, and G. R. Raidl. Solving the post enrolment
course timetabling problem by ant colony optimization. Annals of Operations Research,
194(1):325–339, 2012.

[111] U. of Twente. International Timetabling Competition 2011, 2014.

[112] B. Ombuki, B. J. Ross, and F. Hanshar. Multi-objective genetic algorithms for vehicle
routing problem with time windows. Applied Intelligence, 24(1):17–30, 2006.

[113] M. Osman, M. A. Abo-Sinna, and A. Mousa. An effective genetic algorithm approach to
multiobjective resource allocation problems (moraps). Applied Mathematics and Compu-
tation, 163(2):755–768, 2005.

[114] S. H. R. Pasandideh, S. T. A. Niaki, and S. Sharafzadeh. Optimizing a bi-objective multi-
product epq model with defective items, rework and limited orders: Nsga-ii and mopso
algorithms. Journal of Manufacturing Systems, 32(4):764–770, 2013.

[115] N. Pillay. A survey of school timetabling research. Annals of Operations Research,
218(1):261–293, 2014.

[116] S. Poles, Y. Fu, and E. Rigoni. The effect of initial population sampling on the con-
vergence of multi-objective genetic algorithms. In Multiobjective Programming and Goal
Programming, pages 123–133. Springer, 2009.

[117] G. Post, S. Ahmadi, S. Daskalaki, J. H. Kingston, J. Kyngas, C. Nurmi, and D. Ranson.
An xml format for benchmarks in high school timetabling. Annals of Operations Research,
194(1):385–397, 2012.

[118] C. Prins. Two memetic algorithms for heterogeneous fleet vehicle routing problems. En-
gineering Applications of Artificial Intelligence, 22(6):916–928, 2009.

Bibliography 151

[119] L. Rachmawati and D. Srinivasan. A hybrid fuzzy evolutionary algorithm for a multi-
objective resource allocation problem. In Fifth International Conference on Hybrid Intel-
ligent Systems (HIS’05), pages 6–pp. IEEE, 2005.

[120] J. Rada-Vilela, M. Chica, Ó. Cordón, and S. Damas. A comparative study of multi-
objective ant colony optimization algorithms for the time and space assembly line balancing
problem. Applied Soft Computing, 13(11):4370–4382, 2013.

[121] M. Rahoual and R. Saad. Solving timetabling problems by hybridizing genetic algorithms
and taboo search. In 6th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT 2006), pages 467–472, 2006.

[122] M. Randall. Solution approaches for the capacitated single allocation hub location problem
using ant colony optimisation. Computational Optimization and Applications, 39(2):239–
261, 2008.

[123] M. Reed, A. Yiannakou, and R. Evering. An ant colony algorithm for the multi-
compartment vehicle routing problem. Applied Soft Computing, 15:169–176, 2014.

[124] F. Rossi, K. B. Venable, and T. Walsh. A short introduction to preferences: between
artificial intelligence and social choice. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 5(4):1–102, 2011.

[125] M. Ryan. Constraint-based multi-robot path planning. In Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pages 922–928. IEEE, 2010.

[126] S. Salcedo-Sanz, J. Del Ser, I. Landa-Torres, S. Gil-López, and A. Portilla-Figueras. The
coral reefs optimization algorithm: an efficient meta-heuristic for solving hard optimiza-
tion problems. In Proceedings of the 15th International Conference on Applied Stochastic
Models and Data Analysis (ASMDA2013), Mataró, pages 751–758, 2013.

[127] S. Salcedo-Sanz, D. Manjarres, Á. Pastor-Sánchez, J. Del Ser, J. A. Portilla-Figueras,
and S. Gil-Lopez. One-way urban traffic reconfiguration using a multi-objective harmony
search approach. Expert Systems with Applications, 40(9):3341–3350, 2013.

[128] S. Salcedo-Sanz, A. Pastor-Sánchez, J. Portilla-Figueras, and L. Prieto. Effective multi-
objective optimization with the coral reefs optimization algorithm. Engineering Optimiza-
tion, 48(6):966–984, 2016.

[129] R. Santiago-Mozos, S. Salcedo-Sanz, M. DePrado-Cumplido, and C. Bousoño-Calzón. A
two-phase heuristic evolutionary algorithm for personalizing course timetables: a case
study in a spanish university. Computers & operations research, 32(7):1761–1776, 2005.

[130] K. Sastry, D. E. Goldberg, and G. Kendall. Genetic algorithms. In Search methodologies,
pages 93–117. Springer, 2014.

[131] C. Schulte, G. Tack, and M. Z. Lagerkvist. Modeling and programming with gecode, 2010.

[132] K. Socha, J. Knowles, and M. Sampels. A max-min ant system for the university course
timetabling problem. In International Workshop on Ant Algorithms, pages 1–13. Springer,
2002.

152 Bibliography

[133] K. Socha, M. Sampels, and M. Manfrin. Ant algorithms for the university course
timetabling problem with regard to the state-of-the-art. In Applications of evolutionary
computing, pages 334–345. Springer, 2003.

[134] C. Solnon. Solving permutation constraint satisfaction problems with artificial ants. In
ECAI, pages 118–122. Citeseer, 2000.

[135] C. Solnon. Ants can solve constraint satisfaction problems. Evolutionary Computation,
IEEE Transactions on, 6(4):347–357, 2002.

[136] C. Solnon. Ant colony optimization and constraint programming. Wiley Online Library,
2010.

[137] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations research, 35(2):254–265, 1987.

[138] T. Sönmez and M. U. Ünver. Course bidding at business schools*. International Economic
Review, 51(1):99–123, 2010.

[139] T. Sönmez, M. U. Ünver, et al. Matching, allocation, and exchange of discrete resources.
Handbook of social Economics, 1:781–852, 2011.

[140] T. Stutzle and H. Hoos. Max-min ant system and local search for the traveling salesman
problem. In Evolutionary Computation, 1997., IEEE International Conference on, pages
309–314. IEEE, 1997.

[141] T. Stützle and H. H. Hoos. Max–min ant system. Future generation computer systems,
16(8):889–914, 2000.

[142] E.-G. Talbi, O. Roux, C. Fonlupt, and D. Robillard. Parallel ant colonies for the quadratic
assignment problem. Future Generation Computer Systems, 17(4):441–449, 2001.

[143] I. X. Tassopoulos and G. N. Beligiannis. Solving effectively the school timetabling problem
using particle swarm optimization. Expert Systems with Applications, 39(5):6029–6040,
2012.

[144] I. X. Tassopoulos and G. N. Beligiannis. Using particle swarm optimization to solve
effectively the school timetabling problem. Soft Computing, 16(7):1229–1252, 2012.

[145] N. E. Toklu, L. M. Gambardella, and R. Montemanni. A multiple ant colony system for a
vehicle routing problem with time windows and uncertain travel times. Journal of Traffic
and Logistics Engineering, 2(1), 2014.

[146] P. Toth and D. Vigo. Branch-and-bound algorithms for the capacitated vrp. In The vehicle
routing problem, pages 29–51. Society for Industrial and Applied Mathematics, 2001.

[147] P. Toth and D. Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.

[148] E. Tsang. Foundations of Constraint Satisfaction: The Classic Text. BoD–Books on
Demand, 2014.

[149] F. Vavak and T. C. Fogarty. Comparison of steady state and generational genetic al-
gorithms for use in nonstationary environments. In Evolutionary Computation, 1996.,
Proceedings of IEEE International Conference on, pages 192–195. IEEE, 1996.

Bibliography 153

[150] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A hybrid genetic algorithm with
adaptive diversity management for a large class of vehicle routing problems with time-
windows. Computers & operations research, 40(1):475–489, 2013.

[151] D. Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85, 1994.

[152] G. J. Woeginger. Exact algorithms for np-hard problems: A survey. In Combinatorial
Optimization—Eureka, You Shrink!, pages 185–207. Springer, 2003.

[153] B. Yu, Z.-Z. Yang, and B. Yao. An improved ant colony optimization for vehicle routing
problem. European journal of operational research, 196(1):171–176, 2009.

[154] H. Zhang, C. Jiang, N. C. Beaulieu, X. Chu, X. Wang, and T. Q. Quek. Resource allocation
for cognitive small cell networks: A cooperative bargaining game theoretic approach. IEEE
Transactions on Wireless Communications, 14(6):3481–3493, 2015.

[155] T. Zhang, W. A. Chaovalitwongse, and Y. Zhang. Integrated ant colony and tabu search
approach for time dependent vehicle routing problems with simultaneous pickup and de-
livery. Journal of Combinatorial Optimization, 28(1):288–309, 2014.

[156] E. Zitzler. Evolutionary algorithms for multiobjective optimization: Methods and appli-
cations. 1999.

	Abstract
	Resumen
	Contents
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation of the dissertation
	1.2 Problem statement
	1.3 Research Questions
	1.4 Structure of the thesis
	1.5 Publications and Contributions

	2 State of the Art
	2.1 Bio-inspired Metaheuristics
	2.1.1 Ant Colony Optimization (ACO)
	2.1.1.1 Ant System
	2.1.1.2 Elitist strategy
	2.1.1.3 Max-Min Ant System
	2.1.1.4 Local search
	2.1.1.5 Applications of ACO algorithms

	2.1.2 Genetic Algorithms (GA)
	2.1.2.1 Selection of parents
	2.1.2.2 Reproduction
	2.1.2.3 Replacement

	2.1.3 Harmony Search (HS)

	2.2 Constraint Satisfaction Problems (CSP)
	2.2.1 Examples of CSPs
	2.2.1.1 The n-Queens Problem
	2.2.1.2 The Graph-Coloring Problem
	2.2.1.3 The Sudoku Game

	2.2.2 Constraint Satisfaction Optimization Problems (CSOP)
	2.2.2.1 The Traveling Salesman Problem (TSP)

	2.2.3 Search algorithms to solve CSPs and CSOPs
	2.2.4 Integration of ACO and CSP models

	2.3 Application fields
	2.3.1 The Resource Allocation Problem (RAP)
	2.3.1.1 Example of RAP: The Course Allocation Problem
	2.3.1.2 Example of RAP: The Course Timetabling Problem

	2.3.2 The Many-objective Resource Allocation Problem (MORAP)
	2.3.2.1 The Hypervolume Metric
	2.3.2.2 The Crowding Distance

	2.3.3 The Vehicle Routing Problem (VRP)

	3 Heuristic and ACO Approaches for Resource Allocation Problems
	3.1 Introduction
	3.2 Description of the problem
	3.2.1 Objectives

	3.3 The complete model for the combined CTT & RAP
	3.3.1 Concepts
	3.3.2 Solution
	3.3.3 Hard Constraints
	3.3.4 Soft Constraints

	3.4 Complexity of the problem
	3.5 The model for the CLass Allocation Problem (CLAP)
	3.6 The CSOP model for the CLAP
	3.7 The ACO approach for the CLAP
	3.8 Experimentation
	3.9 Conclusions
	3.10 Case Study: The Course Timetabling Problem
	3.10.1 The ITC-2007 Course Timetabling Problem
	3.10.2 The ACO approach
	3.10.3 The datasets
	3.10.4 The results
	3.10.5 Conclusions

	4 Heuristic and Hybrid Metaheuristic Approaches for RAP Combined with a Scheduling Problem
	4.1 Introduction
	4.2 The Course Allocation Problem (CAP)
	4.3 The Course Timetabling Problem (CTT)
	4.4 The Course Greedy Algorithm (CGA) for the CAP
	4.4.1 Example

	4.5 The CSOP approach for the CAP
	4.6 The CSOP approach for the CAP&CTT
	4.6.1 The CSOP algorithm for the CAP&CTT

	4.7 The ACO approach for the CAP&CTT
	4.8 Experimentation: Greedy versus CSOP for the CAP
	4.8.1 The results

	4.9 Experimentation: CSOP versus ACO for the CAP&CTT
	4.9.1 Results for the CSOP approach
	4.9.2 Results for the ACO approach
	4.9.3 Comparison of CSOP and ACO
	4.9.4 Computation time

	4.10 Conclusions

	5 Comparison of Three Metaheuristics to Handle Many-objective RAP
	5.1 Introduction
	5.2 Description of the Problem
	5.3 Problem Statement
	5.3.1 The Pedagogical Objective
	5.3.2 The Number of Lessons and Teachers

	5.4 The ACO Approach
	5.5 The HS Approach
	5.6 The NSGA-II Approach
	5.7 Experimentation
	5.7.1 Datasets
	5.7.2 Parameters
	5.7.3 Hypervolume Comparison
	5.7.4 Results and Discussion
	5.7.4.1 Datasets 12-9 and 21-9

	5.7.5 Computation time
	5.7.6 Hypervolume Comparison

	5.8 Conclusions

	6 Hybrid Metaheuristics to Manage Complex Vehicle Routing Problems
	6.1 Introduction
	6.2 Problem statement for the maVRP
	6.3 The ACO approach
	6.3.1 The pheromones' update
	6.3.2 The ACO-3-opt approach

	6.4 The GA approach
	6.5 The ACO-GA approach
	6.6 The GA-ACO approach
	6.7 Experimentation
	6.7.1 The datasets
	6.7.1.1 The hard constraints
	6.7.1.2 The objective

	6.7.2 The parameters
	6.7.3 The results
	6.7.3.1 Results for the ACO approaches
	6.7.3.2 Results for the GA approaches
	6.7.3.3 Comparison

	6.8 Conclusions

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	8 Conclusiones y Trabajo Futuro
	8.1 Conclusions
	8.2 Trabajo futuro

	A Notation used in Chapter 3
	B Complete Results for the maVRP
	Bibliography

